WorldWideScience

Sample records for subluminal group velocity

  1. Net electron energy gain induced by superluminal phase velocity and subluminal group velocity of a laser in a plasma channel

    Science.gov (United States)

    Cheng, Li-Hong; Yao, Zheng-Wei; Zhang, Xiao-Bo; Xue, Ju-Kui

    2017-08-01

    We examine electron dynamics induced by laser-plasma interaction in a two-dimensional plasma channel, taking into action the laser phase velocity as well as the group velocity. The coupled effects of phase velocity, group velocity, and plasma channel on electron dynamics are discussed in detail. The superluminal phase velocity and the corresponding subluminal group velocity of the laser result in rich and complex electron dynamics, which are depicted in the plane of the phase velocity and plasma charge density. For weak superluminosity of the phase velocity, the effects of the phase velocity and the group velocity can be neglected. For moderate superluminosity of the phase velocity, a cross-over region can exist, where the highly energetic electron could be found and the net energy gain is several times greater than the energy gain in vacuum. For strong superluminosity of the phase velocity, the dephasing rate increases and thus limits the electron energy gain from the laser. However, the asymmetric laser pulse, attributed by the superluminal phase velocity and the subluminal group velocity, results in the electron getting adjustable net energy gain from the laser. The electron oscillations are no longer limited by the charge density threshold and the electron can always get net energy from the laser. These electron dynamics can also be modified by adjusting the polarization of the laser.

  2. Enhanced effects of subluminal and superluminal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Feng; Guo Hong; Li Luming; Liu Cheng; Chen Xuzong

    2004-06-21

    We have experimentally investigated the enhanced effects of subluminal and superluminal propagation, based on electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA), respectively. By adding only an incoherently pumping laser to each case, the slower subluminal group velocity, and the faster superluminal pulse propagation are, respectively, observed. By only changing the intensity of the incoherent pumping beam, we are able to control, respectively, the subluminal group velocity continuously from v{sub g}=c/20000 to v{sub g}=c/8300, and superluminal group velocity from v{sub g}=-c/1667 to v{sub g}=-c/3030. Qualitative explanations for the two cases are given.

  3. Passive system with tunable group velocity for propagating electrical pulses from sub- to superluminal velocities.

    Science.gov (United States)

    Haché, Alain; Essiambre, Sophie

    2004-05-01

    We report an observation of tunable group velocity from sub-luminal to superluminal in a completely passive system. Electric pulses are sent along a spatially periodic conducting medium containing a punctual nonlinearity, and the resulting amplitude-dependent phase shift allows us to control dispersion and the propagation velocity at the stop band frequency.

  4. Generalised Einstein mass-variation formulae: I Subluminal relative frame velocities

    Directory of Open Access Journals (Sweden)

    James M. Hill

    Full Text Available Much of the formalism in special relativity is intimately bound up with Einstein’s formula for the variation of mass m with its velocity v, namely m(v=m0∗[1-(v/c2]-1/2, where m is the mass, v the velocity, c denotes the speed of light and m0∗ denotes the rest mass, noting that in these papers, we employ an asterisk to designate the rest mass. Einstein’s formula together with the Lorentz transformations and their consequences are fundamental to the development of special relativity. Here we introduce the notion of the residual mass m0(v which for v

  5. Time-frequency dynamics of superluminal pulse transition to the subluminal regime

    Science.gov (United States)

    Dorrah, Ahmed H.; Ramakrishnan, Abhinav; Mojahedi, Mo

    2015-03-01

    Spectral reshaping and nonuniform phase delay associated with an electromagnetic pulse propagating in a temporally dispersive medium may lead to interesting observations in which the group velocity becomes superluminal or even negative. In such cases, the finite bandwidth of the superluminal region implies the inevitable existence of a cutoff distance beyond which a superluminal pulse becomes subluminal. In this paper, we derive a closed-form analytic expression to estimate this cutoff distance in abnormal dispersive media with gain. Moreover, the method of steepest descent is used to track the time-frequency dynamics associated with the evolution of the center of mass of a superluminal pulse to the subluminal regime. This evolution takes place at longer propagation depths as a result of the subluminal components affecting the behavior of the pulse. Finally, the analysis presents the fundamental limitations of superluminal propagation in light of factors such as the medium depth, pulse width, and the medium dispersion strength.

  6. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  7. Subluminal and superluminal propagation of light in an N-type medium

    Energy Technology Data Exchange (ETDEWEB)

    Han Dingan [CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China) and CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)]. E-mail: handingan@163.com; Guo Hong [CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China) and CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)]. E-mail: hongguo@pku.edu.cn; Bai Yanfeng [CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China); CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Sun Hui [CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China)

    2005-01-10

    For a three-level electromagnetically induced transparency (EIT) atomic system, we show that, adding a third driving field coupled to a fourth state, the properties of the weak probe light propagation are greatly changed. Due to the increase of the driving field, when the driving and the coupling detunings are zero, the light propagation can be changed from subluminal to superluminal. Also, the analytical solution exhibiting superluminal group velocity is given at the zero probe detuning.

  8. Transition between superluminal and subluminal light propagation in photorefractive Bi12SiO20 crystals.

    Science.gov (United States)

    Bo, Fang; Zhang, Guoquan; Xu, Jingjun

    2005-10-03

    We demonstrated superluminal light propagation with a negative group velocity of -5.7 m/s in a photorefractive Bi 12SiO20 crystal by using the dispersive phase coupling effect in a nondegenerate two-wave mixing process. To the best of our knowledge, this is the first experimental demonstration of superluminal light propagation at room temperature in solids by using a classical wave mixing technique. In addition, we showed the tunability of the group velocity of light between the negative (superluminal light) and the positive (subluminal light) by simply tuning the experimental conditions such as the frequency of the coupling beam, the incident intensity, and the externally applied electric fields.

  9. Subluminal and superluminal terahertz radiation in metamaterials with electromagnetically induced transparency.

    Science.gov (United States)

    Bai, Zhengyang; Hang, Chao; Huang, Guoxiang

    2013-07-29

    We propose a scheme to design a new type of optical metamaterial that can mimic the functionality of four-state atomic systems of N-type energy-level configuration with electromagnetically induced transparency (EIT). We show that in such metamaterial a transition from a single EIT to a double EIT of terahertz radiation may be easily achieved by actively tuning the intensity of the infrared pump field or passively tuning the geometrical parameters of resonator structures. In addition, the group velocity of the terahertz radiation can be varied from subluminal to superluminal by changing the pump field intensity. The scheme suggested here may be used to construct chip-scale slow and fast light devices and to realize rapidly responded switching of terahertz radiation at room temperature.

  10. Light propagation from subluminal to superluminal in a three-level {lambda}-type system

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China); Guo Hong [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China) and CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China)]. E-mail: hongguo@pku.edu.cn; Bai, Yanfeng [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Han Dingan [CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China); Fan Shuangli [CREAM Group, Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510631 (China); Chen Xuzong [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2005-01-31

    We show that the group velocity of a weak electromagnetic pulse can be manipulated by adjusting the relative phase of the probing and the pumping fields applied to a {lambda}-type three-level system, whose two lower states are coupled by an external control magnetic field. Such control field can, in principle, cause the light propagation to be changed from subluminal to superluminal by modulating the relative phase. The same effect can be obtained by varying the intensities of the pumping and the control magnetic fields, but it is different with Agarwal's [Phys. Rev. A 64 (2001) 053809]. The effect of Doppler broadening on the dispersion is also investigated.

  11. Switching freely between superluminal and subluminal light propagation in a monolayer MoS2 nanoresonator.

    Science.gov (United States)

    Li, Jian-Bo; Xiao, Si; Liang, Shan; He, Meng-Dong; Kim, Nam-Chol; Luo, Yongfeng; Luo, Jian-Hua; Chen, Li-Qun

    2017-06-12

    We theoretically propose a feasible scheme to advance or slow the propagation of light in a monolayer MoS2 nanoresonator (NR). The scheme allows one to easily turn on or off the fast (superluminal) and slow (subluminal) light effects and switch freely between fast and slow light propagation by only adjusting the frequency or intensity of the pump field. As the exciton interacts strongly with the phonons in MoS2, the slow light effect will appear along with a large dispersion with a very steep negative slope and a sharp absorption peak. Especially, the maximal group velocity index of the slow light in the monolayer MoS2 NR can reach two orders of magnitude larger than that in a carbon nanotube resonator. These results provide a new way to measure the exciton-phonon coupling strength and may prove useful in device applications such as optical switching and optical signal processing.

  12. Group Velocity Engineering of Confined Ultrafast Magnons

    Science.gov (United States)

    Chen, Y.-J.; Zakeri, Kh.; Ernst, A.; Qin, H. J.; Meng, Y.; Kirschner, J.

    2017-12-01

    Quantum confinement permits the existence of multiple terahertz magnon modes in atomically engineered ultrathin magnetic films and multilayers. By means of spin-polarized high-resolution electron energy-loss spectroscopy, we report on the direct experimental detection of all exchange-dominated terahertz confined magnon modes in a 3 ML Co film. We demonstrate that, by tuning the structural and magnetic properties of the Co film, through its epitaxial growth on different surfaces, e.g., Ir(001), Cu(001), and Pt(111), one can achieve entirely different in-plane magnon dispersions, characterized by positive and negative group velocities. Our first-principles calculations show that spin-dependent many-body correlation effects in Co films play an important role in the determination of the energies of confined magnon modes. Our results suggest a pathway towards the engineering of the group velocity of confined ultrafast magnons.

  13. An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova

    Science.gov (United States)

    Vennes, S.; Nemeth, P.; Kawka, A.; Thorstensen, J. R.; Khalack, V.; Ferrario, L.; Alper, E. H.

    2017-08-01

    Subluminous Type Ia supernovae, such as the Type Iax-class prototype SN 2002cx, are described by a variety of models such as the failed detonation and partial deflagration of an accreting carbon-oxygen white dwarf star or the explosion of an accreting, hybrid carbon-oxygen-neon core. These models predict that bound remnants survive such events with, according to some simulations, a high kick velocity. We report the discovery of a high proper motion, low-mass white dwarf (LP 40-365) that travels at a velocity greater than the Galactic escape velocity and whose peculiar atmosphere is dominated by intermediate-mass elements. Strong evidence indicates that this partially burnt remnant was ejected following a subluminous Type Ia supernova event. This supports the viability of single-degenerate supernova progenitors.

  14. Measurement of the velocity of a quantum object: A role of phase and group velocities

    Science.gov (United States)

    Lapinski, Mikaila; Rostovtsev, Yuri V.

    2017-08-01

    We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the corresponding matter waves. We show that for long distances the measured velocity coincides with the matter wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently driven media or for radiation propagating in waveguides.

  15. Direct measurement of superluminal group velocity and signal velocity in an optical fiber.

    Science.gov (United States)

    Brunner, Nicolas; Scarani, Valerio; Wegmüller, Mark; Legré, Matthieu; Gisin, Nicolas

    2004-11-12

    We present an easy way of observing superluminal group velocities using a birefringent optical fiber and other standard devices. In the theoretical analysis, we show that the optical properties of the setup can be described using the notion of "weak value." The experiment shows that the group velocity can indeed exceed c in the fiber; and we report the first direct observation of the so-called "signal velocity," the speed at which information propagates and that cannot exceed c.

  16. Subluminal and superluminal parametric doppler effects in the case of light reflection from a moving smooth medium inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, N. N., E-mail: nrosanov@yahoo.com [Vavilov State Optical Institute (Russian Federation)

    2012-12-15

    The reflection of test radiation from a smooth inhomogeneity of medium characteristics propagating with a subluminal or superluminal velocity is analyzed. The equations describing the propagation of the forward- and counter-propagating waves in such an inhomogeneous medium are derived. Quasi-phase conjugation is demonstrated in the case of superluminal inhomogeneities. The Bragg resonance conditions are formulated and the conditions for increasing the reflection coefficient of radiation from an inhomogeneity are discussed.

  17. Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia

    Science.gov (United States)

    Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani

    2017-04-01

    We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.

  18. Group velocity of cylindrical guided waves in anisotropic laminate composites.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Eremin, Artem; Lammering, Rolf

    2014-01-01

    An explicit expression for the group velocity of wave packets, propagating in a laminate anisotropic composite plate in prescribed directions, is proposed. It is based on the cylindrical guided wave asymptotics derived from the path integral representation for wave fields generated in the composites by given localized sources. The expression derived is theoretically confirmed by the comparison with a known representation for the group velocity vector of a plane guided wave. Then it is experimentally validated against laser vibrometer measurements of guided wave packets generated by a piezoelectric wafer active sensor in a composite plate.

  19. Group-velocity matched nonlinear photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....

  20. On the supraluminal group velocity and the transmission of information

    Science.gov (United States)

    Molotkov, S. N.

    2010-06-01

    The calculations are reported indicating that the transmission of information through a medium with the frequency dispersion of the refractive index n(ω), where the group velocity is higher than the speed of light in vacuum, always occurs exactly with the speed of light in vacuum. This result is valid for any functional dependence n(ω).

  1. Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Haghshenasfard, Z; Naderi, M H; Soltanolkotabi, M [Quantum Optics Group, Department of Physics, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of)], E-mail: zhaghshenas@hotmail.com, E-mail: mhnaderi2001@yahoo.com, E-mail: soltan@sci.ui.ac.ir

    2008-08-28

    In this paper, we investigate the propagation of a weak optical probe pulse in an f-deformed Bose-Einstein condensate of a gas with the {lambda}-type three-level atoms in the electromagnetically induced transparency regime. We use an f-deformed generalization of an effective two-level quantum model of the three-level {lambda} configuration in which Gardiner's phonon operators for Bose-Einstein condensates are deformed by an operator-valued function, f(n-circumflex), of the particle-number operator n-circumflex. By making use of the quantum approach of the angular momentum theory, we obtain the eigenvalues and eigenfunctions of the system up to a first-order approximation. We consider the collisions between the atoms as a special kind of f-deformation. The collision rate {kappa} is regarded as the deformation parameter and light propagation in the deformed Bose-Einstein condensate is analysed. In particular, we show that the absorptive and dispersive properties of the deformed condensate can be controlled effectively by changing the deformation parameter {kappa} and the total number of atoms. We find that by increasing the value of {kappa} the group velocity of the probe pulse changes, through deformed condensate, from subluminal to superluminal.

  2. Subluminal and superluminal pulse propagation influenced by strong nonlinear effects

    Science.gov (United States)

    Chang, Zengguang; Qi, Yihong; Niu, Yueping; Zhang, Jingtao; Gong, Shangqing

    2012-12-01

    A scheme is proposed for control of pulse propagation from subluminal to superluminal in a four-level Λ-type atomic system. With the relatively intense probe laser and the appropriate detuning of control field, the medium exhibits much lower absorption in the spectral ranges where the dispersion changes from normal to abnormal in the double electromagnetically induced transparency system than in the single electromagnetically induced transparency system. The transmission intensity can be enhanced by several times for the subluminal pulse propagation and by several orders of magnitude for the superluminal pulse propagation without the large distortion in the former compared with those in the latter. We attribute the dramatic absorption reduction to the enhanced nonlinear effects.

  3. Anomalous laser-induced group velocity dispersion in fused silica.

    Science.gov (United States)

    Rasskazov, Gennady; Ryabtsev, Anton; Pestov, Dmitry; Nie, Bai; Lozovoy, Vadim V; Dantus, Marcos

    2013-07-29

    We present 20fs(2) accuracy laser-induced group velocity dispersion (LI-GVD) measurements, resulting from propagation of a femtosecond laser pulse in 1mm of fused silica, as a function of peak intensity. For a 5.5 × 10(11) W/cm(2) peak intensity, LI-GVD values are found to vary from -3 to + 15 times the material GVD. Normal induced dispersion can be explained by the Kerr effect, but anomalous LI-GVD, found when the input pulses have negative pre-chirp, cannot. These findings have significant implications regarding self-compression and the design of femtosecond lasers.

  4. DIFFERENTIAL GROUP-VELOCITY DETECTION OF FLUID PATHS

    Energy Technology Data Exchange (ETDEWEB)

    Leland Timothy Long

    2005-12-20

    For nearly 50 years, surface waves that propagate through near-surface soils have been utilized in engineering for the determination of the small-strain dynamic properties of soils. These techniques, although useful, have not been sufficiently precise to use in detecting the subtle changes in soil properties that accompany short-term changes in fluid content. The differential techniques developed in this research now make it possible to monitor small changes (less than 3 cm) in the water level of shallow soil aquifers. Using inversion techniques and tomography, differential seismic techniques could track the water level distribution in aquifers with water being pumped in or out. Differential surface wave analysis could lead to new ways to monitor reservoir levels and verify hydrologic models. Field data obtained during this investigation have measured changes in surface-wave phase and group velocity before and after major rain events, and have detected subtle changes associated with pumping water into an aquifer and pumping water out of an aquifer. This research has established analysis techniques for observing these changes. These techniques combine time domain measurements to isolate surface wave arrivals with frequency domain techniques to determine the effects as a function of frequency. Understanding the differences in response as a function of wave frequency facilitates the inversion of this data for soil velocity structure. These techniques have also quantified many aspects of data acquisition and analysis that are important for significant results. These include tight control on the character of the source and proper placement of the geophones. One important application is the possibility that surface waves could be used to monitor and/or track fluid movement during clean-up operations, verifying that the fluid reached all affected areas. Extending this to a larger scale could facilitate monitoring of water resources in basins without having to drill many

  5. Subluminal and superluminal pulse propagation in inhomogeneous media of nonspherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yu [Department of Physics, Suzhou University, Suzhou 215006 (China); Gao Lei [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Department of Physics, Suzhou University, Suzhou 215006 (China)]. E-mail: lgaophys@pub.sz.jsinfo.net

    2006-07-10

    We study the pulse propagation through a metal/dielectric composites of nonspherical particles enclosed by two gold mirrors. To account for the shape effect, we first adopt Maxwell-Garnett type approximation to obtain the effective dielectric function of composites. Based on the group index, phase time and pulse shape calculations, we find that the particles' shape (characterized by the depolarization factor) plays an important role in determining the subluminal and superluminal pulse propagations through the system. When the inclusions' shape is not spherical, it is possible to observe significant superluminal behavior of the pulse propagation, although the volume fraction is the same. The shape-dependent critical volume fraction is predicted, above which superluminal propagation appears. Furthermore, the Hartman effect in such a system is also investigated.

  6. Subluminal and superluminal light propagation in a superconducting quantum circuit via Josephson coupling energy

    Energy Technology Data Exchange (ETDEWEB)

    Hamedi, H.R., E-mail: hamid.r.hamedi@gmail.com

    2015-05-15

    We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is realized that the slope of dispersion can be changed from negative to positive or vice versa through the ratio of the Josephson coupling energy to the capacitive coupling strength which provides an extra controlling parameter for controlling the slope of dispersion. The temporal behavior of the probe dispersion and the required switching time for switching the superluminal light propagation to the subluminal light propagation are also discussed. The results may be useful for understanding the switching feature of slow light-based systems and have potential application in optical information processing.

  7. Subluminal and superluminal light propagation in a superconducting quantum circuit via Josephson coupling energy

    Science.gov (United States)

    Hamedi, H. R.

    2015-05-01

    We investigate the dispersion-group index, as well as the transmission coefficient properties of a weak probe field in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is realized that the slope of dispersion can be changed from negative to positive or vice versa through the ratio of the Josephson coupling energy to the capacitive coupling strength which provides an extra controlling parameter for controlling the slope of dispersion. The temporal behavior of the probe dispersion and the required switching time for switching the superluminal light propagation to the subluminal light propagation are also discussed. The results may be useful for understanding the switching feature of slow light-based systems and have potential application in optical information processing.

  8. Switching from subluminal to superluminal light propagation via a coherent pump field in a four-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Shangqi [College of Physics, Jilin University, Changchun 130023 (China); Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Educational Ministry of China, Changchun 130021 (China); Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Wan Rengang; Kou Jun; Jiang Yun; Gao Jinyue [College of Physics, Jilin University, Changchun 130023 (China); Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Educational Ministry of China, Changchun 130021 (China)

    2009-12-15

    We theoretically investigate the influence of a coherent pump field on the propagation of a weak light pulse of a probe field in a four-level atomic system. Due to the modulation of the pump field, the light pulse can be manipulated from subluminal to superluminal with negligible distortion. This scheme can be realized in both the ultracold and Doppler-broadened atomic systems. We also demonstrate that the spectral linewidth with an anomalous dispersion is reduced by thermal averaging; therefore, one can obtain a larger negative group refractive index in room-temperature vapor than the largest value achieved in ultracold atomic gas.

  9. Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals.

    Science.gov (United States)

    Askari, Murtaza; Momeni, Babak; Reinke, Charles M; Adibi, Ali

    2011-03-20

    We present an efficient method for the absorption of slow group velocity electromagnetic waves in photonic crystal waveguides (PCWs). We show that adiabatically matching the low group velocity waves to high group velocity waves of the PCW and extending the PCW structure into the perfectly matched layer (PML) region results in a 15 dB reduction of spurious reflections from the PML. We also discuss the applicability of this method to structures other than PCWs.

  10. Group- and phase-velocity-mismatch fringes in triple sum-frequency spectroscopy

    Science.gov (United States)

    Morrow, Darien J.; Kohler, Daniel D.; Wright, John C.

    2017-12-01

    The effects of group- and phase-velocity mismatch are well known in optical harmonic generation, but the nondegenerate cases remain unexplored. In this work we develop an analytic model which predicts velocity mismatch effects in nondegenerate triple sum-frequency mixing, TSF. We verify this model experimentally using two tunable, ultrafast, short-wave IR lasers to demonstrate spectral fringes in the TSF output from a 500-μ m -thick sapphire plate. We find the spectral dependence of the TSF depends strongly on both the phase-velocity and the group-velocity differences between the input and output fields. We define practical strategies for mitigating the impact of velocity mismatches.

  11. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    Science.gov (United States)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  12. Giant Kerr nonlinearity and superluminal and subluminal polaritonic solitons in a Bose-Einstein condensate via superradiant scattering

    Science.gov (United States)

    Hang, Chao; Gabadadze, Gregory; Huang, Guoxiang

    2015-09-01

    We propose a setup to generate giant Kerr nonlinearity and polaritonic solitons via matter-wave superradiant scattering. The system we consider is a long cigar-shaped Bose-Einstein condensate (BEC), pumped by a red-detuned laser field with a space-dependent intensity distribution in transverse directions. The pump and the scattered fields propagate along the longitudinal direction. We show that by means of the atom-photon and atom-atom interactions in the system it is possible to produce a giant nonlinear optical effect. We further show that a backward scattering of the laser field from the BEC is favorable for the formation and stable propagation of polaritonic solitons, which are collective nonlinear excitations of the BEC coupled with the scattered laser field. In the case of backward Stokes (anti-Stokes) scattering the system may support robust bright (dark) polaritonic solitons propagating with superluminal (subluminal) velocity.

  13. An upper-mantle S-wave velocity model for Northern Europe from Love and Rayleigh group velocities

    Science.gov (United States)

    Weidle, Christian; Maupin, Valérie

    2008-12-01

    A model of upper-mantle S-wave velocity and transverse anisotropy beneath northwestern Europe is presented, based on regional surface wave observations. Group velocities for both Love and Rayleigh surface waves are measured on waveform data from international and regional data archives (including temporary deployments) and then inverted for group velocity maps, using a method accounting for Fresnel zone sensitivity. The group velocity variations are larger than in global reference maps, and we are able to resolve unprecedented details. We then apply a linear inversion scheme to invert for local 1-D shear wave velocity profiles which are consequently assembled to a 3-D model. By choosing conservative regularization parameters in the 2-D inversion, we ensure the smoothness of the group velocity maps and hence of the resulting 3-D shear wave speed model. To account for the different tectonic regimes in the study region and investigate the sensitivity of the 1-D inversions to inaccuracies in crustal parameters, we analyse inversions with different reference models of increasing complexity (pure 1-D, 3-D crust/1-D mantle and pure 3-D). We find that all inverted models are very consistent at depths below 70 km. At shallower depths, the constraints put by the reference models, primarily Moho depth which we do not invert for, remain the main cause for uncertainty in our inversion. The final 3-D model shows large variations in S-wave velocity of up to +/-12 per cent. We image an intriguing low-velocity anomaly in the depth range 70-150 km that extends from the Iceland plume beneath the North Atlantic and in a more than 400 km wide channel under Southern Scandinavia. Beneath Southern Norway, the negative perturbations are around 10 per cent with respect to ak135, and a shallowing of the anomaly is indicated which could be related to the sustained uplift of Southern Scandinavia in Neogene times. Furthermore, our upper-mantle model reveals good alignment to ancient plate

  14. Superluminal propagation at negative group velocity in optical fibers based on Brillouin lasing oscillation.

    Science.gov (United States)

    Zhang, Liang; Zhan, Li; Qian, Kai; Liu, Jinmei; Shen, Qishun; Hu, Xiao; Luo, Shouyu

    2011-08-26

    We report superluminal propagation in optical fibers using Brillouin lasing oscillation in a ring cavity. Negative group velocity propagation through a 10-m single mode fiber has been experimentally demonstrated. An advancement of 221.2 ns was observed before the input signal, which was achieved with a very high slope efficiency of 211.3  ns/dB. This indicates that this way is suitable for long-distance low-loss superluminal propagation via optical fibers. Correspondingly, the group velocity is -0.151c and the group index is -6.636-the highest group velocity ever reported for optical fibers. © 2011 American Physical Society

  15. Shear-wave velocity model from Rayleigh wave group velocities centered on the Sacramento/San Joaquin Delta

    Science.gov (United States)

    Fletcher, Jon Peter B.; Erdem, Jemile

    2017-01-01

    Rayleigh wave group velocities obtained from ambient noise tomography are inverted for an upper crustal model of the Central Valley, California, centered on the Sacramento/San Joaquin Delta. Two methods were tried; the first uses SURF96, a least-squares routine. It provides a good fit to the data, but convergence is dependent on the starting model. The second uses a genetic algorithm, whose starting model is random. This method was tried at several nodes in the model and compared to the output from SURF96. The genetic code is run five times and the variance of the output of all five models can be used to obtain an estimate of error. SURF96 produces a more regular solution mostly because it is typically run with a smoothing constraint. Models from the genetic code are generally consistent with the SURF96 code sometimes producing lower velocities at depth. The full model, calculated using SURF96, employed a 2-pass strategy, which used a variable damping scheme in the first pass. The resulting model shows low velocities near the surface in the Central Valley with a broad asymmetrical sedimentary basin located close to the western edge of the Central Valley near 122°W longitude. At shallow depths the Rio Vista Basin is found nestled between the Pittsburgh/Kirby Hills and Midland faults, but a significant basin also seems to exist to the west of the Kirby Hills fault. There are other possible correlations between fast and slow velocities in the Central Valley and geologic features such as the Stockton Arch, oil or gas producing regions and the fault-controlled western boundary of the Central Valley.

  16. Rayleigh wave group velocity tomography of Gujarat region, Western India and its implications to mantle dynamics

    Science.gov (United States)

    Dixit, Mayank; Singh, A. P.; Mishra, O. P.

    2017-07-01

    In the present study, fundamental Rayleigh waves with varying period from 10 to 80 s are used to obtain group velocity maps in the northwest Deccan Volcanic Province of India. About 350 paths are obtained using 53 earthquakes (4.8 ≤ M ≥ 7.9) recorded by the SeisNetG (Seismic Network of Gujarat). Individual dispersion curves of group velocity of Rayleigh wave for each source-station path are estimated using multiple filter technique. These curves are used to determine lateral distribution of Rayleigh wave group velocity by tomographic inversion method. Our estimated Rayleigh group velocity at varying depths showed conspicuous corroboration with three tectonic blocks [Kachchh Rift Basin (KRB), Saurashtra Horst (SH), and Mainland Gujarat (MG)] in the region. The seismically active KRB with a thicker crust is characterized as a low velocity zone at a period varying from 10 to 30 s as indicative of mantle downwarping or sagging of the mantle beneath the KRB, while the SH and MG are found to be associated with higher group velocities, indicating the existence of the reduced crustal thickness. The trend of higher group velocity was found prevailed adjacent to the Narmada and Cambay rift basins that also correspond to the reduced crust, suggesting the processes of mantle upwarping or uplifting due to mantle upwelling. The low velocities at periods longer than 40 s beneath the KRB indicate thicker lithosphere. The known Moho depth correlates well with the observed velocities at a period of about 30 s in the Gujarat region. Our estimates of relatively lower group velocities at periods varying from 70 to 80 s may correspond to the asthenospheric flow beneath the region. It is interesting to image higher group velocity for the thinner crust beneath the Arabian Sea adjacent to the west coast of Gujarat at the period of 40 s that may correspond to the upwarped or upwelled mantle beneath the Arabian Sea. Our results have better resolution estimated by a radius of equivalent

  17. Rayleigh Wave Group Velocity Tomography of Siberia, China and the Vicinity

    Science.gov (United States)

    Wu, F. T.; Levshin, A. L.; Kozhevnikov, V. M.

    Rayleigh waves are used in a tomographic inversion to obtain group velocity maps of East Asia (40° E-160° E and 20° N-70° N). The period range studied is 30 to 70 seconds. Seismograms used for this study were recorded at CDSN stations, at a temporary broadband seismic array in Tibet, at several SRO stations, and Kirnos-equipped stations established in Asia by the former Soviet Union, in Siberia, in the Sakhalin and in Mongolia. Altogether more than 1200 paths were available in the tomographic inversion. The study area includes the Angara craton, the geologically ancient core of Asia, and the subsequently accreted units, the Altaids (a Paleozoic collision complex), the Sino-Korean platform (a chain of Archaen terranes separated by belts of active structures), the south China platform (a collage of Precambrian, Paleozoic and Mesozoic metamorphic and igneous terranes), as well as the Tibetan plateau (an active tectonic feature created in late Cenozoic through collision of the Indian subcontinent and the Asian continent). Many of these main units are recognizable in the tomographic images as distinctive units; Tibet appears as a prominent low velocity (about -15% from the average) structure, with western and central Tibet often appearing as the areas with the lowest velocities, the Central Asian fold-belt, and the Angara craton are consistently high group velocity areas. Some lesser tectonic features are also recognizable. For example, Lake Baikal is seen as a high velocity feature at periods greater than 40 seconds. However, the high group velocity feature does not stop near the southern end of Lake Baikal; it extends south-southwestward across Mongolia. The North China Plain, a part of the platform where extensional tectonics dominate, is an area of high velocities as a result of relatively thin crust. The south China block, the least tectonically active region of China, is generally an area of high velocity. For periods longer than 40 seconds, a NNE trending

  18. Offshore Rayleigh group velocity observations of the South Island, New Zealand, from ambient noise data

    Science.gov (United States)

    Yeck, William L.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi

    2017-05-01

    We present azimuthally anisotropic Rayleigh group velocity models from 8 to 35 s both offshore and onshore of the South Island of New Zealand. We use MOANA (Marine Observations of Anisotropy Near Aotearoa) broad-band ocean seismic data in combination with on land data from the New Zealand National Seismography Network to investigate the seismic structure of the flanks of the Australian-Pacific plate boundary. At 8 s, we observe low offshore group velocities best explained by the influence of the water layer and thick water-laden sediments. At long periods (20-30 s), group velocities are lower on the South Island relative to its offshore flanks, due to thickened crust beneath the island, with the lowest velocities primarily beneath the Southern Alps. Group velocity azimuthal anisotropy fast directions near the Alpine Fault align with the direction of relative plate motion between the Australian and Pacific plates. In the southern portion of the island, fast directions rotate anticlockwise, likely in response to a decrease in dextral shearing away from the plate boundary. Azimuthal anisotropy fast directions align with absolute plate motion offshore on the Pacific plate. Based on the depth sensitivity of our observations, we suggest diffuse deformation occurs throughout the crust. Our observations match trends in previous Pn anisotropy and SKS shear wave splitting observations, and therefore suggest a consistent pattern of distributed deformation throughout the lithosphere.

  19. Offshore Rayleigh Group Velocity Observations of the South Island, New Zealand, from Ambient Noise Data

    KAUST Repository

    Yeck, William L.

    2017-02-15

    We present azimuthally anisotropic Rayleigh group velocity models from 8 - 35 s both offshore and onshore of the South Island of New Zealand. We use MOANA (Marine Observations of Anisotropy Near Aotearoa) broadband ocean seismic data in combination with on land data from the New Zealand National Seismography Network (NZNSN) to investigate the seismic structure of the flanks of the Australian-Pacific plate boundary. At 8 s, we observe low offshore group velocities best explained by the influence of the water layer and thick water-laden sediments. At long periods (20-30 s), group velocities are lower on the South Island relative to its offshore flanks, due to thickened crust beneath the island, with the lowest velocities primarily beneath the Southern Alps. Group velocity azimuthal anisotropy fast directions near the Alpine Fault align with the direction of relative plate motion between the Australian and Pacific plates. In the southern portion of the island, fast directions rotate anticlockwise, likely in response to a decrease in dextral shearing away from the plate boundary. Azimuthal anisotropy fast directions align with absolute plate motion offshore on the Pacific plate. Based on the depth sensitivity of our observations, we suggest diffuse deformation occurs throughout the crust. Our observations match trends in previous Pn anisotropy and SKS shear wave splitting observations, and therefore suggest a consistent pattern of distributed deformation throughout the lithosphere.

  20. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

    CERN Document Server

    Luo, Yiyang; Li, Lei; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Fu, Songnian; Zhao, Luming

    2016-01-01

    Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.

  1. Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse.

    Science.gov (United States)

    Alexeev, I; Kim, K Y; Milchberg, H M

    2002-02-18

    The superluminal group velocity of an ultrashort optical Bessel beam pulse is measured over its entire depth of field, corresponding to approximately 2x10(4) optical wavelengths. The method used is to measure the traveling ionization front induced by the pulse.

  2. Quantitative evaluation of standard deviations of group velocity dispersion in optical fibre using parametric amplification

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Svane, Ask Sebastian; Lund-Hansen, Toke

    2014-01-01

    A numerical model for parametric amplifiers, which include stochastic variations of the group velocity dispersion (GVD), is presented. The impact on the gain is investigated, both with respect to the magnitude of the variations and by the effect caused by changing the wavelength of the pump...

  3. Hyperbolic shock waves of the optical self-focusing with normal group-velocity dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Germaschewski, K.; Grauer, R.

    2002-01-01

    The theory of focusing light pulses in Kerr media with normal group-velocity dispersion in (2+1) and (3+1) dimensions is revisited. It is shown that pulse splitting introduced by this dispersion follows from shock fronts that develop along hyperbolas separating the region of transverse self...

  4. IGS Working Group "Regional Dense Velocity Fields": Objectives and Work Plan

    Science.gov (United States)

    Bruyninx, C.; Altamimi, Z.; Becker, M.; Craymer, M.; Combrinck, L.; Combrink, A.; Fernandes, R.; Govind, R.; Herring, T.; Kenyeres, A.; King, B.; Kreemer, C.; Lavallee, D.; Legrand, J.; Moore, M.; Sanchez, L.; Sella, G.; Woppelmann, G.

    2008-12-01

    The IAG Working Group (WG) on "Regional Dense Velocity Fields" was created within IAG sub-commission 1.3 "Regional Reference Frames" at the IUGG General Assembly in Perugia in 2007. The goal of the Working Group is to densify the latest realization of the ITRS and provide regional dense velocity information in a common global reference frame. For that purpose, working group members join efforts with the regional sub-commissions (AFREF, NAREF, SIRGAS, EUREF, ·s ) and analysis groups processing data from local/regional continuous and episodic GNSS stations. In a first step, dedicated region coordinators will gather as many as possible velocity solutions for their region (in accordance with the WG requirements) and combine these solutions with the sub-commission regional solutions to produce a regional cumulative combined solution in the SINEX format. In a second step, combination coordinators will perform combinations of the regional SINEX submissions and SINEX solutions from global GNSS networks like e.g. TIGA. The purpose of multiple combination coordinators is to evaluate both the results and different approaches. To assist in this task regional coordinators will solicit discontinuity tables in addition to the weekly SINEX solutions. At the same time, the WG will also study the strengths and shortcomings of local/regional and continuous/episodic GNSS solutions to determine site velocities, and define optimal strategies for the combination of regional and global SINEX solutions.

  5. SDH detection of CFRP without pre-knowledge of anisotropic group velocity

    Science.gov (United States)

    Shao, Yongsheng; Lin, Jing; Zeng, Liang; Cao, Xuwei

    2017-04-01

    Ultrasonic phased array has been widely used for the nondestructive detection of carbon fiber-reinforced plastic (CFRP). The accurate anisotropic group velocity must be obtained beforehand for the detection imaging. It's a great challenge because of the anisotropy of CFRP. In this paper, a novel method is presented for the Side-Drilled Hole (SDH) detection in CFRP, in which the pre-knowledge of anisotropic group velocity is not needed. To begin with, the detection signal of CFRP with SDH was gained by the mode of FMC (full matrix capture). Then a limited angle range of the anisotropic group velocity is obtained by the back-wall reflection method (BRM). The angle range of velocity is extended by matching the delay time of back-wall and SDH reflection and analyzing the relation between the reflection of back-wall and SDH. Although the acquired angle range can't cover all the directions, it's still sufficient to image SDH. Finally, the total focusing method (TFM) is used to image CFRP. Furthermore, the weak defect located between SDH and back-wall may also be detected. An experiment was conducted on a sample of CFRP with SDH. The SDH can be seen clearly in the image.

  6. Rayleigh-wave Group Velocity Tomography in the Vicinity of the Hawaiian Hotspot

    Science.gov (United States)

    Strader, A. E.; Laske, G.; Orcutt, J. A.; Wolfe, C. J.; Collins, J. A.; Solomon, S. C.; Detrick, R. S.; Bercovici, D.; Hauri, E. H.

    2009-12-01

    We present maps of long-period Rayleigh wave group velocity maps for the area spanned by the Hawaiian PLUME (Plume-Lithosphere Undersea Mantle Experiment) project. Specifically, we used observations from the second deployment of ocean-bottom and land broadband instruments that operated from April 2006 through May 2007. The recording network consisted of13 land stations with ten temporary and three observatory instruments and 38 ocean bottom sites that were equipped with 4-component broad-band instruments. With an average station spacing of approximately 200 km, this network had an aperture of nearly 1300 km. For this study, we used an efficient interactive screen tool that employs a multiple filtering technique to measure the frequency-dependent group velocity. The spectra are pre-whitened to reduce biasing effects at frequencies with strong dispersion. We established that the technique provides reliable results for the two-station approach used here, at frequencies between 7 and 60 mHz. Our analysis includes records from 182 shallow earthquakes with focal depth h00.01×1020 Nm, and surface wave magnitudes MS≥5.6. Six smaller events also have signal levels suitable for analysis. For initial dispersion quality and consistency checks, we inspected local group velocity maps obtained from 555 path-averaged group velocity curves for paths that cross the PLUME network. Occam-smoothed matrix inversions are performed for maps with 1° in latitude and longitude. The data are highly consistent at frequencies above 10 mHz. At frequencies below 25 mHz, there is an anomaly downstream of the island of Hawaii that intensifies with decreasing frequency. This result suggests a deep-seated structural anomaly. Group velocities at frequencies above 40 mHz also map with high fidelity. However, in an initial inversion for three-dimensional mantle shear velocity structure we discarded such data, as they are highly sensitive to bathymetry (which is well known and can be corrected for

  7. High Power test of a low group velocity X-band Accelerator Structure for CLIC

    CERN Document Server

    Döbert, S; Riddone, G; Taborelli, M; Wuensch, W; Zennaro, R; Fukuda, S; Higashi, Y; Higo, T; Matsumoto, S; Ueno, K; Yokoyama, K; Adolphsen, C; Dolgashev, V; Laurent, L; Lewandowski, J; Tantawi, S; Wang, F; Wang, JW

    2008-01-01

    In recent years evidence has been found that the maximum sustainable gradient in an accelerating structure depends on the rf power flow through the structure. The CLIC study group has consequently designed a new prototype structure for CLIC with a very low group velocity, input power and average aperture ( = 0.13). The 18 cell structure has a group velocity of 2.6 % at the entrance and 1 % at the last cell. Several of these structures have been made in a collaboration between KEK, SLAC and CERN. A total of five brazed-disk structures and two quadrant structures have been made. The high power results of the first KEK/SLAC built structure is presented which reached an unloaded gradient in excess of 100 MV/m at a pulse length of 230 ns with a breakdown rate below 10-6 per meter active length. The high-power testing was done using the NLCTA facility at SLAC.

  8. Control of Group Velocity via Spontaneous Generated Coherence and Kerr Nonlinearity

    Science.gov (United States)

    Hazrat, Ali; Iftikhar, Ahmad; Ziauddin

    2014-09-01

    A four-level N-type atomic medium is considered to study the effect of spontaneous generated coherence (SGC) and Kerr nonlinearity on light pulse propagation. A light pulse is propagating inside the medium where each atom follows four-level N-type atom-field configuration of rubidium (85Rb) atom. The atom-field interaction leads to electromagnetically induced transparency (EIT) process. The atom-field interaction is accompanied by normal dispersion and in the presence of SGC and Kerr nonlinearity the dispersion property of the proposed atomic medium is modified, which leads to enhancement of positive group index of the medium. The enhancement of positive group index then leads to slow group velocity inside the medium. A more slow group velocity is also investigated by incorporated the collective effect of SGC and Kerr nonlinearity. The control of group velocity inside a four-level N-type atomic medium via collective effect of SGC and Kerr nonlinearity is the major part of this work.

  9. Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides.

    Science.gov (United States)

    Govyadinov, Alexander A; Podolskiy, Viktor A

    2006-12-01

    We study the energy propagation in subwavelength waveguides and demonstrate that the mechanism of material gain, previously suggested for loss compensation, is also a powerful tool to manipulate dispersion and propagation characteristics of electromagnetic pulses at the nanoscale. We show theoretically that the group velocity in lossy nanowaveguides can be controlled from slow to superluminal values by the material gain and waveguide geometry and develop an analytical description of the relevant physics. We utilize the developed formalism to show that gain-assisted dispersion management can be used to control the transition between "photonic-funnel" and "photonic-compressor" regimes in tapered nanowaveguides. The phenomenon of strong modulation of group velocity in subwavelength structures can be realized in waveguides with different geometries and is present for both volume and surface modes.

  10. Dependences of the group velocity for femtosecond pulses in MgO-doped PPLN crystal.

    Science.gov (United States)

    Chen, Yu-Ping; Lu, Wen-Jie; Xia, Yu-Xing; Chen, Xian-Feng

    2011-03-14

    Theoretical investigation on the group velocity control of ultrafast pulses through quadratic cascading nonlinear interaction is presented. The dependences of the fractional time delay as well as the quality factor of the delayed femtosecond pulse on the peak intensity, group velocity mismatch, wave-vector mismatch and the pulse duration are examined. The results may help to understand to what extent some optical operation parameters could have played a role in controlling the ultrashort pulses. We also predict the maximum achievable pulse delay or advancement efficiency without large distortions. A compact solid medium integrating multiple functions including slowing light, wavelength conversion or broadcasting on a single chip, may bring significant practicality and high integration applications at optical communication band.

  11. Broadband second-harmonic generation in APPLN with group-velocity matching

    Science.gov (United States)

    Jiang, Jian; Zhang, Jiandong; Wang, Kai; Xiao, Xuan; Zhang, Zuxing

    2017-11-01

    In this paper, we present a method to increase the acceptance bandwidth of second harmonic generation (SHG) with 5 mol% MgO-doped aperiodically poled lithium niobate (APPLN) when the conditions of quasi-phase-matching and group-velocity matching are satisfied simultaneously. The APPLN, with a length of 10 mm, has 3333 uniform domains, with the polarization directions of each domain optimized by a genetic algorithm, to obtain the profile of nonlinear coefficients in the communication band. By adjusting the positions and quantities of the fundamental wavelengths appropriately, the evolution of bandwidths is investigated theoretically. The simulation results show that the acceptance bandwidth of SHG is approximately 243.3 nm for type-I (o + o → e) interaction around the wavelength of zero-group-velocity dispersion in crystal, which is enhanced by 4.5 times that of periodic structures.

  12. Group velocity effect on resonant, long-range wake-fields in slow wave structures

    CERN Document Server

    Smirnov, A V

    2002-01-01

    Synchronous wake-fields in a dispersive waveguide are derived in a general explicit form on the basis of a rigorous electro-dynamical approach using Fourier transformations. The fundamental role of group velocity in wake-field propagation, calculation of attenuation, amplitudes, form-factors and loss-factors is analyzed for single bunch radiation. Adiabatic tapering of the waveguide and bunch density variation is taken into account analytically for the time-domain fields. Effects of field 'compression/expansion' and group delays are demonstrated. The role of these effects is discussed for single bunch wake-fields, transient beam loading, BBU and HOMs. A novel waveguide structure with central rf coupling and both positive and negative velocities is proposed. It can be used effectively in both high-energy accelerators and single-section linacs.

  13. Group velocity and pulse lengthening of mismatched laser pulses in plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim

    2011-07-07

    Analytic solutions are presented to the non-paraxial wave equation describing an ultra-short, low-power, laser pulse propagating in aplasma channel. Expressions for the laser pulse centroid motion and laser group velocity are derived, valid for matched and mismatchedpropagation in a parabolic plasma channel, as well as in vacuum, for an arbitrary Laguerre-Gaussian laser mode. The group velocity of amismatched laser pulse, for which the laser spot size is strongly oscillating, is found to be independent of propagation distance andsignificantly less than that of a matched pulse. Laser pulse lengthening of a mismatched pulse owing to laser mode slippage isexamined and found to dominate over that due to dispersive pulse spreading for sufficiently long pulses. Analytic results are shown tobe in excellent agreement with numerical solutions of the full Maxwell equations coupled to the plasma response. Implications for plasmachannel diagnostics are discussed.

  14. Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: theory and experiment.

    Science.gov (United States)

    Haché, A; Poirier, L

    2002-03-01

    We demonstrate that coaxial cables with a periodic impedance exhibit dispersion properties specific to photonic crystals, albeit on a much lower frequency scale. Highly superluminal (>2c) pulse propagation is observed near the photonic band gap at 10 MHz. The influence of group velocity dispersion and crystal length on the traveling speed and shape of a Gaussian pulse are discussed. Results compare favorably with a simple multilayer theory and a coupled-mass model of the structure.

  15. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index

    Science.gov (United States)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed

    2013-07-01

    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  16. Zero-group-velocity acoustic waveguides for high-frequency resonators

    Science.gov (United States)

    Caliendo, C.; Hamidullah, M.

    2017-11-01

    The propagation of the Lamb-like modes along a silicon-on-insulator (SOI)/AlN thin supported structure was simulated in order to exploit the intrinsic zero group velocity (ZGV) features to design electroacoustic resonators that do not require metal strip gratings or suspended edges to confine the acoustic energy. The ZGV resonant conditions in the SOI/AlN composite plate, i.e. the frequencies where the mode group velocity vanishes while the phase velocity remains finite, were investigated in the frequency range from few hundreds of MHz up to 1900 MHz. Some ZGV points were found that show up mostly in low-order modes. The thermal behaviour of these points was studied in the  ‑30 to 220 °C temperature range and the temperature coefficients of the ZGV resonant frequencies (TCF) were estimated. The behaviour of the ZGV resonators operating as gas sensors was studied under the hypothesis that the surface of the device is covered with a thin polyisobutylene (PIB) film able to selectively adsorb dichloromethane (CH2Cl2), trichloromethane (CHCl3), carbontetrachloride (CCl4), tetrachloroethylene (C2Cl4), and trichloroethylene (C2HCl3), at atmospheric pressure and room temperature. The sensor sensitivity to gas concentration in air was simulated for the first four ZGV points of the inhomogeneous plate. The feasibility of high-frequency, low TCF electroacoustic micro-resonator based on SOI and piezoelectric thin film technology was demonstrated by the present simulation study.

  17. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch

    DEFF Research Database (Denmark)

    Bache, Morten; Nielsen, Hanne; Lægsgaard, Jesper

    2006-01-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780...... nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180% W-1 cm-2 relative efficiencies were found. © 2006 Optical Society of America...

  18. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  19. Group Velocity Measurements in Laser-Heated Capillary Discharge Waveguides for Laser-Plasma Accelerators

    Science.gov (United States)

    Pieronek, C. V.; Daniels, J.; Gonsalves, A. J.; Benedetti, C.; Leemans, W. P.

