WorldWideScience

Sample records for sublimating ice thermal

  1. Experimental Analysis of Sublimation Dynamics for Buried Glacier Ice in Beacon Valley, Antarctica

    Science.gov (United States)

    Ehrenfeucht, S.; Dennis, D. P.; Marchant, D. R.

    2017-12-01

    The age of the oldest known buried ice in Beacon Valley, McMurdo Dry Valleys (MDV) Antarctica is a topic of active debate due to its implications for the stability of the East Antarctic Ice Sheet. Published age estimates range from as young as 300 ka to as old as 8.1 Ma. In the upland MDV, ablation occurs predominantly via sublimation. The relict ice in question (ancient ice from Taylor Glacier) lies buried beneath a thin ( 30-70 cm) layer of sublimation till, which forms as a lag deposit as underlying debris-rich ice sublimes. As the ice sublimates, the debris held within the ice accumulates slowly on the surface, creating a porous boundary between the buried-ice surface and the atmosphere, which in turn influences gas exchange between the ice and the atmosphere. Additionally, englacial debris adds several salt species that are ultimately concentrated on the ice surface. It is well documented the rate of ice sublimation varies as a function of overlying till thickness. However, the rate-limiting dynamics under varying environmental conditions, including the threshold thicknesses at which sublimation is strongly retarded, are not yet defined. To better understand the relationships between sublimation rate, till thickness, and long-term surface evolution, we build on previous studies by Lamp and Marchant (2017) and evaluate the role of till thickness as a control on ice loss in an environmental chamber capable of replicating the extreme cold desert conditions observed in the MDV. Previous work has shown that this relationship exhibits exponential decay behavior, with sublimation rate significantly dampened under less than 10 cm of till. In our experiments we pay particular attention to the effect of the first several cm of till in order to quantify the dynamics that govern the transition from bare ice to debris-covered ice. We also examine this transition for various forms of glacier ice, including ice with various salt species.

  2. Experiments On Sublimating Carbon Dioxide Ice And Implications For Contemporary Surface Processes On Mars.

    Science.gov (United States)

    Mc Keown, L E; Bourke, M C; McElwaine, J N

    2017-10-27

    Carbon dioxide is Mars' primary atmospheric constituent and is an active driver of Martian surface evolution. CO 2 ice sublimation mechanisms have been proposed for a host of features that form in the contemporary Martian climate. However, there has been very little experimental work or quantitative modelling to test the validity of these hypotheses. Here we present the results of the first laboratory experiments undertaken to investigate if the interaction between sublimating CO 2 ice blocks and a warm, porous, mobile regolith can generate features similar in morphology to those forming on Martian dunes today. We find that CO 2 sublimation can mobilise grains to form (i) pits and (ii) furrows. We have documented new detached pits at the termini of linear gullies on Martian dunes. Based on their geomorphic similarity to the features observed in our laboratory experiments, and on scaling arguments, we propose a new hypothesis that detached pits are formed by the impact of granular jets generated by sublimating CO 2 . We also study the erosion patterns formed underneath a sublimating block of CO 2 ice and demonstrate that these resemble furrow patterns on Mars, suggesting similar formation mechanisms.

  3. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  4. Transient thermal protection of film covering circular aperture by sublimation and weak decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, Mark A.; Miles, Robin R.; Hsieh, Henry, E-mail: hsieh6@llnl.gov

    2015-03-15

    Highlights: • Precise sublimating layers can provide protection in transient thermal environments. • Sensitivity analysis shows that the uncertainty in properties has modest influence. • It is likely that methane layers are a good choice for IFE targets. - Abstract: Unwanted heating of sensitive surfaces in harsh thermal environments can be prevented by precise application of sacrificial materials such as sublimation layers and pyrolyzing films. The use of sublimation for the protection of circular polyimide membranes subjected to brief (∼100 ms) heating by infrared radiation and hot (6000 K) inert gas convection is analyzed. Selection of sublimation material and sublimation layer and membrane thickness is considered with emphasis on providing sufficient thermal protection yet negligible unwanted material remaining at the end of a specified heating period. Though the analysis here is general, the motivation is protection of the polyimide films covering the laser entrance holes on IFE (inertial fusion energy) hohlraums being injected into the hot gas (xenon) protecting IFE reactor chambers. Both one and two dimensional thermal models are used to develop a robust thermal concept. Sensitivity analyses (SA) methods are exercised to show where the design may be vulnerable and which input parameters have the greatest effect on performance and likelihood of success. For the design and conditions considered, methane sublimating layers are probably preferred over xenon or pentane.

  5. Laboratory studies of the growth, sublimation, and light- scattering properties of single levitated ice particles

    Science.gov (United States)

    Bacon, Neil Julian

    2001-12-01

    I describe experiments to investigate the properties of microscopic ice particles. The goal of the work was to measure parameters that are important in cloud processes and radiative transfer, using a novel technique that avoids the use of substrates. The experiments were conducted in two separate electrodynamic balance chambers. Single, charged ice particles were formed from frost particles or from droplets frozen either homogeneously or heteroge neously with a bionucleant. The particles were trapped at temperatures between -38°C and -4°C and grown or sublimated according to the temperature gradient in the cham ber. I describe observations of breakup of sublimating frost particles, measurements of light scattering by hexagonal crystals, and observations of the morphology of ice particles grown from frozen water droplets and frost particles. The breaking strength of frost particles was an order of magnitude less than that of bulk ice. Light scattering features not previously observed were analyzed and related to crystal dimension. Initial results from a computer model failed to reproduce these features. The widths of scattering peaks suggest that surface roughness may play a role in determining the angular distribution of scattered light. Ice particle mass evolution was found to be consistent with diffusion- limited growth. Crystals grown slowly from frozen droplets adopted isometric habits, while faster growth resulted in thin side-planes, although there was not an exact correspondence between growth conditions and particle morphology. From the morphological transition, I infer lower limits for the critical supersaturation for layer nucleation on the prism face of 2.4% at -15°C, 4.4% at -20°C, and 3.1% at -25°C. Analytic expressions for the size dependence of facet stability are developed, indicating a strong dependence of stability on both crystal size and surface kinetics, and compared with data. I discuss the role of complex particle morphologies in

  6. The lunar thermal ice pump

    Energy Technology Data Exchange (ETDEWEB)

    Schorghofer, Norbert [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Aharonson, Oded, E-mail: norbert@hawaii.edu [Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  7. Sublimation and thermal decomposition of ammonia borane: Competitive processes controlled by pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kondrat’ev, Yu.V.; Butlak, A.V.; Kazakov, I.V.; Timoshkin, A.Y., E-mail: a.y.timoshkin@spbu.edu

    2015-12-20

    Highlights: • We measured sublimation enthalpy of ammonia borane at 357 K by drop-calorimetry. • We determined activation energy for ammonia borane decomposition by tensimetry. • At 357 K decomposition and sublimation are competitive and depend on the pressure. • We propose new values for the Δ{sub f}H° of solid ammonia borane and polyamidoborane. - Abstract: Thermal behavior of ammonia borane BH{sub 3}NH{sub 3} (AB) has been studied by calorimetry, tensimetry and mass spectrometry methods. It is shown, that depending on vapor pressure in the system two competitive processes are taking place at 357 K. At atmospheric pressure thermal decomposition with hydrogen evolution is the dominant process: BH{sub 3}NH{sub 3(s)} = 1/n (BH{sub 2}NH{sub 2}){sub n(s)} + H{sub 2(g)} (1). At low pressures (circa 4 mTorr) the major process is endothermic sublimation of AB: BH{sub 3}NH{sub 3(s)} = BH{sub 3}NH{sub 3(g)} (2). At intermediate pressures both processes occur simultaneously. Enthalpies for the processes (1) and (2) have been determined by drop-calorimetry method: Δ{sub (1)}H{sub 357}° = −24.8 ± 2.3 kJ mol{sup −1} and Δ{sub sub}H{sub 357}°(BH{sub 3}NH{sub 3}) = 76.3 ± 3.0 kJ mol{sup −1}. Solid products after sublimation and decomposition have been characterized by IR and NMR spectroscopy; gaseous forms were studied by mass spectrometry. Activation energy of 94 ± 11 kJ mol{sup −1} for the process (1) in range 327–351 K was determined by static tensimetry method. Based on the analysis of available thermodynamic characteristics, new values for the standard formation enthalpy of solid AB −133.4 ± 5.2 kJ mol{sup −1} and polyamidoborane −156.7 ± 5.8 kJ mol{sup −1} are recommended.

  8. Modelling Sublimation of Carbon Dioxide

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  9. Observing Ice Sublimation From Water-Doped Lunar Simulant at Cryogenic Temperatures

    Science.gov (United States)

    Roush, T. L.; Teodoro, L. F. A.; Colaprete, A.; Cook, A. M.; Elphic, R.

    2018-01-01

    NASA's Resource Prospector (RP) mission is intended to characterize the three-dimensional nature of volatiles in lunar polar and permanently shadowed regions. The Near-Infrared Volatile Spectrometer System (NIRVSS) observes while a drill penetrates to a maximum depth of 1 m. Any 10 cm increment of soil identified as containing water ice can be delivered to a heating crucible with the evolved gas delivered to a gas chromatograph / mass spectrometer. NIRVSS consists of two components; a spectrometer box (SB) and bracket assembly (BA), connected by two fiber optic cables. The SB contains separate short- and long-wavelength spectrometers, SW and LW respectively, that collectively span the 1600-3400 nm range. The BA contains an IR emitter (lamp), drill observation camera (DOC, 2048 x 2048 CMOS detector), 8 different wavelength LEDs, and a longwave calibration sensor (LCS) measuring the surface emissivity at four IR wavelengths. Tests of various RP sub-systems have been under-taken in a large cryo-vacuum chamber at Glenn Re-search Center. The chamber accommodates a tube (1.2 m high x 25.4 cm diameter) filled with lunar simulant, NU-LHT-3M, prepared with known abundances of water. Thermocouples are embedded at different depths, and also across the surface of the soil tube. In the chamber the tube is cooled with LN2 as the pressure is reduced to approx. 5-6x10(exp -6) Torr. For the May 2016 tests two soil tubes were prepared with initially 2.5 Wt.% water. The shroud surrounding the soil tube was held at different temperatures for each tube to simulate a warm and cold lunar environment. Table 1 provides a summary of experimental conditions and Figure 1 shows the nominal view of the NIRVSS components, the drill foot, and the top of the soil tube. Once the average soil temperature reached approx. 178 K, drilling commenced. During drilling activities NIRVSS was alternating between obtaining spectra and obtaining images. Here we discuss NIRVSS spectral data obtained during

  10. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H. [LISA Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Institut Pierre Simon Laplace, Labex ESEP, Paris (France); Duvernay, F.; Chiavassa, T., E-mail: vvinogradoff@mnhn.fr [PIIM, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Université Aix-Marseille, UMR CNRS 7345, Marseille (France)

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  11. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    International Nuclear Information System (INIS)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H.; Duvernay, F.; Chiavassa, T.

    2015-01-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H 2 O, NH 3 , CO 2 , H 2 CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites

  12. On Sublimation.

    Science.gov (United States)

    Civitarese, Giuseppe

    2016-10-01

    Although it encapsulates the Freudian theory of art, the theory of sublimation has become outmoded. What is more, since its inception there has always been something ill-defined about it. Does it use sexualized or de-sexualized drive energy? Is it a defence or an alternative to defence? Does it serve Eros or Thanatos? Is it useful in clinical work or is it unusable? The only, albeit uncertain, aid to a definition relies on the extrinsic criterion of concrete artistic realization. My aim here to revisit and possibly 'reinvent' sublimation in the light of certain principles of the pre-Romantic aesthetics of the sublime. Both are theories of spiritual elevation, in other words, elevation that moves towards abstract thinking, and of man's 'moral' achievement; and both attempt to explain the mystery of aesthetic experience. On the one hand, the aesthetics of the sublime offers a modern myth that helps us articulate a series of factors occasionally referred to by various authors as constitutive of sublimation but which have not been incorporated into a single organic framework: loss and early mourning work; the earlier existence of a catastrophic factor - to be regarded, depending on the situation, as either traumatic or simply 'negative'; the correspondence with a process of somatopsychic categorization which coincides with subjectivity. On the other hand, it also helps us grasp the experience of negative pleasure empathically, living it 'from the inside'. Copyright © 2016 Institute of Psychoanalysis.

  13. Modeling ground thermal regime of an ancient buried ice body in Beacon Valley, Antarctica using a 1-D heat equation with latent heat effect

    Science.gov (United States)

    Liu, L.; Sletten, R. S.; Hallet, B.; Waddington, E. D.; Wood, S. E.

    2013-12-01

    An ancient massive ice body buried under several decimeters of debris in Beacon Valley, Antarctica is believed to be over one million years old, making it older than any known glacier or ice cap. It is fundamentally important as a reservoir of water, proxy for climatic information, and an expression of the periglacial landscape. It is also one of Earth's closest analog for widespread, near-surface ice found in Martian soils and ice-cored landforms. We are interested in understanding controls on how long this ice may persist since our physical model of sublimation suggests it should not be stable. In these models, the soil temperatures and the gradient are important because it determines the direction and magnitude of the vapor flux, and thus sublimation rates. To better understand the heat transfer processes and constrain the rates of processes governing ground ice stability, a model of the thermal behavior of the permafrost is applied to Beacon Valley, Antarctica. It calculates soil temperatures based on a 1-D thermal diffusion equation using a fully implicit finite volume method (FVM). This model is constrained by soil physical properties and boundary conditions of in-situ ground surface temperature measurements (with an average of -23.6oC, a maximum of 20.5oC and a minimum of -54.3oC) and ice-core temperature record at ~30 m. Model results are compared to in-situ temperature measurements at depths of 0.10 m, 0.20 m, 0.30 m, and 0.45 m to assess the model's ability to reproduce the temperature profile for given thermal properties of the debris cover and ice. The model's sensitivity to the thermal diffusivity of the permafrost and the overlaying debris is also examined. Furthermore, we incorporate the role of ice condensation/sublimation which is calculated using our vapor diffusion model in the 1-D thermal diffusion model to assess potential latent heat effects that in turn affect ground ice sublimation rates. In general, the model simulates the ground thermal

  14. THE THERMAL EVOLUTION OF ICES IN THE ENVIRONMENTS OF NEWLY FORMED STARS: THE CO2 DIAGNOSTIC

    International Nuclear Information System (INIS)

    Cook, A. M.; Whittet, D. C. B.; Shenoy, S. S.; Gerakines, P. A.; White, D. W.; Chiar, J. E.

    2011-01-01

    Archival data from the Infrared Spectrometer of the Spitzer Space Telescope are used to study the 15 μm absorption feature of solid CO 2 toward 28 young stellar objects (YSOs) of approximately solar mass. Fits to the absorption profile using laboratory spectra enable categorization according to the degree of thermal processing of the ice matrix that contains the CO 2 . The majority of YSOs in our sample (20 out of 28) are found to be consistent with a combination of polar (H 2 O-rich) and nonpolar (CO-rich) ices at low temperature; the remainder exhibit profile structure consistent with partial crystallization as the result of significant heating. Ice-phase column densities of CO 2 are determined and compared with those of other species. Lines of sight with crystallization signatures in their spectra are found to be systematically deficient in solid-phase CO, as expected if CO is being sublimated in regions where the ices are heated to crystallization temperatures. Significant variation is found in the CO 2 abundance with respect to both H 2 O (the dominant ice constituent) and total dust column (quantified by the extinction, A V ). YSOs in our sample display typically higher CO 2 concentrations (independent of evidence for thermal processing) in comparison to quiescent regions of the prototypical cold molecular cloud. This suggests that enhanced CO 2 production is driven by photochemical reactions in proximity to some YSOs, and that photoprocessing and thermal processing may occur independently.

  15. Thermal alteration in carbonaceous chondrites and implications for sublimation in rock comets

    Science.gov (United States)

    Springmann, Alessondra; Lauretta, Dante S.; Steckloff, Jordan K.

    2015-11-01

    Rock comets are small solar system bodies in Sun-skirting orbits (perihelion q CO2, etc.). B-class asteroid (3200) Phaethon, considered to be the parent body of the Geminid meteor shower, is the only rock comet currently known to periodically eject dust and form a coma. Thermal fracturing or thermal decomposition of surface materials may be driving Phaethon’s cometary activity (Li & Jewitt, 2013). Phaethon-like asteroids have dynamically unstable orbits, and their perihelia can change rapidly over their ~10 Myr lifetimes (de León et al., 2010), raising the possibility that other asteroids may have been rock comets in the past. Here, we propose using spectroscopic observations of mercury (Hg) as a tracer of an asteroid’s thermal metamorphic history, and therefore as a constraint on its minimum achieved perihelion distance.B-class asteroids such as Phaethon have an initial composition similar to aqueously altered primitive meteorites such as CI- or CM-type meteorites (Clark et al., 2010). Laboratory heating experiments of ~mm sized samples of carbonaceous chondrite meteorites from 300K to 1200K at a rate of 15K/minute show mobilization and volatilization of various labile elements at temperatures that could be reached by Mercury-crossing asteroids. Samples became rapidly depleted in labile elements and, in particular, lost ~75% of their Hg content when heated from ~500-700 K, which corresponds to heliocentric distances of ~0.15-0.3 au, consistent with our thermal models. Mercury has strong emission lines in the UV (~ 185 nm) and thus its presence (or absence) relative to carbonaceous chondrite abundances would indicate if these bodies had perihelia in their dynamical histories inside of 0.15 AU, and therefore may have previously been Phaethon-like rock comets. Future space telescopes or balloon-borne observing platforms equipped with a UV spectrometer could potentially detect the presence or absence of strong ultraviolet mercury lines on rock comets or rock

  16. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    Science.gov (United States)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  17. A sublimation technique for high-precision measurements of δ13CO2 and mixing ratios of CO2 and N2O from air trapped in ice cores

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2011-07-01

    Full Text Available In order to provide high precision stable carbon isotope ratios (δ13CO2 or δ13C of CO2 from small bubbly, partially and fully clathrated ice core samples we developed a new method based on sublimation coupled to gas chromatography-isotope ratio mass spectrometry (GC-IRMS. In a first step the trapped air is quantitatively released from ~30 g of ice and CO2 together with N2O are separated from the bulk air components and stored in a miniature glass tube. In an off-line step, the extracted sample is introduced into a helium carrier flow using a minimised tube cracker device. Prior to measurement, N2O and organic sample contaminants are gas chromatographically separated from CO2. Pulses of a CO2/N2O mixture are admitted to the tube cracker and follow the path of the sample through the system. This allows an identical treatment and comparison of sample and standard peaks. The ability of the method to reproduce δ13C from bubble and clathrate ice is verified on different ice cores. We achieve reproducibilities for bubble ice between 0.05 ‰ and 0.07 ‰ and for clathrate ice between 0.05 ‰ and 0.09 ‰ (dependent on the ice core used. A comparison of our data with measurements on bubble ice from the same ice core but using a mechanical extraction device shows no significant systematic offset. In addition to δ13C, the CO2 and N2O mixing ratios can be volumetrically derived with a precision of 2 ppmv and 8 ppbv, respectively.

  18. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  19. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode

    International Nuclear Information System (INIS)

    Pourbagian, Mahdi; Habashi, Wagdi G.

    2015-01-01

    Highlights: • We introduce an efficient methodology for the optimization of a de-icing system. • We can replace the expensive CHT simulation by ROM without loosing much accuracy. • We propose different criteria affecting the energy usage and aerodynamic performance. • These criteria can significantly improve the performance of the de-icing system. - Abstract: Even if electro-thermal ice protection systems (IPS) consume less energy when operating in de-icing mode than in anti-icing mode, they still need to be optimized for energy usage. The optimization, however, should also take into account the effect of the de-icing system on the aerodynamic performance. The present work offers an optimization framework in which both thermal and aerodynamic viewpoints are taken into account in formulating various objective and constraint functions by considering the energy consumption, the thickness, the volume, the shape and the location of the accreted ice on the surface as the key parameters affecting the energy usage and the aerodynamic performance. The design variables include the power density and the activation time of the electric heating blankets. A derivative-free technique, called the mesh adaptive direct search (MADS) method, is used to carry out the optimization process, which would normally need a large number of unsteady conjugate heat transfer (CHT) calculations for the IPS simulation. To avoid such prohibitive computations, reduced-order modeling (ROM) is used to construct simplified low-dimensional CHT models. The approach is illustrated through several test cases, in which different combinations of objective and constraint functions, design variables and cycling sequence patterns are examined. In these test cases, the energy consumption is significantly reduced compared to the experiments by improving the spatial and temporal distribution of the thermal energy usage. The results show the benefits of the approach in bringing energy, safety and

  20. Instant Sublime Text starter

    CERN Document Server

    Haughee, Eric

    2013-01-01

    A starter which teaches the basic tasks to be performed with Sublime Text with the necessary practical examples and screenshots. This book requires only basic knowledge of the Internet and basic familiarity with any one of the three major operating systems, Windows, Linux, or Mac OS X. However, as Sublime Text 2 is primarily a text editor for writing software, many of the topics discussed will be specifically relevant to software development. That being said, the Sublime Text 2 Starter is also suitable for someone without a programming background who may be looking to learn one of the tools of

  1. Iapetus Surface Temperatures, and the Influence of Sublimation on the Albedo Dichotomy: Cassini CIRS Constraints

    Science.gov (United States)

    Spencer, J. R.; Pearl, J. C.; Segura, M.; Cassini CIRS Team

    2005-08-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini orbiter obtained extensive observations of Iapetus' thermal emission during the New Year 2005 flyby, with best 8 - 16 μ m spatial resolution of 35 km per pixel. Observed subsolar temperatures on the dark terrain reach nearly 130 K, much warmer than any other satellite surface in the Saturn system, due to the combination of low albedo and slow rotation. These high temperatures mean that, uniquely in the Saturn system, water ice sublimation rates are significant at low latitudes on Iapetus' dark side, and surface water ice is probably not stable there on geological timescales. This result is consistent with the lack of water ice at low latitudes on the dark terrain inferred from Cassini UVIS UV spectra (Hendrix et al., 2005 LPSC). Thermally-controlled migration of water ice may thus contribute to the curious shape of the light/dark boundary on Iapetus, with bright poles and dark terrain extending round the equator onto the trailing side. Impacts of Saturn-centric or prograde heliocentric material cannot alone explain this shape, as their impact flux depends only on distance from the apex of motion (though the impact distribution of Oort cloud comet dust may be consistent with the observed albedo pattern (Cook and Franklin 1970)). We model the ballistic migration of water ice across the surface of Iapetus, determining temperatures and sublimation rates assuming CIRS-constrained thermal inertia and a simple dependence of albedo on distance from the apex of motion. Water ice is lost rapidly from low latitudes on the dark leading side and accumulates near the poles, and is also lost, though more slowly, in equatorial regions near the sub-Saturn and anti-Saturn points. The resulting water ice distribution pattern matches the distribution of Iapetus' bright terrain remarkably well. Albedo modification by thermal migration can thus help to reconcile Iapetus' albedo patterns with albedo control by Saturn-centric or

  2. From ice to gas : constraining the desorption processes of interstellar ices

    NARCIS (Netherlands)

    Fayolle, Edith Carine

    2013-01-01

    The presence of icy mantles on interstellar dust grains play a key role in the formation of molecules observed at all stages of star formation. This thesis addresses thermal and UV-induced ice sublimation. Using state of the art laboratory experiments and synchrotron-based UV radiation, the

  3. Modeling the Thermal Interactions of Meteorites Below the Antarctic Ice

    Science.gov (United States)

    Oldroyd, William Jared; Radebaugh, Jani; Stephens, Denise C.; Lorenz, Ralph; Harvey, Ralph; Karner, James

    2017-10-01

    Meteorites with high specific gravities, such as irons, appear to be underrepresented in Antarctic collections over the last 40 years. This underrepresentation is in comparison with observed meteorite falls, which are believed to represent the actual population of meteorites striking Earth. Meteorites on the Antarctic ice sheet absorb solar flux, possibly leading to downward tunneling into the ice, though observations of this in action are very limited. This descent is counteracted by ice sheet flow supporting the meteorites coupled with ablation near mountain margins, which helps to force meteorites towards the surface. Meteorites that both absorb adequate thermal energy and are sufficiently dense may instead reach a shallow equilibrium depth as downward melting overcomes upward forces during the Antarctic summer. Using a pyronometer, we have measured the incoming solar flux at multiple depths in two deep field sites in Antarctica, the Miller Range and Elephant Moraine. We compare these data with laboratory analogues and model the thermal and physical interactions between a variety of meteorites and their surroundings. Our Matlab code model will account for a wide range of parameters used to characterize meteorites in an Antarctic environment. We will present the results of our model along with depth estimates for several types of meteorites. The recovery of an additional population of heavy meteorites would increase our knowledge of the formation and composition of the solar system.

  4. Thermal ice loads on dams and ancillary structures: A brief review

    International Nuclear Information System (INIS)

    Gerard, R.

    1989-01-01

    A major consideration in the design of low to medium head dams in cold regions is the thrust exerted by thermal expansion of a solid ice sheet. Such loads are also of concern in the design of gates, intakes and other ancillary structures. Such loads can be greater than 300-400 kilo Newtons per meter, and are of greatest concern when ice is unshielded by snow from temperature fluctuations. Details are presented of calculation of thermal ice loads, and field measurements of thermal ice forces. Past structural failures, field and laboratory investigations, and analyses, all confirm that thermal ice loads on wide structures such as dams, and isolated structures such as bridge piers and water intakes, can be much more significant than is suggested by the loads currently specified in various North American design guidelines for hydraulic structures. While some guidelines for thermal ice loads are excessively conservative, particularly for protected situations such as gates set between piers, in other more common situations they are dangerously low. Three useful approaches that would yield information for improving thermal ice load specification are: hindcast upper bounds on thermal ice loads by assessing the ice regime and load bearing capacity of existing structures; field measurement of thermal ice loads and stresses using modern instrumentation; and measurement and analysis of the formation and movement of lake and reservoir ice covers. 23 refs., 4 figs

  5. Sublimation, culture, and creativity.

    Science.gov (United States)

    Kim, Emily; Zeppenfeld, Veronika; Cohen, Dov

    2013-10-01

    Combining insights from Freud and Weber, this article explores whether Protestants (vs. Catholics and Jews) are more likely to sublimate their taboo feelings and desires toward productive ends. In the Terman sample (Study 1), Protestant men and women who had sexual problems related to anxieties about taboos and depravity had greater creative accomplishments, as compared to those with sexual problems unrelated to such concerns and to those reporting no sexual problems. Two laboratory experiments (Studies 2 and 3) found that Protestants produced more creative artwork (sculptures, poems, collages, cartoon captions) when they were (a) primed with damnation-related words, (b) induced to feel unacceptable sexual desires, or (c) forced to suppress their anger. Activating anger or sexual attraction was not enough; it was the forbidden or suppressed nature of the emotion that gave the emotion its creative power. The studies provide possibly the first experimental evidence for sublimation and suggest a cultural psychological approach to defense mechanisms.

  6. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  7. Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú

    OpenAIRE

    M. Winkler; I. Juen; T. Mölg; G. Kaser

    2008-01-01

    Sublimation plays a decisive role in the surface energy balance of tropical glaciers. During the dry season low specific humidity and high surface roughness favour the direct transition from ice to vapour and drastically reduce the energy available for melting. However, field measurements are scarce and little is known about the performance of sublimation parametrisations in glacier mass balance and runoff models.

    During 15 days in August 2005 sublimation was measured on ...

  8. Sublime Imperfections : Annotated Reading List

    NARCIS (Netherlands)

    Rutten, E.

    2016-01-01

    In this reading list, I share thoughts on scholars and journalists from which the Sublime Imperfections project takes its inspiration. The authors of the texts that I clustered ponder the nexus between the imperfect and the sublime, they rethink repair and breakdown, they critically interrogate and

  9. Los cuerpos sublimes

    Directory of Open Access Journals (Sweden)

    Juan Pablo Zangara

    2015-09-01

    Full Text Available La narración de crímenes en la prensa de masas y las pantallas parece constituir una versión contemporánea del magnetismo según Edgar Allan Poe. La estetización mediática (ya no la información de una serie reciente de feminicidios permite reconocer una cierta lógica de lo sublime como clave de la producción de noticias-mercancías. En su variante clásica, la ficción policial funciona como una matriz ideológica decisiva de la enunciación periodística.

  10. A Synthesis of the Basal Thermal State of the Greenland Ice Sheet

    Science.gov (United States)

    Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.; hide

    2016-01-01

    Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.

  11. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  12. A synthesis of the basal thermal state of the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  13. TRIGGERING SUBLIMATION-DRIVEN ACTIVITY OF MAIN BELT COMETS

    Energy Technology Data Exchange (ETDEWEB)

    Haghighipour, N. [Institute for Astronomy, University of Hawaii-Manoa, Honolulu, HI 96825 (United States); Maindl, T. I.; Dvorak, R. [Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, A-1180 Vienna (Austria); Schäfer, C. [Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany); Speith, R., E-mail: nader@ifa.hawaii.edu [Physikalisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen (Germany)

    2016-10-10

    It has been suggested that the comet-like activity of main belt comets (MBCs) is due to the sublimation of sub-surface water–ice that has been exposed as a result of their surfaces being impacted by meter-sized bodies. We have examined the viability of this scenario by simulating impacts between meter-sized and kilometer-sized objects using a smooth particle hydrodynamics approach. Simulations have been carried out for different values of the impact velocity and impact angle, as well as different target material and water-mass fractions. Results indicate that for the range of impact velocities corresponding to those in the asteroid belt, the depth of an impact crater is slightly larger than 10 m, suggesting that if the activation of MBCs is due to the sublimation of sub-surface water–ice, this ice has to exist no deeper than a few meters from the surface. Results also show that ice exposure occurs in the bottom and on the interior surface of impact craters, as well as on the surface of the target where some of the ejected icy inclusions are re-accreted. While our results demonstrate that the impact scenario is indeed a viable mechanism to expose ice and trigger the activity of MBCs, they also indicate that the activity of the current MBCs is likely due to ice sublimation from multiple impact sites and/or the water contents of these objects (and other asteroids in the outer asteroid belt) is larger than the 5% that is traditionally considered in models of terrestrial planet formation, providing more ice for sublimation. We present the details of our simulations and discuss their results and implications.

  14. Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate

    Directory of Open Access Journals (Sweden)

    Taimur Rashid

    2015-11-01

    Full Text Available Marine operations in cold climates are subjected to abundant ice accretion, which can lead to heavy ice loads over larger surface area. For safe and adequate operations on marine vessels over a larger area, remote ice detection and ice mitigation system can be useful. To study this remote ice detection option, lab experimentation was performed to detect the thermal gradient of ice with the infrared camera. Two different samples of ice blocks were prepared from tap water and saline water collected from the North Atlantic Ocean stream. The surfaces of ice samples were observed at room temperature. A complete thermal signature over the surface area was detected and recorded until the meltdown process was completed. Different temperature profiles for saline and pure ice samples were observed, which were kept under similar conditions. This article is focused to understand the experimentation methodology and thermal signatures of samples. However, challenges remains in terms of the validation of the detection signature and elimination of false detection.

  15. The response of the southern Greenland ice sheet to the Holocene thermal maximum

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, Kurt H.; Lecavalier, Benoit

    2015-01-01

    contribution of 0.16 m sea-level equivalent from the entire Greenland ice sheet, with a centennial ice loss rate of as much as 100 Gt/yr for several millennia during the Holocene thermal maximum. Our results provide an estimate of the long-term rates of volume loss that can be expected in the future...

  16. Sublimation as a landform-shaping process on Pluto

    Science.gov (United States)

    Moore, Jeffrey M.; Howard, Alan D.; Umurhan, Orkan M.; White, Oliver L.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Spencer, John R.; Grundy, Will M.; Lauer, Tod R.; Nimmo, Francis; Young, Leslie A.; Stern, S. Alan; Weaver, Harold A.; Olkin, Cathy B.; Ennico, Kimberly; New Horizons Science Team

    2017-05-01

    Fields of pits, both large and small, in Tombaugh Regio (Sputnik Planitia, and the Pitted Uplands to the east), and along the scarp of Piri Rupes, are examples of landscapes on Pluto where we conclude that sublimation drives their formation and evolution. Our heuristic modeling closely mimics the form, spacing, and arrangement of a variety of Tombaugh Regio's pits. Pluto's sublimation modified landforms appear to require a significant role for (diffusive) mass wasting as suggested by our modeling. In our models, the temporal evolution of pitted surfaces is such that initially lots of time passes with little happening, then eventually, very rapid development of relief and rapid sublimation. Small pits on Sputnik Planitia are consistent with their formation in N2-dominated materials. As N2-ice readily flows, some other ``stiffer'' volatile ice may play a role in supporting the relief of sublimation degraded landforms that exhibit several hundred meters of relief. A strong candidate is CH4, which is spectroscopically observed to be associated with these features, but the current state of rheological knowledge for CH4 ice at Pluto conditions is insufficient for a firm assessment.

  17. Laser-induced cracks in ice due to temperature gradient and thermal stress

    Science.gov (United States)

    Yang, Song; Yang, Ying-Ying; Zhang, Jing-Yuan; Zhang, Zhi-Yan; Zhang, Ling; Lin, Xue-Chun

    2018-06-01

    This work presents the experimental and theoretical investigations on the mechanism of laser-induce cracks in ice. The laser-induced thermal gradient would generate significant thermal stress and lead to the cracking without thermal melting in the ice. The crack density induced by a pulsed laser in the ice critically depends on the laser scanning speed and the size of the laser spot on the surface, which determines the laser power density on the surface. A maximum of 16 cracks within an area of 17 cm × 10 cm can be generated when the laser scanning speed is at 10 mm/s and the focal point of the laser is right on the surface of the ice with a laser intensity of ∼4.6 × 107 W/cm2. By comparing the infrared images of the ice generated at various experimental conditions, it was found that a larger temperature gradient would result in more laser-induced cracks, while there is no visible melting of the ice by the laser beam. The data confirm that the laser-induced thermal stress is the main cause of the cracks created in the ice.

  18. Microtopographic control on the ground thermal regime in ice wedge polygons

    Science.gov (United States)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  19. Ice ages and the thermal equilibrium of the earth, II

    Science.gov (United States)

    Adam, D.P.

    1975-01-01

    The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of

  20. Energy and exergy analyses of an ice-on-coil thermal energy storage system

    International Nuclear Information System (INIS)

    Ezan, Mehmet Akif; Erek, Aytunç; Dincer, Ibrahim

    2011-01-01

    In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. -- Highlights: ► A comprehensive study on energy and exergy analyses of an ice-on-coil TES system. ► Determination of irreversibilities and their potential sources. ► Evaluation of both energy and exergy efficiencies and their comparisons.

  1. Sublime Views and Beautiful Explanations

    DEFF Research Database (Denmark)

    Barry, Daved; Meisiek, Stefan; Hatch, Mary Jo

    To create a generative theory that provides beautiful explanations and sublime views requires both a crafts and an art approach to scientific theorizing. The search for generativity leads scholars to perform various theorizing moves between the confines of simple, yet eloquent beauty...

  2. Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú

    OpenAIRE

    Winkler , M.; Juen , I.; Mölg , T.; Wagnon , Patrick; Gómez , J.; Kaser , G.

    2009-01-01

    Sublimation plays a decisive role in the surface energy and mass balance of tropical glaciers. During the dry season (May–September) low specific humidity and high surface roughness favour the direct transition from ice to vapour and drastically reduce the energy available for melting. However, field measurements are scarce and little is known about the performance of sublimation parameterisations in glacier mass balance and runoff models.

    During 15 days in August 2005 su...

  3. Enthalpy of sublimation as measured using a silicon oscillator

    Science.gov (United States)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  4. Thermal Effects on the "Ice-Cube Puzzle"

    Science.gov (United States)

    Lima, F. M. S.; Monteiro, F. F.

    2012-01-01

    When an ice cube floating on water in a container melts, it is said in some textbooks that the water level does not change. However, as pointed out by Lan in a recent work, when the buoyant force from a less dense fluid resting above the waterline is taken into account, one should expect a detectable "increase" in the volume of water. Here in this…

  5. The Sublime in churches and mosques

    NARCIS (Netherlands)

    Doudouh, N.; van Ginderen, S.

    2012-01-01

    Fear gives us the ability to experience the sublime in various situations when we talk about the sublime in architecture.According to Edmund Burke what causes this fear on a person, is darkness and vastness. Can it be that places of worship have been built for the purpose of expressing the sublime?

  6. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ice detection in heat pumps and coolers. [By thermal resistance and capacitance detection

    Energy Technology Data Exchange (ETDEWEB)

    Buick, T R; McMullan, J T; Morgan, R; Murray, R B

    1978-01-01

    Some methods are discussed for detecting the formation of ice on the evaporators of air-source heat pumps and air coolers by electronic means. The sensing of thermal resistance caused by ice build-up can be done by measuring temperature differences between the evaporator and the air, and analyses are presented of the effect of using both linear and non-linear temperature sensors for this purpose. The direct detection of the presence of ice can be done by measuring the capacitance of a suitably-placed pair of plates, and the performance of such a system is analyzed. Preliminary reports are presented of the use of both of these methods of ice detection in the defrosting of an experimental heat pump.