    2017-10-01

    To date, the most energetic electron beams from laser-plasma accelerators have been produced using gas-filled capillary discharge waveguides, which increase the acceleration length by mitigating diffraction of the driving laser pulse. To reach higher electron beam energies, lower plasma density is required to reduce bunch dephasing. However, confinement of the driver is reduced for lower plasma density, reducing the acceleration length. A laser-heated capillary discharge waveguide, where the discharge is heated by a coaxial laser pulse, was proposed to create a steeper density gradient at lower density. Here the first measurements of group velocity in laser-heated capillary discharges, obtained via spectral interferometry, are presented. Increase of the driver group velocity and reduction in on-axis plasma density by laser-heating are shown. Work supported by the U.S. Dept. of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231. Additional support by the National Science Foundation under Grant PHY-1415596.

  20. Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation.

    Science.gov (United States)

    Qian, K; Zhan, L; Zhang, L; Zhu, Z Q; Peng, J S; Gu, Z C; Hu, X; Luo, S Y; Xia, Y X

    2011-06-15

    We propose and experimentally demonstrate the propagation of slow/fast light in an erbium-doped fiber (EDF) using mutually modulated cross-gain modulation. The group velocity of the light signal can be manipulated by the effect of gain cross-saturation modulation by a saturating light at an arbitrary wavelength in the gain bandwidth of the EDF. The ultraslow propagation with a small group velocity of 5.6 × 10⁻³c (c is the light speed in free space) and superluminal propagation with a negative group velocity of -1.1 × 10⁻³c has been observed under different modulation phases.

  1. Local vibration of an elastic plate and zero-group velocity Lamb modes.

    Science.gov (United States)

    Prada, Claire; Clorennec, Dominique; Royer, Daniel

    2008-07-01

    Elastic plates or cylinders can support guided modes with zero group velocity (ZGV) at a nonzero value of the wave number. Using laser-based ultrasonic techniques, we experimentally investigate some fascinating properties of these ZGV modes: resonance and ringing effects, backward wave propagation, interference between backward and forward modes. Then, the conditions required for the existence of ZGV Lamb modes in isotropic plates are discussed. It is shown that these modes appear in a range of Poisson's ratio about the value for which the cutoff frequency curves of modes belonging to the same family intercept, i.e., for a bulk wave velocity ratio equal to a rational number. An interpretation of this phenomenon in terms of a strong repulsion between a pair of modes having a different parity in the vicinity of the cutoff frequencies is given. Experiments performed with materials of various Poisson's ratio demonstrate that the resonance spectrum of an unloaded elastic plate, locally excited by a laser pulse, is dominated by the ZGV Lamb modes.

  2. Resonant gain suppression and superluminal group velocity in a multilevel system.

    Science.gov (United States)

    Cui, Cui-Li; Fu, Chang-Bao; Yang, Hong; Bao, Qian-Qian; Xu, Huai-Liang; Wu, Jin-Hui

    2012-05-07

    We investigate the interaction of an open (N + 1)-level extended V-type atomic system (i.e. a closed (N + 2)-level atomic system) with N coherent laser fields and one incoherent pumping field through both analytical and numerical calculations. Our results show that the system can exhibit multiple resonant gain suppressions via perfect quantum destructive interference, which is usually believed to be absent in closed three-level V system and its extended versions involving more atomic levels, with at most N - 1 transparency windows associated with very steep anomalous dispersions occurring in the system. The superluminal group velocity of the probe-laser pulse with at most N - 1 negative values can also be generated and controlled with little gain or absorption.

  3. Propagation of a squeezed optical field in a medium with superluminal group velocity.

    Science.gov (United States)

    Romanov, Gleb; Horrom, Travis; Novikova, Irina; Mikhailov, Eugeniy E

    2014-02-15

    We investigated the propagation of a squeezed optical field, generated via the polarization self-rotation effect, with a sinusoidally modulated degree of squeezing through an atomic medium with anomalous dispersion. We observed the advancement of the signal propagating through a resonant Rb vapor compared to the reference signal, propagating in air. The measured advancement time grew linearly with atomic density, reaching a maximum of 11±1  μs, which corresponded to a negative group velocity of v(g)≈-7,000  m/s. We also confirmed that the increasing advancement was accompanied by a reduction of output squeezing levels due to optical losses, in good agreement with theoretical predictions.

  4. Design of chirped distributed Bragg reflector for octave-spanning frequency group velocity dispersion compensation in terahertz quantum cascade laser.

    Science.gov (United States)

    Xu, Chao; Ban, Dayan

    2016-06-13

    The strategies and approaches of designing chirped Distributed Bragg Reflector for group velocity compensation in metal-metal waveguide terahertz quantum cascade laser are investigated through 1D and 3D models. The results show the depth of the corrugation periods plays an important role on achieving broad-band group velocity compensation in terahertz range. However, the deep corrugation also brings distortion to the group delay behavior. A two-section chirped DBR is proposed to provide smoother group delay compensation while still maintain the broad frequency range (octave) operation within 2 THz to 4 THz.

  5. Fourier analysis of cerebrospinal fluid flow velocities: MR imaging study. The Scandinavian Flow Group

    DEFF Research Database (Denmark)

    Thomsen, C; Ståhlberg, F; Stubgaard, M

    1990-01-01

    images. The phase information in the resultant image was converted to flow velocity with a calibration curve with the slope 26.5 radian.m-1.sec. The velocity versus time function was Fourier transformed and a continuous curve was fitted to the measured data with use of the first three harmonics...

  6. Thin layer thickness measurements by zero group velocity Lamb mode resonances

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-11-01

    Local and non-contact measurements of the thickness of thin layers deposited on a thick plate have been performed by using zero group velocity (ZGV) Lamb modes. It was shown that the shift of the resonance frequency is proportional to the mass loading through a factor which depends on the mechanical properties of the layer and of the substrate. In the experiments, ZGV Lamb modes were generated by a Nd:YAG pulsed laser and the displacement normal to the plate surface was measured by an optical interferometer. Measurements performed at the same point that the generation on the non-coated face of the plate demonstrated that thin gold layers of a few hundred nanometers were detected through a 1.5-mm thick Duralumin plate. The shift of the resonance frequency (1.9 MHz) of the fundamental ZGV mode is proportional to the layer thickness: typically 10 kHz per μm. Taking into account the influence of the temperature, a 240-nm gold layer was measured with a ±4% uncertainty. This thickness has been verified on the coated face with an optical profiling system.

  7. The High Velocity Galaxy Challenge to ΛCDM in the Local Group

    Science.gov (United States)

    Banik, Indranil

    2017-06-01

    In the Local Group (LG), Andromeda (M31) is approaching the Milky Way (MW) at ˜110 km/s despite the large scale cosmic expansion. To turn it around locally to this extent, their combined mass must lie in a narrow range of values. This constrains the gravitational field in the LG as there are no other objects of similar masses. We have conducted calculations solving test particle trajectories in this gravitational field using a 2D dynamical model including Cen A and the LMC (MNRAS, 459, 2237). Although few objects have radial velocities (RVs) much below the predictions of the best-fitting model, some have RVs much above them, sometimes by as much as 100 km/s. This situation persists even when we used a 3D model including perturbers and satellites (MNRAS, 467, 2180).The observations may be explained by a past close flyby of the MW and M31, which arises in Modified Newtonian Dynamics (MOND) but not ΛCDM. In this context, a simplified calculation suggests that the recently discovered plane of satellites around the MW and a similar plane around M31 could be explained by a past MW-M31 flyby, but only if they orbit within a particular plane. We used this information in a more detailed MOND simulation of the flyby and its effect on the rest of the LG, treating it as a cloud of ˜3×105 test particles. The high speeds of the MW and M31 at pericentre allow for efficient gravitational slingshots of these particles. Those flung out to the greatest distance tend to lie very close to the MW-M31 orbital plane, probably because the greatest impulses occur for objects flung out almost parallel to the motion of the perturber.I will describe this simulation and recent work (Arxiv: 1701.06559) showing that LG dwarfs with the most anomalously high RVs (relative to our 3D model) indeed lie close to a plane oriented similarly to our expected MW-M31 orbital plane based on considering their satellite systems. This plane of distant LG dwarfs passes within 140 kpc of the MW and M31 and

  8. Pitfalls in velocity analysis for strongly contrasting, layered media - Example from the Chalk Group, North Sea

    Science.gov (United States)

    Montazeri, Mahboubeh; Uldall, Anette; Moreau, Julien; Nielsen, Lars

    2018-02-01

    Knowledge about the velocity structure of the subsurface is critical in key seismic processing sequences, for instance, migration, depth conversion, and construction of initial P- and S-wave velocity models for full-waveform inversion. Therefore, the quality of subsurface imaging is highly dependent upon the quality of the seismic velocity analysis. Based on a case study from the Danish part of the North Sea, we show how interference caused by multiples, converted waves, and thin-layer effects may lead to incorrect velocity estimation, if such effects are not accounted for. Seismic wave propagation inside finely layered reservoir rocks dominated by chalk is described by two-dimensional finite-difference wave field simulation. The rock physical properties used for the modeling are based on an exploration well from the Halfdan field in the Danish sector of the North Sea. The modeling results are compared to seismic data from the study area. The modeling shows that interference of primaries with multiples, converted waves and thin-bed effects can give rise to strong anomalies in standard velocity analysis plots. Consequently, root-mean-square (RMS) velocity profiles may be erroneously picked. In our study area, such mis-picking can introduce errors in, for example, the thickness estimation of the layers near the base of the studied sedimentary strata by 11% to 26%. Tests show that front muting and bandpass filtering cannot significantly improve the quality of velocity analysis in our study. However, we notice that spiking deconvolution applied before velocity analysis may to some extent reduce the impact of interference and, therefore, reduce the risk of erroneous picking of the velocity function.

  9. A plane of high-velocity galaxies across the Local Group

    Science.gov (United States)

    Banik, Indranil; Zhao, Hongsheng

    2018-01-01

    We recently showed that several Local Group (LG) galaxies have much higher radial velocities (RVs) than predicted by a 3D dynamical model of the standard cosmological paradigm. Here, we show that six of these seven galaxies define a thin plane with root mean square thickness of only 101 kpc despite a widest extent of nearly 3 Mpc, much larger than the conventional virial radius of the Milky Way (MW) or M31. This plane passes within ∼70 kpc of the MW-M31 barycentre and is oriented so the MW-M31 line is inclined by 16° to it. We develop a toy model to constrain the scenario whereby a past MW-M31 flyby in Modified Newtonian Dynamics (MOND) forms tidal dwarf galaxies that settle into the recently discovered planes of satellites around the MW and M31. The scenario is viable only for a particular MW-M31 orbital plane. This roughly coincides with the plane of LG dwarfs with anomalously high RVs. Using a restricted N-body simulation of the LG in MOND, we show how the once fast-moving MW and M31 gravitationally slingshot test particles outwards at high speeds. The most distant such particles preferentially lie within the MW-M31 orbital plane, probably because the particles ending up with the highest RVs are those flung out almost parallel to the motion of the perturber. This suggests a dynamical reason for our finding of a similar trend in the real LG, something not easily explained as a chance alignment of galaxies with an isotropic or mildly flattened distribution (probability = 0.0015).

  10. [O I] λλ6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA

    Energy Technology Data Exchange (ETDEWEB)

    Taubenberger, S.; Kromer, M.; Hillebrandt, W. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Pakmor, R. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Pignata, G. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Maeda, K. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Hachinger, S. [Julius-Maximilians-Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg (Germany); Leibundgut, B. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2013-10-01

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] λλ6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp.

  11. A unified model for age-velocity dispersion relations in Local Group galaxies: disentangling ISM turbulence and latent dynamical heating

    Science.gov (United States)

    Leaman, Ryan; Mendel, J. Trevor; Wisnioski, Emily; Brooks, Alyson M.; Beasley, Michael A.; Starkenburg, Else; Martig, Marie; Battaglia, Giuseppina; Christensen, Charlotte; Cole, Andrew A.; de Boer, T. J. L.; Wills, Drew

    2017-12-01

    We analyse age-velocity dispersion relations (AVRs) from kinematics of individual stars in eight Local Group galaxies ranging in mass from Carina (M* ∼ 106 M⊙) to M31 (M* ∼ 1011 M⊙). Observationally the σ versus stellar age trends can be interpreted as dynamical heating of the stars by giant molecular clouds, bars/spiral arms or merging subhaloes; alternatively the stars could have simply been born out of a more turbulent interstellar medium (ISM) at high redshift and retain that larger velocity dispersion till present day - consistent with recent integral field unit kinematic studies. To ascertain the dominant mechanism and better understand the impact of instabilities and feedback, we develop models based on observed star formation histories (SFHs) of these Local Group galaxies in order to create an evolutionary formalism that describes the ISM velocity dispersion due to a galaxy's evolving gas fraction. These empirical models relax the common assumption that the stars are born from gas that has constant velocity dispersion at all redshifts. Using only the observed SFHs as input, the ISM velocity dispersion and a mid-plane scattering model fits the observed AVRs of low-mass galaxies without fine tuning. Higher mass galaxies above Mvir ≳ 1011 M⊙ need a larger contribution from latent dynamical heating processes (for example minor mergers), in excess of the ISM model. Using the SFHs, we also find that supernovae feedback does not appear to be a dominant driver of the gas velocity dispersion compared to gravitational instabilities - at least for dispersions σ ≳ 25 km s-1. Together our results point to stars being born with a velocity dispersion close to that of the gas at the time of their formation, with latent dynamical heating operating with a galaxy mass-dependent efficiency. These semi-empirical relations may help constrain the efficiency of feedback and its impact on the physics of disc settling in galaxy formation simulations.

  12. The space density of primordial gas clouds near galaxies and groups and their relation to galactic high-velocity clouds

    NARCIS (Netherlands)

    Zwaan, MA; Briggs, FH

    2000-01-01

    The Arecibo H I Strip Survey probed the halos of similar to 300 cataloged galaxies and the environments of similar to 14 groups with sensitivity to neutral hydrogen masses greater than or equal to 10(7) M-circle dot. The survey detected no objects with properties resembling the high-velocity clouds

  13. Second-harmonic generation with zero group-velocity mismatch in nonlinear photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    wavelength above 780 nm. The phase-velocity mismatch has a lower limit with coherence lengths in the micron range. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for fs-pulse conversion and 4-180%/(Wmiddotcm2) relative...

  14. Subluminal and superluminal light propagation via interference of incoherent pump fields

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of) and Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-159, Zanjan (Iran, Islamic Republic of)]. E-mail: mahmoudi@iasbs.ac.ir; Sahrai, M. [Department of Physics, Zanjan University, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, Tabriz University, Tabriz (Iran, Islamic Republic of); Tajalli, H. [Research Institute for Applied Physics and Astronomy, Tabriz University, Tabriz (Iran, Islamic Republic of)

    2006-08-28

    We investigate the dispersion and the absorption properties of a weak probe field in a four-level atomic system by using the incoherent pumping fields. It is shown that the slope of the dispersion changes from positive to negative with the interference of incoherent pumping process. It is also demonstrated that the group velocity of the light pulse can be controlled with the rates of incoherent pumping fields.

  15. Engineering the group velocities of the guiding modes in two-dimensional annular coupled-cavity waveguides

    Science.gov (United States)

    Feng, Shuai; Chen, Xiao; Yang, Di; Yang, Yuping; Wang, Yiquan

    2011-01-01

    The propagating characteristics of the electromagnetic waves through annular coupled-resonator optical waveguides (CROWs) based on two-dimensional square-lattice photonic crystals are studied by the finite-difference time-domain method. Comparing with the traditional line-typed CROWs, the annular CROW studied in this paper have more minibands within the bandgap. With the increasing of the distance between two adjacent annular cavities, the values of the corresponding group velocities and the field distributions of the guiding modes are numerically calculated. When the annular cavities are interlaced in the direction perpendicular to the waveguide, the group velocities can be further reduced and a maximum value of 0.000 37c can be obtained.

  16. Modeling of Loss-induced Superluminal and Negative Group Velocity in Two-port Ring-resonator Circuits

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo

    The group velocity vg of light in two-port ringresonator (TPRR) circuits with loss is theoretically studied. We point out four possible operation regimes, i.e., “slow��? light with positive v_g, “slow��? light with negative v_g, “fast��? light with negative v_g, and “fast��? light with positive v_g,

  17. The control of superluminal group velocity in a system equivalent to the Y-type four-level atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Li Luming [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)]. E-mail: lilum@pku.org.cn; Guo Hong [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)]. E-mail: hongguo@pku.edu.cn; Xiao Feng [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Peng Xiang [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Chen Xuzong [CREAM Group, Key Laboratory for Quantum Information and Measurements of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)]. E-mail: xuzongchen@pku.edu.cn

    2005-01-10

    We study a new way to control the superluminal group velocity of light pulse in hot atomic gases with the five-level atomic configuration. The model of an equivalent Y-type four-level is applied and shows that the light goes faster by using an additional incoherent pumping field. The experiment is performed and shows in good agreement with our theoretical predictions.

  18. SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, P. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yamanaka, M.; Itoh, R. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Tanaka, M. [National Astronomical Observatory, Mitaka, Tokyo (Japan); Nozawa, T.; Maeda, K.; Moriya, T. J. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Saviane, I. [European Southern Observatory, Alonso de Cordova 3107, Santiago 19 (Chile); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Sasada, M. [Department of Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)

    2013-04-20

    We present a study of SN 2009js in NGC 918. Multi-band Kanata optical photometry covering the first {approx}120 days shows the source to be a Type IIP SN. Reddening is dominated by that due to our Galaxy. One-year-post-explosion photometry with the New Technology Telescope and a Subaru optical spectrum 16 days post-discovery both imply a good match with the well-studied subluminous SN 2005cs. The plateau-phase luminosity of SN 2009js and its plateau duration are more similar to the intermediate luminosity IIP SN 2008in. Thus, SN 2009js shares characteristics with both subluminous and intermediate luminosity supernovae (SNe). Its radioactive tail luminosity lies between SN 2005cs and SN 2008in, whereas its quasi-bolometric luminosity decline from peak to plateau (quantified by a newly defined parameter {Delta}logL, which measures adiabatic cooling following shock breakout) is much smaller than both the others'. We estimate the ejected mass of {sup 56}Ni to be low ({approx}0.007 M{sub Sun }). The SN explosion energy appears to have been small, similar to that of SN 2005cs. SN 2009js is the first subluminous SN IIP to be studied in the mid-infrared. It was serendipitously caught by Spitzer at very early times. In addition, it was detected by WISE 105 days later with a significant 4.6 {mu}m flux excess above the photosphere. The infrared excess luminosity relative to the photosphere is clearly smaller than that of SN 2004dj, which has been extensively studied in the mid-infrared. The excess may be tentatively assigned to heated dust with mass {approx}3 Multiplication-Sign 10{sup -5} M{sub Sun }, or to CO fundamental emission as a precursor to dust formation.

  19. Subluminal and superluminal propagation in a three-level atom in the radiative limit based on coherent population oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalo, Isabel [Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)], E-mail: igonzalo@fis.ucm.es; Anton, M.A.; Carreno, F.; Calderon, Oscar G. [Escuela Universitaria de Optica, Universidad Complutense de Madrid, Arcos de Jalon, 28037 Madrid (Spain)

    2008-10-13

    We investigate a three-level atomic system in the radiative limit to control the light propagation from the subluminal regime to the superluminal one. Here the three levels are connected between them by radiative transitions. We show that depending on the decay rates, this scheme, which is based on coherent population oscillations, allows to switch from one regime to the other by changing the Rabi frequencies of the driving fields. We also show that this scheme is also capable of producing absorptionless self-phase modulation.

  20. VizieR Online Data Catalog: Recession velocities for fossil galaxy groups (Proctor+, 2011)

    Science.gov (United States)

    Proctor, R. N.; Mendes de Oliveira, C.; Dupke, R.; Lopes de Oliveira, R.; Cypriano, E. S.; Miller, E. D.; Rykoff, E.

    2012-11-01

    The Magellan Baade telescope multi-object spectroscopy of five candidate fossil groups selected from the maxBCG catalogue was carried out on the f/2 camera of the IMACS instrument in 2009 February. The Gemini GMOS spectroscopic observations of RX J1256.0+2556 were carried out on Gemini North on 2006 June 24. Observations of RX J1331.5+1108 were carried out on Gemini North on 2005 March 7. (2 data files).

  1. Group velocity manipulation using cross gain modulation in erbium-doped fibers with co-direction structure

    Science.gov (United States)

    Tao, Fangying; Zhan, Li; Qian, Kai; Wang, Zhiqiang; Zhang, Liang; He, Le

    2017-11-01

    We experimentally demonstrated tunable delays using mutrally modulated cross-gain modulation (MM XGM) in erbium-doped fiber (EDF) with a new co-direction structure. The group velocity of the signal light can be controlled by the saturating light at an arbitrary wavelength in the EDF gain bandwidth. We have observed slow light propagation with a group velocity as low as 146.4 m/s, which means a 88.8 ms delay, and an advancement of 11.2 ms after a 13 m EDF at the same time. This provides a greater enhancement on the delay or advancement compared to the previous experiment. Furthermore, we confirmed the influence on delay or advancement by varying the pump power, the input power of the saturate light. Also, we discussed the influence of recovery time, the modulation depth of the saturating light and the modulation frequency on the modulation gain. This attractive approach could be one of the suitable solutions for real applications.

  2. Current Absolute Plate Velocities Inferred from Hotspot Tracks, Comparison with Absolute Velocities Inferred from Seismic Anisotropy, and Bounds on Rates of Motion Between Groups of Hotspots

    Science.gov (United States)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2015-12-01

    Hotspot tracks have been widely used to estimate the velocities of the plate relative to the lower mantle. Here we analyze the hotspot azimuth data set of Morgan and Phipps Morgan [2007] and show that the errors in plate velocity azimuths inferred from hotspot tracks in any one plate are correlated with the errors of other azimuths in the same plate. We use a two-tier analysis to account for this correlated error. First, we determine an individual best-fitting pole for each plate. Second, we determine the absolute plate velocity by minimizing the misfit while constrained by the MORVEL relative plate velocities [DeMets et al. 2010]. Our preferred model, HS4-MORVEL, uses azimuths from 9 major plates, which are weighted equally. We find that the Pacific plate rotates 0.860.016°Ma-1 right handed about 63.3°S, 96.1°E. Angular velocities of four plates (Amur, Eurasia, Yangtze and Antarctic) differ insignificantly from zero. The net rotation of the lithosphere is 0.24°±0.014° Ma-1 right handed about 52.3S, 56.9E. The angular velocities differ insignificantly from the absolute angular velocities inferred from the orientation of seismic anisotropy [Zheng et al. 2014]. The within-plate dispersion of hotspot track azimuths is 14°, which is comparable to the within-plate dispersion found from orientations of seismic anisotropy. The between-plate dispersion is 6.9±2.4° (95% confidence limits), which is smaller than that found from seismic anisotropy. The between-plate dispersion of 4.5° to 9.3° can be used to place bounds on how fast hotspots under one plate move relative to hotspots under another plate. For an average plate absolute speed of ≈50 mm/yr, the between-plate dispersion indicates a rate of motion of 4 mm/yr to 8 mm/yr for the component of hotspot motion perpendicular to plate motion. This upper bound is consistent with prior work that indicated upper bounds on motion between Pacific hotspots and Indo-Atlantic hotspots over the past 48 Ma of 8-13 mm

  3. Measurement of group velocity dispersion in a solid-core photonic crystal fiber filled with a nematic liquid crystal.

    Science.gov (United States)

    Wahle, Markus; Kitzerow, Heinz

    2014-08-15

    Liquid crystal-filled photonic crystal fibers (PCFs) are promising candidates for electrically tunable integrated photonic devices. In this Letter, we present group velocity measurements on such fibers. A large mode area PCF, LMA8, was infiltrated with the liquid crystal mixture, E7. The measurements were performed with an interferometric setup. The fiber exhibits several spectral transmission windows in the visible wavelength regime that originate from the bandgap guiding mechanism. The dispersion of these windows is very unusual compared to typical fibers. Our measurements show that it can change from -2500 ps km(-1) nm(-1) to +2500 ps km(-1) nm(-1) within a spectral range of only 15 nm. This leads to multiple zero dispersion wavelengths in the visible wavelength range.

  4. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  5. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    Energy Technology Data Exchange (ETDEWEB)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations

  6. Maximal aerobic velocity measured by the 5-min running field test on two different fitness level groups.

    Science.gov (United States)

    Berthon, P; Dabonneville, M; Fellmann, N; Bedu, M; Chamoux, A

    1997-12-01

    The aim of the study was to verify the validity and the accuracy of the 5-min running field test (5RFT) relatively to the classical treadmill test. Two groups of subjects were tested, the first one being made of sub-elite runners (G1, n = 18) and the second one of athletes of other individual or collective disciplines (G2, n = 23). To check the field technique, maximal aerobic velocity (vamax) and an approached VO2max calculated from vamax during the 5RFT were compared with the corresponding values directly determined during a treadmill test. vamax obtained on treadmill (vamax(t)) or during a 5RFT (vamax(5)) were significantly higher in G1 than in G2 (+3.7 km.h-1 and +3.6 km.h-1 among the test). In each group, the difference between vamax(t) and vamax(5) was not significant (19.4 +/- 1.0 vs 19.5 +/- 0.9 km.h-1 in G1; 15.7 +/- 2.2 vs 15.9 +/- 1.2 km.h-1 in G2). A significant correlation was found between vamax(t) and vamax(5) (slope = 0.92; r = 0.86 in G1; slope = 0.71; r = 0.84 in G2). In each group, the approached VO2max(5) was significantly higher than VO2max(t) (respectively 67.8 +/- 2.9 vs 63.7 +/- 3.5 in G1; 54.8 +/- 3.9 vs 52.0 +/- 3.2 ml.min-1.kg-1 in G2. Weak but significant correlations were found between VO2(t) and vamax(5) (r = 0.69 and r = 0.56 respectively in G1 and G2). In conclusion, the 5RFT allows to measure vamax accurately whatever the physical fitness of the subjects but more closely in runners than in non-runners. The low correlation between VO2max(t) and vamax(5) for both groups indicates that a vamax running field test is specific and cannot evaluate VO2max with reasonable accuracy whatever the group, runners or non-runners.

  7. Current Global Absolute Plate Velocities Inferred from the Trends of Hotspot Tracks: Implications for Motion between Groups of Hotspots and Comparison and Combination with Absolute Velocities Inferred from the Orientation of Seismic Anisotropy

    Science.gov (United States)

    Wang, C.; Gordon, R. G.; Zheng, L.

    2016-12-01

    Hotspot tracks are widely used to estimate the absolute velocities of plates, i.e., relative to the lower mantle. Knowledge of current motion between hotspots is important for both plate kinematics and mantle dynamics and informs the discussion on the origin of the Hawaiian-Emperor Bend. Following Morgan & Morgan (2007), we focus only on the trends of young hotspot tracks and omit volcanic propagation rates. The dispersion of the trends can be partitioned into between-plate and within-plate dispersion. Applying the method of Gripp & Gordon (2002) to the hotspot trend data set of Morgan & Morgan (2007) constrained to the MORVEL relative plate angular velocities (DeMets et al., 2010) results in a standard deviation of the 56 hotspot trends of 22°. The largest angular misfits tend to occur on the slowest moving plates. Alternatively, estimation of best-fitting poles to hotspot tracks on the nine individual plates, results in a standard deviation of trends of only 13°, a statistically significant reduction from the introduction of 15 additional adjustable parameters. If all of the between-plate misfit is due to motion of groups of hotspots (beneath different plates), nominal velocities relative to the mean hotspot reference frame range from 1 to 4 mm/yr with the lower bounds ranging from 1 to 3 mm/yr and the greatest upper bound being 8 mm/yr. These are consistent with bounds on motion between Pacific and Indo-Atlantic hotspots over the past ≈50 Ma, which range from zero (lower bound) to 8 to 13 mm/yr (upper bounds) (Koivisto et al., 2014). We also determine HS4-MORVEL, a new global set of plate angular velocities relative to the hotspots constrained to consistency with the MORVEL relative plate angular velocities, using a two-tier analysis similar to that used by Zheng et al. (2014) to estimate the SKS-MORVEL global set of absolute plate velocities fit to the orientation of seismic anisotropy. We find that the 95% confidence limits of HS4-MORVEL and SKS

  8. Measuring the above-threshold group-velocity dispersion and gain curvature of a semiconductor laser by pulse-propagation techniques

    Science.gov (United States)

    Gordon, R.; Heberle, A. P.; Cleaver, J. R. A.

    2004-01-01

    The dispersive broadening of a single optical pulse traveling within a Fabry-Pérot semiconductor laser was measured for propagation over 58 round trips of the cavity, a distance of 352 mm. The interference between two copropagating pulses with variable relative phase (stabilized to within 2π×0.02 rad) was used to relate the group-velocity dispersion to the gain curvature. With both single- and double-pulse propagation measurements, the complex group-velocity dispersion (including gain curvature) was found to be 8.7+5.9i ps2/m at twice the laser-threshold bias current. When the laser bias was increased from 1.4 to 2 times the laser threshold, the gain curvature decreased by 2.8%, and the group-velocity dispersion showed less than 0.1% variation.

  9. Determining the group velocity dispersion by field analysis for the LP0X, LP1X, and LP2X mode groups independently of the fiber length: applications to step-index fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2017-01-01

    By knowing the electric field distribution of a guided mode in an optical fiber, we are able to evaluate the group velocity dispersion in a weakly guiding step-index fiber for a pure mode in the LP0X, LP1X, and LP2X mode groups independently of the fiber length. We demonstrate the method...

  10. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  11. Shallow crustal velocities and volcanism suggested from ambient noise studies using a dense broadband seismic network in the Tatun Volcano Group of Taiwan

    Science.gov (United States)

    Huang, Yu-Chih; Lin, Cheng-Horng; Kagiyama, Tsuneomi

    2017-07-01

    The Tatun Volcano Group (TVG) is situated adjacent to the Taipei metropolis and was active predominantly around 0.8-0.2 Ma (Pleistocene). Various recent lines of evidence suggest that the TVG is a potentially active volcano and that future volcanic eruptions cannot be ruled out. Geothermal activities are largely constrained to faults, but the relationship between volcanism and detailed velocity structures is not well understood. We analyzed ambient seismic noise of daily vertical components from 2014 using a dense seismic network of 40 broadband stations. We selected a 0.02° grid spacing to construct 2D and 3D shallow crustal phase velocity maps in the 0.5-3 s period band. Two S-wave velocity profiles transect Chishingshan (Mt. CS) in the shallow 3 km crust are further derived. The footwall of the Shanchiao Fault is dominated by low velocity, which may relate to Tertiary bedrock buried under andesitic lava flows dozens to hundreds of meters thick. The hanging wall of the Shanchiao Fault is the location of recent major volcanic activities. Low velocity zones in the southeast of Dayoukeng (DYK) may be interpreted as hydrothermal reservoirs or water-saturated Tertiary bedrock related to Cenozoic structures in the shallow crust. High velocities conspicuously dominate the east of the TVG, where the earliest stages of volcanism in the TVG are located, but where surface hydro-geothermal activities were absent in recent times. Between the Shanchiao Fault and Kanchiao Fault high velocities were detected, which converge below Mt. CS and may be related to early stages of magma conduits that gradually consolidated. These two faults may play a significant role with the TVG. The submarine volcanism adjacent to the Keelung coastline also requires further attention.

  12. Similarity Solutions of MHD Mixed Convection Flow with Variable Reactive Index, Magnetic Field, and Velocity Slip Near a Moving Horizontal Plate: A Group Theory Approach

    Directory of Open Access Journals (Sweden)

    W. A. Khan

    2012-01-01

    Full Text Available The mixed convection of Newtonian fluid flow along a moving horizontal plate with higher-order chemical reaction, variable concentration reactant, and variable wall temperature and concentration is considered. Velocity slip and the thermal convective boundary conditions are applied at the plate surface. The governing partial differential equations are transformed into similarity equations via dimensionless similarity transformations developed by one-parameter continuous group method. The numerical solutions of the transformed ordinary differential equations are constructed for velocity, temperature and concentration functions, the skin friction factor, the rate of heat, and the rate of mass transfer using an implicit finite difference numerical technique. The investigated parameters are buoyancy parameters , , chemical reaction parameter , suction/injection parameter , velocity slip parameter convective heat transfer parameter , magnetic parameter , Prandtl number Pr and Schmidt number, Sc. Comparison with results from the open literature shows a very good agreement.

  13. A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038

    Energy Technology Data Exchange (ETDEWEB)

    Papitto, A.; Torres, D. F. [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193, Cerdanyola del Vallés, Barcelona (Spain)

    2015-07-01

    The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038 in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.

  14. Developing Regionalized Models of Lithospheric Thickness and Velocity Structure Across Eurasia and the Middle East from Jointly Inverting P-Wave and S-Wave Receiver Functions with Rayleigh Wave Group and Phase Velocities

    Science.gov (United States)

    2011-09-01

    constant sub- Moho velocity and velocity gradient. Because the mantle lithosphere is parameterized as infinitely thick with a constant velocity...increase up to 4.5 km/s at Moho depths. The mantle is PREM-like and does not display any velocity decrease suggestive of a lithosphere-asthenosphere...models were inverted down to a depth of 250 km and constrained to be PREM below. The low-velocity channel is bounded by the red dotted lines, the Moho is

  15. Escape Velocity

    Directory of Open Access Journals (Sweden)

    Nikola Vlacic

    2010-01-01

    Full Text Available In this project, we investigated if it is feasible for a single staged rocket with constant thrust to attain escape velocity. We derived an equation for the velocity and position of a single staged rocket that launches vertically. From this equation, we determined if an ideal model of a rocket is able to reach escape velocity.

  16. Existence and switching behavior of bright and dark Kerr solitons in whispering-gallery mode resonators with zero group-velocity dispersion

    Science.gov (United States)

    Talla Mbé, Jimmi H.; Milián, Carles; Chembo, Yanne K.

    2017-07-01

    We use the generalized Lugiato-Lefever model to investigate the phenomenon of Kerr optical frequency comb generation when group-velocity dispersion is null. In that case, the first dispersion term that plays a leading role is third-order dispersion. We show that this term is sufficient to allow for the existence of both bright and dark solitons. We identify the areas in the parameter space where both kind of solitons can be excited inside the resonator. We also unveil a phenomenon of hysteretic switching between these two types of solitons when the power of the pump laser is cyclically varied. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  17. Pulse splitting in light propagation through N -type atomic media due to an interplay of Kerr nonlinearity and group-velocity dispersion

    Science.gov (United States)

    Rajitha K., V.; Dey, Tarak N.; Evers, Jörg; Kiffner, Martin

    2015-08-01

    We investigate the spatiotemporal evolution of a Gaussian probe pulse propagating through a four-level N -type atomic medium. At two-photon resonance of probe and control fields, weaker probe pulses may propagate through the medium with low absorption and pulse shape distortion. In contrast, we find that increasing the probe pulse intensity leads to a splitting of the initially Gaussian pulse into a sequence of subpulses in the time domain. The number of subpulses arising throughout the propagation can be controlled via a suitable choice of the probe and control field parameters. Employing a simple theoretical model for the nonlinear pulse propagation, we conclude that the splitting occurs due to an interplay of Kerr nonlinearity and group-velocity dispersion.

  18. Self-action of propagating and standing Lamb waves in the plates exhibiting hysteretic nonlinearity: Nonlinear zero-group velocity modes.

    Science.gov (United States)

    Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua

    2017-09-01

    An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S 1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Absolute Geostrophic Velocity Inverted from the Environmental Working Group (EWG) Joint U.S.-Russian Atlas of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156424)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called EWG-V) comprises 3D gridded climatological fields of absolute geostrophic velocity inverted from the Environmental Working Group (EWG) Joint...

  20. An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group

    Science.gov (United States)

    Richter, P.; Nuza, S. E.; Fox, A. J.; Wakker, B. P.; Lehner, N.; Ben Bekhti, N.; Fechner, C.; Wendt, M.; Howk, J. C.; Muzahid, S.; Ganguly, R.; Charlton, J. C.

    2017-11-01

    Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims: To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods: Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C iv and associated H I 21 cm emission in HVCs in the velocity range | vLSR | = 100-500 km s-1. With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman α absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project). Results: The overall sky-covering fraction of high-velocity absorption is 77 ± 6 percent for the most sensitive ion in our survey, Si III, and for column densities log N(Si III)≥ 12.1. This value is 4-5 times higher than the covering fraction of 21 cm neutral hydrogen emission at log N(H I)≥ 18.7 along the same lines of sight, demonstrating that the Milky Way's CGM is multi-phase and predominantly ionized. The measured equivalent-width ratios of Si II, Si III, C II, and C iv are inhomogeneously distributed on large and small angular scales, suggesting a complex spatial distribution of multi-phase gas that surrounds the

  1. Sellmeier equations, group velocity dispersion, and thermo-optic dispersion formulas for CaLnAlO4 (Ln = Y, Gd) laser host crystals.

    Science.gov (United States)

    Loiko, Pavel; Becker, Petra; Bohatý, Ladislav; Liebald, Christoph; Peltz, Mark; Vernay, Sophie; Rytz, Daniel; Serres, Josep Maria; Mateos, Xavier; Wang, Yicheng; Xu, Xiaodong; Xu, Jun; Major, Arkady; Baranov, Alexander; Griebner, Uwe; Petrov, Valentin

    2017-06-15

    We studied the refractive index and dispersive properties of the tetragonal rare-earth calcium aluminates, CaLnAlO4 (Ln=Gd or Y). Sellmeier equations were derived for the spectral range of 0.35-2.1 μm. The group velocity dispersion (GVD) in CaGdAlO4 is positive at ∼1  μm, 95  fs2/mm and negative at ∼2  μm, -40  fs2/mm. The GVD values for CaYAlO4 are similar. In addition, thermo-optic coefficients, dn/dT, and thermal coefficients of the optical path were determined for CaYAlO4. dn/dT is negative at ∼1  μm, dno/dT=-7.8, and dne/dT=-8.7×10-6  K-1. Thermo-optic dispersion formulas were constructed. The obtained data are of key importance to the design of high-power mode-locked oscillators at ∼1 and ∼2  μm based on such laser hosts.

  2. Experimental measurement and numerical analysis of group velocity dispersion in cladding modes of an endlessly single-mode photonic crystal fiber

    Science.gov (United States)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-06-01

    The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.

  3. Orbital velocity

    OpenAIRE

    Modestino, Giuseppina

    2016-01-01

    The trajectory and the orbital velocity are determined for an object moving in a gravitational system, in terms of fundamental and independent variables. In particular, considering a path on equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The case of the planets of the solar system is presented.

  4. Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion.

    Science.gov (United States)

    Kuyken, B; Verheyen, P; Tannouri, P; Liu, X; Van Campenhout, J; Baets, R; Green, W M J; Roelkens, G

    2014-03-15

    Mid-infrared light generation through four-wave mixing-based frequency down-conversion in a normal group velocity dispersion silicon waveguide is demonstrated. A telecom-wavelength signal is down-converted across more than 1.2 octaves using a pump at 2190 nm in a 1 cm-long waveguide. At the same time, a 13 dB on-chip parametric gain of the telecom signal is obtained.

  5. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  6. Stability and Group Index Switching in a Four-Level Atomic System

    Science.gov (United States)

    Jafarzadeh, Hossein; Ahmadi Sangachin, Elnaz; Asadpour Seyyed, Hossein

    2014-08-01

    A four-level atomic system is proposed for stability and group index switching in the presence of spontaneously generated coherence. It is found that the transition from optical bistability (OB) to optical multistability (OM) and subluminal to superluminal can be obtained simultaneously. It is shown that the relative phase between applied fields can affect the stability and group index behaviors of weak probe light in the medium. Our proposed model provides a new scheme for simultaneous switching from OB to OM and (sub-to-super) luminal light propagation in an atomic system.

  7. Dual universe and hyperboloidal relative velocity surface arising from extended special relativity

    Science.gov (United States)

    Hill, James M.; Cox, Barry J.

    2014-12-01

    In two recent and completely independent articles (Hill and Cox in Proc R Soc A 468:4174, 2012; Vieira in Rev Bras Ensino F's 34(3):1-15, 2012), the authors propose an extension of the Lorentz transformations of special relativity which are applicable to velocities in excess of the speed of light and do not involve the need to introduce imaginary quantities which are difficult to reconcile with everyday experience. These independent derivations, obtained from entirely distinct perspectives, mean that there is now some commonality of agreement in the basic equations underlying superluminal motion. One consequence of the new theories is that the standard special relativity formula for the addition of relative velocities also applies for velocities in excess of the speed of light. The new theories are based on the assumption that for any two inertial frames separated by an infinite relative velocity, the product of the two measured velocities for the same particle must necessarily be the square of the speed of light. Here, we amplify the major physical consequences embodied in the theory, including the surprising and novel idea of the co-existence of two "worlds", such that in a subluminal world, everything is travelling with speeds less than the speed of light, while in the superluminal world, everything is travelling with speeds greater than the speed of light. We also establish the remarkable result that the reciprocal surface for the relative velocity formula can be re-orientated as a fully axially symmetric hyperboloidal surface, the full physical implications of which are not altogether transparent.

  8. Tailoring group velocity by topology optimization

    DEFF Research Database (Denmark)

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyses. The goal of the optimization process is to come...

  9. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...... estimator automatically compensates for the axial velocity, when determining the transverse velocity by using fourth order moments rather than second order moments. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by using averaging...... of RF samples. Further, compensation for the axial velocity can be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce spatial velocity dispersion....

  10. High-Velocity Clouds

    NARCIS (Netherlands)

    Wakker, Bart P.; Woerden, Hugo van; Oswalt, Terry D.; Gilmore, Gerard

    2013-01-01

    The high-velocity clouds (HVCs) are gaseous objects that do not partake in differential galactic rotation, but instead have anomalous velocities. They trace energetic processes on the interface between the interstellar material in the Galactic disk and intergalactic space. Three different processes

  11. Antarctic Ice Velocity Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of recent ice velocity data of the Antarctic ice sheet is intended for use by the polar scientific community. The data are presented in tabular form...

  12. Transverse spectral velocity estimation.

    Science.gov (United States)

    Jensen, Jørgen

    2014-11-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile flow using the Womersly-Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer. A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected for angles from 0° to 70° to give fully quantitative velocity spectra without operator intervention.

  13. High-velocity penetrators

    Science.gov (United States)

    Lundgren, Ronald G.

    This paper summarizes the results of studies, coupled with a series of tests, that investigated rigid-body projectiles (penetrators) at high (up to 5500 ft/sec) velocities. Before these studies, it had been hypothesized that a velocity limit would be reached at which increasing the velocity would not commensurately increase depth of penetration into a target. It was further inferred that a given velocity/ penetration depth curve would avalanche into the hydrodynamic regime; that is, increasing the velocity past a certain point would decrease penetration performance. The test series utilized 1/2-in., 3-in., and 5 1/2-in. diameter, ogive-nose steel projectiles and grout and concrete targets. The tests confirmed that penetration depth increased as striking velocity increased to 4000 ft/sec. However, beyond striking velocities of 4000 ft/sec, asymmetric erosion and indentation of the projectile nose from the aggregate caused the projectile trajectories to deviate severely from the target centerline. These trajectory deviations caused the projectile to exit the side of the target, severely bend, break, or exhibit decreased penetration performance, confirming the hypothesis. Clearly, these results were dependent on the specific material and geometric parameters. The projectiles had 3.0 and 4.25 CRH (Caliber-Radius-Head) nose shapes and were heat-treated to R(sub c) 38-40. The grout targets had a maximum aggregate diameter of 3/16 in. and a nominal unconfined compressive strength of 2.5 ksi. The concrete targets had a maximum aggregate diameter of 3/4 in. and unconfined compressive strength of 5.5 ksi.

  14. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  15. OPTIMAL SURGICAL MANAGEMENT OF HIGH VELOCITY POSTERIOR TIBIAL PLATEAU FRACTURE SUBLUXATIONS (DUPARC, REVISED CLASSIFICATION, GROUP – V: POSTERO - MEDIAL FRACTURE BY DIRECT, DORSAL APPROACH – A CHANGING TREND: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Pardhasaradhi

    2015-10-01

    series of 15 patients with complex tibial plateau injuries with associated posterior shear fractures. MATERIALS AND METHODS : This prospective study included 15 cases of patients with mean age of 30 years ( Age range 20 to 40 yr who sustained high velocity posterior tibial plateau fracture - subluxations with or without associated Bicondylar fractures ( Duparc, revised classification, Group – V: Postero - medial fracture and its associations. Surgical management includes by direct, dorsal approach and stabilisation with buttress plating and or also postero medial and or antero lateral approach as needed. The patients were followed up at six week, three month, six month and one year postoperatively and assessed using Oxford Knee Score and Lyshom Score. RESULTS:The mean OKS score was 40 (range 36 to 44 at the end of one year. The main clinical measures were early post - operative non weight bearing ROM, post - operative complication & functional outcome. The time to full weight bearing, t he rate of post - operative complications & functional outcome was significantly better as evident by over 94 % showing good to excellent OKS and Lyshom scores. CONCLUSION : Fractures of the postero - medial tibial plateau are challenging to treat, owing to the ir complexity and unfamiliar surgical approach. Several recent anatomic and biomechanical studies have shown that a locked plate placed from the lateral side of the proximal tibia does not capture and stabilise a typical posteromedial fragment. A direct po sterior (Medial Gastrocnemius or posterior medial approach for these unstable posterior medial tibial plateau subluxations (which are otherwise irreducible by conventional approaches and antiglide plate are usually needed to reduce the fractures anatomic ally, achieving absolute stability and mobilise early NWB, ROM of the knee joint to optimize the functional outcomes and minimise the complications, without the need for revision surgery

  16. Velocity pump reaction turbine

    Science.gov (United States)

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  17. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...

  18. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    array probe is used along with two different estimators based on the correlation of the received signal. They can estimate the velocity spectrum as a function of time as for ordinary spectrograms, but they also work at a beam-to-flow angle of 90°. The approach is validated using simulations of pulsatile...... flow using the Womersly–Evans flow model. The relative bias of the mean estimated frequency is 13.6% and the mean relative standard deviation is 14.3% at 90°, where a traditional estimator yields zero velocity. Measurements have been conducted with an experimental scanner and a convex array transducer....... A pump generated artificial femoral and carotid artery flow in the phantom. The estimated spectra degrade when the angle is different from 90°, but are usable down to 60° to 70°. Below this angle the traditional spectrum is best and should be used. The conventional approach can automatically be corrected...

  19. High-Velocity Clouds

    CERN Document Server

    Woerden, Hugo; Schwarz, Ulrich J; Boer, Klaas S

    2005-01-01

    This book contains 17 chapters reviewing our knowledge of the high-velocity clouds (HVCs) as of 2004, bringing this together in one place for the first time. Each of the many different aspects of HVC research is addressed by one of the experts in that subfield. These include a historical overview of HVC research and analyses of the structure and kinematics of HVCs. Separate chapters address the intermediate-velocity clouds, the Magellanic Stream, and neutral hydrogen HVCs discovered in external galaxies. Reviews are presented of the Ha emission and of optical and UV absorption-line studies, followed by discussions of the hot Galactic Halo and of the interactions between HVCs and their surroundings. Four chapters summarize the ideas about the origin of the high-velocity gas, with detailed discussions of connections between HVCs and the Galactic Fountain, tidally-stripped material, and remnants of the Milky Way's formation. A chapter outlining what we do not know completes the book. The book comes at a time whe...

  20. Exploring subluminous X-ray binaries

    NARCIS (Netherlands)

    Degenaar, N.D.

    2010-01-01

    Halfway the twentieth century, technological developments made it possible to carry detection instruments outside the absorbing layers of the Earth’s atmosphere onboard rockets and satellites. This opened up the opportunity to detect the emission from celestial objects at X-ray wavelengths, thereby

  1. Movement velocity vs. strength training

    Directory of Open Access Journals (Sweden)

    Mário C. Marques

    2017-06-01

    Full Text Available Intensity during strength training has been commonly identified with relative load (percentage of one-repetition maximum, 1RM or with performing a given maximal number of repetitions in each set (XRM: 5RM, 10RM, 15 RM, etc.. Yet, none of these methods can be appropriate for precisely monitoring the real training effort in each training session. The first approach requires coaches to individually assess the 1RM value for each athlete. We may agree that expressing intensity as a percentage of the maximum repetition has the advantage that it can be used to program strength training for multiple athletes simultaneously, the loads being later transformed in absolute values (kg for each individual. Further, another advantage is that this expression of the intensity can clearly reflect the dynamics of the evolution of the training load if we understand the percentage of 1RM as an effort, and not as a simple arithmetic calculus. Nevertheless, direct assessment of 1RM has some possible disadvantages worth noting. It may be associated with risk of injury when performed incorrectly or by novice athlete’s and it is time-consuming and impractical for large groups. Moreover, the actual RM can change quite rapidly after only a few training sessions and often the obtained value is not the subject’s true maximum. The classic way to prescribe loading intensity is to determine, through trial and error, the maximum number of repetitions that one can be performed with a given submaximal weight. For example, 5RM refers to a weight that can only be lifted five times. Some studies identified the relationship between selected percentages of 1RM and the number of repetitions to failure, establishing a repetition maximum continuum. It is believed that certain performance characteristics are best trained using specific RM load ranges. This method eliminates the need for a direct 1RM test, but it is not without drawbacks either. Using exhaustive efforts is common

  2. Limiting Superluminal Electron and Neutrino Velocities Using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events

    Science.gov (United States)

    Stecker, Floyd W.

    2014-01-01

    The observation of two PetaelectronVolt (PeV)-scale neutrino events reported by Ice Cube allows one to place constraints on Lorentz invariance violation (LIV) in the neutrino sector. After first arguing that at least one of the PetaelectronVolt IceCube events was of extragalactic origin, I derive an upper limit for the difference between putative superluminal neutrino and electron velocities of less than or equal to approximately 5.6 x 10(exp -19) in units where c = 1, confirming that the observed PetaelectronVolt neutrinos could have reached Earth from extragalactic sources. I further derive a new constraint on the superluminal electron velocity, obtained from the observation of synchrotron radiation from the Crab Nebula flare of September, 2010. The inference that the greater than 1 GigaelectronVolt gamma-rays from synchrotron emission in the flare were produced by electrons of energy up to approx. 5.1 PetaelectronVolt indicates the nonoccurrence of vacuum Cerenkov radiation by these electrons. This implies a new, strong constraint on superluminal electron velocities delta(sub e) less than or equal to approximately 5 x 10(exp -21). It immediately follows that one then obtains an upper limit on the superluminal neutrino velocity alone of delta(sub v) less than or equal to approximately 5.6 x 10(exp -19), many orders of magnitude better than the time-of-flight constraint from the SN1987A neutrino burst. However, if the electrons are subluminal the constraint on the absolute value of delta(sub e) less than or equal to approximately 8 x 10(exp -17), obtained from the Crab Nebula gamma-ray spectrum, places a weaker constraint on superluminal neutrino velocity of delta(sub v) less than or equal to approximately 8 x 10(exp -17).

  3. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...

  4. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  5. Genetic analysis of peripheral nerve conduction velocity in twins

    NARCIS (Netherlands)

    Rijsdijk, F.V.; Boomsma, D.I.; Vernon, P.A.

    1995-01-01

    We studied variation in peripheral nerve conduction velocity (PNCV) and intelligence in a group of 16-year-old Dutch twins. It has been suggested that both brain nerve conduction velocity and PNCV are positively correlated with intelligence (Reed, 1984) and that heritable differences in NCV may

  6. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  7. Kaleidoscopic motion and velocity illusions

    NARCIS (Netherlands)

    Helm, P.A. van der

    2007-01-01

    A novel class of vivid motion and velocity illusions for contrast-defined shapes is presented and discussed. The illusions concern a starlike wheel that, physically, rotates with constant velocity between stationary starlike inner and outer shapes but that, perceptually, shows pulsations, jolts

  8. The torque-velocity relation of elite soccer players.

    Science.gov (United States)

    Borges, G M; Vaz, M A; De La Rocha Freitas, C; Rassier, D E

    2003-09-01

    The purpose of this study was to describe the torque-velocity (T-V) relationship during concentric and eccentric contractions of the lower limb muscles in professional soccer players. Soccer players (n=10) that were training systematically for at least 5 years were compared with moderately active individuals (n=13), that were not engaged in any systematic physical activity program in the last 5 years. Peak torque, and angle-specific torque at knee angles of 0.52 rad and 1.04 rad were evaluated during maximal concentric and eccentric contractions at 0.52 rad x sec(-1), 1.04 rad x sec(-1), 1.57 rad x sec(-1), 2.09 rad x sec(-1), 3.14 rad x sec(-1), 4.19 rad x sec(-1) and 5.23 rad x sec(-1) angular velocities. During concentric contractions, inverse hyperbolic relationships were fitted for the two groups [T = T(max) + (a x b)/(b + V)], with values for a and b of 1.4 and 347.6 for the control group, respectively, and 1.9 and 605.4 for the soccer players, respectively. When torque was measured at 0.52 rad, the torque-velocity relationship presented a plateau at low velocities in the two groups investigated. When torque was measured at 1.04 rad, the torque-velocity relationship presented a plateau at low velocities in the control group, in which force did not increase significantly as velocity was decreased. The plateau was not observed in soccer players. Peak torque and torque measured at 1.04 rad were higher in the soccer players than in the control group in all velocities investigated. However, the biggest difference was found in lower velocities of contraction. Soccer players produced a higher muscle torque in the lower limb than moderately active individuals, and this difference was bigger when the velocities were low.

  9. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke

    2014-08-05

    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  10. Intranasal triamcinolone and growth velocity.

    Science.gov (United States)

    Skoner, David P; Berger, William E; Gawchik, Sandra M; Akbary, Akbar; Qiu, Chunfu

    2015-02-01

    Inadequate designs and conflicting results from previous studies prompted the US Food and Drug Administration to publish guidelines for the design of clinical trials evaluating the effects of orally inhaled and intranasal corticosteroids on the growth of children. This study conformed to these guidelines to evaluate the effect of triamcinolone acetonide aqueous nasal spray (TAA-AQ) on the growth of children with perennial allergic rhinitis (PAR). This randomized, double-blind, placebo-controlled, parallel-group, multicenter study evaluated the effect of once-daily TAA-AQ (110 μg) on the growth velocity (GV) of children aged 3-9 years with PAR by using stadiometry at baseline (4-6 months), during treatment (12 months), and at follow-up (2 months). Hypothalamus-pituitary-adrenal (HPA) axis function was assessed by measuring urinary cortisol levels. Details of adverse events were recorded. Of 1078 subjects screened, 299 were randomized, and 216 completed the study (placebo, 107; TAA-AQ, 109). In the primary analysis (modified intent-to-treat: placebo, 133; TAA-AQ, 134), least-squares mean GV during treatment was lower in the TAA-AQ group (5.65 cm/year) versus placebo (6.09 cm/year). The difference (-0.45 cm/year; 95% confidence interval: -0.78 to -0.11; P = .01), although clinically nonsignificant, was evident within 2 months of treatment and stabilized thereafter. At follow-up, the GV approached baseline (6.70 cm/year) in the TAA-AQ group (6.59 cm/year) and decreased slightly in the placebo group (5.89 cm/year vs 6.06 cm/year at baseline). No HPA axis suppression was observed. By using rigorous Food and Drug Administration-recommended design elements, this study detected a small, statistically significant effect of TAA-AQ on the GV of children with PAR. Copyright © 2015 by the American Academy of Pediatrics.

  11. New GNSS velocity field and preliminary velocity model for Ecuador

    Science.gov (United States)

    Luna-Ludeña, Marco P.; Staller, Alejandra; Gaspar-Escribano, Jorge M.; Belén Benito, M.

    2016-04-01

    In this work, we present a new preliminary velocity model of Ecuador based on the GNSS data of the REGME network (continuous monitoring GNSS network). To date, there is no velocity model available for the country. The only existing model in the zone is the regional model VEMOS2009 for South America and Caribbean (Drewes and Heidbach, 2012). This model was developed from the SIRGAS station positions, the velocities of the SIRGAS-CON stations, and several geodynamics projects performed in the region. Just two continuous GNSS (cGNSS) stations of Ecuador were taking into account in the VEMOS2009 model. The first continuous station of the REGME network was established in 2008. At present, it is composed by 32 continuous GNSS stations, covering the country. All the stations provided data during at least two years. We processed the data of the 32 GNSS stations of REGME for the 2008-2014 period, as well as 20 IGS stations in order to link to the global reference frame IGb08 (ITRF2008). GPS data were processed using Bernese 5.0 software (Dach et al., 2007). We obtained and analyzed the GNSS coordinate time series of the 32 REGME stations and we calculated the GPS-derived horizontal velocity field of the country. Velocities in ITRF2008 were transformed into a South American fixed reference frame, using the Euler pole calculated from 8 cGNSS stations throughout this plate. Our velocity field is consistent with the tectonics of the country and contributes to a better understanding of it. From the horizontal velocity field, we determined a preliminary model using the kriging geostatistical technique. To check the results we use the cross-validation method. The differences between the observed and estimated values range from ± 5 mm. This is a new velocity model obtained from GNSS data for Ecuador.

  12. Altered velocity processing in schizophrenia during pursuit eye tracking.

    Science.gov (United States)

    Nagel, Matthias; Sprenger, Andreas; Steinlechner, Susanne; Binkofski, Ferdinand; Lencer, Rebekka

    2012-01-01

    Smooth pursuit eye movements (SPEM) are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%-80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal) guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s) both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD) signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP) bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen) implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity.

  13. Altered velocity processing in schizophrenia during pursuit eye tracking.

    Directory of Open Access Journals (Sweden)

    Matthias Nagel

    Full Text Available Smooth pursuit eye movements (SPEM are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%-80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity.

  14. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov

    over the full region of interest and a real time image at a frame rate of 20 Hz can be displayed. Real time videos have been obtained from both our research systems and from commercial BK Medical scanners. The vector velocity images reveal the full complexity of the human blood flow. It is easy to see...... direction and the correct velocity magnitude for any orientation of the vessels. At complex geometries like bifurcations, branching and for valves the approach reveals how the velocity changes magnitude and direction over the cardiac cycle. Vector velocity reveals a wealth of new information that now...... is accessible to the ultrasound community. The displaying and studying of this information is challenging as complex flow changes rapidly over the cardiac cycle....

  15. Kriging interpolating cosmic velocity field

    Science.gov (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie

    2015-10-01

    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  16. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-01-02

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Critical velocity in swimmers of different ages.

    Science.gov (United States)

    Rizzato, Alex; Marcolin, Giuseppe; Rubini, Alessandro; Olivato, Nicola; Fava, Simone; Paoli, Antonio; Bosco, Gerardo

    2017-06-08

    In swimming one of the most employed training speed among coaches is the non-invasive Theoretical Critical Velocity (TCV) defined as the velocity that can be maintained continuously without exhaustion. We calculated the 4mmol/L lactate Critical Velocity (MCV) in a group of swimmers of different ages (Young, Elite and Master), and compared results to the predicted TCV defined starting from the 200 and 400 m freestyle best seasonal performances. A steady-state test consisted in 20 repetitions of 100 m each was performed to study the effect of the imposed MCV in the three athletes' categories. TCV mean values resulted slightly higher than MCV mean values. A strong correlation between TCV and MCV was found considering the whole sample (r= 0.96, p test was 4.2 mmol/l, 3.3 mmol/l and 4.9 mmol/l respectively for Young, Elite and Master groups. TCV is a reliable, practical and quick parameter that well approximate the anaerobic threshold pace. MCV underestimated the fixed 4mmol/L lactate threshold pace in the elite swimmers and overestimate it in the master swimmers. Further investigation is needed to understand more in detail TCV applicability for athletes of different ages.

  18. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Seismicity and Improved Velocity Structure in Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Gok, R M; Rodgers, A J; Al-Enezi, A

    2006-01-26

    The Kuwait National Seismic Network (KNSN) began operation in 1997 and consists of nine three-component stations (eight short-period and one broadband) and is operated by the Kuwait Institute for Scientific Research. Although the region is largely believed to be aseismic, considerable local seismicity is recorded by KNSN. Seismic events in Kuwait are clustered in two main groups, one in the south and another in the north. The KNSN station distribution is able to capture the southern cluster within the footprint of the network but the northern cluster is poorly covered. Events tend to occur at depths ranging from the free surface to about 20 km. Events in the northern cluster tend to be deeper than those in south, however this might be an artifact of the station coverage. We analyzed KNSN recordings of nearly 200 local events to improve understanding of seismic events and crustal structure in Kuwait, performing several analyses with increasing complexity. First, we obtained an optimized one-dimensional (1D) velocity model for the entire region using the reported KNSN arrival times and routine locations. The resulting model is consistent with a recently obtained model from the joint inversion of receiver functions and surface wave group velocities. Crustal structure is capped by the thick ({approx} 7 km) sedimentary rocks of the Arabian Platform underlain by normal velocities for stable continental crust. Our new model has a crustal thickness of 44 km, constrained by an independent study of receiver functions and surface wave group velocities by Pasyanos et al (2006). Locations and depths of events after relocation with the new model are broadly consistent with those reported by KISR, although a few events move more than a few kilometers. We then used a double-difference tomography technique (tomoDD) to jointly locate the events and estimate three-dimensional (3D) velocity structure. TomoDD is based on hypoDD relocation algorithm and it makes use of both absolute and

  20. Signal velocity in oscillator arrays

    Science.gov (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.

    2016-09-01

    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  1. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  2. Critical velocity experiments in space

    Science.gov (United States)

    Torbert, R. B.

    1988-01-01

    Published data from active space experiments designed to demonstrate the Alfven critical-velocity effect are compiled in graphs and compared with the predictions of numerical simulations. It is found that the discrepancies in the ionization yields obtained in shaped-charge releases of alkali metals are related to the macroscopic limits of time and energy in such releases. It is argued that the total ionization yield is an inadequate measure of the critical-velocity effect, and a new criterion based on eta, the efficiency of energy transfer from the recently ionized neutrals to a heated electron population, is proposed: the effect would be verified if eta values of 10 percent or greater were observed.

  3. Experimental investigation of transverse velocity estimation using cross-correlation

    DEFF Research Database (Denmark)

    Bjerngaard, Rasmus; Jensen, Jørgen Arendt

    2001-01-01

    /s. The volume flow was determined by a Danfoss MAG 1100 flow meter. The velocity profiles were measured for different beam-to-flow angles of 90, 65, and 45 degrees. A Harming apodized beam focused at the vessel was transmitted using 64 elements and the received signals on all elements were sampled at 40 MHz......A technique for estimating the full flow velocity vector has previously been presented by our group. Unlike conventional estimators, that only detect the axial component of the flow, this new method is capable of estimating the transverse velocity component. The method uses focusing along the flow...... direction to produce signals that are influenced by the shift of the scatterer's position. The signals are then cross-correllated to find the shift in position and thereby the velocity. The performance of the method is investigated using both a flow phantom and in-vivo measurements. A flow phantom capable...

  4. Characteristics of CSF Velocity-Time Profile in Posttraumatic Syringomyelia.

    Science.gov (United States)

    Yeo, J; Cheng, S; Hemley, S; Lee, B B; Stoodley, M; Bilston, L

    2017-09-01

    The development of syringomyelia has been associated with changes in CSF flow dynamics in the spinal subarachnoid space. However, differences in CSF flow velocity between patients with posttraumatic syringomyelia and healthy participants remains unclear. The aim of this work was to define differences in CSF flow above and below a syrinx in participants with posttraumatic syringomyelia and compare the CSF flow with that in healthy controls. Six participants with posttraumatic syringomyelia were recruited for this study. Phase-contrast MR imaging was used to measure CSF flow velocity at the base of the skull and above and below the syrinx. Velocity magnitudes and temporal features of the CSF velocity profile were compared with those in healthy controls. CSF flow velocity in the spinal subarachnoid space of participants with syringomyelia was similar at different locations despite differences in syrinx size and locations. Peak cranial and caudal velocities above and below the syrinx were not significantly different (peak cranial velocity, P = .9; peak caudal velocity, P = 1.0), but the peak velocities were significantly lower (P < .001, P = .007) in the participants with syringomyelia compared with matched controls. Most notably, the duration of caudal flow was significantly shorter (P = .003) in the participants with syringomyelia. CSF flow within the posttraumatic syringomyelia group was relatively uniform along the spinal canal, but there are differences in the timing of CSF flow compared with that in matched healthy controls. This finding supports the hypothesis that syrinx development may be associated with temporal changes in spinal CSF flow. © 2017 by American Journal of Neuroradiology.

  5. Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens.

    Science.gov (United States)

    Haïat, Guillaume; Padilla, Frédéric; Cleveland, Robin O; Laugier, Pascal

    2006-01-01

    Numerous studies have shown that ultrasonic velocity measured in bone provides a good assessment of osteoporotic fracture risk. However, a lack of standardization of signal processing techniques used to compute the speed of sound (SOS) complicates the comparison between data obtained with different commercial devices. In this study, 38 intact femurs were tested using a through-transmission technique and SOS determined using different techniques. The resulting difference in measured SOS was determined as functions of the attenuation and the velocity dispersion. A numerical simulation was used to explain how attenuation and dispersion impact two different SOS measurements (group velocity, velocity based on the first zero crossing of the signal). A new method aimed at compensating for attenuation was devised and led to a significant reduction in the difference between SOS obtained with both signal processing techniques. A comparison between SOS and X-ray density measurements indicated that the best correlation was reached for SOS based on the first zero crossing apparently because it used a marker located in the early part of the signal and was less sensitive to multipath interference. The conclusion is that first zero crossing velocity may be preferred to group velocity for ultrasonic assessment at this potential fracture site.

  6. Relationship between Muscle Strength and Front Crawl Swimming Velocity

    Directory of Open Access Journals (Sweden)

    Gola Radosław

    2014-08-01

    Full Text Available Purpose. competitive performance in swimming depends on a number of factors including, among others, the development of relevant muscle groups. The aim of the study was to clarify the relationship between muscle strength and swimming velocity and the role of individual muscle groups in front crawl swimming. Methods. sixteen physical education university students participated in the study. The strength values, defined as torque produced during isometric contractions, of eight upper and lower extremity muscle groups were measured. Data were compared with participants' front crawl swim times in the 25m and 50m distances. Results. correlation analysis demonstrated a relationship between muscle strength and swimming velocity. statistically significant relationships were observed between swimming velocity and the torque values of the elbow flexor and shoulder extensor muscles as well as the sum of upper extremity muscle torque values (p ⋋ 0.05. Conclusions. The results indicate the need for a focus on training those muscle groups identified as having a statistically significant relationship with swimming velocity for a given distance, as the sample showed deficiencies in the strength of those muscle groups responsible for generating propulsive force in the front crawl. Additionally, the collected data can serve as a diagnostic tool in evaluating the development of muscle groups critical for swimming performance.

  7. Cold dark matter. 2: Spatial and velocity statistics

    Science.gov (United States)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We examine high-resolution gravitational N-body simulations of the omega = 1 cold dark matter (CDM) model in order to determine whether there is any normalization of the initial density fluctuation spectrum that yields acceptable results for galaxy clustering and velocities. Dense dark matter halos in the evolved mass distribution are identified with luminous galaxies; the most massive halos are also considered as sites for galaxy groups, with a range of possibilities explored for the group mass-to-light ratios. We verify the earlier conclusions of White et al. (1987) for the low-amplitude (high-bias) CDM model-the galaxy correlation function is marginally acceptable but that there are too many galaxies. We also show that the peak biasing method does not accurately reproduce the results obtained using dense halos identified in the simulations themselves. The Cosmic Background Explorer (COBE) anisotropy implies a higher normalization, resulting in problems with excessive pairwise galaxy velocity dispersion unless a strong velocity bias is present. Although we confirm the strong velocity bias of halos reported by Couchman & Carlberg (1992), we show that the galaxy motions are still too large on small scales. We find no amplitude for which the CDM model can reconcile simultaneously and galaxy correlation function, the low pairwise velocity dispersion, and the richness distribution of groups and clusters. With the normalization implied by COBE, the CDM spectrum has too much power on small scales if omega = 1.

  8. P1138Cardiac shear wave velocity in healthy individuals.

    Science.gov (United States)

    Strachinaru, M; Geleijnse, M L; Bosch, J G; De Jong, N; Van Der Steen, Afw; Van Dalen, B M; Vos, H J

    2016-12-01

    The closure of the valves generates shear waves in the heart walls. The propagation velocity of shear waves relates to stiffness. This could potentially be used to estimate the stiffness of the myocardium, with huge potential implications in pathologies characterized by a deterioration of the diastolic properties of the left ventricle. In an earlier phantom study we already validated shear wave tracking with a clinical ultrasound system in cardiac mode. In this study we aimed to measure the shear waves velocity in normal individuals. 12 healthy volunteers, mean age=37±10, 33% females, were investigated using a clinical scanner (Philips iE33), equipped with a S5-1 probe, using a clinical tissue Doppler (TDI) application. ECG and phonocardiogram (PCG) were synchronously recorded. We achieved a TDI frame rate of >500Hz by carefully tuning normal system settings. Data were processed offline in Philips Qlab 8 to extract tissue velocity along a virtual M-mode line in the basal third of the interventricular septum, in parasternal long axis view. This tissue velocity showed a propagating wave pattern after closure of the valves. The slope of the wave front velocity in a space-time panel was measured to obtain the shear wave propagation velocity. The velocity of the shear waves induced by the closure of the mitral valve (1st heart sound) and aortic valve (2nd heart sound) was averaged over 4 heartbeats for every subject. Shear waves were visible after each closure of the heart valves, synchronous to the heart sounds. The figure shows one heart cycle of a subject, with the mean velocity along a virtual M-mode line in the upper panel, synchronous to the ECG signal (green line) and phonocardiogram (yellow line) in the lower panel. The slope of the shear waves is marked with dotted lines and the onset of the heart sounds with white lines. In our healthy volunteer group the mean velocity of the shear wave induced by mitral valve closure was 4.8±0.7m/s, standard error of 0.14 m

  9. Variable Phase Propagation Velocity for Long Range Lightning Location System

    Science.gov (United States)

    Liu, Z.; Koh, K.; Mezentsev, A.; Enno, S. E.; Sugier, J.; Fullekrug, M.

    2016-12-01

    Lightning Location System (LLS) is of key importance to numerous meteorological, industrial and aviation systems worldwide. A crucial input parameter of a LLS which utilizes time-of-arrival (TOA) method is the wave propagation velocity at low frequencies. For example, the WWLLN network use group velocity approach, which is assumed to be constant near the speed of light [e.g. Dowden et al., 2002]. The detected lightning signals are normally a mixture of ground waves and sky waves (i.e. ionospheric hops), which are associated with different elevation angle of the incident wave [e.g., Fullekrug et al., 2015]. In this study, we introduce the new concept of "phase propagation velocity" as observed by the receiver considering the elevation angle. It is found that the radio waves from two submarine communication transmitters at 20.9 kHz and 23.4 kHz exhibit phase propagation velocities that are 0.51% slower and 0.64% faster than the speed of light as a result of sky wave contributions and ground effects. Here, we apply our new technique, using a variable phase propagation velocity, to the TOA method for the first time. This method was applied to electric field recordings from a long range LLS ( 500km) that consists of four radio receivers in Western Europe. The lightning locations inferred from variable velocities improve the accuracy of locations inferred from a fixed velocity by 0.89-1.06 km when compared to the lightning locations reported by the UK Met Office. The observed phase propagation velocities depend on the ground and ionosphere conditions along the propagation paths. The distribution of the observed phase propagation velocities in small geographic areas fit a normal distribution that is not centered at the speed of light. Consequently, representative velocities can be calculated for many small geographic areas to produce a velocity map over central France where numerous lightning discharges occurred. This map reflects the impact of sky waves and ground

  10. Cavity Enhanced Velocity Modulation Spectroscopy

    Science.gov (United States)

    Siller, Brian; Mills, Andrew; Porambo, Michael; McCall, Benjamin

    2010-11-01

    Over the past several decades, velocity modulation spectroscopy has been used to study dozens of molecular ions of astronomical importance. This technique has been so productive because it provides the advantage of ion-neutral discrimination, which is critically important when interfering neutral molecules are many orders of magnitude more abundant, and when combined with heterodyne techniques, its sensitivity can approach the shot noise limit. Traditionally, velocity modulation experiments have utilized unidirectional multipass White cells to achieve up to about 8 passes through a positive column discharge cell. But by positioning the cell within an optical cavity, it is possible to obtain an effective path length orders of magnitude longer than was previously possible. We have demonstrated this novel technique using a Ti:Sapp laser in the near-IR to observe rovibronic transitions of N2+. By demodulating at twice the modulation frequency, 2nd derivative-like lineshapes are observed for ions that are velocity-modulated, while Gaussian lineshapes are observed for excited neutral that are concentration-modulated. The signals for N2+ and N2+* have been observed to be 78° out of phase with one another, so ion-neutral discrimination is retained. And due to the laser power enhancement and geometry of the optical cavity, Doppler-free saturation spectroscopy is now possible. Observed Lamb dips have widths of 50 MHz, and when combined with calibration by an optical frequency comb, this allows for determination of line centers to within 1 MHz. In our original demonstration of this technique, our sensitivity was limited by noise in the laser-cavity lock. Since then, we have integrated Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy (NICE-OHMS) by adding sidebands to the laser at an exact multiple of the cavity free spectral range, and demodulating at the sideband frequency before sending the signal to a lock-in amplifier for demodulating at twice the

  11. Effect of Core Training on Male Handball Players' Throwing Velocity.

    Science.gov (United States)

    Manchado, Carmen; García-Ruiz, José; Cortell-Tormo, Juan Manuel; Tortosa-Martínez, Juan

    2017-02-01

    In handball, throwing velocity is considered to be one of the essential factors in achieving the ultimate aim of scoring a goal. The objective of the present study was to analyze the effect of a core training program on throwing velocity in 30 handball players (age 18.7 ± 3.4 years, body height 179.3 ± 7.0 cm, body mass 78.9 ± 7.7 kg), 16 of whom were in the junior category and 14 of whom were in the senior category. The 30 players were randomly divided into two groups, the control group (n = 15) and the experimental group (n = 15). For a period of ten weeks, both groups attended their regular handball training sessions (four per week), but in addition, the experimental group participated in a program specifically aimed at progressively strengthening the lumbo-pelvic region and consisting of seven exercises performed after the general warm-up in each regular session. Pre- and post-tests were carried out to analyze each player's throwing velocity from different throwing positions and thus assess the effects of this specific training program. Statistically significant differences (p ≤ 0.05) in throwing velocity were observed between the experimental group, which presented a percentage improvement of 4.5%, and the control group, which did not show any improvement. The results seem to indicate that an increase in the strength and stability of the lumbo-pelvic region can contribute to an improvement in the kinetic chain of the specific movement of throwing in handball, thus, increasing throwing velocity.

  12. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  13. VELOCITY ANISOTROPY IN THE NIGER VDELTTXFSEDIMENTS ...

    African Journals Online (AJOL)

    Keywords: Intrinsic velocity anisotropy, Niger Delta, Thomsen's parameters, vertical i transverse isotropy (VT!) Introduction. In seismology, a layer is anisotropic if seismic waves propagate through it at different velocities in different directions. Sedimentary rocks possess some degree of intrinsic velocity anisotropy (Jones and.

  14. Effect of water velocity on hydroponic phytoremediation of metals.

    Science.gov (United States)

    Weiss, P; Westbrook, A; Weiss, J; Gulliver, J; Biesboer, D

    2014-01-01

    The influence of flow velocity on the uptake of cadmium, copper, lead, and zinc by hydroponically grown soft stem bulrush (Scirpus validus) was investigated. The roots of the plants were exposed to a continually recycled, nutrient enriched, synthetic stormwater. Plants were divided into groups and the roots of each group exposed to different but constant water velocities. The metal concentrations in the roots and stems were compared after three weeks. Metal accumulation in roots was increased for water velocities between 1.3 and 4.0 cm s(-1). In a second experiment, the roots of all plants were exposed to a single velocity and the root and stem metal concentrations were determined as a function of time. Metal concentrations in the roots approached a constant value after three weeks. After this time, accumulation of metals depends upon root growth. The results suggest that long-term accumulation by the roots of hydroponic Scirpus validus can be increased by increasing water velocity, which implies that floating islands with movement will retain more metals from the water column.

  15. Comparison of ultrasonic velocities in dispersive and nondispersive food materials.

    Science.gov (United States)

    Cobus, Laura A E B; Ross, Kelly A; Scanlon, Martin G; Page, John H

    2007-10-31

    Ultrasonic techniques are increasingly being used to evaluate the properties of food materials. Interpretation of the structure and dynamics on the basis of measured ultrasonic parameters requires rigorous definition of ultrasonic parameters such as velocity, especially since many food materials can display considerable dispersive behavior (changes in velocity with frequency). Agar gel (2% w/v) and agar gel (2% w/v) with a regular array of bubbles (8% volume fraction) were chosen as nondispersive and dispersive materials, respectively. Frequency and time domain techniques were used to analyze velocities. Signal, phase, and group velocities were identical in the agar gel and were indistinguishable from those of water (1500 m s(-1)), indicating the predominant effect of the bulk modulus of the water they contain on the longitudinal modulus of the gel. In contrast, the inclusion of the bubbles in the agar gel led to strongly dispersive behavior, with group velocities varying by 1000 m s(-1) above and below the 1500 m s(-1) of the agar gel without bubbles, depending on frequency. The addition of bubbles also led to strong attenuation in the agar gel with a peak occurring at a frequency associated with a band gap arising from destructive interference of sound waves. The results show that care must be taken when comparing ultrasonic parameters derived from experiments on food materials performed at different frequencies or with different ultrasonic techniques.

  16. Retrieval of sea surface velocities using sequential Ocean Colour ...

    Indian Academy of Sciences (India)

    Sequential data of IRS-P4 OCM has been analysed over parts of both east and west coast of India and a methodology to retrieve sea surface current velocities has ... Presently at Applied Geophysical Laboratories, Department of Geophysics, University of Houston, Texas 77204, USA; Marine and Water Resources Group, ...

  17. Shear wave velocity structure of the Bushveld Complex, South Africa

    CSIR Research Space (South Africa)

    Kgaswane, EM

    2012-07-01

    Full Text Available The structure of the crust in the environs of the Bushveld Complex has been investigated by jointly inverting high-frequency teleseismic receiver functions and 2–60 s period Rayleigh wave group velocities for 16 broadband seismic stations located...

  18. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...

  19. Boosted X waves in nonlinear optical systems.

    Science.gov (United States)

    Arévalo, Edward

    2010-01-15

    X waves are spatiotemporal optical waves with intriguing superluminal and subluminal characteristics. Here we theoretically show that for a given initial carrier frequency of the system localized waves with genuine superluminal or subluminal group velocity can emerge from initial X waves in nonlinear optical systems with normal group velocity dispersion. Moreover, we show that this temporal behavior depends on the wave detuning from the carrier frequency of the system and not on the particular X-wave biconical form. A spatial counterpart of this behavior is also found when initial X waves are boosted in the plane transverse to the direction of propagation, so a fully spatiotemporal motion of localized waves can be observed.

  20. The soil moisture velocity equation

    Science.gov (United States)

    Ogden, Fred L.; Allen, Myron B.; Lai, Wencong; Zhu, Jianting; Seo, Mookwon; Douglas, Craig C.; Talbot, Cary A.

    2017-06-01

    Numerical solution of the one-dimensional Richards' equation is the recommended method for coupling groundwater to the atmosphere through the vadose zone in hyperresolution Earth system models, but requires fine spatial discretization, is computationally expensive, and may not converge due to mathematical degeneracy or when sharp wetting fronts occur. We transformed the one-dimensional Richards' equation into a new equation that describes the velocity of moisture content values in an unsaturated soil under the actions of capillarity and gravity. We call this new equation the Soil Moisture Velocity Equation (SMVE). The SMVE consists of two terms: an advection-like term that accounts for gravity and the integrated capillary drive of the wetting front, and a diffusion-like term that describes the flux due to the shape of the wetting front capillarity profile divided by the vertical gradient of the capillary pressure head. The SMVE advection-like term can be converted to a relatively easy to solve ordinary differential equation (ODE) using the method of lines and solved using a finite moisture-content discretization. Comparing against analytical solutions of Richards' equation shows that the SMVE advection-like term is >99% accurate for calculating infiltration fluxes neglecting the diffusion-like term. The ODE solution of the SMVE advection-like term is accurate, computationally efficient and reliable for calculating one-dimensional vadose zone fluxes in Earth system and large-scale coupled models of land-atmosphere interaction. It is also well suited for use in inverse problems such as when repeat remote sensing observations are used to infer soil hydraulic properties or soil moisture.Plain Language SummarySince its original publication in 1922, the so-called Richards' equation has been the only rigorous way to couple groundwater to the land surface through the unsaturated zone that lies between the water table and land surface. The soil moisture distribution and

  1. Climate change velocity since the Last Glacial Maximum and its importance for patterns of species richness and range size

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Arge, Lars Allan; Svenning, J.-C.

    these predictions using global data on mammal and amphibian distributions. Consistent with our predictions, richness of small-ranged species of both groups was negatively associated with velocity. Velocity generally explained more variation in richness than did the simple climate anomaly. Climate velocity appears...... to capture an important historical signal on current mammal and amphibian distributions....

  2. Mean velocity and peak systolic velocity can help determine ischaemic and non-ischaemic priapism.

    Science.gov (United States)

    von Stempel, C; Zacharakis, E; Allen, C; Ramachandran, N; Walkden, M; Minhas, S; Muneer, A; Ralph, D; Freeman, A; Kirkham, A

    2017-07-01

    To determine the threshold waveform characteristics at Doppler ultrasound (DUS) to differentiate between ischaemic and non-ischaemic priapism. Fifty-two patients were categorised into "ischaemic" and "non-ischaemic" types based on clinical and blood-gas findings: 10 patients with non-ischaemic priapism; 20 with ischaemic priapism before surgical shunt placement and 22 with ischaemic priapism after surgical shunt placement. DUS traces were analysed: peak systolic velocity (PSV) and mean velocity (MV) were calculated. Histological samples were obtained at the time of surgery. Three clinical outcome groups were defined: (1) normal, (2) regular use of pharmacostimulation, and (3) refractory dysfunction/penile implant. All non-ischaemic priapism cases had a PSV >50 cm/s and all but one had an MV of >6.5 cm/s. In pre-surgery ischaemic cases, all men had a PSV PSV 22 cm/s but diastolic reversal. In post-surgery ischaemic priapism, flow parameters overlapped with the non-ischaemic group. PSV/MV did not predict clinical outcome or histology. In the present cohort, PSV PSV >22 cm/s, but have diastolic reversal and therefore low net perfusion. Post-shunt, DUS findings were extremely variable and did not predict histology or clinical outcome. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Pierce Prize Lecture: High Velocity Clouds: Cosmological and Galactic Weather

    Science.gov (United States)

    Sembach, K.

    2001-12-01

    The Milky Way and its surrounding environs contain gas moving at high velocities with respect to the Sun. For the past half century, most of the information available for these high velocity clouds (HVCs) has come from H I 21cm surveys. Improvements in these surveys have recently led to the idea that some of the high velocity H I clouds may be located outside the Milky Way within the Local Group. Such a hypothesis is testable by various means, but the neutral gas content of the clouds tells only half of a much more complex story. In this talk I will present new information about the ionized gas within HVCs, their impact on the gaseous atmosphere of the Galaxy, and their relevance to the cosmic web of hot gas that may contain a significant fraction of the baryonic material in the low-redshift universe.

  4. Superluminal X-wave propagation: energy localization and velocity.

    Science.gov (United States)

    Mugnai, D; Mochi, I

    2006-01-01

    The electromagnetic propagation of a Bessel-X wave is analyzed on the basis of a vectorial treatment in order to obtain information about the propagation of energy flux and the velocity of the energy. Knowledge of these quantities is of great interest since they are connected to the production of localized electromagnetic energy and to the topic of superluminality, respectively. The electric and magnetic fields are obtained in the far-field approximation by considering a realistic situation able to generate a Bessel-X wave. The vectorial treatment confirms the capability of this kind of wave to localize energy, while, quite surprisingly, even if the group velocity is superluminal, the energy velocity is equal to the light speed.

  5. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  6. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  7. Geotail observations of FTE velocities

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2009-01-01

    Full Text Available We discuss the plasma velocity signatures expected in association with flux transfer events (FTEs. Events moving faster than or opposite the ambient media should generate bipolar inward/outward (outward/inward flow perturbations normal to the nominal magnetopause in the magnetosphere (magnetosheath. Flow perturbations directly upstream and downstream from the events should be in the direction of event motion. Flows on the flanks should be in the direction opposite the motion of events moving at subsonic and subAlfvénic speeds relative to the ambient plasma. Events moving with the ambient flow should generate no flow perturbations in the ambient plasma. Alfvén waves propagating parallel (antiparallel to the axial magnetic field of FTEs may generate anticorrelated (correlated magnetic field and flow perturbations within the core region of FTEs. We present case studies illustrating many of these signatures. In the examples considered, Alfvén waves propagate along event axes away from the inferred reconnection site. A statistical study of FTEs observed by Geotail over a 3.5-year period reveals that FTEs within the magnetosphere invariably move faster than the ambient flow, while those in the magnetosheath move both faster and slower than the ambient flow.

  8. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  9. Snapshot wavefield decomposition for heterogeneous velocity media

    OpenAIRE

    Holicki, M.E.; Wapenaar, C.P.A.

    2017-01-01

    We propose a novel directional decomposition operator for wavefield snapshots in heterogeneous-velocity media. The proposed operator demonstrates the link between the amplitude of pressure and particlevelocity plane waves in the wavenumber domain. The proposed operator requires two spatial Fourier transforms (one forward and one backward) per spatial dimension and time slice. To illustrate the operator we demonstrate its applicability to heterogeneous velocity models using a simple velocity-b...

  10. Conduction velocity of antigravity muscle action potentials.

    Science.gov (United States)

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  11. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  12. The effects of velocity specific isokinetic training on strength, hypertrophy, and cross education

    OpenAIRE

    Gaines, Rodney P.

    1996-01-01

    This study examined the effects of six weeks of velocity specific isokinetic training on peak torque (PT), and the estimated cross-sectional area of the upper arm (AG) in the trained. Thirty volunteers (M=15, F=15) were randomly assigned to an experimental, slow velocity group (S), 60 degrees-per-second (n=9; 25.4±..6.5yr), a fast velocity group (F), 450 degrees-per-second (n=ll, 23.7 ±..S.4yr), or control group (C) (n=10, 26 ± 3.2yr). One limb was randomly selected for isok...

  13. Metabolic responses at various intensities relative to critical swimming velocity.

    Science.gov (United States)

    Toubekis, Argyris G; Tokmakidis, Savvas P

    2013-06-01

    To avoid any improper training load, the speed of endurance training needs to be regularly adjusted. Both the lactate threshold (LT) velocity and the velocity corresponding to the maximum lactate steady state (MLSS) are valid and reliable indices of swimming aerobic endurance and commonly used for evaluation and training pace adjustment. Alternatively, critical velocity (CV), defined as the velocity that can be maintained without exhaustion and assessed from swimming performance of various distances, is a valid, reliable, and practical index of swimming endurance, although the selection of the proper distances is a determinant factor. Critical velocity may be 3-6 and 8-11% faster compared with MLSS and LT, respectively. Interval swimming at CV will probably show steady-lactate concentration when the CV has been calculated by distances of 3- to 15-minute duration, and this is more evident in adult swimmers, whereas increasing or decreasing lactate concentration may appear in young and children swimmers. Therefore, appropriate corrections should be made to use CV for training pace adjustment. Findings in young and national level adult swimmers suggest that repetitions of distances of 100-400 m, and velocities corresponding to a CV range of 98-102% may be used for pacing aerobic training, training at the MLSS, and possibly training for improvement of VO2max. Calculation of CV from distances of 200-400, 50-100-200-400, or 100-800 m is an easy and practical method to assess aerobic endurance. This review intends to study the physiological responses and the feasibility of using CV for aerobic endurance evaluation and training pace adjustment, to help coaches to prescribe training sets for different age-group swimmers.

  14. Empirical analysis on the runners' velocity distribution in city marathons

    Science.gov (United States)

    Lin, Zhenquan; Meng, Fan

    2018-01-01

    In recent decades, much researches have been performed on human temporal activity and mobility patterns, while few investigations have been made to examine the features of the velocity distributions of human mobility patterns. In this paper, we investigated empirically the velocity distributions of finishers in New York City marathon, American Chicago marathon, Berlin marathon and London marathon. By statistical analyses on the datasets of the finish time records, we captured some statistical features of human behaviors in marathons: (1) The velocity distributions of all finishers and of partial finishers in the fastest age group both follow log-normal distribution; (2) In the New York City marathon, the velocity distribution of all male runners in eight 5-kilometer internal timing courses undergoes two transitions: from log-normal distribution at the initial stage (several initial courses) to the Gaussian distribution at the middle stage (several middle courses), and to log-normal distribution at the last stage (several last courses); (3) The intensity of the competition, which is described by the root-mean-square value of the rank changes of all runners, goes weaker from initial stage to the middle stage corresponding to the transition of the velocity distribution from log-normal distribution to Gaussian distribution, and when the competition gets stronger in the last course of the middle stage, there will come a transition from Gaussian distribution to log-normal one at last stage. This study may enrich the researches on human mobility patterns and attract attentions on the velocity features of human mobility.

  15. Understanding subluminal and superluminal propagation through superposition of frequency components.

    Science.gov (United States)

    Guo, Wei

    2006-01-01

    Propagation of a light pulse through a dielectric slab is discussed theoretically in this paper. It is exhibited via a multiple-scattering approach that the slab can modify the phase of the pulse's frequency components, so that, when the frequency components are superposed, they cause the peak in the output pulse to appear to travel either faster or slower than in vacuum, depending on whether the slab is absorbing or amplifying. The expressions of the corresponding advancement and delay of the peak are derived and argued to be limited in magnitude by the pulse's duration.

  16. Hot subluminous stars: Highlights from the MUCHFUSS and Kepler missions

    Directory of Open Access Journals (Sweden)

    Geier S.

    2013-03-01

    Full Text Available Research into hot subdwarf stars is progressing rapidly. We present recent important discoveries. First we review the knowledge about magnetic fields in hot subdwarfs and highlight the first detection of a highly-magnetic, helium-rich sdO star. We briefly summarize recent discoveries based on Kepler light curves and finally introduce the closest known sdB+WD binary discovered by the MUCHFUSS project and discuss its relevance as a progenitor of a double-detonation type Ia supernova.

  17. Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect.

    Science.gov (United States)

    Liu, Nian-Hua; Zhu, Shi-Yao; Chen, Hong; Wu, Xiang

    2002-04-01

    The propagation of a pulse through one-dimensional photonic crystals that contain a dispersive and absorptive defect layer doped with two-level atoms is discussed. The dynamical evolution of the pulse inside the photonic crystal is presented. Superluminal negative group velocity (the peak appears at the exit end before it reaches the input end) is discovered. Although the group velocity is larger than c and even negative, the velocity of energy propagation never exceeds the vacuum light speed. The appearance of the superluminal advance or subluminal delay of the pulse peak inside the photonic crystal or at the exit end is due to the wave interference from Bragg reflections.

  18. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    for about 35 years, the radial velocity of HD 3345 began to decline in the new century, and in seven years it had fallen by 6 km s. −1 . The observations are listed in Table 2, with the phases and residuals that correspond to the adopted orbital parameters. The descending (minimum-velocity) node was passed early in 2009, a.

  19. Asymmetric Drift and the Stellar Velocity Ellipsoid

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Swaters, Rob A.

    2007-01-01

    We present the decomposition of the stellar velocity ellipsoid using stellar velocity dispersions within a 40° wedge about the major-axis (smaj), the epicycle approximation, and the asymmetric drift equation. Thus, we employ no fitted forms for smaj and escape interpolation errors resulting from

  20. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  1. LOW-VELOCITY COMPRESSIBLE FLOW THEORY

    Science.gov (United States)

    The widespread application of incompressible flow theory dominates low-velocity fluid dynamics, virtually preventing research into compressible low-velocity flow dynamics. Yet, compressible solutions to simple and well-defined flow problems and a series of contradictions in incom...

  2. Velocity spectrum for the Iranian plateau

    Science.gov (United States)

    Bastami, Morteza; Soghrat, M. R.

    2017-09-01

    Peak ground acceleration (PGA) and spectral acceleration values have been proposed in most building codes/guidelines, unlike spectral velocity (SV) and peak ground velocity (PGV). Recent studies have demonstrated the importance of spectral velocity and peak ground velocity in the design of long period structures (e.g., pipelines, tunnels, tanks, and high-rise buildings) and evaluation of seismic vulnerability in underground structures. The current study was undertaken to develop a velocity spectrum and for estimation of PGV. In order to determine these parameters, 398 three-component accelerograms recorded by the Building and Housing Research Center (BHRC) were used. The moment magnitude (Mw) in the selected database was 4.1 to 7.3, and the events occurred after 1977. In the database, the average shear-wave velocity at 0 to 30 m in depth (Vs30) was available for only 217 records; thus, the site class for the remaining was estimated using empirical methods. Because of the importance of the velocity spectrum at low frequencies, the signal-to-noise ratio of 2 was chosen for determination of the low and high frequency to include a wider range of frequency content. This value can produce conservative results. After estimation of the shape of the velocity design spectrum, the PGV was also estimated for the region under study by finding the correlation between PGV and spectral acceleration at the period of 1 s.

  3. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...

  4. Postprocessing of velocity distributions in real-time ultrasonic color velocity imaging.

    Science.gov (United States)

    Collaris, R J; Hoeks, A P

    1994-10-01

    A robust processing scheme is proposed that improves the presentation of 2-dimensional velocity distributions in real-time ultrasonic color velocity images. Essentially, the algorithm is a modification of a first order recursive filter, processing each velocity signal in the spatial distribution separately from the others. It restores the sudden holes and notches in the velocity profiles that occur whenever the observed blood velocity is incidentally close to zero. At the same time, unlike conventional persistence filters, it does not influence any of the true velocity information that is measured. The result is a consistent sequence of color velocity images with smooth transitions between the borders of the consecutive velocity profiles and with an improved definition of the regions containing blood.

  5. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...... color image of velocity at up to 20 to 60 frames a second. Both measurements are performedby repeatedly pulsing in the same direction and then usethe correlation from pulse to pulse to determine the velocity.The paper gives a simple model for the interactionbetween the ultrasound and the moving blood....... The calculation of the velocity distribution is then explainedalong with the different physical effects influencing the estimation.The estimation of mean velocities using auto- andcross-correlation for color flow mapping is also described....

  6. Range/velocity limitations for time-domain blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The traditional range/velocity limitation for blood velocity estimation systems using ultrasound is elucidated. It is stated that the equation is a property of the estimator used, not the actual physical measurement situation, as higher velocities can be estimated by the time domain cross...

  7. Scale dependence of acoustic velocities. An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Gotusso, Angelamaria Pillitteri

    2001-06-01

    stress dependent velocity anisotropy. Pierre shale also shows scale dependent anisotropic velocities and stress dependency, but less strong. The results here are complicated by unexpected dispersion. Finally finite-difference modeling shows that for long samples (from 50 to 10 cm) the measured velocities were closer to group velocity when first break of the received signal was used, and to phase velocity when the first peak and first zero crossing were used. (author)

  8. Sequencing of endurance and high-velocity strength training.

    Science.gov (United States)

    Bell, G J; Petersen, S R; Quinney, H A; Wenger, H A

    1988-12-01

    To compare two sequences of endurance (E) and high-velocity resistance (HVR) training, sixteen male oarsmen were separated into Group ES which trained endurance prior to strength and Group SE which trained strength prior to endurance. The endurance program consisted of up to 60 min a session, five days a week for five weeks. HVR exercise was conducted on 12 stations of variable resistance hydraulic equipment, four sessions per week for five weeks. Endurance training significantly improved VO2max and submaximal heart rate and blood lactate responses in both groups regardless of the sequence followed. HVR training improved VO2max in group SE only and had no effect on submaximal response to exercise. Peak torque increases for knee extension and flexion with HVR training were greater in group SE than group ES. These results show that organizing strength and endurance training into sequential programs can influence the physiological adaptation to training.

  9. Effect of old age on human skeletal muscle force-velocity and fatigue properties

    Science.gov (United States)

    Callahan, Damien M.

    2011-01-01

    It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s−1 (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect. PMID:21868683

  10. Kinematic Synthesis for Linkages with Velocity Targets

    Science.gov (United States)

    de-Juan, Ana; Sancibrian, Ramon; García, Pablo; Viadero, Fernando; Iglesias, Miguel; Fernández, Alfonso

    A gradient-based optimization method for designing linkages with velocity targets is described. Two theoretical application cases are established for four-bar linkage. In the first, a constant-velocity module is proposed for a point on the coupler. In the second, the goal is the velocity components. These cases are studied with and without coordination with the input link. The results obtained are compared with another gradient-based approach, and show that the method works efficiently for these types of target.