  8. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-02-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.

  9. Thermal behavior and ice-table depth within the north polar erg of Mars

    Science.gov (United States)

    Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.

    2014-01-01

    We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.

  10. Thermal regime of an ice-wedge polygon landscape near Barrow, Alaska

    Science.gov (United States)

    Daanen, R. P.; Liljedahl, A. K.

    2017-12-01

    Tundra landscapes are changing all over the circumpolar Arctic due to permafrost degradation. Soil cracking and infilling of meltwater repeated over thousands of years form ice wedges, which produce the characteristic surface pattern of ice-wedge polygon tundra. Rapid top-down thawing of massive ice leads to differential ground subsidence and sets in motion a series of short- and long-term hydrological and ecological changes. Subsequent responses in the soil thermal regime drive further permafrost degradation and/or stabilization. Here we explore the soil thermal regime of an ice-wedge polygon terrain near Utqiagvik (formerly Barrow) with the Water balance Simulation Model (WaSiM). WaSiM is a hydro-thermal model developed to simulate the water balance at the watershed scale and was recently refined to represent the hydrological processes unique to cold climates. WaSiM includes modules that represent surface runoff, evapotranspiration, groundwater, and soil moisture, while active layer freezing and thawing is based on a direct coupling of hydrological and thermal processes. A new snow module expands the vadose zone calculations into the snow pack, allowing the model to simulate the snow as a porous medium similar to soil. Together with a snow redistribution algorithm based on local topography, this latest addition to WaSiM makes simulation of the ground thermal regime much more accurate during winter months. Effective representation of ground temperatures during winter is crucial in the simulation of the permafrost thermal regime and allows for refined predictions of future ice-wedge degradation or stabilization.

  11. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  12. Sublimator Driven Coldplate Engineering Development Unit Test Results

    Science.gov (United States)

    Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.

    2010-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Because the SDC requires a consumable feedwater, it can only be used for short mission durations. Additionally, the SDC is ideal for a vehicle with small transport distances and low heat rejection requirements. An SDC Engineering Development Unit was designed and fabricated. Performance tests were performed in a vacuum chamber to quantify and assess the performance of the SDC. The test data was then used to develop correlated thermal math models. Nonetheless, an Integrated Sublimator Driven Coldplate (ISDC) concept is being developed. The ISDC couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases and provides for dissimilar system redundancy

  13. Benchmarking a first-principles thermal neutron scattering law for water ice with a diffusion experiment

    Directory of Open Access Journals (Sweden)

    Holmes Jesse

    2017-01-01

    Full Text Available The neutron scattering properties of water ice are of interest to the nuclear criticality safety community for the transport and storage of nuclear materials in cold environments. The common hexagonal phase ice Ih has locally ordered, but globally disordered, H2O molecular orientations. A 96-molecule supercell is modeled using the VASP ab initio density functional theory code and PHONON lattice dynamics code to calculate the phonon vibrational spectra of H and O in ice Ih. These spectra are supplied to the LEAPR module of the NJOY2012 nuclear data processing code to generate thermal neutron scattering laws for H and O in ice Ih in the incoherent approximation. The predicted vibrational spectra are optimized to be representative of the globally averaged ice Ih structure by comparing theoretically calculated and experimentally measured total cross sections and inelastic neutron scattering spectra. The resulting scattering kernel is then supplied to the MC21 Monte Carlo transport code to calculate time eigenvalues for the fundamental mode decay in ice cylinders at various temperatures. Results are compared to experimental flux decay measurements for a pulsed-neutron die-away diffusion benchmark.

  14. Micrometeorological and Thermal Control of Frost Flower Growth and Decay on Young Sea Ice

    DEFF Research Database (Denmark)

    Galley, Ryan J.; Else, Brent G. T.; Geilfus, Nicolas-Xavier

    2015-01-01

    -wave radiation balance at the surface. The observed crystal habits of the frost flowers were long needles, betraying their origin from the vapour phase at temperatures between -20°C and -30°C. After a night of growth, frost flowers decayed associated with increased solar radiation, a net surface radiation...... and the physical and thermal properties of the sea ice and atmosphere that form, decay and destroy frost flowers on young sea ice. Frost flower formation occurred during a high-pressure system that caused air temperatures to drop to -30°C, with relative humidity of 70% (an under saturated atmosphere), and very...

  15. Thermally induced magnetic relaxation in square artificial spin ice

    Science.gov (United States)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  16. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  17. Radar attenuation in Europa's ice shell: obstacles and opportunities for constraining shell thickness and thermal structure

    Science.gov (United States)

    Kalousova, Klara; Schroeder, Dustin M.; Soderlund, Krista M.; Sotin, Christophe

    2016-10-01

    With its strikingly young surface and possibly recent endogenic activity, Europa is one of the most exciting bodies within our Solar System and a primary target for spacecraft exploration. Future missions to Europa are expected to carry ice penetrating radar instruments which are powerful tools to investigate the subsurface thermophysical structure of its ice shell.Several authors have addressed the 'penetration depth' of radar sounders at icy moons, however, the concept and calculation of a single value penetration depth is a potentially misleading simplification since it ignores the thermal and attenuation structure complexity of a realistic ice shell. Here we move beyond the concept of a single penetration depth by exploring the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's ice shell as well as for a low loss and high loss temperature-dependent attenuation model. The possibility to detect brines is also investigated.Our results indicate that: (i) for all ice shell thicknesses investigated (5-30 km), a nominal satellite-borne radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth strongly varies laterally with the deepest penetration possible through the cold downwellings, (iii) the direct detection of the ice/ocean interface might be possible for shells of up to 15 km if the radar signal travels through the cold downwelling, (iv) even if the ice/ocean interface is not detected, the penetration through most of the shell could constrain the deep shell structure through the loss of signal, and (v) for all plausible ice shells the two-way attenuation to the eutectic point is ≤30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow structure.Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. K.K. acknowledges support by the Grant Agency of the

  18. Investigation of HNCO isomer formation in ice mantles by UV and thermal processing: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Escobar, A.; Giuliano, B. M.; Caro, G. M. Muñoz; Cernicharo, J. [Centro de Astrobiología, INTA-CSIC, Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Marcelino, N., E-mail: bgiuliano@cab.inta-csic.es [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-06-10

    Current gas-phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting their formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogs containing H{sub 2}O, NH{sub 3}, CO, HCN, CH{sub 3}OH, CH{sub 4}, and N{sub 2} followed by warm-up under astrophysically relevant conditions. Only the H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ices were simulated using the Interstellar Astrochemistry Chamber, a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer detected the desorption of the molecules in the gas phase. UV photoprocessing of H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ices lead to the formation of OCN{sup –} as a main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV photoprocessing of realistic simulated ice mantles might explain the observed abundances of these species in photodissociation regions, hot cores, and dark clouds.

  19. Enthalpies of sublimation of fullerenes by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Herrera, Melchor; Campos, Myriam; Torres, Luis Alfonso; Rojas, Aarón, E-mail: arojas@cinvestav.mx

    2015-12-20

    Graphical abstract: - Highlights: • Enthalpies of sublimation of fullerenes were measured by thermogravimetry. • Results of enthalpies of sublimation are comparable with data reported in literature. • Not previously reported enthalpy of sublimation of C{sub 78} is supplied in this work. • Enthalpies of sublimation show a strong dependence with the number of carbon atoms in the cluster. • Enthalpies of sublimation are congruent with dispersion forces ruling cohesion of solid fullerene. - Abstract: The enthalpies of sublimation of fullerenes, as measured in the interval of 810–1170 K by thermogravimetry and applying the Langmuir equation, are reported. The detailed experimental procedure and its application to fullerenes C{sub 60}, C{sub 70}, C{sub 76}, C{sub 78} and C{sub 84} are supplied. The accuracy and uncertainty associated with the experimental results of the enthalpy of sublimation of these fullerenes show that the reliability of the measurements is comparable to that of other indirect high-temperature methods. The results also indicate that the enthalpy of sublimation increases proportionally to the number of carbon atoms in the cluster but there is also a strong correlation between the enthalpy of sublimation and the polarizability of each fullerene.

  20. Robust Magnetic Properties of a Sublimable Single-Molecule Magnet.

    Science.gov (United States)

    Kiefl, Evan; Mannini, Matteo; Bernot, Kevin; Yi, Xiaohui; Amato, Alex; Leviant, Tom; Magnani, Agnese; Prokscha, Thomas; Suter, Andreas; Sessoli, Roberta; Salman, Zaher

    2016-06-28

    The organization of single-molecule magnets (SMMs) on surfaces via thermal sublimation is a prerequisite for the development of future devices for spintronics exploiting the richness of properties offered by these magnetic molecules. However, a change in the SMM properties due to the interaction with specific surfaces is usually observed. Here we present a rare example of an SMM system that can be thermally sublimated on gold surfaces while maintaining its intact chemical structure and magnetic properties. Muon spin relaxation and ac susceptibility measurements are used to demonstrate that, unlike other SMMs, the magnetic properties of this system in thin films are very similar to those in the bulk, throughout the full volume of the film, including regions near the metal and vacuum interfaces. These results exhibit the robustness of chemical and magnetic properties of this complex and provide important clues for the development of nanostructures based on SMMs.

  1. Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems

    Science.gov (United States)

    Chopdekar, R. V.; Li, B.; Wynn, T. A.; Lee, M. S.; Jia, Y.; Liu, Z. Q.; Biegalski, M. D.; Retterer, S. T.; Young, A. T.; Scholl, A.; Takamura, Y.

    2017-07-01

    We have used soft x-ray photoemission electron microscopy to image the magnetization of single-domain L a0.7S r0.3Mn O3 nanoislands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nanoislands with strong interisland magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (TC=338 K ) allows for a much greater probability of achieving low-energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nanoislands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nanoislands at temperatures modestly above room temperature.

  2. ELECTRON IRRADIATION AND THERMAL PROCESSING OF MIXED-ICES OF POTENTIAL RELEVANCE TO JUPITER TROJAN ASTEROIDS

    International Nuclear Information System (INIS)

    Mahjoub, Ahmed; Poston, Michael J.; Hand, Kevin P.; Hodyss, Robert; Blacksberg, Jordana; Carlson, Robert W.; Ehlmann, Bethany L.; Choukroun, Mathieu; Brown, Michael E.; Eiler, John M.

    2016-01-01

    In this work we explore the chemistry that occurs during the irradiation of ice mixtures on planetary surfaces, with the goal of linking the presence of specific chemical compounds to their formation locations in the solar system and subsequent processing by later migration inward. We focus on the outer solar system and the chemical differences for ice mixtures inside and outside the stability line for H 2 S. We perform a set of experiments to explore the hypothesis advanced by Wong and Brown that links the color bimodality in Jupiter's Trojans to the presence of H 2 S in the surface of their precursors. Non-thermal (10 keV electron irradiation) and thermally driven chemistry of CH 3 OH–NH 3 –H 2 O (“without H 2 S”) and H 2 S–CH 3 OH–NH 3 –H 2 O (“with H 2 S”) ices were examined. Mid-IR analyses of ice and mass spectrometry monitoring of the volatiles released during heating show a rich chemistry in both of the ice mixtures. The “with H 2 S” mixture experiment shows a rapid consumption of H 2 S molecules and production of OCS molecules after a few hours of irradiation. The heating of the irradiated “with H 2 S” mixture to temperatures above 120 K leads to the appearance of new infrared bands that we provisionally assign to SO 2 and CS. We show that radiolysis products are stable under the temperature and irradiation conditions of Jupiter Trojan asteroids. This makes them suitable target molecules for potential future missions as well as telescope observations with a high signal-to-noise ratio. We also suggest the consideration of sulfur chemistry in the theoretical modeling aimed at understanding the chemical composition of Trojans and KOBs

  3. Schopenhauer, Nietzsche, and the Aesthetically Sublime

    Science.gov (United States)

    Vandenabeele, Bart

    2003-01-01

    Much has been written on the relationship between Arthur Schopenhauer and Friedrich Nietzsche. Much remains to be said, however, concerning their respective theories of the sublime. In this article, the author first argues against the traditional, dialectical view of Schopenhauer's theory of the sublime that stresses the crucial role the sublime…

  4. Sacred Space and Sublime Sacramental Piety

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2012-01-01

    Analyses and Discussions of Mozart's Sacramental Litanies K. 125 and K. 243 in relation to the notions of the Sacred and the Sublime.......Analyses and Discussions of Mozart's Sacramental Litanies K. 125 and K. 243 in relation to the notions of the Sacred and the Sublime....

  5. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    Science.gov (United States)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  6. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D{sub 2}O ice greater than that of H{sub 2}O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born–Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid

  7. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    Science.gov (United States)

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  8. A new thermal gradient ice nucleation diffusion chamber instrument: design, development and first results using Saharan mineral dust

    Directory of Open Access Journals (Sweden)

    J. B. McQuaid

    2009-06-01

    Full Text Available A new Thermal Gradient ice nucleation Diffusion Chamber (TGDC capable of investigating ice nucleation efficiency of atmospherically important aerosols, termed Ice Nuclei (IN, has been designed, constructed and validated. The TGDC can produce a range of supersaturations with respect to ice (SSi over the temperature range of −10 to −34°C for sufficiently long time needed to observe the ice nucleation by the particles. The novel aspect of this new TGDC is that the chamber is run in static mode with aerosol particles supported on a Teflon substrate, which can be raised and lowered in a controlled way through the SSi profile within the chamber, and nucleation events are directly observed using digital photography. The TGDC consists of two ice coated plates to which a thermal gradient is applied to produce the range of SSi. The design of the TGDC gives the ability to understand time-related ice nucleation event information and to perform experiments at different temperatures and SSi conditions for different IN without changing the thermal gradient within the TGDC. The temperature and SSi conditions of the experimental system are validated by observing (NH42SO4 deliquescence and the results are in good agreement with the literature data. First results are presented of the onset ice nucleation for mineral dust sampled from the Saharan Desert, including images of nucleation and statistical distributions of onset ice nucleation SSi as a function of temperature. This paper illustrates how useful this new TGDC is for process level studies of ice nucleation and more experimental investigations are needed to better quantify the role of ice formation in the atmosphere.

  9. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    Science.gov (United States)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  10. Numerical analysis on thermal characteristics and ice melting efficiency for microwave deicing vehicle

    Science.gov (United States)

    Wang, Can; Yang, Bo; Tan, Gangfeng; Guo, Xuexun; Zhou, Li; Xiong, Shengguang

    2016-05-01

    In the high latitudes, the icy patches on the road are frequently generated and have a wide distribution, which are difficult to remove and obviously affect the normal usage of the highways, bridges and airport runways. Physical deicing, such as microwave (MW) deicing, help the ice melt completely through heating mode and then the ice layer can be swept away. Though it is no pollution and no damage to the ground, the low efficiency hinders the development of MW deicing vehicle equipped without sufficient speed. In this work, the standard evaluation of deicing is put forward firstly. The intensive MW deicing is simplified to ice melting process characterized by one-dimensional slab with uniform volumetric energy generation, which results in phase transformation and interface motion between ice and water. The heating process is split into the superposition of three parts — non-heterogeneous heating for ground without phase change, heat transfer with phase change and the heat convection between top surface of ice layer and flow air. Based on the transient heat conduction theory, a mathematical model, combining electromagnetic and two-phase thermal conduction, is proposed in this work, which is able to reveal the relationship between the deicing efficiency and ambient conditions, as well as energy generation and material parameters. Using finite difference time-domain, this comprehensive model is developed to solve the moving boundary heat transfer problem in a one-dimensional structured gird. As a result, the stimulation shows the longitudinal temperature distributions in all circumstances and quantitative validation is obtained by comparing simulated temperature distributions under different conditions. In view of the best economy and fast deicing, these analytic solutions referring to the complex influence factors of deicing efficiency demonstrate the optimal matching for the new deicing design.

  11. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  12. Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes

    Directory of Open Access Journals (Sweden)

    P. Ginot

    2006-01-01

    Full Text Available A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI: higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.

  13. Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds

    International Nuclear Information System (INIS)

    Blokhina, Svetlana; Sharapova, Angelica; Ol’khovich, Marina; Perlovich, German

    2017-01-01

    Highlights: • The vapor pressures of ciprofloxacin, enrofloxacin, norfloxacin and levofloxacin were measured. • The values of enthalpies, entropies and Gibbs energies of sublimation were calculated at T = 298.15 K. • Thermophysical characteristics of the studied compounds were determined. • The influence hydrogen bonds in crystal lattices on the sublimation enthalpy was discussed. - Abstract: The transpiration method was used to measure the vapor pressures as a function of temperature of the following antimicrobial drugs: ciprofloxacin, enrofloxacin, norfloxacin and levofloxacin. Based on these results standard molar enthalpies, entropies and Gibbs energies of sublimation at T = 298.15 K were calculated and a correlation between the crystal lattice energy and the saturation vapor pressure in a number of fluoroquinolones was found. The thermophysical characteristics of the compounds studied were determined by DSC. The influence of different structural fragments of molecules substituents and the effects of hydrogen bonds in crystal lattices on the sublimation enthalpy was discussed.

  14. ELECTRON IRRADIATION AND THERMAL PROCESSING OF MIXED-ICES OF POTENTIAL RELEVANCE TO JUPITER TROJAN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Ahmed; Poston, Michael J.; Hand, Kevin P.; Hodyss, Robert; Blacksberg, Jordana; Carlson, Robert W.; Ehlmann, Bethany L.; Choukroun, Mathieu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Brown, Michael E.; Eiler, John M., E-mail: Mahjoub.Ahmed@jpl.nasa.gov [California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States)

    2016-04-01

    In this work we explore the chemistry that occurs during the irradiation of ice mixtures on planetary surfaces, with the goal of linking the presence of specific chemical compounds to their formation locations in the solar system and subsequent processing by later migration inward. We focus on the outer solar system and the chemical differences for ice mixtures inside and outside the stability line for H{sub 2}S. We perform a set of experiments to explore the hypothesis advanced by Wong and Brown that links the color bimodality in Jupiter's Trojans to the presence of H{sub 2}S in the surface of their precursors. Non-thermal (10 keV electron irradiation) and thermally driven chemistry of CH{sub 3}OH–NH{sub 3}–H{sub 2}O (“without H{sub 2}S”) and H{sub 2}S–CH{sub 3}OH–NH{sub 3}–H{sub 2}O (“with H{sub 2}S”) ices were examined. Mid-IR analyses of ice and mass spectrometry monitoring of the volatiles released during heating show a rich chemistry in both of the ice mixtures. The “with H{sub 2}S” mixture experiment shows a rapid consumption of H{sub 2}S molecules and production of OCS molecules after a few hours of irradiation. The heating of the irradiated “with H{sub 2}S” mixture to temperatures above 120 K leads to the appearance of new infrared bands that we provisionally assign to SO{sub 2}and CS. We show that radiolysis products are stable under the temperature and irradiation conditions of Jupiter Trojan asteroids. This makes them suitable target molecules for potential future missions as well as telescope observations with a high signal-to-noise ratio. We also suggest the consideration of sulfur chemistry in the theoretical modeling aimed at understanding the chemical composition of Trojans and KOBs.

  15. Thermal and energetic processing of astrophysical ice analogues rich in SO2

    Science.gov (United States)

    Kaňuchová, Z.; Boduch, Ph.; Domaracka, A.; Palumbo, M. E.; Rothard, H.; Strazzulla, G.

    2017-08-01

    Context. Sulfur is an abundant element in the cosmos and it is thus an important contributor to astrochemistry in the interstellar medium and in the solar system. Astronomical observations of the gas and of the solid phases in the dense interstellar/circumstellar regions have evidenced that sulfur is underabundant. The hypothesis to explain such a circumstance is that it is incorporated in some species in the solid phase (I.e. as frozen gases and/or refractory solids) and/or in the gas phase, which for different reasons have not been observed so far. Aims: Here we wish to give a contribution to the field by studying the chemistry induced by thermal and energetic processing of frozen mixtures of sulfur dioxide (one of the most abundant sulfur-bearing molecules observed so far) and water. Methods: We present the results of a series of laboratory experiments concerning thermal processing of different H2O:SO2 mixtures and ion bombardment (30 keV He+) of the same mixtures. We used in situ Fourier transform infrared (FTIR) spectroscopy to investigate the induced effects. Results: The results indicate that ionic species such as HSO, HSO, and S2O are easily produced. Energetic processing also produces SO3 polymers and a sulfurous refractory residue. Conclusions: The produced ionic species exhibit spectral features in a region that, in astronomical spectra of dense molecular clouds, is dominated by strong silicate absorption. However, such a dominant feature is associated with some spectral features, some of which have not yet been identified. We suggest adding the sulfur-bearing ionic species to the list of candidates to help explain some of those features. In addition, we suggest that once expelled in the gas phase by sublimation, due to the temperature increase, and/or by non-thermal erosion those species would constitute a class of molecular ions not detected so far. We also suggest that molecular sulfur-bearing ions could be present on the surfaces and/or in the

  16. Development of road hydronic snow-ice melting system with solar energy and seasonal underground thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q.; Liu, Y.; Ma, C.Q.; Li, M.; Huang, Y.; Yu, M. [Jilin Univ., Changchun (China). Dept. of Thermal Energy Engineering; Liu, X.B. [Climate Master Inc., OK (United States)

    2008-07-01

    Snow and ice melting technologies that used thermal energy storage were explored. The study included analyses of solar heat slab, seasonal underground thermal energy storage, and embedded pipe technologies. Different road materials, roadbed construction methods, and underground rock and soil conditions were also discussed. New processes combining all 3 of the main technologies were also reviewed. Other thermal ice melting technologies included conductive concrete and asphalt; heating cables, and hydronic melting systems. Geothermal energy is increasingly being considered as a means of melting snow and ice from roads and other infrastructure. Researchers have also been focusing on simulating heat transfer in solar collectors and road-embedded pipes. Demonstration projects in Japan, Switzerland, and Poland are exploring the use of combined geothermal and solar energy processes to remove snow and ice from roads. Research on hydronic melting technologies is also being conducted in the United States. The study demonstrated that snow-ice melting energy storage systems will become an important and sustainable method of snow and ice removal in the future. The technology efficiently uses renewable energy sources, and provides a cost-effective means of replacing or reducing chemical melting agents. 33 refs., 1 fig.

  17. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  18. Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú

    Directory of Open Access Journals (Sweden)

    M. Winkler

    2009-02-01

    Full Text Available Sublimation plays a decisive role in the surface energy and mass balance of tropical glaciers. During the dry season (May–September low specific humidity and high surface roughness favour the direct transition from ice to vapour and drastically reduce the energy available for melting. However, field measurements are scarce and little is known about the performance of sublimation parameterisations in glacier mass balance and runoff models.

    During 15 days in August 2005 sublimation was measured on the tongue of Glaciar Artesonraju (8°58' S, 77°38' W in the Cordillera Blanca, Perú, using simple lysimeters. Indicating a strong dependence on surface roughness, daily totals of sublimation range from 1–3 kg m−2 for smooth to 2–5 kg m−2 for rough conditions. (The 15-day means at that time of wind speed and specific humidity were 4.3 m s−1 and 3.8 g kg−1, respectively.

    Measured sublimation was related to characteristic surface roughness lengths for momentum (zm and for the scalar quantities of temperature and water vapour (zs, using a process-based mass balance model. Input data were provided by automatic weather stations, situated on the glacier tongue at 4750 m a.s.l. and 4810 m a.s.l., respectively. Under smooth conditions the combination zm=2.0 mm and zs=1.0 mm appeared to be most appropriate, for rough conditions zm=20.0 mm and zs=10.0 mm fitted best.

    Extending the sublimation record from April 2004 to December 2005 with the process-based model confirms, that sublimation shows a clear seasonality. 60–90% of the energy available for ablation is consumed by sublimation in the dry season, but only 10–15% in the wet season (October–April. The findings are finally used to evaluate the parameterisation of sublimation in the lower-complexity mass

  19. Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú

    Science.gov (United States)

    Winkler, M.; Juen, I.; Mölg, T.; Wagnon, P.; Gómez, J.; Kaser, G.

    2009-02-01

    Sublimation plays a decisive role in the surface energy and mass balance of tropical glaciers. During the dry season (May-September) low specific humidity and high surface roughness favour the direct transition from ice to vapour and drastically reduce the energy available for melting. However, field measurements are scarce and little is known about the performance of sublimation parameterisations in glacier mass balance and runoff models. During 15 days in August 2005 sublimation was measured on the tongue of Glaciar Artesonraju (8°58' S, 77°38' W) in the Cordillera Blanca, Perú, using simple lysimeters. Indicating a strong dependence on surface roughness, daily totals of sublimation range from 1-3 kg m-2 for smooth to 2-5 kg m-2 for rough conditions. (The 15-day means at that time of wind speed and specific humidity were 4.3 m s-1 and 3.8 g kg-1, respectively.) Measured sublimation was related to characteristic surface roughness lengths for momentum (zm) and for the scalar quantities of temperature and water vapour (zs), using a process-based mass balance model. Input data were provided by automatic weather stations, situated on the glacier tongue at 4750 m a.s.l. and 4810 m a.s.l., respectively. Under smooth conditions the combination zm=2.0 mm and zs=1.0 mm appeared to be most appropriate, for rough conditions zm=20.0 mm and zs=10.0 mm fitted best. Extending the sublimation record from April 2004 to December 2005 with the process-based model confirms, that sublimation shows a clear seasonality. 60-90% of the energy available for ablation is consumed by sublimation in the dry season, but only 10-15% in the wet season (October-April). The findings are finally used to evaluate the parameterisation of sublimation in the lower-complexity mass balance model ITGG, which has the advantage of requiring precipitation and air temperature as only input data. It turns out that the implementation of mean wind speed is a possible improvement for the representation of

  20. Studies of a thermal energy storage unit with ice on coils; Ice on coil gata kori chikunetsuso no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan)

    1996-10-27

    Study was made of an ice-on-coil heat storage tank for power load levelling. Prior to the prediction of performance of the system as a whole, the performance of the heat storage tank itself needs to be predicted. A brine (35.9% water solution of ethylene glycol) cooled by a refrigerating machine was poured from the upper end of the piping in the heat storage tank (consisting of 19 spiral pipes or coils arranged in parallel in the vertical direction) for the collection of ice around the coils. Ice grew thicker with the passage of time but there was no remarkable decrease in the transfer of heat because there was an increase in the area of contact between ice and water, and the brine exit temperature remained constant over a prolonged period of time. There was a close agreement between experiment results and theoretical conclusions throughout the heat accumulation process, including changes with time in the thickness of ice on the coils, all pointing to the appropriateness of this analytical effort. To melt the ice, water was poured into the tank top at a predetermined rate. Water chilly at 2-4{degree}C was recovered at the tank bottom, stable in the amount produced. As for the use of spiral pipes for making ice, the laminar heat transfer rate in such pipes are supposed to be more than two times higher than that in straight pipes, and this was quite effective in accelerating heat transfer. 7 refs., 11 figs.

  1. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard

    Science.gov (United States)

    Christiansen, H. H.

    2006-12-01

    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  2. Cometary nucleus release experiments and ice physics

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1976-01-01

    Some physical and chemical processes involved in the evaporation and sublimation of mixtures of frozen gases are discussed. Effects of zero gravity, vacuum and solar radiation are emphasized. Relevant experiments that can be carried out with the aid of the space shuttle are proposed. The ice surface and the space just above the surface, i.e., the physics and chemistry of ice sublimation are mainly considered

  3. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  4. Schopenhauer e os paradoxos do sublime

    Directory of Open Access Journals (Sweden)

    François Arnaud

    2012-08-01

    Full Text Available http://dx.doi.org/10.5007/1677-2954.2012v11nesp1p153 A principal distinção entre a concepção schopenhaueriana e kantiana do sublime reside, segundo este artigo, no fato que o observador, no último caso, deve ser submetido a um perigo apenas possível, enquanto no primeiro caso ele deve ser realmente amedrontado. O principal impulso do sentimento do sublime é de fato, em Schopenhauer, a intervenção da vontade, que deve ser portanto realmente ameaçada. Daí resultam alguns paradoxos e originalidades da teoria do sublime de Schopenhauer, principalmente de um ponto de vista ético, cujos vestígios eu tento seguir.

  5. The enthalpy of sublimation of cubane

    International Nuclear Information System (INIS)

    Bashir-Hashemi, A.; Chickos, James S.; Hanshaw, William; Zhao Hui; Farivar, Behzad S.; Liebman, Joel F.

    2004-01-01

    The sublimation enthalpy of cubane, a key reference material for force field and quantum mechanical computations, was measured by combining the vaporization enthalpy at T = 298.15 K to the sum of the fusion enthalpy measured at T = 405 K and a solid-solid phase transition that occurs at T 394 K. The fusion and solid-solid phase transitions were measured previously. A sublimation enthalpy value of (55.2 ± 2.0) kJ mol -1 at T = 298.15 K was obtained. This value compares quite favorably the value obtained by comparing the sublimation enthalpy of similar substances as a function of their molar masses but is at odds with earlier measurements

  6. The enthalpy of sublimation of cubane

    Energy Technology Data Exchange (ETDEWEB)

    Bashir-Hashemi, A.; Chickos, James S.; Hanshaw, William; Zhao Hui; Farivar, Behzad S.; Liebman, Joel F

    2004-12-15

    The sublimation enthalpy of cubane, a key reference material for force field and quantum mechanical computations, was measured by combining the vaporization enthalpy at T = 298.15 K to the sum of the fusion enthalpy measured at T = 405 K and a solid-solid phase transition that occurs at T 394 K. The fusion and solid-solid phase transitions were measured previously. A sublimation enthalpy value of (55.2 {+-} 2.0) kJ mol{sup -1} at T = 298.15 K was obtained. This value compares quite favorably the value obtained by comparing the sublimation enthalpy of similar substances as a function of their molar masses but is at odds with earlier measurements.

  7. Bare ice fields developed in the inland part of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    Shuhei Takahashi

    1997-03-01

    Full Text Available Observations of a bare ice field were carried out at Seal Rock in the Sor Rondane area, East Antarctica. A large sublimation rate, 200 to 280mm/a, was observed on the bare ice field. Air temperature on the bare ice was about 1℃ higher than that on the snow surface. The large sublimation rate was explained from the low albedo of bare ice; its value was roughly estimated from heat budget considerations. The bare ice fields were classified into 4 types according to origin.

  8. Method for maintenance of ice beds of ice condenser containment

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Hardin, R.T. Jr.

    1987-01-01

    This patent describes a method of maintaining ice baskets associated with a nuclear reactor system and disposed in an array of plural such ice baskets, supported in generally vertically oriented and parallel relationship by a lattice support structure which extends between the individual ice baskets and includes lateral supports adjacent the tops of the comprising: selecting an ice basket of the array requiring replenishment of the ice therewithin due to sublimation voids within the ice charges in the basket; isolating the selected ice basket; drilling a hole downwardly through the ice charges in the ice basket in general parallel axial relationship with respect to the cylindrical sidewall of the ice basket, utilizing a rotary drill bit connected through an auger to a rotary drive means; maintaining the rotary drive means in a fixed axial position and reversing the direction of rotation thereof for driving the auger in reverse rotation; and supplying ice in particulate form to the vicinity of the auger and conveying the particulate ice through the drilled hole by continued, reverse rotation of the auger so as to fill the sublimated voids in communication with the drilled hole, from the lowest and through successively higher such voids in the ice charges within the ice basket, and withdrawing the auger from the drilled hole as the voids are filled

  9. Neutron scattering studies of the phase-transitions of ices by thermal-annealing

    International Nuclear Information System (INIS)

    Wang, Y.; Kolesnikov, A.; Li, J.C.

    1999-01-01

    Complete text of publication follows. Inelastic incoherent neutron scattering was used to study the phase-transition process of high-density amorphous (hda) ice produced by pressurising ice-Ih at 16 kbar and 77 K to low-density amorphous (Ida) ice, ice-Ic and ice-Ih by thermobaric treatments. The results show that when annealing temperature is lower than 136 K no obvious phase-transition was observed and transformation of the hda to the lda ice occurs between 136 and 144 K which is very closed to the theoretically calculated value 135 K (1). Comparing the lda spectrum with the vapour deposited low-density amorphous ice (2) shows a number of differences in the translational and vibrational regions, such as the low energy cut off of the vibrational band. On the other hand, the recovered lda from the hda ice has a similar spectrum as ice-Ih. (author)

  10. Carbon Dioxide Removal via Passive Thermal Approaches

    Science.gov (United States)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  11. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    Directory of Open Access Journals (Sweden)

    Kuyumcu Muhammed Enes

    2017-01-01

    Full Text Available This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effects of different design parameters such as ceiling insulation thickness, ceiling emissivity, Carnot efficiency factor and size of the ice rink on the thermal energy requirements and coefficient of performance of the chiller unit are investigated. As a result of analyses of the system, the minimum ice rink area is determined in order to meet annual total heat energy demand of the olympic-sized swimming pool.

  12. Recommended sublimation pressure and enthalpy of benzene

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Červinka, C.

    2014-01-01

    Roč. 68, Jan (2014), s. 40-47 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : benzene * vapor pressure * heat capacity * ideal - gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  13. Sublimation From Snow in Northern Environments

    Science.gov (United States)

    Pomeroy, J. W.

    2002-12-01

    Sublimation from snow is an often neglected component of water and energy balances. Research under the Mackenzie GEWEX Study has attempted to understand the snow and atmospheric processes controlling sublimation and to estimate the magnitude of sublimation in high latitude catchments. Eddy correlation units were used to measure vertical water vapour fluxes from a high latitude boreal forest, snow-covered tundra and shrub-covered tundra in Wolf Creek Research Basin, near Whitehorse Yukon, Territory Canada. Over Jan-Apr. water vapour fluxes from the forest canopy amounted to 18.3 mm, a significant loss from winter snowfall of 54 mm. Most of this loss occurred when the canopy was snow-covered. The weight of snow measured on a suspended, weighed tree indicates that this flux is dominated by sublimation of intercepted snow. In the melt period (April), water vapour fluxes were uniformly small ranging from 0.21 mm/day on the tundra slope, 0.23 mm/day for the forest and 0.27 mm/day for the shrub-tundra. During the melt period the forest and shrub canopies was snow-free and roots were frozen, so the primary source of water vapour from all sites was the surface snow.

  14. Alan Paton's Sublime: Race, Landscape and the Transcendence of ...

    African Journals Online (AJOL)

    This article develops a postcolonial reading of the sublime by suggesting that aesthetic theories of the sublime were, in their classical philosophical formulations by Edmund Burke and Immanuel Kant, founded on problematic assumptions of racial difference. In the colonial sphere, it is argued, the sublime could discursively ...

  15. Thermal analysis and modeling of a swimming pool heating system by utilizing waste energy rejected from a chiller unit of an ice rink

    OpenAIRE

    Kuyumcu Muhammed Enes; Yumrutaş Recep

    2017-01-01

    This study deals with the thermal analysis and modeling of a swimming pool heating system in which the waste energy rejected from the chiller unit of an ice rink is used as an energy source. The system consists of a swimming pool and an ice rink coupled by a chiller unit. The swimming pool and the ice rink both indoor types and were constructed in city of Gaziantep, Turkey. The thermal energy requirement for each section is determined by thermal analysis of each component of the system. Effec...

  16. Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations

    Directory of Open Access Journals (Sweden)

    S. P. Palm

    2017-11-01

    Full Text Available Blowing snow processes commonly occur over the earth's ice sheets when the 10 m wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high-latitude regions. For the first time, we present continent-wide estimates of blowing snow sublimation and transport over Antarctica for the period 2006–2016 based on direct observation of blowing snow events. We use an improved version of the blowing snow detection algorithm developed for previous work that uses atmospheric backscatter measurements obtained from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite. The blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 are used to compute the blowing snow sublimation and transport rates. Our results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, our results show that the 2006–2016 Antarctica average integrated blowing snow sublimation is about 393 ± 196 Gt yr−1, which is considerably larger than previous model-derived estimates. We find maximum blowing snow transport amount of 5 Mt km−1 yr−1 over parts of East Antarctica and estimate that the average snow transport from continent to ocean is about 3.7 Gt yr−1. These

  17. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  18. Analysis of ice cool thermal storage for a clinic building in Kuwait

    International Nuclear Information System (INIS)

    Sebzali, M.J.; Rubini, P.A.

    2006-01-01

    In Kuwait, air conditioning (AC) systems consume 61% and 40% of the peak electrical load and total electrical energy, respectively. This is due to a very high ambient temperature for the long summer period extended from April to October and the low energy cost. This paper gives an overview of the electrical peak and energy consumption in Kuwait, and it has been found that the average increase in the annual peak electrical demand and energy consumption for the year 1998-2002 was 6.2% and 6.4%, respectively. One method of reducing the peak electrical demand of AC systems during the day period is by incorporating an ice cool thermal storage (ICTS) with the AC system. A clinic building has been selected to study the effects of using an ICTS with different operation strategies such as partial (load levelling), partial (demand limiting) and full storage operations on chiller and storage sizes, reduction of peak electrical demand and energy consumption of the chiller for selected charging and discharging hours. It has been found that the full storage operation has the largest chiller and storage capacities, energy consumption and peak electrical reduction. However, partial storage (load levelling) has the smallest chiller and storage capacities and peak electrical reduction. This paper also provides a detailed comparison of using ICTS operating strategies with AC and AC systems without ICTS

  19. Freezer-sublimer for gaseous diffusion plant

    International Nuclear Information System (INIS)

    Reti, G.R.