  11. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  12. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  13. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    Science.gov (United States)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  14. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  15. Peculiar in-plane velocities in the outer disc of the Milky Way

    Science.gov (United States)

    Tian, Hai-Jun; Liu, Chao; Wan, Jun-Chen; Wang, You-Gang; Wang, Qiao; Deng, Li-Cai; Cao, Zi-Huang; Hou, Yong-Hui; Wang, Yue-Fei; Wu, Yue; Zhao, Yong-Heng

    2017-10-01

    We present the peculiar in-plane velocities derived from LAMOST red clump stars, which are purified and separated by a novel approach into two groups with different ages. The samples are mostly contributed around the Galactic anti-center direction so that we are able to map the radial profiles of the radial and azimuthal velocities in the outer disc. From variations of the in-plane velocities with Galactocentric radius for the younger and older populations, we find that both radial and azimuthal velocities are not axisymmetric at 8speed of 238 km s-1, the pattern speed of the bar can be approximated as 45 km s-1 kpc-1. The young red clump stars show larger mean radial velocity than the old population by about 3 km s-1 between R˜ 9 and 12 kpc. This is possibly because the younger population is more sensitive to the perturbation than the older one. The radial profiles of the mean azimuthal velocity for the two populations show an interesting U-shape, i.e. at R 10.5 {kpc} it increases with R to 240 - 245 km s-1. It is not clear why the mean azimuthal velocity shows this U-shape along the Galactic anti-center direction. Moreover, the azimuthal velocity for the younger population is slightly larger than that for the older one and the difference moderately declines with R. Beyond R˜ 12 {kpc}, the azimuthal velocities for the two populations are indistinguishable.

  16. New principle of magnetophoretic velocity mass analysis.

    Science.gov (United States)

    Watanabe, Katsuya; Suwa, Masayori; Watarai, Hitoshi

    2004-11-01

    We propose a novel principle of velocity mass analysis of a micro-particle using magnetophoretic force. The new method can determine the mass of a particle from its magnetophoretic velocity change in a high magnetic field gradient in a low viscous medium such as air. In the present study, the new principle was demonstrated by the magnetophoretic acceleration of an aqueous manganese(II) chloride micro-droplet and the deceleration of a water micro-droplet in the atmosphere. The observed velocity change was analyzed taking into account the mass of the droplet through the acceleration term of the equation of motion. The experimental results proved that the inertia force in the magnetophoretic velocity of a micro-particle could be detected in air. The present method provided an innovative mass analysis method without any ionization of the sample.

  17. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA......) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  18. Instrumented impact testing at high velocities

    Science.gov (United States)

    Delfosse, Daniel; Pageau, Gilles; Bennett, Roger; Poursartip, Anoush

    Impact loading of carbon fiber-reinforced plastic CFRP) aircraft parts is a major concern. Birds or hailstones striking an aircraft generally have a low mass and a high velocity, whereas typically instrumented impact experiments are performed with a high mass and a low velocity. Our aim has been to build an instrumented impact facility with a low-mass projectile capable of simulating these impact events, since there is evidence that a low-velocity impact will not always result in the same amount or even type of damage as a high-velocity impact. This paper provides a detailed description of the instrumented low-mass impact facility at The University of British Columbia (UBC). A gas gun is used to accelerate the instrumented projectile to impact velocities as high as 50 m/s, corresponding to an energy level of 350 J. The contact force during the impact event is measured by an incorporated load cell. The necessary mathematical operations to determine the real load-displacement curves are outlined, and the results of some impact events at different velocities are shown.

  19. Asymmetric metallicity patterns in the stellar velocity space with RAVE

    Science.gov (United States)

    Antoja, T.; Kordopatis, G.; Helmi, A.; Monari, G.; Famaey, B.; Wyse, R. F. G.; Grebel, E. K.; Steinmetz, M.; Bland-Hawthorn, J.; Gibson, B. K.; Bienaymé, O.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G.; Siebert, A.; Siviero, A.; Zwitter, T.

    2017-05-01

    Context. The chemical abundances of stars encode information on their place and time of origin. Stars formed together in e.g. a cluster, should present chemical homogeneity. Also disk stars influenced by the effects of the bar and the spiral arms might have distinct chemical signatures depending on the type of orbit that they follow, e.g. from the inner versus outer regions of the Milky Way. Aims: We explore the correlations between velocity and metallicity and the possible distinct chemical signatures of the velocity over-densities of the local Galactic neighbourhood. Methods: We use the large spectroscopic survey RAVE and the Geneva Copenhagen Survey. We compare the metallicity distribution of regions in the velocity plane (vR,vφ) with that of their symmetric counterparts (-vR,vφ). We expect similar metallicity distributions if there are no tracers of a sub-population (e.g. a dispersed cluster, accreted stars), if the disk of the Galaxy is axisymmetric, and if the orbital effects of the bar and the spiral arms are weak. Results: We find that the metallicity-velocity space of the solar neighbourhood is highly patterned. A large fraction of the velocity plane shows differences in the metallicity distribution when comparing symmetric vR regions. The typical differences in the median metallicity are of 0.05 dex with statistical significant of at least 95% confidence, and with values up to 0.6 dex. For stars with low azimuthal velocity vφ, the ones moving outwards. These include stars in the Hercules and Hyades moving groups and other velocity branch-like structures. For higher vφ, the stars moving inwards have higher metallicity than those moving outwards. We have also discovered a positive gradient in vφ with respect to metallicity at high metallicities, apart from the two known positive and negative gradients for the thick and thin disks. Conclusions: The most likely interpretation of the metallicity asymmetry is that it is mainly due to the orbital effects of

  20. The Effect of Air Velocity on the Prevention of Heat Stress in Iranian Veiled Females

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-09-01

    Full Text Available Background Some environmental factors such as the ambient temperature, radiant temperature, humidity and air velocity as well as clothing and activity level are effective to induce heat strain on the workers. Objectives The current study aimed to evaluate the effect of air velocity on Iranian veiled females at various exercise intensities and climatic conditions. Methods The current experimental study was conducted on 51 healthy veiled females with Islamic clothing (n = 30 in two hot-dry climatic chambers (wet-bulb globe temperature (WBGT = 32 ± 0.1°C and WBGT = 30 ± 0.1°C, 40% relative humidity (RH without air velocity and (n = 21 with air velocity 0.31 m/s in sitting and light workload conditions, respectively, for 60 minutes. The WBGT, oral temperature and heart rate were measured simultaneously every five minutes during the heat exposure and resting state. Data were analyzed using correlation and line regression by SPSS ver. 16. Results In both groups, oral temperature and heart rate increased during heat exposure. The increase of oral temperature and heart rate were larger in the group with air velocity (sitting position, 37.05 ± 0.20°C, 98.30 ± 7.79 bpm, light workload, 37.34 ± 0.24°C, 124.08 ± 6.09 bpm compared those of the group without air velocity (sitting position, 36.70 ± 0.36°C, 69.74 ± 0.98 bpm, light workload, 36.71 ± 0.27°C, 110.78 ± 17.9 bpm. The difference in physiological strain index (PSI between resting and low workload were higher in with air velocity group than those of the group without air velocity. Conclusions The results showed that the heat stress increased by increasing air velocity and humidity in both groups. The air velocity with high humidity can be considered as a positive factor in the occurrence of heat strain. Therefore, the incidence of heat stress decreases with the increase of humidity and reduction of air velocity or with increase of air velocity and reduction of humidity in Iranian veiled

  1. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  2. Lie groups and algebraic groups

    Indian Academy of Sciences (India)

    identity. It is a remarkable fact that simple. Lie groups can be completely classified; they are the special linear groups, orthogonal groups and symplectic groups. Apart from these, the list is a finite one (the so-called exceptional groups). This is the Cartan–Killing classification, which nowadays, is described in terms of the.

  3. Frequent Immediate Knowledge of Results Enhances the Increase of Throwing Velocity in Overarm Handball Performance.

    Science.gov (United States)

    Štirn, Igor; Carruthers, Jamie; Šibila, Marko; Pori, Primož

    2017-02-01

    In the present study, the effect of frequent, immediate, augmented feedback on the increase of throwing velocity was investigated. An increase of throwing velocity of a handball set shot when knowledge of results was provided or not provided during training was compared. Fifty female and seventy-three male physical education students were assigned randomly to the experimental or control group. All participants performed two series of ten set shots with maximal effort twice a week for six weeks. The experimental group received information regarding throwing velocity measured by a radar gun immediately after every shot, whereas the control group did not receive any feedback. Measurements of maximal throwing velocity of an ordinary handball and a heavy ball were performed, before and after the training period and compared. Participants who received feedback on results attained almost a four times greater relative increase of the velocity of the normal ball (size 2) as compared to the same intervention when feedback was not provided (8.1 ± 3.6 vs. 2.7 ± 2.9%). The velocity increases were smaller, but still significant between the groups for throws using the heavy ball (5.1 ± 4.2 and 2.5 ± 5.8 for the experimental and control group, respectively). Apart from the experimental group throwing the normal ball, no differences in velocity change for gender were obtained. The results confirmed that training oriented towards an increase in throwing velocity became significantly more effective when frequent knowledge of results was provided.

  4. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  5. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Aerobic evaluation of young swimmers using the critical velocity test a brief report

    Directory of Open Access Journals (Sweden)

    FERNANDES, RICARDO

    2011-06-01

    Full Text Available Critical velocity is the maximal swimming velocity that could be maintained for a long time without exhaustion.As it is considered to be well related with the exercise intensity corresponding to the individual anaerobicthreshold, critical velocity has been used to monitor the swimmer’s aerobic performance. However, studiesconducted in age-group swimmers are scarce and some literature does not use a long distance test as required forobtaining reliable critical velocity results. The aim of the present study was to assess critical velocity in 11-14years old swimmers in order to characterize their aerobic capacity. So, 56 girls and 62 boys performed 200 and800m front crawl tests at maximum intensity, being critical velocity assessed by the slope of the regression linebetween the test distances and the respective times. Critical velocity values were 1.21±0.06, 1.28±0.05 and1.25±0.06 m/s for the girls, boys and total group, with significant differences being observed between gendergroups. As expected, these results were lower than the values presented in the literature for older swimmers.However, some of these studies that reported significantly higher critical velocity values used short distancestests for its assessment, which could lead to the overestimation of the final results. It is suggested the use of theindividual critical velocity converted in 100m time to implement specific training series for aerobic capacitydevelopment, as well as for the more precise definition of training volumes and intensities. Thus, the usedcritical velocity test could be considered a useful training strategy used to increase swimmers conditioning

  7. Acceleration bias in visually perceived velocity change and effects of Parkinson's bradykinesia.

    Science.gov (United States)

    Beudel, Martijn; de Geus, Crista M; Leenders, Klaus L; de Jong, Bauke M

    2013-10-02

    In Parkinson's disease (PD), basal ganglia dysfunction leads to disturbed sensorimotor integration and associated timing. Previous functional MRI and behavioural PD studies on timing indicated a specific striatal contribution to assessing spatial displacement in velocity estimation. In this computation, cerebral processing time implies demarcating discrete intervals of spatial change. To quantify these putative intervals, the threshold of perceived velocity change of a moving ball was assessed in healthy volunteers and PD patients. After rebound from the upper side of a monitor screen, the ball's velocity increased or decreased with variable magnitudes while participants indicated whether they noticed this velocity change. The threshold for detecting velocity change was around 0.014 rad/s in both groups. Moreover, velocity was perceived as equal when the ball decelerated; unchanged velocity was perceived as acceleration. This shift was 0.009 rad/s for healthy volunteers and 0.007 rad/s for PD patients, and was negatively correlated with the severity of bradykinesia. As the trajectory length before and after velocity change was the same, velocity change was also expressed as a change in stimulus duration (relative to 1 s initial duration). The temporal equivalent of a threshold for perceived velocity change was around 75 ms in both groups. The perceptual 'acceleration bias' is in line with the 'flash-lag' effect: the position of a moving stimulus is projected ahead compared with a stationary landmark. Such an extrapolation over adjacent past and predicted locations enables 'real-time' visuomotor control, notwithstanding delays because of intrinsic cerebral processing time. In PD, such impaired perceptual feed-forward processing may result in slow movements.

  8. Seismic velocity estimation from time migration

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Maria Kourkina [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    reliable as the earth becomes horizontally nonconstant. Even mild lateral velocity variations can significantly distort subsurface structures on the time migrated images. Conversely, depth migration provides the potential for more accurate reconstructions, since it can handle significant lateral variations. However, this approach requires good input data, known as a 'velocity model'. We address the problem of estimating seismic velocities inside the earth, i.e., the problem of constructing a velocity model, which is necessary for obtaining seismic images in regular Cartesian coordinates. The main goals are to develop algorithms to convert time-migration velocities to true seismic velocities, and to convert time-migrated images to depth images in regular Cartesian coordinates. Our main results are three-fold. First, we establish a theoretical relation between the true seismic velocities and the 'time migration velocities' using the paraxial ray tracing. Second, we formulate an appropriate inverse problem describing the relation between time migration velocities and depth velocities, and show that this problem is mathematically ill-posed, i.e., unstable to small perturbations. Third, we develop numerical algorithms to solve regularized versions of these equations which can be used to recover smoothed velocity variations. Our algorithms consist of efficient time-to-depth conversion algorithms, based on Dijkstra-like Fast Marching Methods, as well as level set and ray tracing algorithms for transforming Dix velocities into seismic velocities. Our algorithms are applied to both two-dimensional and three-dimensional problems, and we test them on a collection of both synthetic examples and field data.

  9. Factors Affecting Seismic Velocity in Alluvium

    Science.gov (United States)

    Huckins-Gang, H.; Mercadante, J.; Prothro, L.

    2015-12-01

    Yucca Flat at the Nevada National Security Site has been selected as the Source Physics Experiment (SPE) Dry Alluvium Geology Phase II site. The alluvium in this part of Yucca Flat is typical of desert basin fill, with discontinuous beds that are highly variable in clast size and provenance. Detailed understanding of the subsurface geology will be needed for interpretation of the SPE seismic data. A 3D seismic velocity model, created for Yucca Flat using interval seismic velocity data, shows variations in velocity within alluvium near the SPE Phase II site beyond the usual gradual increase of density with depth due to compaction. In this study we examined borehole lithologic logs, geophysical logs, downhole videos, and laboratory analyses of sidewall core samples to understand which characteristics of the alluvium are related to these variations in seismic velocity. Seismic velocity of alluvium is generally related to its density, which can be affected by sediment provenance, clast size, gravel percentage, and matrix properties, in addition to compaction. This study presents a preliminary subdivision of the alluvial strata in the SPE Phase II area into mappable units expected to be significant to seismic modeling. Further refinements of the alluvial units may be possible when seismic data are obtained from SPE Phase II tests. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

  10. A method to deconvolve stellar rotational velocities

    Science.gov (United States)

    Curé, Michel; Rial, Diego F.; Christen, Alejandra; Cassetti, Julia

    2014-05-01

    Aims: Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle v sin i. Methods: We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities extending the work of Chandrasekhar & Münch (1950, ApJ, 111, 142) Results: This method is applied: a) to theoretical synthetic data recovering the original velocity distribution with a very small error; and b) to a sample of about 12.000 field main-sequence stars, corroborating that the velocity distribution function is non-Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. Conclusions: This is a very robust and novel method that deconvolves the rotational velocity cumulative distribution function from a sample of v sin i data in a single step without needing any convergence criteria.

  11. Group X

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  12. Group Flow and Group Genius

    Science.gov (United States)

    Sawyer, Keith

    2015-01-01

    Keith Sawyer views the spontaneous collaboration of group creativity and improvisation actions as "group flow," which organizations can use to function at optimum levels. Sawyer establishes ideal conditions for group flow: group goals, close listening, complete concentration, being in control, blending egos, equal participation, knowing…

  13. Performance of a vector velocity estimator

    DEFF Research Database (Denmark)

    Munk, Peter; Jensen, Jørgen Arendt

    1998-01-01

    It is a well-known limitation of all commercially available scanners that only the velocity component along the propagation direction of the emitted pulse is measured, when evaluating blood velocities with ultrasound. Proposals for solving this limitation using several transducers or speckle...... tracking can be found in the literature, but no method with a satisfactory performance has been found that can be used in a commercial implementation. A method for estimation of the velocity vector is presented. Here an oscillation transverse to the ultrasound beam is generated, so that a transverse motion...... yields a change in the received signals. The method uses two ultrasound beams for sampling the in-phase and quadrature component of the lateral field, and a set of samples (in-phase and quadrature in both time and space) are taken for each pulse-echo line. These four samples are then used...

  14. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  15. Critical Landau velocity in helium nanodroplets.

    Science.gov (United States)

    Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel

    2013-10-11

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  16. Velocity Controller for a Class of Vehicles

    Directory of Open Access Journals (Sweden)

    Herman Przemyslaw

    2017-02-01

    Full Text Available This paper addresses the problem of velocity tracking control for various fully-actuated robotic vehicles. The presented method, which is based on transformation of equations of motion allows one to use, in the control gain matrix, the dynamical couplings existing in the system. Consequently, the dynamics of the vehicle is incorporated into the control process what leads to fast velocity error convergence. The stability of the system under the controller is derived based on Lyapunov argument. Moreover, the robustness of the proposed controller is shown too. The general approach is valid for 6 DOF models as well as other reduced models of vehicles. Simulation results on a 6 DOF indoor airship validate the described velocity tracking methodology.

  17. Velocity and Magnetic Compressions in FEL Drivers

    CERN Document Server

    Serafini, L

    2005-01-01

    We will compare merits and issues of these two techniques suitable for increasing the peak current of high brightness electron beams. The typical range of applicability is low energy for the velocity bunching and middle to high energy for magnetic compression. Velocity bunching is free from CSR effects but requires very high RF stability (time jitters), as well as a dedicated additional focusing and great cure in the beam transport: it is very well understood theoretically and numerical simulations are pretty straightforward. Several experiments of velocity bunching have been performed in the past few years: none of them, nevertheless, used a photoinjector designed and optimized for that purpose. Magnetic compression is a much more consolidated technique: CSR effects and micro-bunch instabilities are its main drawbacks. There is a large operational experience with chicanes used as magnetic compressors and their theoretical understanding is quite deep, though numerical simulations of real devices are still cha...

  18. Seismic Velocity Gradients Across the Transition Zone

    Science.gov (United States)

    Escalante, C.; Cammarano, F.; de Koker, N.; Piazzoni, A.; Wang, Y.; Marone, F.; Dalton, C.; Romanowicz, B.

    2006-12-01

    One-D elastic velocity models derived from mineral physics do a notoriously poor job at predicting the velocity gradients in the upper mantle transition zone, as well as some other features of models derived from seismological data. During the 2006 CIDER summer program, we computed Vs and Vp velocity profiles in the upper mantle based on three different mineral physics approaches: two approaches based on the minimization of Gibbs Free Energy (Stixrude and Lithgow-Bertelloni, 2005; Piazzoni et al., 2006) and one obtained by using experimentally determined phase diagrams (Weidner and Wang, 1998). The profiles were compared by assuming a vertical temperature profile and two end-member compositional models, the pyrolite model of Ringwood (1979) and the piclogite model of Anderson and Bass (1984). The predicted seismic profiles, which are significantly different from each other, primarily due to different choices of properties of single minerals and their extrapolation with temperature, are tested against a global dataset of P and S travel times and spheroidal and toroidal normal mode eigenfrequencies. All the models derived using a potential temperature of 1600K predict seismic velocities that are too slow in the upper mantle, suggesting the need to use a colder geotherm. The velocity gradient in the transition zone is somewhat better for piclogite than for pyrolite, possibly indicating the need to increase Ca content. The presence of stagnant slabs in the transition zone is a possible explanation for the need for 1) colder temperature and 2) increased Ca content. Future improvements in seismic profiles obtained from mineral physics will arise from better knowledge of elastic properties of upper mantle constituents and aggregates at high temperature and pressure, a better understanding of differences between thermodynamic models, and possibly the effect of water through and on Q. High resolution seismic constraints on velocity jumps at 400 and 660 km also need to be

  19. Decorrelation-based blood flow velocity estimation: effect of spread of flow velocity, linear flow velocity gradients, and parabolic flow.

    NARCIS (Netherlands)

    Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de

    2002-01-01

    In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow

  20. Radial velocity observations of VB10

    Directory of Open Access Journals (Sweden)

    Rodler F.

    2011-07-01

    Full Text Available VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band radial velocity of VB 10 performed from high resolution (R~20,000 spectroscopy (NIRSPEC/KECK II. Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  1. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe

    2014-01-01

    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...... in order to analyse the effect of different layouts on the flow characteristics. In particular, flow configurations going all the way through the structure were revealed. A couple of suggestions to minimize the risk for flow through have been tested....

  2. Velocity autocorrelation functions in model liquid metals

    Science.gov (United States)

    Tsang, T.; Maclin, A. P.

    1975-01-01

    Starting from interatomic potentials and static radial distribution functions, a self-consistent iteration scheme has been used to calculate velocity autocorrelation functions in liquid metals. The interatomic forces are treated directly. The calculation bypasses the details of the many-body dynamics and it is not necessary to introduce any additional parameters. Several simplifications may be used without introducing appreciable deviations. The results are in good agreement with computer experiments on liquid sodium at 383 K, suggesting that the velocity autocorrelation function may be a simpler quantity than previously supposed.

  3. Momentum limiting velocity controls for robotic manipulators

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.; Bryan, Tom

    1990-01-01

    Robotic tasks in space require manipulating massive objects capable of attaining large momentum. The momentum can pose hazardous conditions and introduce destabilizing effects on a space platform. Consequently, a technique for limiting the momentum applied to objects under manipulation subject to arbitrary velocity input commands is proposed. The algorithm does not require mass position or inertia information about the object, and it takes actuator limitations into account in forming the momentum limits. To evaluate the probability that a velocity trajectory will fall within the momentum bounds, reliability theory is employed. This enables autonomously generated trajectories to be validated for compliance with momentum limits.

  4. STARE velocities: 2. Evening westward electron flow

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    2004-04-01

    Full Text Available Four evening events and one morning event of joint EISCAT/STARE observations during ~22h are considered and the differences between observed STARE line-of-sight (l-o-s velocities and EISCAT electron drift velocities projected onto the STARE beams are studied. We demonstrate that the double-pulse technique, which is currently in use in the STARE routine data handling, typically underestimates the true phase velocity as inferred from the multi-pulse STARE data. We show that the STARE velocities are persistently smaller (1.5–2 times than the EISCAT velocities, even for the multi-pulse data. The effect seems to be more pronounced in the evening sector when the Finland radar observes at large flow angles. We evaluate the performance of the ion-acoustic approach (IAA, Nielsen and Schlegel, 1985 and the off-orthogonal fluid approach (OOFA, Uspensky et al., 2003 techniques to predict the true electron drift velocity for the base event of 12 February 1999. The IAA technique predicts the convection reasonably well for enhanced flows of >~1000m/s, but not so well for slower ones. By considering the EISCAT N(h profiles, we derive the effective aspect angle and effective altitude of backscatter, and use this information for application of the OOFA technique. We demonstrate that the OOFA predictions for the base event are superior over the IAA predictions and thus, we confirm that OOFA predicts the electron velocities reasonably well in the evening sector, in addition to the morning sector, as concluded by Uspensky et al. (2003. To check how "robust" the OOFA model is and how successful it is for convection estimates without the EISCAT support, we analysed three additional evening events and one additional morning event for which information on N(h profiles was intentionally ignored. By accepting the mean STARE/EISCAT velocity ratio of 0.55 and the mean azimuth rotation of 9° (derived for the basic event, we show that the OOFA performs

  5. Sound velocity bound and neutron stars.

    Science.gov (United States)

    Bedaque, Paulo; Steiner, Andrew W

    2015-01-23

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt[3]. Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.

  6. Global Neuromagnetic Cortical Fields Have Non-Zero Velocity.

    Directory of Open Access Journals (Sweden)

    David M Alexander

    Full Text Available Globally coherent patterns of phase can be obscured by analysis techniques that aggregate brain activity measures across-trials, whether prior to source localization or for estimating inter-areal coherence. We analyzed, at single-trial level, whole head MEG recorded during an observer-triggered apparent motion task. Episodes of globally coherent activity occurred in the delta, theta, alpha and beta bands of the signal in the form of large-scale waves, which propagated with a variety of velocities. Their mean speed at each frequency band was proportional to temporal frequency, giving a range of 0.06 to 4.0 m/s, from delta to beta. The wave peaks moved over the entire measurement array, during both ongoing activity and task-relevant intervals; direction of motion was more predictable during the latter. A large proportion of the cortical signal, measurable at the scalp, exists as large-scale coherent motion. We argue that the distribution of observable phase velocities in MEG is dominated by spatial filtering considerations in combination with group velocity of cortical activity. Traveling waves may index processes involved in global coordination of cortical activity.

  7. Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes.

    Science.gov (United States)

    Zhang, Jiepeng; Hernandez, Gessler; Zhu, Yifu

    2006-09-01

    We report an experimental observation of nonlinear optical gain and loss assisted by electromagnetically induced transparency (EIT) and simultaneous superluminal and subluminal light propagations. Two circular components of a linearly polarized light initiate third-order nonlinear processes in which one circular component is attenuated while the other component is amplified in a three-level EIT system. Near the atomic resonance, the attenuated circular component experiences steep normal dispersion and propagates with a slow group velocity, while the amplified circular component experiences steep anomalous dispersion and propagates with a superluminal group velocity.

  8. The effect of isolated left bundle branch block on the myocardial velocities and myocardial performance index.

    Science.gov (United States)

    Duzenli, Mehmet Akif; Ozdemir, Kurtulus; Soylu, Ahmet; Aygul, Nazif; Yazici, Mehmet; Tokac, Mehmet

    2008-03-01

    This study was planned in order to investigate the effect of left bundle branch block (LBBB) on myocardial velocities obtained by tissue Doppler echocardiography (TDE) and myocardial performance index (MPI). Subjects with LBBB (n = 61) and age-matched healthy subjects (n = 60) were enrolled in the study. Left ventricular (LV) ejection fraction (EF), mitral inflow velocities (E-wave and A-wave), isovolumetric contraction and relaxation time (ICT and IRT), ejection time (ET), and flow propagation velocity (Vp) were measured by conventional echocardiography. Systolic velocity (Sm), early and late diastolic velocities (Em and Am) and time intervals were measured by TDE. MPI was calculated by the formula (ICT + IRT)/ET. LVEF and mitral E/A ratio were similar in both groups. Vp was lower in the LBBB group than in the control group, whereas the E/Em and the E/Vp ratio was higher. LV Sm and Em/Am ratio were lower in LBBB group. Right ventricular Sm and Em/Am ratio were similar in both groups. LV mean and RV MPI were significantly increased in LBBB group. These findings obtained by TDE show that isolated LBBB impairs the ventricular functions. Both of the LV and RV dysfunctions shown by the new parameters may contribute to increased morbidity and mortality in cases with isolated LBBB.

  9. Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity

    Science.gov (United States)

    Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2011-01-01

    Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…

  10. Permutation groups

    CERN Document Server

    Passman, Donald S

    2012-01-01

    This volume by a prominent authority on permutation groups consists of lecture notes that provide a self-contained account of distinct classification theorems. A ready source of frequently quoted but usually inaccessible theorems, it is ideally suited for professional group theorists as well as students with a solid background in modern algebra.The three-part treatment begins with an introductory chapter and advances to an economical development of the tools of basic group theory, including group extensions, transfer theorems, and group representations and characters. The final chapter feature

  11. Can we unmask features of spasticity during gait in children with cerebral palsy by increasing their walking velocity?

    Science.gov (United States)

    Van Campenhout, Anja; Bar-On, Lynn; Aertbeliën, Erwin; Huenaerts, Catherine; Molenaers, Guy; Desloovere, Kaat

    2014-03-01

    Spasticity is a velocity dependent feature present in most patients with cerebral palsy (CP). It is commonly measured in a passive condition. The aim of this study was to highlight markers of spasticity of gastrocnemius and hamstring muscles during gait by comparing the effect of increased walking velocity of CP and typical developing (TD) children. 53 children with spastic CP and 17 TD children were instructed to walk at self-selected speed, faster and as fast as possible without running. Kinematics, kinetics and electromyography (EMG) were collected and muscle length and muscle lengthening velocity (MLV) were calculated. To compare the data of both groups, a linear regression model was created which resulted in two non-dimensional gait velocities. A difference score (DS) was calculated between the high and low velocity values for both groups. 103 gait parameters were analyzed of which 16 had a statistically significant DS between TD and CP groups. The spastic gastrocnemius muscle presented at high velocity with a higher ankle angular velocity, plantar flexion moment, power absorption and increased EMG signal during loading response. The spastic hamstrings demonstrated at high velocity a delayed maximum knee extension moment at mid-stance and increasing hip extension moment and hip power generation. The hamstrings also presented with a lower MLV during swing phase. A limited number of gait parameters differ between CP and TD children when increasing walking velocity, giving indirect insight on the effect of spasticity on gait. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. VELOCITY OF DETONATION OF LOW DENSITY

    Directory of Open Access Journals (Sweden)

    Vinko Škrlec

    2012-12-01

    Full Text Available Blasting operations in built-up areas, at short distances from structures, impose new requirements on blasting techniques and properties of explosives in order to mitigate seismic effect of blasting. Explosives for civil uses are mixtures of different chemical composition of explosive and/or non-explosive substances. Chemical and physical properties, along with means of initiation, environment and the terms of application define detonation and blasting parameters of a particular type of the explosive for civil uses. Velocity of detonation is one of the most important measurable characteristics of detonation parameters which indirectly provide information about the liberated energy, quality of explosives and applicability for certain purposes. The level of shock effect of detonated charge on the rock, and therefore the level of seismic effect in the area, depends on the velocity of detonation. Since the velocity of detonation is proportional to the density of an explosive, the described research is carried out in order to determine the borderline density of the mixture of an emulsion explosive with expanded polystyrene while achieving stable detonation, and to determine the dependency between the velocity of detonation and the density of mixture (the paper is published in Croatian.

  13. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    Orbits have already been published for 18 of the stars. Presented here (and summarized in Table 9) are the results on six more; all are single-lined. One of them (HD 191046, a star which has a literature coverage about ten times as rich as that of any of the others, probably on account of its high space velocity which ...

  14. Wave measurements using GPS velocity signals.

    Science.gov (United States)

    Doong, Dong-Jiing; Lee, Beng-Chun; Kao, Chia Chuen

    2011-01-01

    This study presents the idea of using GPS-output velocity signals to obtain wave measurement data. The application of the transformation from a velocity spectrum to a displacement spectrum in conjunction with the directional wave spectral theory are the core concepts in this study. Laboratory experiments were conducted to verify the accuracy of the inversed displacement of the surface of the sea. A GPS device was installed on a moored accelerometer buoy to verify the GPS-derived wave parameters. It was determined that loss or drifting of the GPS signal, as well as energy spikes occurring in the low frequency band led to erroneous measurements. Through the application of moving average skill and a process of frequency cut-off to the GPS output velocity, correlations between GPS-derived, and accelerometer buoy-measured significant wave heights and periods were both improved to 0.95. The GPS-derived one-dimensional and directional wave spectra were in agreement with the measurements. Despite the direction verification showing a 10° bias, this exercise still provided useful information with sufficient accuracy for a number of specific purposes. The results presented in this study indicate that using GPS output velocity is a reasonable alternative for the measurement of ocean waves.

  15. Molecular beams with a tunable velocity

    NARCIS (Netherlands)

    Heiner, C.E.; Bethlem, H.L.; Meijer, G.

    2006-01-01

    The merging of molecular beam methods with those of accelerator physics has yielded new tools to manipulate the motion of molecules. Over the last few years, decelerators, lenses, bunchers, traps, and storage rings for neutral molecules have been demonstrated. Molecular beams with a tunable velocity

  16. Splash of a waterdrop at terminal velocity.

    Science.gov (United States)

    Mutchler, C K; Hansen, L M

    1970-09-25

    High-speed movies of splash formation caused by waterdrop impact at terminal velocity in thin water layers show that splash size increases with drop size. For increasing water depth, splash size increases to a maximum at a depth of one-third drop diameter; splash size then decreases to a constant size for depths greater than three drop diameters.

  17. Steel Spheres and Skydiver--Terminal Velocity

    Science.gov (United States)

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.

  18. The Microflown, an acoustic particle velocity sensor

    NARCIS (Netherlands)

    de Bree, H.E.

    2003-01-01

    The Microflown is an acoustic sensor directly measuring particle velocity instead of sound pressure, which is usually measured by conventional microphones. Since its invention in 1994 it is mostly used for measurement purposes (broadband1D and 3D-sound intensity measurement and acoustic impedance).

  19. High velocity missile injuries of the liver

    African Journals Online (AJOL)

    exsanguination six hours after surgery. The second patient died of septicaemia on the fifth postoperative clay (Table 111). TABLE Ill Outcome of treatment of patients with high velocity missile injuries of the liver. Discussion. The diagnosis of penetrating abdominal injury is usually straightforward. Injury to the liver m:ly be.

  20. (ajst) on the pressure velocity and temperature

    African Journals Online (AJOL)

    ABSTRACT: In this paper, we examine the effects of viscosity on the blood pressure, velocity and temperature distributions in the arterial blood flow in the absence of outflows. The governing continuity, momentum and energy equations are solved analytically by method of characteristics. Using the wavefront expansions, ...

  1. Snapshot wavefield decomposition for heterogeneous velocity media

    NARCIS (Netherlands)

    Holicki, M.E.; Wapenaar, C.P.A.

    2017-01-01

    We propose a novel directional decomposition operator for wavefield snapshots in heterogeneous-velocity media. The proposed operator demonstrates the link between the amplitude of pressure and particlevelocity plane waves in the wavenumber domain. The proposed operator requires two spatial Fourier

  2. Adaptive blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of data-adaptive spectral estimation techniques for blood velocity estimation in medical ultrasound. Current commercial systems are based on the averaged periodogram, which requires a large observation window to give sufficient spectral resolution. Herein, we propose...

  3. Spectral Velocity Estimation in the Transverse Direction

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    estimation scheme can reliably find the spectrum at 90, where a traditional estimator yields zero velocity. Measurements have been conducted with the SARUS experimental scanner and a BK 8820e convex array transducer (BK Medical, Herlev, Denmark). A CompuFlow 1000 (Shelley Automation, Inc, Toronto, Canada...

  4. Velocity Estimation in Medical Ultrasound [Life Sciences

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Villagómez Hoyos, Carlos Armando; Holbek, Simon

    2017-01-01

    This article describes the application of signal processing in medical ultrasound velocity estimation. Special emphasis is on the relation among acquisition methods, signal processing, and estimators employed. The description spans from current clinical systems for one-and two-dimensional (1-D...

  5. Wave Velocity Estimation in Heterogeneous Media

    KAUST Repository

    Asiri, Sharefa M.

    2016-03-21

    In this paper, modulating functions-based method is proposed for estimating space-time dependent unknown velocity in the wave equation. The proposed method simplifies the identification problem into a system of linear algebraic equations. Numerical simulations on noise-free and noisy cases are provided in order to show the effectiveness of the proposed method.

  6. The Effect of Ulnar Collateral Ligament Reconstruction on Pitch Velocity in Major League Baseball Pitchers.

    Science.gov (United States)

    Lansdown, Drew A; Feeley, Brian T

    2014-02-01

    The medial ulnar collateral ligament (UCL) is the primary restraint to valgus load, and injury is commonly encountered as a result of overuse in throwing athletes. Reconstruction of this ligament has allowed for a high rate of return to sport for elite pitchers. Public perception of this procedure has resulted in a commonly held belief of increased throwing velocity following UCL reconstruction. Fastball velocity for Major League Baseball (MLB) pitchers is significantly decreased following UCL reconstruction. Case series; Level of evidence, 4. A total of 129 pitchers were identified as undergoing UCL reconstruction from publicly available reports, and a final group of 80 MLB pitchers were included for analysis. Statistics were collected, including pitch velocity, pitch selection, and performance outcomes. Pre- and postoperative statistics were compared using paired t tests to allow for evaluation of each pitcher relative to his baseline velocity and performance. Mean fastball velocity was significantly decreased following UCL reconstruction, with a presurgical mean velocity of 91.3 mph and postoperative velocity of 90.6 mph (P = .003). The greatest observed difference was in pitchers older than 35 years, with fastball velocity decreasing from 91.7 to 88.8 mph (P = .0048). Pitchers threw fewer fastballs after reconstruction. Pitch velocity for curveballs, changeups, and sliders did not change significantly after UCL reconstruction. Additionally, pitchers threw fewer innings and pitches following reconstruction and produced fewer wins above replacement relative to their preinjury state. Contrary to popular opinion, fastball velocity for MLB pitchers is significantly decreased following UCL reconstruction, which should reinforce the importance of preventing overuse injuries.

  7. Group devaluation and group identification

    NARCIS (Netherlands)

    Leach, C.W.; Rodriguez Mosquera, P.M.; Vliek, M.L.W.; Hirt, E.

    2010-01-01

    In three studies, we showed that increased in-group identification after (perceived or actual) group devaluation is an assertion of a (preexisting) positive social identity that counters the negative social identity implied in societal devaluation. Two studies with real-world groups used order

  8. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football.

    Science.gov (United States)

    Malone, Shane; Roe, Mark; Doran, Dominic A; Gabbett, Tim J; Collins, Kieran

    2017-03-01

    To examine the relationship between chronic training loads, number of exposures to maximal velocity, the distance covered at maximal velocity, percentage of maximal velocity in training and match-play and subsequent injury risk in elite Gaelic footballers. Prospective cohort design. Thirty-seven elite Gaelic footballers from one elite squad were involved in a one-season study. Training and game loads (session-RPE multiplied by duration in min) were recorded in conjunction with external match and training loads (using global positioning system technology) to measure the distance covered at maximal velocity, relative maximal velocity and the number of player exposures to maximal velocity across weekly periods during the season. Lower limb injuries were also recorded. Training load and GPS data were modelled against injury data using logistic regression. Odds ratios (OR) were calculated based on chronic training load status, relative maximal velocity and number of exposures to maximal velocity with these reported against the lowest reference group for these variables. Players who produced over 95% maximal velocity on at least one occasion within training environments had lower risk of injury compared to the reference group of 85% maximal velocity on at least one occasion (OR: 0.12, p=0.001). Higher chronic training loads (≥4750AU) allowed players to tolerate increased distances (between 90 to 120m) and exposures to maximal velocity (between 10 to 15 exposures), with these exposures having a protective effect compared to lower exposures (OR: 0.22 p=0.026) and distance (OR=0.23, p=0.055). Players who had higher chronic training loads (≥4750AU) tolerated increased distances and exposures to maximal velocity when compared to players exposed to low chronic training loads (≤4750AU). Under- and over-exposure of players to maximal velocity events (represented by a U-shaped curve) increased the risk of injury. Copyright © 2016 Sports Medicine Australia. Published by

  9. Comparison of atherosclerotic indicators between cardio ankle vascular index and brachial ankle pulse wave velocity.

    Science.gov (United States)

    Horinaka, Shigeo; Yabe, Akihisa; Yagi, Hiroshi; Ishimura, Kimihiko; Hara, Hitoshi; Iemua, Tomoyuki; Matsuoka, Hiroaki

    2009-01-01

    Aortic pulse wave velocity has been used for evaluating atherosclerosis. Recently, the development of the volume plethysmographic method has made it possible to easily measure the index of the pulse wave velocity. The brachial ankle pulse wave velocity and cardio ankle vascular index are used for estimating the extent of atherosclerosis. The diagnostic usefulness of these indexes in predicting coronary artery disease was examined. The brachial ankle pulse wave velocity, the cardio ankle vascular index, and the high-sensitivity C-reactive protein were measured in 696 patients who had chest pain and underwent coronary angiography. Measurement values of brachial ankle pulse wave velocity were compared with those of cardio ankle vascular index in terms of the baseline covariates and the number of major coronary vessels involved (vessel disease). The brachial ankle pulse wave velocity was significantly correlated with age, systolic blood pressure, and diastolic blood pressure but not with the high-sensitivity C-reactive protein. The cardio ankle vascular index was correlated only with age and the high-sensitivity C-reactive protein. The average of both brachial ankle pulse wave velocity and cardio ankle vascular index values was greater in 3 vessel disease group than in 0 vessel disease group. The receiver operating characteristic curve showed that the diagnostic accuracy of coronary artery disease was significantly higher in the cardio ankle vascular index than in the brachial ankle pulse wave velocity (area under the curve +/- standard error: 0.691 +/- 0.025 vs. 0.584 +/- 0.026; P cardio ankle vascular index are useful and that cardio ankle vascular index may have some advantages in its application to patients taking blood pressure-lowering medication because of the minimum effect of blood pressure on its measurement values. The cardio ankle vascular index has increased performance over brachial ankle pulse wave velocity in predicting the coronary artery disease.

  10. Absolute Plate Velocities from Seismic Anisotropy

    Science.gov (United States)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  11. Velocity measurement by vibro-acoustic Doppler.

    Science.gov (United States)

    Nabavizadeh, Alireza; Urban, Matthew W; Kinnick, Randall R; Fatemi, Mostafa

    2012-04-01

    We describe the theoretical principles of a new Doppler method, which uses the acoustic response of a moving object to a highly localized dynamic radiation force of the ultrasound field to calculate the velocity of the moving object according to Doppler frequency shift. This method, named vibro-acoustic Doppler (VAD), employs two ultrasound beams separated by a slight frequency difference, Δf, transmitting in an X-focal configuration. Both ultrasound beams experience a frequency shift because of the moving objects and their interaction at the joint focal zone produces an acoustic frequency shift occurring around the low-frequency (Δf) acoustic emission signal. The acoustic emission field resulting from the vibration of the moving object is detected and used to calculate its velocity. We report the formula that describes the relation between Doppler frequency shift of the emitted acoustic field and the velocity of the moving object. To verify the theory, we used a string phantom. We also tested our method by measuring fluid velocity in a tube. The results show that the error calculated for both string and fluid velocities is less than 9.1%. Our theory shows that in the worst case, the error is 0.54% for a 25° angle variation for the VAD method compared with an error of -82.6% for a 25° angle variation for a conventional continuous wave Doppler method. An advantage of this method is that, unlike conventional Doppler, it is not sensitive to angles between the ultrasound beams and direction of motion.

  12. Artificial neural network (ANN velocity better identifies benign prostatic hyperplasia but not prostate cancer compared with PSA velocity

    Directory of Open Access Journals (Sweden)

    Lein Michael

    2008-09-01

    Full Text Available Abstract Background To validate an artificial neural network (ANN based on the combination of PSA velocity (PSAV with a %free PSA-based ANN to enhance the discrimination between prostate cancer (PCa and benign prostate hyperplasia (BPH. Methods The study comprised 199 patients with PCa (n = 49 or BPH (n = 150 with at least three PSA estimations and a minimum of three months intervals between the measurements. Patients were classified into three categories according to PSAV and ANN velocity (ANNV calculated with the %free based ANN "ProstataClass". Group 1 includes the increasing PSA and ANN values, Group 2 the stable values, and Group 3 the decreasing values. Results 71% of PCa patients typically have an increasing PSAV. In comparison, the ANNV only shows this in 45% of all PCa patients. However, BPH patients benefit from ANNV since the stable values are significantly more (83% vs. 65% and increasing values are less frequently (11% vs. 21% if the ANNV is used instead of the PSAV. Conclusion PSAV has only limited usefulness for the detection of PCa with only 71% increasing PSA values, while 29% of all PCa do not have the typical PSAV. The ANNV cannot improve the PCa detection rate but may save 11–17% of unnecessary prostate biopsies in known BPH patients.

  13. Group morphology

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    In its original form, mathematical morphology is a theory of binary image transformations which are invariant under the group of Euclidean translations. This paper surveys and extends constructions of morphological operators which are invariant under a more general group TT, such as the motion

  14. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Science.gov (United States)

    Melton, Jason; Delobel, Ashley; Puentedura, Emilio J.

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  15. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    Directory of Open Access Journals (Sweden)

    Michael Williams

    2013-01-01

    Full Text Available Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4 with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch, and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill.

  16. Reenvisioning velocity reversal as a diversity of hydraulic patch behaviours

    OpenAIRE

    Strom, MA; Pasternack, GB; Wyrick, JR

    2016-01-01

    Copyright © 2016 John Wiley & Sons, Ltd. Past research investigated the surpassing of mean velocity at riffle cross sections by that at pool cross sections for flows up to bankfull, termed ‘velocity reversals’, to understand one mechanism by which riffle–pool relief is maintained. This study reenvisioned the classic velocity reversal by documenting stage-dependent changes to the locations of peak velocity without cross sections. Instead, the dynamics of peak velocity patches were considered...

  17. Perturbational and nonperturbational inversion of Rayleigh-wave velocities

    Science.gov (United States)

    Haney, Matt; Tsai, Victor C.

    2017-01-01

    The inversion of Rayleigh-wave dispersion curves is a classic geophysical inverse problem. We have developed a set of MATLAB codes that performs forward modeling and inversion of Rayleigh-wave phase or group velocity measurements. We describe two different methods of inversion: a perturbational method based on finite elements and a nonperturbational method based on the recently developed Dix-type relation for Rayleigh waves. In practice, the nonperturbational method can be used to provide a good starting model that can be iteratively improved with the perturbational method. Although the perturbational method is well-known, we solve the forward problem using an eigenvalue/eigenvector solver instead of the conventional approach of root finding. Features of the codes include the ability to handle any mix of phase or group velocity measurements, combinations of modes of any order, the presence of a surface water layer, computation of partial derivatives due to changes in material properties and layer boundaries, and the implementation of an automatic grid of layers that is optimally suited for the depth sensitivity of Rayleigh waves.

  18. Height velocity and skeletal maturation in elite female rhythmic gymnasts.

    Science.gov (United States)

    Georgopoulos, N A; Markou, K B; Theodoropoulou, A; Vagenakis, G A; Benardot, D; Leglise, M; Dimopoulos, J C; Vagenakis, A G

    2001-11-01

    Rhythmic gymnasts performing under conditions of high intensity are exposed to particularly high levels of psychological stress and intense physical training, factors that can contribute to the observed delay in skeletal maturation and pubertal development, and alter optimal growth. The study was conducted in the field, during the International, European, and World Rhythmic Sports Gymnastics Championships of the years 1997-2000, and included 104 elite female rhythmic gymnasts, aged 12-23 yr. The study included height and weight measurements, estimation of body fat and skeletal maturation, and registration of parental height. Height, weight, target height, and predicted adult height were expressed as the SD score of the mean height and weight for age, according to Tanner's standards. Gymnasts were taller and thinner than average for age, with height velocity SD score for each age group above the 50th percentile for all age groups (n = 140, mean = 1.9 +/- 2.5). Interestingly, although height velocity in normal girls comes to an end by the age of 15, in our examined rhythmic gymnasts it continues up to the age of 18. There was a delay of skeletal maturation of 1.8 yr (n = 72, r = 0.730, P rhythmic gymnasts compensate for their loss of pubertal growth spurt by a late acceleration of linear growth. Despite the delay in skeletal maturation, genetic predisposition of growth is not only preserved, but even exceeded.

  19. Uterine artery blood flow velocity waveforms during uterine contractions.

    Science.gov (United States)

    Li, H; Gudmundsson, S; Olofsson, P

    2003-12-01

    No quantitative or qualitative Doppler velocimetry classification of vascular flow resistance covering all stages of forward and reversed flows exists. The objective of this study was to characterize uterine artery (UtA) flow velocity waveforms (FVWs) obtained during an oxytocin challenge test (OCT) and compare them to FVWs in spontaneous normal labor. Uterine artery Doppler velocimetry was performed during and between uterine contractions in 61 high-risk pregnancies subjected to an OCT and in 20 normal pregnancies undergoing spontaneous labor. FVWs were classified relative to the presence of forward/absent/reversed flow during systole and diastole, and the time-averaged flow velocity over the heart cycle. Eleven different FVW classes were identified. No relationship between FVWs recorded during uterine inertia and contractions was found (P >/= 0.2). In both groups, only forward FVWs were recorded between contractions, whereas during contractions flow reversal was more common in the OCT group (P uterine contractions were not predicted by flow patterns recorded during uterine inertia. Reversal of flow direction was more common during oxytocin-induced uterine contractions than during spontaneous contractions. In cases of predominantly reversed flow, domains of the uterus may be supplied by blood from the contralateral UtA. These observations give new insights into the circulatory dynamics of the uterus during labor, and also point to a possible vasoconstrictory effect in the UtAs of oxytocin at high concentrations. Copyright 2003 ISUOG. Published by John Wiley & Sons, Ltd.

  20. Measurement of velocity and velocity derivatives based on pattern tracking in 3D LIF images

    Energy Technology Data Exchange (ETDEWEB)

    Deusch, S.; Merava, H.; Rys, P. [Swiss Federal Inst. of Technol., Zurich (Switzerland). Dept. of Chem. Eng.; Dracos, T. [Swiss Federal Institute of Technology, Untergasse 14, 8126 Zumikon (Switzerland)

    2000-10-01

    Pattern tracking in consecutive 3D LIF images based on least squares matching (LSM) of grey levels has been developed recently for velocity and velocity gradient measurements. The shortcomings of this method are clearly shown. The present article presents an improvement on this method by introducing a local multi-patch (LMP) technique through the LSM approach. The method is validated using the flow field of a turbulent channel flow obtained by direct numerical simulation (DNS) and a synthetic image with grey-level patterns. The results show that LMP matching allows the determination of the velocity and the velocity gradient fields with high accuracy including the second derivatives. Measurements of a round non-buoyant jet are presented which demonstrate the good performance of the method when applied under laboratory conditions. This method can also be applied on two-dimensional images provided that the flow is strictly two-dimensional. (orig.)

  1. Measurement of velocity and velocity derivatives based on pattern tracking in 3D LIF images

    Science.gov (United States)

    Deusch, S.; Merava, H.; Dracos, T.; Rys, P.

    Pattern tracking in consecutive 3D LIF images based on least squares matching (LSM) of grey levels has been developed recently for velocity and velocity gradient measurements. The shortcomings of this method are clearly shown. The present article presents an improvement on this method by introducing a local multi-patch (LMP) technique through the LSM approach. The method is validated using the flow field of a turbulent channel flow obtained by direct numerical simulation (DNS) and a synthetic image with grey-level patterns. The results show that LMP matching allows the determination of the velocity and the velocity gradient fields with high accuracy including the second derivatives. Measurements of a round non-buoyant jet are presented which demonstrate the good performance of the method when applied under laboratory conditions. This method can also be applied on two-dimensional images provided that the flow is strictly two-dimensional.

  2. Surface Velocities and Hydrology at Engabreen

    DEFF Research Database (Denmark)

    Messerli, Alexandra

    Recent studies have likened the seasonal observations of ice flow at the marginal regions of the Greenland Ice Sheet (GrIS) to those found on smaller alpine and valley counterparts. These similarities highlight the need for further small scale studies of seasonal evolution in the hydrological...... and dynamic structure of valley glaciers, to aid interpretation of observations from the margins of the GrIS. This thesis aims to collate a large suit of glacio-hydrological data from the outlet glacier Engabreen, Norway, in order to better understand the role the subglacial drainage configuration has...... on surface velocities recorded at the site. The Svartisen Subglacial Laboratory (SSL) under Engabreen, augmented by additional subglacial pressure and hydrological measurements, provides a invaluable observations for detailed process-oriented studies. However, the lack of complementary surface velocity data...

  3. Butterfly velocity bound and reverse isoperimetric inequality

    Science.gov (United States)

    Feng, Xing-Hui; Lü, H.

    2017-03-01

    We study the butterfly effect of the AdS planar black holes in the framework of Einstein's general relativity. We find that the butterfly velocities can be expressed by a universal formula vB2=T S /(2 VthP ). In doing so, we come upon a near-horizon geometrical formula for the thermodynamical volume Vth . We verify the volume formula by examining a variety of AdS black holes. We also show that the volume formula implies that the conjectured reverse isoperimetric inequality follows straightforwardly from the null-energy condition, for static AdS black holes. The inequality is thus related to an upper bound of the butterfly velocities.

  4. Plasma electron hole oscillatory velocity instability

    Science.gov (United States)

    Zhou, Chuteng; Hutchinson, Ian H.

    2017-10-01

    In this paper, we report a new type of instability of electron holes (EHs) interacting with passing ions. The nonlinear interaction of EHs and ions is investigated using a new theory of hole kinematics. It is shown that the oscillation in the velocity of the EH parallel to the magnetic field direction becomes unstable when the hole velocity in the ion frame is slower than a few times the cold ion sound speed. This instability leads to the emission of ion-acoustic waves from the solitary hole and decay in its magnitude. The instability mechanism can drive significant perturbations in the ion density. The instability threshold, oscillation frequency and instability growth rate derived from the theory yield quantitative agreement with the observations from a novel high-fidelity hole-tracking particle-in-cell code.

  5. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction to ultraso......Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction...... to ultrasound, flow physics, and the circulatory system. Next, the interaction of ultrasound with blood is discussed. The special contribution of the book lies in the remaining chapters, which offer a lucid, thorough description of continuous and pulsed wave systems, the latest systems for doing color flow...

  6. Velocity and strain-rate analyses of the SCEC 3.0 velocity field

    Science.gov (United States)

    Wdowinski, S.; Bock, Y.

    2003-04-01

    The pre-released SCEC 3.0 velocity field consists of 845 velocity vectors, covering the entire Southern California region. It is about 3 times larger than the SCEC 2.0 field, which was released in 1998 and contains 343 velocity vectors. We analyze the new SCEC 3.0 velocity field following and improving the quasi-two-dimensional analyses developed by Wdowinski et al. [2001] for the 2.0 velocity field. The new analyses include the following steps: (1) Pole of Deformation (PoD) calculation; the PoD is a point on the Earth’s surface, in which small circles about this point are best, aligned with the velocity vectors of the deforming zone. (2) Transforming the velocity field into the PoD reference frame. (3) Characterization of the velocity field by segments of similar velocity transition between the Pacific and North American plates and orthogonal profiles along the plate boundary region. (4) Calculating velocity and velocity gradient for all segments and profiles using zero-phase digital filters and numerical derivation, respectively. (5) Calculation of regional strain-rate maps, and (6) back-transformation of the strain-rate maps into the regular north-pole reference frame. The results of our analyses show that shear deformation with high strain-rate is detected along a dozen narrow belts, which coincide with active geologic fault segments and high level of seismicity along the San Andreas Fault System. In the highly populated Los Angeles area, our analyses detected high strain-rate localization along the Newport-Inglewood fault and across the Ventura Basin. In the regional scale, our analyses show that the interseismic deformation of the wide diffused deforming NA-PA plate boundary region is localized along a finite number of narrow belts. Because no prior assumptions were made regarding the geology, tectonics, or seismicity of the region, our analysis demonstrates that geodetic observations alone can be used to detect active fault segments.

  7. Group Grammar

    Science.gov (United States)

    Adams, Karen

    2015-01-01

    In this article Karen Adams demonstrates how to incorporate group grammar techniques into a classroom activity. In the activity, students practice using the target grammar to do something they naturally enjoy: learning about each other.

  8. Algebraic Groups

    DEFF Research Database (Denmark)

    2007-01-01

    -theorists, and to stimulate contacts between participants. Each of the first four days was dedicated to one area of research that has recently seen decisive progress: \\begin{itemize} \\item structure and classification of wonderful varieties, \\item finite reductive groups and character sheaves, \\item quantum cohomology......The workshop continued a series of Oberwolfach meetings on algebraic groups, started in 1971 by Tonny Springer and Jacques Tits who both attended the present conference. This time, the organizers were Michel Brion, Jens Carsten Jantzen, and Raphaël Rouquier. During the last years, the subject...... of algebraic groups (in a broad sense) has seen important developments in several directions, also related to representation theory and algebraic geometry. The workshop aimed at presenting some of these developments in order to make them accessible to a "general audience" of algebraic group...

  9. Group theory

    CERN Document Server

    Scott, W R

    2010-01-01

    Here is a clear, well-organized coverage of the most standard theorems, including isomorphism theorems, transformations and subgroups, direct sums, abelian groups, and more. This undergraduate-level text features more than 500 exercises.

  10. Variable velocity in solar external receivers

    Science.gov (United States)

    Rodríguez-Sánchez, M. R.; Sánchez-González, A.; Acosta-Iborra, A.; Santana, D.

    2017-06-01

    One of the major problems in solar external receivers is tube overheating, which accelerates the risk of receiver failure. It can be solved implementing receivers with high number of panels. However, it exponentially increases the pressure drop in the receiver and the parasitic power consumption of the Solar Power Tower (SPT), reducing the global efficiency of the SPT. A new concept of solar external receiver, named variable velocity receiver, is able to adapt their configuration to the different flux density distributions. A set of valves allows splitting in several independent panels those panels in which the wall temperature is over the limit. It increases the velocity of the heat transfer fluid (HTF) and its cooling capacity. This receiver does not only reduce the wall temperature of the tubes, but also simplifies the control of the heliostat field and allows to employ more efficient aiming strategies. In this study, it has been shown that variable velocity receiver presents high advantages with respect to traditional receiver. Nevertheless, more than two divisions per panels are not recommendable, due to the increment of the pressure drop over 70 bars. In the design point (12 h of the Spring Equinox), the use of a variable number of panels between 18 and 36 (two divisions per panel), in a SPT similar to Gemasolar, improves the power capacity of the SPT in 5.7%, with a pressure drop increment of 10 bars. Off-design, when the flux distribution is high and not symmetric (e.g. 10-11 h), the power generated by the variable velocity receiver is 18% higher than the generated by the traditional receiver, at these hours the pressure drop increases almost 20 bars.

  11. Density - Velocity Relationships in Explosive Volcanic Plumes

    Science.gov (United States)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2015-12-01

    Positively buoyant volcanic plumes rise until the bulk density of the plume is equal to the density of the ambient atmosphere. As ambient air mixes with the plume, it lowers the plume bulk density; thus, the plume is diluted enough to reach neutral density in a naturally stratified atmospheric environment. We produced scaled plumes in analogue laboratory experiments by injecting a saline solution with a tracer dye into distilled water, using a high-pressure injection system. We recorded each eruption with a CASIO HD digital camera and used ImageJ's FeatureJ Edge toolbox to identify individual eddies. We used an optical flow software based off the ImageJ toolbox FlowJ to determine the velocities along the edge of each eddy. Eddy densities were calculated by mapping the dye concentration to the RGB digital color value. We overlaid the eddy velocities over the densities in order to track the behavioral relationship between the two variables with regard to plume motion. As an eddy's bulk density decreases, the vertical velocity decreases; this is a result of decreased mass, and therefore momentum, in the eddy. Furthermore as the density rate of change increases, the eddy deceleration increases. Eddies are most dense at their top and least dense at their bottom. The less dense sections of the eddies have lower vertical velocities than the sections of the eddies with the higher densities, relating to the expanding radial size of an eddy as it rises and the preferential ingestion of ambient air at the base of eddies. Thus the mixing rate in volcanic plumes fluctuates not only as a function of height as described by the classic 1D entrainment hypothesis, but also as a function of position in an eddy itself.

  12. Coronary flow velocity reserve by echocardiography

    DEFF Research Database (Denmark)

    Olsen, Rasmus Huan; Pedersen, Lene Rørholm; Snoer, Martin

    2016-01-01

    BACKGROUND: Coronary flow velocity reserve (CFVR) measured by transthoracic Doppler echocardiography of the LAD is used to assess microvascular function but validation studies in clinical settings are lacking. We aimed to assess feasibility, reproducibility and agreement with myocardial flow...... with a good reproducibility on par with other contemporary measures applied in cardiology. Agreement with MFR was acceptable, though discrepancy related to prior MI has to be considered. CFVR of LAD is a valid tool in overweight and obese patients....

  13. Anomalous Resistance in Critical Ionization Velocity Phenomena

    OpenAIRE

    Badin, V. I.

    2001-01-01

    To describe the generation of the electric field by a discontinuity of the Hall current, an equation of the third order is obtained using the electric charge conservation and Ohm laws. The solutions of this equation are used to model the electric impulses detected in experiments aimed to verify Alfven's hypothesis on the critical ionization velocity at collisions of neutral gas with magnetized plasma. A quantitative agreement with experiment is attained and the main features of measured signa...

  14. Universality of the turbulent velocity profile

    OpenAIRE

    Luchini, Paolo

    2016-01-01

    For nearly a century the universal logarithmic behaviour of the mean velocity profile in a parallel flow was a mainstay of turbulent fluid mechanics and its teaching. Yet many experiments and numerical simulations are not fit exceedingly well by it, and the question whether the logarithmic law is indeed universal keeps turning up in discussion and in writing. Large experiments have been set up in different parts of the world to confirm or deny the logarithmic law and accurately estimate von K...

  15. The Average Velocity in a Queue

    Science.gov (United States)

    Frette, Vidar

    2009-01-01

    A number of cars drive along a narrow road that does not allow overtaking. Each driver has a certain maximum speed at which he or she will drive if alone on the road. As a result of slower cars ahead, many cars are forced to drive at speeds lower than their maximum ones. The average velocity in the queue offers a non-trivial example of a mean…

  16. Velocity Gradient Power Functional for Brownian Dynamics.

    Science.gov (United States)

    de Las Heras, Daniel; Schmidt, Matthias

    2018-01-12

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  17. Group Work.

    Science.gov (United States)

    Wilson, Kristy J; Brickman, Peggy; Brame, Cynthia J

    2018-01-01

    Science, technology, engineering, and mathematics faculty are increasingly incorporating both formal and informal group work in their courses. Implementing group work can be improved by an understanding of the extensive body of educational research studies on this topic. This essay describes an online, evidence-based teaching guide published by CBE-Life Sciences Education ( LSE ). The guide provides a tour of research studies and resources related to group work (including many articles from LSE ). Instructors who are new to group work, as well as instructors who have experienced difficulties in implementing group work, may value the condensed summaries of key research findings. These summaries are organized by teaching challenges, and actionable advice is provided in a checklist for instructors. Education researchers may value the inclusion of empirical studies, key reviews, and meta-analyses of group-work studies. In addition to describing key features of the guide, this essay also identifies areas in which further empirical studies are warranted. © 2018 K. J. Wilson et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Abelian groups

    CERN Document Server

    Fuchs, László

    2015-01-01

    Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of undecidability problems. The treatment of the latter trend includes Shelah’s seminal work on the undecidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups, and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, th...

  19. Analytical Ultracentrifugation: Sedimentation Velocity and Sedimentation Equilibrium

    Science.gov (United States)

    Cole, James L.; Lary, Jeffrey W.; Moody, Thomas; Laue, Thomas M.

    2009-01-01

    Analytical ultracentrifugation (AUC) is a versatile and powerful method for the quantitative analysis of macromolecules in solution. AUC has broad applications for the study of biomacromolecules in a wide range of solvents and over a wide range of solute concentrations. Three optical systems are available for the analytical ultracentrifuge (absorbance, interference and fluorescence) that permit precise and selective observation of sedimentation in real time. In particular, the fluorescence system provides a new way to extend the scope of AUC to probe the behavior of biological molecules in complex mixtures and at high solute concentrations. In sedimentation velocity, the movement of solutes in high centrifugal fields is interpreted using hydrodynamic theory to define the size, shape and interactions of macromolecules. Sedimentation equilibrium is a thermodynamic method where equilibrium concentration gradients at lower centrifugal fields are analyzed to define molecule mass, assembly stoichiometry, association constants and solution nonideality. Using specialized sample cells and modern analysis software, researchers can use sedimentation velocity to determine the homogeneity of a sample and define whether it undergoes concentration-dependent association reactions. Subsequently, more thorough model-dependent analysis of velocity and equilibrium experiments can provide a detailed picture of the nature of the species present in solution and their interactions. PMID:17964931

  20. Simultaneous Velocity and Vorticity Measurement in Turbulence

    Science.gov (United States)

    Wu, Huixuan; Xu, Haitao; Bodenschatz, Eberhard

    2013-11-01

    A new paradigm of simultaneous velocity and vorticity measurement is developed to study turbulence. Instead of deducing vorticity from velocities measured at neighboring points, this innovative approach detects the translations and rotations of micro-sized particles directly. These hydrogel particles are spherical, transparent, and encapsulate micro-mirrors. This method outstands conventional ones, e.g., hotwire arrays or PIV because its spatial resolution is much higher. It does not require a non-zero mean flow, and it can provide all three vorticity components, which is not available from planar PIV data. Its principle is to illuminate the mirror and utilize the variation of the reflection directions to deduce the local flow vorticity. Meanwhile, the particle position is recorded as in normal particle tracking. Therefore, the velocity and vorticity of a particle can be obtained simultaneously in Lagrangian framework. The authors have made benchmark experiments to evaluate this novel method in Taylor Couette flows. The results show that the instantaneous vorticity measurement is as accurate as 3%. We are now setting up a von Karman disk pair device to study the turbulent flow. This novel technique will provide unprecedented information of high Reynolds number turbulence. The first author thanks the Alexander von Humboldt Foundation.

  1. Solvable Optimal Velocity Models and Asymptotic Trajectory

    CERN Document Server

    Nakanishi, K; Igarashi, Y; Bando, M

    1996-01-01

    In the Optimal Velocity Model proposed as a new version of Car Following Model, it has been found that a congested flow is generated spontaneously from a homogeneous flow for a certain range of the traffic density. A well-established congested flow obtained in a numerical simulation shows a remarkable repetitive property such that the velocity of a vehicle evolves exactly in the same way as that of its preceding one except a time delay $T$. This leads to a global pattern formation in time development of vehicles' motion, and gives rise to a closed trajectory on $\\Delta x$-$v$ (headway-velocity) plane connecting congested and free flow points. To obtain the closed trajectory analytically, we propose a new approach to the pattern formation, which makes it possible to reduce the coupled car following equations to a single difference-differential equation (Rondo equation). To demonstrate our approach, we employ a class of linear models which are exactly solvable. We also introduce the concept of ``asymptotic traj...

  2. RADIAL VELOCITY ECLIPSE MAPPING OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix, E-mail: nikolay@astro.ex.ac.uk [Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-07-20

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter–McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin–orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.

  3. Transport velocity of droplets on ratchet conveyors.

    Science.gov (United States)

    Holmes, Hal R; Böhringer, Karl F

    2017-09-14

    Anisotropic ratchet conveyors (ARC) are a type of digital microfluidic system. Unlike electrowetting based systems, ARCs transport droplets through a passive, micro-patterned surface and applied orthogonal vibrations. The mechanics of droplet transport on ARC devices has yet to be as well characterized and understood as on electrowetting systems. In this work, we investigate how the design of the ARC substrate affects the droplet response to vibrations and perform the first characterization of transport velocity on ARC devices. We discovered that the design of the ARC device has a significant effect on both the transport efficiency and velocity of actuated droplets, and that the amplitude of the applied vibration can modulate the velocity of transported droplets. Finally, we show that the movement of droplet edges is not continuous but rather the sum of quantized steps between features of the ARC device. These results provide new insights into the behavior of droplets vibrated on asymmetric surface patterns and will serve as the foundation for the design and development of future lab-on-a-chip systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  5. A neural circuit for angular velocity computation.

    Science.gov (United States)

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  6. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  7. Influence of Aggregate Gradation on the Longitudinal Wave Velocity Changes in Unloaded Concrete

    Science.gov (United States)

    Teodorczyk, Michał

    2017-10-01

    Diagnosis is an important factor in the assessment of structural and operational condition of a concrete structure. Among diagnostic methods, non-destructive testing methods play a special role. Acoustic emission evaluation based on the identification and location of destructive processes is one of such methods. The 3D location of AE events and moment tensor of fracture analysis are calculated by longitudinal wave velocity. Therefore, determining the velocity of longitudinal wave of concrete and the impact of the material and destructive factors are of essential importance. This paper reports the investigation of the effect of aggregate gradation on the change in wave velocity of unloaded concrete. The investigation was carried out on six 150 x 150 x 600 mm elements. Three elements contained aggregate fraction 8/16 mm and the other three were made with aggregate fraction 2/16 mm. Two acoustic emission sensors were used on the surface of the elements, and the wave was generated by the Hsu – Nielsen source. Longitudinal wave velocities for each group of elements were calculated and statistical test of significance was used for the comparison of two means. The results of the test indicated a substantial effect of the aggregate grain size on the change in longitudinal wave velocity. The average wave velocity in the concrete containing 8/16 mm fraction was 4672 m/s. In the concrete with 2/16 mm fraction, the velocity decreased to 4373 m/s. The velocity of the wave decreases at larger quantities of aggregate. The propagating longitudinal wave encounters more aggregate grains on its way and is reflected, also from air voids, multiple times and so its velocity is noticeably lower in the concrete with the 2/16 fraction. Thus, to be able to accurately locate AE events and analyse moment tensor during concrete structure testing, the aggregate grain size used in the concrete should be taken into account.

  8. Postural and trunk responses to unexpected perturbations depend on the velocity and direction of platform motion.

    Science.gov (United States)

    Zemková, E; Kováčiková, Z; Jeleň, M; Neumannová, K; Janura, M

    2016-11-23

    This study compares postural and trunk responses to translating platform perturbations of varied velocities and directions. A group of 18 young and physically active subjects were exposed to a set of postural perturbations at varied velocities (5, 10, 15, and 20 cm/s) and directions of platform movement (forward, backward, left-lateral, and right-lateral). The center of pressure (CoP) displacement measurement, in addition to the trunk motion (representing the center of mass (CoM) displacement), were both monitored. Results identified that the CoP displacement increased from slow to faster velocities of platform motion more widely in both anterior and posterior directions (50.4 % and 48.4 %) as compared to the CoM displacement (17.8 % and 14.9 %). However a greater increase in the peak CoM velocity (70.3 % and 69.6 %) and the peak CoM acceleration (60.5 % and 53.1 %) was observed. The values in the anterior and posterior direction only differed significantly at the highest velocity of platform motion (i.e. 20 cm/s). A similar tendency was observed in the medio-lateral direction, but there were no significant differences in any parameter in the left-lateral and right-lateral direction. The velocity of the platform motion highly correlated with peak velocity (r=0.92-0.97, Pdisplacement (r=0.56-0.63, Pdisplacement. The effect of the direction of perturbations on the trunk response emerges only at a high velocity of platform motion, such that the peak CoM velocity and peak CoM acceleration are significantly greater in anterior than posterior direction.

  9. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh

    2014-08-01

    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  10. A Low-velocity Finger from Iceland beneath Southern Scandinavia - the Key to Understanding Neogene Uplift?

    Science.gov (United States)

    Weidle, C.; Maupin, V.

    2007-12-01

    A model of upper mantle S-wave velocity beneath northwestern Europe is presented, based on a tomography of regional surface wave observations. Data from international and, more importantly, regional data archives (including temporary deployments) were used to measure group velocities for both Love and Rayleigh surface waves. The procedure for data selection, group velocity measurements and inversion for group velocity 2-D maps follows closely the one described by Levshin et al. (GJI, 170, 441-459, 2007). Our new set of group velocity maps differs significantly from global reference maps, enhancing many details and amplitudes of group velocity variations in the study region. We then apply a linear inversion scheme to invert for 1-D shear wave velocity profiles which are assembled to a 3-D model. By choosing conservative regularization parameters in the 2-D inversion we ensure the smoothness of the group velocity maps and the resulting 3-D shear wave speed model. To account for the different tectonic regimes in the study region, we compare inversions with 3 different reference models (pure 1-D, 3-D crust / 1-D mantle and pure 3-D) to investigate the sensitivity of the 1-D inversions to inaccuracies in crustal models. We find that all three models are consistent at depths below 90 km and the resulting models deviate only slightly from each other, mostly in amplitudes. We image an intriguing low-velocity anomaly extending from the Iceland plume domain across the north Atlantic beneath southern Scandinavia between 70-150 km depth. Beneath southern Norway, the negative perturbations reach a maximum of up to 13 % w.r.t. ak135 and a shallowing of the anomaly is indicated. This observation could explain the sustained uplift of southern Scandinavia in Neogene times, but the mechanisms are yet undetermined. Furthermore, our upper mantle model reveals good alignment to ancient plate boundaries and first-order crustal fronts around the triple junction of the Baltica

  11. Group dynamics.

    Science.gov (United States)

    Scandiffio, A L

    1990-12-01

    Group dynamics play a significant role within any organization, culture, or unit. The important thing to remember with any of these structures is that they are made up of people--people with different ideas, motivations, background, and sometimes different agendas. Most groups, formal or informal, look for a leader in an effort to maintain cohesiveness of the unit. At times, that cultural bond must be developed; once developed, it must be nurtured. There are also times that one of the group no longer finds the culture comfortable and begins to act out behaviorally. It is these times that become trying for the leader as she or he attempts to remain objective when that which was once in the building phase of group cohesiveness starts to fall apart. At all times, the manager must continue to view the employee creating the disturbance as an integral part of the group. It is at this time that it is beneficial to perceive the employee exhibiting problem behaviors as a special employee, as one who needs the benefit of your experience and skills, as one who is still part of the group. It is also during this time that the manager should focus upon her or his own views in the area of power, communication, and the corporate culture of the unit that one has established before attempting to understand another's point of view. Once we understand our own motivation and accept ourselves, it is then that we may move on to offer assistance to another. Once we understand our insecurities recognizing staff dysfunction as a symptom of system dysfunction will not be so threatening to the concept of the manager that we perceive ourselves to be. It takes a secure person to admit that she or he favors staff before deciding to do something to change things. The important thing to know is that it can be done. The favored staff can find a new way of relating to others, the special employee can find new modes of behavior (and even find self-esteem in the process), the group can find new ways

  12. Isometry groups among topological groups

    OpenAIRE

    Niemiec, Piotr

    2012-01-01

    It is shown that a topological group G is topologically isomorphic to the isometry group of a (complete) metric space iff G coincides with its G-delta-closure in the Rajkov completion of G (resp. if G is Rajkov-complete). It is also shown that for every Polish (resp. compact Polish; locally compact Polish) group G there is a complete (resp. proper) metric d on X inducing the topology of X such that G is isomorphic to Iso(X,d) where X = l_2 (resp. X = Q; X = Q\\{point} where Q is the Hilbert cu...

  13. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  14. The Use of Velocity Information in Movement Reproduction

    Directory of Open Access Journals (Sweden)

    Sergio Chieffi

    2017-06-01

    Full Text Available Background: Previous studies suggested that movement velocity influence space perception.Aim and Objectives: We examined whether healthy participants used velocity information when they were asked to reproduce a previously performed movement. Two experiments were carried out.Methods: In Experiment 1, blindfolded participants actively performed an arm movement (criterion movement, CM at a natural velocity, or quickly, or slowly. After a brief delay, participants were asked to reproduce (reproduction movement, RM CM-amplitude. No velocity constraints were imposed in making RM. In Experiment 2, CM was performed quickly or slowly. After a brief delay, the participants were asked to reproduce not only CM-amplitude but also CM-velocity.Results: Experiment 1: in Natural condition, RM-velocity did not differ from CM-velocity and the participants accurately reproduced CM-amplitude. Conversely, in Fast and Slow condition, RM-velocities differed from CM-velocities and in Slow condition RM-amplitude was greater than CM-amplitude. Experiment 2: both RM-amplitude and -velocity did not differ from CM-amplitude and -velocity.Conclusion: The present study confirms the view that movement velocity influences selectively space perception and suggests that this influence is stronger for slow than fast movements. Furthermore, although velocity information is crucial in accurately reproducing CM-amplitude, it was not used spontaneously when movements were performed at unnatural velocities.

  15. The effects of squat exercises in postures for toilet use on blood flow velocity of the leg vein.

    Science.gov (United States)

    Eom, Jun Ho; Chung, Sin Ho; Shim, Jae Hun

    2014-09-01

    [Purpose] The purpose of this study was to identify the effects of squat exercises performed in toilet-using postures on the blood flow velocity of the lower extremities for the prevention of deep vein thrombosis. [Subjects] The subjects were 28 students who were attending B University in Cheonan. They were divided into a group of 14 subjects of sitting toilet users and a group of 14 subjects of squat toilet users. [Methods] The subjects performed squat exercises in different toilet-using postures and we investigated the changes in blood flow velocity. [Results] The variations in blood flow velocities before and after the exercises showed significant differences in both groups but the differences between the two groups were not significant. [Conclusion] Based on the results of this study, we consider squat exercises are effective at improving the variation in lower-extremity blood flow velocity when using a toilet.

  16. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Cenko, S. B.; Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, J. M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Jha, S. W.; McCully, C. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Anderson, J. P.; De Jaeger, T.; Forster, F. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Benetti, S. [INAF Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Bufano, F., E-mail: mjc@mso.anu.edu.au [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); and others

    2013-06-10

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II {lambda}6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II {lambda}6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of {approx}12,000 km s{sup -1} until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v Almost-Equal-To 12,000 km s{sup -1} with narrow line width and long velocity plateau, as well as an HVF beginning at v Almost-Equal-To 31,000 km s{sup -1} two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  17. Influence of Group Size and Group Composition on the Adhered Distance Headway

    NARCIS (Netherlands)

    Duives, D.C.; Daamen, W.; Hoogendoorn, S.P.

    2014-01-01

    Research into the influence of groups on pedestrian flow dynamics has been limited. Previous research found that group size influences the walking velocity of pedestrians within the group and as such the capacity the pedestrian infrastructure. This paper's aim is to provide quantitative insights

  18. Tectaria group

    NARCIS (Netherlands)

    Holttum, R.E.

    1991-01-01

    Polypodiaceae subfam. Dryopteridoideae section A, auct.: C. Chr. in Verdoorn, Man. Pteridol. (1938) 543, p.p. Aspidiaceae tribe Aspidieae auct.: Ching, Sunyatsenia 5 (1940) 250, excl. Lomariopsis and related genera. — Aspidiaceae, group of Ctenitis Copel., Gen. Fil. (1947) 153. Aspidiaceae auct.:

  19. Effects of normovolaemic haemodilution on middle cerebral artery blood flow velocity and oxygen delivery.

    Science.gov (United States)

    Karadibak, K; Gökmen, N; Erbayraktar, S; Göktay, Y; Taplu, A; Arkan, A; Erkan, N

    2002-05-01

    Assessment of the effects of normovolaemic haemodilution on middle cerebral artery blood flow velocity with transcranial Doppler ultrasonography, intracranial pressure, cerebral perfusion pressure, arterial oxygen content and cerebral oxygen delivery. Normovolaemic haemodilution was induced in rabbits under general anaesthesia, and the haematocrit was allowed to decrease to 30% in Group 1 (n = 6) and to 20% in Group 2 (n = 6). Peak systolic and diastolic velocities, mean blood flow velocity, and pulsatility and resistance indices of the middle cerebral artery were measured by transcranial Doppler ultrasonography. Changes in intracranial pressure, cerebral perfusion pressure, arterial oxygen content and cerebral oxygen delivery were also assessed. In Group 2, middle cerebral artery blood flow velocity increased from 0.4 +/- 0.01 to 0.51 +/- 0.02 m s(-1) after the induction of normovolaemic haemodilution (P = 0.04), while arterial oxygen content decreased from 16.2 +/- 0.1 to 8.5 +/- 0.1 mLdL(-1) (P = 0.002). The decrease in cerebral oxygen delivery from 6.5 +/- 0.2 to 4.3 +/- 0.2 was also significant (P = 0.02). However, no associated changes in intracranial pressure and cerebral perfusion pressure could be demonstrated. Normovolaemic haemodilution resulted in an increase in the mean blood flow velocity of the middle cerebral artery. However, this increase did not compensate for the consequences of the altered oxygen delivery to the brain when the haematocrit was reduced to 20%.

  20. [Relation between shoulder impingement syndrome and club head velocity in high-performance amateur golfers].

    Science.gov (United States)

    Ostreicher, M; Schwarz, M

    2013-05-01

    Joint structure damages due to overstrain often occur even in commonly not injury-prone golfing. Triggered by the golf swing's repetitive movement pattern and technique deficits of the player these structural damages are most likely to affect the lumbar spine as well as shoulder and elbow joint. As a synonym for shoulder impingement symptoms in golfers the term golf shoulder has been established in medical terminology. Despite this fact, currently there exist no studies addressing the relation between shoulder impingement syndrome and club head velocity. The aim of this study was to highlight the relation between club head velocity deficits of high-performance amateur golfers and persisting shoulder impingement syndrome. All of the 31 high-performance amateur golfers included in this study were male, active tournament players and right hander. Each golfer was examined for shoulder impingement syndrome using the Neer test, the Hawkins-Kennedy test, the painful arc and the functional test of the M. infraspinatus. Based on the test results the participants were allocated to an impingement group or a non-impingement group. Additionally, each golfer's club head velocity was determined. Between the two groups a significant difference concerning the club head velocity has been reported. A persisting shoulder impingement syndrome can have a negative effect on club head velocity. In many shoulder studies predominantly the influence of pathological muscular balance alterations (myofascial dysfunction) is not taken into consideration. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Diagnosing ocean vertical velocities off New Caledonia from a SPRAY glider

    Science.gov (United States)

    Fuda, Jean-Luc; Marin, Frédéric; Durand, Fabien; Terre, Thierry

    2013-04-01

    A SPRAY glider has been operated in the Coral Sea (South-Western tropical Pacific ocean) since 2011, with the primary goal of monitoring the boundary currents and jets. In this presentation, we will describe how oceanic vertical velocities can be estimated from SPRAY glider measurements, with application to the observation of internal waves off New Caledonia in May-June 2012. Pressure measurements by the glider allow estimating the vertical velocities of the glider (relative to ocean bottom) at each time. These vertical velocities are the sum of the vertical velocities of the glider relative to the water body (governed by the laws of motion of the glider) and of the oceanic vertical velocities (due to ocean internal dynamics). If we solve the laws of motion of the glider (via an adequate flight model), we can thus retrieve oceanic vertical velocities. On account of their small magnitude, the retrieval of ocean vertical velocities would be tricky - if not impossible - through other conventional instruments such as ADCPs. Following a couple of similar previous studies on the SLOCUM and SEAGLIDER gliders, we describe a simplified flight model for the SPRAY glider. This model has three parameters that only depend on the characteristics of the glider: the compressibility and thermal expansion coefficients (that are constant) and the drag coefficient (that is allowed to change dive after dive, because of potential fouling of the hull). We estimate these parameters under the assumption that the absolute vertical water velocity average to zero over a long enough spatio-temporal window (typically: a profile or a group of profiles). Unlike previous studies, our flight model takes into account the vehicle roll to assess its impact on the flight model and oceanic vertical velocity retrieval. We apply this approach to a 40-day/250 dives/800km mission performed in May-June 2012 along 167°E south of New Caledonia. Dramatic water vertical velocities variations (up to 3-4 cm

  2. Uncertainty assessment of 3D instantaneous velocity model from stack velocities

    Science.gov (United States)

    Emanuele Maesano, Francesco; D'Ambrogi, Chiara

    2015-04-01

    3D modelling is a powerful tool that is experiencing increasing applications in data analysis and dissemination. At the same time the need of quantitative uncertainty evaluation is strongly requested in many aspects of the geological sciences and by the stakeholders. In many cases the starting point for 3D model building is the interpretation of seismic profiles that provide indirect information about the geology of the subsurface in the domain of time. The most problematic step in the 3D modelling construction is the conversion of the horizons and faults interpreted in time domain to the depth domain. In this step the dominant variable that could lead to significantly different results is the velocity. The knowledge of the subsurface velocities is related mainly to punctual data (sonic logs) that are often sparsely distributed in the areas covered by the seismic interpretation. The extrapolation of velocity information to wide extended horizons is thus a critical step to obtain a 3D model in depth that can be used for predictive purpose. In the EU-funded GeoMol Project, the availability of a dense network of seismic lines (confidentially provided by ENI S.p.A.) in the Central Po Plain, is paired with the presence of 136 well logs, but few of them have sonic logs and in some portion of the area the wells are very widely spaced. The depth conversion of the 3D model in time domain has been performed testing different strategies for the use and the interpolation of velocity data. The final model has been obtained using a 4 layer cake 3D instantaneous velocity model that considers both the initial velocity (v0) in every reference horizon and the gradient of velocity variation with depth (k). Using this method it is possible to consider the geological constraint given by the geometries of the horizons and the geo-statistical approach to the interpolation of velocities and gradient. Here we present an experiment based on the use of set of pseudo-wells obtained from the

  3. Spatio-velocity CSF as a function of retinal velocity using unstabilized stimuli

    Science.gov (United States)

    Laird, Justin; Rosen, Mitchell; Pelz, Jeff; Montag, Ethan; Daly, Scott

    2006-02-01

    LCD televisions have LC response times and hold-type data cycles that contribute to the appearance of blur when objects are in motion on the screen. New algorithms based on studies of the human visual system's sensitivity to motion are being developed to compensate for these artifacts. This paper describes a series of experiments that incorporate eyetracking in the psychophysical determination of spatio-velocity contrast sensitivity in order to build on the 2D spatiovelocity contrast sensitivity function (CSF) model first described by Kelly and later refined by Daly. We explore whether the velocity of the eye has an additional effect on sensitivity and whether the model can be used to predict sensitivity to more complex stimuli. There were a total of five experiments performed in this research. The first four experiments utilized Gabor patterns with three different spatial and temporal frequencies and were used to investigate and/or populate the 2D spatio-velocity CSF. The fifth experiment utilized a disembodied edge and was used to validate the model. All experiments used a two interval forced choice (2IFC) method of constant stimuli guided by a QUEST routine to determine thresholds. The results showed that sensitivity to motion was determined by the retinal velocity produced by the Gabor patterns regardless of the type of motion of the eye. Based on the results of these experiments the parameters for the spatio-velocity CSF model were optimized to our experimental conditions.

  4. Advanced Ice Velocity Mapping Using Landsat 8

    Science.gov (United States)

    Klinger, M. J.; Scambos, T. A.; Fahnestock, M. A.; Haran, T. M.

    2014-12-01

    Improved image-to-image cross correlation software is applied to pairs of sequential Landsat 8 satellite imagery to accurately measure ice surface velocity over ice sheets and glaciers (±0.1 pixel displacement, 15 meter pixels). The high radiometric fidelity of Landsat 8's panchromatic band (12-bit), and exceptional geolocation accuracy (typically ±5 m) supports the generation of ice velocity fields over very short time intervals (e.g., 16-, 32-, or 48-day repeat images of the same scene location). The high radiometry supports velocity mapping in areas with very subtle topographic detail, including un-crevassed sastrugi regions on ice dome flanks or the ice sheet interior. New Python-based software presently under development (named PyCorr), takes two sequential Landsat 8 OLI scenes (or suitably processed ETM+ or TM scenes) and matches small sub-scenes ('chips') between the images based on similarity in their gray-scale value patterns, using an image correlation algorithm. Peak fitting in the region of maximum correlation for a chip pair yields sub-pixel fits to the feature offset vector. Vector editing after the image correlation runs seeks to eliminate spurious and cloud-impacted vectors, and correct residual geo-location error. This processing is based on plausible values of ice strain rates and known areas of near-zero ice flow (rock outcrops, ice dome areas, etc.). In preliminary processing, we have examined ~800 Landsat 8 image pairs having <20% cloud cover spanning the near-coastal Antarctic ice sheet during the 2013-14 summer season.

  5. Velocity shear generation of solar wind turbulence

    Science.gov (United States)

    Roberts, D. A.; Goldstein, Melvyn L.; Matthaeus, William H.; Ghosh, Sanjoy

    1992-01-01

    A two-dimensional incompressible MHD spectral code is used to show that shear-driven turbulence is a possible means for producing many observed properties of the evolution of the magnetic and velocity fluctuations in the solar wind and, in particular, the evolution of the cross helicity ('Alfvenicity') at small scales. It is shown that large-scale shear can nonlinearly produce a cascade to smaller scale fluctuations even when the linear Kelvin-Helmholtz mode is stable, and that a roughly power law inertial range is established by this process. The evolution found is similar to that seen in some other simulations of MHD turbulence.

  6. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  7. Selection effects in Doppler velocity planet searches

    Science.gov (United States)

    O'Toole, Simon; Tinney, Chris; Jones, Hugh

    2008-05-01

    The majority of extra-solar planets have been discovered by measuring the Doppler velocities of the host star. Like all exoplanet detection methods, the Doppler method is rife with observational biases. Before any robust comparison of mass, orbital period and eccentricity distributions can be made with theory, a detailed understanding of these selection effects is required, something which up to now is lacking. We present here a progress report on our analysis of the selection effects present in Anglo-Australian Planet Search data, including the methodology used and some preliminary results.

  8. Helicopter rotor induced velocities theory and experiment

    Science.gov (United States)

    Berry, John D.; Hoad, Danny R.; Elliott, Joe W.; Althoff, Susan L.

    1987-01-01

    An investigation has been performed to assess methods used for rotor inflow modeling. A key element of this assessment has been the recent acquisition of high quality experimental measurements of inflow velocities taken in the proximity of a lifting rotor in forward flight. Widely used rotor performance predictive methods are based on blade element strip theory coupled with an inflow model. The inflow prediction models assessed in this paper include the uniform inflow based on momentum, a skewed disk model, and two methods based on a vortex wake structure.

  9. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    The CMS Communications Group, established at the start of 2010, has been busy in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure There are now 55 CMS Centres worldwide that are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin, is the centre of the CMS offline and computing operations, hosting dedicated analysis efforts such as during the CMS Heavy Ion lead-lead running. With a majority of CMS sub-detectors now operating in a “shifterless” mode, many monitoring operations are now routinely performed from there, rather than in the main Control Room at P5. The CMS Communications Group, CERN IT and the EVO team are providing excellent videoconferencing support for the rapidly-increasing number of CMS meetings. In parallel, CERN IT and ...

  10. Group learning

    DEFF Research Database (Denmark)

    Pimentel, Ricardo; Noguira, Eloy Eros da Silva; Elkjær, Bente

    The article presents a study that aims at the apprehension of the group learning in a top management team composed by teachers in a Brazilian Waldorf school whose management is collective. After deciding to extend the school, they had problems recruiting teachers who were already trained based...... on the Steiner´s ideas, which created practical problems for conducting management activities. The research seeks to understand how that group of teachers collectively manage the school, facing the lack of resources, a significant heterogeneity in the relationships, and the conflicts and contradictions...... with which they coexist. To achieve this, the research adopted phenomenology as a method and ethnography as strategy, using participant observation, in-depth interviews, and interviews-to-the-double. The results show that the collective management practice is a crossroad of other practices...

  11. Decision making in high-velocity environments: implications for healthcare.

    Science.gov (United States)

    Stepanovich, P L; Uhrig, J D

    1999-01-01

    Healthcare can be considered a high-velocity environment and, as such, can benefit from research conducted in other industries regarding strategic decision making. Strategic planning is not only relevant to firms in high-velocity environments, but is also important for high performance and survival. Specifically, decision-making speed seems to be instrumental in differentiating between high and low performers; fast decision makers outperform slow decision makers. This article outlines the differences between fast and slow decision makers, identifies five paralyses that can slow decision making in healthcare, and outlines the role of a planning department in circumventing these paralyses. Executives can use the proposed planning structure to improve both the speed and quality of strategic decisions. The structure uses planning facilitators to avoid the following five paralyses: 1. Analysis. Decision makers can no longer afford the luxury of lengthy, detailed analysis but must develop real-time systems that provide appropriate, timely information. 2. Alternatives. Many alternatives (beyond the traditional two or three) need to be considered and the alternatives must be evaluated simultaneously. 3. Group Think. Decision makers must avoid limited mind-sets and autocratic leadership styles by seeking out independent, knowledgeable counselors. 4. Process. Decision makers need to resolve conflicts through "consensus with qualification," as opposed to waiting for everyone to come on board. 5. Separation. Successful implementation requires a structured process that cuts across disciplines and levels.

  12. Human torque velocity adaptations to sprint, endurance, or combined modes of training

    Science.gov (United States)

    Shealy, M. J.; Callister, R.; Dudley, G. A.; Fleck, S. J.

    1992-01-01

    We had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.

  13. Kinematics of Local, High-Velocity K dwarfs in the SUPERBLINK Proper Motion Catalog

    Science.gov (United States)

    Kim, Bokyoung; Lepine, Sebastien

    2018-01-01

    We present a study of the kinematics of 345,480 K stars within 2 kpc of the Sun, based on data from the SUPERBLINK catalog of stars with high proper motions (> 40 mas/yr), combined with data from the 2MASS survey and from the first GAIA release, which together yields proper motions accurate to ~2 mas/yr. All K dwarfs were selected based on their G-K colors, and photometric distances were estimated from a re-calibrated color-magnitude relationship for K dwarfs. We plot transverse velocities VT in various directions on the sky, to examine the local distribution of K dwarfs in velocity space. We have also obtained radial velocity information for a subsample of 10,128 stars, from RAVE and SDSS DR12, which we use to construct spatial velocity (U, V, W) plots. About a third (123,350) of the stars are high-velocity K dwarfs, with motions consistent with the local Galactic halo population. Our kinematic analysis suggests that their velocity-space distribution is very uniform, and we find no evidence of substructure that might arise, e.g., from local streams or moving groups.

  14. A new estimator for vector velocity estimation [medical ultrasonics

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    A new estimator for determining the two-dimensional velocity vector using a pulsed ultrasound field is derived. The estimator uses a transversely modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation....... The new estimator automatically compensates for the axial velocity when determining the transverse velocity. The estimation is optimized by using a lag different from one in the estimation process, and noise artifacts are reduced by averaging RF samples. Further, compensation for the axial velocity can...... be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce the influence of a spatial velocity spread. Examples for different velocity vectors and field conditions are shown using both simple and more complex field simulations. A relative accuracy of 10.1% is obtained...

  15. The Radial Velocity Experiment (RAVE): Fourth Data Release

    NARCIS (Netherlands)

    Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; Williams, M. E. K.; Piffl, T.; Enke, H.; Roeser, S.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Carrillo, I.; Anguiano, B.; Burton, D.; Campbell, R.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Parker, Q. A.; Reid, W.; Ritter, A.; Russell, K. S.; Stupar, M.; Watson, F. G.; Bienaymé, O.; Bland-Hawthorn, J.; Gerhard, O.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Conrad, C.; Famaey, B.; Faure, C.; Just, A.; Kos, J.; Matijevič, G.; McMillan, P. J.; Minchev, I.; Scholz, R.; Sharma, S.; Siviero, A.; de Boer, E. Wylie; Žerjal, M.

    2013-01-01

    We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar

  16. The radial velocity experiment (RAVE) : Fourth data release

    NARCIS (Netherlands)

    Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; Williams, M. E. K.; Piffl, T.; Enke, H.; Roeser, S.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Carrillo, I.; Anguiano, B.; Burton, D.; Campbell, R.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Parker, Q. A.; Reid, W.; Ritter, A.; Russell, K. S.; Stupar, M.; Watson, F. G.; Bienayme, O.; Bland-Hawthorn, J.; Gerhard, O.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Conrad, C.; Famaey, B.; Faure, C.; Just, A.; Kos, J.; Matijevic, G.; McMillan, P. J.; Minchev, I.; Scholz, R.; Sharma, S.; Siviero, A.; de Boer, E. Wylie; Zerjal, M.

    2013-01-01

    We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar

  17. Solenoidal filtering of volumetric velocity measurements using Gaussian process regression

    NARCIS (Netherlands)

    Azijli, I.; Dwight, R.P.

    2015-01-01

    Volumetric velocity measurements of incompressible flows contain spurious divergence due to measurement noise, despite mass conservation dictating that the velocity field must be divergence-free (solenoidal). We investigate the use of Gaussian process regression to filter spurious divergence,

  18. Velocity Dependence of Friction of Confined Hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence of the f......We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence...... of the frictional shear stress for both cases. In our simulations, the polymer films are very thin (∼3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  19. Velocity statistics in superfluid and classical turbulence

    Science.gov (United States)

    Sreenivasan, K. R.; Donzis, D. A.; Fisher, M. E.; Lathrop, D. P.; Paoletti, M. S.; Young, P. K.