    1978-01-01

    A method and apparatus is disclosed for freezing and subliming uranium hexafluoride (UF 6 ) as part of a gaseous diffusion plant from which a quantity of the UF 6 inventory is intermittently withdrawn and frozen to solidify it. A plurality of upright heat pipes holds a coolant and is arranged in a two compartment vessel, the lower compartment is exposed to UF 6 , the higher one serves for condensing the evaporated coolant by means of cooling water. In one embodiment, each pipe has a quantity of coolant such as freon, hermetically sealded therein. In the other embodiment, each pipe is sealed only at the lower end while the upper end communicates with a common vapor or cooling chamber which contains a water cooled condenser. The cooling water has a sufficiently low temperature to condense the evaporated coolant. The liquid coolant flows gravitationally downward to the lower end portion of the pipe. UF 6 gas is flowed into the tank where it contacts the finned outside surface of the heat pipes. Heat from the gas evaporates the coolant and the gas in turn is solidified on the exterior of the heat pipe sections in the tank. To recover UF 6 gas from the tank, the solidified UF 6 is sublimed by passing compressed UF 6 gas over the frozen UF 6 gas on the pipes or by externally heating the lower ends of the pipes sufficiently to evaporate the coolant therein above the subliming temperature of the UF 6 . The subliming UF 6 gas then condenses the coolant in the vertical heat pipes, so that it can gravitationally flow back to the lower end portions

  20. Art, Terrorism and the Negative Sublime

    Directory of Open Access Journals (Sweden)

    Arnold Berleant

    2009-01-01

    Full Text Available The range of the aesthetic has expanded to cover not only a wider range of objects and situations of daily life but also to encompass the negative. This includes terrorism, whose aesthetic impact is central to its use as a political tactic. The complex of positive and negative aesthetic values in terrorism are explored, introducing the concept of the sublime as a negative category to illuminate the analysis and the distinctive aesthetic of terrorism.

  1. Rare earths refining by vacuum sublimation method

    International Nuclear Information System (INIS)

    Rytus, N.N.

    1983-01-01

    The process of rare earths refining by the sUblimation; method in high and superhigh oil-free vacuum, is investigated. The method is effective for rare earths obtaining and permits to prepare metal samples with a high value of electric resistance ratio γ=RsUb(298 K)/Rsub(4.2 K). The estimation of general purity is performed for Sm, Eu, Yb, Tm, Dy, Ho, Er and Se

  2. A re-determination and re-assessment of the thermodynamics of sublimation of uranium dioxide

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.; Rand, M.H.

    1980-01-01

    New mass-spectrometric measurements on the ion-intensity of UO 2 + over urania from 1813 to 2463 K are reported. Although the mean value for the enthalpy of sublimation calculated from these measurements is close to previous values, a detailed examination of the results indicates that there is an appreciable curvature in the log p versus reciprocal-temperature curve for the process: UO 2 (s)→UO 2 (g). This is attributed to a large negative ΔCsub(p) for the sublimation reaction, arising from the sharp increase in Csub(p) (UO 2 (s)) above approximately 1750 K. A thorough re-assessment of the previous studies on the sublimation of urania suggests an 'international' average value of psub(UO 2 )=(1.3+-0.1)x10 -6 atm at 2150 K; Knudsen effusion measurements above 2450 K (p>1x10 -4 atm) are thought to be in error due to departures from molecular flow. Thermal functions for UO 2 (g) have been calculated, assuming a linear molecule and electronic contributions to the partition function based on those of ThO(g). Anharmonicity corrections have been included. When these functions are combined with the thermal functions for UO 2 (s), recently assessed, the third law heat of sublimation at 298.15 K becomes 147.8 kcal.mol -1 with a trend of only 0.2 kcal.mol -1 across the temperature range 1800 to 2400 K. (author)

  3. Thermodynamic study of sublimation, melting and vaporization of scandium(III) dipivaloylmethanate derivatives

    International Nuclear Information System (INIS)

    Zherikova, Kseniya V.; Zelenina, Ludmila N.; Chusova, Tamara P.; Gelfond, Nikolay V.; Morozova, Natalia B.

    2016-01-01

    Highlights: • Thermal properties of two volatile fluorinated Sc(III) beta-diketonates were studied. • Saturated and unsaturated vapor pressures were measured. • DSC analysis was carried out. • Sublimation, evaporation and melting enthalpies and entropies were derived. • Effect of fluorine introduction on volatility and thermal stability was established. - Abstract: The present work deals with the investigation of thermal properties of two volatile scandium(III) beta-diketonates with 2,2,6,6-tetramethyl-4-fluoro-3,5-heptanedione and 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione which have been synthesized and purified. Using the static method with glass membrane gauge-manometer the temperature dependencies of saturated and unsaturated vapor pressure were measured for the first time. The temperatures and enthalpies of melting were measured for these compounds by differential scanning calorimetry. The standard thermodynamic characteristics of enthalpy and entropy for sublimation, vaporization and melting processes were derived.

  4. Modeling thermal structure, ice cover regime and sensitivity to climate change of two regulated lakes - a Norwegian case study

    Science.gov (United States)

    Gebre, Solomon; Boissy, Thibault; Alfredsen, Knut

    2013-04-01

    A great number of river and lakes in Norway and the Nordic region at large are regulated for water management such as hydropower production. Such regulations have the potential to alter the thermal and hydrological regimes in the lakes and rivers downstream impacting on river environment and ecology. Anticipated changes as a result of climate change in meteorological forcing data such as air temperature and precipitation cause changes in the water balance, water temperature and ice cover duration in the reservoirs. This may necessitate changes in operational rules as part of an adaptation strategy for the future. In this study, a one dimensional (1D) lake thermodynamic and ice cover model (MyLake) has been modified to take into account the effect of dynamic outflows in reservoirs and applied to two small but relatively deep regulated lakes (reservoirs) in Norway (Follsjøen and Tesse). The objective was to assess climate change impacts on the seasonal thermal characteristics, the withdrawal temperatures, and the reservoir ice cover dynamics with current operational regimes. The model solves the vertical energy balance on a daily time-step driven by meteorological and hydrological forcings: 2m air temperature, precipitation, 2m relative humidity, 10m wind speed, cloud cover, air pressure, solar insolation, inflow volume, inflow temperature and reservoir outflows. Model calibration with multi-seasonal data of temperature profiles showed that the model performed well in simulating the vertical water temperature profiles for the two study reservoirs. The withdrawal temperatures were also simulated reasonably well. The comparison between observed and simulated lake ice phenology (which were available only for one of the reservoirs - Tesse) was also reasonable taking into account the uncertainty in the observational data. After model testing and calibration, the model was then used to simulate expected changes in the future (2080s) due to climate change by considering

  5. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    Science.gov (United States)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  6. Optimal controls of building storage systems using both ice storage and thermal mass – Part II: Parametric analysis

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A detailed analysis is presented to assess the performance of thermal energy storage (TES) systems. ► Utility rates have been found to be significant in assessing the operation of TES systems. ► Optimal control strategies for TES systems can save up to 40% of total energy cost of office buildings. - Abstract: This paper presents the results of a series of parametric analysis to investigate the factors that affect the effectiveness of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs (including energy and demand costs) while maintaining adequate occupant comfort conditions in buildings. The analysis is based on a validated model-based simulation environment and includes several parameters including the optimization cost function, base chiller size, and ice storage tank capacity, and weather conditions. It found that the combined use of building thermal mass and active thermal energy storage system can save up to 40% of the total energy costs when integrated optimal control are considered to operate commercial buildings.

  7. Small Scale Polygons and the History of Ground Ice on Mars

    Science.gov (United States)

    Mellon, Michael T.

    2003-01-01

    Recent progress on polygon modeling has focused on the diameter and surface relief that we expect of thermal-contraction polygons in martian permafrost. With this in mind, we developed a finite-element model of thermal-contraction-crack behavior in permafrost in a martian climate. This model was generated from a finite element code by Jay Melosh (called TECTON) originally developed for terrestrial and planetary crustal-deformation studies. We adapted this model to martian permafrost by including time (and temperature) dependent rheologies, boundary conditions, and isotropic thermal-contraction, as well as several small adaptations to a martian environment. We tested our model extensively, including comparison to an analytic solution of pre-fracture stress. We recently published an analysis of two potential sources of water for forming the recent gullies. In this work we first evaluated the potential for near-surface ground ice (in the top meter or so of soil) to melt under conditions of solar heating on sloped surfaces at high obliquity, utilizing both thermal and diffusion-based ground-ice-stability models; our results suggested that the ground ice will sublimate, and the ice table will recede to greater depths before the melting temperature can be reached. An exception can occur only for extremely salt-rich ice, depressing the freezing point.

  8. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.

    Science.gov (United States)

    Ehrlich, Lili E; Malen, Jonathan A; Rabin, Yoed

    2016-10-01

    The thermal conductivity of the cryoprotective agent (CPA) cocktail DP6 in combination with synthetic ice modulators (SIMs) is measured in this study, using a transient hot-wire method. DP6 is a mixture of 3 M dimethyl sulfoxide (DMSO) and 3 M propylene glycol, which received significant attention in the cryobiology community in recent years. Tested SIMs include 6% 1,3Cyclohexanediol, 6% 2,3Butanediol, and 12% PEG400 (percentage by volume). This study integrates the scanning cryomacroscope for visual verification of crystallization and vitrification events. It is demonstrated that the thermal conductivity of the vitrifying CPA cocktail decreases monotonically with the decreasing temperature down to -180 °C. By contrast, the thermal conductivity of the crystalline material increases with decreasing temperature in the same temperature range. Results of this study demonstrate that the thermal conductivity may vary by three fold between the amorphous and crystalline phases of DP6 below the glass transition temperature of DP6 (Tg = -119 °C). The selected SIMs demonstrate the ability to inhibit crystallization in DP6, even at subcritical cooling rates. An additional ice suppression capability is observed by the Euro-Collins as a vehicle solution, disproportionate to its volume ratio in the cocktail. The implication of the observed thermal conductivity differences between the amorphous and crystalline phases of the same cocktail on cryopreservation simulations is significant in some cases and must be taken into account in thermal analyses of cryopreservation protocols. Copyright © 2016. Published by Elsevier Inc.

  9. Thermal expansion of the cryoprotectant cocktail DP6 combined with synthetic ice modulators in presence and absence of biological tissues.

    Science.gov (United States)

    Eisenberg, David P; Taylor, Michael J; Rabin, Yoed

    2012-10-01

    This study explores physical effects associated with the application of cryopreservation via vitrification using a class of compounds which are defined here as synthetic ice modulators (SIMs). The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. A sub-category of SIMs, referred to in the literature as synthetic ice blockers (SIBs), are compounds that interact directly with ice nuclei or crystals to modify their structure and/or rate of growth. The current study is part of an ongoing effort to characterize thermo-mechanical effects during vitrification, with emphasis on measuring the physical property of thermal expansion-the driving mechanism to thermo-mechanical stress. Materials under investigation are the cryoprotective agent (CPA) cocktail DP6 in combination with one of the following SIMs: 12% polyethylene glycol 400, 6% 1,3 cyclohexanediol, and 6% 2,3 butanediol. Results are presented for the CPA-SIM cocktail in the absence and presence of bovine muscle and goat artery specimens. This study focuses on the upper part of the cryogenic temperature range, where the CPA behaves as a fluid for all practical applications. Results of this study indicate that the addition of SIMs to DP6 allows lower cooling rates to ensure vitrification and extends the range of measurements. It is demonstrated that the combination of SIM with DP6 increases the thermal expansion of the cocktail, with implications for the likelihood of fracture formation-the most dramatic outcome of thermo-mechanical stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Application of ion beam analysis to the selective sublimation processing of thin films for gas sensing

    International Nuclear Information System (INIS)

    Vomiero, A.; Scian, C.; Della Mea, G.; Guidi, V.; Martinelli, G.; Schiffrer, G.; Comini, E.; Ferroni, M.; Sberveglieri, G.

    2006-01-01

    Ion beam analysis was successfully applied to a novel technique, named selective sublimation process (SSP), for deposition of nanostructured gas-sensing films through reactive sputtering. The method consists of the co-deposition of a mixed oxide, one of which has a relatively low sublimation temperature. Annealing at suitable temperature causes the sublimation of the most volatile compound, leaving a layer with adjustable composition. The appropriate choice of thermal treatments and the consequent tailoring of the composition play a crucial role in the determination of the microstructural properties. We developed a model based on diffusion equations that provides a useful guide to control the deposition and processing parameters and we applied the model on the systems TiO 2 -WO 3 and TiO 2 -MoO 3 . Rutherford backscattering (RBS) was demonstrated to be effective for the characterization of the diffusion and sublimation processes during SSP. Experimental results fully agree with theoretical prediction, and allowed the calculation of all the parameters involved in SSP

  11. Microseismicity along major Ross Ice Shelf rift resulting from thermal contraction of the near-surface firn layer

    Science.gov (United States)

    Olinger, S.; Wiens, D.; Aster, R. C.; Bromirski, P. D.; Gerstoft, P.; Nyblade, A.; Stephen, R. A.

    2017-12-01

    Seismicity within ice shelves arises from a variety of sources, including calving, rifting, and movement along internal discontinuities. In this study, we identify and locate cryoseisms in the Ross Ice Shelf (RIS) to better understand ice shelf internal stress and deformation. We use data from a two-year 34-station deployment of broadband seismographs operational from December 2014 - November 2016. Two lines of seismographs intersect near 79Sº, 180º close to a large rift, and cryoseisms were recorded by up to 10 seismographs within 40 km of the rift tip. We identified 3600 events from 2015 and grouped them by quality based on the number of stations recording and signal-to-noise ratio. The events show a long-period character compared to similar magnitude tectonic earthquakes, with peak amplitudes at 1-4 Hz and P, S, longitudinal, and surface wave arrivals. Cross correlation analysis shows that the events cannot be divided into a small number of repeating event clusters with identical waveforms. 262 A-quality events were located with a least-squares algorithm using P and S arrivals, and the resulting locations show strong spatial correlation with the rift, with events distributed along the rift rather than concentrated at the tip or any other specific feature. The events do not show teleseismic triggering, and did not occur with increased frequency following the Illapel earthquake (8.3 Mw) or subsequent tsunami. Instead, we note a concentration of activity during the winter months, with several days exhibiting particularly high seismicity rates. We compare the full catalog of events with temperature data from the Antarctic Weather Stations (Lazzara et al, 2012) and find that the largest swarms occur during the most rapid periods of seasonal temperature decline. Internal stress in ice floes and shelves is known to vary with air temperature; as temperature drops, the upper layer of ice thermally contracts, causing near-surface extensional stress to accumulate. We

  12. Kinetics of dihydro-dibenz[b,f]azepine derivatives sublimation

    International Nuclear Information System (INIS)

    Krongauz, V.V.; Ling, M.T.K.; Woo, L.; Purohit, U.

    2007-01-01

    Sublimation of dihydro-dibenz[b,f]azepine derivatives upon heating was studied and confirmed by thermogravimetry (TGA) and differential scanning calorimetry (DSC). DSC was used to analyze thermodynamics of melting. The kinetics of dihydro-dibenz[b,f]azepine derivatives sublimation were monitored by TGA as a function of temperature. Activation energies of sublimation were deduced and correlated with melting enthalpies and molecular structure. The results indicated that the sublimation was controlled by intermolecular forces in the crystalline lattice of dihydro-dibenz[b,f]azepine derivatives

  13. Photon-induced Processing of Interstellar Ices in the Laboratory. Focus on Their Non-thermal Desorption.

    Science.gov (United States)

    Martin-Domenech, Rafael; Munoz Caro, Guillermo; Cruz-Diaz, Gustavo A.; Oberg, Karin I.

    2018-06-01

    Some of the processes that take place in the interstellar medium (ISM)can be simulated in laboratories on Earth under astrophysically relevant conditions. For example, the energetic processing of the ice mantles that accrete on top of dust grains in the coldest regions of the ISM, leading to the production of new species and their desorption to the gas phase. In particular, observation of complex organic molecules (COMs) in cold interstellar environments stress the need for not only a solid state formation but also for non-thermal desorption mechanisms that can account for the observed abundances in regions where thermal desorption is inhibited. Laboratory Astrophysics can be used to test different non-thermal desorption processes and extract yields than can be extrapolated to the astrophysical scenario with theoretical models. 0th generation COMs like CH3OH and H2CO can be formed at very low temperatures. In this talk, we present laboratory simulations of the UV photoprocessing of a binary ice mixture composed by water (the main component of astrophysical ices) and methane. Formation of CO, CO2, CH3OH and H2CO was confirmed by IR spectroscopy and subsequent TPD. At the same time, photodesorption of CO and H2CO was detected by means of a Quadrupole Mass Spectrometer, with yields on the order of 10-4 and 10-5 molecules per incident photon, respectively. In general, photodesorption can take place through a direct mechanism, where the absorbing molecule (or its photofragments) are desorbed; or through an indirect mechanism where the absorbed energy is transferred to a surface molecule which is the one finally desorbing. In the case of photoproducts, the evolution of the photodesorption yield gives information on the photodesorption mechanism: a constant photodesorption yield is observed when the photoproducts are desorbed right after their formation; while an increasing yield is measured when the photoproducts are desorbed later after energy transfer from another

  14. Thermal evolution of Comet P/Tempel 1 - Representing the group of targets for the CRAF and CNSR missions

    International Nuclear Information System (INIS)

    Bar-nun, A.; Heifet, E.; Prialnik, D.

    1989-01-01

    A numerical definition of the thermal evolution of spherically symmetric models of the nucleus in the orbit of Comet P/Tempel-1 is presently used to ascertain the properties of the outer layers of comets under consideration for the future Comet Rendezvous and Asteroid Flyby and the Comet Nucleus Sample Return missions. Evolutionary sequences are computed for different values of density, dust/ice mass ratio, and the dust fraction not lost with ice sublimation. It is found that inner and outer surface temperatures of the dust mantle are comparatively insensitive to parameter changes, and that the total thickness of the crystalline ice layer between the dust mantle and the amorphous ice core will make it difficult for the comet-mission probes to sample pristine ice. 23 refs

  15. New Perspectives on Blowing Snow Transport, Sublimation, and Layer Thermodynamic Structure over Antarctica

    Science.gov (United States)

    Palm, Steve; Kayetha, Vinay; Yang, Yuekui; Pauly, Rebecca M.

    2017-01-01

    Blowing snow over Antarctica is a widespread and frequent event. Satellite remote sensing using lidar has shown that blowing snow occurs over 70% of the time over large areas of Antarctica in winter. The transport and sublimation of blowing snow are important terms in the ice sheet mass balance equation and the latter is also an important part of the hydrological cycle. Until now the only way to estimate the magnitude of these processes was through model parameterization. We present a technique that uses direct satellite observations of blowing snow and model (MERRA-2) temperature and humidity fields to compute both transport and sublimation of blowing snow over Antarctica for the period 2006 to 2016. The results show a larger annual continent-wide integrated sublimation than current published estimates and a significant transport of snow from continent to ocean. The talk will also include the lidar backscatter structure of blowing snow layers that often reach heights of 200 to 300 m as well as the first dropsonde measurements of temperature, moisture and wind through blowing snow layers.

  16. Reassessing Aesthetic Appreciation of Nature in the Kantian Sublime

    Science.gov (United States)

    Brady, Emily

    2012-01-01

    The sublime has been a relatively neglected topic in recent work in philosophical aesthetics, with existing discussions confined mainly to problems in Kant's theory. Given the revival of interest in his aesthetic theory and the influence of the Kantian sublime compared to other eighteenth-century accounts, this focus is not surprising. Kant's…

  17. Por uma metafísica do sublime

    Directory of Open Access Journals (Sweden)

    Martha de Almeida

    2009-12-01

    Full Text Available The sublime has been analyzed since ancient times with a striking compared with tragedy, whether as a literary genre, whether through Poetics, Aristotle's catharsis we translate the feeling the sublime. In modernity, new names were coming to work with this theory: Hume himself, in his essay The Tragedy, was impressed by the ability of this art form has to produce such strong effects on the viewer. But who else has strengthened analysis of the sublime in modernity, providing the basis for their own Kant was Edmund Burke, with his piece A philosophical investigation on the ideas of the sublime and the beautiful. The third criticism of Kant devoted a special moment to the analysis of the sublime, which had served as basis also for Schopenhauer, however, from her built his own aesthetic that would be of paramount importance Nieztsche for the young, mainly due to the consideration of music as sublime art. Nietzsche, then built his tragic wisdom, with based on the experience of the sublime tragedy.The question this paper wants to treat it exactly: It is possible think of a metaphysics of the sublime, based on Nietzsche?

  18. The Sublime, Ugliness and Contemporary Art: A Kantian Perspective

    Directory of Open Access Journals (Sweden)

    Mojca Kuplen

    2015-06-01

    Full Text Available The aim of this paper is twofold. First, to explain the distinction between Kant’s notions of the sublime and ugliness, and to answer an important question that has been left unnoticed in contemporary studies, namely why it is the case that even though both sublime and ugliness are contrapurposive for the power of judgment, occasioning the feeling of displeasure, yet that after all we should feel pleasure in the former, while not in the latter. Second, to apply my interpretation of the sublime and ugliness to contemporary art, and to resolve certain issues that have been raised in accounting for the possibility of artistic sublimity. I argue that an experience of a genuine artistic sublimity is an uncommon occurrence. I propose that the value of contemporary art can be best explained by referring to Kant’s notion of ugliness and his theory of aesthetic ideas.

  19. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    Science.gov (United States)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  20. Sublime frequencies:  The construction of sublime listening experiences in the sonification of scientific data.

    Science.gov (United States)

    Supper, Alexandra

    2014-02-01

    In the past two decades, the sonification of scientific data - an auditory equivalent of data visualization in which data are turned into sounds - has become increasingly widespread, particularly as an artistic practice and as a means of popularizing science. Sonification is thus part of the recent trend, discussed in public understanding of science literature, towards increased emphasis on 'interactivity' and 'crossovers' between science and art as a response to the perceived crisis in the relationship between the sciences and their publics. However, sonification can also be understood as the latest iteration in a long tradition of theorizing the relations between nature, science and human experience. This article analyses the recent public fascination with sonification and argues that sonification grips public imaginations through the promise of sublime experiences. I show how the 'auditory sublime' is constructed through varying combinations of technological, musical and rhetorical strategies. Rather than maintain a singular conception of the auditory sublime, practitioners draw on many scientific and artistic repertoires. However, sound is often situated as an immersive and emotional medium in contrast to the supposedly more detached sense of vision. The public sonification discourse leaves intact this dichotomy, reinforcing the idea that sound has no place in specialist science.

  1. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.

    Directory of Open Access Journals (Sweden)

    Shoko Kanaya

    Full Text Available Although visual information seems to affect thermal perception (e.g. red color is associated with heat, previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI wherein an individual feels that a prosthetic (rubber hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.

  2. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    Science.gov (United States)

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal

  3. Development of Gas Turbine Output Enhancement System Using Thermal Ice Storage (I)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byun Youn; Joo, Yong Jin; Lee, Kyoung Ho; Lee, Jae Bong; Kang, Myung Soo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kyung Soon [Korea Electric Power Corp. (Korea, Republic of)

    1997-12-31

    The objective of this study is to develop a system which enhances gas turbine output using ice storage in summer peak days for power supply stability in domestic power system. This study represents conceptual design, system optimization, basic design and economic analysis of system. General equations which represents capacity of chiller and storage tank were drive. Pyungtaek power plant was selected as one suitable for system application due to its space availability. The system was optimized on the basis of economic analysis and power supply situation by determination of optimal inlet cooling hour. TRNSYS simulation program was used for optimal operating factor of ice harvester under partial load operating conditions. Basic design includes capacity calculation of component, cost survey, system flow diagram, plot plan, and system guide. The system has been evaluated on the basis of economic analysis which calculates NPV, payback period and levelized generation cost. (author). 34 refs., figs., tabs.

  4. Sublimation of icy planetesimals and the delivery of water to the habitable zone around solar type stars

    Science.gov (United States)

    Brunini, Adrián; López, María Cristina

    2018-06-01

    We present a semi analytic model to evaluate the delivery of water to the habitable zone around a solar type star carried by icy planetesimals born beyond the snow line. The model includes sublimation of ice, gas drag and scattering by an outer giant planet located near the snow line. The sublimation model is general and could be applicable to planetary synthesis models or N-Body simulations of the formation of planetary systems. We perform a short series of simulations to asses the potential relevance of sublimation of volatiles in the process of delivery of water to the inner regions of a planetary system during early stages of its formation. We could anticipate that erosion by sublimation would prevent the arrival of much water to the habitable zone of protoplanetary disks in the form of icy planetesimals. Close encounters with a massive planet orbiting near the outer edge of the snow line could make possible for planetesimals to reach the habitable zone somewhat less eroded. However, only large planetesimals could provide appreciable amounts of water. Massive disks and sharp gas surface density profiles favor icy planetesimals to reach inner regions of a protoplanetary disk.

  5. Development of a Compact and Efficient Ice Thermal Energy Storage Vessel

    Science.gov (United States)

    Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki

    In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.

  6. The Religious-Sublime in Music, Literature and Architecture

    DEFF Research Database (Denmark)

    Cifuentes-Aldunate, Claudio

    2018-01-01

    The present article is an attempt to propose the semiotic aspect that produces the ”religious- sublime”. Most of the semiotic characteristics that we use to represent (and produce) the signifiers of the religious-sublime, nevertheless, share their mechanisms with other modalities of ”sublimeness......”. The sublime will be regarded as the representation (in the sense of staging) of a perception. I will propose how the subjective perception – in this case of the divinity - is (re)constructed by the subject in a piece of Spanish Gothic literature, in sacred music and in architecture – the room which houses...

  7. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada)

    Science.gov (United States)

    Godin, E.; Fortier, D.

    2013-12-01

    . Heat transfer coefficient varied between 2644 and 7934 W m-2 K and between 1791 and 5374 W of heat was transferred to ice. Water temperature exiting the tunnel was less than 279 K. Both contexts of experimentation are occurring frequently during gully development. A small input of water over exposed massive-ice can erode significant volume of ice-wedges ice, thermally and mechanically. Empiric determination of the heat transfer coefficient using the parameters measured in the field will provide a better understanding of water temperature and discharge relative importance in the thermo-erosion of ice. Fortier, D., Allard, M., et al. (2007). "Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago." Permafrost and Periglacial Processes 18(3): 229-243.

  8. Nietzsche's View of Sublimation in the Educational Process

    Science.gov (United States)

    Sharp, Ann Margaret

    1975-01-01

    Article outlined Nietzsche's beliefs on the primary aim of education, the conscious production of the free man through the process of sublimation, the active redirecting of one's life energy in the service of creativity. (Editor/RK)

  9. Some attributes of snow occurrence and snowmelt/sublimation rates ...

    African Journals Online (AJOL)

    Some attributes of snow occurrence and snowmelt/sublimation rates in the Lesotho ... and trimmed MODIS SNOMAP image using the ArcGIS Spatial Analyst tool. ... and hydrology, earth surface processes, and rural livelihoods in the Lesotho ...

  10. Scanning electron microscope observations of sublimates from Merapi Volcano, Indonesia

    Science.gov (United States)

    Symonds, R.

    1993-01-01

    Sublimates were sampled from high-temperature (up to 800??C) fumaroles at Merapi volcano in January 1984. Sampling is accomplished by inserting silica tubes into high-temperature vents. Volcanic glass flows through the tubes and sublimates precipitate on the inner walls in response to the temperature gradient. With decreasing temperature (800-500??C) in the tubes, there are five sublimate zones. Texturally, the sublimate phases grade from large, well-formed crystals at their highest-temperature occurrence to more numerous, smaller crystals that are less perfect at lower temperatures. These changes imply that the crystal nucleation and growth rates increase and decrease, respectively, as temperature decreases. Overall, the textural data suggest that the gas is saturated or slightly super-saturated with the phases at their hottest occurrence, but that the gas becomes increasingly super-saturated with the phases at lower temperatures. -from Author

  11. The Kantian theory of the sublime and humanist politics

    OpenAIRE

    Ayas, Tuğba

    2013-01-01

    Ankara : The Department of Art, Design and Architecture, İhsan Doğramacı Bilkent University, 2013. Thesis (Ph. D.) -- Bilkent University, 2013. Includes bibliographical refences. The German philosopher Immanuel Kant’s rendition of cosmopolitanism and the sublime have been quite popular separately in various discussions on politics and aesthetics since the late 90s. In today’s political conjuncture the Kantian sublime is consulted in describing the social disasters that had b...

  12. O Sublime explicado às crianças

    Directory of Open Access Journals (Sweden)

    Virginia Figueiredo

    2011-01-01

    Full Text Available Como o próprio título indica, este ensaio pretende dialogar com a recepção do sublime kantiano pela filosofia francesa contemporânea, sobretudo com Jean-François Lyotard. Dessa forma, ao invés de ressaltar as consequências inevitável ou sistematicamente morais do sublime kantiano, como fez, de um modo geral, o comentário mais tradicional da filosofia crítica de Kant, este ensaio tenta interpretar o sublime como sendo essencialmente uma experiência da arte, seguindo assim de perto aquela tradição francesa. Mas, ao mesmo tempo, tomando alguma distância, este texto quer fazer uma objeção ao fundamento exclusivamente burkiano da concepção de sublime de Lyotard. Em suma, quero defender que é possível privilegiar o tempo (aspecto central do sublime de Edmund Burke, segundo Lyotard também na experiência do sublime kantiano.

  13. Sublimity and beauty: A view from nursing aesthetics.

    Science.gov (United States)

    Siles-González, José; Solano-Ruiz, Carmen

    2016-03-01

    Several authors have focused on the aesthetics of nursing care from diverse perspectives; however, there are few studies about the sublime and the beautiful in nursing. To identify beautiful and sublime moments in the context of the aesthetics of nursing care. A theoretical reflection has been contemplated about sublime and beautiful values in the context of the aesthetics of nursing care from the cultural history perspective. For that purpose, a revision of this issue has been completed. The terms 'beautiful' and 'sublime' have been analysed to identify the characteristics of both in the context of nursing care. We have followed all ethical requirements regarding the sources, conducting research and authorship. There is no conflict of interest in this paper. With aesthetic knowledge, the nurse expresses the artistic nature of nursing care by appreciating the act of caring for individuals. The sublime is a complex phenomenon, since apparently contrary feelings are interwoven. Nursing care is an art with an anthropological object-subject on which the 'artist' applies their prior knowledge and skills. Feelings and emotions that develop during the clinical nursing practice - especially at times sublime and beautiful, aesthetic - constitute experiences which are professionally significant. © The Author(s) 2015.

  14. Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.

    Science.gov (United States)

    Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L

    2011-10-07

    We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics

  15. Sublimator Driven Coldplate Engineering Development Unit Test Results and Development of Second Generation SDC

    Science.gov (United States)

    Stephan, Ryan A.; Sheth, Rubik B.

    2009-01-01

    The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially increasing reliability and reducing complexity while saving both mass and power. Furthermore, the Integrated Sublimator Driven Coldplate (ISDC) concept couples a coolant loop with the previously described SDC hardware. This combination allows the SDC to be used as a traditional coldplate during long mission phases. The previously developed SDC technology cannot be used for long mission phases due to the fact that it requires a consumable feedwater for heat rejection. Adding a coolant loop also provides for dissimilar redundancy on the Altair Lander ascent module thermal control system, which is the target application for this technology. Tests were performed on an Engineering Development Unit at NASA s Johnson Space Center to quantify and assess the performance of the SDC. Correlated thermal math models were developed to help explain the test data. The paper also outlines the preliminary results of an ISDC concept being developed.

  16. Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Charalampidis, Charalampos; Van As, Dirk; Colgan, William T.

    2016-01-01

    We present in situ firn temperatures from the extreme 2012 melt season in the southwestern lower accumulation area of the Greenland ice sheet. The upper 2.5 m of snow and firn was temperate during the melt season, when vertical meltwater percolation was inefficient due to a similar to 5.5 m thick...... no indication of meltwater percolation below 9 m depth or complete filling of pore volume above, firn at 10 and 15 m depth was respectively 4.2-4.5 ºC and 1.7 ºC higher than in a conductivity-only simulation. Even though meltwater percolation in 2012 was inefficient, firn between 2 and 15 m depth the following...

  17. Thermal Vacuum Test of Ice as a Phase Change Material Integrated with a Radiator

    Science.gov (United States)

    Lee, Steve A.; Leimkuehler, Thomas O.; Stephan, Ryan; Le, Hung V.

    2010-01-01

    Water may be used as radiation shielding for Solar Particle Events (SPE) to protect crewmembers in the Lunar Electric Rover (LER). Because the water is already present for radiation protection, it could also provide a mass efficient solution to the vehicle's thermal control system. This water can be frozen by heat rejection from a radiator and used as a Phase Change Material (PC1V1) for thermal storage. Use of this water as a PCM can eliminate the need for a pumped fluid loop thermal control system as well as reduce the required size of the radiator. This paper describes the testing and analysis performed for the Rover Engineering Development Unit (REDU), a scaled-down version of a water PCM heat sink for the LER. The REDU was tested in a thermal-vacuum chamber at environmental temperatures similar to those of a horizontal radiator panel on the lunar surface. Testing included complete freeze and melt cycles along with scaled transient heat load profiles simulating a 24-hour day for the rover.

  18. O paradoxo sublime ou a alforria da arte

    Directory of Open Access Journals (Sweden)

    Virgínia Figueiredo

    2015-01-01

    Full Text Available Neste texto, pretendo analisar a tese principal do ensaio “A verdade sublime” de Philippe Lacoue-Labarthe, a qual poderia ser formulada do seguinte modo: a verdade sublime é o Ereignis, esse é o fundamento a partir do qual se desenvolveu uma dificílima operação que consistiu em modificar a tradição do sublime sempre apresentado negativamente naquilo que Lacoue-Labarthe chamou de "compreensão afirmativa do sublime ou da grande arte". O autor estabelece uma astuciosa aliança entre o que há de mais radical no pensamento de Heidegger e o sublime, tratado de maneira bastante polêmica, como a principal teoria da arte de Kant. Dessa articulação fundamental, pode-se concluir que ele não está apenas à procura de uma “Estética” (sequer de uma “Teoria da Arte” sublime, mas, em busca de algo que é muito mais ambicioso, a saber: de um pensamento do sublime. Portanto, na minha opinião, o ensaio lacouelabarthiano constitui, por um lado, uma referência indispensável não só a quem quer que pretenda estudar a tradição do sublime, mas, por outro, compreender o pensamento heideggeriano sobre a arte e sua tentativa de encontrar uma determinação mais essencial e, sobretudo, ousaria dizer, mais política da arte.

  19. Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage

    Science.gov (United States)

    2014-12-01

    of the DOD facilities. A. RENEWABLE ENERGY The United States Department of Energy (DOE) defines renewable energy as being obtained from...include arrays of solar PV cells, solar thermal cells, wind turbines, or biogas digestors. Energy storage devices could consist of one or more of the...At Hachinohe, Japan, the Aomori Project obtains up to 100 kW of power from PV cells and wind turbines (WTs). The New Energy and Industrial Technology

  20. DEVELOPMENT OF VACUUM SUBLIMATION DRYERS USING THERMOELECTRIC MODULES

    Directory of Open Access Journals (Sweden)

    R. A. Barykin

    2014-01-01

    Full Text Available Summary. The main directions of use of freeze-dryed products and ingredients are revealed. The analysis of sales markets of freeze-dryed products is provided. It is shown that introduction of innovative production technologies will allow to develop dynamically not only to the large companies, but also small firms that will create prerequisites for growth of the Russian market of freeze-dryed products. Tendencies of development of the freeze-drying equipment are analysed. Relevance of development of energy saving freeze-dryers is proved The integrated approach to creation of competitive domestic technologies and the equipment for sublimation dehydration of thermolabile products consists in use of the effective combined remedies of a power supply, a process intensification, reduction of specific energy consumption and, as a result, decrease in product cost at achievement of high quality indicators. Advantages of thermoelectric modules as alternative direction to existing vapor-compression and absorbing refrigerating appliances are given. Researches of process of freeze-drying dehydration with use of thermoelectric modules are conducted. It is scientifically confirmed, that the thermoelectric module working at Peltier effect, promotes increase in refrigerating capacity due to use of the principle of the thermal pump. Options of use of thermoelectric modules in designs of dryers are offered. Optimum operating modes and number of modules in section are defined. Ways of increase of power efficiency of freeze-dryers with use of thermoelectric modules are specified. The received results will allow to make engineering calculations and design of progressive freeze-drying installations with various ways of a power supply.