    2009-11-01

    Past work, summarized in part by Vinen & Niemela (J. Low Temp. Phys. 129, 213 (2002)) and by Walmsley et al. Phys. Rev. Lett. 99, 265302 (2007)), suggests that similarities exist between superfluid and classical turbulence. Conversely, the more recent work of Paoletti et al. (Phys. Rev. Lett. 101, 154501 (2008)) has highlighted differences: in particular, the probability density function (PDF) of the turbulent superfluid velocity, measured by tracking the trajectories of small hydrogen particles, is strongly non-Gaussian with power-law tails, in contrast to classical homogeneous and isotropic turbulence for which the PDF is nearly Gaussian. Here, we explore this dichotomy. Since the observed power-law exponent of -3 in the superfluid case can be traced to the reconnection of quantized vortices, it is natural to explore the role of vortex reconnection in the classical case. We surmise that the latter, if it is significant at all, must involve vortices of high intensity. Using direct numerical solutions of homogeneous and isotropic turbulence on a grid of linear size 4096, we condition the velocity statistics on the magnitude of vorticity and find that the resulting conditional PDFs, if normalized on their own standard deviation, remain Gaussian for all vorticity magnitudes.

  20. Ejection of stars with relativistic velocities

    Science.gov (United States)

    Dryomova, G.; Dryomov, V.; Tutukov, A.

    We present the results of numerical simulations performed in terms of modified Hills' scenario involving two supermassive black holes (SMBHs). In contrast to the classic Hills scenario (Hills 1988), here one component of the ordinary stellar binary system is replaced with a SMBH that provides a kinetic resource for ejecting a star (the secondary component of the binary) with relativistic velocity (RVS). We examine the conditions that favor relativistic ejections of stars, depending on the pericentric approach, the mass ratio of two SMBHs, and the orbital configuration of the binary system. Applying the simple criteria helped us to sort out the results of numerical simulations by the outcome: conservation of the orbital configuration of the binary system, dynamic recapture of the star by the central SMBH, emission of hypervelocity stars (HVSs), and RVS ejection. In the framework of N-body simulations we estimate the probability for a star to survive in the cross-field of two SMBHs during the ejection with relativistic velocity, and discuss the probability of the detection of RVSs in our Galaxy in the cases where such stars are generated in distant interacting galaxies undergoing a merger of their central parts occupied by SMBHs.

  1. A magnetospheric critical velocity experiment - Particle results

    Science.gov (United States)

    Torbert, R. B.; Newell, P. T.

    1986-01-01

    In March of 1983, a barium injection sounding rocket experiment (The Star of Lima) was conducted to investigate Alfven's critical ionization velocity (CIV) hypothesis in space. Included in the instrumented payload was a particle detection experiment consisting of five retarding potential analyzers. Despite conditions that appeared to be optimal for the critical velocity effect, the particle data, in agreement with optical observations, indicates that a fractional ionization of only approximately .0005 was observed, indicating that the conditions required for the effect to occur are still not well understood. However many of the required phenomena associated with the CIV effect were observed; in particular a superthermal electron population was formed at the expense of ion drift kinetic energy in the presence of intense electrostatic waves near the lower hybrid frequency. The amount of ionization produced is plausibly consistent with the observed electron flux, but could also be accounted for by residual solar UV at the injection point. It is shown based on the data set that one obvious explanation for the low ionization efficiency, namely that the ionizing superthermal electrons may rapidly escape along field lines, can be ruled out.

  2. Disentangling rotational velocity distribution of stars

    Science.gov (United States)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra

    2017-11-01

    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  3. Discussion on accuracy degree evaluation of accident velocity reconstruction model

    Science.gov (United States)

    Zou, Tiefang; Dai, Yingbiao; Cai, Ming; Liu, Jike

    In order to investigate the applicability of accident velocity reconstruction model in different cases, a method used to evaluate accuracy degree of accident velocity reconstruction model is given. Based on pre-crash velocity in theory and calculation, an accuracy degree evaluation formula is obtained. With a numerical simulation case, Accuracy degrees and applicability of two accident velocity reconstruction models are analyzed; results show that this method is feasible in practice.

  4. Quantification of aortic regurgitation by magnetic resonance velocity mapping

    DEFF Research Database (Denmark)

    Søndergaard, Lise; Lindvig, K; Hildebrandt, P

    1993-01-01

    The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients, and the regurgit......The use of magnetic resonance (MR) velocity mapping in the quantification of aortic valvular blood flow was examined in 10 patients with angiographically verified aortic regurgitation. MR velocity mapping succeeded in identifying and quantifying the regurgitation in all patients...

  5. A simple method to determine the settling velocity distribution from settling velocity tubes

    Science.gov (United States)

    Malarkey, J.; Jago, C. F.; Hübner, R.; Jones, S. E.

    2013-03-01

    Settling velocity tubes (SVTs), as originally proposed by Owen (1976), remain important instruments to determine in-situ sediment settling velocity distributions, particularly in estuaries. Because there is still a need for SVTs in the field, this note provides the theoretical basis for the analysis of the samples taken from SVTs; together with a MATLAB script to execute this analysis and detailed documentation on its use. The script, which is based on Jones and Jago's (1996) original procedure, includes two additional constraints on the slopes of the curve fitted to the percentage of sediment in suspension with time, which help to control the fit.

  6. [Relationship between breast milk composition and weight growth velocity of infants fed with exclusive breast milk].

    Science.gov (United States)

    Huang, Li-Li; Xiong, Fei; Yang, Fan

    2016-10-01

    To study the effect of breast milk composition on weight growth velocity of infants fed with exclusive breast milk. One hundred and thirty-eight full-term singleton infants who received regular follow-up visits and fed with exclusive breast milk and their mothers were recruited. Body height, weight and head circumference of these infants were measured at regular visits. Z scores were used to evaluate growth velocity. The subjects were classified into a failure to thrive group (ΔZ scores≤-0.67), a poor growth group (-0.67mature breast milk were collected for composition analysis. The differences in the levels of the protein, fats, energy, carbohydrates and minerals in breast milk were compared among the three groups. ΔZ scores for weight in the failure to thrive and poor growth groups were lower than in the normal control group (Pmilk among the failure to thrive, poor growth and normal control groups. However, the levels of carbohydrates and minerals in both the failure to thrive and poor growth groups were lower than in the normal control group (Pcomposition of breast milk to a certain degree in a short period. In order to maintain a good weight growth velocity of infants, mothers should have a balanced diet to improve the quality of breast milk.

  7. Constraining the Single-degenerate Channel of Type Ia Supernovae with Stable Iron-group Elements in SNR 3C 397

    Science.gov (United States)

    Dave, Pranav; Kashyap, Rahul; Fisher, Robert; Timmes, Frank; Townsley, Dean; Byrohl, Chris

    2017-05-01

    Recent Suzaku X-ray spectra of supernova remnant (SNR) 3C 397 indicate enhanced stable iron group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar-mass, single-degenerate paradigm for Type Ia supernovae (SNe Ia). Varying the progenitor white dwarf (WD) internal structure, composition, ignition, and explosion mechanism, we find that the best match to the observed iron peak elements of 3C 397 are dense (central density ≥6 × 109 g cm-3), low-carbon WDs that undergo a weak, centrally ignited deflagration, followed by a subsequent detonation. The amount of 56Ni produced is consistent with a normal or bright normal SNe Ia. A pure deflagration of a centrally ignited, low central density (≃2 × 109 g cm-3) progenitor WD, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray line width data. Additionally, in contrast to prior work that suggested a large supersolar metallicity for the WD progenitor for SNR 3C 397, we find satisfactory agreement for solar- and subsolar-metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.

  8. The Limit Deposit Velocity model : A new approach

    NARCIS (Netherlands)

    Miedema, S.A.; Ramsdell, R.C.

    2015-01-01

    In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred

  9. Influence of grain size and grain boundary recombination velocity on ...

    African Journals Online (AJOL)

    The plot of the diffusion capacitance allowed us to study the influence of the following parameters: grain size, grain boundary recombination velocity, junction recombination velocity and illumination wavelength on this capacitance. This study pointed out that junction and grain boundary recombination velocities play an ...

  10. Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis

    DEFF Research Database (Denmark)

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans

    2008-01-01

    Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. La...

  11. Dense velocity reconstruction from tomographic PTV with material derivatives

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.

    2016-01-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The

  12. Influence of Hardness on Perforation Velocity in Steel Armour Plates

    OpenAIRE

    S. N. Dikshit

    2000-01-01

    In an earlier investigation3, the influence ofh'ardness on tempered steel armour plates of 20 mm thickness, impacted by. 20 mm diameter steel ogive-shaped projectile at normal , was studied. Additional data is investigated with relation to the perforation velocity of the plates. It is observed that the plate perforation velocity and the plate plugging velocity decrease with increasing plate hardness.

  13. Examples of in-vivo blood vector velocity estimation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Nielsen, Michael Bachmann; Nielsen, Kristian R.

    2007-01-01

    In this paper examples of in-vivo blood vector velocity images of the carotid artery are presented. The transverse oscillation (TO) method for blood vector velocity estimation has been used to estimate the vector velocities and the method is first evaluated in a circulating flowrig where...

  14. WESTERBORK OBSERVATIONS OF HIGH-VELOCITY CLOUDS - THE DATA

    NARCIS (Netherlands)

    WAKKER, BP

    1991-01-01

    The results of Westerbork * observations of small-scale structure in high-velocity clouds (HVCs) at 1' angular and 1 km s-1 velocity resolution are presented in the form of a table of observational parameters, maps of hydrogen column density, velocity-right ascension cuts, and histograms of the

  15. Demonstrating the Direction of Angular Velocity in Circular Motion

    Science.gov (United States)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  16. The Radial Velocity Experiment (RAVE) : Second data release

    NARCIS (Netherlands)

    Zwitter, T.; Siebert, A.; Munari, U.; Freeman, K. C.; Siviero, A.; Watson, F. G.; Fulbright, J. P.; Wyse, R. F. G.; Campbell, R.; Seabroke, G. M.; Williams, M.; Steinmetz, M.; Bienayme, O.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Anguiano, B.; Boeche, C.; Burton, D.; Cass, P.; Dawe, J.; Fiegert, K.; Hartley, M.; Russell, K.; Veltz, L.; Bailin, J.; Binney, J.; Bland-Hawthorn, J.; Brown, A.; Dehnen, W.; Evans, N. W.; Fiorentin, P. Re; Fiorucci, M.; Gerhard, O.; Gibson, B.; Kelz, A.; Kuijken, K.; Matijevic, G.; Minchev, I.; Parker, Q. A.; Penarrubia, J.; Quillen, A.; Read, M. A.; Reid, W.; Roeser, S.; Ruchti, G.; Scholz, R. -D.; Smith, M. C.; Sordo, R.; Tolstoi, E.; Tomasella, L.; Vidrih, S.; De Boer, E. Wylie

    We present the second data release of the Radial Velocity Experiment ( RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters ( temperature, metallicity, surface gravity, and rotational velocity) of up to one million stars using the 6 dF multi-object

  17. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2010-01-01

    The CMS Communications Group, established at the start of 2010, has been strengthening the activities in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure The Communications Group has invested a lot of effort to support the operations needs of CMS. Hence, the CMS Centres where physicists work on remote CMS shifts, Data Quality Monitoring, and Data Analysis are running very smoothly. There are now 55 CMS Centres worldwide, up from just 16 at the start of CMS data-taking. The latest to join are Imperial College London, the University of Iowa, and the Università di Napoli. The CMS Centre@CERN in Meyrin, which is now full repaired after the major flooding at the beginning of the year, has been at the centre of CMS offline and computing operations, most recently hosting a large fraction of the CMS Heavy Ion community during the lead-lead run. A number of sub-detector shifts can now take pla...

  18. Group play

    DEFF Research Database (Denmark)

    Tychsen, Anders; Hitchens, Michael; Brolund, Thea

    2008-01-01

    Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects of the v......Role-playing games (RPGs) are a well-known game form, existing in a number of formats, including tabletop, live action, and various digital forms. Despite their popularity, empirical studies of these games are relatively rare. In particular there have been few examinations of the effects...... of the various formats used by RPGs on the gaming experience. This article presents the results of an empirical study, examining how multi-player tabletop RPGs are affected as they are ported to the digital medium. Issues examined include the use of disposition assessments to predict play experience, the effect...... of group dynamics, the influence of the fictional game characters and the comparative play experience between the two formats. The results indicate that group dynamics and the relationship between the players and their digital characters, are integral to the quality of the gaming experience in multiplayer...

  19. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    The CMS Communications Group has been busy in all three areas of its responsibility: (1) Communications Infrastructure, (2) Information Systems, and (3) Outreach and Education. Communications Infrastructure The 55 CMS Centres worldwide are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin, is the centre of the CMS Offline and Computing operations, and a number of subdetector shifts can now take place there, rather than in the main Control Room at P5. A new CMS meeting room has been equipped for videoconferencing in building 42, next to building 40. Our building 28 meeting room and the facilities at P5 will be refurbished soon and plans are underway to steadily upgrade the ageing equipment in all 15 CMS meeting rooms at CERN. The CMS evaluation of the Vidyo tool indicates that it is not yet ready to be considered as a potential replacement for EVO. The Communications Group provides the CMS-TV (web) cha...

  20. Second trimester growth velocities: assessment of fetal growth potential in SGA singletons.

    Science.gov (United States)

    Deter, Russell L; Lee, Wesley; Kingdom, John; Romero, Roberto

    2017-11-07

    To evaluate the validity of second trimester growth velocities as measures of fetal growth potential in Small-for-Gestational-Age (SGA) singletons. Second trimester growth velocities for biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur diaphysis length (FDL) were determined by linear regression analysis or direct measurement in 53 SGA singletons with normal growth outcomes (SGA N Group) and 73 with growth restriction (SGA GR) based on a composite fetal growth pathology score (FGPS1). The latter were subdivided into six groups based on their growth restriction pattern (Patterns group). Similar data were available for 118 singletons with normal neonatal growth outcomes (NNGO group). Coefficients of determination (R2) and growth velocities for each anatomical parameter were compared between Patterns subgroups and the SGA N, SGA GR and NNGO groups. Median R2 values in the six Patterns subgroups ranged from 98.2% (Pattern 2, FDL) to 99.9% (Pattern 5, AC). Within each anatomical parameter set, no significant differences were found (Kruskal-Wallis). Patterns subgroup data were pooled to form the SGA GR group for each anatomical parameter. Mean values for the three main groups ranged from 98.4% (SGA N, FDL) to 99.6% (SGA N, HC). No significant differences between groups (ANOVA) were found for any anatomical parameter (ANOVA). Only 1.7-3.8% had R2 values SGA N and SGA GR groups, mean BPD and HC values did not differ but were significantly smaller than the NNGO group values. No differences in mean FDL values were seen. With AC, all three means were significantly different, having the following order: NNGO > SGA N > SGA GR. Of all 504 second trimester growth rates, 92.5% were within their respective 95% reference ranges. Growth in the second trimester is linear in fetuses at risk for growth restriction. Except for FDL, growth velocities were lower than those for fetuses with NNGO. Only AC had mean velocities that differed

  1. Effect of core stability training on throwing velocity in female handball players.

    Science.gov (United States)

    Saeterbakken, Atle H; van den Tillaar, Roland; Seiler, Stephen

    2011-03-01

    The purpose was to study the effect of a sling exercise training (SET)-based core stability program on maximal throwing velocity among female handball players. Twenty-four female high-school handball players (16.6 ± 0.3 years, 63 ± 6 kg, and 169 ± 7 cm) participated and were initially divided into a SET training group (n = 14) and a control group (CON, n = 10). Both groups performed their regular handball training for 6 weeks. In addition, twice a week, the SET group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises. Maximal throwing velocity was measured before and after the training period using photocells. Maximal throwing velocity significantly increased 4.9% from 17.9 ± 0.5 to 18.8 ± 0.4 m·s in the SET group after the training period (p < 0.01), but was unchanged in the control group (17.1 ± 0.4 vs. 16.9 ± 0.4 m·s). These results suggest that core stability training using unstable, closed kinetic chain movements can significantly improve maximal throwing velocity. A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements. Strength coaches can incorporate exercises exposing the joints for destabilization force during training in closed kinetic chain exercises. This may encourage an effective neuromuscular pattern and increase force production and can improve a highly specific performance task such as throwing.

  2. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    2001-04-01

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms–1 , while the other group had significantly larger velocities, of the order of 700 ms–1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms–1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms–1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm–1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  3. Shear-Wave Velocity Structure Around the Korean Peninsula Using the Rayleigh Wave Signature of the North Korea Underground Nuclear Explosion on May 25, 2009

    Science.gov (United States)

    Kim, G.; Shin, J.; Chi, H. C.; Sheen, D.; Park, J.; Cho, C.

    2011-12-01

    The crustal structure around the Korean Peninsula was investigated by analyzing the Rayleigh waves generated from the 2nd North Korea underground nuclear explosion on May 25, 2009. Group velocity dispersion curves were measured from vertical component waveforms of 20 broadband stations in the range of 194 to 1183 km from the test site. The measured dispersion curves were inverted to get shear-wave velocity models for depths from 0 to 50 km. The dispersion curves and the velocity models clearly show lateral variations in the crustal structure, which could be more clearly classified into the North Korea-Northeast China group, the Western Margin of the East Sea group, and the Japan Basin group. For each group, an averaged dispersion curve and an averaged velocity model were measured. The averaged shear-wave velocity model of the North Korea-Northeast China group shows that the mean shear-wave velocity of the Moho discontinuity, which is known to be located at approximately 35 km, is 4.37 km/s with a standard deviation of 0.15 km/s. The averaged shear-wave velocity model of the Japan Basin group shows a mean shear-wave velocity of 4.26 km/s with a standard deviation of 0.14 km/s in the layer between 16 and 22 km. The averaged shear-wave velocity model of the Western Margin of the East Sea group shows characteristics of a transition zone between the North Korea-Northeast China group, which represents continental crust, and the Japan Basin group, which represents oceanic crust. The mean shear-wave velocity in the layer between 16 and 22 km is 4.12 km/s with a standard deviation of 0.05 km/s.

  4. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    composition. In this study we relate NMR data to changes in P-wave velocity and electrical resistivity. Core plugs from outcrop Stevns chalk, of 44% porosity, were divided into groups of three and saturated with deionized water, calcite equilibrated water, as well as sodium chloride and magnesium chloride...

  5. Differences in vertical jumping and mae-geri kicking velocity between international and national level karateka

    Directory of Open Access Journals (Sweden)

    Carlos Balsalobre-Fernández

    2013-04-01

    Full Text Available Aim: Lower limb explosive strength and mae-geri kicking velocity are fundamental in karate competition; although it is unclear whether these variables could differentiate the high-level athletes. The objective of this research is to analyze the differences in the mae-geri kicking velocity and the counter-movement jump (CMJ between a group of international top level karateka and another group of national-level karateka.Methods: Thirteen international-level karateka and eleven national-level karateka participated in the study. After a standard warm-up, CMJ height (in cm and mae-geri kicking velocity (in m/s was measured using an IR-platform and a high-speed camera, respectively.Results: Proceeding with MANCOVA to analyze the differences between groups controlling the effect of age, the results show that the international-level karateka demonstrated significantly higher levels of CMJ than national-level competitors (+22.1%, F = 9.47, p = 0.006, η2 = 0.311. There were no significant differences between groups in the mae-geri kicking velocity (+5,7%, F=0.80; p=0.38; η2=0.03.Conclusion: Our data shows, first, the importance of CMJ assessment as a tool to detect talent in karate and, second, that to achieve international-level in karate it may be important to increase CMJ levels to values ​​similar to those offered here.

  6. Lego Group

    DEFF Research Database (Denmark)

    Møller Larsen, Marcus; Pedersen, Torben; Slepniov, Dmitrij

    2010-01-01

    of the production in high cost countries. Confident with the prospects of the new partnership, the company signed a long-term contract with Flextronics. This decision eventually proved itself to have been too hasty, however. Merely three years after the contracts were signed, LEGO management announced that it would......The last years’ rather adventurous journey from 2004 to 2009 had taught the fifth-largest toy-maker in the world - the LEGO Group - the importance of managing the global supply chain effectively. In order to survive the largest internal financial crisis in its roughly 70 years of existence...... phase out the entire sourcing collaboration with Flextronics. This sudden change in its sourcing strategy posed LEGO management with a number of caveats. Despite the bright forecasts, the collaboration did not fulfill the initial expectations, and the company needed to understand why this had happened...

  7. EFFECTS OF A 6-WEEK JUNIOR TENNIS CONDITIONING PROGRAM ON SERVICE VELOCITY

    Directory of Open Access Journals (Sweden)

    Jaime Fernandez-Fernandez

    2013-06-01

    Full Text Available This study examined the effects of a 6-week strength-training program on serve velocity in youth tennis players. Thirty competitive healthy and nationally ranked male junior tennis players (13 years of age were randomly and equally divided into control and training groups. The training group performed 3 sessions (60-70 min weekly for 6 weeks, comprising core strength, elastic resistance and medicine ball exercises. Both groups (control and training also performed a supervised stretching routine at the end of each training session, during the 6 week intervention. Service velocity, service accuracy and shoulder internal/external rotation were assessed initially and at the end of the 6-week conditioning program for both, control and training groups. There was a significant improvement in the serve velocity for the training group (p = 0. 0001 after the intervention, whereas in the control group there were no differences between pre and post-tests (p = 0.29. Serve accuracy was not affected in the training group (p = 0.10, nor in the control group (p = 0.15. Shoulder internal/external rotation ROM significantly improved in both groups, training (p = 0.001 and control (p = 0.0001. The present results showed that a short- term training program for young tennis players, using minimum equipment and effort, can result in improved tennis performance (i.e., serve velocity and a reduction in the risk of a possible overuse injury, reflected by an improvement in shoulder external/internal range of motion

  8. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  9. Personal Exposure to Contaminant Sources in a Uniform Velocity Field

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.

    The objective of this study has been to determine the personal exposure to a contaminant source in a uniform velocity field. This was done by full-scale measurements and computer simulations. The results showed a significant dependence on the velocity field both regarding the direction and the ma...... the usual operation range. Guidelines for personal exposure reduction in a uniform velocity field are discussed.......The objective of this study has been to determine the personal exposure to a contaminant source in a uniform velocity field. This was done by full-scale measurements and computer simulations. The results showed a significant dependence on the velocity field both regarding the direction...

  10. Luminal pulse velocity in a superluminal medium

    Science.gov (United States)

    Amano, Heisuke; Tomita, Makoto

    2015-12-01

    To investigate the physical meaning of pulse peak in fast and slow light media, we investigated propagation of differently shaped pulses experimentally, controlling the sharpness of the pulse peak. Symmetric behavior with respect to fast and slow light was observed in traditional Gaussian pulses; that is, propagated pulses were advanced or delayed, respectively, whereas the pulse shape remained unchanged. This symmetry broke down when the pulse peak was sharpened; in the fast light medium, the sharp pulse peak propagated with luminal velocity, and the transmitted pulse deformed into a characteristic asymmetric profile. In contrast, in the slow light medium, a time-delayed smooth peak appeared with a bending point at t =0 . This symmetry breaking with respect to fast and slow light is a universal characteristic of pulse propagation in causal dispersive systems. The sharp pulse peak can be recognized as a bending nonanalytical point and may be capable of transferring information.

  11. Velocity dependence of friction of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2009-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional...... shear stress for both cases. In our simulations, the polymer films are very thin (approx. 3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  12. Decreased Nerve Conduction Velocity in Football Players

    Directory of Open Access Journals (Sweden)

    Daryoush Didehdar

    2014-06-01

    Full Text Available Background: Lower limbs nerves are exposed to mechanical injuries in the football players and the purpose of this study is to evaluate the influence of football on the lower leg nerves. Materials and Methods: Nerve conduction studies were done on 35 male college students (20 football players, 15 non active during 2006 to 2007 in the Shiraz rehabilitation faculty. Standard nerve conduction techniques using to evaluate dominant and non dominant lower limb nerves. Results: The motor latency of deep peroneal and tibial nerves of dominant leg of football players and sensory latency of superficial peroneal, tibial and compound nerve action potential of tibial nerve of both leg in football players were significantly prolonged (p<0.05. Motor and sensory nerve conduction velocity of tibial and common peroneal in football players were significant delayed (p<0.05. Conclusion: It is concluded that football is sport with high contact and it causes sub-clinical neuropathies due to nerve entrapment.

  13. Universality of the Turbulent Velocity Profile

    Science.gov (United States)

    Luchini, Paolo

    2017-06-01

    For nearly a century, the universal logarithmic law of the mean velocity profile has been a mainstay of turbulent fluid mechanics and its teaching. Yet many experiments and numerical simulations are not fit exceedingly well by it, and the question whether the logarithmic law is indeed universal keeps turning up in discussion and in writing. Large experiments have been set up in various parts of the world to confirm or deny the logarithmic law and accurately estimate von Kármán's constant, the coefficient that governs it. Here, we show that the discrepancy among flows in different (circular or plane) geometries can be ascribed to the effect of the pressure gradient. When this effect is accounted for in the form of a higher-order perturbation, universal agreement emerges beyond doubt and a satisfactorily simple formulation is established.

  14. Ultrasonic Doppler Velocity Profiler for Fluid Flow

    CERN Document Server

    2012-01-01

    The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...

  15. Velocity anisotropy in tidally limited star clusters

    Science.gov (United States)

    Tiongco, Maria A.; Vesperini, Enrico; Varri, Anna Lisa

    2016-02-01

    We explore the long-term evolution of the anisotropy in the velocity space of star clusters starting with different structural and kinematical properties. We show that the evolution of the radial anisotropy strength and its radial variation within a cluster contain distinct imprints of the cluster initial structural properties, dynamical history, and of the external tidal field of its host galaxy. Initially isotropic and compact clusters with small initial values of the ratio of the half-mass to Jacobi radius, rh/rJ, develop a strong radial anisotropy during their long-term dynamical evolution. Many clusters, if formed with small values of rh/rJ, should now be characterized by a significant radial anisotropy increasing with the distance from the cluster centre, reaching its maximum at a distance between 0.2 rJ and 0.4 rJ, and then becoming more isotropic or mildly tangentially anisotropic in the outermost regions. A similar radial variation of the anisotropy can also result from an early violent relaxation phase. In both cases, as a cluster continues its evolution and loses mass, the anisotropy eventually starts to decrease and the system evolves towards an isotropic velocity distribution. However, in order to completely erase the strong anisotropy developed by these compact systems during their evolution, they must be in the advanced stages of their evolution and lose a large fraction of their initial mass. Clusters that are initially isotropic and characterized by larger initial values of rh/rJ, on the other hand, never develop a significant radial anisotropy.

  16. [Pulse wave velocity as an early marker of diastolic heart failure in patients with hypertension].

    Science.gov (United States)

    Moczulska, Beata; Kubiak, Monika; Bryczkowska, Anna; Malinowska, Ewa

    2017-04-21

    According to the WHO, hypertension is one of the major causes of death worldwide. It leads to a number of severe complications. Diastolic heart failure, that is heart failure with preserved ejection fraction (HFPEF), is especially common. New, but simple, indices for the early detection of patients who have not yet developed complications or are in their early developmental stages are still searched for. The aim of this study is to examine the correlation between pulse wave velocity (PWV) and markers of diastolic heart failure (DHF) assessed in echocardiography in patients with hypertension and no symptoms of heart failure. The study was comprised of 65 patients with treated hypertension. Patients with symptoms of heart failure, those with diabetes and smokers were excluded. Arterial stiffness was measured with the Mobil-O-Graph NG PWA. Pulse wave velocity (PWV) was estimated. The following markers of diastolic heart failure were assessed in the echocardiographic examination: E/A ratio - the ratio of the early (E) to late (A) ventricular filling velocities, DT - decceleration time, E/E' - the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity E' in tissue Doppler echocardiography. PWV was statistically significantly higher in the DHF group. In the group of patients with heart failure, the average E/A ratio was significantly lower as compared to the group with no heart failure. Oscillometric measurement of pulse wave velocity is non-invasive, lasts a few minutes and does not require the presence of a specialist. It allows for an early detection of patients at risk of diastolic heart failure even within the conditions of primary health care.

  17. Analysis of pitching velocity in major league baseball players before and after ulnar collateral ligament reconstruction.

    Science.gov (United States)

    Jiang, Jimmy J; Leland, J Martin

    2014-04-01

    Ulnar collateral ligament (UCL) reconstructions are relatively common among professional pitchers in Major League Baseball (MLB). To the authors' knowledge, there has not been a study specifically analyzing pitching velocity after UCL surgery. These measurements were examined in a cohort of MLB pitchers before and after UCL reconstruction. There is no significant loss in pitch velocity after UCL reconstruction in MLB pitchers. Cohort study; Level of evidence, 3. Between the years 2008 to 2010, a total of 41 MLB pitchers were identified as players who underwent UCL reconstruction. Inclusion criteria for this study consisted of a minimum of 1 year of preinjury and 2 years of postinjury pitch velocity data. After implementing exclusion criteria, performance data were analyzed from 28 of the 41 pitchers over a minimum of 4 MLB seasons for each player. A pair-matched control group of pitchers who did not have a known UCL injury were analyzed for comparison. Of the initial 41 players, 3 were excluded for revision UCL reconstruction. Eight of the 38 players who underwent primary UCL reconstruction did not return to pitching at the major league level, and 2 players who met the exclusion criteria were omitted, leaving data on 28 players available for final velocity analysis. The mean percentage change in the velocity of pitches thrown by players who underwent UCL reconstruction was not significantly different compared with that of players in the control group. The mean innings pitched was statistically different only for the year of injury and the first postinjury year. There were also no statistically significant differences between the 2 groups with regard to commonly used statistical performance measurements, including earned run average, batting average against, walks per 9 innings, strikeouts per 9 innings, and walks plus hits per inning pitched. There were no significant differences in pitch velocity and common performance measurements between players who returned to

  18. Periodicity for 50 yr of daily solar wind velocity

    Science.gov (United States)

    Li, K. J.; Zhang, J.; Feng, W.

    2017-11-01

    Daily mean velocity of solar wind that was surveyed near the Earth's orbit at about 1 au from 1963 November 27 to 2015 November 30 and issued by OMNIWeb is used to look into its periodicity through the Lomb-Scargle periodogram method. As the strongest periodical signal, the solar activity cycle of about 10.4 yr is found in high-velocity wind, but in low-velocity wind, the 9.17-yr cycle appears instead. The rotation cycle of about 27 d and its 1/2 and 1/3 harmonic periods are clearly detected in all-, low- and high-velocity wind, and at their periodograms, several individual periodical peaks appear very close to the peaks of these three periods. The annual period of about 1.07 yr is identified for both all- and low-velocity wind, but not for high-velocity wind after 1994. The 1.68-yr period occurs in all- and high-velocity wind, but does not appear in low-velocity wind. The period of about 2.42 yr appears just in the all-velocity wind after 1994, but its twofold period (about 4.83 yr) appears in both all- and high-velocity wind. The period of about 4.1 yr occurs in all-, low- and high-velocity wind. The possible origin of these periods is discussed.

  19. Torque-angle-velocity Relationships and Muscle Performance of Professional and Youth Soccer Players.

    Science.gov (United States)

    Mazuquin, B F; Dela Bela, L F; Pelegrinelli, A R M; Dias, J M; Carregaro, R L; Moura, F A; Selfe, J; Richards, J; Brown, L E; Cardoso, J R

    2016-11-01

    Soccer matches consist of a variety of different activities, including repeated sprints. Time to attain velocity (TTAV), load range (LR) and the torque-angle-velocity relationship (TAV 3D ) represent an important measurement of muscle performance, however there are few related studies. The aim of this study was to compare these outcomes between soccer players of different age category. 17 professional (PRO) and 17 under-17 (U17) soccer players were assessed for concentric knee flexion/extension at 60, 120 and 300°/s. For the extensor muscles, differences were found in favor of the U17 group for TTAV and LR outcomes at 120°/s, however, the PRO group maintained higher torques in both movement directions in comparison to the U17 in TAV 3D evaluation. These results suggest that muscle performance of the PRO group is more efficient than the U17 group. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Sonic velocities for gases from coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Brodner, A.J.; Jett, O.J.

    1982-10-01

    Accurate predictions of choking velocities for three-phase mixtures are needed to properly size coal-slurry letdown valves. The sonic velocity of the gas phase of the coal slurry must be known to evaluate this choking velocity. A FORTRAN computer program, based on the Redlich-Kwong-Soave equation of state, was developed to predict sonic velocities for both pure and pseudocomponent gaseous mixtures. Predictions of the sonic velocity for methane, ethane, propane, and ethylene deviated 0 to 25% from experimental data. The sonic velocity predictions were also more accurate than those with the reduced-property correlation of Pitzer and Curl. The predicted sonic velocity at 700 K for a mixture of gases from coal-derived liquids at conditions typical of coal-slurry letdown valves ranged from 100 to 330 m/s.

  1. Influence of Velocity on Variability in Gait Kinematics

    DEFF Research Database (Denmark)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine

    2014-01-01

    Closed circuit television (CCTV) footage is often available from crime scenes and may be used to compare perpetrators with suspects. Usually, the footage comprises incomplete gait cycles at different velocities, making gait pattern identification from crimes difficult. This study investigated...... the concurrence of joint angles throughout a gait cycle at three different velocities (3.0, 4.5, 6.0 km/h). Six datasets at each velocity were collected from 16 men. A variability range VR throughout the gait cycle at each velocity for each joint angle for each person was calculated. The joint angles at each...... velocity were compared pairwise, and whenever this showed values within the VR of this velocity, the case was positive. By adding the positives throughout the gait cycle, phases with high and low concurrences were located; peak concurrence was observed at mid-stance phase. Striving for the same velocity...

  2. COMMUNICATIONS GROUP

    CERN Document Server

    L. Taylor

    2010-01-01

    The recently established CMS Communications Group, led by Lucas Taylor, has been busy in all three of its main are areas of responsibility: Communications Infrastructure, Information Systems, and Outreach and Education Communications Infrastructure The damage caused by the flooding of the CMS Centre@CERN on 21st December has been completely repaired and all systems are back in operation. Major repairs were made to the roofs, ceilings and one third of the floor had to be completely replaced. Throughout these works, the CMS Centre was kept operating and even hosted a major press event for first 7 TeV collisions, as described below. Incremental work behind the scenes is steadily improving the quality of the CMS communications infrastructure, particularly Webcasting, video conferencing, and meeting rooms at CERN. CERN/IT is also deploying a pilot service of a new videoconference tool called Vidyo, to assess whether it might provide an enhanced service at a lower cost, compared to the EVO tool currently in w...

  3. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2012-01-01

      Outreach and Education We are fortunate that our research has captured the public imagination, even though this inevitably puts us under the global media spotlight, as we saw with the Higgs seminar at CERN in December, which had 110,000 distinct webcast viewers. The media interest was huge with 71 media organisations registering to come to CERN to cover the Higgs seminar, which was followed by a press briefing with the DG and Spokespersons. This event resulted in about 2,000 generally positive stories in the global media. For this seminar, the CMS Communications Group prepared up-to-date news and public material, including links to the CMS results, animations and event displays [http://cern.ch/go/Ch8thttp://cern.ch/go/Ch8t]. There were 44,000 page-views on the CMS public website, with the Higgs news article being by far the most popular item. CMS event displays from iSpy are fast becoming the iconic media images, featuring on numerous major news outlets (BBC, CNN, MSN...) as well as in the sci...

  4. COMMUNICATIONS GROUP

    CERN Multimedia

    L. Taylor

    2011-01-01

    Communications Infrastructure The 55 CMS Centres worldwide are well used by physicists working on remote CMS shifts, Computing operations, data quality monitoring, data analysis and outreach. The CMS Centre@CERN in Meyrin is particularly busy at the moment, hosting about 50 physicists taking part in the heavy-ion data-taking and analysis. Three new CMS meeting room will be equipped for videoconferencing in early 2012: 40/5B-08, 42/R-031, and 28/S-029. The CMS-TV service showing LHC Page 1, CMS Page 1, etc. (http://cmsdoc.cern.ch/cmscc/projector/index.jsp) is now also available for mobile devices: http://cern.ch/mcmstv. Figure 12: Screenshots of CMS-TV for mobile devices Information Systems CMS has a new web site: (http://cern.ch/cms) using a modern web Content Management System to ensure content and links are managed and updated easily and coherently. It covers all CMS sub-projects and groups, replacing the iCMS internal pages. It also incorporates the existing CMS public web site (http:/...

  5. BROADBAND METHOD FOR GROUP VELOCITY DISPERSION MEASUREMENTS IN THE MID-INFRARED

    Directory of Open Access Journals (Sweden)

    D. S. Klimentov

    2011-01-01

    Full Text Available A setup for broadband measurements of dispersion parameter in optical fibers based on the Mach–Zehnder interferometer is developed. Tm-doped fiber pumped at 1.61 μm was used as a source of broadband emission, that allowed to achieve the measurement spectral range of 1700 to 2000 nm. The method is applicable for comparatively short pieces of optical fiber with lengths of less than 1 meter. The method was successfully tested for the standard telecommunication SMF-28 fiber.

  6. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    OpenAIRE

    Zhidkov, A.; Esirkepov, T.; Fujii, T; Nemoto, K; Koga, J; Bulanov, S. V.

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monoc...

  7. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    Science.gov (United States)

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  8. The Study on S-Wave Velocity Structure of Upper Crust in Three Gorges Region of Yangtze River

    Science.gov (United States)

    Li, X.; Zhu, P.; Zhou, Q.

    2014-12-01

    The profile of S-wave velocity structure along Badong-Maoping-Tumen is presented using the ambient noise data observed at 10 stations from mobile broadband seismic array which is located at Three Gorges Region. All of available vertical component time series during April and May,2011 have been cross-correlated to estimate the empirical Green functions. Group velocity dispersion curves were measured by applying multiple filtering technique. Using these dispersion curves,we obtain high resolution pure-path dispersions at 0.5-10 second periods. The S-wave velocity structure,which was reconstructed by inverting the pure-path dispersions,reveals the velocity variations of upper crust at Three Gorges Region. Main conclusions are as follows:(1)The velocity variations in the study region have a close relationship with the geological structure and the velocity profile suggests a anticline unit which core area is Huangling block;(2)The relative fast velocity variations beneath Jiuwanxi and its surrounding areas may correspond to the geological structure and earthquake activity there;(3) The high velocity of the upper crustal in Sandouping indicates that the Reservoir Dam of Three Gorges is located at a tectonic stable region.

  9. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    Science.gov (United States)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  10. Peak velocity of elbow joint during touching contra lateral shoulder activity for normal subject

    Science.gov (United States)

    Nan, Hasyatun Che; Rambely, Azmin Sham

    2017-04-01

    A better understanding of upper limb movements requires analysis of motion. Measurements of movement analysis through biomechanical studies are necessary to describe upper limb activities. Therefore this study intend to investigate peak velocity of elbow joint for different age groups during the "touching contra lateral shoulder" activity. Twenty healthy subjects age range 20 - 59 years old (n = 60) performed a complete cycle of hand lifting, resting and returning the hand to its initial position. This activity was analyzed using Vicon motion-analysis system, which consists of three infra-red and high speed cameras. Phase definitions were defined and descriptive kinematic variables were obtained from this activity. Movement times is found to increase in 50's age group. The difference of movement times is < 0.3s. Peak velocity for subject age 50s' also higher between all subjects. The difference of peak velocity is < 0.03m/s for all different phases. It was found that there were a significant difference in total movement time and no significance different between each age group for peak velocity parameter.

  11. Velocity gradients in the Earth's upper mantle: insights from higher mode surface waves

    Science.gov (United States)

    Fishwick, Stewart; Maupin, Valerie; Afonso, Juan Carlos

    2016-04-01

    The majority of seismic tomographic models of the uppermost mantle beneath Precambrian regions show a positive velocity gradient from the Moho to depths of around 100 km. It is becoming increasingly well recognised that this gradient is not readily compatible with simple models of a craton with constant composition and a steady-state geotherm and more complex compositional variations are invoked to explain this feature. At these depths most of the models are dominated by data from fundamental mode surface waves, and the combination of the sensitivity kernels alongside the choice of model parameterisation means that the velocity gradient could be an artefact of the particular inversion. Indeed, recent work using thermodynamically consistent velocity models suggests that in some cases there is not a requirement of this style of gradient. We investigate this aspect of the mantle structure further by returning to the Sa phase. This phase can be considered as the build up of a wave packet due to the overlapping group velocities of higher modes at periods of around 8 - 30 s. Using the Australian shield as a test-case we compare waveforms built from three different styles of velocity model. Firstly, the 1D model AU3 (Gaherty & Jordan, 1995) which did incorporate the Sa phase as part of the waveform in their modelling. Secondly, recent tomographic models of the Australian continent are used, which include no a priori information from the phase. Thirdly, a thermodynamically consistent velocity model that fits the broad dispersion characteristics of the tomography is tested. Finally, these synthetic waveforms are compared to real data crossing the Australian shield. The results illustrate small, but clear, variations in waveform dependent on the velocity structure. Complicating factors in any analysis involve the importance of having good knowledge of the crustal structure and a very accurate source depth (particularly if this is similar to the average crustal thickness).

  12. Critical velocity, lactate concentration and rowing performanc

    Directory of Open Access Journals (Sweden)

    Emerson Franchini

    2005-12-01

    Full Text Available There is, in the literature, a search for simple and non-expensive tests to determine the intensity equivalent to maximal lactate steady state (MLSS. The critical velocity (CV has been an indirect method used to determine MLSS. However, the few studies that applied CV in rowing did not verify its validity to estimate MLSS. Therefore, this study had the purposes of testing the validity of CV in determining MLSS velocity as well as of analyzing its predictive value in rowing performance. Therefore, eleven male rowers were submitted to three trials to exhaustion for CV determination. A 2000-m test in a rowing ergometer was used as performance criteria. Later, the subjects performed a continuous test at the CV, with blood lactate concentration (LA being measured during the test. During the continuous test, the LA linearly increased from rest (2 ± 0.,2 mmol.L-1 to the 10th minute (10.9 ± 3.7 mmol.L-1 with slightly higher values (11.6 ± 2.3 mmol.L-1 at the mean time to exhaustion (10.4 ± 3 min, showing that CV does not correspond to MLSS. The correlation coefficient between CV and mean velocity at the 2000-m test (r = 0.87; p RESUMO Existe, na literatura, a busca por testes simples e baratos para determinar a intensidade equivalente à máxima fase estável do lactato sangüíneo (MFELS. A velocidade crítica (VC tem sido um dos métodos indiretos utilizados para determinar a MFELS. No entanto, os poucos estudos que utilizaram a VC no remo, não verificaram sua validade para estimar a MFELS. Assim, esse estudo teve como objetivos verificar a validade da VC para determinar a velocidade da MFELS e analisar seu valor preditivo para o desempenho no remo. Para isso, onze atletas de remo do sexo masculino foram submetidos a três estímulos até a exaustão para a identificação da VC. Uma prova de 2000 m no ergômetro de remo foi usada como critério de desempenho. Posteriormente, os sujeitos realizaram um teste contínuo na VC, sendo mensurada a

  13. Effects of a foot drop neuroprosthesis on functional abilities, social participation, and gait velocity.

    Science.gov (United States)

    Laufer, Yocheved; Hausdorff, Jeffrey M; Ring, Haim

    2009-01-01

    Prospective, single group, repeated measures 1-yr follow-up of 16 patients (aged 55 +/- 14.6 yrs) with chronic hemiparesis who used a neuroprosthesis for 1 yr and were available for follow-up. Outcome measures included the Short Version of the Stroke Impact Scale, the Participation domain of the Stroke Impact Scale, and the gait velocity. Significant increases of 18.0% in physical functioning and of 25.2% in participation in community life were attained 2 mos after the application of the neuroprosthesis. The gains were maintained at the 1-yr follow-up. Gait velocity increased significantly by 29.2% by 2 mos, with significant further increases of 22.6% observed at the 1-yr follow-up. Use of the studied neuroprosthesis to correct foot drop significantly enhanced functional abilities, social reintegration, and gait velocity. These results support the prolonged use of the neuroprosthesis in patients with chronic hemiparesis.

  14. Sound velocity during solidification in binary eutectic systems

    Science.gov (United States)

    Yoshioka, Hideaki; Kyoden, Tomoaki; Hachiga, Tadashi

    2017-12-01

    We applied an ultrasound technique to an advanced material process by investigating the behavior of sound velocity during solidification of binary alloy melts over a wide range of temperatures and compositions. To gain a basic understanding of the relationship between the sound velocity and phase change in binary eutectic systems, the sound velocity was measured in Pb-Sn and Bi-Sn alloys by the pulse transmission method. Based on the measurement results, we established a link between the sound velocity variation and the complex solidification process, including the initial appearance of undercooling and eutectic reaction. During solidification, alloys usually pass through a transient mushy state between the liquid and solid phases. Since the solid fraction is uniquely related to the sound velocity, we demonstrate that it is possible to identify the solid fraction in the mushy state using the sound velocity. At the eutectic point, a sudden change was observed in relation to the eutectic reaction, in which the sound velocity exhibited an abrupt transition under isothermal conditions. This sudden change in the sound velocity was evident even when the initial composition was below the maximum solid-solution limit, such as when the solute distribution coefficient was relatively large. This result suggests that the presence of a eutectic in the final solidified texture can be predicted using our sound velocity measurement system. Finally, we present a novel sound velocity phase diagram that provides a real-time state determination system using ultrasound during solidification process, such as casting.

  15. HI Linewidths, Rotation Velocities and the Tully-Fisher Relation

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Rhee

    2005-06-01

    Full Text Available We determine the rotation velocities of 108 spiral and irregular galaxies (XV-Sample from first-order rotation curves from position-velocity maps, based on short 21-cm observations with the Westerbork Synthesis Radio Telescope (WSRT. To test the usual random motion corrections, we compare the global HI linewidths and the rotation velocities, obtained from kinematical fits to two-dimensional velocity fields for a sample of 28 galaxies (RC-Sample, and find that the most frequently used correction formulae (Tully & Fouqué 1985 are not very satisfactory. The rotation velocity parameter (the random-motion corrected HI linewidth: WRi, derived with these corrections, may be statistically equal to two times the true rotation velocity, but in individual cases the differences can be large. We analyse, for both RC- and XV-Samples, the dependence of the slope of, and scatter in the Tully-Fisher relation on the definition of the rotation velocity parameters. For the RC-Sample, we find that the scatter in the Tully-Fisher relation can be reduced considerably when the rotation velocities derived from rotation curves are used instead of the random-motion corrected global HI linewidths. No such reduction in the scatter is seen for XV-Sample. We conclude that the reduction of the scatter in the Tully-Fisher relation seems to be related to the use of two-dimensional velocity information: accurate rotation velocity and kinematical inclination.

  16. Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys: The methodology

    Science.gov (United States)

    Zhang, Pengjie; Pan, Jun; Zheng, Yi

    2013-03-01

    Massive spectroscopic surveys will measure the redshift space distortion (RSD) induced by galaxy peculiar velocity to unprecedented accuracy and open a new era of precision RSD cosmology. We develop a new method to improve the RSD modeling and to carry out robust reconstruction of the 3D large scale peculiar velocity through galaxy redshift surveys, in light of RSD. (1) We propose a mathematically unique and physically motivated decomposition of peculiar velocity into three eigencomponents: an irrotational component completely correlated with the underlying density field (vδ), an irrotational component uncorrelated with the density field (vS), and a rotational (curl) component (vB). The three components have different origins, different scale dependences, and different impacts on RSD. (2) This decomposition has the potential to simplify and improve the RSD modeling. (i) vB damps the redshift space clustering. (ii) vS causes both damping and enhancement to the redshift space power spectrum Ps(k,u). Nevertheless, the leading order contribution to the enhancement has a u4 directional dependence, distinctively different from the Kaiser formula. Here, u≡kz/k, k is the amplitude of the wave vector, and kz is the component along the line of sight. (iii) vδ is of the greatest importance for the RSD cosmology. We find that the induced redshift clustering shows a number of important deviations from the usual Kaiser formula. Even in the limit of vS→0 and vB→0, the leading order contribution ∝(1+fW˜(k)u2)2. It differs from the Kaiser formula by a window function W˜(k). Nonlinear evolution generically drives W˜(k)≤1. We hence identify a significant systematical error causing underestimation of the structure growth parameter f by as much as O(10%) even at a relatively large scale k=0.1h/Mpc. (iv) The velocity decomposition reveals the three origins of the “finger-of-God” (FOG) effect and suggests how to simplify and improve the modeling of FOG by treating the

  17. Effect of Energy Drink Consumption on Power and Velocity of Selected Sport Performance Activities.

    Science.gov (United States)

    Jacobson, Bert H; Hester, Garrett M; Palmer, Ty B; Williams, Kathryn; Pope, Zachary K; Sellers, John H; Conchola, Eric C; Woolsey, Conrad; Estrada, Carlos

    2017-07-17

    Energy drinks comprise a multibillion dollar market focused on younger, active and competitive individuals. Marketing includes claims of improved alertness and performance. The purpose of this study was to assess power (W) and velocity (m·s) of a simulated, isolated forehand stroke (FHS) and a counter movement vertical jump (CVJ) before and after ingestion of a commercially available energy shot (ES) or a placebo (PL). Healthy college-aged male and female (N=36) volunteers were randomly placed in the ES or PL. Before and 30 min after ingesting either the ES or PL, participants performed three FHSs and CVJs. Power and velocity of each performance was measured using a linear velocity transducer and the highest value for each measure was used for subsequent analysis. The ES group demonstrated a significant (p=0.05) increase in velocity and power for the FHS, but not for the CVJ. All measures remained unchanged in the PL group for both, the FHS and CVJ. Females demonstrated a significant increase in velocity over males in FHS, but not in CVJ. It was concluded that while the dose of stimulants in the ES was adequate to improve performance of smaller muscle groups, it may not have been sufficient to affect the larger muscle groups of the lower legs which contribute to the CVJ. While the ES used in the present study contained a caffeine dosage within the NCAA limit and did improve performance for the upper-body, it must be noted that there are health risks associated with energy drink consumption.

  18. Bronchial mucus transport velocity in patients receiving desflurane and fentanyl vs. sevoflurane and fentanyl.

    Science.gov (United States)

    Ledowski, T; Manopas, A; Lauer, S

    2008-09-01

    Sevoflurane has been shown to distinctly reduce bronchial mucus transport velocity, an essential determinant of mucociliary clearance and pulmonary complications. However, sevoflurane is regarded as one of the least irritant volatile anaesthetics, especially when compared with desflurane. Hence, the aim of this double-blind, randomized, controlled trial was to assess differences in bronchial mucus transport velocity between sevoflurane and desflurane. Twenty patients listed for general surgery were randomized to receive either maintenance of anaesthesia with desflurane and fentanyl, or sevoflurane and fentanyl. Thirty minutes after tracheal intubation, bronchial mucus transport velocity was assessed by fibreoptic observation of the movement of methylene blue dye applied to the dorsal surface of the right main bronchus. Both agents distinctly reduced bronchial mucus transport velocity when compared with previous studies, but the degree of impairment did not significantly differ between the investigated groups (median [25%/75% percentile]): desflurane 1.5 [0.5/4.2] vs. sevoflurane 1.3 [0.3/2.9] mm min(-1), P = 0.343). Desflurane is commonly regarded as more irritant to the airway, but as far as bronchial mucus transport velocity is concerned, the choice between sevoflurane and desflurane does not seem to matter.

  19. S-Wave Velocity Across Central Mexico Using High Resolution Surface Wave Tomography

    Science.gov (United States)

    Iglesias, A.; Clayton, R. W.; Pérez-Campos, X.; Singh, S. K.; Pacheco, J. F.; García, D.; Valdés-González, C.

    2008-12-01

    The shear wave velocity structure across central Mexico is determined by surface wave dispersion from a dense linear seismic experiment "Mesoamerican Subduction Experiment" (MASE). MASE consisted of 100 portable broadband stations deployed along a line crossing Central Mexico from the Pacific Coast to almost the Gulf of Mexico. Regional records were used to obtain Rayleigh-wave group velocity maps for periods from 5 to 50 s and they show a dramatic variation of velocity (~40%), especially for periods larger of 20 s. Local dispersion curves were reconstructed for each station and inverted to find S-wave velocity by using a simulated annealing algorithm. The results, from inversion, show a significant change, particularly in the lower crust, between the backarc, volcanic arc and forearc regions. The crust in the forearc is thicker and faster than the backarc region. Just below the active Trans Mexican Volcanic Belt (TMVB) (300 km from the coast) is presently a low velocity spot (~3.4 km/s) suggesting presence of anomalous material (probably related to a mantle wedge) as deep as 50 km. The results also show a poorly resolved slab and wedge which correspond to the ones in a model reported recently. The results are supported with consistency checks and resolution tests.

  20. Cerebral Blood Flow Velocities in Hypotensive Extremely Low Birth Weight Infants and Normotensive Infants

    Science.gov (United States)

    Lightburn, Marla H.; Gauss, C. Heath; Williams, D. Keith; Kaiser, Jeffrey R.

    2009-01-01

    Objective To determine if hypotensive extremely low birth weight (ELBW) infants have similar cerebral hemodynamics when compared with normotensive controls. We hypothesized that hypotensive and normotensive ELBW infants have similar cerebral blood flow (CBF) velocity. Study design In this case–control study, CBF velocity (using Doppler ultrasound), PCO2, and mean arterial blood pressure (MABP) were continuously monitored twice daily prior to intensive care procedures. If an infant became hypotensive (MABP ≤ gestational age in weeks), additional monitoring was performed for 10–20 minutes, prior to treatment with dopamine. Thirty ELBW infants were enrolled (637 ± 140 g, 24.2 ± 1.1 weeks); 15 were hypotensive and 15 were gestational age/birth weight-matched normotensive controls. CBF velocity was compared using the Mann-Whitney U test. Results The groups did not differ significantly in gestational age, birth weight, race, sex, PCO2, Apgar scores, or occurrence of severe intraventricular hemorrhage. There was no difference in mean CBF velocity (P = .934) in hypotensive infants (MABP: 23 [20–24.9] mm Hg) compared with normotensive infants (MABP: 32.6 [27.5–35.7] mm Hg). Conclusion Despite being hypotensive, ELBW infants (prior to treatment), had similar CBF velocity compared with normotensive controls. Based on these results, hypotension may not indicate decreased CBF. PMID:19324371

  1. Velocity, stroke rate, and distance per stroke during elite swimming competition.

    Science.gov (United States)

    Craig, A B; Skehan, P L; Pawelczyk, J A; Boomer, W L

    1985-12-01

    The mean velocity of 9 out of 10 women's events during the U.S. Olympic Swimming Trials was greater in 1984 as compared to 1976. Three of the 10 men's events showed improvement. In 9 out of these 12 events, the increased velocity was accounted for by increased distance per stroke (range, -3 to -13%). In the women's 100-m butterfly and 100-m backstroke, increased velocity was due solely to faster stroke rates. The finalists in each event were compared to those whose velocities were 3-7% slower. In almost all events and stroke styles, the finalists achieved greater distances per stroke than did the slower group. In the men's events increased distance per stroke was associated with decreased stroke rate, except in the backstroke, in which both were increased for the finalists. Although the faster women swimmers generally had greater distances per stroke, they were more dependent than men on faster stroke rates to achieve superiority. The profile of velocity for races of 200 m and longer indicated that as fatigue developed the distance per stroke decreased. The faster swimmers compensated for this change by maintaining or increasing stroke rate more than did their slower competitors. This study indicates that improvements and superiority in stroke mechanics are reflected in the stroke rate and distance per stroke used to swim a race.

  2. Velocity model of the Bohemian Massif crust (Central Europe) from Ambient Noise data

    Science.gov (United States)

    Kvapil, Jiri; Vecsey, Ludek; Plomerova, Jaroslava

    2017-04-01

    Cross-correlation of ambient seismic noise, recorded at station pairs, is now well established technique for surface wave extraction and crustal shear wave velocity imaging. Recent teleseismic tomography studies of the upper mantle beneath the Bohemian Massif (BM) emphasized great importance of crustal velocities on the resulting upper mantle tomography image down to the depth of about 100 km (Karousova et al., 2012). The BM crust velocity model used in teleseismic tomography was compiled by integrating interpretation of several seismic exploration profiles as well as with information from receiver function method. In this study we aimed at retrieving initial independent and homogeneous model of the BM crust from seismic interferometry as a starting point for upcoming ambient noise tomography. In the first step, we apply ambient noise interferometry on data recorded at permanent stations of the Czech Regional Seismic Network (CRSN). The data are pre-processed following well established ambient noise processing sequence (e.g., Bensen et al., 2007), which includes instrument response removal, demeaning, detrend, downsampling, amplitude normalisation and spectral whitening. We also test different amplitude normalisation schemas - one bit normalisation, daily RMS waveform clipping, running average normalisation and automated earthquake editing. In the next step, the seismic noise was cross-correlated on all possible station pairs over one month of continuous data. The stability of constructed surface waves was confirmed by seasonal variation test. Finally, we performed frequency-time analysis (FTAN) in order to measure group velocity dispersion curves. We present frequency dependent surface-wave group-velocity maps across the BM, evaluate their lateral and directional variations, which we correlate with tectonics of the region and with velocity model of the Bohemian Massif crust used in teleseismic tomography, or with local travel times, used in interpretation and

  3. Evaluation of force-velocity and power-velocity relationship of arm muscles.

    Science.gov (United States)

    Sreckovic, Sreten; Cuk, Ivan; Djuric, Sasa; Nedeljkovic, Aleksandar; Mirkov, Dragan; Jaric, Slobodan

    2015-08-01

    A number of recent studies have revealed an approximately linear force-velocity (F-V) and, consequently, a parabolic power-velocity (P-V) relationship of multi-joint tasks. However, the measurement characteristics of their parameters have been neglected, particularly those regarding arm muscles, which could be a problem for using the linear F-V model in both research and routine testing. Therefore, the aims of the present study were to evaluate the strength, shape, reliability, and concurrent validity of the F-V relationship of arm muscles. Twelve healthy participants performed maximum bench press throws against loads ranging from 20 to 70 % of their maximum strength, and linear regression model was applied on the obtained range of F and V data. One-repetition maximum bench press and medicine ball throw tests were also conducted. The observed individual F-V relationships were exceptionally strong (r = 0.96-0.99; all P 0.80), while their concurrent validity regarding directly measured F, P, and V ranged from high (for maximum F) to medium-to-low (for maximum P and V). The findings add to the evidence that the linear F-V and, consequently, parabolic P-V models could be used to study the mechanical properties of muscular systems, as well as to design a relatively simple, reliable, and ecologically valid routine test of the muscle ability of force, power, and velocity production.

  4. Featured Image: The Cosmic Velocity Web

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    You may have heard of the cosmic web, a network of filaments, clusters and voids that describes the three-dimensional distribution of matter in our universe. But have you ever considered the idea of a cosmic velocity web? In a new study led by Daniel Pomarde (IRFU CEA-Saclay, France), a team of scientists has built a detailed 3D view of the flows in our universe, showing in particular motions along filaments and in collapsing knots. In the image above (click for the full view), surfaces of knots (red) are embedded within surfaces of filaments (grey). The rainbow lines show the flow motion, revealing acceleration (redder tones) toward knots and retardation (bluer tones) beyond them. You can learn more about Pomarde and collaborators work and see their unusual and intriguing visualizationsin the video they produced, below. Check out the original paper for more information.CitationDaniel Pomarde et al 2017 ApJ 845 55. doi:10.3847/1538-4357/aa7f78

  5. Out-of-plane ultrasonic velocity measurement

    Science.gov (United States)

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  6. Gas-rise velocities during kicks

    Energy Technology Data Exchange (ETDEWEB)

    White, D.B. (Sedco Forex (FR))

    1991-12-01

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is caused by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.

  7. High-Velocity Paint Gun Injuries.

    Science.gov (United States)

    Wohltmann, Wendi E; Wisell, Joshua A; Lafrades, Celina M C; Cramer, Daniel M; Ragsdale, Bruce D

    2017-08-01

    Cutaneous injuries due to industrial high-pressure paint guns are well-documented in the literature; however, the histologic characteristics are uncommonly described, and facial involvement has not been previously reported. Histopathologic features of paint gun injuries vary depending on the time since injection and type of material. Early lesions display an acute neutrophilic infiltrate, edema, and thrombosis, with varying degrees of skin, fat, and muscle necrosis. More developed lesions (120-192 hours after injury) have prominent histiocytes and fibrosis around necrotic foci, possibly with the pitfall of muscle regenerative giant cells that could be mistaken for sarcoma. Continuing inflammation, swelling, and resultant vascular compression could explain ongoing necrosis months after the accident. The histopathologic differential diagnosis in the absence of clinical history includes paint in an abrasion, foreign body reaction to tattoo, giant cell tumor of tendon sheath, and various neoplasms. If available, radiologic studies can substitute for clinical photographs to indicate the extent of injury. The radiologic differential, uninformed by history, may include calcific periarthritis, gouty tophus, and tumoral calcinosis. Seven cases of injury due to high-velocity paint guns are presented with 4 additional cases mimicking paint gun injury and with review of the literature.

  8. Radial Velocity Variability of Field Brown Dwarfs

    Science.gov (United States)

    Prato, L.; Mace, G. N.; Rice, E. L.; McLean, I. S.; Kirkpatrick, J. Davy; Burgasser, A. J.; Kim, Sungsoo S.

    2015-07-01

    We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ˜ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ˜2 km s-1, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.

  9. GEODVEL, MORVEL, and the velocity of Earth's center (Invited)

    Science.gov (United States)

    Argus, D.; Gordon, R. G.; Demets, C.

    2010-12-01

    Estimates of plate velocities from geodesy depend on the velocity of Earth’s center, which is the point relative to which geodetic site motions are described. In GEODVEL [Argus et al. 2010], a set of estimates of the velocities of 11 plates from space observations from GPS, SLR, VLBI, and DORIS over 25 yr, we define Earth’s center to be (CE) the mass center of solid Earth. We simultaneously estimate the angular velocities of the plates and the velocity of CE assuming that, besides plate motion, the parts of the plate interiors not near the late Pleistocene ice sheets are not moving horizontally relative to CE, that is, that these parts of the plate interiors are rigid laterally. We find the velocity of CE to differ significantly from the velocity of CM in ITRF2005 and ITRF2008. The velocity of CE that we estimate is likely nearer the velocity of (CM) the composite mass center of solid Earth, oceans, and atmosphere than the estimates in ITRF2005 and ITRF2008 because (1) no phenomena can sustain a velocity between CE and CM, (2) the plate interiors are indeed nearly rigid, and (3) estimates of the velocity of CM from SLR observation of satellite LAGEOS differ between ITRF2000 and ITRF2005 by an unacceptably large 1.8 mm/yr. Plate velocities in GEODVEL differ significantly from those in geologically current plate motion model MORVEL [DeMets et al. 2010], which is estimated mainly from transform azimuths and spreading rates from magnetic anomalies 1 to 3 Myr. The median vector difference between the GEODVEL and MORVEL sets of angular velocities is 0.046 °/Myr, which is on average ≈2.5 mm/yr along Earth’s surface. The biggest change in plate velocity since 3 Ma is that the east component of velocity of the Nazca plate has slowed. A second big change is that the north component of velocity of Nubia, Arabia, and India relative to Eurasia has slowed, because continental crust is difficult to subduct. The velocities of composite plates (e.g. Nubia, Somalia and

  10. Continuous model of the regional velocity field for Poland

    Science.gov (United States)

    Bogusz, J.; Figurski, M.; Kontny, B.; Grzempowski, P.; Klos, A.

    2012-04-01

    The poster presents modern determinations of the regional velocity field for Poland. The research is based on the ASG-EUPOS, Polish multifunctional GNNS network and performed within the developmental project of the Polish Ministry of Science and Higher Education. The network of the satellite-based sites consisted of above 130 Polish sites together with the selected number of European sites operating within EPN (EUREF Permanent Network). Data came from three-year period, which is the minimum number for the horizontal velocity determinations. The velocities were calculated within the discrete network related to the GNSS sites' distribution and then interpolated to the regular grid. The discussion on the interpolation methods is also included. To the interpolation of the velocity field kriging, spline and other functions were used. Assessment of the accuracy of the velocity on the interpolated points and tests of significance were also described. Developed models of the velocities field could indicate geodynamical activity on the area of Poland.

  11. Back to epicycles - relativistic Coulomb systems in velocity space

    Science.gov (United States)

    Ben-Ya'acov, Uri

    2017-05-01

    The study of relativistic Coulomb systems in velocity space is prompted by the fact that the study of Newtonian Kepler/Coulomb systems in velocity space, although less familiar than the analytic solutions in ordinary space, provides a much simpler (also more elegant) method. The simplicity and elegance of the velocity-space method derives from the linearity of the velocity equation, which is the unique feature of 1/r interactions for Newtonian and relativistic systems alike. The various types of possible trajectories are presented, their properties deduced from the orbits in velocity space, accompanied with illustrations. In particular, it is found that the orbits traversed in the relativistic velocity space (which is hyperbolic (H 3) rather than Euclidean) are epicyclic - circles whose centres also rotate - thus the title. Dedicated to the memory of J. D. Bekenstein - physicist, teacher and human

  12. Optimisation of the mean boat velocity in rowing.

    Science.gov (United States)

    Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P

    2012-01-01

    In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement.

  13. The Apparent Velocity and Acceleration of Relativistically Moving Objects

    CERN Document Server

    Berlet, Austen; Chishtie, Farrukh; Houde, Martin

    2011-01-01

    Although special relativity limits the actual velocity of a particle to $c$, the velocity of light, the observed velocity need not be the same as the actual velocity as the observer is only aware of the position of a particle at the time in the past when it emits the detected signal. We consider the apparent speed and acceleration of a particle in two cases, one when the particle is moving with a constant speed and the other when it is moving with a constant acceleration. One curious feature of our results is that in both cases, if the actual velocity of the particle approaches $c$, then the apparent velocity approaches infinity when it is moving toward the observer and $c/2$ when it is moving away from the observer.

  14. Moisture content effect on ultrasonic velocity in Goupia glabra

    Directory of Open Access Journals (Sweden)

    Fabiana Goia Rosa de Oliveira

    2005-03-01

    Full Text Available This paper discusses the application of ultrasound waves on a Brazilian hardwood, Goupia glabra, to evaluate the sensitivity of the ultrasonic technique to the moisture content in wood. The velocity of ultrasonic wave is sensitive to the material's quality-determining factors; hence, this technique is an important industrial tool to improve the quality control of processes. The nature of the response of velocity of sound to changes in moisture content led us to conclude that moisture gradients during drying exert a dominating effect. The ultrasonic velocity was measured both parallel and perpendicular to the fibers of Goupia glabra during drying from green to 6% moisture content. The results of this study showed that velocity of ultrasonic waves is sensitive to changes in moisture content of lumber during drying. The velocity under dry conditions was always higher than the velocity under more humid conditions, in both directions of propagation.

  15. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  16. Demonstrating the Direction of Angular Velocity in Circular Motion

    Science.gov (United States)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  17. Effective diffusion equation in a random velocity field

    Science.gov (United States)

    Vinals, Jorge; Sekerka, Robert F.

    1992-01-01

    The effects are studied of assumed random velocity fields on diffusion in a binary fluid. Random velocity fields can result, for example, from the high-frequency components of residual accelerations onboard spacecraft (often called g-jitter). An effective diffusion equation is derived for an average concentration which includes spatial and temporal correlations induced by the fluctuating velocity fields assumed to be Gaussianly distributed. The resulting equation becomes nonlocal, and if correlations between different components of the velocity field exist, it is also anisotropic. The simple limiting case of short correlation times is discussed and an effective diffusivity is obtained which reflects the enhanced mixing caused by the velocity fields. The results obtained in the limit of short correlation times are valid even if the probability distribution of the velocity field is not Gaussian.

  18. Kinematic analysis of Sculptor Group galaxies

    NARCIS (Netherlands)

    Schoenmakers, RHM; Valtonen, MJ; Flynn, C

    2000-01-01

    An analysis of the kinematics of the five major spiral galaxies in the Sculptor Group is presented. These galaxies are analyzed using the method of harmonic expansion of the velocity field as described in Schoenmakers, Franx and de Zeeuw (1997). Three different types of kinematic distortions were

  19. Dynamics of fluid-conveying pipes: effects of velocity profiles

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    Varying velocity profiles and internal fluid loads on fluid-conveying pipes are investigated. Different geometric layouts of the fluid domain and inflow velocity profiles are considered. It is found that the variation of the velocity profiles along the bended pipe is considerable. A determination...... of the resulting fluid loads on the pipe walls is of interest e.g, for evaluating the dynamical behaviour of lightly damped structures like Coriolis flow meters....

  20. Paintball velocity as a function of distance traveled

    OpenAIRE

    Pat Chiarawongse; Arcan Chirathivat

    2008-01-01

    The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected...

  1. Background velocity inversion by phase along reflection wave paths

    KAUST Repository

    Yu, Han

    2014-08-05

    A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.

  2. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  3. Multi Point Velocity, Density and Temperature Measurements using LITA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced thermal acoustics (LITA) is a nonintrusive, transient-grating optical technique that provides simultaneous high-accuracy measurements of velocity,...

  4. Stopping power of Au for silver ions at low velocities

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, R.V. E-mail: ribas@if.usp.br; Medina, N.H.; Added, N.; Oliveira, J.R.B.; Cybulska, E.W.; Rao, M.N.; Seale, W.A.; Brandolini, F.; Rizzutto, M.A.; Alcantara-Nunez, J.A

    2003-12-01

    Energy loss measurements for the slowing down of Ag ions in Au, in the velocity range 1.6v{sub 0}velocity, are presented. The measurements were performed using the Doppler shift technique and also with a new method, where a secondary beam of low velocity heavy ions is produced by elastic scattering of the accelerated beam. The results are compared to the SRIM2000 calculations (www.srim.org) and to recent measurements in this velocity region.

  5. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... estimation and spectral estimates is presented. The variation of the blood flow angle and the effect on the velocity estimate is investigated. The right common carotid arteries of three healthy volunteers were scanned. Real-time spectral and vector flow data were obtained simultaneously from one range gate...

  6. Modified Feynman ratchet with velocity-dependent fluctuations

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2004-03-01

    Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.

  7. Effects of physical variables on settling velocities of calcium and ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Effects of physical variables on settling velocities of calcium and strontium phosphates ... Department of Chemistry, Rivers State University of Science & Technology, Port Harcourt, Nigeria .... simplified stoichiometric chemical reactions.

  8. Motion planning in dynamic environments using velocity obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Fiorini, P. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Shiller, Z. [Univ. of California, Los Angeles, CA (United States). Dept. of Mechanical, Nuclear, and Aerospace Engineering

    1998-07-01

    This paper presents a method for robot motion planning in dynamic environments. It consists of selecting avoidance maneuvers to avoid static and moving obstacles in the velocity space, based on the current positions and velocities of the robot and obstacles. It is a first-order method, since it does not integrate velocities to yield positions as functions of time. The avoidance maneuvers are generated by selecting robot velocities outside of the velocity obstacles, which represent the set of robot velocities that would result in a collision with a given obstacle that moves at a given velocity, at some future time. To ensure that the avoidance maneuver is dynamically feasible, the set of avoidance velocities is intersected with the set of admissible velocities, defined by the robot`s acceleration constraints. computing new avoidance maneuvers at regular time intervals accounts for general obstacle trajectories. The trajectory from start to goal is computed by searching a tree of feasible avoidance maneuvers, computed at discrete time intervals. An exhaustive search of the tree yields near-optimal trajectories that either minimize distance or motion time. A heuristic search of the tee is applicable to on-line planning. The method is demonstrated for point and disk robots among static and moving obstacles, and for an automated vehicle in an intelligent vehicle highway system scenario.

  9. Paintball velocity as a function of distance traveled

    Directory of Open Access Journals (Sweden)

    Pat Chiarawongse

    2008-06-01

    Full Text Available The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected. The average muzzle velocity of the paint balls is found with an estimate of the drag coefficient

  10. Paintball velocity as a function of distance traveled

    Directory of Open Access Journals (Sweden)

    Pat Chiarawongse

    2008-06-01

    Full Text Available The relationship between the distance a paintball travels through air and its velocity is investigated by firing a paintball into a ballistic pendulum from a range of distances. The motion of the pendulum was filmed and analyzed by using video analysis software. The velocity of the paintball on impact was calculated from the maximum horizontal displacement of the pendulum. It is shown that the velocity of a paintball decreases exponentially with distance traveled, as expected. The average muzzle velocity of the paint balls is found with an estimate of the drag coefficient.

  11. New technology - demonstration of a vector velocity technique

    DEFF Research Database (Denmark)

    Møller Hansen, Peter; Pedersen, Mads M; Hansen, Kristoffer L

    2011-01-01

    With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60-70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner. In this pa......With conventional Doppler ultrasound it is not possible to estimate direction and velocity of blood flow, when the angle of insonation exceeds 60-70°. Transverse oscillation is an angle independent vector velocity technique which is now implemented on a conventional ultrasound scanner...

  12. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  13. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert A., E-mail: rbrown@stsci.edu [Space Telescope Science Institute (United States)

    2015-06-01

    We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass. For the coronagraphs, WFIRST-C and EXO-C, the most likely number of good estimators of true mass is currently zero. For the star shades, EXO-S and WFIRST-S, the most likely numbers of good estimators are three and four, respectively, including GJ 676 A b and 16 Cyg B b. We expect that uncertain orbital elements currently undermine all potential programs of direct imaging and spectroscopy of RV exoplanets.

  14. The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements

    Science.gov (United States)

    Carroll, R.D.

    1969-01-01

    A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.

  15. Whole blood viscosity and cerebral blood flow velocities in obese hypertensive or obese normotensive adolescents.

    Science.gov (United States)

    Akcaboy, Meltem; Nazliel, Bijen; Goktas, Tayfun; Kula, Serdar; Celik, Bülent; Buyan, Necla

    2018-01-26

    Obesity affects all major organ systems and leads to increased morbidity and mortality. Whole blood viscosity is an important independent regulator of cerebral blood flow. The aim of the present study was to evaluate the effect of whole blood viscosity on cerebral artery blood flow velocities using transcranial Doppler ultrasound in pediatric patients with obesity compared to healthy controls and analyze the effect of whole blood viscosity and blood pressure status to the cerebral artery blood flow velocities. Sixty patients with obesity diagnosed according to their body mass index (BMI) percentiles aged 13-18 years old were prospectively enrolled. They were grouped as hypertensive or normotensive according to their ambulatory blood pressure monitoring. Whole blood viscosity and middle cerebral artery velocities by transcranial Doppler ultrasound were studied and compared to 20 healthy same aged controls. Whole blood viscosity values in hypertensive (0.0619±0.0077 poise) and normotensive (0.0607±0.0071 poise) groups were higher than controls (0.0616±0.0064 poise), with no significance. Middle cerebral artery blood flow velocities were higher in the obese hypertensive (73.9±15.0 cm/s) and obese normotensive groups (75.2±13.5 cm/s) than controls (66.4±11.5 cm/s), but with no statistical significance. Physiological changes in blood viscosity and changes in blood pressure did not seem to have any direct effect on cerebral blood flow velocities, the reason might be that the cerebral circulation is capable of adaptively modulating itself to changes to maintain a uniform cerebral blood flow.

  16. Shear-wave velocity structure of young Atlantic Lithosphere from dispersion analysis and waveform modelling of Rayleigh waves

    Science.gov (United States)

    Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven

    2016-04-01

    The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.

  17. Coherent control of light-pulse propagation in a Raman induced grating

    Science.gov (United States)

    Arkhipkin, V. G.; Myslivets, S. A.

    2017-05-01

    We study light-pulse propagation in a dynamically controllable periodic structure (grating) resulting from Raman interaction of a weak probe pulse with a standing-wave pump and a second control laser field in N-type four-level atomic media. The grating is induced due to periodic spatial modulation of the Raman gain in a standing pump field (Raman gain grating). We show that it is possible to control both the probe pulse amplitude and the group velocity of the pulse from subluminal to superluminal by varying the pump or control field. Such a grating is of interest for all-optical switches and transistors.

  18. Lens Design Using Group Indices of Refraction

    Science.gov (United States)

    Vaughan, A. H.

    1995-01-01

    An approach to lens design is described in which the ratio of the group velocity to the speed of light (the group index) in glass is used, in conjunction with the more familiar phase index of refraction, to control certain chromatic properties of a system of thin lenses in contact. The first-order design of thin-lens systems is illustrated by examples incorporating the methods described.

  19. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    During a summer monsoon season each year, severe weather phenomena caused by front, mesoscale convective systems, or typhoons often occur in the southern Korean Peninsula where is mostly comprised of complex high mountains. These areas play an important role in controlling formation, amount, and distribution of rainfall. As precipitation systems move over the mountains, they can develop rapidly and produce localized heavy rainfall. Thus observational analysis in the mountainous areas is required for studying terrain effects on the rapid rainfall development and its microphysics. We performed intensive field observations using two s-band operational weather radars around Mt. Jiri (1950 m ASL) during summertime on June and July in 2015-2016. Observation data of DSD (Drop Size Distribution) from Parsivel disdrometer and (w component) vertical velocity data from ultrasonic anemometers were analyzed for Typhoon Chanhom on 12 July 2015 and the heavy rain event on 1 July 2016. During the heavy rain event, a dual-Doppler radar analysis using Jindo radar and Gunsan radar was also conducted to examine 3-D wind fields and vertical structure of reflectivity in these areas. For examining up-/downdrafts in the windward or leeward side of Mt. Jiri, we developed a new scheme technique to estimate vertical velocities (w) from drop size and fall velocity spectra of Parsivel disdrometers at different stations. Their comparison with the w values observed by the 3D anemometer showed quite good agreement each other. The Z histogram with regard to the estimated w was similar to that with regard to R, indicating that Parsivel-estimated w is quite reasonable for classifying strong and weak rain, corresponding to updraft and downdraft, respectively. Mostly, positive w values (upward) were estimated in heavy rainfall at the windward side (D1 and D2). Negative w values (downward) were dominant even during large rainfall at the leeward side (D4). For D1 and D2, the upward w percentages were

  20. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology

    Science.gov (United States)

    Luo, Di; Cai, Feng; Wu, Zhiqiang

    2017-06-01

    When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.

  1. [Intracranial blood flow velocities evaluated by color Doppler (duplex) in preterm infants].

    Science.gov (United States)

    de Assis, Marcelo Cardoso; Machado, Helio Rubens

    2004-03-01

    In order to ascertain the blood flow velocities in the intracranial arteries we evaluated 73 preterm neonates during a period ranging from June 1994 to March 1999. These preterm infants were divided in two separate groups, 18 healthy and 55 with intracranial hemorrhage. They were subjected to sequential measurements of blood flow velocities in the intracranial arteries. The gestational age of the whole group varied from 28 to 36 weeks and birth weights between 720 and 2530 g. The diagnosis of the intracerebral hemorrhages in these preterm neonates were done using high resolution gray and color scale transfontanellar ultrasonography brain scans. The ultrasound evaluations were performed in the initial 3rd, 7th and 14th day of life. The 73 preterm infants were evaluated with sequential measurements of blood flow velocity in the intracranial arteries using the Doppler technique through the anterior fontanelle. Doppler evaluation of the cerebral vessels were performed on days 3, 7, 30 and 90 of life. These evaluations were performed in the six intracranial arteries, meaning: right and left anterior and middle cerebral arteries and right and left internal carotid arteries. Doppler recordings were made using Duplex Color-Doppler system, pulse echo probe of 3,5; 5,0 and 7,5 MHz. Measuring the blood flow velocity in the cerebral arteries we obtained a maximum systolic velocity and end diastolic velocity with a rate in meters per second (m/s) for each cardiac cycle. After obtaining these numerical values for these velocities we obtained the resistance index (RI) or Pourcelot index. In a progressive way as the resistance index (RI) values were being obtained in each stage of this study they were also being checked in the cerebral arteries of healthy preterm infants and infants with intracranial hemorrhages. We also analyzed in a comparative method the values of the resistive index between the two groups of preterm infants observing their behaviour. The results obtained when

  2. The velocity ellipsoid in the Galactic disc using Gaia DR1

    Science.gov (United States)

    Anguiano, Borja; Majewski, Steven R.; Freeman, Kenneth C.; Mitschang, Arik W.; Smith, Martin C.

    2018-02-01

    The stellar velocity ellipsoid of the solar neighbour (d groups with high-quality chemistry data together with parallaxes and proper motions from Gaia DR1. We find the average velocity dispersion values for the three space velocity components for the thin and thick discs of (σU, σV, σW)thin = (33 ± 4, 28 ± 2, 23 ± 2) and (σU, σV, σW)thick = (57 ± 6, 38 ± 5, 37 ± 4) km s-1, respectively. The mean values of the ratio between the semi-axes of the velocity ellipsoid for the thin disc are found to be σV/σU = 0.70 ± 0.13 and σW/σU is 0.64 ± 0.08, while for the thick disc σV/σU = 0.67 ± 0.11 and σW/σU is 0.66 ± 0.11. Inputting these dispersions into the linear Strömberg relation for the thin disc groups, we find the Sun's velocity with respect to the Local Standard of Rest in Galactic rotation to be V⊙ = 13.9 ± 3.4 km s-1. A relation is found between the vertex deviation and the chemical abundances for the thin disc, ranging from -5 to +40° as iron abundance increases. For the thick disc we find a vertex deviation of luv ˜- 15°. The tilt angle (luw) in the U-W plane for the thin disc groups ranges from -10 to +15°, but there is no evident relation between luw and the mean abundances. However, we find a weak relation for luw as a function of iron abundances and α-elements for most of the groups in the thick disc, where the tilt angle decreases from -5 to -20° when [Fe/H] decreases and [α/Fe] increases. The velocity anisotropy parameter is independent of the chemical group abundances and its value is nearly constant for both discs (β ˜ 0.5), suggesting that the combined disc is dynamically relaxed.

  3. On the origin of high-velocity runaway stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2009-01-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100 M-circle dot star or a more massive one, formed through runaway mergers of ordinary

  4. Anisotropic parameter estimation using velocity variation with offset analysis

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A. [Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, 40132 (Indonesia)

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ε and δ, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter δ. The second method is inversion method using linear approach where vertical velocity, δ, and ε is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that δ value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ε value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  5. The structural significance of seismic velocity reversals - an overview

    African Journals Online (AJOL)

    ... of the areas and deviation from this was observed within the geopressured shales. These low velocity zones constitute anomalies that are not only geophysically significant but have structural definition. Keywords: seismic velocity reversals, Niger Delta Nigeria Journal of Pure and Applied Physics Vol. 4(1) 2005: 75-81 ...

  6. High velocity impact on textile reinformced composties (CD-rom)

    NARCIS (Netherlands)

    Warnet, Laurent; Akkerman, Remko; Ravensberg, M.; Ishikawa, T.; Hojo, M.; Sugimoto, S.; Ogasarawa, T.; Kageyama, K.; Takeda, N.

    2007-01-01

    Failure behavior of fiber reinforced plastics is a complex issue. Under impact conditions, the behavior depends among other aspects, on the structure formed by the fibers, the impact velocity and the geometry considered. A newly built gas-gun facility for high velocity impact (HSI) at the University

  7. Strong velocity effects in collisions of He+ with fullerenes

    NARCIS (Netherlands)

    Schlatholter, T; Hadjar, O; Hoekstra, R; Morgenstern, R

    1999-01-01

    We have studied fragmentation and ionization of C-60 by He+ impact over a velocity range from 0.1 to 1 a.u. where a transition from vibrational to electronic excitation is predicted. With increasing velocity we observe a strong decrease of evaporative processes (C-60-2m(r+) peaks) and a linearly

  8. Velocity anisotropy in the Niger Delta sediments derived from ...

    African Journals Online (AJOL)

    Seismic velocities decrease and increase laterally and vertically, respectively, towards the coast. These variations are attributable to the lateral and vertical changes in the degrees of compaction coastward and reduction in porosity with depth. Three zones of steep, moderate and slow velocity gradients, respectively, have ...

  9. Acceleration of objects to high velocity by electromagnetic forces

    Science.gov (United States)

    Post, Richard F

    2017-02-28

    Two exemplary approaches to the acceleration of projectiles are provided. Both approaches can utilize concepts associated with the Inductrack maglev system. Either of them provides an effective means of accelerating multi-kilogram projectiles to velocities of several kilometers per second, using launchers of order 10 meters in length, thus enabling the acceleration of projectiles to high velocities by electromagnetic forces.

  10. Novel approach for prediction of ultrasonic velocity in quaternary ...

    Indian Academy of Sciences (India)

    2 lists the values of the experimental ultrasonic velocity taken from literature [5], theoretically computed values of ultrasonic velocity using Flory relation, Auerbach and Altenberg relations along with their average percentage deviations at 298.15. K, using eqs (1), (2) and (5). Figures 1a–c provide a graphical representation of ...

  11. Unique determination of structure and velocity by 3-D tomographic ...

    African Journals Online (AJOL)

    In this paper the cause of this velocity-depth ambiguity is examined and a methodology is proposed that minimizes non-uniqueness in the inversion results. It is shown that simultaneous inversion of zero offset and offset reflection data as well as refraction data can reproduce accurate velocity-depth model using only certain ...

  12. Planck intermediate results: XIII. Constraints on peculiar velocities

    DEFF Research Database (Denmark)

    Cardoso, J.-F.; Delabrouille, J.; Ganga, K.

    2014-01-01

    (CMB) radiation at that redshift, i.e., the kSZ monopole, amounts to 72 ± 60 km s-1. This constitutes less than 1% of the relative Hubble velocity of the cluster sample with respect to our local CMB frame. While the linear ΛCDM prediction for the typical cluster radial velocity rms at z = 0.15 is close...

  13. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    Science.gov (United States)

    Moos, Daniel

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  14. The velocity hodograph for an arbitrary Keplerian motion

    Science.gov (United States)

    Butikov, Eugene I.

    2000-07-01

    An interesting, useful, and simple, but not widely known property of Keplerian motion relating to the circular shape of the orbit in velocity space is discussed in this paper. The property is illustrated by a computer simulation program. A simple dynamical derivation of the circular shape of the velocity hodograph is suggested.

  15. Impact of lithologic heterogeneity on acoustic velocities in the Bornu ...

    African Journals Online (AJOL)

    Gamma ray logs were used for the lithological delineation; the computation of porosity and compressional (acoustic) wave velocity was achieved utilizing sonic logs while the sediments bulk density was determined from density log. The analysis of compressional wave velocity with depth confirms a general trend of ...

  16. The shape of the velocity ellipsoid in NGC 488

    NARCIS (Netherlands)

    Gerssen, J; Kuijken, K; Merrifield, MR

    1997-01-01

    Theories of stellar orbit diffusion in disc galaxies predict different rates of increase of the velocity dispersions parallel and perpendicular to the disc plane, and it is therefore of interest to measure the different velocity dispersion components in galactic discs of different types. We show

  17. Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom

    NARCIS (Netherlands)

    Zhubayev, Alimzhan; Houben, M.E.|info:eu-repo/dai/nl/370588843; Smeulders, David; Barnhoorn, A.|info:eu-repo/dai/nl/304843636

    We have conducted ultrasonic experiments, between 0.3 and 1 MHz, to measure velocity and attenuation (Q−1) anisotropy of P- and S-waves in dry Whitby Mudstone samples as a function of stress. We found the degree of anisotropy to be as large as 70% for velocity and attenuation. The sensitivity of

  18. Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom

    NARCIS (Netherlands)

    Zhubayev, A.; Houben, M.E.; Smeulders, D.M.J.; Barnhoorn, A.

    2015-01-01

    We have conducted ultrasonic experiments, between 0.3 and 1 MHz, to measure velocity and attenuation (Q?1) anisotropy of P- and S-waves in dry Whitby Mudstone samples as a function of stress. We found the degree of anisotropy to be as large as 70% for velocity and attenuation. The sensitivity of

  19. The Radial Velocity Experiment (RAVE) : First data release

    NARCIS (Netherlands)

    Steinmetz, M.; Zwitter, T.; Siebert, A.; Watson, F. G.; Freeman, K. C.; Munari, U.; Campbell, R.; Williams, M.; Seabroke, G. M.; Wyse, R. F. G.; Parker, Q. A.; Bienayme, O.; Roeser, S.; Gibson, B. K.; Gilmore, G.; Grebel, E. K.; Navarro, J. F.; Burton, D.; Cass, C. J. P.; Dawe, J. A.; Fiegert, K.; Hartley, M.; Russell, K. S.; Saunders, W.; Enke, H.; Bailin, J.; Binney, J.; Bland-Hawthorn, J.; Boeche, C.; Dehnen, W.; Eisenstein, D. J.; Evans, N. W.; Fiorucci, M.; Fulbright, J. P.; Gerhard, O.; Jauregi, U.; Kelz, A.; Mijovic, L.; Minchev, I.; Parmentier, G.; Penarrubia, J.; Quillen, A. C.; Read, M. A.; Ruchti, G.; Scholz, R. -D.; Siviero, A.; Smith, M.C.; Sordo, R.; Veltz, L.; Vidrih, S.; von Berlepsch, R.; Boyle, B. J.; Schilbach, E.; Helmi, A.

    2006-01-01

    We present the first data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph

  20. Measuring the equatorial plasma bubble drift velocities over Morroco

    Science.gov (United States)

    Lagheryeb, Amine; Benkhaldoun, Zouhair; Makela, Jonathan J.; Harding, Brian; Kaab, Mohamed; Lazrek, Mohamed; Fisher, Daniel J.; Duly, Timothy M.; Bounhir, Aziza; Daassou, Ahmed

    2015-08-01

    In this work, we present a method to measure the drift velocities of equatorial plasma bubbles (EPBs) in the low latitude ionosphere. To calculate the EPB drift velocity, we use 630.0-nm airglow images collected by the Portable Ionospheric Camera and Small Scale Observatory (PICASSO) system deployed at the Oukkaimden observatory in Morocco. To extract the drift velocity, the individual images were processed by first spatially registering the images using the star field. After this, the stars were removed from the images using a point suppression methodology, the images were projected into geographic coordinates assuming an airglow emission altitude of 250 km. Once the images were projected into geographic coordinates, the intensities of the airglow along a line of constant geomagnetic latitude (31°) are used to detect the presence of an EPB, which shows up as a depletion in airglow intensity. To calculate the EPB drift velocity, we divide the spatial lag between depletions found in two images (found by the application of correlation analysis) by the time difference between these two images. With multiple images, we will have several velocity values and consequently we can draw the EPB drift velocity curve. Future analysis will compare the estimates of the plasma drift velocity with the thermospheric neutral wind velocity estimated by a collocated Fabry-Perot interferometer (FPI) at the observatory.

  1. Friction model for the velocity dependence of nanoscale friction.

    Science.gov (United States)

    Tambe, Nikhil S; Bhushan, Bharat

    2005-10-01

    The velocity dependence of nanoscale friction is studied for the first time over a wide range of velocities between 1 microm s(-1) and 10 mm s(-1) on large scan lengths of 2 and 25 microm. High sliding velocities are achieved by modifying an existing commercial atomic force microscope (AFM) setup with a custom calibrated nanopositioning piezo stage. The friction and adhesive force dependences on velocity are studied on four different sample surfaces, namely dry (unlubricated), hydrophilic Si(100); dry, partially hydrophobic diamond-like carbon (DLC); a partially hydrophobic self-assembled monolayer (SAM) of hexadecanethiol (HDT); and liquid perfluoropolyether lubricant, Z-15. The friction force values are seen to reverse beyond a certain critical velocity for all the sample surfaces studied. A comprehensive friction model is developed to explain the velocity dependence of nanoscale friction, taking into consideration the contributions of adhesion at the tip-sample interface, high impact velocity-related deformation at the contacting asperities and atomic scale stick-slip. A molecular spring model is used for explaining the velocity dependence of friction force for HDT.

  2. Calibrating the Planck Cluster Mass Scale with Cluster Velocity Dispersions

    Science.gov (United States)

    Amodeo, Stefania; Mei, Simona; Stanford, Spencer A.; Bartlett, James G.; Melin, Jean-Baptiste; Lawrence, Charles R.; Chary, Ranga-Ram; Shim, Hyunjin; Marleau, Francine; Stern, Daniel

    2017-08-01

    We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra that were obtained at the Gemini observatory with the GMOS multi-object spectrograph. We correct our estimates for effects due to finite aperture, Eddington bias, and correlated scatter between velocity dispersion and the Planck mass proxy. The result for the mass bias parameter, (1-b), depends on the value of the galaxy velocity bias, {b}{{v}}, adopted from simulations: (1-b)=(0.51+/- 0.09){b}{{v}}3. Using a velocity bias of {b}{{v}}=1.08 from Munari et al., we obtain (1-b)=0.64+/- 0.11, i.e., an error of 17% on the mass bias measurement with 17 clusters. This mass bias value is consistent with most previous weak-lensing determinations. It lies within 1σ of the value that is needed to reconcile the Planck cluster counts with the Planck primary cosmic microwave background constraints. We emphasize that uncertainty in the velocity bias severely hampers the precision of the measurements of the mass bias using velocity dispersions. On the other hand, when we fix the Planck mass bias using the constraints from Penna-Lima et al., based on weak-lensing measurements, we obtain a positive velocity bias of {b}{{v}}≳ 0.9 at 3σ .

  3. Velocity modulation and rhythmic synchronization of gait in Huntington's disease.

    Science.gov (United States)

    Thaut, M H; Miltner, R; Lange, H W; Hurt, C P; Hoemberg, V

    1999-09-01

    This study analyzed the ability of patients with Huntington's disease (HD) to modulate gait velocity without external sensory cues and in response to an auditory rhythmic cue within a frequency entrainment design. Uncued gait patterns of 27 patients were first assessed during normal, slower, and faster self-paced walking. During rhythmic trials, metronome and musical beat patterns were delivered at rates 10% slower and 10-20% faster than baseline cadence to cue gait patterns. After the rhythmic trials, patients were retested at normal gait speed without rhythm. Gait velocities in the patients with HD were below normal reference values in all ranges. Patients were able to significantly (p music. The ability to modulate gait velocity was retained regardless of the severity of the disease. Gait velocity declined with an increase in disability and chorea score. The disability score differentiated better between gait velocity of moderately and severe patients than chorea score. Slowness of gait was significantly correlated only with disability score and not with chorea. Patients had more difficulty producing adequate step rates than stride lengths during normal and fast walking speeds. After the rhythmic trials, unpaced gait velocity remained significantly (p music declined more with severity of disease than metronome tracking. In summary, patients were able to modulate velocity with and without external cues. Velocity adaptations to the external rhythm in music and metronome were achieved without exact synchronization between step cadence and rhythmic stimulus.

  4. A classical model explaining the OPERA velocity paradox

    CERN Document Server

    Broda, Boguslaw

    2011-01-01

    In the context of the paradoxical results of the OPERA Collaboration, we have proposed a classical mechanics model yielding the statistically measured velocity of a beam higher than the velocity of the particles constituting the beam. Ingredients of our model necessary to obtain this curious result are a non-constant fraction function and the method of the maximum-likelihood estimation.

  5. Remarks on the Definition and Estimation of Friction Velocity

    Science.gov (United States)

    Weber, Rudolf O.

    One of the mainscaling parameters in similarity theory of the atmospheric boundary layer is friction velocity. Unfortunately, several definitions of friction velocity exist in the literature. Some authors use the component of the horizontal Reynolds stress vector in the direction of the mean wind vector to define friction velocity. Others define the friction velocity by means of the absolute value of the horizontal Reynolds stress vector. The two definitions coincide only if the direction of the mean wind vector is parallel to the horizontal Reynolds stress vector. In general, the second definition gives larger values for the friction velocity. Over complex terrain the situation is further complicated by the fact that the terrain following flow is not necessarily horizontal. Thus, several authors have proposed to use terrain following coordinate systems for the definition of friction velocity. By means of a large dataset of fast-response wind measurements with an ultrasonic anemometer the friction velocities resulting from the different definitions are compared. Furthermore, it is shown that friction velocity can be well estimated from horizontal wind speed, and even better from simple horizontal or vertical turbulence parameters.

  6. Photon Doppler Velocimetry Measurements of Transverse Surface Velocities

    Science.gov (United States)

    Johnson, Christopher R.; Lajeunesse, Jeff; Sable, Peter; Hatzenbihler, Ashley; Borg, John P.

    2017-06-01

    Photon Doppler Velocimetry (PDV) is a prominent optical diagnostic used for measuring displacement or velocity in dynamic experiments. A table-top experiment consisting of a 31mm diameter metal wheel mounted in a hand tool was setup to make steady state transverse surface velocity measurements using PDV for a range of velocities and surface preparations. The experiment consisted of PDV collimators positioned with respect to either the side or bottom face of the wheel at various angles to resolve transverse velocity components. Different preparations for the surface of the wheel were explored such as polishing, laser etching, chemical etching, mechanical milling, and retroreflective microspheres. Light return and transverse surface velocity were recorded for each surface preparation as a function of angle. Polished aluminum allowed adequate light return for only one degree from the normal of the wheel, while the retroreflective microspheres exhibited usable light for upwards of 30 degrees. Velocity measurements were performed over a range of 0 to 45 degrees from the surface normal of the rotating wheel for each surface preparation. Velocity measurements from the PDV experiments show good accuracy with theoretical wheel velocities between 0 and 10 m/s.