  1. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  2. Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice

    Energy Technology Data Exchange (ETDEWEB)

    Nathues, A.; Platz, T.; Hoffmann, M.; Thangjam, G.; Le Corre, L.; Reddy, V. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Goettingen (Germany); Cloutis, E. A.; Applin, D. M. [University of Winnipeg, Winnipeg, MB R3B 2E9 (Canada); Mengel, K. [IELF, TU Clausthal, Adolph-Roemer-Straße 2A, D-38678 Clausthal-Zellerfeld (Germany); Protopapa, S. [University of Maryland, Department of Astronomy, College Park, MD 20742 (United States); Takir, D. [SETI Institute, Mountain View, CA 94043 (United States); Preusker, F. [German Aerospace Center (DLR), Institute of Planetary Research, D-12489 Berlin (Germany); Schmidt, B. E. [Georgia Institute of Technology, Atlanta, GA (United States); Russell, C. T., E-mail: nathues@mps.mpg.de [Institute of Geophysics and Planetary Physics, Dept. of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA (United States)

    2017-09-01

    Dwarf planet Ceres (∅ ∼ 940 km) is the largest object in the main asteroid belt. Investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body that was never completely molten, but one that possibly partially differentiated into a rocky core and an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration and the infall of exogenic material contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of data on the bright Oxo crater derived from the Framing Camera and the Visible and Infrared Spectrometer on board the Dawn spacecraft. We confirm that the transitional complex crater Oxo (∅ ∼ 9 km) exhibits exposed surface water-ice. We show that this water-ice-rich material is associated exclusively with two lobate deposits at pole-facing scarps, deposits that also contain carbonates and admixed phyllosilicates. Due to Oxo’s location at −4802 m below the cerean reference ellipsoid and its very young age of only 190 ka (1 σ : +100 ka, −70 ka), Oxo is predestined for ongoing water-ice sublimation.

  3. Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems

    Science.gov (United States)

    Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.; hide

    2007-01-01

    The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.

  4. Vapor pressures and sublimation enthalpies of novel bicyclic heterocycle derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.

    2014-01-01

    Highlights: • The vapor pressures of novel bicyclo-derivatives of amine were measured. • Thermodynamic functions of sublimation were calculated. • The influence of substituent structure and chemical nature on the vapor pressure was studied. -- Abstract: The vapor pressures of five novel bicyclic heterocycle derivatives were measured over the temperature 341.15 to 396.15 K using the transpiration method by means of an inert gas carrier. From these results the standard enthalpies and Gibbs free energies of sublimation at the temperature 298.15 K were calculated. The effects of alkyl- and chloro-substitutions on changes in the thermodynamic functions have been investigated. Quantitative structure–property relationship on the basis HYBOT physico-chemical descriptors for biologically active compounds have been developed to predict the sublimation enthalpies and Gibbs free energies of the compounds studied

  5. Thermal infrared properties of the Martian atmosphere 4. Predictions of the presence of dust and ice clouds from Viking IRTM spectral measurements

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1979-01-01

    In this paper we investigate the response of the Martian atmosphere at the wavelengths measured by the Viking infrared thermal mapper instrument (IRTM) to the presence of varying amounts of dust and water ice clouds. A detailed radiative transfer study is represented to show that these IRTM measurements at channels centered at 7, 9, 11, and 20 μm may be used to differentiate between the presence of dust and water ice clouds in the Martian atmosphere. They show further that these measurements may also be used to provide some information on the structure of the lower atmosphere. The use of the IRTM measurements in the manner we describe can provide information associated with the thermal characteristics of Martian dust storms

  6. Of images and ills. Uses and malaises of sublimation

    Directory of Open Access Journals (Sweden)

    Georges Didi-Huberman

    2017-05-01

    Full Text Available This text is published as postface to the new edition of Invention de l'hystérie. Charcot et l’iconographie photographique de l’hystérie (Macula, Paris, 2012, pp. 364-405 with the title Des images et des maux. It’s also the full version of the lecture organized by the Association Psychanalytique de France (September 24, 2011, entitled L’Usage de la sublimation. Starting from some considerations on his first book, the Author examines limits and potentials of the notion of sublimation in reference with art and artistic creation, and suggests a different way to approach it.

  7. Kinetic and diffusion evaporation of substances on sublimation in vacuum

    International Nuclear Information System (INIS)

    Martinson, I.G.

    2006-01-01

    Diffusion-kinetic model of sublimation of substances in vacuum determining fields of the evaporation according to temperature - kinetic and diffusion is performed. The model is experimentally confirmed in the tests with benzoic acid and naphthalene, by calculation of the rate of Zn, Co, V, W sublimation and the value of coefficient of evaporation α. The model provides an explanation for derivation of low values of evaporation coefficient α, to 10 -10 , for easy to fusible substances, and α=1 for substances with high temperature of fusion [ru

  8. PIXE analysis as a tool for dating of ice cores from the Greenland ice sheet

    International Nuclear Information System (INIS)

    Hansson, H.C.; Swietlicki, E.; Larsson, N.P.O.; Johnsen, S.J.

    1993-01-01

    Sections from the 2037 m long Dye 3 ice core drilled in 1979-1981 in the ice sheet of Southern Greenland were analysed with PIXE. The seven selected sections were from depths between 1778 and 1813 m, which corresponds to a time interval between about 8 500 and 10 000 years B.C. at the end of the last Ice Age. During this time period, fast climatic changes of several degrees centrigrade per century are known to have taken place. The exact time scales of these changes need yet to be verified by renewed measurements using nonconventional stratigraphic dating techniques such as PIXE. The problem is highly relevant for the prediction of climatic changes in our present age. A new sample preparation technique was developed which enables the determination of annual thicknesses of the parts of the ice core representing 10 000-40 000 years before present, where the thickness of the annual ice layers are believed to be less than 2.5 cm. More commonly used techniques of dating, such as measurements of oxygen and hydrogen isotopes δ 18 O and δD, nitrate, acidity or conductivity all have difficulties in resolving annual cycles in thicknesses of less than about 2 cm. The new technique involves sublimation of 18 cm long ice sections, after which the material contained in the ice is deposited on the thin backing. In this way, the material to be analysed is preconcentrated through the removal of the H 2 O, while still retaining the spatial distribution pattern of the various water soluble and insoluble components along the ice core. The resulting spatial resolution of the sublimation technique is estimated to be ±1 mm. A PIXE analysis was performed in contiguous millimeter steps across the sublimated ice sections. Estimations of annual ice layer thicknesses were based on the patterns of seasonal variation along the ice sections for several major and minor elements quantified with PIXE. (orig./TW)

  9. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming

    Science.gov (United States)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-01-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  10. The sublime and the grotesque: obscenity in Hilda Hilst

    Directory of Open Access Journals (Sweden)

    Jo A-mi

    2016-08-01

    Full Text Available The present work aims to discuss the dialogical relationship between sublime and grotesque in the work A obscena Senhora D by Hilda Hilst, based on its status of contemporary fiction permeated by reconditioning of the language in its performance in the non-linear time. In this sense, it was used studies of the sublime, as a historical and philosophical and literary concept in the works of Longinus, Edmund Burke, Immanuel Kant, Victor Hugo and François Lyotard; issues relating to discussions on the grotesque and its dialogue with the sublime ways, the works of Mikhail Bakhtin and Michel Maffesoli had great importance - the poetic and obscene relationship of the work discussed in convergent concepts such as obscenity, eroticism, sacred and profane. From these analyzes, it was concluded that in A obscena senhora D the sublime and the grotesque show in a multifaceted character, contradictory, interlocutory, and therefore not exclusionary: solidifying the hybrid linguistic-imagistic flow of the hilstiana literature.

  11. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong

    2009-12-18

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face-centered cubic metals are more stable when the temperature is close to the melting point.

  12. The Religious-Sublime in Music, Literature and Architecture

    DEFF Research Database (Denmark)

    Cifuentes-Aldunate, Claudio

    2018-01-01

    The present article is an attempt to propose the semiotic aspect that produces the ”religious- sublime”. Most of the semiotic characteristics that we use to represent (and produce) the signifiers of the religious-sublime, nevertheless, share their mechanisms with other modalities of ”sublimeness”...

  13. Sublimation-Induced Shape Evolution of Silver Cubes

    KAUST Repository

    Ding, Yong; Fan, Fengru; Tian, Zhongqun; Wang, Zhong Lin

    2009-01-01

    The heat is on: Surface sublimation and shape transformation of silver cubes, enclosed by {100} surfaces and about 100nm in size, are examined by in situ transmission electron microscopy (see picture). High-index surfaces, such as {110}, of face

  14. System for NO reduction using sublimation of cyanuric acid

    Science.gov (United States)

    Perry, R.A.

    1989-01-24

    An arrangement for reducing the NO content of a gas stream comprises contacting the gas stream with HNCO at a temperature effective for heat induced decomposition of HNCO and for resultant lowering of the NO content of the gas stream. Preferably, the HNCO is generated by sublimation of cyanuric acid. 1 fig.

  15. Measuring Enthalpy of Sublimation of Volatiles by Means of Piezoelectric Crystal Microbalances

    Science.gov (United States)

    Dirri, Fabrizio; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano

    2017-12-01

    Piezoelectric Crystal Microbalances (PCM's) are widely used to study the chemical processes involving volatile compounds in any environment, such as condensation process. Since PCM's are miniaturized sensor, they are very suitable for planetary in situ missions, where can be used to detect and to measure the mass amount of astrobiologically significant compounds, such as water and organics. This work focuses on the realization and testing of a new experimental setup, able to characterize volatiles which can be found in a planetary environment. In particular the enthalpy of sublimation of some dicarboxylic acids has been measured. The importance of dicarboxylic acids in planetology and astrobiology is due to the fact that they have been detected in carbonaceous chondritic material (e.g. Murchinson), among the most pristine material present in our Solar System. In this work, a sample of acid was heated in an effusion cell up to its sublimation. For a set of temperatures (from 30 °C to 75 °C), the deposition rate on the PCM surface has been measured. From these measurements, it has been possible to infer the enthalpy of sublimation of Adipic acid, i.e. ΔH = 141.6 ± 0.8 kJ/mol and Succinic acid, i.e. ΔH = 113.3 ± 1.3 kJ/mol. This technique has so demonstrated to be a good choice to recognise a single compound or a mixture (with an analysis upstream) even if some improvements concerning the thermal stabilization of the system will be implemented in order to enhance the results' accuracy. The experiment has been performed in support of the VISTA (Volatile In Situ Thermogravimetry Analyzer) project, which is included in the scientific payload of the ESA MarcoPolo-R mission study.

  16. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    Science.gov (United States)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  17. Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica

    Directory of Open Access Journals (Sweden)

    W. Thiery

    2012-08-01

    Full Text Available In the near-coastal regions of Antarctica, a significant fraction of the snow precipitating onto the surface is removed again through sublimation – either directly from the surface or from drifting snow particles. Meteorological observations from an Automatic Weather Station (AWS near the Belgian research station Princess Elisabeth in Dronning Maud Land, East-Antarctica, are used to study surface and snowdrift sublimation and to assess their impacts on both the surface mass balance and the surface energy balance during 2009 and 2010. Comparison to three other AWSs in Dronning Maud Land with 11 to 13 yr of observations shows that sublimation has a significant influence on the surface mass balance at katabatic locations by removing 10–23% of their total precipitation, but at the same time reveals anomalously low surface and snowdrift sublimation rates at Princess Elisabeth (17 mm w.e. yr−1 compared to 42 mm w.e. yr−1 at Svea Cross and 52 mm w.e. yr−1 at Wasa/Aboa. This anomaly is attributed to local topography, which shields the station from strong katabatic influence, and, therefore, on the one hand allows for a strong surface inversion to persist throughout most of the year and on the other hand causes a lower probability of occurrence of intermediately strong winds. This wind speed class turns out to contribute most to the total snowdrift sublimation mass flux, given its ability to lift a high number of particles while still allowing for considerable undersaturation.

  18. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Science.gov (United States)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central

  19. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  20. Synthesis of Functional Ceramic Supports by Ice Templating and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Michaela Klotz

    2018-05-01

    Full Text Available In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ and atomic layer deposition (ALD of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  1. Modelling snow ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Caixin Wang

    2015-08-01

    Full Text Available Snow ice and superimposed ice formation on landfast sea ice in a Svalbard fjord, Kongsfjorden, was investigated with a high-resolution thermodynamic snow and sea-ice model, applying meteorological weather station data as external forcing. The model shows that sea-ice formation occurs both at the ice bottom and at the snow/ice interface. Modelling results indicated that the total snow ice and superimposed ice, which formed at the snow/ice interface, was about 14 cm during the simulation period, accounting for about 15% of the total ice mass and 35% of the total ice growth. Introducing a time-dependent snow density improved the modelled results, and a time-dependent oceanic heat flux parameterization yielded reasonable ice growth at the ice bottom. Model results suggest that weather conditions, in particular air temperature and precipitation, as well as snow thermal properties and surface albedo are the most critical factors for the development of snow ice and superimposed ice in Kongsfjorden. While both warming air and higher precipitation led to increased snow ice and superimposed ice forming in Kongsfjorden in the model runs, the processes were more sensitive to precipitation than to air temperature.

  2. Trust: the sublime duty in health care leadership.

    Science.gov (United States)

    Piper, Llewellyn E

    2010-01-01

    Trust is the essence of human social existence. From the moment of birth, trust is the basic component in any human relationship and interaction. Trust is the Holy Grail for human confidence in others. From human survival to organizational survival, trust is the primordial bond. No organization is more dependent on trust than health care. This article views trust as the most basic fundamental quality for leadership. Trust is a sublime duty of a leader and the leadership of an organization. Leadership sets the culture of trust. Trust is the one quality that is essential for guiding an organization toward serving others. This article addresses trust from many perspectives. Trust is viewed from our subordinates, our peers, our superiors, and the public we serve. This article postulates how trust in an organization is the sublime duty of leadership that unites all human understanding and without it destroys all human relationships.

  3. Meteorological conditions associated to high sublimation amounts in semiarid high-elevation Andes decrease the performance of empirical melt models

    Science.gov (United States)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Burlando, Paolo

    2015-04-01

    Empirical melt (EM) models are often preferred to surface energy balance (SEB) models to calculate melt amounts of snow and ice in hydrological modelling of high-elevation catchments. The most common reasons to support this decision are that, in comparison to SEB models, EM models require lower levels of meteorological data, complexity and computational costs. However, EM models assume that melt can be characterized by means of a few index variables only, and their results strongly depend on the transferability in space and time of the calibrated empirical parameters. In addition, they are intrinsically limited in accounting for specific process components, the complexity of which cannot be easily reconciled with the empirical nature of the model. As an example of an EM model, in this study we use the Enhanced Temperature Index (ETI) model, which calculates melt amounts using air temperature and the shortwave radiation balance as index variables. We evaluate the performance of the ETI model on dry high-elevation sites where sublimation amounts - that are not explicitly accounted for the EM model - represent a relevant percentage of total ablation (1.1 to 8.7%). We analyse a data set of four Automatic Weather Stations (AWS), which were collected during the ablation season 2013-14, at elevations between 3466 and 4775 m asl, on the glaciers El Tapado, San Francisco, Bello and El Yeso, which are located in the semiarid Andes of central Chile. We complement our analysis using data from past studies in Juncal Norte Glacier (Chile) and Haut Glacier d'Arolla (Switzerland), during the ablation seasons 2008-09 and 2006, respectively. We use the results of a SEB model, applied to each study site, along the entire season, to calibrate the ETI model. The ETI model was not designed to calculate sublimation amounts, however, results show that their ability is low also to simulate melt amounts at sites where sublimation represents larger percentages of total ablation. In fact, we

  4. Optimization of fast dissolving etoricoxib tablets prepared by sublimation technique

    OpenAIRE

    Patel D; Patel M

    2008-01-01

    The purpose of this investigation was to develop fast dissolving tablets of etoricoxib. Granules containing etoricoxib, menthol, crospovidone, aspartame and mannitol were prepared by wet granulation technique. Menthol was sublimed from the granules by exposing the granules to vacuum. The porous granules were then compressed in to tablets. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability and disintegration time. A 3 2 ...

  5. El Silencio de la Sirena: lo Sublime en Alejandra Pizarnik

    Directory of Open Access Journals (Sweden)

    Julieta Lerman

    2012-12-01

    Full Text Available Algunas poéticas de las décadas del cincuenta y del sesenta parecerían constituirse en torno a un vacío, un silencio que a veces inspira la palabra poética y otras veces la aborta. Esa ambigüedad, característica de la poética de Alejandra Pizarnik, podemos entenderla como una “reedición” de la estética de lo sublime. Lo sublime es un concepto estético-filosófico que plantearon filósofos como Inmanuel Kant y Edmund Burke para pensar el arte romántico y, en el siglo XX, otros autores como Jean-François Lyotard, lo retomaron para analizar el arte de vanguardia. Así, lo sublime nos permite repensar la poética de Pizarnik en sus coincidencias y oposiciones a otras de la tradición moderna (como la de Charles Baudelaire o de las vanguardias latinoamericanas (como Oliverio Girondo y Vicente Huidobro.

  6. Ad infinitum: implicaciones de lo sublime en la contemporaneidad

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gaete Cáceres

    2014-12-01

    Full Text Available El presente texto es un estudio que ofrece una revisión crítica al concepto de lo sublime basándose en la teorización clásica de esta idea, es decir, la adjudicada a Longino, Edmund Burke e Immanuel Kant. A partir de aquí, se intentará descubrir la presencia de lo sublime como un factor relevante en la configuración cultural del mundo contemporáneo, pasando por su presencia innegable en el arte de las vanguardias o en la concepción de la Naturaleza y el entorno. Finalmente, el objetivo central de este escrito es demostrar como lo sublime ofrece también una alternativa para comprender el problema de "lo infinito" y "lo ilimitado" en el marco de las tecnologías, la eclosión de las grandes ciudades y su filtración en el sustrato retórico del capitalismo, ofreciendo así una vía diferente en el estudio de este tema clásico de la estética.

  7. El Silencio de la Sirena: lo Sublime en Alejandra Pizarnik

    Directory of Open Access Journals (Sweden)

    Julieta Lerman

    2012-03-01

    Full Text Available http://dx.doi.org/10.5007/1984-784X.2012v12n17p85 Algunas poéticas de las décadas del cincuenta y del sesenta parecerían constituirse en torno a un vacío, un silencio que a veces inspira la palabra poética y otras veces la aborta. Esa ambigüedad, característica de la poética de Alejandra Pizarnik, podemos entenderla como una “reedición” de la estética de lo sublime. Lo sublime es un concepto estético-filosófico que plantearon filósofos como Inmanuel Kant y Edmund Burke para pensar el arte romántico y, en el siglo XX, otros autores como Jean-François Lyotard, lo retomaron para analizar el arte de vanguardia. Así, lo sublime nos permite repensar la poética de Pizarnik en sus coincidencias y oposiciones a otras de la tradición moderna (como la de Charles Baudelaire o de las vanguardias latinoamericanas (como Oliverio Girondo y Vicente Huidobro.

  8. Formation of the molecular crystal structure during the vacuum sublimation of paracetamol

    Science.gov (United States)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.

    2015-04-01

    The results from structural and thermal studies on the formation of molecular crystals during the vacuum sublimation of paracetamol from its vapor phase are given. It is established that the vapor-crystal phase transition proceeds in a complicated way as the superposition of two phase transitions: a first-order phase transition with a change in density, and a second-order phase transition with a change in ordering. It is shown that the latter is a smeared phase transition that proceeds with the formation of a pretransitional phase that is irreversibly dissipated during phase transformation, leading to the formation of crystals of the rhombic syngony. Data from differential scanning calorimetry and X-ray diffraction analysis are presented along with microphotographs.

  9. Mechanical and Non-Destructive Study of CFRP Adhesive Bonds Subjected to Pre-Bond Thermal Treatment and De-Icing Fluid Contamination

    Directory of Open Access Journals (Sweden)

    Paweł H. Malinowski

    2018-04-01

    Full Text Available Composite materials are commonly used in many branches of industry. One of the effective methods to join the carbon fibre reinforced polymer (CFRP parts includes the use of adhesives. There is a search on effective methods for quality assurance of bonded parts. In the research here reported the influence of surface pre-bond modification on the adhesive bonds of CFRP plates has been analyzed. Adherends surface modifications, to include defects affecting the bonding quality, were obtained through surface thermal treatment, surface contamination with de-icing fluid and a combination of both the previously described treatments. Characterization of bonded joints was performed by means of mechanical testing, ultrasounds and electromechanical impedance (EMI measurements. The study here proposed has also the aim to evaluate the ability of different destructive and non-destructive techniques to assess the quality of the bonds. While mechanical tests were strongly affected by the surface modifications, results obtained ultrasound and EMI test have demonstrate only a limited ability of these techniques to differentiate between the different samples. In fact, ultrasounds did not show any changes in the bondline, due to pre-bond modifications. However, this technique was able to detect delamination in CFRP for one of the samples thermally treated at 280 °C. Electromechanical impedance (EMI measurements showed similar behavior as mechanical tests for samples thermally treated at 260 °C and 280 °C, and for the sample whose surface modification was made with a combination of thermally and de-icing fluid treatments.

  10. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  11. Modelling of pulsed electron beam induced graphite ablation: Sublimation versus melting

    Science.gov (United States)

    Ali, Muddassir; Henda, Redhouane

    2017-12-01

    Pulsed electron beam ablation (PEBA) has recently emerged as a very promising technique for the deposition of thin films with superior properties. Interaction of the pulsed electron beam with the target material is a complex process, which consists of heating, phase transition, and erosion of a small portion from the target surface. Ablation can be significantly affected by the nature of thermal phenomena taking place at the target surface, with subsequent bearing on the properties, stoichiometry and structure of deposited thin films. A two stage, one-dimensional heat conduction model is presented to describe two different thermal phenomena accounting for interaction of a graphite target with a polyenergetic electron beam. In the first instance, the thermal phenomena are comprised of heating, melting and vaporization of the target surface, while in the second instance the thermal phenomena are described in terms of heating and sublimation of the graphite surface. In this work, the electron beam delivers intense electron pulses of ∼100 ns with energies up to 16 keV and an electric current of ∼400 A to a graphite target. The temperature distribution, surface recession velocity, ablated mass per unit area, and ablation depth for the graphite target are numerically simulated by the finite element method for each case. Based on calculation findings and available experimental data, ablation appears to occur mainly in the regime of melting and vaporization from the surface.

  12. Empirical Retrieval of Surface Melt Magnitude from Coupled MODIS Optical and Thermal Measurements over the Greenland Ice Sheet during the 2001 Ablation Season.

    Science.gov (United States)

    Lampkin, Derrick; Peng, Rui

    2008-08-22

    Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS) has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS) daily reflectance Band 5 (1.230-1.250μm) and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89). SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net) at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt) was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1%) at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8%) were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ~ ±2%.

  13. Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data

    Science.gov (United States)

    Minnis, Patrick; Yost, Chris R.; Sun-Mack, Sunny; Chen, Yan

    2008-06-01

    The difference between cloud-top altitude Z top and infrared effective radiating height Z eff for optically thick ice clouds is examined using April 2007 data taken by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and the Moderate-Resolution Imaging Spectroradiometer (MODIS). For even days, the difference ΔZ between CALIPSO Z top and MODIS Z eff is 1.58 +/- 1.26 km. The linear fit between Z top and Z eff , applied to odd-day data, yields a difference of 0.03 +/- 1.21 km and can be used to estimate Z top from any infrared-based Z eff for thick ice clouds. Random errors appear to be due primarily to variations in cloud ice-water content (IWC). Radiative transfer calculations show that ΔZ corresponds to an optical depth of ~1, which based on observed ice-particle sizes yields an average cloud-top IWC of ~0.015 gm-3, a value consistent with in situ measurements. The analysis indicates potential for deriving cloud-top IWC using dual-satellite data.

  14. A field study of the geomorphic effects of sublimating CO2 blocks on dune slopes at Coral Pink Dunes, Utah.

    Science.gov (United States)

    Bourke, Mary; Nield, Jo; Diniega, Serina; Hansen, Candy; McElwaine, Jim

    2016-04-01

    The seasonal sublimation of CO2 ice is an active driver of present-day surface change on Mars. Diniega et al (2013) proposed that a discrete type of Martian gully, found on southern hemisphere dunes, were formed by the movement of CO2 seasonal ice blocks. These 'Linear Gullies' consist primarily of long (100 m - 2.5 km) grooves with near-uniform width (few-10 m wide), and typical depth of nudge it moved downslope. The dynamics of the block movement were recorded using a pair of high resolution video cameras. Geomorphological observations were noted and topographic change was quantified using a Leica P20 terrestrial laser scanner with a resolution of 0.8 mm at 10 m, and change detection limits less than 3 mm. The block run was repeated a total of 10 times and launched from the same location at the dune brink. The experiment ran for 45 minutes. The block size was reduced to (45 x 190 x 195 mm) by the end of the run series. The resultant geomorphology shows that the separate block runs occupied different tracks leading to a triangular plan form shape with a maximum width of 3.5 m. This is different from the findings in Arizona where a narrower track span was recorded (1.7m) (Bourke et al, 2016). Similar block dynamics were observed at both sites (as blocks moved straight, swiveled and bounced downslope). Distinctive pits with arcuate rims on their downslope edge were formed where blocks bounced on the surface. These pits are at an almost equidistant spacing. Despite a longer slope (16 m as opposed to 8m at Grand Falls), no depositional apron was formed. Levee development was less consistent compared to the Arizona site, but a pronounced unpaired-levee formed towards the base of the lee slope. These data show that sublimating blocks of CO2 ice leave signatures of transport paths and are capable of eroding and transporting sediment. Diniega,S. et al (2013) A new dry hypothesis for the formation of Martian linear gullies. Icarus. Vol. 225, 1, p. 526-537. Bourke, M.C. et

  15. Proceedings of the 19. IAHR international symposium on ice : using new technology to understand water-ice interaction

    International Nuclear Information System (INIS)

    Jasek, M.; Andrishak, R.; Siddiqui, A.

    2008-01-01

    This conference provided a venue for scientists, engineers and researchers an opportunity to expand their knowledge of water-ice interactions with reference to water resources, river and coastal hydraulics, risk analysis, energy and the environment. The the theme of new technology falls into 3 basic groups, notably measurement and instrumentation; remote sensing; and numerical simulation. The thermal regime of rivers was discussed along with ice mechanics, ice hydraulics, ice structures and modelling ice phenomena. The titles of the sessions were: river ice, glaciers and climate change; freeze-up processes on rivers and oceans; river ice-structure interactions; numerical simulations in ice engineering; river-ice break-up and ice jam formation; ice measurement; Grasse River ice evaluation; evaluation of structural ice control alternatives; remote sensing; hydropower and dam decommissioning; mechanical behaviour of river ice, ice covered flow and thermal modelling; mathematical and computer model formulations for ice friction and sea ice; ice bergs and ice navigation; ice crushing processes; sea ice and shore/structure interactions; ice properties, testing and physical modelling; ice actions on compliant structures; oil spills in ice; desalination, ice thickness and climate change; and, sea ice ridges. The conference featured 123 presentations, of which 20 have been catalogued separately for inclusion in this database. refs., tabs., figs

  16. The enthalpy of sublimation and thermodynamic functions of fermium

    International Nuclear Information System (INIS)

    Haire, R.G.; Gibson, J.K.

    1989-01-01

    The enthalpy of sublimation of fermium (Fm), element 100, has now been determined directly by measuring the partial pressure of Fm over alloys, for the temperature range of 642 to 905 K. The partial pressures were determined using Knudsen effusion and target collection techniques. Dilute (10 -5 --10 -7 atom %) solid alloys of Fm and mixtures of Fm and Es in both Sm and Yb solvents were studied. The presence of Es in two of the alloys allowed a direct comparison of the behavior of Fm and Es, where the latter could be used as a reference. It was possible to calculate enthalpies of sublimation and a hypothetical vapor pressure/temperature relationship for pure Fm metal by selecting Yb as the solvent most likely to form a nearly ideal alloy with Fm. From the experimental vapor pressure data, we derived average Second Law values of 33.8±3 kcal/mol and 23.5±3 cal/mol deg for the enthalpy and entropy of sublimation of Fm at 298 K. Third Law enthalpy values were also calculated using the experimental partial pressure data and entropies estimated from derived free energy functions and heat capacities for the solid and gaseous forms of Fm. The average Third Law values (34.8 kcal/mol and 25.1 cal/mol deg, respectively, at 298 K) are in agreement with those obtained via the Second Law. These results establish that Fm, like Es (element 99), is a divalent metal. The finding that Fm metal is the second divalent actinide element experimentally establishes the trend towards metallic divalency expected in the second half of the actinide series

  17. Ice, Ice, Baby!

    Science.gov (United States)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  18. The sublimation kinetics of GeSe single crystals

    Science.gov (United States)

    Irene, E. A.; Wiedemeier, H.

    1975-01-01

    The sublimation kinetics of (001) oriented GeSe single crystal platelets was studied by high-temperature mass spectroscopy, quantitative vacuum microbalance techniques, and hot stage optical microscopy. For a mean experimental temperature of 563 K, the activation enthalpy and entropy are found to equal 32.3 kcal/mole and 19.1 eu, respectively. The vaporization coefficient is less than unity for the range of test temperatures, and decreases with increasing temperature. The combined experimental data are correlated by means of a multistep surface adsorption mechanism.

  19. Figure del desiderio: l'amore fra distruzione e sublime

    Directory of Open Access Journals (Sweden)

    Mabel Franzone

    2005-03-01

    Full Text Available Attraverso due racconti di Cortázar, l'analisi di due figure del desiderio ci permette esplorare due estremi seguendo una verticalità. La distruzione, doppio tenebroso della nostra anima, ci rivela un erotismo legato alla morte e al desiderio morboso di possedere l'Altro; il suo contraltare è un'ascesa vertiginosa accompagnata da un godimento estetico, dall'amore sublime prossimo all'esperienza mistica che si concluderà con una discesa progressiva e nel rispetto di questo Altro. La creazione letteraria si presenta come uno sfogo alle nostre angosce, che sono anche una sorta d'espressione dell'erotismo.

  20. Inhibition of ordinary and diffusive convection in the water condensation zone of the ice giants and implications for their thermal evolution

    Science.gov (United States)

    Friedson, A. James; Gonzales, Erica J.

    2017-11-01

    We explore the conditions under which ordinary and double-diffusive thermal convection may be inhibited by water condensation in the hydrogen atmospheres of the ice giants and examine the consequences. The saturation of vapor in the condensation layer induces a vertical gradient in the mean molecular weight that stabilizes the layer against convective instability when the abundance of vapor exceeds a critical value. In this instance, the layer temperature gradient can become superadiabatic and heat must be transported vertically by another mechanism. On Uranus and Neptune, water is inferred to be sufficiently abundant for inhibition of ordinary convection to take place in their respective condensation zones. We find that suppression of double-diffusive convection is sensitive to the ratio of the sedimentation time scale of the condensates to the buoyancy period in the condensation layer. In the limit of rapid sedimentation, the layer is found to be stable to diffusive convection. In the opposite limit, diffusive convection can occur. However, if the fluid remains saturated, then layered convection is generally suppressed and the motion is restricted in form to weak, homogeneous, oscillatory turbulence. This form of diffusive convection is a relatively inefficient mechanism for transporting heat, characterized by low Nusselt numbers. When both ordinary and layered convection are suppressed, the condensation zone acts effectively as a thermal insulator, with the heat flux transported across it only slightly greater than the small value that can be supported by radiative diffusion. This may allow a large superadiabatic temperature gradient to develop in the layer over time. Once the layer has formed, however, it is vulnerable to persistent erosion by entrainment of fluid into the overlying convective envelope of the cooling planet, potentially leading to its collapse. We discuss the implications of our results for thermal evolution models of the ice giants, for

  1. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    Directory of Open Access Journals (Sweden)

    N. Huang

    2016-06-01

    Full Text Available Drifting snow sublimation (DSS is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass–energy balance of snow cover.

  2. Application of ozonated dry ice (ALIGAL™ Blue Ice) for packaging and transport in the food industry.

    Science.gov (United States)

    Fratamico, Pina M; Juneja, Vijay; Annous, Bassam A; Rasanayagam, Vasuhi; Sundar, M; Braithwaite, David; Fisher, Steven

    2012-05-01

    Dry ice is used by meat and poultry processors for temperature reduction during processing and for temperature maintenance during transportation. ALIGAL™ Blue Ice (ABI), which combines the antimicrobial effect of ozone (O(3)) along with the high cooling capacity of dry ice, was investigated for its effect on bacterial reduction in air, in liquid, and on food and glass surfaces. Through proprietary means, O(3) was introduced to produce dry ice pellets to a concentration of 20 parts per million (ppm) by total weight. The ABI sublimation rate was similar to that of dry ice pellets under identical conditions, and ABI was able to hold the O(3) concentration throughout the normal shelf life of the product. Challenge studies were performed using different microorganisms, including E. coli, Campylobacter jejuni, Salmonella, and Listeria, that are critical to food safety. ABI showed significant (P Food Technologists®

  3. Past, present, and future of sublimation transfer imaging

    Science.gov (United States)

    Akada, Masanori

    1990-07-01

    SONY's announcement of tlavica system shaked the world in 1981. In the new nonphotographic imaging system, image is acquired with CCD to be converted into electric image-signal, stored in magnetic recording media,displayed on a CR1 and printed on a special sheet. To get a hard copy, Sublimation Transfer technology was developed. That announcement brought about world-wide R&D of competitive color imaging systems: Ink-jet, Wax transfer,. Sublimation Transfer(ST) and Electrophotography. In spite of much effort,most of those were insufficient for getting a good hard copy. Developing sufficient ST recording media, Dai Nippon Printing started ST recording media business in 1986. It was the first manufacturing scale production and sale of ST recording media in the world. Nowadays ST technology is known for its advantages: high image quality, consistency from copy to copy, smooth tone-reproduction from high-light to maximum density, and easiness to use. In the following paper progress of ST recording media and the present situation and future markets of the media will be presented.

  4. An integrated approach to the remote sensing of floating ice

    Science.gov (United States)

    Campbell, W. J.; Ramseier, R. O.; Weeks, W. F.; Gloersen, P.

    1976-01-01

    Review article on remote sensing applications to glaciology. Ice parameters sensed include: ice cover vs open water, ice thickness, distribution and morphology of ice formations, vertical resolution of ice thickness, ice salinity (percolation and drainage of brine; flushing of ice body with fresh water), first-year ice and multiyear ice, ice growth rate and surface heat flux, divergence of ice packs, snow cover masking ice, behavior of ice shelves, icebergs, lake ice and river ice; time changes. Sensing techniques discussed include: satellite photographic surveys, thermal IR, passive and active microwave studies, microwave radiometry, microwave scatterometry, side-looking radar, and synthetic aperture radar. Remote sensing of large aquatic mammals and operational ice forecasting are also discussed.

  5. Airframe Icing Research Gaps: NASA Perspective

    Science.gov (United States)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  6. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.O.G. [University of Colorado, Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO (United States); National Oceanic and Atmospheric Administration/Earth Systems Research Laboratory, Physical Sciences Division (NOAA/ESRL/PSD), Boulder, CO (United States)

    2012-09-15

    Various measurements from the Surface Heat Flux of the Arctic Ocean (SHEBA) experiment have been combined to study structures and processes producing the onset and end of summer melt over Arctic sea ice. The analysis links the surface energy budget to free-troposphere synoptic variables, clouds, precipitation, and in-ice temperatures. The key results are (1) SHEBA melt-season transitions are associated with atmospheric synoptic events (2) onset of melt clearly occurs on May 28, while the end of melt is produced by a sequence of three atmospheric storm events over a 28-day period producing step-like reductions in the net surface energy flux. The last one occurs on August 22.; (3) melt onset is primarily due to large increases in the downwelling longwave radiation and modest decreases in the surface albedo; (4) decreases in the downwelling longwave radiation occur for all end-of-melt transition steps, while increases in surface albedo occur for the first two; (5) decreases in downwelling shortwave radiation contribute only to the first end-of-melt transition step; (6) springtime free-tropospheric warming preconditions the atmosphere-ice system for the subsequent melt onset; and (7) melt-season transitions also mark transitions in system responses to radiative energy flux changes because of invariant melt-season surface temperatures. The extensive SHEBA observations enable an understanding of the complex processes not available from other field program data. The analysis provides a basis for future testing of the generality of the results, and contributes to better physical understanding of multi-year analyses of melt-season trends from less extensive data sets. (orig.)