  7. On the measurement of vertical velocity by MST radar

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview is presented of the measurement of atmospheric vertical motion utilizing the MST radar technique. Vertical motion in the atmosphere is briefly discussed as a function of scale. Vertical velocity measurement by MST radars is then considered from within the context of the expected magnitudes to be observed. Examples are drawn from published vertical velocity observations.

  8. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  9. Path following mobile robot in the presence of velocity constraints

    DEFF Research Database (Denmark)

    Bak, Martin; Poulsen, Niels Kjølstad; Ravn, Ole

    2001-01-01

    This paper focuses on path following algorithms for mobile robots with velocity constraints on the wheels. The path considered consists of straight lines intersected with given angles. We present a fast real-time receding horizon controller which anticipates the intersections and smoothly controls...... the robot through the turnings while fulfilling the velocity constraints....

  10. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  11. Fat mass measured by DXA varies with scan velocity

    DEFF Research Database (Denmark)

    Black, Eva; Petersen, Liselotte; Kreutzer, Martin

    2002-01-01

    To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....

  12. Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles

    Science.gov (United States)

    2007-09-01

    CONTRACT NUMBER Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles DAAD 13-03-D-0017 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER SAIC Agreement...TERMS (Continued) Evaporation Agent fate Wind tunnel Velocity profile 2 PREFACE The work described in this report was authorized under Contract No. DAAD

  13. Myocardial velocities obtained by pulsed tissue Doppler in English Cocker Spaniels with dilated cardiomyopathy and congestive heart failure

    Directory of Open Access Journals (Sweden)

    Guilherme G. Pereira

    Full Text Available Abstract: Dilated cardiomyopathy (DCM is characterized by systolic myocardial dysfunction which is identified by low myocardial velocities obtained by pulsed tissue Doppler (PTD. However, increased preload is known to increase myocardial velocities which could overestimate myocardial function and turn dysfunction characterization into a challenge in dogs with DCM and congestive heart failure. To test the hypothesis that increased preload could hamper identification of low myocardial velocities in dogs with DCM and congestive heart failure the present study prospectively evaluated 32 English Cocker Spaniel dogs, being 16 with clinical DCM and 16 healthy for control purpose. The PTD analysis of regional velocities were performed in both longitudinal and radial myocardial displacements and systolic (Sm, early (Em and late diastolic (Am velocities were obtained in left ventricular free wall (LVFW and interventricular septum (IVS. Peak radial subendocardial and subepicardial Sm velocities were lower in DCM group compared to control (0.065±0.018 vs. 0.102±0.020m/s and 0.059±0.014 vs. 0.094±0.025m/s respectively; p<0.001. Peak longitudinal Sm velocities were lower in basal and medial portions of LVFW (0.093±0.034 vs. 0.155±0.034m/s and 0.091±0.033 vs. 0.134±0.037m/s respectively; p<0.001 and IVS (0.063±0.021 vs. 0.136±0.039 and 0.066±0.026 vs. 0.104±0.032m/s respectively; p<0.001. Most of diastolic velocities were not significantly different between groups, although advanced myocardial disease and dysfunction are expected in DCM group. Reduction in systolic basal and medial longitudinal myocardial velocities and in radial myocardial velocities was the most significant PTD findings. Increased preload did not represent a problem to evaluate systolic dysfunction by PTD in English Cocker Spaniels with DCM, but influence of preload on assessment of diastolic velocities should be better elucidated.

  14. An improved estimation and focusing scheme for vector velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Munk, Peter

    1999-01-01

    The full blood velocity vector must be estimated in medical ultrasound to give a correct depiction of the blood flow. This can be done by introducing a transversely oscillating pulse-echo ultrasound field, which makes the received signal influenced by a transverse motion. Such an approach...... was suggested in [1]. Here the conventional autocorrelation approach was used for estimating the transverse velocity and a compensation for the axial motion was necessary in the estimation procedure. This paper introduces a new estimator for determining the two-dimensional velocity vector and a new dynamic...... beamforming method. A modified autocorrelation approach employing fourth order moments of the input data is used for velocity estimation. The new estimator calculates the axial and lateral velocity component independently of each other. The estimation is optimized for differences in axial and lateral...

  15. Wave velocity characteristic for Kenaf natural fibre under impact damage

    Science.gov (United States)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  16. Velocity of escape from the Galaxy in the solar neighbourhood

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.B. (Royal Greenwich Observatory, Hailsham (UK))

    1982-11-01

    The expected properties of stars moving with extremely high velocities relative to the centre of the Galaxy are discussed. Although the kinematic behaviour of the fastest known subdwarfs is consistent with unbound orbits, observational upper limits on the numbers of faint giant stars in the general field strongly suggest that these subdwarfs are bound to the Galaxy. If this is the case, only a lower limit to the value of the velocity of escape in the solar neighbourhood can be obtained. After allowance for observational error, this lower limit is about 400 km s/sup -1/. Although all known subdwarfs are probably in bound orbits, there is evidence that the mode of origin of the peculiar velocities of subdwarfs with extremely large galactocentric velocities is different from that of other high-velocity stars.

  17. Improvement of the sensitivity in velocity sensing using dynamic speckles

    Science.gov (United States)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2017-12-01

    Dynamic speckle patterns can be used for imaging of relative velocity of moving objects in fields of biomedical and mechanical measurements. In spite of the widespread use of this method, the effect of speckle size on velocity sensing has not fully been estimated so far. In addition, effects of speckle contrast and random noises on the sensitivity of velocity sensing have not been investigated yet. In the present study, we estimated condition of image processing of speckle patterns for reducing effects of random noises with relation to linearity and sensitivity in velocity sensing. We further introduced binarization of the speckle pattern to improve the sensitivity in velocity sensing. Experiments were conducted for sample models using a diffusive plate and fluid flows to confirm the feasibility of the proposed method.

  18. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  19. Recoiling supermassive black hole escape velocities from dark matter haloes

    Science.gov (United States)

    Choksi, Nick; Behroozi, Peter; Volonteri, Marta; Schneider, Raffaella; Ma, Chung-Pei; Silk, Joseph; Moster, Benjamin

    2017-12-01

    We simulate recoiling black hole trajectories from z = 20 to z = 0 in dark matter haloes, quantifying how parameter choices affect escape velocities. These choices include the strength of dynamical friction, the presence of stars and gas, the accelerating expansion of the Universe (Hubble acceleration), host halo accretion and motion, and seed black hole mass. Lambda cold dark matter halo accretion increases escape velocities by up to 0.6 dex and significantly shortens return time-scales compared to non-accreting cases. Other parameters change orbit damping rates but have subdominant effects on escape velocities; dynamical friction is weak at halo escape velocities, even for extreme parameter values. We present formulae for black hole escape velocities as a function of host halo mass and redshift. Finally, we discuss how these findings affect black hole mass assembly as well as minimum stellar and halo masses necessary to retain supermassive black holes.

  20. Analyses of Current And Wave Forces on Velocity Caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Buhrkall, Jeppe; Eskesen, Mark C. D.

    2015-01-01

    leads the water into another pipe or tunnel system. A pressure gradient generated by the water level difference between the sea and basin drives the flow through the tunnel system. The tunnel system is often in the order of a couple kilometers long. Based on CFD analyses (computational fluid dynamics......Velocity caps are often used in connection with for instance offshore intake sea water for the use of for cooling water for power plants or as a source for desalinization plants. The intakes can also be used for river intakes. The velocity cap is placed on top of a vertical pipe. The vertical pipe......) this paper investigates the current and wave forces on the velocity cap and the vertical cylinder. The Morison’s force model was used in the analyses of the extracted force time series in from the CFD model. Further the distribution of the inlet velocities around the velocity cap was also analyzed in detail...

  1. Extremal inversion of lunar travel time data. [seismic velocity structure

    Science.gov (United States)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  2. Tracking moving radar targets with parallel, velocity-tuned filters

    Science.gov (United States)

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  3. Dielectric haloscopes: sensitivity to the axion dark matter velocity

    Science.gov (United States)

    Millar, Alexander J.; Redondo, Javier; Steffen, Frank D.

    2017-10-01

    We study the effect of the axion dark matter velocity in the recently proposed dielectric haloscopes, a promising avenue to search for well-motivated high mass (40-400 μeV) axions. We describe non-zero velocity effects for axion-photon mixing in a magnetic field and for the phenomenon of photon emission from interfaces between different dielectric media. As velocity effects are only important when the haloscope is larger than about 20% of the axion de Broglie wavelength, for the planned MADMAX experiment with 80 dielectric disks the velocity dependence can safely be neglected. However, an augmented MADMAX or a second generation experiment would be directionally sensitive to the axion velocity, and thus a sensitive measure of axion astrophysics.

  4. Directed percolation process in the presence of velocity fluctuations: Effect of compressibility and finite correlation time

    Science.gov (United States)

    Antonov, N. V.; Hnatič, M.; Kapustin, A. S.; Lučivjanský, T.; Mižišin, L.

    2016-01-01

    The direct bond percolation process (Gribov process) is studied in the presence of random velocity fluctuations generated by the Gaussian self-similar ensemble with finite correlation time. We employ the renormalization group in order to analyze a combined effect of the compressibility and finite correlation time on the long-time behavior of the phase transition between an active and an absorbing state. The renormalization procedure is performed to the one-loop order. Stable fixed points of the renormalization group and their regions of stability are calculated in the one-loop approximation within the three-parameter (ɛ ,y ,η ) expansion. Different regimes corresponding to the rapid-change limit and frozen velocity field are discussed, and their fixed points' structure is determined in numerical fashion.

  5. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M.R.; McKay, T.A.; /Michigan U.; Koester, B.; /Chicago U., Astron. Astrophys. Ctr.; Wechsler, R.H.; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.; Rozo, E.; /Ohio State U.; Evrard, A.; /Michigan U. /Michigan U., MCTP; Johnston, D.; /Caltech, JPL; Sheldon, E.; /New York U.; Annis, J.; /Fermilab; Lau, E.; /Chicago U., Astron. Astrophys. Ctr.; Nichol, R.; /Portsmouth U., ICG; Miller, C.; /Michigan U.

    2007-06-05

    The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster catalog identified from imaging data obtained in the Sloan Digital Sky Survey, we study the BCG--galaxy velocity correlation function. By modeling its non-Gaussianity, we measure the mean and scatter in velocity dispersion at fixed richness. The mean velocity dispersion increases from 202 {+-} 10 km s{sup -1} for small groups to more than 854 {+-} 102 km s{sup -1} for large clusters. We show the scatter to be at most 40.5{+-}3.5%, declining to 14.9{+-}9.4% in the richest bins. We test our methods in the C4 cluster catalog, a spectroscopic cluster catalog produced from the Sloan Digital Sky Survey DR2 spectroscopic sample, and in mock galaxy catalogs constructed from N-body simulations. Our methods are robust, measuring the scatter to well within one-sigma of the true value, and the mean to within 10%, in the mock catalogs. By convolving the scatter in velocity dispersion at fixed richness with the observed richness space density function, we measure the velocity dispersion function of the maxBCG galaxy clusters. Although velocity dispersion and richness do not form a true mass--observable relation, the relationship between velocity dispersion and mass is theoretically well characterized and has low scatter. Thus our results provide a key link between theory and observations up to the velocity bias between dark matter and galaxies.

  6. Muscle Fiber Conduction Velocity, Muscle Fiber Composition, and Power Performance.

    Science.gov (United States)

    Methenitis, Spyridon; Karandreas, Nikolaos; Spengos, Konstantinos; Zaras, Nikolaos; Stasinaki, Angeliki-Nikoletta; Terzis, Gerasimos

    2016-09-01

    The aim of this study was to explore the relationship between muscle fiber conduction velocity (MFCV), fiber type composition, and power performance in participants with different training background. Thirty-eight young males with different training background participated: sedentary (n = 10), endurance runners (n = 9), power trained (n = 10), and strength trained (n = 9). They performed maximal countermovement jumps (CMJ) and maximal isometric leg press for the measurement of the rate of force development (RFD). Resting vastus lateralis MFCV was measured with intramuscular microelectrodes on a different occasion, whereas muscle fiber type and cross-sectional area (CSA) of vastus lateralis were evaluated through muscle biopsies 1wk later. MFCV, CMJ power, RFD, and % CSA of type II and type IIx fibers were higher for the power-trained group (P power participants. Close correlations were found between MFCV and fiber CSA as well as the % CSA of all fiber types as well as with RFD and CMJ power (r = 0.712-0.943, P power performance. Significant models for the prediction of the % CSA of type IIa and type II as well as the CSA of all muscle fibers based upon MFCV, RFD, and CMJ were revealed (P = 0.000). MFCV is closely associated with muscle fiber % CSA. RFD and jumping power are associated with the propagation of the action potentials along the muscle fibers. This link is regulated by the size and the distribution of type II, and especially type IIx muscle fibers.

  7. Palliatives for Low Velocity Impact Damage in Composite Laminates

    Directory of Open Access Journals (Sweden)

    Mubarak Ali

    2017-01-01

    Full Text Available Fibre reinforced polymer laminated composites are susceptible to impact damage during manufacture, normal operation, maintenance, and/or other stages of their life cycle. Initiation and growth of such damage lead to dramatic loss in the structural integrity and strength of laminates. This damage is generally difficult to detect and repair. This makes it important to find a preventive solution. There has been abundance of research dealing with the impact damage evolution of composite laminates and methods to mitigate and alleviate the damage initiation and growth. This article presents a comprehensive review of different strategies dealing with development of new composite materials investigated by several research groups that can be used to mitigate the low velocity impact damage in laminated composites. Hybrid composites, composites with tough thermoplastic resins, modified matrices, surface modification of fibres, translaminar reinforcements, and interlaminar modifications such as interleaving, short fibre reinforcement, and particle based interlayer are discussed in this article. A critical evaluation of various techniques capable of enhancing impact performance of laminated composites and future directions in this research field are presented in this article.

  8. Geological variation in S-wave velocity structures in Northern Taiwan and implications for seismic hazards based on ambient noise analysis

    Science.gov (United States)

    Lai, Ya-Chuan; Huang, Bor-Shouh; Huang, Yu-Chih; Yao, Huajian; Hwang, Ruey-Der; Huang, Yi-Ling; Chang, Wen-Yen

    2014-12-01

    Ambient noise analysis in Northern Taiwan revealed obvious lateral variations related to major geological units. The empirical Green's functions extracted from interstation ambient noise were regarded as Rayleigh waves, from which we analyzed the group velocities for period from 3 to 6 s. According to geological features, we divided Northern Taiwan into seven subregions, for which regionalized group velocities were derived by using the pure-path method. On average, the group velocities in mountain areas were higher than those in the plain areas. We subsequently inverted the S-wave velocity structure for each subregion down to 6 km in depth. Following the analysis, we proposed the first models of geology-dependent shallow S-wave structures in Northern Taiwan. Overall, the velocity increased substantially from west to east; specifically, the mountain areas, composed of metamorphic rocks, exhibited higher velocities than did the coastal plain and basin, which consist of soft sediment. At a shallow depth, the Western Coastal Plain, Taipei Basin, and Ilan Plain displayed a larger velocity gradient than did other regions. At the top 3 km of the model, the average velocity gradient was 0.39 km/s per km for the Western Coastal Plain and 0.15 km/s per km for the Central Range. These S-wave velocity models with large velocity gradients caused the seismic waves to become trapped easily in strata and, thus, the ground motion was amplified. The regionalized S-wave velocity models derived from ambient noises can provide useful information regarding seismic wave propagation and for assessing seismic hazards in Northern Taiwan.

  9. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    Science.gov (United States)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-05-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  10. Towards an optimal sampling of peculiar velocity surveys for Wiener Filter reconstructions

    Science.gov (United States)

    Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan

    2017-06-01

    The Wiener Filter (WF) technique enables the reconstruction of density and velocity fields from observed radial peculiar velocities. This paper aims at identifying the optimal design of peculiar velocity surveys within the WF framework. The prime goal is to test the dependence of the reconstruction quality on the distribution and nature of data points. Mock data sets, extending to 250 h-1 Mpc, are drawn from a constrained simulation that mimics the local Universe to produce realistic mock catalogues. Reconstructed fields obtained with these mocks are compared to the reference simulation. Comparisons, including residual distributions, cell-to-cell and bulk velocities, imply that the presence of field data points is essential to properly measure the flows. The fields reconstructed from mocks that consist only of galaxy cluster data points exhibit poor-quality bulk velocities. In addition, the reconstruction quality depends strongly on the grouping of individual data points into single points to suppress virial motions in high-density regions. Conversely, the presence of a Zone of Avoidance hardly affects the reconstruction. For a given number of data points, a uniform sample does not score any better than a sample with decreasing number of data points with the distance. The best reconstructions are obtained with a grouped survey containing field galaxies: assuming no error, they differ from the simulated field by less than 100 km s-1 up to the extreme edge of the catalogues or up to a distance of three times the mean distance of data points for non-uniform catalogues. The overall conclusions hold when errors are added.

  11. Velocity-specific and time-dependent adaptations following a standardized Nordic Hamstring Exercise training.

    Science.gov (United States)

    Alt, T; Nodler, Y T; Severin, J; Knicker, A J; Strüder, H K

    2017-03-01

    The Nordic Hamstring Exercise (NHE) is effective for selective hamstring strengthening to improve muscle balance between knee flexors and extensors. The purpose of this study (within subject design of repeated measures) was to determine the effects of a standardized 4-week NHE training on thigh strength and muscle balance with concomitant kinetic and kinematic monitoring. Sixteen male sprinters (22 years, 181 cm, 76 kg) performed a standardized 4-week NHE training consisting of three sessions per week (each 3×3 repetitions). Six rope-assisted and six unassisted sessions were performed targeting at a constant knee extension angular velocity of ~15°/s across a ~90-100° knee joint range of motion. Kinetic (peak and mean moment, impulse) and kinematic parameters (eg, ROM to downward acceleration, ROMDWA ) were recorded during selected sessions. Unilateral isokinetic tests of concentric and eccentric knee flexors and extensors quantified muscle group-, contraction mode-, and velocity-specific training adaptations. Peak moments and contractional work demonstrated strong interactions of time with muscle group, contraction modes, and angular velocities (η²>.150). NHE training increased eccentric hamstring strength by 6%-14% as well as thigh muscle balance with biggest adaptations at 150°/s 2 weeks after NHE training. Throughout the training period significant increases (P.05). A 4-week NHE training significantly strengthened the hamstrings and improved muscle balance between knee flexors and extensors. Despite the slow training velocity, biggest adaptations emerged at the highest velocity 2 weeks after training ended. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Abnormal right ventricular tissue velocities after repair of congenital heart disease--implications for late outcomes.

    Science.gov (United States)

    Puranik, Rajesh; Greaves, Kim; Hawker, Richard E; Pressley, Lynne A; Robinson, Peter J; Celermajer, David S

    2007-08-01

    Although repair of Tetralogy of Fallot (TOF) and transposition of the great arteries (TGA) has facilitated survival into adulthood, many survivors have residual haemodynamic abnormalities, including exercise intolerance and late right ventricular (RV) failure. We studied 40 asymptomatic adult subjects (31.3+/-1.5 years) after congenital heart disease (CHD) surgery during childhood, using tissue Doppler echocardiography (TDE). We compared systolic (S') and diastolic (E' for early filling) RV and LV velocities, with 40 age matched controls (29.5+/-1.0 years). Both RV S' and E' velocities were significantly slower in the CHD group compared to controls (6.3+/-0.4 cm/s vs. 9.3+/-0.3 cm/s; 8.5+/-0.5 cm/s vs. 10.9+/-0.4 cm/s, respectively, p<0.001 for both). By contrast, LV S' and E' velocities were similar in both groups. Interestingly, in 50% of CHD subjects where RV function was reported as 'normal', both RV S' and E' velocities were significantly slower compared with controls (6.5+/-0.6 cm/s vs. 9.3+/-0.3 cm/s, p<0.0001 and 9.4+/-0.7 cm/s vs. 10.9+/-0.4 cm/s, p<0.05 respectively). RV S' and E' velocities are frequently abnormal in asymptomatic survivors of TOF and TGA repair, even where RV function appears 'normal'. Hence TDE during follow up may be a sensitive means of detecting pre-clinical abnormalities in RV performance.

  13. Lesion location associated with balance recovery and gait velocity change after rehabilitation in stroke patients.

    Science.gov (United States)

    Moon, Hyun Im; Lee, Hyo Jeong; Yoon, Seo Yeon

    2017-06-01

    Impaired gait function after stroke contributes strongly to overall patient disability. However, the response to rehabilitation varies between individuals. The aims of this study were to identify predictors of gait velocity change and to elucidate lesion location associated with change of balance and gait function. We reviewed 102 stroke patients. The patients were divided into two groups according to gait ability post-rehabilitation, and we analyzed differences in their characteristics, such as demographic information, lesion factors, and initial balance function. Multivariate regression analyses were performed to examine the predictors of rehabilitation response. Lesion location and volume were measured on brain magnetic resonance images. We generated statistical maps of the lesions related to functional gains in gait and balance using voxel-based lesion symptom mapping (VLSM). The group of patients who regained independent ambulation function showed a smaller lesion size, a shorter duration from stroke onset, and higher initial balance function. In the regression model, gait velocity changes were predicted with the initial Berg balance scale (BBS) and duration post-onset. Absolute BBS changes were also correlated with the duration post-onset and initial BBS, and relative BBS changes were predicted by the baseline BBS. Using VLSM, lesion locations associated with gait velocity changes and balance adjusting for other factors were the insula, internal capsule, and adjacent white matter. Initial balance function as well as the interval between stroke onset and the initiation of therapy might influence balance recovery and gait velocity changes. Damage to the insula and internal capsule also affected gait velocity change after rehabilitation.

  14. Determination of viscosity through terminal velocity: use of the drag force with a quadratic term in velocity

    DEFF Research Database (Denmark)

    Vertchenko, Lev; Vertchenko, Larissa

    2017-01-01

    A correction to the term with quadratic dependency of the velocity in the Oseen´s drag force by a dimensionless factor is proposed in order to determine the viscosity of glycerin through the measurement of the terminal velocity of spheres falling inside the fluid. This factor incorporates the eff...

  15. End-systolic stress-velocity relation and circumferential fiber velocity shortening for analysing left ventricular function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Fayssoil, A. [Cardiologie, Hopital europeen Georges Pompidou, 20, rue le blanc, Paris (France)], E-mail: fayssoil2000@yahoo.fr; Renault, G. [CNRS UMR 8104, Inserm, U567, Institut Cochin, Universite Paris Descartes, Paris (France); Fougerousse, F. [Genethon, RD, Evry (France)

    2009-08-15

    Traditionally, analysing left ventricular (LV) performance relies on echocardiography by evaluating shortening fraction (SF) in mice. SF is influenced by load conditions. End-systolic stress-velocity (ESSV) relation and circumferential fiber velocity (VcF) shortening are more relevant parameters for evaluating systolic function regardless load conditions particularly in mice's models of heart failure.

  16. The torque-velocity relationship in large human muscles: maximum voluntary versus electrically stimulated behaviour.

    Science.gov (United States)

    Pain, Matthew T G; Young, Fraser; Kim, Jinwoo; Forrester, Stephanie E

    2013-02-22

    The in vivo maximum voluntary torque-velocity profile for large muscle groups differs from the in vitro tetanic profile with lower than expected eccentric torques. Using sub-maximal transcutaneous electrical stimulation has given torque-velocity profiles with an eccentric torque plateau ∼1.4 times the isometric value. This is closer to, but still less than, the in vitro tetanic profiles with plateaus between 1.5 and 1.9 times isometric. This study investigated the maximum voluntary and sub-maximum transcutaneous electrical stimulated torque-angle-angular velocity profiles for the knee extensors and flexors in a group of healthy males. Fifteen male subjects performed maximum voluntary and sub-maximum electrically stimulated (∼40% for extensors and ∼20% for flexors) eccentric and concentric knee extension and flexions on an isovelocity dynamometer at velocities ranging from ±50°s(-1) to ±400°s(-1). The ratio of peak eccentric to peak isometric torque (T(ecc)/T(0)) was compared between the maximum voluntary and electrically stimulated conditions for both extensors and flexors, and between muscle groups. Under maximum voluntary conditions the peak torque ratio, T(ecc)/T(0), remained close to 1 (0.9-1.2) while for the electrically stimulated conditions it was significantly higher (1.4-1.7; pmuscle groups have an intrinsic T(ecc)/T(0) comparable with in vitro muscle tests, and it can be ascertained from appropriate in vivo testing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The effect of nonleading foot placement on power and velocity in the fencing lunge.

    Science.gov (United States)

    Gresham-Fiegel, Carolyn N; House, Paul D; Zupan, Michael F

    2013-01-01

    The fencing lunge is a sport-specific movement, which helps the fencer score quickly and accurately. The fencing lunge is executed from a stable guard position, with the toes of the leading foot pointing directly toward the opponent. As a result of coach or fencer preference, however, the angle of the nonleading foot may vary greatly among fencers, from acute (nonleading foot facing forward) to obtuse (nonleading foot facing slightly backward). Studies in other sports suggest that foot placement may affect the efficient use of leg muscles and influence the power produced. Twenty-five experienced fencers from the U.S. Air Force Academy fencing team executed lunges from 3 specific angles of nonleading foot placement and from the natural stance. Foot placements were measured as the angle of the nonleading foot from the line of the leading foot and were delimited to an acute angle (45°), a perpendicular angle (90°), and an obtuse angle (135°). The angle of natural stance was also determined for each participant. Velocity and power were measured with a TENDO Weightlifting Analyzer, and the data were analyzed with repeated measures analysis of variance. Two statistical groups were considered, one containing all participants (N = 25) and a second group of participants with a natural forward-deviated stance (n = 15). Significant differences appeared between the nonleading foot placements in peak power (p < 0.001), average power (p < 0.001), peak velocity (p < 0.001), and average velocity (p < 0.001) in both groups. Pairwise t-test results indicated that, for both statistical groups, a perpendicular placement of the feet produced the greatest power and velocity during lunging.

  18. The large low velocity province and the vertical flow beneath the Pacific

    Science.gov (United States)

    Kawai, K.; Geller, R. J.; Tsuchiya, T.

    2010-12-01

    Since tomographic studies found the large low velocity province (LLVP) (degree-2 pattern) in the lowermost mantle in 1980's, it has been controversial whether it is due to thermal effects, chemical heterogeneity, or both. Geodynamical studies have suggested that both effects can explain the LLVP but that the large thermo-chemical pile model is preferred (e.g., Bull et al. 2009). Our seismological group has developed waveform inversion techniques and applied them to data from recently deployed broad-band seismic arrays such as US-Array. We found that there are notable S-velocity decreases beneath the D" discontinuity as the CMB is approached within the high average velocity regions such as the lowermost mantle beneath Central America, the Arctic, and Siberia (Kawai et al. 2007a,b, 2009). We also found "S-shaped" velocity models in the lowermost mantle in regions with low average S-velocity such as beneath the western Pacific and the Pacific (Konishi et al. 2009; Kawai & Geller 2010a). We performed analyses based on ab-initio mineral physics (Kawai & Tsuchiya 2009), which showed that these velocity profiles can be explained by a simple thermal boundary layer (TBL) model with a CMB temperature of about 3800 K. The TBL model can also explain most of the important seismological properties in the lowermost mantle such as the LLVP, so that the large thermo-chemical pile model appears to be inappropriate. On the other hand, the S-velocity model beneath Hawaii requires the existence of localized chemical heterogeneity (Kawai & Geller 2010b), which could be due to an accumulated Fe-rich dense pile (Kawai & Tsuchiya in prep.). To better constrain the nature of the LLVP, we inverted the horizontal components of observed radial and transverse waveforms of S and ScS phases to determine the radial profile of TI shear wave velocity at the northeastern edge of the LLVP in the lowermost mantle beneath the Pacific (Kawai & Geller 2010c). We find that the radial (SV) component is 3

  19. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  20. 3D velocity distribution of P- and S-waves in a biotite gneiss, measured in oil as the pressure medium: Comparison with velocity measurements in a multi-anvil pressure apparatus and with texture-based calculated data

    Science.gov (United States)

    Lokajíček, T.; Kern, H.; Svitek, T.; Ivankina, T.

    2014-06-01

    . On the spherical sample with a point source and point receiver the first break at the velocity arrival time is suggested to define group velocities in most cases, whereas the receivers in the multi-anvil apparatus recorded the flat part of the wavefront, that is, phase velocities.

  1. Doping of Green Fluorescent Protein into Superfluid Helium Droplets: Size and Velocity of Doped Droplets.

    Science.gov (United States)

    Alghamdi, Maha; Zhang, Jie; Oswalt, Andrew; Porter, Joseph J; Mehl, Ryan A; Kong, Wei

    2017-09-14

    We report doping of green fluorescent protein from an electrospray ionization (ESI) source into superfluid helium droplets. From analyses of the time profiles of the doped droplets, we identify two distinct groups of droplets. The faster group has a smaller average size, on the order of 10(6) helium atoms/droplet, and the slower group is much larger, by at least an order of magnitude. The relative populations of these two groups depend on the temperature of the droplet source: from 11 to 5 K, the signal intensity of the slower droplet group gradually increases, from near the detection limit to comparable to that of the faster group. We postulate that the smaller droplets are formed via condensation of gaseous helium upon expansion from the pulsed valve, while the larger droplets develop from fragmentation of ejected liquid helium. Our results on the size and velocity of the condensation peak at higher source temperatures (>7 K) agree with previous reports, but those at lower temperatures (<7 K) seem to be off. We attribute this discrepancy to the masking effect of the exceedingly large droplets from the fragmentation peak in previous measurements of droplet sizes. Within the temperature range of our investigation, although the expansion condition changes from subcritical to supercritical, there is no abrupt change in either the velocity distribution or the size distribution of the condensation peak, and the most salient effect is in the increasing intensity of the fragmentation peak. The absolute doping efficiency, as expressed by the ratio of ion-doped droplets over the total number of ions from the ESI source, is on the order of 10(-4), while only hundreds of doped ions have been detected. Further improvements in the ESI source are key to extending the technology for future experiments. On the other hand, the separation of the two groups of droplets in velocity is beneficial for size selection of only the smaller droplets for future experiments of electron

  2. Sport-Specific Training Targeting the Proximal Segments and Throwing Velocity in Collegiate Throwing Athletes.

    Science.gov (United States)

    Palmer, Thomas; Uhl, Timothy L; Howell, Dana; Hewett, Timothy E; Viele, Kert; Mattacola, Carl G

    2015-06-01

    The ability to generate, absorb, and transmit forces through the proximal segments of the pelvis, spine, and trunk has been proposed to influence sport performance, yet traditional training techniques targeting the proximal segments have had limited success improving sport-specific performance. To investigate the effects of a traditional endurance-training program and a sport-specific power-training program targeting the muscles that support the proximal segments and throwing velocity. Randomized controlled clinical trial. University research laboratory and gymnasium. A total of 46 (age = 20 ± 1.3 years, height = 175.7 ± 8.7 cm) healthy National Collegiate Athletic Association Division III female softball (n = 17) and male baseball (n = 29) players. Blocked stratification for sex and position was used to randomly assign participants to 1 of 2 training groups for 7 weeks: a traditional endurance-training group (ET group; n = 21) or a power-stability-training group (PS group; n = 25). Mean Outcome Measure(s) : The change score in peak throwing velocity (km/h) normalized for body weight (BW; kilograms) and change score in tests that challenge the muscles of the proximal segments normalized for BW (kilograms). We used 2-tailed independent-samples t tests to compare differences between the change scores. The peak throwing velocity (ET group = 0.01 ± 0.1 km/h/kg of BW, PS group = 0.08 ± 0.03 km/h/kg of BW; P sport-specific training regimen targeting the proximal segments.

  3. Ice Velocity Mapping in Antarctica: First Year of Product Availability and Challenges for the Future

    Science.gov (United States)

    Scheuchl, B.; Mouginot, J.; Rignot, E. J.

    2012-12-01

    We report on Earth System Data Records of ice velocity in Antarctica, new products, error estimates, and challenges for data continuity. The first complete mapping of the flow of ice surface over the Antarctic continent was made available to the science community in December 2011 through NSIDC. This ESDR is based on data from a suite of spaceborne Synthetic Aperture Radar (SAR) sensors acquired during the International Polar Year 2007-2009. It represents a snapshot of the entire continent for IPY and consists of ice velocity, in meters per year, measured on a regular earth fixed grid, at 900m resolution. An error estimate is also provided. The ESDR is a reference digital mosaic of ice motion that represents a long-term legacy for quantitative measurements of the dynamics of polar ice sheets. Our ongoing analysis of the ice velocity map resulted in a flow direction map and a corresponding direction error estimate; both were derived from the ESDR. The influence of the data acquisition strategy on ice velocity estimates and subsequent errors in mass balance calculations can also be shown and highlights the importance of careful acquisition planning. We are currently working on regional studies analyzing data from several different epochs. The analysis of velocity changes between discrete measurements requires even more careful data processing in order to be able to accurately measure subtle changes. Examples maps for central Antarctica and Pine Island Bay and the Antarctic Peninsula will be presented. In an effort to build on the IPY success and to provide data continuity, a successor of the IPY STG has been formed: the Polar Space Task Group (PSTG). At the moment the primary challenge for ice velocity mapping in Antarctica is data availability. Of the three main sensors used to generate the IPY ice velocity map, only one is still in operation. Other sensors with limited coverage capacity are available, but none of the current and upcoming sensors has a primary

  4. Nature, Cause and Effect of Students' Intuitive Conceptions Regarding Changes in Velocity

    Science.gov (United States)

    Lemmer, Miriam

    2013-01-01

    Perceptions of observed phenomena play an important role in information processing and are integral to learning. Unfortunately students' perceptions based on their everyday-life observations often do not correlate with the formal science conceptions and explanations of phenomena. This finding of physics education research was studied in this work in the realm of kinematics and students' conceptions regarding changes in velocity. The investigation entailed a questionnaire administered to 797 students and a focus group discussion with 5 students, which were followed by an additional questionnaire answered by 208 students. The first questionnaire indicated the complex nature of the intuitive conception called changes-take-time and its relation to other intuitive conceptions. Possible causes for the occurrence of the changes-take-time perception were qualitatively probed in the focus group discussion. In the discussion, some students relied on their visual observations and perceptions, while others used logical reasoning. The results informed the compilation of an additional short questionnaire to determine whether the qualitative findings of the focus group discussion can be used more generally. Limitations in visual perceptions and differences in perceived and real velocities seem to contribute to the existence and persistence of the changes-take-time and other intuitive conceptions related to changes in velocity. The importance of addressing physics students' misconceptions at root cause level is emphasized.

  5. A new proposal to guide velocity and inclination in the ramp protocol for the treadmill ergometer

    Directory of Open Access Journals (Sweden)

    Silva Odwaldo Barbosa e

    2003-01-01

    Full Text Available OBJECTIVE: To suggest criteria to guide protocol prescription in ramp treadmill testing, according to sex and age, based on velocity, inclination, and max VO2 reached by the population studied. METHODS: Prospective study describing heart rate (HR, time, velocity, inclination, and VO2 estimated at maximum effort of 1840 individuals from 4 to 79 years old, who performed a treadmill test (TT according to the ramp protocol. A paired Student t test was used to assess the difference between predicted and reached max VO2, calculated according to the formulas of the "American College of Sports Medicine". RESULTS: Submaximal HR was surpassed in 90.1% of the examinations, with a mean time of 10.0±2.0 minute. Initial and peak inclination velocity of the exercise and max VO2 were inversely proportional to age and were greater in male patients. Predicted Max VO2 was significantly lower than that reached in all patients, except for female children and adolescents (age < 20 years old. CONCLUSION: Use of velocity, inclination, and maximum VO2 actually reached, as a criterion in prescribing the ramp protocol may help in the performance of exercise in treadmill testing. The ramp protocol was well accepted in all age groups and sexes with exercise time within the programmed 8 to 12 minutes.

  6. Myocardial tissue Doppler velocities in fetuses with hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Himesh V Vyas

    2011-01-01

    Full Text Available Background : Tissue Doppler Imaging (TDI is a sensitive index of myocardial function. Its role in the fetus has not been extensively evaluated. Objective: To compare myocardial tissue Doppler velocities in fetuses with hypoplastic left heart syndrome (HLHS to those of normal fetuses (matched for gestational age. Methods: Cross-sectional retrospective study conducted at 2 large perinatal centers (2003-2007. Fetuses with HLHS ( n = 13 were compared with normal fetuses ( n = 207 in 5 gestational age groups. TDI data included peak systolic (s′, peak early (e′, and late diastolic velocities (a′. Linear regression was used to compare TDI parameters in fetuses with HLHS to normal fetuses matched for gestational age. Results: Fetuses with HLHS had significantly reduced lateral tricuspid annular e′ as compared to normal fetuses. Both normal fetuses and those with HLHS had linear increase in TDI velocities with advancing gestational age. Conclusions: TDI velocities are abnormal in fetuses with HLHS. TDI can be useful in serial follow-up of cardiac function in fetuses with HLHS.

  7. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  8. The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield

    KAUST Repository

    Tang, Zheng

    2016-05-11

    We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.

  9. Interferometric measurement of the angular velocity of moving humans

    Science.gov (United States)

    Nanzer, Jeffrey A.

    2012-06-01

    This paper presents an analysis of the measurement of the angular velocity of walking humans using a millimeter-wave correlation interferometer. Measurement of the angular velocity of moving objects is a desirable function in remote sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques, however the process involves either continuous tracking with narrow beamwidth or angle-of-arrival estimation algorithms. A new method of measuring the angular velocity of moving objects using interferometry has recently been developed which measures the angular velocity of an object without tracking or complex processing. The frequency of the interferometer signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. In this paper, the theory of the interferometric measurement of angular velocity is covered and simulations of the response of a walking human are presented. Simulations are produced using a model of a walking human to show the significant features associated with the interferometer response, which may be used in classification algorithms.

  10. SOME CONSEQUENCE OF THE EXISTENCE OF LOW-VELOCITY LAYERS

    Directory of Open Access Journals (Sweden)

    M. BATH

    1956-06-01

    Full Text Available The velocities of elastic waves (P and S generally increase with
    depth in the earth. If at some depth this increase is replaced by a decrease
    over an interval of depth, again followed by an increase at some
    greater depth, we have, what we cali a low-velocity layer, provided
    the numerical value of the velocity decrease with depth in at least a
    part of the layer surpasses the criticai value v/r (v = velocity, r = radius;
    see Gutenberg, 1954 b, and Bullen, 1954, pp. 87-89. The most
    marked low-velocity layer (for P waves exists on the inner side of the
    outer core. This low-velocity layer has already been recognized by ali
    seismologists long ago. If a low-velocity layer exists also at the boundary
    of the inner core, is not yet certain. According to Jeffreys there is one,
    whereas Gutenberg does not find suffìcient observational support for it.

  11. Modeling velocity space-time correlations in wind farms

    Science.gov (United States)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2016-11-01

    Turbulent fluctuations of wind velocities cause power-output fluctuations in wind farms. The statistics of velocity fluctuations can be described by velocity space-time correlations in the atmospheric boundary layer. In this context, it is important to derive simple physics-based models. The so-called Tennekes-Kraichnan random sweeping hypothesis states that small-scale velocity fluctuations are passively advected by large-scale velocity perturbations in a random fashion. In the present work, this hypothesis is used with an additional mean wind velocity to derive a model for the spatial and temporal decorrelation of velocities in wind farms. It turns out that in the framework of this model, space-time correlations are a convolution of the spatial correlation function with a temporal decorrelation kernel. In this presentation, first results on the comparison to large eddy simulations will be presented and the potential of the approach to characterize power output fluctuations of wind farms will be discussed. Acknowledgements: 'Fellowships for Young Energy Scientists' (YES!) of FOM, the US National Science Foundation Grant IIA 1243482, and support by the Max Planck Society.

  12. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  13. Fastball velocity trends in short-season minor league baseball.

    Science.gov (United States)

    Crotin, Ryan L; Bhan, Shivam; Karakolis, Tom; Ramsey, Dan K

    2013-08-01

    Diminishing baseball velocities are objective measures to delineate pitching fatigue. Yet, velocity changes over the course of a competitive season vs. a single game remain unknown. This study examined fastball velocity (FBV) trends of minor league pitchers over an 8-game span. We assumed that accumulation of pitches would cause similar velocity decreases within games to produce velocity decreases between games pitched. Retrospective analysis of major league-affiliated pitching charts indicated mean FBVs, game pitches thrown, game innings pitched, rest days, and pitching work to rest ratios (PWRRs) for 12 pitchers over 8 games. Regression analyses (p league pitchers at the Class A Short Season level did not show similar exertion responses to cumulative workloads (pitches and innings pitched). Recovery factors (rest days, PWRRs, and training) also did not impact FBVs. Velocity increases may be attributable to biomechanical compensations, skill development, strength and conditioning regimens, multistarter rotations, and other performance-related factors. Strength and conditioning professionals should be aware of ball velocity trends, as apparent changes may infer neuromuscular fatigue and increased injury susceptibility, which require in-season training modifications.

  14. REVEL: A model for Recent plate velocities from space geodesy

    Science.gov (United States)

    Sella, Giovanni F.; Dixon, Timothy H.; Mao, Ailin

    2002-04-01

    We present a new global model for Recent plate velocities, REVEL, describing the relative velocities of 19 plates and continental blocks. The model is derived from publicly available space geodetic (primarily GPS) data for the period 1993-2000. We include an independent and rigorous estimate for GPS velocity uncertainties to assess plate rigidity and propagate these uncertainties to the velocity estimates. The velocity fields for North America, Eurasia, and Antarctica clearly show the effects of glacial isostatic adjustment, and Australia appears to depart from rigid plate behavior in a manner consistent with the mapped intraplate stress field. Two thirds of tested plate pairs agree with the NUVEL-1A geologic (3 Myr average) velocities within uncertainties. Three plate pairs (Caribbean-North America, Caribbean-South America, and North America-Pacific) exhibit significant differences between the geodetic and geologic model that may reflect systematic errors in NUVEL-1A due to the use of seafloor magnetic rate data that do not reflect the full plate rate because of tectonic complexities. Most other differences probably reflect real velocity changes over the last few million years. Several plate pairs (Arabia-Eurasia, Arabia-Nubia, Eurasia-India) move more slowly than the 3 Myr NUVEL-1A average, perhaps reflecting long-term deceleration associated with continental collision. Several other plate pairs, including Nazca-Pacific, Nazca-South America and Nubia-South America, are experiencing slowing that began ~25 Ma, the beginning of the current phase of Andean crustal shortening.

  15. A study of methods to estimate debris flow velocity

    Science.gov (United States)

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  16. Wave equation based microseismic source location and velocity inversion

    Science.gov (United States)

    Zheng, Yikang; Wang, Yibo; Chang, Xu

    2016-12-01

    The microseismic event locations and velocity information can be used to infer the stress field and guide hydraulic fracturing process, as well as to image the subsurface structures. How to get accurate microseismic event locations and velocity model is the principal problem in reservoir monitoring. For most location methods, the velocity model has significant relation with the accuracy of the location results. The velocity obtained from log data is usually too rough to be used for location directly. It is necessary to discuss how to combine the location and velocity inversion. Among the main techniques for locating microseismic events, time reversal imaging (TRI) based on wave equation avoids traveltime picking and offers high-resolution locations. Frequency dependent wave equation traveltime inversion (FWT) is an inversion method that can invert velocity model with source uncertainty at certain frequency band. Thus we combine TRI with FWT to produce improved event locations and velocity model. In the proposed approach, the location and model information are interactively used and updated. Through the proposed workflow, the inverted model is better resolved and the event locations are more accurate. We test this method on synthetic borehole data and filed data of a hydraulic fracturing experiment. The results verify the effectiveness of the method and prove it has potential for real-time microseismic monitoring.

  17. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  18. Threshold Velocity for Saltation Activity in the Taklimakan Desert

    Science.gov (United States)

    Yang, Xinghua; He, Qing; Matimin, Ali; Yang, Fan; Huo, Wen; Liu, Xinchun; Zhao, Tianliang; Shen, Shuanghe

    2017-08-01

    The threshold velocity is an indicator of a soil's susceptibility to saltation activity and is also an important parameter in dust emission models. In this study, the saltation activity, atmospheric conditions, and soil conditions were measured from 1 August 2008 to 31 July 2009 in the Taklimakan Desert, China. the threshold velocity was estimated using the Gaussian time fraction equivalence method. At 2 m height, the 1-min averaged threshold velocity varied between 3.5 and 10.9 m/s, with a mean of 5.9 m/s. Threshold velocities varying between 4.5 and 7.5 m/s accounted for about 91.4% of all measurements. The average threshold velocity displayed clear seasonal variations in the following sequence: winter (5.1 m/s) relations between daily mean threshold velocity and air temperature, specific humidity, and soil volumetric moisture content. High or moderate positive correlations were found between threshold velocity and air temperature, specific humidity, and soil volumetric moisture content (air temperature r = 0.75; specific humidity r = 0.59; and soil volumetric moisture content r = 0.55; sample size = 251). In the study area, the observed horizontal dust flux was 4198.0 kg/m during the whole period of observation, while the horizontal dust flux calculated using the threshold velocity from the regression equation was 4675.6 kg/m. The correlation coefficient between the calculated result and the observations was 0.91. These results indicate that atmospheric and soil conditions should not be neglected in parameterization schemes for threshold velocity.

  19. The dependence of sheet erosion velocity on slope angle

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2014-09-01

    Full Text Available The article presents a method for estimating the erosion velocity on forested natural area. As a research object for testing the methodology the authors selected Neskuchny Garden - a city Park on the Moskva river embankment, named after the cognominal Palace of Catherine's age. Here, an almost horizontal surface III of the Moskva river terrace above the flood-plain is especially remarkable, accentuated by the steep sides of the ravine parallel to St. Andrew's, but short and nameless. The crests of the ravine sides are sharp, which is the evidence of its recent formation, but the old trees on the slopes indicate that it has not been growing for at least 100 years. Earlier Russian researchers defined vertical velocity of sheet erosion for different regions and slopes with different parent (in relation to the soil rocks. The comparison of the velocities shows that climatic conditions, in the first approximation, do not have a decisive influence on the erosion velocity of silt loam soils. The velocities on the shores of Issyk-Kul lake and in Moscow proved to be the same. But the composition of the parent rocks strongly affects the sheet erosion velocity. Even low-strength rock material reduces the velocity by times. Phytoindication method gives a real, physically explainable sheet erosion velocities. The speed is rather small but it should be considered when designing long-term structures on the slopes composed of dispersive soils. On the slopes composed of rocky soils sheet erosion velocity is so insignificant that it shouldn't be taken into account when designing. However, there may be other geological processes, significantly disturbing the stability of slopes connected with cracks.

  20. Parachute landing fall characteristics at three realistic vertical descent velocities.

    Science.gov (United States)

    Whitting, John W; Steele, Julie R; Jaffrey, Mark A; Munro, Bridget J

    2007-12-01

    Although parachute landing injuries are thought to be due in part to a lack of exposure of trainees to realistic descent velocities during parachute landing fall (PLF) training, no research has systematically investigated whether PLF technique is affected by different vertical descent conditions, with standardized and realistic conditions of horizontal drift. This study was designed to determine the effects of variations in vertical descent velocity on PLF technique. Kinematic, ground reaction force, and electromyographic data were collected and analyzed for 20 paratroopers while they performed parachute landings, using a custom-designed monorail apparatus, with a constant horizontal drift velocity (2.3 m x s(-1)) and at three realistic vertical descent velocities: slow (2.1 m x s(-1)), medium (3.3 m x s(-1)), and fast (4.6 m x s(-1)). Most biomechanical variables characterizing PLF technique were significantly affected by descent velocity. For example, at the fast velocity, the subjects impacted the ground with 123 degrees of plantar flexion and generated ground reaction forces averaging 13.7 times body weight, compared to 106 degrees and 6.1 body weight, respectively, at the slow velocity. Furthermore, the subjects activated their antigravity extensor muscles earlier during the fast velocity condition to eccentrically control the impact absorption. As vertical descent rates increased, the paratroopers displayed a significantly different strategy when performing the PLF. It is therefore recommended that PLF training programs include ground training activities with realistic vertical descent velocities to better prepare trainees to withstand the impact forces associated with initial aerial descents onto the Drop Zone and, ultimately, minimize the potential for injury.