  7. Sintering and microstructure of ice: a review

    International Nuclear Information System (INIS)

    Blackford, Jane R

    2007-01-01

    Sintering of ice is driven by the thermodynamic requirement to decrease surface energy. The structural morphology of ice in nature has many forms-from snowflakes to glaciers. These forms and their evolution depend critically on the balance between the thermodynamic and kinetic factors involved. Ice is a crystalline material so scientific understanding and approaches from more conventional materials can be applied to ice. The early models of solid state ice sintering are based on power law models originally developed in metallurgy. For pressure sintering of ice, these are based on work on hot isostatic pressing of metals and ceramics. Recent advances in recognizing the grain boundary groove geometry between sintering ice particles require models that use new approaches in materials science. The newer models of sintering in materials science are beginning to incorporate more realistic processing conditions and microstructural complexity, and so there is much to be gained from applying these to ice in the future. The vapour pressure of ice is high, which causes it to sublime readily. The main mechanism for isothermal sintering of ice particles is by vapour diffusion; however other transport mechanisms certainly contribute. Plastic deformation with power law creep combined with recrystallization become important mechanisms in sintering with external pressure. Modern experimental techniques, low temperature scanning electron microscopy and x-ray tomography, are providing new insights into the evolution of microstructures in ice. Sintering in the presence of a small volume fraction of the liquid phase causes much higher bond growth rates. This may be important in natural snow which contains impurities that form a liquid phase. Knowledge of ice microstructure and sintering is beneficial in understanding mechanical behaviour in ice friction and the stability of snow slopes prone to avalanches. (topical review)

  8. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  9. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Tricot, S; Semmar, N; Lebbah, L; Boulmer-Leborgne, C, E-mail: sylvain.tricot@univ-orleans.f [GREMI, UMR 6606-CNRS/Universite d' Orleans, 14 rue d' Issoudun, BP 6744, 45067 Orleans cedex 2 (France)

    2010-02-17

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  10. ZnO sublimation using a polyenergetic pulsed electron beam source: numerical simulation and validation

    International Nuclear Information System (INIS)

    Tricot, S; Semmar, N; Lebbah, L; Boulmer-Leborgne, C

    2010-01-01

    This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.

  11. Uranium hexaflouride freezer/sublimer process simulator/trainer

    International Nuclear Information System (INIS)

    Carnal, C.L.; Belcher, J.D.; Tapp, P.A.; Ruppel, F.R.; Wells, J.C.

    1991-01-01

    This paper describes a software and hardware simulation of a freezer/sublimer unit used in gaseous diffusion processing of uranium hexafluoride (UF 6 ). The objective of the project was to build a plant simulator that reads control signals and produces plant signals to mimic the behavior of an actual plant. The model is based on physical principles and process data. Advanced Continuous Simulation Language (ACSL) was used to develop the model. Once the simulation was validated with actual plant process data, the ACSL model was translated into Advanced Communication and Control Oriented Language (ACCOL). A Bristol Babcock Distributed Process Controller (DPC) Model 3330 was the hardware platform used to host the ACCOL model and process the real world signals. The DPC will be used as a surrogate plant to debug control system hardware/software and to train operators to use the new distributed control system without disturbing the process. 2 refs., 4 figs

  12. Methods of conveying fluids and methods of sublimating solid particles

    Science.gov (United States)

    Turner, Terry D; Wilding, Bruce M

    2013-10-01

    A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.

  13. Calculational criticality analyses of 10- and 20-MW UF6 freezer/sublimer vessels

    International Nuclear Information System (INIS)

    Jordan, W.C.

    1993-02-01

    Calculational criticality analyses have been performed for 10- and 20-MW UF 6 freezer/sublimer vessels. The freezer/sublimers have been analyzed over a range of conditions that encompass normal operation and abnormal conditions. The effects of HF moderation of the UF 6 in each vessel have been considered for uranium enriched between 2 and 5 wt % 235 U. The results indicate that the nuclearly safe enrichments originally established for the operation of a 10-MW freezer/sublimer, based on a hydrogen-to-uranium moderation ratio of 0.33, are acceptable. If strict moderation control can be demonstrated for hydrogen-to-uranium moderation ratios that are less than 0.33, then the enrichment limits for the 10-MW freezer/sublimer may be increased slightly. The calculations performed also allow safe enrichment limits to be established for a 20-NM freezer/sublimer under moderation control

  14. Thermal state and complex geology of a heterogeneous salty crust of Jupiter's satellite, Europa

    Science.gov (United States)

    Prieto-Ballesteros, O.; Kargel, J.S.

    2005-01-01

    The complex geology of Europa is evidenced by many tectonic and cryomagmatic resurfacing structures, some of which are "painted" into a more visible expression by exogenic alteration processes acting on the principal endogenic cryopetrology. The surface materials emplaced and affected by this activity are mainly composed of water ice in some areas, but in other places there are other minerals involved. Non-ice minerals are visually recognized by their low albedo and reddish color either when first emplaced or, more likely, after alteration by Europan weathering processes, especially sublimation and alteration by ionizing radiation. While red chromophoric material could be due to endogenic production of solid sulfur allotropes or other compounds, most likely the red substance is an impurity produced by radiation alteration of hydrated sulfate salts or sulphuric acid of mainly internal origin. If the non-ice red materials or their precursors have a source in the satellite interior, and if they are not merely trace contaminants, then they can play an important role in the evolution of the icy crust, including structural differentiation and the internal dynamics. Here we assume that these substances are major components of Europa's cryo/hydrosphere, as some models have predicted they should be. If this is an accurate assumption, then these substances should not be neglected in physical, chemical, and biological models of Europa, even if major uncertainties remain as to the exact identity, abundance, and distribution of the non-ice materials. The physical chemical properties of the ice-associated materials will contribute to the physical state of the crust today and in the geological past. In order to model the influence of them on the thermal state and the geology, we have determined the thermal properties of the hydrated salts. Our new lab data reveal very low thermal conductivities for hydrated salts compared to water ice. Lower conductivities of salty ice would

  15. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  16. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto

    Science.gov (United States)

    Buhler, Peter B.; Ingersoll, Andrew P.

    2018-01-01

    The ∼106 km2 Sputnik Planitia, Pluto is the upper surface of a vast basin of nitrogen ice. Cellular landforms in Sputnik Planitia with areas in the range of a few × 102-103 km2 are likely the surface manifestation of convective overturn in the nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 × 10-3 and 5.9 ± 0.8 × 10-3 m m-1 away from the cell center, depending on the cell. This is a lower bound on the size increase because of the finite resolution of the data. Accounting for resolution yields upper bounds on the size vs. distance distribution of between 4.2 ± 0.2 × 10-3 and 23.4 ± 1.5 × 10-3 m m-1. We then use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6-0.6+2.1 ×10-4 m yr-1, which allows us to convert the pit size vs. distance distribution into a pit age vs. distance distribution. This yields surface velocities between 1.5-0.2+1.0 and 6.2-1.4+3.4 cm yr-1 for the slowest cell and surface velocities between 8.1-1.0+5.5 and 17.9-5.1+8.9 cm yr-1 for the fastest cell. These convection rates imply that the surface ages at the edge of cells reach ∼4.2-8.9 × 105 yr. The rates are comparable to rates of ∼6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia (McKinnon et al., 2016). Finally, we investigate the surface rheology of the convection cells and estimate that the minimum ice viscosity necessary to support the geometry of the observed pits is of order 1016-1017 Pa s, based on the argument that pits would relax away before growing to their observed radii of several hundred meters if the viscosity were lower than this value.

  17. Mass spectrometry study of sublimation of rare earth acetylacetonate adducts with hexamethylphosphorustriamide

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Semyannikov, P.P.; Martynenko, L.I.; Ch'eu Tkhi Nguet; AN SSSR, Novosibirsk

    1991-01-01

    Process of vacuum sublimation of MA 3 ·Q adducts (M=Nd,Ho,Er; A - -acetylacetonate-ion; Q-hexamethylphosphorustriamide) was studied by mass-spectrometry method. Composinion of gaseous phase, formed in 20-140 deg C range at 10 -5 mm Hg, was determined. Scheme of MA 3 ·Q sublimation, including Q splitting and transition of MA 3 ·Q adducts and MA 3 and Q products of their thermodestruction to gaseous phase, was suggested. ΔH values of MA 3 ·Q thermodestruction and MA 3 sublimation were calculated

  18. The oxidation kinetics for sublimates formed during niobium electron-beam remelting

    International Nuclear Information System (INIS)

    Chumarev, V.M.; Gulyaeva, R.I.; Mar'evich, V.P.; Upolovnikova, A.G.; Udoeva, L.Yu.

    2003-01-01

    The oxidation of sublimates of Nb-Al electron beam remelting is investigated under conditions of isothermal and continuous heating in the air. It is stated that basic oxidation products are niobium and aluminium oxides, as well as aluminium niobates of variable composition of Al 2 O 3 · mNb 2 O 5 . The more aluminium enriched sublimates possess an increased resistance to oxidation. Formed in sublimates NbAl 3 intermetallic compound features the highest heat resistance. Oxidation parameters are determined by the method of nonisothermic kinetics. It is noted that the running processes exhibit a multistage nature and are limited by internal diffusion [ru

  19. Debate on sublime in the end of 18th century: Burke, Kant, Schiller

    Directory of Open Access Journals (Sweden)

    Jeremić-Molnar Dragana

    2009-01-01

    Full Text Available In the article the authors are examining three positions within the 18th Century aesthetic discussion on the sublime - Edmund Burke's, Immanuel Kant's and Friedrich Schiller's. They are also trying to reconstruct the political backgrounds of each of this theoretical positions: old regime conservatism (Burke, republican liberalism (Schiller and romantic longing for the 'third way' (Kant. The most sophisticated and mature theory of sublime is found in Schiller's aesthetic works, especially in those following his disappointment in French Revolution, in which the relationship between sublime and paradoxes of historical violence is most thoroughly reflected.

  20. Operative temperature and thermal comfort in the sun - Implementation and verification of a model for IDA ICE

    DEFF Research Database (Denmark)

    Karlsen, Line; Grozman, Grigori; Heiselberg, Per Kvols

    2015-01-01

    of the model is carried out by comparing simulation results with fullscale measurements of a team office located in Oslo (59N10E). The measurements were conducted during mid-March and April 2013. The results indicate that the new MRT model might contribute to considerable improvements in prediction of thermal...... comfort of persons affected by direct solar radiation. This may further have implications on the predicted energy use and design of the façade, since e.g. an enlarged need for local cooling or use of dynamic solar shading might be discovered....

  1. Bion and the sublime: the origins of an aesthetic paradigm.

    Science.gov (United States)

    Civitarese, Giuseppe

    2014-12-01

    In constructing his theory Bion drew on a number of symbolic matrices: psychoanalysis, philosophy, mathematics, literature, aesthetics. The least investigated of these is the last. True, we know that Bion cites many authors of the Romantic period, such as Coleridge, Keats, Blake and Wordsworth, as well as others who were held in high esteem in the Romantic period, such as Milton. However, less is known about the influence exerted on him by the aesthetics of the sublime, which while chronologically preceding Romanticism is in fact one of its components. My working hypothesis is that tracing a number of Bion's concepts back to this secret model can serve several purposes: firstly, it contributes to the study of the sources, and, secondly, it makes these concepts appear much less occasional and idiosyncratic than we might believe, being as they are mostly those less immediately understandable but not less important (O, negative capability, nameless dread, the infinite, the language of achievement, unison etc.). Finally, connecting these notions to a matrix, that is, disclosing the meaning of elements that are not simply juxtaposed but dynamically interrelated, in my view significantly increases not only their theoretical intelligibility but also their usefulness in clinical practice. In conclusion, one could legitimately argue that Bion gradually subsumed all the other paradigms he drew on within the aesthetic paradigm. Copyright © 2014 Institute of Psychoanalysis.

  2. Mimeses do sublime: a recepção de Kant pelo Romantismo e pelo Expressionismo Mimesis of sublime: the Romantism and Expressionism reception of Kant

    Directory of Open Access Journals (Sweden)

    Priscila Rossinetti Rufinoni

    2007-01-01

    Full Text Available Partindo das analises do criticismo kantiano, este texto investiga as concepções romântica e moderna de sublime e de imaginação. Se, por um lado, a concepção romântica inaugura o mundo moderno, por outro, a expressionista mostra os limites dessa mesma modernidade. Para ambas, entretanto, a Crítica do Juízo de Kant é o âmbito privilegiado no qual podemos precisar as distinções.Starting from the analysis of the Kantian criticism, this text investigates the romantic and the modern conceptions of sublime and imagination. On the one hand, the romantic conceptions of sublime inaugurate the modern world. On the other hand, the expressionist conceptions show the confines of this world. The Critique of Judgment is the very locus where such distinctions can be drawn with precision.

  3. Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling

    International Nuclear Information System (INIS)

    Shirazi, Ali; Najafi, Behzad; Aminyavari, Mehdi; Rinaldi, Fabio; Taylor, Robert A.

    2014-01-01

    In this study, a mathematical model of an ice thermal energy storage (ITES) system for gas turbine cycle inlet air cooling is developed and thermal, economic, and environmental (emissions cost) analyses have been applied to the model. While taking into account conflicting thermodynamic and economic objective functions, a multi-objective genetic algorithm is employed to obtain the optimal design parameters of the plant. Exergetic efficiency is chosen as the thermodynamic objective while the total cost rate of the system including the capital and operational costs of the plant and the social cost of emissions, is considered as the economic objective. Performing the optimization procedure, a set of optimal solutions, called a Pareto front, is obtained. The final optimal design point is determined using TOPSIS decision-making method. This optimum solution results in the exergetic efficiency of 34.06% and the total cost of 28.7 million US$ y −1 . Furthermore, the results demonstrate that inlet air cooling using an ITES system leads to 11.63% and 3.59% improvement in the output power and exergetic efficiency of the plant, respectively. The extra cost associated with using the ITES system is paid back in 4.72 years with the income received from selling the augmented power. - Highlights: • Mathematical model of an ITES system for a GT cycle inlet air cooling is developed. • Exergetic, economic and environmental analyses were performed on the developed model. • Exergy efficiency and total cost rate were considered as the objective functions. • The total cost rate involves the capital, maintenance, operational and emissions costs. • Multi-objective optimization was applied to obtain the Pareto front

  4. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  5. Simultaneous determination of picogram per gram concentrations of Ba, Pb and Pb isotopes in Greenland ice by thermal ionisation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jimi, Salah I.; Rosman, Kevin J.R.; Candelone, Jean-Pierre; Burn, Laurie J. [Curtin University of Technology, Department of Imaging and Applied Physics, Perth (Australia); Hong, Sungmin [Polar Research Centre, Korean Ocean Research and Development Institute, Ansan, P.O. Box 29, Seoul (Korea); Boutron, Claude F. [Domaine Universitaire, Laboratoire de Glaciologie et Geophysique du l' Environnement, 54 rue Moliere, Saint Martin d' Heres (France); UFR de Mecanique, Universite Joseph Fourier de Grenoble (Institut Universitaire de France), Domaine Universitaire, Grenoble (France)

    2008-01-15

    A technique has been developed to simultaneously measure picogram per gram concentrations of Ba and Pb by isotope dilution mass spectrometry, as well as Pb isotopic ratios in polar ice by thermal ionisation mass spectrometry. BaPO{sup +}{sub 2} and Pb{sup +} ions were employed for these determinations. A calibrated mixture of enriched {sup 205}Pb and {sup 137}Ba was added to the samples providing an accuracy of better than approximately 2% for Pb/Ba element ratio determinations. Interference by molecular ions in the Pb mass spectrum occurred only at {sup 204}Pb and {sup 205}Pb, but these contributions were negligible in terms of precisions expected on picogram-sized Pb samples. The technique is illustrated with measurements on Greenland firn, using a drill-core section that includes the Laki volcanic eruption of 1783-1784. The data show deviations from the element concentrations indicating volatile metal enrichments, but the Pb isotopic signature of the Laki lava could not be identified. (orig.)

  6. Thermodynamics of sublimation and solvation for bicyclo-derivatives of 1,3-thiazine

    International Nuclear Information System (INIS)

    Ol’khovich, Marina V.; Blokhina, Svetlana V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.

    2013-01-01

    Highlights: • Temperature dependencies of saturated vapor pressure of new bicyclo-derivatives were obtained. • Thermodynamic functions of sublimation and solvation were calculated. • The correlations between thermodynamic functions and molecular descriptors are discussed. - Abstract: Temperature dependencies of saturated vapor pressure of novel bicyclo-derivatives of 1,3-thiazine with methoxy- and carbonyl-substituents have been obtained by method of transference by means of an inert gas carrier. Thermodynamic functions of sublimation have been calculated. Correlations between thermodynamic functions of sublimation and thermophysical properties of the substances and molecular descriptors have been established. The enthalpies of solvation of compounds were calculated using the measured values of enthalpies of sublimation and of standard enthalpies of solution in hexane and buffer

  7. Potential Identification of Sublimation-Driven Downslope Mass Movement on Mercury

    Science.gov (United States)

    Malliband, C. C.; Conway, S. J.; Rothery, D. A.; Balme, M. R.

    2018-05-01

    We have identified a further example of mass movement, in addition to the previously identified example in the pyroclastic vent NE of Rachmaninoff. Both examples show evidence of hollow sublimation being a cause of the mass movements.

  8. Schiller Goes to the Movies: Locating the Sublime in "Thelma and Louise."

    Science.gov (United States)

    Hoyng, Peter

    1997-01-01

    Endeavors to make students aware of similarities between today's movie culture and the theater of the 18th century; parallels between a traditional drama and a movie script; and Schiller's understanding of the sublime. (36 references) (Author/CK)

  9. Diffuse scattering in Ih ice

    International Nuclear Information System (INIS)

    Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor

    2014-01-01

    Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)

  10. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  11. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  12. Analyses of hypothetical nuclear criticality excursions in 10- and 20-MW freezer/sublimer vessels

    International Nuclear Information System (INIS)

    Haught, C.F.; Jordan, W.C.; Basoglu, B.; Dodds, H.L.; Wilkinson, A.D.

    1995-01-01

    A theoretical model is used to predict the consequences of a postulated hypothetical nuclear criticality excursion in a freezer/sublimer (F/S). Previous work has shown that an intrusion of water into a F/S may result in a critical configuration. A first attempt is made to model the neutronic and thermal-hydraulic phenomena occurring during a criticality excursion involving both uranium hexafluoride (UF 6 ) and uranyl fluoride (UO 2 F 2 ) solution, which is present in the F/S during upset conditions. The model employs point neutronics coupled with simple thermal hydraulics. Reactivity feedback from changes in the properties of the system are included in the model. The excursion is studied in a 10-MW F/S with an initial load of 3,500 kg of 5% weight enriched UF 6 and in a 20-MW F/S with an initial load of 6,800 kg of 2% weight enriched UF 6 . The magnitude of the fission release determined in this work is 5.93 x 10 18 fissions in the 10-MW F/S and 4.21 x 10 18 fissions in the 20-MW F/S. In order to demonstrate the reliability of the techniques used in this work, a limited validation study was conducted by comparing the fission release and peak fission rate determined by this work with experimental results for a limited number of experiments. The agreement between calculations and experiments in the validation study is considered to be satisfactory. The calculational results for the hypothetical accidents in the two F/S vessels appear reasonable

  13. Relationships between fusion, solution, vaporization and sublimation enthalpies of substituted phenols

    International Nuclear Information System (INIS)

    Yagofarov, Mikhail I.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2017-01-01

    Highlights: • Method for determination of sublimation and vaporization enthalpies of phenols was developed. • Vaporization enthalpies of 28 phenols at 298 K were calculated. • Sublimation enthalpies of 26 phenols at 298 K were calculated using fusion enthalpies at melting temperatures. • Obtained values are in good agreement with the results of conventional methods. - Abstract: In this work a method for determination of sublimation and vaporization enthalpies of substituted phenols was developed. This method is a modification of solution calorimetry approach. Modification is based on the novel relations, which bind solution, vaporization and sublimation enthalpies at 298.15 K and fusion enthalpy at the melting temperature. According to novel relations the equations for calculating sublimation and vaporization enthalpies at 298.15 K were offered. Calculated values of sublimation and vaporization enthalpies of phenol derivatives containing alkyls, halogens, –OCH 3 , –NO 2 , –COCH 3 , –COOCH 3 groups, and dihydroxybenzenes were compared with literature data (298.15 K) obtained by conventional methods. In most of the cases divergence does not exceed 2–3%.

  14. Water ice grains in comet C/2013 US10 (Catalina)

    Science.gov (United States)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Woodward, Charles E.; Sunshine, Jessica M.

    2017-10-01

    Knowledge of the the physical properties of water ice in cometary nuclei is critical in determining how the Solar System was formed. While it is difficult to directly study the properties of water ice in comet nuclei, we can study comet interiors through their comae. Cometary activity makes the interiors of these objects available for characterization. However, the properties (grain size, abundance, purity, chemical state) of water-ice grains detected in the coma do not necessarily represent the characteristics of the water ice on the surface and/or in the interior of the nucleus. This is due to the potential physical and chemical evolution of the emitted material. Once in the coma, water-ice grains are heated by sunlight, and if temperatures are warm enough, they sublime. In this case, their sizes and potentially their ice-to-dust fractions are reduced.We present IRTF/SpeX measurements of the Oort cloud comet C/2013 US10 (Catalina), which reached perihelion in Nov 2015 at a heliocentric distance Rh=0.822 AU. Observations of US10 were acquired on UT 2014-08-13, 2016-01-12, and 2016-08-13 (Rh=5.9, 1.3, and 3.9 AU). This set of measurements, spanning a broad range in Rh, are rare and fundamental for estimating how ice grains evolve in the coma. The spectrum obtained close to perihelion is featureless and red sloped, which is consistent with a dust-dominated coma. Conversely, the spectra acquired on August 2014 and 2016 display neutral slopes and absorption bands at 1.5 and 2.0 μm, consistent with the presence of water-ice grains. These variations in water ice with heliocentric distance are correlated with sublimation rates. Additionally, the measurements obtained at 5.8 AU and 3.9 AU are nearly identical, suggesting that water-ice grains, once in the coma, do not sublime significantly. Therefore, the properties of these long-lived water-ice grains may represent their state in the nucleus or immediately after insertion into the coma. We will present radiative

  15. Extraction of trapped gases in ice cores for isotope analysis

    International Nuclear Information System (INIS)

    Leuenberger, M.; Bourg, C.; Francey, R.; Wahlen, M.

    2002-01-01

    The use of ice cores for paleoclimatic investigations is discussed in terms of their application for dating, temperature indication, spatial time marker synchronization, trace gas fluxes, solar variability indication and changes in the Dole effect. The different existing techniques for the extraction of gases from ice cores are discussed. These techniques, all to be carried out under vacuum, are melt-extraction, dry-extraction methods and the sublimation technique. Advantages and disadvantages of the individual methods are listed. An extensive list of references is provided for further detailed information. (author)

  16. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  17. Mechanism and kinetics for ammonium dinitramide (ADN) sublimation: a first-principles study.

    Science.gov (United States)

    Zhu, R S; Chen, Hui-Lung; Lin, M C

    2012-11-08

    The mechanism for sublimation of NH(4)N(NO(2))(2) (ADN) has been investigated quantum-mechanically with generalized gradient approximation plane-wave density functional theory calculations; the solid surface is represented by a slab model and the periodic boundary conditions are applied. The calculated lattice constants for the bulk ADN, which were found to consist of NH(4)(+)[ON(O)NNO(2)](-) units, instead of NH(4)(+)[N(NO(2))(2)](-), agree quite well with experimental values. Results show that three steps are involved in the sublimation/decomposition of ADN. The first step is the relaxation of the surface layer with 1.6 kcal/mol energy per NH(4)ON(O)NNO(2) unit; the second step is the sublimation of the surface layer to form a molecular [NH(3)]-[HON(O)NNO(2)] complex with a 29.4 kcal/mol sublimation energy, consistent with the experimental observation of Korobeinichev et al. (10) The last step is the dissociation of the [H(3)N]-[HON(O)NNO(2)] complex to give NH(3) and HON(O)NNO(2) with the dissociation energy of 13.9 kcal/mol. Direct formation of NO(2) (g) from solid ADN costs a much higher energy, 58.3 kcal/mol. Our calculated total sublimation enthalpy for ADN(s) → NH(3)(g) + HON(O)NNO(2)) (g), 44.9 kcal/mol via three steps, is in good agreement with the value, 42.1 kcal/mol predicted for the one-step sublimation process in this work and the value 44.0 kcal/mol computed by Politzer et al. (11) using experimental thermochemical data. The sublimation rate constant for the rate-controlling step 2 can be represented as k(sub) = 2.18 × 10(12) exp (-30.5 kcal/mol/RT) s(-1), which agrees well with available experimental data within the temperature range studied. The high pressure limit decomposition rate constant for the molecular complex H(3)N···HON(O)NNO(2) can be expressed by k(dec) = 3.18 × 10(13) exp (-15.09 kcal/mol/RT) s(-1). In addition, water molecules were found to increase the sublimation enthalpy of ADN, contrary to that found in the ammonium

  18. Distributed modelling of climate change impacts on snow sublimation in Northern Mongolia

    Directory of Open Access Journals (Sweden)

    L. Menzel

    2009-08-01

    Full Text Available Sublimation of snow is an important factor of the hydrological cycle in Mongolia and is likely to increase according to future climate projections. In this study the hydrological model TRAIN was used to assess spatially distributed current and future sublimation rates based on interpolated daily data of precipitation, air temperature, air humidity, wind speed and solar radiation. An automated procedure for the interpolation of the input data is provided. Depending on the meteorological parameter and the data availability for the individual days, the most appropriate interpolation method is chosen automatically from inverse distance weighting, Ordinary Least Squares interpolation, Ordinary or Universal Kriging. Depending on elevation simulated annual sublimation in the period 1986–2006 was 23 to 35 mm, i.e. approximately 80% of total snowfall. Moreover, future climate projections for 2071–2100 of ECHAM5 and HadCM3, based on the A1B emission scenario of the Intergovernmental Panel on Climate Change, were analysed with TRAIN. In the case of ECHAM5 simulated sublimation increases by up to 17% (26...41 mm while it remains at the same level for HadCM3 (24...34 mm. The differences are mainly due to a distinct increase in winter precipitation for ECHAM5. Simulated changes of the all-season hydrological conditions, e.g. the sublimation-to-precipitation ratio, were ambiguous due to diverse precipitation patterns derived by the global circulation models.

  19. Surface decontamination using dry ice snow

    International Nuclear Information System (INIS)

    Ryu, Jungdong; Park, Kwangheon; Lee, Bumsik; Kim Yangeun

    1999-01-01

    An adjustable nozzle for controlling the size of dry ice snow was developed. The converging/diverging nozzle can control the size of snows from sub-microns to 10 micron size. Using the nozzle, a surface decontamination device was made. The removal mechanisms of surface contaminants are mechanical impact, partial dissolving and evaporation process, and viscous flow. A heat supply system is added for the prevention of surface ice layer formation. The cleaning power is slightly dependent on the size of snow. Small snows are the better in viscous flow cleaning, while large snows are slightly better in dissolving and sublimation process. Human oils like fingerprints on glass were easy to remove. Decontamination ability was tested using a contaminated pump-housing surface. About 40 to 80% of radioactivity was removed. This device is effective in surface-decontamination of any electrical devices like detector, controllers which cannot be cleaned in aqueous solution. (author)

  20. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  1. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    Energy Technology Data Exchange (ETDEWEB)

    Kalvans, J., E-mail: juris.kalvans@venta.lv [Engineering Research Institute “Ventspils International Radio Astronomy Center” of Ventspils University College, Inzenieru 101, Ventspils, LV-3601 (Latvia)

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  2. Vacuum sublimation of interaction products of neodymium and erbium dipivaloyl methanates with pivalic acid

    International Nuclear Information System (INIS)

    Tu, Z.A.; Kuz'mina, N.P.; Martynenko, L.I.

    1993-01-01

    Processes taking place during vacuum sublimation of solid complexes of individual rare earths prepared in the systems MDpm 3 -nHPiv-hexane (M = Nd, Er, HDpm - dipivaloylmethane, HPiv - pivalic acid, n = 1, 2, 3) were studied. It is pointed out that at n = 1 in the systems considered mixed ligand complexes of the composition ErDpm 3 · HPiv and NdDpm 2 Piv are formed which disproportionate at different temperatures when heated in vacuum. It is revealed that the processes of the complexes disproportionation can be used to increase the efficiency of sublimation methods of neodymium and erbium dipivaloylmethanates mixture separation. 6 refs., 2 figs., 1 tab

  3. Determination of vapor pressures, enthalpies of sublimation, and enthalpies of fusion of benzenetriols

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Schick, Christoph

    2004-01-01

    Molar enthalpies of sublimation of 1,2,4-, 1,2,3-, and 1,3,5-tri-hydroxy-benzene, were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpies of fusion and molar heat capacities of these compounds were measured by DSC. The measured data sets of vaporization, sublimation and fusion enthalpies were checked for internal consistency. Strength of the inter- and intra-molecular hydrogen bonding in di- and tri-hydroxy-benzenes have been assessed

  4. Numerical implementation and oceanographic application of the Gibbs potential of ice

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2005-01-01

    Full Text Available The 2004 Gibbs thermodynamic potential function of naturally abundant water ice is based on much more experimental data than its predecessors, is therefore significantly more accurate and reliable, and for the first time describes the entire temperature and pressure range of existence of this ice phase. It is expressed in the ITS-90 temperature scale and is consistent with the current scientific pure water standard, IAPWS-95, and the 2003 Gibbs potential of seawater. The combination of these formulations provides sublimation pressures, freezing points, and sea ice properties covering the parameter ranges of oceanographic interest. This paper provides source code examples in Visual Basic, Fortran and C++ for the computation of the Gibbs function of ice and its partial derivatives. It reports the most important related thermodynamic equations for ice and sea ice properties.

  5. Ice-condenser aerosol tests

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K.

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between ∼0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m 3 /s resulted in stable thermal stratification whereas flows less than 0.1 m 3 /s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs

  6. How to Kill a Journalism School: The Digital Sublime in the Discourse of Discontinuance

    Science.gov (United States)

    McDevitt, Michael; Sindorf, Shannon

    2012-01-01

    The authors argue that journalism's uncertain identity in academia has made it vulnerable to unreflective instrumentalism in the digital era. They show how instrumentalism intertwined with the digital sublime constitutes a rhetorically resonate rationale for closing a journalism school. Evidence comes from documents and testimony associated with…

  7. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of Thermobaricity on Coupled Ice-Mixed Layer Thermodynamics

    National Research Council Canada - National Science Library

    Roth, Mathias

    2003-01-01

    .... This density structure often leads to entrainment and affects both the mixed layer depth and the ice thickness, Thermobaricity, the combined dependence of seawater thermal expansion on temperature...

  9. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  10. Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco

    Directory of Open Access Journals (Sweden)

    O. Schulz

    2004-01-01

    Full Text Available Snow in the High Atlas Mountains is a major source for freshwater renewal and for water availability in the semi-arid lowlands of south-eastern Morocco. Snowfall- and snow-ablation monitoring and modelling is important for estimating potential water delivery from the mountain water towers to the forelands. This study is part of GLOWA-IMPETUS, an integrated management project dealing with scarce water resources in West Africa. The Ameskar study area is located to the south of the High Atlas Mountains, in their rain shadow. As a part of the M’Goun river basin within the upper Drâa valley, the study area is characterised by high radiation inputs, low atmospheric humidity and long periods with sub-zero temperatures. Its altitude ranges between 2000 m and 4000 m, with dominant north- and south-facing slopes. Snowfall occurs mainly from November to April but even summit regions can become repeatedly devoid of snow cover. Snow cover maps for the M’Goun basin (1240 km2 are derived from calculations of NDSI (Normalized Difference Snow Index from MODIS satellite images and snow depth is monitored at four automatic weather stations between 2000–4000 m. Snowfall events are infrequent at lower altitudes. The presence of snow penitentes at altitudes above 3000 m indicates that snow sublimation is an important component of snow ablation. Snow ablation was modelled with the UEB Utah Energy Balance Model (Tarboton and Luce, 1996. This single layer, physically-based, point energy and mass balance model is driven by meteorological variables recorded at the automatic weather stations at Tounza (2960 m and Tichki (3260 m. Data from snow pillows at Tounza and Tichki are used to validate the model’s physical performance in terms of energy and water balances for a sequence of two snowfall events in the winter of 2003/4. First UEB modelling results show good overall performance and timing of snowmelt and sublimation compared to field investigations. Up to 44

  11. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  12. Thermal model of water and CO activity of Comet C/1995 O1 (Hale-Bopp)

    Science.gov (United States)

    Gortsas, N.; Kührt, E.; Motschmann, U.; Keller, H. U.

    2011-04-01

    An investigation of the activity of Comet C/1995 O1 (Hale-Bopp) with a thermophysical nucleus model that does not rely on the existence of amorphous ice is presented. Our approach incorporates recent observations allowing to constrain important parameters that control cometary activity. The model accounts for heat conduction, heat advection, gas diffusion, sublimation, and condensation in a porous ice-dust matrix with moving boundaries. Erosion due to surface sublimation of water ice leads to a moving boundary. The movement of the boundary is modeled by applying a temperature remapping technique which allows us to account for the loss in the internal energy of the eroded surface material. These kind of problems are commonly referred to as Stefan problems. The model takes into account the diurnal rotation of the nucleus and seasonal effects due to the strong obliquity of Hale-Bopp as reported by Jorda et al. (Jorda, L., Rembor, K., Lecacheux, J., Colom, P., Colas, F., Frappa, E., Lara, L.M. [1997]. Earth Moon Planets 77, 167-180). Only bulk sublimation of water and CO ice are considered without further assumptions such as amorphous ices with certain amount of occluded CO gas. Confined and localized activity patterns are investigated following the reports of Lederer and Campins (Lederer, S.M., Campins, H. [2002]. Earth Moon Planets 90, 381-389) about the chemical heterogeneity of Hale-Bopp and of Bockelée-Morvan et al. (Bockelée-Morvan, D., Henry, F., Biver, N., Boissier, J., Colom, P., Crovisier, J., Despois, D., Moreno, R., Wink, J. [2009]. Astron. Astrophys. 505, 825-843) about a strong CO source at a latitude of 20°. The best fit to the observations of Biver et al. (Biver, N. et al. [2002]. Earth Moon Planets 90, 5-14) is obtained with a low thermal conductivity of 0.01 W m -1 K -1. This is in agreement with recent results of the Deep Impact mission to 9P/Tempel 1 (Groussin, O., A'Hearn, M.F., Li, J.-Y., Thomas, P.C., Sunshine, J.M., Lisse, C.M., Meech, K

  13. "Back-fire to lust": G. Stanley Hall, sex-segregated schooling, and the engine of sublimation.

    Science.gov (United States)

    Graebner, William

    2006-08-01

    G. Stanley Hall was an advocate of sex-segregated schooling long after most Americans had accepted coeducation. His position was based in part on personal experience: observations of his father and mother, a repressed and guilt-ridden boyhood sexuality, and his conviction that his own career success was a product of sublimated sexual desire, of erotic energy converted into mental energy. Hall theorized that coeducation put sublimation at risk, and that sex-segregated schools, by contributing to proper gendered development and by prolonging and sublimating the sexual tensions of adolescence, would produce social progress.

  14. Production of Sulfur Allotropes in Electron Irradiated Jupiter Trojans Ice Analogs

    Science.gov (United States)

    Mahjoub, Ahmed; Poston, Michael J.; Blacksberg, Jordana; Eiler, John M.; Brown, Michael E.; Ehlmann, Bethany L.; Hodyss, Robert; Hand, Kevin P.; Carlson, Robert; Choukroun, Mathieu

    2017-09-01

    In this paper, we investigate sulfur chemistry in laboratory analogs of Jupiter Trojans and Kuiper Belt Objects (KBOs). Electron irradiation experiments of CH3OH-NH3-H2O and H2S-CH3OH-NH3-H2O ices were conducted to better understand the chemical differences between primordial planetesimals inside and outside the sublimation line of H2S. The main goal of this work is to test the chemical plausibility of the hypothesis correlating the color bimodality in Jupiter Trojans with sulfur chemistry in the incipient solar system. Temperature programmed desorption (TPD) of the irradiated mixtures allows the detection of small sulfur allotropes (S3 and S4) after the irradiation of H2S containing ice mixtures. These small, red polymers are metastable and could polymerize further under thermal processing and irradiation, producing larger sulfur polymers (mainly S8) that are spectroscopically neutral at wavelengths above 500 nm. This transformation may affect the spectral reflectance of Jupiter Trojans in a different way compared to KBOs, thereby providing a useful framework for possibly differentiating and determining the formation and history of small bodies. Along with allotropes, we report the production of organo-sulfur molecules. Sulfur molecules produced in our experiment have been recently detected by Rosetta in the coma of 67P/Churyumov-Gerasimenko. The very weak absorption of sulfur polymers in the infrared range hampers their identification on Trojans and KBOs, but these allotropes strongly absorb light at UV and Visible wavelengths. This suggests that high signal-to-noise ratio UV-Vis spectra of these objects could provide new constraints on their presence.

  15. Production of Sulfur Allotropes in Electron Irradiated Jupiter Trojans Ice Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Ahmed; Poston, Michael J.; Blacksberg, Jordana; Ehlmann, Bethany L.; Hodyss, Robert; Hand, Kevin P.; Carlson, Robert; Choukroun, Mathieu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Eiler, John M.; Brown, Michael E., E-mail: Mahjoub.Ahmed@jpl.nasa.gov [California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 (United States)

    2017-09-10

    In this paper, we investigate sulfur chemistry in laboratory analogs of Jupiter Trojans and Kuiper Belt Objects (KBOs). Electron irradiation experiments of CH{sub 3}OH–NH{sub 3}–H{sub 2}O and H{sub 2}S–CH{sub 3}OH–NH{sub 3}–H{sub 2}O ices were conducted to better understand the chemical differences between primordial planetesimals inside and outside the sublimation line of H{sub 2}S. The main goal of this work is to test the chemical plausibility of the hypothesis correlating the color bimodality in Jupiter Trojans with sulfur chemistry in the incipient solar system. Temperature programmed desorption (TPD) of the irradiated mixtures allows the detection of small sulfur allotropes (S{sub 3} and S{sub 4}) after the irradiation of H{sub 2}S containing ice mixtures. These small, red polymers are metastable and could polymerize further under thermal processing and irradiation, producing larger sulfur polymers (mainly S{sub 8}) that are spectroscopically neutral at wavelengths above 500 nm. This transformation may affect the spectral reflectance of Jupiter Trojans in a different way compared to KBOs, thereby providing a useful framework for possibly differentiating and determining the formation and history of small bodies. Along with allotropes, we report the production of organo-sulfur molecules. Sulfur molecules produced in our experiment have been recently detected by Rosetta in the coma of 67P/Churyumov–Gerasimenko. The very weak absorption of sulfur polymers in the infrared range hampers their identification on Trojans and KBOs, but these allotropes strongly absorb light at UV and Visible wavelengths. This suggests that high signal-to-noise ratio UV–Vis spectra of these objects could provide new constraints on their presence.

  16. Orbital Evolution of Dust Particles in the Sublimation Zone near the Sun

    Science.gov (United States)

    Shestakova, L. I.; Demchenko, B. I.

    2018-03-01

    We have performed the calculations of the orbital evolution of dust particles from volcanic glass ( p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting-Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0-7.6 solar radii for standard particles of the zodiacal cloud and 9.1-9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.

  17. Concurrent freezing and sublimation of a liquid-saturated porous slab

    International Nuclear Information System (INIS)

    Vaidyanathan, N.; Shamsundar, N.

    1991-01-01

    In this paper analytical models are formulated for describing heat and mass transport during concurrent freezing and sublimation of a one-dimensional liquid-saturated porous slab. The models are based on transient heat transfer in the frozen and wet regions, and quasi-steady heat and mass transfer in the dried region. The enthalpy method in conjunction with a fully implicit finite-difference scheme is employed to obtain the solution in the frozen and wet regions. A quasi-steady solution is used in the dried region. The governing equations are nondimensionalized and parametric studies are performed. The results indicate that the Luikov number, the ambient vapor pressure, and the heat transfer Biot number are important parameters. The results also confirm that the sublimation interface temperature may show significant variations, in contrast to earlier studies in which it was assumed constant

  18. Poetiche del sublime. Il Coro di morti dalle Operette morali a Goffredo Petrassi

    Directory of Open Access Journals (Sweden)

    Giovanni Vito Distefano

    2018-01-01

    Full Text Available In un autore come Leopardi, incline al serio in misura apparentemente esclusiva e poco votato all’arte drammatica, è tuttavia in un piccolo capolavoro tragicomico che possono individuarsi le prime tracce di una moderna estetica del sublime. L’articolo propone innanzitutto una lettura in chiave metapoetica del Coro di morti, volta ad osservare la salda convergenza che nella scrittura leopardiana lega reciporcamente gli avanzamenti del pensiero – la verità di una condizione umana irresolubilmente e incomprensibilmente priva della felicità – e gli sviluppi attinenti al piano formale e a quello della riflessione filosofico-estetica – con la messa in discussione tanto della classicistica estetica della mimesis, quanto di quella romantica del sentimentale. Infine, nella seconda parte, il paradigma estetico del sublime fornirà i termini entro i quali tracciare una ricostruzione del procedimento adattivo che lega all’originale leopardiano la trasposizione musicale realizzata nel 1941 da Goffredo Petrassi.

  19. Standard molar enthalpies of formation and of sublimation of the terphenyl isomers

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Luis M.N.B.F.; Lima, Luis M. Spencer S.

    2008-01-01

    The standard (p 0 = 0.1 MPa) molar enthalpies of formation in the crystalline phases of ortho, meta and para-terphenyl isomers, at T = 298.15 K, were derived from the standard molar energies of combustion, measured by mini-bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to measure the dependence of the vapour pressure of the crystals with the temperature, thus deriving their standard molar enthalpies of sublimation by means of the Clausius-Clapeyron equation. Combining the standard molar enthalpies of formation and sublimation of the crystalline terphenyls, the standard molar enthalpies of formation in the gaseous state, at T = 298.15 K, were derived for the three isomers. Results are provided in a table. The results show small but detectable isomerization enthalpies between the terphenyls, indicating the following relative enthalpic stabilities: m- > p- ∼ o-terphenyl

  20. Titanium sublimation pumping systems and performances on the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Pico, R.E.

    1986-01-01

    This paper presents a brief history of the TMX-U Titanium Sublimation Pumping process (gettering). Titanium sublimation pumps offer an economical means of pumping chemically active gases (especially hydrogen) at high speeds, and serves as additional pumps, along with liquid nitrogen-cooled panels, to provide pumping during each physics experiment. Because of the size of the system, a complex computer program was written which is run-time compiled, and then run by the computer. With the multi-tasking capability of the computer, five programs are used in operation and run simultaneously. All getter wire history, deposition, and system notes are stored on the external disc drive. The progress and performance in the four years the system has been used, two year manually controlled, and two computer controlled with be covered. Emphasis on the computer control system and its by-products, which enhance the operation of the TMX-U, will be the subject of this paper

  1. Practical sublimation source for large-scale chromium gettering in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, J E; Gabbard, W A; Emerson, L C; Mioduszewski, P K [Oak Ridge National Lab., TN (USA)

    1984-05-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown.

  2. A practical sublimation source for large-scale chromium gettering in fusion devices

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Gabbard, W.A.; Emerson, L.C.; Mioduszewski, P.K.

    1984-01-01

    This paper describe the fabrication and testing of a large-scale chromium sublimation source that resembles the VARIAN Ti-ballsup(TM) in its design. The device consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. We also discuss the gettering technique utilizing this source. The experimental arrangement consists of an ultrahigh vacuum (UHV) system instrumented for total and partial pressure measurements, a film thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-ball as functions of input power. In addition, an example of the total pumping speed of a gettered surface is shown. (orig.)

  3. Practical sublimation source for large-scale chromium gettering in fusion devices

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Emerson, L.C.; Mioduszewski, P.K.

    1983-01-01

    This paper describes the technique of chromium gettering with a large-scale sublimation source which resembles in its design the VARIAN Ti-Ball. It consists of a hollow chromium sphere with a diameter of approximately 3 cm and an incandescent filament for radiation heating from inside the ball. While the fabrication of the source is described in a companion paper, we discuss here the gettering technique. The experimental arrangement consists of an UHV system instrumented for total- and partial-pressure measurements, a film-thickness monitor, thermocouples, an optical pyrometer, and appropriate instrumentation to measure the heating power. The results show the temperature and corresponding sublimation rate of the Cr-Ball as function of input power. In addition, an example of the total pumping speed of a gettered surface is shown

  4. Ice Ages

    Indian Academy of Sciences (India)

    that the precession of the earth's orbit caused ice ages. The precession of the earth's orbit leads to changes in the time of the year at which ... than in the southern hemisphere. ..... small increase in ocean temperature implies a large increase in.

  5. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  6. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  7. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    International Nuclear Information System (INIS)

    Goldfarb, Jillian L.; Suuberg, Eric M.

    2010-01-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) g . mol -1 were measured over the temperature range of (301 to 486) K using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin, and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  8. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Jillian L., E-mail: JillianLGoldfarb@gmail.co [Division of Engineering, Brown University, Providence, RI 02912 (United States); Suuberg, Eric M., E-mail: Eric_Suuberg@brown.ed [Division of Engineering, Brown University, Providence, RI 02912 (United States)

    2010-06-15

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) g . mol{sup -1} were measured over the temperature range of (301 to 486) K using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin, and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  9. A analítica kantiana do sublime em Friedrich Schiller

    Directory of Open Access Journals (Sweden)

    Artur Bispo dos Santos Neto

    2016-10-01

    Full Text Available O nosso texto tem como propósito apontar a articulação existente entre a estética kantiana, expressa na sua obra basilar Crítica da faculdade do juízo, e a reflexão estética constituída por Friedrich Schiller mediante a sua noção de sublime. Embora Schiller se inscreva sob o signo da influência da terceira Crítica, vamos mostrar na tessitura deste texto como consegue libertar-se da influência kantiana, ao recusar a centralidade do juízo de gosto na definição do belo e afirmar a beleza (puchritudo como liberdade no fenômeno. Schiller não se limita à investigação do sublime no âmbito da beleza livre (natureza, mas investiga-a especialmente no campo da beleza aderente. Embora o próprio Kant tenha atribuído ao gosto o significado de uma transição do prazer dos sentidos à disposição moral, será Schiller quem radicalizará o propósito de uma educação moral do homem pela mediação do sublime e do patético na arte.

  10. Application of a Kalman filter to UF6 gaseous diffusion plant freezer/sublimer systems

    International Nuclear Information System (INIS)

    Ruppel, F.R.

    1992-03-01

    A signal is required to control the flow of UF 6 in gaseous diffusion plant freezer/sublimer systems. The original strategy envisioned for deriving a flow signal was to take the derivative of the freezer/sublimer weigh cell signal. However, the derivative of the digitized weight signal is noisy, preventing good control. In addition, a bias is introduced into the weight derivative signal because a refrigerant is circulated through a shell-and-tube heat exchanger inside the freezer/sublimer. The weight of the refrigerant is included in the weight measured by the weigh cell. If the circulation rate of the refrigerent is not steady state, a bias exists. Measurements of upstream pressure, vessel pressure, and output to the system control valve are available to the control system. Thus, if the flow through the control valve is characterized properly by the measurements, a Kalman filter can be used in conjunction with these auxiliary inputs and the weigh cell input to overcome the noise and bias problem and provide an improve estimate of flow rate. A discussion of the development and the current status of a Kalman filter used for this application is given. 5 refs

  11. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  12. GROTESQUE ENCOUNTERS: READING SHAKESPEARE’S THE MERCHANT OF VENICE ALONG THE PRINCIPLES OF THE SUBLIME, BEAUTIFUL AND GROTESQUE

    Directory of Open Access Journals (Sweden)

    Kathrin Bartha

    2015-12-01

    Full Text Available This article is an attempt to apply the basic principles of the aesthetic discourse on the sublime, beautiful and grotesque to William Shakespeare's The Merchant of Venice. Even though it is a discourse that only begins in the course of the eighteenth century, I will argue that the structure of the play parallels the model of the traditional sublime, as it deals with a subject-object binary and meditates on the relationship between the material (body and the transcendental (mind. However, the play is also rich in disruptive — or grotesque — forces that unsettle this binary structure. The parallels between the play and the aesthetic discourse could not only help our understanding of postmodern criticism and rewriting of the sublime, but the sublime can also, in turn, shed light on the reception of the play.

  13. Shades of Grey: The Role of the Sublime in the Memorial to the Murdered Jews of Europe

    Directory of Open Access Journals (Sweden)

    Karen Wilson Baptist

    2012-12-01

    Full Text Available As a ‘post-disaster’ landscape, the Memorial to the Murdered Jews of Europe does, arguably, occupy ground where the mass extermination of the Jewish people of Europe was masterminded, but it is not physically a site of death. Commonly, memorial landscapes are erected upon the location where violence, tragedy and disaster have occurred. Divorced from the diasporic dead it seeks to honour, the memorial employs spatial form, the surrounding atmosphere and human memory to potentialise a sublime experience for visitors. The sublime plays an essential role in memorial landscapes because sublime experiences are heightened, unforgettable and enduring. This reduces the possibility that visitors will depart the memorial unscathed, leaving the monument to bear the burden of memory. While a sublime experience can be optimised, it cannot be given, thus, the onus of remembering the Holocaust remains our responsibility.

  14. A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to

  15. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    Science.gov (United States)

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights

  16. Eulerian Method for Ice Crystal Icing

    NARCIS (Netherlands)

    Norde, Ellen; van der Weide, Edwin Theodorus Antonius; Hoeijmakers, Hendrik Willem Marie

    In this study, an ice accretion method aimed at ice crystal icing in turbofan engines is developed and demonstrated for glaciated as well as mixed-phase icing conditions. The particle trajectories are computed by an Eulerian trajectory method. The effects of heat transfer and phase change on the

  17. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    International Nuclear Information System (INIS)

    Solomonov, Boris N.; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-01-01

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  18. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@kpfu.ru; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-06-10

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  19. Simulating Extraterrestrial Ices in the Laboratory

    Science.gov (United States)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  20. Sea ice - Multiyear cycles and white ice

    Science.gov (United States)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  1. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    Science.gov (United States)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  2. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    2012-01-01

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  3. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  4. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Science.gov (United States)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  5. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  6. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  7. Origin and effective reduction of inversion domains in aluminum nitride grown by a sublimation method

    Science.gov (United States)

    Shigetoh, Keisuke; Horibuchi, Kayo; Nakamura, Daisuke

    2017-11-01

    Owing to the large differences in the chemical properties between Al and N polarities in aluminum nitride (AlN), the choice of the polar direction for crystal growth strongly affects not only the quality but also the shape (facet formation) of the grown crystal. In particular, N-polar (0 0 0 -1) has been considered to be a more preferable direction than Al-polar (0 0 0 1) for sublimation growth because compared to Al-polar (0 0 0 1), N-polar (0 0 0 -1) exhibits better stability at high growth rate (high supersaturation) conditions and enables easier lateral enlargement of the crystal. However, some critical growth conditions induce polarity inversion and hinder stable N-polar growth. Furthermore, the origin of the polarity inversion in AlN growth by the sublimation method is still unclear. To ensure stable N-polar growth without polarity inversion, the formation mechanism of the inversion domain during AlN sublimation growth must be elucidated. Therefore, herein, we demonstrate homoepitaxial growth on an N-polar seed and carefully investigate the obtained crystal that shows polarity inversion. Annular bright-field scanning transmission electron microscopy reveals that polarity is completely converted to the Al polarity via the formation of a 30 nm thick mixed polar layer (MPL) just above the seed. Moreover, three-dimensional atom probe tomography shows the segregation of the oxygen impurities in the MPL with a high concentration of about 3 atom%. Finally, by avoiding the incorporation of oxygen impurity into the crystal at the initial stage of the growth, we demonstrate an effective reduction (seven orders of magnitude) of the inversion domain boundary formation.

  8. Wasting the Future: The Technological Sublime, Communications Technologies, and E-waste

    Directory of Open Access Journals (Sweden)

    Sebine Label

    2012-08-01

    Full Text Available Literally speaking, e-waste is the future of communications. E-waste is the fastest growing waste stream in the world, much of it communications technologies from cell phones to laptops, televisions to peripherals. As a result of policies of planned obsolescence working computers, cell phones, and tablets are routinely trashed. One of the most powerful and enduring discourses associated with emerging technologies is the technological sublime, in which technology is seen as intellectually, emotionally, or spiritually transcendent. It comprises a contradictory impulse that elevates technology with an almost religious fervor, while simultaneously overlooking some of the consequences of industrialism, as well as ignoring the necessity of social, economic, and governmental infrastructures necessary to the implementation and development of new technologies. The idea that a new technology will not pollute or harm the environment is a persistent, though often quickly passed over, theme in the technological sublime, echoed in discourses about emerging technologies such as the silicon chip, the internet, and other ICTs. In this paper, I make connections between the discourse of newness, the practice of planned obsolescence, and the mountains of trashed components and devices globally. Considering the global context demonstrates the realities of the penetration of ICTs and their enduring pollution and negative implications for the health of humans and nonhumans, including plants, animals, waterways, soil, air and so on. I use the discourse of the technological sublime to open up and consider the future of communications, to argue that this discourse not only stays with us but also contains within it two important and related components, the promise of ecological harmony and a future orientation. I argue that these lingering elements keep us from considering the real future of communications – e-waste – and that, as communications scholars, we must also

  9. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    Science.gov (United States)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  10. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  11. Ice load reducer for dams : laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lupien, R.; Cote, A.; Robert, A. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)

    2009-07-01

    Many studies have focused on measuring static ice loads on various hydraulic structures in Canada. This paper discussed a Hydro-Quebec research project whose main purpose was to harmonize the ice thrust value in load combinations for use in general hydraulic works or for specific cases. The objectives of the project were to obtain a better understanding of existing data and to characterize sites and their influence on ice thrust; study the structural mechanisms involved in the generation of ice thrust, their consequences on the structural behaviour of ice and the natural mitigating circumstances that may be offered by ice properties or site operating procedures; and examine the relevance of developing an ice load reducer for works that might not fit the harmonized design value. The paper presented the main research goals and ice load reducer goals, with particular focus on the four pipe samples that were planned, built and tested. The experimental program involved checking the pipe shape behaviour in terms of flexibility-stiffness; maximum deformations; maximum load reduction; permanent deformations; and, ability to shape recovering. The testing also involved examining the strength versus strain rate; creep versus strain rate; and creep capacity under biaxial state of tension and compression. It was concluded that the two phenomena involved in generation of ice thrust, notably thermal expansion and water level changes, had very low strain rates. 8 refs., 2 tabs., 16 figs.

  12. Thick epitaxial CdTe films grown by close space sublimation on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q; Haliday, D P; Tanner, B K; Brinkman, A W [Department of Physics, University of Durham. Science Site, Durham, DH1 3LE (United Kingdom); Cantwell, B J; Mullins, J T; Basu, A [Durham Scientific Crystals Ltd., NetPark, Thomas Wright Way, Sedgefield, County Durham, TS21 3FD (United Kingdom)], E-mail: Q.Z.Jiang@durham.ac.uk

    2009-01-07

    This paper reports, for the first time, the successful growth of 200 {mu}m thick CdTe films on mis-oriented Ge(1 0 0) substrates by a cost-effective optimized close space sublimation method. It is found that, as the thickness increases to a few hundred micrometres, subgrains are formed probably as a result of the large density of dislocations and strain within the initial interfacial layers. The films are of high quality (x-ray rocking curve width {approx}100 arcsec) and high resistance ({approx}10{sup 9} {omega} cm), and are thus candidates for x-ray and {gamma}-ray detectors. (fast track communication)

  13. Low-level precipitation sublimation on the coasts of East Antarctica

    Science.gov (United States)

    Grazioli, Jacopo; Genthon, Christophe; Madeleine, Jean-Baptiste; Lemonnier, Florentin; Gallée, Hubert; Krinner, Gerhard; Berne, Alexis

    2017-04-01

    The weather of East Antarctica is affected by the peculiar morphology of this large continent and by its isolation from the surroundings. The high-elevation interior of the continent, very dry in absolute terms, originates winds that can reach the coastal areas with very high speed and persistence in time. The absence of topographic barriers and the near-ground temperature inversion allow these density-driven air movements to fall from the continent towards the coasts without excessive interaction and mixing with the atmosphere aloft. Thus, the air remains dry in absolute terms, and very dry in relative terms because of the higher temperatures near the coast and the adiabatic warming due to the descent. The coasts of Antarctica are less isolated and more exposed to incoming moist air masses than the rest of the continent, and precipitation in the form of snowfall more frequently occurs. Through its descent, however, snowfall encounters the layer of dry air coming from the continent and the deficit in humidity can lead to the partial or complete sublimation of the precipitating flux. This phenomenon is named here LPS (Low-level Precipitation Sublimation) and it has been observed by means of ground-based remote sensing instruments (weather radars) and atmospheric radio-sounding balloons records in the framework of the APRES3 campaign (Antarctic Precipitation: REmote Sensing from Surface and Space) in the coastal base of Dumont d' Urville (Terre Adélie), and then examined at the continental scale thanks to numerical weather models. LPS occurs over most of the coastal locations, where the total sublimated snowfall can be a significant percentage of the total snowfall. For example, in Dumont d' Urville the total yearly snowfall at 341 m height is less than 80% of the snowfall at 941 m height (the height of maximum yearly accumulation), and at shorter time scales complete sublimation (i.e. virga) often occurs. At the scale of individual precipitation events, LPS is

  14. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    International Nuclear Information System (INIS)

    Mayo, B.

    1998-01-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350C and completely recrystallized after the same treatment at 400C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures

  15. Integrating Carbon Flux Measurements with Hydrologic and Thermal Responses in a Low Centered Ice-Wedge Polygon near Prudhoe Bay, AK

    Science.gov (United States)

    Larson, T.; Young, M.; Caldwell, T. G.; Abolt, C.

    2014-12-01

    Substantial attention is being devoted to soil organic carbon (SOC) dynamics in Polar Regions, given the potential impacts of CO2 and methane (CH4) release into the atmosphere. In this study, which is part of a broader effort to quantify carbon loss pathways in patterned Arctic permafrost soils, CH4 and CO2 flux measurements were recorded from a site approximately 30 km south of Deadhorse, Alaska and 1 km west of the Dalton Highway. Samples were collected in late July, 2014 using six static flux chambers that were located within a single low-centered ice-wedge polygon. Three flux chambers were co-located (within a 1 m triangle of each other) near the center of the polygon and three were co-located (along a 1.5 m line) on the ridge adjacent to a trough. Soil in the center of the polygon was 100% water saturated, whereas water saturation measured on the ridge ranged between 25-50%. Depth to ice table was approximately 50 cm near the center of the polygon and 40 cm at the ridge. Temperature depth probes were installed within the center and ridge of the polygon. Nine gas measurements were collected from each chamber over a 24 h period, stored in helium-purged Exetainer vials, shipped to a laboratory, and analyzed using gas chromatography. Measured cumulative methane fluxes were linear over the 24 h period demonstrating constant methane production, but considerable spatial variability in flux was observed (0.1 to 4.7 mg hr-1 m-2 in polygon center, and 0.003 to 0.36 mg hr-1m-2 on polygon ridge). Shallow soil temperatures varied between 1.3 and 9.8oC in the center and 0.6 to 7.5oC in the rim of the polygon. Air temperatures varied between 1.3 and 4.6oC. CO2 fluxes were greater than methane fluxes and more consistent at each co-location; ranging from 21.7 to 36.6 mg hr-1 m-2 near the polygon centers and 3.5 to 29.1 mg hr-1 m-2 in the drier polygon ridge. Results are consistent with previous observations that methanogenesis is favored in a water saturated active layer. The

  16. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  17. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  18. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    Science.gov (United States)

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  19. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    Science.gov (United States)

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  20. Experimental and molecular dynamics simulation study of the sublimation energetics of cyclopentadienyltricarbonylmanganese (Cymantrene).

    Science.gov (United States)

    Picciochi, Ricardo; Canongia Lopes, José N; Diogo, Hermínio P; Minas da Piedade, Manuel E

    2008-10-16

    The standard molar enthalpy of sublimation of monoclinic cyclopentadienyltricarbonylmanganese, Mn(eta (5)-C 5H 5)(CO) 3, at 298.15 K, was determined as Delta sub H m (o)[Mn(eta (5)-C 5H 5)(CO) 3] = 75.97 +/- 0.37 kJ x mol (-1) from Knudsen effusion and Calvet-drop microcalorimetry measurements, thus considerably improving the very large inaccuracy (>10 kJ x mol (-1)) of the published data. The obtained value was used to assess the extension of the OPLS-based all-atom force field we previously developed for iron metallocenes to manganese organometallic compounds. The modified force field was able to reproduce the volumetric properties (density and unit-cell volume) of crystalline Mn(eta (5)-C 5H 5)(CO) 3 with a deviation of 0.6% and the experimentally determined enthalpy of sublimation with an accuracy of 1 kJ x mol (-1). The interaction (epsilon) and atomic-diameter (sigma) parameters of the Lennard-Jones (12-6) potential function used to calculate dispersion contributions within the framework of the force field were found to be transferable from iron to manganese.

  1. Verdad sublime y madre asesina en Christine V., versión de Marguerite Duras

    Directory of Open Access Journals (Sweden)

    Juliana González Holguín

    2016-01-01

    Full Text Available Todo relato es ficción, versión y, así mismo, verdad, bajo una u otra concepción de la misma, es decir, desde una perspectiva que se enfoca según la intención y la subjetividad de uno o más actores, de uno o más narradores. El texto de Marguerite Duras intitulado Sublime forcément sublime Christine V. involucra, por su contenido y su contexto, varias versiones que contrastan y se interrogan entre sí. La escritora se posiciona de tal manera que, a través de recursos propios del oficio literario, desentraña una verdad que puede no ajustarse a la realidad o al saber, pero que nos enfrenta a los límites de lo pulsional y lo ominoso.

  2. Formulation and evaluation of fast dissolving tablets of cinnarizine using superdisintegrant blends and subliming material

    Directory of Open Access Journals (Sweden)

    Biswajit Basu

    2011-01-01

    Full Text Available The aim of this investigation was to develop fast dissolving tablet of cinnarizine. A combination of super disintegrants, i.e., sodium starch glycolate (SSG and crosscarmellose sodium (CCS were used along with camphor as a subliming material. An optimized concentration of camphor was added to aid the porosity of the tablet. A 3 2 full factorial design was applied to investigate the combined effect of two formulation variables: Amount of SSG and CCS. Infrared (IR spectroscopy was performed to identify the physicochemical interaction between drug and polymer. IR spectroscopy showed that there is no interaction of drug with polymer. In the present study, direct compression was used to prepare the tablets. The powder mixtures were compressed into tablet using flat face multi punch tablet machine. Camphor was sublimed from the tablet by exposing the tablet to vacuum drier at 60°C for 12 hours. All the formulations were evaluated for their characteristics such as average weight, hardness, wetting time, friability, content uniformity, dispersion time (DT, and dissolution rate. An optimized tablet formulation (F 9 was found to have good hardness of 3.30 ± 0.10 kg/cm 2 , wetting time of 42.33 ± 4.04 seconds, DT of 34.67 ± 1.53 seconds, and cumulative drug release of not less than 99% in 16 minutes.

  3. Structure of a new dense amorphous ice

    International Nuclear Information System (INIS)

    Finney, J.L.; Bowron, D.T.; Soper, A.K.; Loerting, T.; Mayer, E.; Hallbrucker, A.

    2002-01-01

    The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing 'interstitial', the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled

  4. Basic Physical Properties of Ammonia-Rich Ice

    Science.gov (United States)

    Shandera, S. E.; Lorenz, R. D.

    2000-10-01

    We report simple measurements of the thermal conductivity, mechanical strength and microwave absorptivity of ammonia hydrate ices, which are likely to be abundant in the Saturnian system. Understanding the dielectric properties of ammonia ice could play an important role in interpreting data from the Cassini spacecraft, which will image Titan's surface by radar in 2004. Thermal conductivity measurements were made by freezing a thin copper wire in the center of ice samples. The wire acted as both heater and temperature sensor, calibrated by a thermocouple also frozen in the sample. Ices with concentrations of 5- 30% ammonia were compared to pure water ice and ices containing salts. Thermal conductivity was found to decrease with increasing concentration of ammonia - a factor of 3 or 4 less than pure water ice for the 30% peritectic composition. Microwave absorptivity was measured by placing insulated ice samples and calibration materials in a conventional microwave oven. The microwave absorptivity was found to increase with increasing concentration of ammonia, although the effect is strongly temperature dependent, and heat leak from the room made quantitative measurement difficult. Mechanical strength was estimated using a ball bearing/accelerometer indentation method. For temperatures 100-150K, ammonia-rich ice has a Young's modulus about 10x smaller than pure ice. These properties affect tidal dissipation and the likelihood and style of cryovolcanism on (and the radar appearance of) the icy satellites and Titan. This work was supported by the Cassini RADAR team and the Arizona Space Grant Consortium.

  5. Coldness distribution by stabilized ice slurries. Study of the behaviour under thermal cycling; Distribution du froid par coulis de glace stabilisee. Etude du comportement sous cyclage thermique

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, D.

    2004-10-01

    The purpose of this work is to study a two-phase secondary refrigerant composed of phase-change particles suspended in a carrying liquid. This mixture has been hydraulically and thermally characterised. Moreover, some visualizations of flow patterns have been performed. Measurements of pressure losses have been realised in the case of solid state of the particles and in the case of liquid state. Heat transfer balances allowed us to show an improvement of a 1,9 factor before phase-change, in comparison with the case of a pure carrying liquid (without any particles). Flow patterns, which were theoretically specified, in function of fluid speed, have been observed experimentally. (author)

  6. Ice exposures and landscape evolution in the Martian mid-latitudes

    Science.gov (United States)

    Dundas, C. M.; Bramson, A. M.; Ojha, L.; Wray, J. J.; Mellon, M. T.; Byrne, S.; McEwen, A. S.; Putzig, N. E.; Viola, D.; Sutton, S.

    2017-12-01

    The large-scale geographic distribution of Martian shallow ground ice is now relatively well-known, but the vertical structure of the ice is not as well understood. Here we report on erosional scarps in kilometer-scale pits near ±55-60 degrees latitude that expose cross-sections through ice-rich mantling deposits covering much of the mid-latitudes. HiRISE images of the scarps reveal ice-rich deposits (i.e., not regolith-pore-filling ice) that are >100 m thick and occur within 1 m of the top of the scarps. CRISM spectra confirm the presence of water ice through late summer, implying exposed ground ice rather than seasonal frost. SHARAD sounding radar data show some candidate reflectors similar to those inferred to be from the base of excess ice deposits elsewhere on Mars, but no internal structure is resolved. Ice-exposing impacts and thermokarst landforms convey information about excess ice abundance in the upper few meters, but not its deeper structure. The overall structure of the ice table is simple, with massive ice (sometimes layered) under a relatively thin lithic mantle, plus a boulder-rich interior lens in one scarp. The latter may be partly ice-cemented. The ice is commonly fractured. These observations demonstrate how deep ice sheets link with the shallow ice table, at least locally. The likely origin of the ice is accumulation of snow with some admixed dust during a different climate. This snow accumulation could be related to 370 ka changes observed at the poles [1] but some ice sheets may be tens of Myr old [2]. the origin of superposed boulder-sized rocks is puzzling; possible explanations include glacial flow, impact gardening, or some form of frost heave or cryoturbation. Repeat HiRISE observations demonstrate that the scarps are actively retreating, as boulders have fallen from one scarp and there are albedo changes elsewhere. This activity demonstrates that local sublimation is contributing to present-day Martian landscape evolution and is an

  7. Laboratory, Computational and Theoretical Investigations of Ice Nucleation and its Implications for Mixed Phase Clouds

    Science.gov (United States)

    Yang, Fan

    show that long lifetime ice particles exist in mixed-phase stratiform clouds. We find that small ice particle can be trapped in eddy-like structures. Whether ice particles grow or sublimate depends on the thermodynamic field in the trapping region. This dynamic-thermodynamic coupling effect on the lifetime of ice particles might explain the fast phase-partition change observed in the mixed phase cloud.

  8. Effect of thermal state and thermal comfort on cycling performance in the heat.

    Science.gov (United States)

    Schulze, Emiel; Daanen, Hein A M; Levels, Koen; Casadio, Julia R; Plews, Daniel J; Kilding, Andrew E; Siegel, Rodney; Laursen, Paul B

    2015-07-01

    To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.

  9. Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@kpfu.ru; Nagrimanov, Ruslan N.; Varfolomeev, Mikhail A.; Buzyurov, Aleksey V.; Mukhametzyanov, Timur A.

    2016-03-20

    Graphical abstract: - Highlights: • Solution enthalpies of aromatic hydrocarbons derivatives (ArHD) were measured at 298.15 K. • Solution enthalpies of ArHD in benzene at 298.15 K are equal to their fusion enthalpy at melting point. • Sublimation enthalpies of 80 ArHD were calculated as a sum of fusion and solvation enthalpies. • Obtained sublimation enthalpies are in good agreement with the recommended literature data. - Abstract: Enthalpy of sublimation of solid compound can be found using the values of solution enthalpy and solvation enthalpy in any solvent. In this work enthalpies of solution at infinite dilution of a number of aromatic hydrocarbons derivatives in benzene were measured at 298.15 K. Comparison between experimental and literature solution enthalpies in benzene at 298.15 K and fusion enthalpies at melting temperature of aromatic hydrocarbon derivatives showed, that these values are approximately equal. Thereby, fusion enthalpies at melting temperature can be used instead of their solution enthalpies in benzene at 298.15 K for calculation of sublimation enthalpies at 298.15 K. Solvation enthalpies in benzene at 298.15 K required for this procedure were calculated using group additivity scheme. The sublimation enthalpies of 80 aromatic hydrocarbons derivatives at 298.15 K were evaluated as a difference between fusion enthalpies at melting temperature and solvation enthalpies in benzene at 298.15 K. Obtained in this work values of sublimation enthalpy at 298.15 K for studied compounds were in a good agreement with available literature data.

  10. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...

  11. Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young sea ICE (N-ICE2015) expedition

    Science.gov (United States)

    Merkouriadi, Ioanna; Gallet, Jean-Charles; Graham, Robert M.; Liston, Glen E.; Polashenski, Chris; Rösel, Anja; Gerland, Sebastian

    2017-10-01

    Snow is a crucial component of the Arctic sea ice system. Its thickness and thermal properties control heat conduction and radiative fluxes across the ocean, ice, and atmosphere interfaces. Hence, observations of the evolution of snow depth, density, thermal conductivity, and stratigraphy are crucial for the development of detailed snow numerical models predicting energy transfer through the snow pack. Snow depth is also a major uncertainty in predicting ice thickness using remote sensing algorithms. Here we examine the winter spatial and temporal evolution of snow physical properties on first-year (FYI) and second-year ice (SYI) in the Atlantic sector of the Arctic Ocean, during the Norwegian young sea ICE (N-ICE2015) expedition (January to March 2015). During N-ICE2015, the snow pack consisted of faceted grains (47%), depth hoar (28%), and wind slab (13%), indicating very different snow stratigraphy compared to what was observed in the Pacific sector of the Arctic Ocean during the SHEBA campaign (1997-1998). Average snow bulk density was 345 kg m-3 and it varied with ice type. Snow depth was 41 ± 19 cm in January and 56 ± 17 cm in February, which is significantly greater than earlier suggestions for this region. The snow water equivalent was 14.5 ± 5.3 cm over first-year ice and 19 ± 5.4 cm over second-year ice.

  12. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    Science.gov (United States)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  13. Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance.

    Science.gov (United States)

    Grazioli, Jacopo; Madeleine, Jean-Baptiste; Gallée, Hubert; Forbes, Richard M; Genthon, Christophe; Krinner, Gerhard; Berne, Alexis

    2017-10-10

    Snowfall in Antarctica is a key term of the ice sheet mass budget that influences the sea level at global scale. Over the continental margins, persistent katabatic winds blow all year long and supply the lower troposphere with unsaturated air. We show that this dry air leads to significant low-level sublimation of snowfall. We found using unprecedented data collected over 1 year on the coast of Adélie Land and simulations from different atmospheric models that low-level sublimation accounts for a 17% reduction of total snowfall over the continent and up to 35% on the margins of East Antarctica, significantly affecting satellite-based estimations close to the ground. Our findings suggest that, as climate warming progresses, this process will be enhanced and will limit expected precipitation increases at the ground level.

  14. Rate of ice accumulation during ice storms

    Energy Technology Data Exchange (ETDEWEB)

    Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada); Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Sabourin, G. [Hydro-Quebec, Montreal, PQ (Canada)

    2005-07-01

    The rate of glaze ice accumulation is the result of a complex process dependent on numerous meteorological and physical factors. The aim of this paper was to estimate the distribution rate of glaze ice accumulation on conductors in southern Quebec for use in the design of mechanical and electrical de-icing devices. The analysis was based on direct observations of ice accumulation collected on passive ice meters. The historical database of Hydro-Quebec, which contains observations at over 140 stations over period of 25 years, was used to compute accumulation rates. Data was processed so that each glaze ice event was numbered in a chronological sequence. Each event consisted of the time series of ice accumulations on each of the 8 cylinders of the ice meters, as well as on 5 of its surfaces. Observed rates were converted to represent the average ice on a 30 mm diameter conductor at 30 m above ground with a span of 300 m. Observations were corrected to account for the water content of the glaze ice as evidenced by the presence of icicles. Results indicated that despite significant spatial variations in the expected severity of ice storms as a function of location, the distribution function for rates of accumulation were fairly similar and could be assumed to be independent of location. It was concluded that the observations from several sites could be combined in order to obtain better estimates of the distribution of hourly rates of ice accumulation. However, the rates were highly variable. For de-icing strategies, it was suggested that average accumulation rates over 12 hour periods were preferable, and that analyses should be performed for other time intervals to account for the variability in ice accumulation rates over time. In addition, accumulation rates did not appear to be highly correlated with average wind speed for maximum hourly accumulation rates. 3 refs., 2 tabs., 10 figs.

  15. The effects of methanol on the trapping of volatile ice components

    Science.gov (United States)

    Burke, Daren J.; Brown, Wendy A.

    2015-04-01

    The evaporation of icy mantles, which have been formed on the surface of dust grains, is acknowledged to give rise to the rich chemistry that has been observed in the vicinity of hot cores and corinos. It has long been established that water ice is the dominant species within many astrophysical ices. However, other molecules found within astrophysical ices, particularly methanol, can influence the desorption of volatile species from the ice. Here we present a detailed investigation of the adsorption and desorption of methanol-containing ices, showing the effect that methanol has on the trapping and release of volatiles from model interstellar ices. OCS and CO2 have been used as probe molecules since they have been suggested to reside in water-rich and methanol-rich environments. Experiments show that methanol fundamentally changes the desorption characteristics of both OCS and CO2, leading to the observation of mainly codesorption of both species with bulk water ice for the tertiary ices and causing a lowering of the temperature of the volcano component of the desorption. In contrast, binary ices are dominated by standard volcano desorption. This observation clearly shows that codepositing astrophysically relevant impurities with water ice, such as methanol, can alter the desorption dynamics of volatiles that become trapped in the pores of the amorphous water ice during the sublimation process. Incorporating experimental data into a simple model to simulate these processes on astrophysical timescales shows that the additional methanol component releases larger amounts of OCS from the ice mantle at lower temperatures and earlier times. These results are of interest to astronomers as they can be used to model the star formation process, hence giving information about the evolution of our Universe.

  16. Thin-film Hybrid Coating for Ice Mitigation on Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current aircraft utilize electro-thermal/mechanical protection systems to actively remove ice from vital aircraft surfaces. These systems have high power...

  17. Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Rojas, Aaron; Orozco, Eulogio

    2003-01-01

    An experimental procedure is proposed for direct measurement of the heat involved in the vaporization of a solid organic compound above its normal melting temperature. This technique consists on the fusion of a solid aromatic hydrocarbon, which is then vaporized by a sudden decrease of the pressure. The direct register of heat flow as function of time by differential scanning calorimetry allows the quantifying of the enthalpy of vaporization of compounds such as phenanthrene, β-naphthol, pyrene, and anthracene. Enthalpies of vaporization were measured in an isothermal mode over a range of temperatures from 10 to 20 K above the melting temperatures of each compound, while enthalpies of fusion were determined from separate experiments performed in a scanning mode. Enthalpies of sublimation are computed from results of fusion and vaporization, and then compared with results from the literature, which currently are obtained by calorimetric or indirect techniques

  18. Lepanto, before and after: Between the Republic and the Sublime Porte

    Directory of Open Access Journals (Sweden)

    Özlem KUMRUlAR

    2014-12-01

    Full Text Available The loss of Cyprus to the ottoman Turks, hand in hand with the Battle of Lepanto was the major reason of a period of frozen politics and caused the breaking of the traditional peace between Venice and Constantinople. Yet there is a notable difference between the historical and political Conseptualization of these two major episodes. The ottoman state didn’t interpret this catastrophe as the Republic did. As, it could be seen from the bilateral diplomacy carried out by both states, neither the loss of Cyprus, nor the myth-creating Lepanto could change the classical oriental policy of the Serenissima. The case was not different for the Sublime Porte. The aim of this paper is to analyse the post-war politics of these two states and the noteable change in the political polarization in Europe in the milieu of the ottoman-Hapsburg rivalry.

  19. Concentration of noble metals by sublimation during the analysis of massive samples

    International Nuclear Information System (INIS)

    Chuburkov, Yu.T.; Zhujkov, B.L.; Gehrbish, Sh.; Al'pert, L.K.; Chan Zuj Ty

    1990-01-01

    The possibility of concentrating noble metals from terrestrial samples of various composition by chemical sublimation in an air stream at a temperature of 1000-1200 deg C was examined. It was found that the chemical yields of Au, Pt, Ir, Ru, Os and Re for all the samples increased by introducing solid additives of FeCl 2 , TiO 2 and Nb 2 O 5 . The concentration technique provides the possibility of determining some noble metals in massive samples (up to 50 g) with widely ranging element contents. By using gamma and neutron activation on a microtron, the detection limits of 3x10 -2 ppm for Pt and Ir and 4x10 -3 ppm for Au were achieved. In the case of X-ray fluorescence analysis, the detection limit for these elements was 0.4 ppm

  20. Paths of the Sublime: Alain de Botton’s The Art of Travel

    Directory of Open Access Journals (Sweden)

    M.C.C. Mendes

    2015-05-01

    Full Text Available Bearing in mind the central place of literary, academic, and religious tourism in Cultural Studies and in Alain de Botton’s The Art of Travel (2002, the paper seeks: 1 to identify some remarkable travels of famous writers – the British Wordsworth; the French Karl-Joris Huysmans, Gustave Flaubert, and Charles Baudelaire; 2 to show that in the analysis of such authors’ itineraries (from Europe to the East, there is a search for cultural roots, a mapping of spaces and people, and a deconstruction of labels often related to the Other; 3 to point out that the tourist is also a storyteller, a protagonist, and a creator of fictional worlds; 4 to bring together literary tourism and artistic tourism, through the identification of allusions to other cultural events (painting, music, and architecture; 5 to characterize tourism as a literary and aesthetic experience of the Sublime.

  1. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  2. Synthesis of gallium nitride and related oxides via ammonobasic reactive sublimation (ARS)

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Hernández, Luis Alberto; Aguilar-Hernández, Jorge R.; Mejía-García, Concepción; Cruz-Gandarilla, Francisco; Contreras-Puente, Gerardo [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México (Mexico); Moure-Flores, Francisco de [Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (Mexico); Melo-Pereira, Osvaldo de, E-mail: schwarzerengelxv@hotmail.com [Facultad de Física, Universidad de La Habana, La Habana (Cuba)

    2017-11-15

    Ammonobasic reactive sublimation (ARS) is proposed as a novel method to synthesize GaN and related oxides. Results indicate that GaN growth occurs by a nitriding process of Ga and related oxides, establishing a direct dependence on NH{sub 4} OH amount added as a primary chemical reactive. The samples were grown on p-type Si (111) substrates inside a tube furnace, employing GaN powder and NH{sub 4} OH. The characterizations of the samples were carried out by XRD, SEM, EDS and PL techniques, revealing the influence of NH{sub 4} OH on the improvement of GaN synthesis and the enhancement of its optical and structural properties. (author)

  3. Selective Area Sublimation: A Simple Top-down Route for GaN-Based Nanowire Fabrication.

    Science.gov (United States)

    Damilano, B; Vézian, S; Brault, J; Alloing, B; Massies, J

    2016-03-09

    Post-growth in situ partial SiNx masking of GaN-based epitaxial layers grown in a molecular beam epitaxy reactor is used to get GaN selective area sublimation (SAS) by high temperature annealing. Using this top-down approach, nanowires (NWs) with nanometer scale diameter are obtained from GaN and InxGa1-xN/GaN quantum well epitaxial structures. After GaN regrowth on InxGa1-xN/GaN NWs resulting from SAS, InxGa1-xN quantum disks (QDisks) with nanometer sizes in the three dimensions are formed. Low temperature microphotoluminescence experiments demonstrate QDisk multilines photon emission around 3 eV with individual line widths of 1-2 meV.

  4. The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy

    DEFF Research Database (Denmark)

    Schimmel, Saskia; Kaiser, Michl; Jokubavicius, Valdas

    Donor-acceptor co-doped silicon carbide layers are promising light converters for novel monolithic all-semiconductor LEDs due to their broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides appropriate doping concentrations yielding low radiative...... lifetimes, high nonradiative lifetimes are crucial for efficient light conversion. Despite the excellent crystalline quality that can generally be obtained by sublimation epitaxy according to XRD measurements, the role of defects in f-SiC is not yet well understood. Recent results from room temperature...... photoluminescence, charge carrier lifetime measurements by microwave detected photoconductivity and internal quantum efficiency measurements suggest that the internal quantum efficiency of f-SiC layers is significantly affected by the incorporation of defects during epitaxy. Defect formation seems to be related...

  5. Possible occurrence and origin of massive ice in Utopia Planitia

    Science.gov (United States)

    Kargel, J. S.; Costard, F. M.

    1993-01-01

    F. M. Costard recently discovered a large field of possible thermokarst depressions near latitude 45 deg N, longitude 270 deg, in western Utopia Planitia. Oval to circular pits are typically 300-1000 m across and approximately 25 m deep; larger depressions, 3-5 km across, are compound and seem to have formed by coalescence of smaller pits. Small domical hills occur on the floors of two pits. These depressions characteristically have steep, scalloped edges and one or more inner benches. Truncation relations of the benches suggest a discontinuous, lenslike stratification of the material in which the pits are developed. Based on a close analogy in form and scale with coalesced thawlake basins (alases) on Earth, the Martian pits may have formed by thermophysical interactions of pooled water with ice-rich permafrost. This interpretation is not unique; sublimation of ice-rich permafrost or possibly even eolian processes acting on ice-free material might have formed the pits. However, the regional setting contains many other indications of massive ice. Some of these features are examined.

  6. Implications of the Galilean satellites ice envelope explosions. 3

    International Nuclear Information System (INIS)

    Agafonova, I.I.; Drobyshevski, E.M.

    1985-01-01

    Secondary explosions of the primary ice fragments ejected in the explosion of the electrolyzed massive ice envelopes of the Galilean satellites are capable of imparting velocities of up to 5 km s -1 to the secondary fragments. As a result, the secondary fragments can enter the orbits of the irregular satellites and the Trojan libration orbits. Since the icy mix of the fragments contains hydrocarbons and particulate material (silicates and the like), after ice sublimation from the surface layers the Trojans should reveal type C and RD spectra typical for Jupiter's irregular satellites, comet nuclei and other distant ice bodies of similar origin. Among the Trojans there cannot be rocky or metallic objects which are known to exist in the main asteroid belt. It is shown that a velocity perturbation of 150-200 m s -1 resulting from a purely mechanical impact of two bodies may be sufficient to move collision fragments from the orbits of the Trojans to horseshoe-shaped trajectories with a subsequent transfer to the cometary orbits of Jupiter's family. (Auth.)

  7. Thermal decomposition of lanthanide and actinide tetrafluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1988-01-01

    The thermal stabilities of several lanthanide/actinide tetrafluorides have been studied using mass spectrometry to monitor the gaseous decomposition products, and powder X-ray diffraction (XRD) to identify solid products. The tetrafluorides, TbF 4 , CmF 4 , and AmF 4 , have been found to thermally decompose to their respective solid trifluorides with accompanying release of fluorine, while cerium tetrafluoride has been found to be significantly more thermally stable and to congruently sublime as CeF 4 prior to appreciable decomposition. The results of these studies are discussed in relation to other relevant experimental studies and the thermodynamics of the decomposition processes. 9 refs., 3 figs

  8. A Low Cost Inflatable CubeSat Drag Brake Utilizing Sublimation

    Science.gov (United States)

    Horn, Adam Charles

    The United Nations Inter-Agency Debris Coordination Committee has adopted a 25-year post-mission lifetime requirement for any satellite orbiting below 2000 km in order to mitigate the growing orbital debris threat. Low-cost CubeSats have become important satellite platforms with startling capabilities, but this guideline restricts them to altitudes below 600 km because they remain in orbit too long. In order to enable CubeSat deployments at higher release altitudes, a low-cost, ultra-reliable deorbit device is needed. This thesis reports on efforts to develop a deployable and passively inflatable drag brake that can deorbit from higher orbital altitudes, thereby complying with the 25-year orbital lifetime guideline. On the basis of concepts first implemented during the NASA Echo Satellite Project, this study investigated the design of an inflatable CubeSat drag device that utilizes sublimating benzoic acid powder as the inflation propellant. Testing has focused on demonstrating the functionality of charging a Mylar drag brake bladder with appropriate quantities of benzoic acid powder, and the exposure to a controlled-temperature vacuum chamber causing the bladder to inflate. Although results show a measureable increase in internal pressure when introduced to anticipated orbital temperatures, a significant air-derived expansion prior to sublimation was encountered due to the undetectable volume of ambient residual air in the fabricated membrane bladders. These tests have demonstrated the feasibility of this approach, thereby demonstrating that this concept can create a potentially smaller and less expensive drag device, eliminating inflation gas tanks and valves. In that way, this system can provide a low-cost, miniaturized system that reduces a CubeSat's orbital lifetime to less than 25 years, when placed at higher orbital altitude.

  9. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building., Ann Arbor, MI 48109 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán (Mexico); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sargent, B. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Hernández, J., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: lhartm@umich.edu, E-mail: lingleby@umich.edu, E-mail: p.dalessio@astrosmo.unam.mx, E-mail: cespaillat@cfa.harvard.edu, E-mail: baspci@rit.edu, E-mail: dmw@pas.rochester.edu, E-mail: hernandj@cida.ve [Centro de Investigaciones de Astronomía (CIDA), Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2013-10-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.

  10. The political sublime. reading Kok Nam, Mozambican photographer (1939-2012

    Directory of Open Access Journals (Sweden)

    Rui Assubuji

    Full Text Available Kok Nam began his photographic career at Studio Focus in Lourenco Marques in the 1950s, graduated to the newspaper Noticias and joined Tempo magazine in the early 1970s. Most recently he worked at the journal Savana as a photojournalist and later director. This article opens with an account of the relationship that developed between Kok Nam and the late President Samora Machel, starting with the photographer's portrait of Machel in Nachingwea in November 1974 before Independence. It traces an arc through the Popular Republic (1976-1990 from political revelation at its inception to the difficult years of civil war and Machel's death in the plane crash at Mbuzini in 1986. The article then engages in a series of photo-commentaries across a selection of Kok Nam's photographs, several published in their time but others selected retrospectively by Kok Nam for later exhibition and circulation. The approach taken is that of 'association', exploring the connections between the photographs, their histories both then and in the intervening years and other artifacts and mediums of cultural expression that deal with similar issues or signifiers picked up in the images. Among the signifiers picked up in the article are soldiers, pigs, feet, empty villages, washing, doves and bridges. The central argument is that Kok Nam participated with many others in a kind of collective hallucination during the Popular Republic, caught up in the 'political sublime'. Later Kok Nam shows many signs of a photographic 'second thinking' that sought out a more delicate sublime in his own archive.

  11. CURVED WALLS: GRAIN GROWTH, SETTLING, AND COMPOSITION PATTERNS IN T TAURI DISK DUST SUBLIMATION FRONTS

    International Nuclear Information System (INIS)

    McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J.

    2013-01-01

    The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10 –8 to 10 –10 M ☉ yr –1 , the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10 –4 of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system

  12. Taking a Hike and Hucking the Stout: The Troublesome Legacy of the Sublime in Outdoor Recreation

    Directory of Open Access Journals (Sweden)

    Georg Drennig

    2013-12-01

    Full Text Available As Henry Thoreau noted in the 1850s, the simple act of walking can be loaded with political and spiritual meaning. Today, taking a hike as an act of engaging in outdoor recreation is equally non-trivial, and therefore subject of the following analysis. As this paper argues, outdoors recreation is still influenced by the legacy of the Sublime and its construction of wilderness. This troublesome legacy means that the cultural self-representation of outdoor sports – and the practice itself – lays claim to the environment in ways that are socially and sometimes even ethni-cally exclusive. This essay uses William Cronon’s critique of the cultural constructedness of wilderness as a point of departure to see how Western notions of sublime nature have an impact on spatial practice. The elevation of specific parts of the environ-ment into the category of wilderness prescribes certain uses and meanings as na-ture is made into an antidote against the ills of industrial civilization, and a place where the alienated individual can return to a more authentic self. This view then has become a troublesome legacy, informing the cultural self-representation of those uses of “wilderness” that are known as outdoor recreation. In its cultural production, outdoors recreation constructs “healthy” and “athlet-ic” bodies exercising in natural settings and finding refuge from the everyday al-ienation of postmodern society. Yet these bodies are conspicuously white, and the obligatory equipment and fashion expensive. Outdoor recreation is a privileged assertion of leisure, often denoting an urban, affluent, and white, background of the practitioner. These practitioners then lay exclusive claim on the landscapes they use. As trivial as taking a hike or any other form of outdoors recreation may thus seem, they put a cultural legacy into practice that is anything but trivial.

  13. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  14. Thermodynamic study of alkane-α,ω-diamines - evidence of odd-even pattern of sublimation properties

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Červinka, C.; Bazyleva, A.; Della Gatta, G.

    2014-01-01

    Roč. 371, Jun (2014), s. 93-105 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alkane-diamines * odd–even effect * vapor pressure * sublimation and vaporization thermodynamic properties * statistical thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.200, year: 2014

  15. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  16. Sea Ice Ecosystems

    Science.gov (United States)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  17. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  18. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    International Nuclear Information System (INIS)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-01-01

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing

  19. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    Science.gov (United States)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  20. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.

    Science.gov (United States)

    Cohen, N; Dotan, A; Dodiuk, H; Kenig, S

    2016-09-20

    Superhydrophobic (SH) coatings have been shown to reduce freezing and ice nucleation rates, by means of low surface energy chemistry tailored with nano/micro roughness. Durability enhancement of SH surfaces is a crucial issue. Consequently, the present research on reducing ice adhesion is based on radiation-induced radical reaction for covalently bonding SiO2 nanoparticles to polymer coatings to obtain durable roughness. Results indicated that the proposed approach resulted in SH surfaces having high contact angles (>155°) and low sliding angles (reduction of shear adhesion to a variety of SH treated substrates having low thermal expansion coefficient (copper and aluminum) and high thermal expansion coefficient (polycarbonate and poly(methyl methacrylate)). It was concluded that the thermal mismatch between the adhering ice and the various substrates and its resultant interfacial thermal stresses affect the adhesion strength of the ice to the respective substrate.

  1. Ice Forces on Offshore Wind Power Plants. Descriptions of mechanisms and recommendations for dimensioning; Islaster paa vindkraftverk till havs. Beskrivning av mekanismer och rekommendationer foer dimensionering

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Lars [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Water Environment Transport

    2002-02-01

    Mechanisms for ice-loads on off-shore wind power plants are described, The ice-loads are due to thermal expansion, water level variations, drifting ice and ice-reefing. Ice accretion is briefly treated. Ice instance, ice thickness, ice retention time, water level variations and stream velocities in Swedish waters are compiled. The main text deals with recommendations for dimensioning wind power plants at sea. In the appendices, a thorough review of the physical and mechanical properties of ice is presented.

  2. Analysis of Sea Ice Cover Sensitivity in Global Climate Model

    Directory of Open Access Journals (Sweden)

    V. P. Parhomenko

    2014-01-01

    Full Text Available The paper presents joint calculations using a 3D atmospheric general circulation model, an ocean model, and a sea ice evolution model. The purpose of the work is to analyze a seasonal and annual evolution of sea ice, long-term variability of a model ice cover, and its sensitivity to some parameters of model as well to define atmosphere-ice-ocean interaction.Results of 100 years simulations of Arctic basin sea ice evolution are analyzed. There are significant (about 0.5 m inter-annual fluctuations of an ice cover.The ice - atmosphere sensible heat flux reduced by 10% leads to the growth of average sea ice thickness within the limits of 0.05 m – 0.1 m. However in separate spatial points the thickness decreases up to 0.5 m. An analysis of the seasonably changing average ice thickness with decreasing, as compared to the basic variant by 0.05 of clear sea ice albedo and that of snow shows the ice thickness reduction in a range from 0.2 m up to 0.6 m, and the change maximum falls for the summer season of intensive melting. The spatial distribution of ice thickness changes shows, that on the large part of the Arctic Ocean there was a reduction of ice thickness down to 1 m. However, there is also an area of some increase of the ice layer basically in a range up to 0.2 m (Beaufort Sea. The 0.05 decrease of sea ice snow albedo leads to reduction of average ice thickness approximately by 0.2 m, and this value slightly depends on a season. In the following experiment the ocean – ice thermal interaction influence on the ice cover is estimated. It is carried out by increase of a heat flux from ocean to the bottom surface of sea ice by 2 W/sq. m in comparison with base variant. The analysis demonstrates, that the average ice thickness reduces in a range from 0.2 m to 0.35 m. There are small seasonal changes of this value.The numerical experiments results have shown, that an ice cover and its seasonal evolution rather strongly depend on varied parameters

  3. A natural ice boom

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.R. [Manitoba Hydro, Winnipeg, MB (Canada)

    1998-10-01

    Planning for ice jams and ice movements are critical on the Nelson River in northern Manitoba in designing cofferdams. Experience on the St. Lawrence River demonstrated the possibility of exercising some control over ice action by judicious placement of log booms or ice control structures. The success of experiments with man-made controls led to field tests in which an ice sheet of sufficient magnitude and competence was introduced into the open water stream of the Nelson River. The ice sheet was subsequently jammed in a narrow channel, thereby creating a natural ice bridge or boom upstream of a proposed hydro development. Under favourable conditions, this boom would initiate the progression of the ice cover from its location upstream, cutting off the downstream reach from the ice producing potential of the upstream reach. Although ice would still be generated downstream, the length of the reach between the ice boom and the development site would be short enough that ice jamming at the development site would never occur. Although problems in blasting prevented the introduction of a competent ice sheet into the main stream of the river at the location chosen, sufficient confidence in the theory was gained to warrant further consideration. 4 refs., 1 tab., 10 figs.

  4. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  5. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  6. Sputtering of water ice

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberrry, C.L.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice does not sputter under 3.7 eV laser irradiation

  7. Modified solution calorimetry approach for determination of vaporization and sublimation enthalpies of branched-chain aliphatic and alkyl aromatic compounds at T = 298.15 K

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Novikov, Vladimir B.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2015-01-01

    Highlights: • Solution enthalpies of 18 branching-chain alkyl aromatic and aliphatic compounds in cyclohexane were measured. • Group contributions to the enthalpy of solvation due to branching and substitution in carbon chain were evaluated. • Modified solution calorimetry based approach for determination of vaporization/sublimation enthalpies was proposed. • This approach provides vaporization/sublimation enthalpies directly at T = 298.15 K. • Vaporization/sublimation enthalpies of 35 branched-chain alkyl aromatic and aliphatic compounds were determined. - Abstract: The enthalpies of solution, solvation and vaporization/sublimation are interrelated values combined in the simplest thermodynamic circle. Hence, experimental determination of vaporization/sublimation enthalpy can be substituted by experimentally simpler determination of solution enthalpy when solvation enthalpy is known. Previously it was found that solvation enthalpies of a wide range of unbranched aliphatic and aromatic solutes in saturated hydrocarbons are in good linear correlation with their molar refraction values. This allows to estimate the vaporization/sublimation enthalpy of any unbranched organic compound from its solution enthalpy in saturated hydrocarbon and molar refraction. In the present work this approach was modified for determination of vaporization/sublimation enthalpy of branched-chain alkyl aromatic and aliphatic compounds. Group contributions to the enthalpy of solvation due to the branching of carbon chain were evaluated. Enthalpies of solution at infinite dilution of 18 branched-chain aliphatic and alkyl aromatic compounds were measured at T = 298.15 K. Vaporization/sublimation enthalpies for 35 branched aliphatic and alkyl aromatic compounds were determined by using modified solution calorimetry approach. These values are in good agreement with available literature data on vaporization/sublimation enthalpies obtained by conventional methods.

  8. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    helicopter (i.e. in an icing tunnel or engine test cell ) and therefore can be subjected to controlled icing where spe- cific problems can be safely...evaluation. 69 2.2.5.2 Ice Protection Systems Demonstration Many of the systems noted in 2.2.5.1 can be evaluated in icing test cells or icing wind tunnels...Figure 2-32 illustrates a typical rotor deice system control arrangement. 104 (N >4 A.dO INaH -E- C4) uo U En 9 E-1 H m I ~z O 04 04iH U 0 El4 E-f C E

  9. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  10. Ice slurry applications

    Energy Technology Data Exchange (ETDEWEB)

    Kauffeld, M. [Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe (Germany); Wang, M.J.; Goldstein, V. [Sunwell Technologies Inc., 180 Caster Avenue, Woodbridge, L4L 5Y (Canada); Kasza, K.E. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2010-12-15

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single-phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. (author)

  11. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    International Nuclear Information System (INIS)

    Siepchen, B.; Drost, C.; Späth, B.; Krishnakumar, V.; Richter, H.; Harr, M.; Bossert, S.; Grimm, M.; Häfner, K.; Modes, T.; Zywitzki, O.; Morgner, H.

    2013-01-01

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb 2 Te 3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb 2 Te 3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section

  12. Study on heat transfer performance of water-borne and oily graphene coatings using anti-/de-icing component

    Science.gov (United States)

    Chen, Long; Zhang, Yidu; Wu, Qiong; Jie, Zhang

    2018-02-01

    A graphene coating anti-/de-icing experiment was proposed by employing water-borne and oily graphene coatings on the composite material anti-/de-icing component. Considering the characteristics of helicopter rotor sensitivity to icing, a new graphene coating enhancing thermal conductivity of anti-/de-icing component was proposed. The anti-/de-icing experiment was conducted to validate the effectiveness of graphene coating. The results of the experiment show that the graphene coatings play a prominent role in controlling the heat transfer of anti-/de-icing component. The anti-/de-icing effect of oily graphene coating is superior to water-borne graphene.

  13. Autonomous Aerial Ice Observation for Ice Defense

    Directory of Open Access Journals (Sweden)

    Joakim Haugen

    2014-10-01

    Full Text Available One of the tasks in ice defense is to gather information about the surrounding ice environment using various sensor platforms. In this manuscript we identify two monitoring tasks known in literature, namely dynamic coverage and target tracking, and motivate how these tasks are relevant in ice defense using RPAS. An optimization-based path planning concept is outlined for solving these tasks. A path planner for the target tracking problem is elaborated in more detail and a hybrid experiment, which consists of both a real fixed-wing aircraft and simulated objects, is included to show the applicability of the proposed framework.

  14. Arctic landfast sea ice

    Science.gov (United States)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  15. An examination of the thermodynamics of fusion, vaporization, and sublimation of ibuprofen and naproxen by correlation gas chromatography.

    Science.gov (United States)

    Maxwell, Rachel; Chickos, James

    2012-02-01

    The vaporization enthalpies of (S)-ibuprofen and (S)-naproxen measured by correlation gas chromatography at T = 298.15 K are reported and compared with literature values. Adjustment of the fusion enthalpies of (RS)- and (S)-ibuprofen and (S)-naproxen to T = 298.15 K and combined with the vaporization enthalpy of the (S)-enantiomer of both ibuprofen and naproxen also at T = 298.15 K resulted in the sublimation enthalpies of both (S)-enantiomers. On the assumption that the vaporization enthalpy of the racemic form of ibuprofen is within the experimental uncertainty of the chiral form, the sublimation enthalpy of racemic ibuprofen was also evaluated. The vaporization and sublimation enthalpies compare favorably to the most of the literature values for the racemic form of ibuprofen but differ from the value reported for chiral ibuprofen. The literature values of (S)-naproxen are somewhat smaller than the values measured in this work. The following vaporization enthalpies were measured for (S)-ibuprofen and (S)-naproxen, respectively: ΔH(vap) (298.15 K), 106.0 ± 5.5, 132.2 ± 5.0 kJ·mol(-1) . Sublimation enthalpies of 122.7 ± 5.6 and 155.2 ± 7.1 kJ·mol(-1) were calculated for the (S)-enantiomers of ibuprofen and naproxen and a value of 128.9 ± 5.8 kJ·mol(-1) was estimated for the racemic form of ibuprofen. Copyright © 2011 Wiley Periodicals, Inc.

  16. Technology keeps ice away from offshore oil and gas installations

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-05-01

    Ice management services provided to oil and natural gas operators off Canada's North Atlantic coast by Provincial Airlines is described. Provincial Airlines performs iceberg reconnaissance for both the offshore oil and natural gas operators as well as for the Canadian Ice Centre, using its specially equipped B-200 aircraft. The special equipment includes a complete electronic sensor package with 360-degree anti-submarine warfare radar, a thermal imaging system, high powered gyro-stabilized TV camera system, and a computerized data collection and management system. The Ice Data Network System (IDNS) is a fifth generation computer software package designed to monitor ice, provide drift analysis and forecast future trajectories, assess potential threats or risks associated with each piece of ice, and monitor and evaluate towing operations if required. The IDNS is backed up by a fully staffed ice operations centre from which Provincial Airline ice specialists can access satellite data and reports on ice conditions from around the world. Using a process of data fusion and careful analysis, staff of the Ice Centre can produce near-real time reports that depict ice conditions specific to individual operational requirements. Since drilling platforms cannot move, or require a great deal of time to move, to avoid any risk of an iceberg colliding with an oil platform it is important to know where exactly an iceberg is at any given time, hence the enormous importance of iceberg location information.

  17. Theory of ice-skating

    Science.gov (United States)

    Le Berre, Martine; Pomeau, Yves

    2015-10-01

    Almost frictionless skating on ice relies on a thin layer of melted water insulating mechanically the blade of the skate from ice. Using the basic equations of fluid mechanics and Stefan law, we derive a set of two coupled equations for the thickness of the film and the length of contact, a length scale which cannot be taken as its value at rest. The analytical study of these equations allows to define a small a-dimensional parameter depending on the longitudinal coordinate which can be neglected everywhere except close to the contact points at the front and the end of the blade, where a boundary layer solution is given. This solution provides without any calculation the order of magnitude of the film thickness, and its dependence with respect to external parameters like the velocity and mass of the skater and the radius of profile and bite angle of the blade, in good agreement with the numerical study. Moreover this solution also shows that a lubricating water layer of macroscopic thickness always exists for standard values of ice skating data, contrary to what happens in the case of cavitation of droplets due to thermal heating (Leidenfrost effect).

  18. An examination of the thermodynamics of fusion, vaporization, and sublimation of several parabens by correlation gas chromatography.

    Science.gov (United States)

    Umnahanant, Patamaporn; Chickos, James

    2011-05-01

    The vaporization, fusion, and sublimation enthalpies of methyl, ethyl, propyl, and butyl paraben are reported and compared with literature values. The vaporization enthalpies were measured by correlation gas chromatography and the fusion enthalpies by differential scanning calorimetry. Adjusted to T = 298.15 K, these enthalpies were combined to yield the sublimation enthalpy. The results compare favorably to some of the literature values but do not support the reversal in magnitude of both the vaporization and sublimation enthalpy previously reported for propyl and butyl paraben. The following fusion and vaporization enthalpies were measured for methyl through to butyl paraben, respectively: ΔH(fus) (T(fus) ) 26.3 ± 0.1 (398.6 K), 26.5 ± 0.1 (388.5 K), 27.3 ± 0.1 (368.8), and 25.9 ± 0.3 (340.7 K) kJ·mol(-1); ΔH(vap) (298.15 K) 79.5 ± 0.5, 84.0 ± 0.5, 89.7 ± 0.6, and 95.8 ± 0.6 kJ·mol(-1). The results are believed to be accurate to ± 4 kJ·mol(-1). Copyright © 2011 Wiley-Liss, Inc.

  19. Control and calculation of the titanium sublimation pumping speed and re-ionisation in the MAST neutral beam injectors

    International Nuclear Information System (INIS)

    McAdams, R.

    2015-01-01

    Highlights: • The titanium sublimation pumps for the MAST neutral beam injectors are described. • Evaporation regimes are established to give constant pumping speed for the titanium sublimation pumps. • The MCNP code is used to calculate the pumping speeds and gas profiles in the neutral beam injectors. • The gas profiles are then used to calculate the level of re-ionisation in the beamline. - Abstract: A high pumping speed is required in neutral beam injectors to minimise re-ionisation of the neutral beams. The neutral beam injectors on MAST use titanium sublimation pumps. These pumps do not have a constant pumping speed; their pumping speed depends on the gettering surface history and on both the integrated and applied gas load. In this paper we describe a method of maintaining a constant pumping speed, through different evaporation schemes, specifically suitable for operations of the MAST neutral beam injector beamlines for both short and relatively long beam pulses by measurement of the pressure in the beamline. In addition the MCNP code is then used to calculate the pumping speed and gas profile in the beamline by adjusting the input pumping speed to match the measured pressure. This allows the resulting gas profile to be used for calculation of the re-ionisation levels and an example is given

  20. Prediction of dry ice mass for firefighting robot actuation

    Science.gov (United States)

    Ajala, M. T.; Khan, Md R.; Shafie, A. A.; Salami, MJE; Mohamad Nor, M. I.

    2017-11-01

    The limitation in the performance of electric actuated firefighting robots in high-temperature fire environment has led to research on the alternative propulsion system for the mobility of firefighting robots in such environment. Capitalizing on the limitations of these electric actuators we suggested a gas-actuated propulsion system in our earlier study. The propulsion system is made up of a pneumatic motor as the actuator (for the robot) and carbon dioxide gas (self-generated from dry ice) as the power source. To satisfy the consumption requirement (9cfm) of the motor for efficient actuation of the robot in the fire environment, the volume of carbon dioxide gas, as well as the corresponding mass of the dry ice that will produce the required volume for powering and actuation of the robot, must be determined. This article, therefore, presents the computational analysis to predict the volumetric requirement and the dry ice mass sufficient to power a carbon dioxide gas propelled autonomous firefighting robot in a high-temperature environment. The governing equation of the sublimation of dry ice to carbon dioxide is established. An operating time of 2105.53s and operating pressure ranges from 137.9kPa to 482.65kPa were achieved following the consumption rate of the motor. Thus, 8.85m3 is computed as the volume requirement of the CAFFR while the corresponding dry ice mass for the CAFFR actuation ranges from 21.67kg to 75.83kg depending on the operating pressure.

  1. Pre-cometary ice composition from hot core chemistry.

    Science.gov (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  2. Removable cruciform for ice condenser ice basket

    International Nuclear Information System (INIS)

    Scrabis, C.M.; Mazza, G.E.; Golick, L.R.; Pomaibo, P.

    1987-01-01

    A removable cruciform for use in an ice basket having a generally cylindrical sidewall defining a central, vertical axis of the ice basket and plural, generally annular retaining rings secured to the interior of the cylindrical sidewall of the ice basket at predetermined, spaced elevations throughout the axial height of the ice basket is described comprising: a pair of brackets, each comprising a central, base portion having parallel longitudinal edges and a pair of integral legs extending at corresponding angles relative to the base portion from the perspective parallel longitudinal edges thereof; a pair of support plate assemblies secured to and extending in parallel, spaced relationship from one of the pair of brackets; a pair of slide support plates secured to the other of the pair of brackets and extending therefrom in spaced, parallel relationship; and spring means received within the housing and engaging the base portions of the brackets and applying a resilient biasing force thereto for maintaining the spaced relationship thereof

  3. Ice cream structure modification by ice-binding proteins.

    Science.gov (United States)

    Kaleda, Aleksei; Tsanev, Robert; Klesment, Tiina; Vilu, Raivo; Laos, Katrin

    2018-04-25

    Ice-binding proteins (IBPs), also known as antifreeze proteins, were added to ice cream to investigate their effect on structure and texture. Ice recrystallization inhibition was assessed in the ice cream mixes using a novel accelerated microscope assay and the ice cream microstructure was studied using an ice crystal dispersion method. It was found that adding recombinantly produced fish type III IBPs at a concentration 3 mg·L -1 made ice cream hard and crystalline with improved shape preservation during melting. Ice creams made with IBPs (both from winter rye, and type III IBP) had aggregates of ice crystals that entrapped pockets of the ice cream mixture in a rigid network. Larger individual ice crystals and no entrapment in control ice creams was observed. Based on these results a model of ice crystals aggregates formation in the presence of IBPs was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    Science.gov (United States)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  5. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution.

    Science.gov (United States)

    Lecavalier, Benoit S; Fisher, David A; Milne, Glenn A; Vinther, Bo M; Tarasov, Lev; Huybrechts, Philippe; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S

    2017-06-06

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

  6. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Schnaiter

    2016-04-01

    Full Text Available This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere cloud chamber of the Karlsruhe Institute of Technology (KIT. A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the −40 to −60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3. It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN probe of Laboratoire de Métérologie et Physique (LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  7. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl) Furan (G-0) Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins.

    Science.gov (United States)

    Ruz, Vivian; González, Mirtha Mayra; Winant, Danny; Rodríguez, Zenaida; Van den Mooter, Guy

    2015-08-19

    In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl) furan (G-0) in the temperature range of 35 to 60 °C (below the melting point of the drug) was studied using thermogravimetric analysis (TGA). The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR) and thin layer chromatography (TLC). The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins.

  8. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  9. AdS/QCD, Light-Front Holography, and Sublimated Gluons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.

  10. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    International Nuclear Information System (INIS)

    Manciu, Felicia S.; Salazar, Jessica G.; Diaz, Aryzbe; Quinones, Stella A.

    2015-01-01

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  11. SUBLIMATION-DRIVEN ACTIVITY IN MAIN-BELT COMET 313P/GIBBS

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Henry H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hainaut, Olivier [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Novaković, Bojan [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Bolin, Bryce [Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, B.P. 4229, F-06304 Nice Cedex 4 (France); Denneau, Larry; Haghighipour, Nader; Kleyna, Jan; Meech, Karen J.; Schunova, Eva; Wainscoat, Richard J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Fitzsimmons, Alan [Astrophysics Research Centre, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kokotanekova, Rosita; Snodgrass, Colin [Planetary and Space Sciences, Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Lacerda, Pedro [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Micheli, Marco [ESA SSA NEO Coordination Centre, Frascati, RM (Italy); Moskovitz, Nick; Wasserman, Lawrence [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Waszczak, Adam, E-mail: hhsieh@asiaa.sinica.edu.tw [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-02-10

    We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggesting that its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling results showing that the dust emission persists over at least three months during both active periods, where we find start dates for emission no later than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of H{sub R} = 17.1 ± 0.3, corresponding to an effective nucleus radius of r{sub e} ∼ 1.00 ± 0.15 km. The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be considered an upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of T{sub l} = 12,000 yr and being located near two three-body mean-motion resonances with Jupiter and Saturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong to the ∼155 Myr old Lixiaohua asteroid family.

  12. Aircraft Icing Handbook. (Update)

    Science.gov (United States)

    1993-01-01

    Report 1946-1947, U. S. Air Material Command Tech. Rept. 5676. Findeisen , W., *Meteorological Commentary of D (air) 1209, Icing,* Germany, Reichsamt fur...Wetterdienst, Forschungs-und Krfahrungsberichte, Ser. a, No. 29, 1943. Findeisen , W., *Meteorological-Physical Limitations of Icing on the Atmosphere...Apparatus for Measurement,’ Harvard - Mt. Washington Icing Research Report 1946-1947, U. S. Air Material Command Tech. Rept. 5676.. Findeisen , W., "The

  13. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  14. AN INFRARED SPECTROSCOPIC STUDY OF AMORPHOUS AND CRYSTALLINE ICES OF VINYLACETYLENE AND IMPLICATIONS FOR SATURN'S SATELLITE TITAN

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kaiser, R. I.

    2009-01-01

    Laboratory infrared spectra of amorphous and crystalline vinylacetylene ices were recorded in the range of 7000-400 cm -1 . The spectra showed several amorphous features in the ice deposited at 10 K, which were then utilized to monitor a phase transition between 93 ± 1 K to form the crystalline structure. Successive heating allows monitoring of the sublimation profile of the vinylacetylene sample in the range of 101-120 K. Considering Titan's surface temperature of 94 K, vinylacetylene ice is likely to be crystalline. Analogous studies on related planetary-bound molecules such as triaceylene and cyanoacetylene may be further warranted to gain better perspectives into the composition of the condensed phases in the Titan's atmosphere (aerosol particles) and of Titan's surface. Based on our studies, we recommend utilizing the ν 1 and ν 16 //ν 11 /ν 17 fundamentals at about 3300 and 650 cm -1 to determine if solid vinylacetylene is crystalline or amorphous on Titan.

  15. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  16. Water on Mars: Inventory, distribution, and possible sources of polar ice

    Science.gov (United States)

    Clifford, S. M.

    1992-01-01

    Theoretical considerations and various lines of morphologic evidence suggest that, in addition to the normal seasonal and climatic exchange of H2O that occurs between the Martian polar caps, atmosphere, and mid to high latitude regolith, large volumes of water have been introduced into the planet's long term hydrologic cycle by the sublimation of equatorial ground ice, impacts, catastrophic flooding, and volcanism. Under the climatic conditions that are thought to have prevailed on Mars throughout the past 3 to 4 b.y., much of this water is expected to have been cold trapped at the poles. The amount of polar ice contributed by each of the planet's potential crustal sources is discussed and estimated. The final analysis suggests that only 5 to 15 pct. of this potential inventory is now in residence at the poles.

  17. Bacterial Ice Crystal Controlling Proteins

    Science.gov (United States)

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  18. Numerical calculation of air velocity and temperature in ice rinks

    Energy Technology Data Exchange (ETDEWEB)

    Bellache, O.; Galanis, N. [Sherbrooke Univ., PQ (Canada); Ouzzane, M.; Sunye, R. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Diversification Laboratory

    2002-07-01

    A computational fluid dynamic (CFD) model was developed to predict the energy consumption at an ice rink. Ice rinks in Canada consume approximately 3500 GWh of electricity annually and generate about 300,000 tons of gases contributing to the greenhouse effect. This newly developed model also considers ice quality and comfort conditions in the arena. The typical 2D configuration includes refrigeration loads as well as heat transfer coefficients between the air and the ice. The effects of heat losses through the ice rink envelope are also determined. A comparison of prediction results from 4 different formulations confirms that there are important differences in air velocities near the walls and in the temperature gradient near the ice. The turbulent mixed convection model gives the best estimate of the refrigeration load. It was determined that a good ventilation should circulate air throughout the building to avoid stagnant areas. Air velocities must be low near the stands where the temperature should be around 20 degrees C. Air temperature near the ice should be low to preserve ice quality and to reduce the refrigeration load. The complexity of this geometry has been taken into account in a numerical simulation of the hydrodynamic and thermal fields in the ice rink. 9 refs., 2 tabs., 5 figs.

  19. Quantitative analysis of ice films by near-infrared spectroscopy

    Science.gov (United States)

    Keiser, Joseph T.

    1990-01-01

    One of the outstanding problems in the Space Transportation System is the possibility of the ice buildup on the external fuel tank surface while it is mounted on the launch pad. During the T-2 hours (and holding) period, the frost/ice thickness on the external tank is monitored/measured. However, after the resumption of the countdown time, the tank surface can only be monitored remotely. Currently, remote sensing is done with a TV camera coupled to a thermal imaging device. This device is capable of identifying the presence of ice, especially if it is covered with a layer of frost. However, it has difficulty identifying transparent ice, and, it is not capable of determining the thickness of ice in any case. Thus, there is a need for developing a technique for measuring the thickness of frost/ice on the tank surface during this two hour period before launch. The external tank surface is flooded with sunlight (natural or simulated) before launch. It may be possible, therefore, to analyze the diffuse reflection of sunlight from the external tank to determine the presence and thickness of ice. The purpose was to investigate the feasibility of this approach. A near-infrared spectrophotometer was used to record spectra of ice. It was determined that the optimum frequencies for monitoring the ice films were 1.03 and 1.255 microns.

  20. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  1. A Closer Look at Some of Mercury's North Polar Deposits: Three Craters that Could Have Extensive Surface Ice but Don't?

    Science.gov (United States)

    Chabot, N. L.; Neumann, G. A.; Ernst, C. M.; Mazarico, E. M.; Shread, E. E.

    2018-05-01

    We investigate three of Mercury's north polar craters that are predicted from their thermal conditions to be conducive to the presence of extensive water ice at the surface, but that may lack such ice.

  2. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  3. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  4. Turning into Ice

    Science.gov (United States)

    Pietsch, Renée B.; Hanlon, Regina; Bohland, Cynthia; Schmale, David G., III

    2016-01-01

    This article describes an interdisciplinary unit in which students explore biological "ice nucleation"--by particles that cause water to freeze at temperatures above -38°C--through the lens of the microbial ice nucleator "Pseudomonas syringae." Such This activity, which aligns with the "Next Generation Science…

  5. Atmospheric forcing of sea ice leads in the Beaufort Sea

    Science.gov (United States)

    Lewis, B. J.; Hutchings, J.; Mahoney, A. R.; Shapiro, L. H.

    2016-12-01

    Leads in sea ice play an important role in the polar marine environment where they allow heat and moisture transfer between the oceans and atmosphere and act as travel pathways for both marine mammals and ships. Examining AVHRR thermal imagery of the Beaufort Sea, collected between 1994 and 2010, sea ice leads appear in repeating patterns and locations (Eicken et al 2005). The leads, resolved by AVHRR, are at least 250m wide (Mahoney et al 2012), thus the patterns described are for lead systems that extend up to hundreds of kilometers across the Beaufort Sea. We describe how these patterns are associated with the location of weather systems relative to the coastline. Mean sea level pressure and 10m wind fields from ECMWF ERA-Interim reanalysis are used to identify if particular lead patterns can be uniquely forecast based on the location of weather systems. Ice drift data from the NSIDC's Polar Pathfinder Daily 25km EASE-Grid Sea Ice Motion Vectors indicates the role shear along leads has on the motion of ice in the Beaufort Gyre. Lead formation is driven by 4 main factors: (i) coastal features such as promontories and islands influence the origin of leads by concentrating stresses within the ice pack; (ii) direction of the wind forcing on the ice pack determines the type of fracture, (iii) the location of the anticyclone (or cyclone) center determines the length of the fracture for certain patterns; and (iv) duration of weather conditions affects the width of the ice fracture zones. Movement of the ice pack on the leeward side of leads originating at promontories and islands increases, creating shear zones that control ice transport along the Alaska coast in winter. . Understanding how atmospheric conditions influence the large-scale motion of the ice pack is needed to design models that predict variability of the gyre and export of multi-year ice to lower latitudes.

  6. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    International Nuclear Information System (INIS)

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph; Bregman, Jonathan; Ricca, Alessandra; Allamandola, Louis J.; Bouwman, Jordy; Linnartz, Harold

    2015-01-01

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H 2 O, pyrene:H 2 O, and benzo[ghi]perylene:H 2 O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H 2 O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H 2 O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) n ] and quinones [PAH(O) n ] for all PAH:H 2 O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO 2 and H 2 CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) n and PAH(O) n to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H 2 O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes

  7. PHOTOCHEMISTRY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COSMIC WATER ICE: THE ROLE OF PAH IONIZATION AND CONCENTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Amanda M.; Mattioda, Andrew L.; Roser, Joseph; Bregman, Jonathan [NASA Ames Research Center, PO Box 1, M/S 245-6, Moffett Field, CA 94035 (United States); Ricca, Alessandra; Allamandola, Louis J. [SETI Institute, 189 North Bernardo Avenue, Mountain View, CA 94043 (United States); Bouwman, Jordy [Radboud University Nijmegen, Institute for Molecules and Materials, Toernooiveld 5, 6525 ED Nijmegen (Netherlands); Linnartz, Harold [Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, PO Box 9513, NL2300 RA Leiden (Netherlands)

    2015-01-20

    Infrared spectroscopic studies of ultraviolet (UV) irradiated, water-rich, cosmic ice analogs containing small polycyclic aromatic hydrocarbons (PAHs) are described. The irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices (14 K) at various concentrations reported by Bouwman et al. are extended. While aromatic alcohols and ketones have been reported in residues after irradiated PAH:H{sub 2}O ices were warmed to 270 K, it was not known if they formed during ice irradiation or during warm-up when reactants interact as H{sub 2}O sublimes. Recent work has shown that they form in low temperature ice. Using DFT computed IR spectra to identify photoproducts and PAH cations, we tentatively identify the production of specific alcohols [PAH(OH) {sub n} ] and quinones [PAH(O) {sub n} ] for all PAH:H{sub 2}O ices considered here. Little evidence is found for hydrogenation at 14 K, consistent with the findings of Gudipati and Yang. Addition of O and OH to the parent PAH is the dominant photochemical reaction, but PAH erosion to smaller PAHs (producing CO{sub 2} and H{sub 2}CO) is also important. DFT spectra are used to assess the contribution of PAH-related species to interstellar absorption features from 5 to 9 μm. The case is made that PAH cations are important contributors to the C2 component and PAH(OH) {sub n} and PAH(O) {sub n} to the C5 component described by Boogert et al. Thus, interstellar ices should contain neutral and ionized PAHs, alcohols, ketones and quinones at the ∼2%-4% level relative to H{sub 2}O. PAHs, their photoproducts, and ion-mediated processes should therefore be considered when modeling interstellar ice processes.

  8. Interaction modifiers in artificial spin ices

    Science.gov (United States)

    Ã-stman, Erik; Stopfel, Henry; Chioar, Ioan-Augustin; Arnalds, Unnar B.; Stein, Aaron; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2018-04-01

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order1-6, collective low-energy dynamics7,8 and emergent magnetic properties5, 9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

  9. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  10. Vapor pressures and standard molar enthalpies, entropies and Gibbs energies of sublimation of two hexachloro herbicides using a TG unit

    International Nuclear Information System (INIS)

    Vecchio, Stefano

    2010-01-01

    The vapor pressures above the solid hexachlorobenzene (HCB) and above both the solid and liquid 1,2,3,4,5,6-hexachlorocyclohexane (lindane) were determined in the ranges 332-450 K and 347-429 K, respectively, by measuring the mass loss rates recorded by thermogravimetry under both isothermal and nonisothermal conditions. The results obtained were compared with those taken from literature. From the temperature dependence of vapor pressure derived by the experimental thermogravimetry data the molar enthalpies of sublimation Δ cr g H m o ( ) were selected for HCB and lindane as well as the molar enthalpy of vaporization Δ l g H m o ( ) for lindane only, at the middle of the respective temperature intervals. The melting temperatures and the molar enthalpies of fusion Δ cr l H m o (T fus ) of lindane were measured by differential scanning calorimetry. Finally, the standard molar enthalpies of sublimation Δ cr g H m o (298.15 K) were obtained for both chlorinated compounds at the reference temperature of 298.15 K using the Δ cr g H m o ( ), Δ l g H m o ( ) and Δ cr l H m o (T fus ) values, as well as the heat capacity differences between gas and liquid and the heat capacity differences between gas and solid, Δ l g C p,m o and Δ cr g C p,m o , respectively, both estimated by applying a group additivity procedure. Therefore, the averages of the standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation at 298.15 K, have been derived.

  11. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    sublimation rate. The temperature of ice sheet formation and variation in ice sheet thicknesses were well characterized in this study, which also explained why propane gas hydrates do not exhibit self-preservation. 12 refs., 7 figs.

  12. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  13. Determination of molar enthalpy of sublimation in case of orotic acid as obtained from experimental and computational data

    Science.gov (United States)

    Marochkin, Ilya I.; Altova, Ekaterina P.; Chilingarov, Norbert S.; Vilkova, Anna L.; Shishkov, Igor F.

    2018-03-01

    Saturated vapor pressure, ln(p/Pa) = (-21316 ± 511)/(T/K)+(41.64 ± 0.11), and enthalpy of sublimation of orotic acid, Δsub Hm0 (Tm) = 177 ± 4 kJ/mol, were determined by means of Knudsen effusion mass spectrometry in the temperature range of 423÷493 K. The computational approaches supported the experimental results reported. The theoretical estimation of the gas-phase enthalpy of formation for orotic acid was done with different working reactions used.

  14. On adequacy of reference sample composition to metal oxide composition in spectral analysis by the method of sublimating additions

    International Nuclear Information System (INIS)

    Zakhariya, N.F.; Turulina, O.P.

    1983-01-01

    The problem on adequacy of zirconium dioxide reference samples to analysed samples is considered. The mechanism of impurities evaporation process in the presence of the sublimating addition for elements of different nature is studied and limiting it stages have been found. It is shown that kinetic probability of impurities transfer into the form of more high-volatile compounds depending on conditions of preparing zirconium dioxide samples may not coincide with the thermodynamic one. With this connected are systematic deviations of the analytical signal value for samples of different technological prehistory

  15. Torque and Axial Loading Physics for Measuring Atmospheric Icing Load and Icing Rate

    OpenAIRE

    Mughal, Umair Najeeb; Virk, Muhammad Shakeel

    2015-01-01

    Measuring icing load and icing rate are important parameters for an atmospheric icing sensor. A new icing sensor has recently been designed and developed at Narvik University College for measuring atmospheric icing rate, icing load and icing type. Unlike the existing atmospheric icing sensors commercially available in market, which uses the axial loading for measuring icing load and icing rate, this new sensory system measures icing load and icing rate using the torque loading physics. The pe...

  16. Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology

    International Nuclear Information System (INIS)

    Mohseni, M; Frioult, M; Amirfazli, A

    2012-01-01

    A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area. (paper)

  17. Behavior of sorption and thermal desorption of fission products from loaded metal oxide exchangers

    International Nuclear Information System (INIS)

    Buerck, J.

    1986-08-01

    A new sublimation method for the concentration and purification of 99 Mo, produced by the fission of 235 U with thermal neutrons, has been developed to replace the present final decontamination steps in the various well established 99 Mo separation processes. A distinct simplification and shortening of the actual procedure is obtained by combining the chromatographic sorption on the SnO 2 -exchanger with the direct thermal desorption of the Mo product from the oxide. (orig./PW) [de

  18. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  19. Creep of ice: further studies

    International Nuclear Information System (INIS)

    Heard, H.C.; Durham, W.B.; Kirby, S.H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized

  20. Ice Load Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Timothy J. [DNV GL, Seattle, WA (United States); Brown, Thomas [IFC Engineering, Calgary, AB (Canada); Byrne, Alex [DNV GL, Seattle, WA (United States)

    2014-10-30

    As interest and investment in offshore wind projects increase worldwide, some turbines will be installed in locations where ice of significant thickness forms on the water surface. This ice moves under the driving forces of wind, current, and thermal effects and may result in substantial forces on bottom-fixed support structures. The North and Baltic Seas in Europe have begun to see significant wind energy development and the Great Lakes of the United States and Canada may host wind energy development in the near future. Design of the support structures for these projects is best performed through the use of an integrated tool that can calculate the cumulative effects of forces due to turbine operations, wind, waves, and floating ice. The dynamic nature of ice forces requires that these forces be included in the design simulations, rather than added as static forces to simulation results. The International Electrotechnical Commission (IEC) standard[2] for offshore wind turbine design and the International Organization for Standardization (ISO) standard[3] for offshore structures provide requirements and algorithms for the calculation of forces induced by surface ice; however, currently none of the major wind turbine dynamic simulation codes provides the ability to model ice loads. The scope of work of the project described in this report includes the development of a suite of subroutines, collectively named IceFloe, that meet the requirements of the IEC and ISO standards and couples with four of the major wind turbine dynamic simulation codes. The mechanisms by which ice forces impinge on offshore structures generally include the forces required for crushing of the ice against vertical-sided structures and the forces required to fracture the ice as it rides up on conical-sided structures. Within these two broad categories, the dynamic character of the forces with respect to time is also dependent on other factors such as the velocity and thickness of the moving ice

  1. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    Science.gov (United States)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  2. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  3. Trapping of CH4, CO, and CO2 in Amorphous Water Ice

    Science.gov (United States)

    Mastrapa, R. M. E.; Brown, R. H.; Anicich, V. G.; Cohen, B. A.; Dai, W.; Lunine, J. I.

    1999-09-01

    In this study, CO, CH4, and CO2 were trapped in H2O at temperatures as low as 20 K and pressures between 10-5 and 10-8 Torr. IR spectra were taken of each sample before sublimation to confirm the presence of volatiles. The samples were then heated at rates from 0.25 K/min to 1 K/min and the escape ranges were measured with a mass spectrometer. The volatiles escaped from the ice mixtures in temperature ranges similar to those found in previous work (1, 2, 3), namely 48-52 K, 145-160 K, 170-185 K. H2O is released from 150 K to 185 K. However, the temperature range of escape is strongly dependent on deposition temperature and heating rate. If the deposition temperature is below the point where the solid volatile rapidly sublimates in the ambient environment of our experiment, then the first range of volatile escape is centered around it's sublimation point, and there is little of the volatile remaining from 170-185 K. The location of the third escape range shifts to lower temperatures with slower sublimation rate. It was determined that 0.5 K/min is the ideal sample heating rate to determine these escape ranges. In our data, the infrared spectrum of CO trapped in water ice shows a splitting of the 2145 cm-1 solid CO line into two bands at 2343 cm-1 and 2135 cm-1. These shifts are similar to those seen by Sandford, et al. (4). (1) Bar-Nun, A., G. Herman, D. Laufer, and M. L. Rappaport, (1985), Icarus, 63, 317-332. (2) Bar-Nun, A., J. Dror, E. Kochavi, and D. Laufer, (1987), Physical Review B, 35, no. 5, 2427-2435. (3) Hudson, R. L., and B. Donn, (1991), Icarus, 94, 326-332. (4) Sandford, S. A., L. J. Allamandola, A. G. G. M. Tielens, and G. J. Valero, (1988), Astrophysical Journal, 329, 498-510.

  4. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  5. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  6. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  7. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  8. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  9. Cold pleasure. Why we like ice drinks, ice-lollies and ice cream.

    Science.gov (United States)

    Eccles, R; Du-Plessis, L; Dommels, Y; Wilkinson, J E

    2013-12-01

    This review discusses how the ingestion of cold foods and drinks may be perceived as pleasant because of the effects of cooling of the mouth. The case is made that man has originated from a tropical environment and that cold stimuli applied to the external skin may initiate thermal discomfort and reflexes such as shivering and vasoconstriction that defend body temperature, whereas cold stimuli applied to the mouth are perceived as pleasant because of pleasure associated with satiation of thirst and a refreshing effect. Cold water is preferred to warm water as a thirst quencher and cold products such as ice cream may also be perceived as pleasant because oral cooling satiates thirst. The case is made that cold stimuli may be perceived differently in the skin and oral mucosa, leading to different effects on temperature regulation, and perception of pleasure or displeasure, depending on the body temperature and the temperature of the external environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  11. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    OpenAIRE

    Collaboration, IceCube-Gen2; :; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Anton, G.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2,...

  12. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    OpenAIRE

    Aartsen, M. G.; Ackermann, M.; Arlen, T. C.; Gretskov, P.; Groh, J. C.; Gross, A.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Auffenberg, J.; Haugen, J.

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the 'first light' in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2,...

  13. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  14. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    Science.gov (United States)

    Yang, S.; Shi, Y.

    2015-10-01

    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  15. First Detection of Water Ice and Organics on an Asteroid: A Possible Link to the Origin of Earth's Water

    Science.gov (United States)

    Hargrove, Kelsey D.; Campins, H.; Pinilla-Alonso, N.; Howell, E. S.; Kelley, M. S.; Licandro, J.; Mothédiniz, T.; Fernández, Y.; Ziffer, J.

    2010-05-01

    We report the detection of water ice and organics on the surface of asteroid 24 Themis. Our rotationally-resolved infrared (2-4 µm) spectra of this asteroid indicate that the ice and organics are widespread on its surface. The spectral difference with other asteroids observed in the same manner, makes 24 Themis unique so far. Our identification of water ice and organic compounds on this asteroid agrees with independent results (Rivkin and Emery 2010). At first glance, the presence of any surface ice on 24 Themis, particularly over a significant fraction of its surface, is puzzling because of the instability for exposed water ice at Themis's heliocentric distance ( 3.2 AU). Nevertheless, there are several possible sources for this unstable ice and identifying them is likely to be diagnostic of other processes on primitive asteroids. The presence of water ice on 24 Themis supports the idea that ice sublimation drives the cometary activity in two small members of the Themis dynamical family, labeled "Main Belt comets” by Hsieh and Jewitt (2006). It also helps to address other relevant questions, such as, how abundant is water ice in the outer asteroid belt and where was the "snow” line when the solar system formed? The answers to these questions could transform current views of primitive asteroids, delivery of water and organic molecules to Earth, and models of Solar System formation. This research was published in the April 29, 2010 issue of the journal Nature. Hargrove and Campins are visiting astronomers at the Infrared Telescope Facility (IRTF), which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration

  16. Ground ice conditions in Salluit, Northern Quebec

    Science.gov (United States)

    Allard, M.; Fortier, R.; Calmels, F.; Gagnon, O.; L'Hérault, E.

    2011-12-01

    large chunks of permafrost. Volumetric ice contents between 30 and 70% were measured in the till. In addition, low lying areas where till thickness exceeds ca 5 m contain polygons with ice wedges up to 2 m wide. Colluviums on slopes laid by sheet flow have been accumulating on two sectors of the study area, the source material being eroded clay at higher elevations; these slope sediments contain alternating layers of buried organics (C-14 date of 2300 BP at base of the sequence), silt and lenses of aggradational ice. Although the surface geophysical methods (electrical resistivity,GPR) were essential for mapping ice rich permafrost, the detailed appraisal of ground ice conditions was made truly possible by drilling and extracting intact cores. The use of the Cat-scan method proved very efficient for the precise and rapid measurement of ground ice contents and for imaging cryostructures on a large number of samples, thus providing exact information on permafrost composition and for interpreting permafrost history. The Salluit study also involves climate monitoring, thermal analysis and modeling, and intense community consultations.

  17. Dynamic Wind-Tunnel Testing of a Sub-Scale Iced S-3B Viking

    Science.gov (United States)

    Lee, Sam; Barnhart, Billy; Ratvasky, Thomas P.

    2012-01-01

    The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure shape and runback shapes that form downstream of the thermal ice protection system. The results showed that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the effects on the lateral forces were relatively minor.

  18. The mass and energy balance of ice within the Eisriesenwelt cave, Austria

    Directory of Open Access Journals (Sweden)

    F. Obleitner

    2011-03-01

    Full Text Available Meteorological measurements were performed in a prominent ice cave (Eisriesenwelt, Austria during a full annual cycle. The data show the basic features of a dynamically ventilated cave system with a well distinguished winter and summer regime.

    The calculated energy balance of the cave ice is largely determined by the input of long-wave radiation originating at the host rock surface. On average the turbulent fluxes withdraw energy from the surface. This is more pronounced during winter due to enhanced circulation and lower humidity. During summer the driving gradients reverse sign and the associated fluxes provide energy for melt.

    About 4 cm of ice were lost at the measurement site during a reference year. This was due to some sublimation during winter, while the major loss resulted from melt during summer. Small amounts of accumulation occurred during spring due to refreezing of seepage water.

    These results are largely based on employing a numerical mass and energy balance model. Sensitivity studies prove reliability of the calculated energy balance regarding diverse measurement uncertainties and show that the annual mass balance of the ice strongly depends on cave air temperature during summer and the availability of seepage water in spring.

  19. Retrieval of sea ice thickness during Arctic summer using melt pond color

    Science.gov (United States)

    Istomina, L.; Nicolaus, M.; Heygster, G.

    2016-12-01

    The thickness of sea ice is an important climatic variable. Together with the ice concentration, it defines the total sea ice volume, is linked within the climatic feedback mechanisms and affects the Arctic energy balance greatly. During Arctic summer, the sea ice cover changes rapidly, which includes the presence of melt ponds, as well as reduction of ice albedo and ice thickness. Currently available remote sensing retrievals of sea ice thickness utilize data from altimeter, microwave, thermal infrared sensors and their combinations. All of these methods are compromised in summer in the presence of melt. This only leaves in situ and airborne sea ice thickness data available in summer. At the same time, data of greater coverage is needed for assimilation in global circulation models and correct estimation of ice mass balance.This study presents a new approach to estimate sea ice thickness in summer in the presence of melt ponds. Analysis of field data obtained during the RV "Polarstern" cruise ARK27/3 (August - October 2012) has shown a clear connection of ice thickness under melt ponds to their measured spectral albedo and to melt pond color in the hue-saturation-luminance color space from field photographs. An empirical function is derived from the HSL values and applied to aerial imagery obtained during various airborne campaigns. Comparison to in situ ice thickness shows a good correspondence to the ice thickness value retrieved in the melt ponds. A similar retrieval is developed for satellite spectral bands using the connection of the measured pond spectral albedo to the ice thickness within the melt ponds. Correction of the retrieved ice thickness in ponds to derive total thickness of sea ice is discussed. Case studies and application to very high resolution optical data are presented, as well as a concept to transfer the method to satellite data of lower spatial resolution where melt ponds become subpixel features.

  20. Icing losses on wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, T.; Fotsing, I.; Pearson, S. [Garrad Hassan Canada Inc., Ottawa, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed some of the energy losses that can occur as a result of icing on wind turbines. Airfoil deterioration can occur in the presence of rime and glaze ice. Anemometers are also impacted by ice, and shut-downs can occur as a result of icing events. Availability deficits that occur during the winter months can lead to annual energy losses of 0.5 percent. The impact of icing events on total wind power energy production in Quebec is estimated at between 1.3 percent to 2.7 percent. Ice loss estimates are considered during the pre-construction phases of wind power projects. However, ice loss prediction methods are often inaccurate. Studies have demonstrated that preconstruction masts show a reasonable correlation with wind turbine icing, and that icing losses are site-specific. tabs., figs.

  1. NUMERICAL SIMULATION OF ICE ACCRETION ON AIRFOIL

    Directory of Open Access Journals (Sweden)

    Nicusor ALEXANDRESCU

    2009-09-01

    Full Text Available This work consists in the simulation of the ice accretion in the leading edge of aerodynamic profiles and our proposed model encompasses: geometry generation, calculation of the potential flow around the body, boundary layer thickness computation, water droplet trajectory computation, heat and mass balances and the consequent modification of the geometry by the ice growth. The flow calculation is realized with panel methods, using only segments defined over the body contour. The viscous effects are considered using the Karman-Pohlhausen method for the laminar boundary layer. The local heat transfer coefficient is obtained by applying the Smith-Spalding method for the thermal boundary layer. The ice accretion limits and the collection efficiency are determined by computing water droplet trajectories impinging the surface. The heat transfer process is analyzed with an energy and a mass balance in each segment defining the body. Finally, the geometry is modified by the addition of the computed ice thickness to the respective panel. The process by repeating all the steps. The model validation is done using a selection of problems with experimental solution, CIRA (the CESAR project. Hereinafter, results are obtained for different aerodynamic profiles, angles of attack and meteorological parameters

  2. Stability of Sulphur Dimers (S2) in Cometary Ices

    International Nuclear Information System (INIS)

    Mousis, O.; Ronnet, T.; Ozgurel, O.; Pauzat, F.; Markovits, A.; Ellinger, Y.; Lunine, J. I.; Luspay-Kuti, A.

    2017-01-01

    S 2 has been observed for decades in comets, including comet 67P/Churyumov–Gerasimenko. Despite the fact that this molecule appears ubiquitous in these bodies, the nature of its source remains unknown. In this study, we assume that S 2 is formed by irradiation (photolysis and/or radiolysis) of S-bearing molecules embedded in the icy grain precursors of comets and that the cosmic ray flux simultaneously creates voids in ices within which the produced molecules can accumulate. We investigate the stability of S 2 molecules in such cavities, assuming that the surrounding ice is made of H 2 S or H 2 O. We show that the stabilization energy of S 2 molecules in such voids is close to that of the H 2 O ice binding energy, implying that they can only leave the icy matrix when this latter sublimates. Because S 2 has a short lifetime in the vapor phase, we derive that its formation in grains via irradiation must occur only in low-density environments such as the ISM or the upper layers of the protosolar nebula, where the local temperature is extremely low. In the first case, comets would have agglomerated from icy grains that remained pristine when entering the nebula. In the second case, comets would have agglomerated from icy grains condensed in the protosolar nebula and that would have been efficiently irradiated during their turbulent transport toward the upper layers of the disk. Both scenarios are found consistent with the presence of molecular oxygen in comets.

  3. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Science.gov (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  4. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  5. Stratospheric effects on trends of mesospheric ice clouds (Invited)

    Science.gov (United States)

    Luebken, F.; Baumgarten, G.; Berger, U.

    2009-12-01

    Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.

  6. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  7. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.

    Science.gov (United States)

    Duman, John G

    2015-06-01

    Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce thermal hysteresis inhibit freezing by a non-colligative mechanism, whereby they adsorb onto ice crystals or ice-nucleating surfaces and prevent further growth. This lowers the so-called hysteretic freezing point below the normal equilibrium freezing/melting point, producing a difference between the two, termed thermal hysteresis. True AFPs with high thermal hysteresis are found in freeze-avoiding animals (those that must prevent freezing, as they die if frozen) especially marine fish, insects and other terrestrial arthropods where they function to prevent freezing at temperatures below those commonly experienced by the organism. Low thermal hysteresis IBPs are found in freeze-tolerant organisms (those able to survive extracellular freezing), and function to inhibit recrystallization - a potentially damaging process whereby larger ice crystals grow at the expense of smaller ones - and in some cases, prevent lethal propagation of extracellular ice into the cytoplasm. Ice-nucleator proteins inhibit supercooling and induce freezing in the extracellular fluid at high subzero temperatures in many freeze-tolerant species, thereby allowing them to control the location and temperature of ice nucleation, and the rate of ice growth. Numerous nuances to these functions have evolved. Antifreeze glycolipids with significant thermal hysteresis activity were recently identified in insects, frogs and plants. © 2015. Published by The Company of Biologists Ltd.

  8. The ICES system

    International Nuclear Information System (INIS)

    Inzaghi, A.

    1983-01-01

    ICES is an integrated system used in the various engineering fields. It is made up of the Basic System and the applied Subsystems. ICES is controlled by the Operating System of the computer, from which it calls for suitable services: space allocation, loading of the modules etc... To be able to use software of this type on a computer the Operating System should be made more general. The Subsystems are developed with special programs included in the ICES Basic System. Each Subsystem is associated with an area of application. In other words, a Subsystem can only treat a previously defined ''class of problems''. The engineer (user) communicates with the Subsystem using a language oriented towards the problem (POL) also previously defined using the CDL language. The use of the (POL) language makes the engineer-computer contact much easier. The applied programs written in ICETRAN, once supplied as input to the ICETRAN Precompiler, become Fortran programs with special characteristics. A Fortran compiler produces the corresponding object programs with which, using the ICES ''Link-edit'' procedures, one obtains the modules which can be executed by an ICES Subsystem

  9. The role of oxygen in CdS/CdTe solar cells deposited by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.H.; Levi, D.H.; Matson, R.J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The presence of oxygen during close-spaced sublimation (CSS) of CdTe has been previously reported to be essential for high-efficiency CdS/CdTe solar cells because it increases the acceptor density in the absorber. The authors find that the presence of oxygen during CSS increases the nucleation site density of CdTe, thus decreasing pinhole density and grain size. Photoluminescence showed that oxygen decreases material quality in the bulk of the CdTe film, but positively impacts the critical CdS/CdTe interface. Through device characterization the authors were unable to verify an increase in acceptor density with increased oxygen. These results, along with the achievement of high-efficiency cells (13% AM1.5) without the use of oxygen, led the authors to conclude that the use of oxygen during CSS deposition of CdTe can be useful but is not essential.

  10. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    Science.gov (United States)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  11. Ice Engineering. Number 25, September 2000. Remote Ice Motion Detection

    National Research Council Canada - National Science Library

    2000-01-01

    .... Government agencies, and the engineering community in general. The potential exists for property damage, serious injury, and fatalities during ice-related flooding, evacuations, and other ice mitigation operations...

  12. Summer Arctic sea ice character from satellite microwave data

    Science.gov (United States)

    Carsey, F. D.

    1985-01-01

    It is pointed out that Arctic sea ice and its environment undergo a number of changes during the summer period. Some of these changes affect the ice cover properties and, in turn, their response to thermal and mechanical forcing throughout the year. The main objective of this investigation is related to the development of a method for estimating the areal coverage of exposed ice, melt ponds, and leads, which are the basic surface variables determining the local surface albedo. The study is based on data obtained in a field investigation conducted from Mould Bay (NWT), Nimbus 5 satellite data, and Seasat data. The investigation demonstrates that microwave data from satellites, especially microwave brightness temperature, provide good data for estimating important characteristics of summer sea ice cover.

  13. Environmental controls on micro fracture processes in shelf ice

    Science.gov (United States)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  14. CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY

    International Nuclear Information System (INIS)

    Fayolle, Edith C.; Linnartz, Harold; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues; Oeberg, Karin I.

    2011-01-01

    UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main-sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Lyα), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (A 1 Π at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.

  15. Water ice clouds observations with PFS on Mars Express

    Science.gov (United States)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  16. On the Ice Nucleation Spectrum

    Science.gov (United States)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  17. Rheology of planetary ices

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B. [Lawrence Livermore National Lab., CA (United States); Kirby, S.H.; Stern, L.A. [Geological Survey, Menlo Park, CA (United States)

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  18. Ice accreditation vs wind

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Hydro-Quebec, PQ (Canada). TransEnergie Div.; Chouinard, L. [McGill Univ., Montreal, PQ (Canada); Feknous, N. [SNC-Lavalin, Montreal, PQ (Canada)

    2002-07-01

    Wind and ice data from Hydro Quebec and Environment Canada indicates that winds during ice storms are in the general direction of the St. Lawrence River. This observation is important for upgrading existing power transmission lines from the Manicouagan and Churchill generation system because they are parallel to the St. Lawrence and they were designed with lower criteria than is currently accepted. ASCE 74 suggests an accumulation ratio based on thickness of 0.70 for winds parallel to the line. The Goodwin model was used to calculate this ratio. The presentation includes illustrations showing the accumulation ratio for a north wind, as well as the accumulation ratios and wind roses at Quebec. A table showing a comparison of ratios from passive ice meters shows that results are similar to mean values from the theoretical model.

  19. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    Science.gov (United States)

    Weiss, David K.; Head, James W.

    2017-03-01

    The "honeycomb" terrain is a Noachian-aged cluster of ∼7 km wide linear cell-like depressions located on the northwestern floor of Hellas basin, Mars. A variety of origins have been proposed for the honeycomb terrain, including deformation rings of subglacial sediment, frozen convection cells from a Hellas impact melt sheet, a swarm of igneous batholiths, salt diapirism, and ice diapirism. Recent work has shown that the salt or ice diapirism scenarios appear to be most consistent with the morphology and morphometry of the honeycomb terrain. The salt and ice diapirism scenarios have different implications for the ancient martian climate and hydrological cycle, and so distinguishing between the two scenarios is critical. In this study, we specifically test whether the honeycomb terrain is consistent with a salt or ice diapir origin. We use thermal modeling to assess the stability limits on the thickness of an ice or salt diapir-forming layer at depth within the Hellas basin. We also apply analytical models for diapir formation to evaluate the predicted diapir wavelengths in order to compare with observations. Ice diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ∼100 m to ∼1 km thick ice deposits. Gypsum and kieserite diapirism is generally predicted to reproduce the observed honeycomb wavelengths for ≥ 600-1000 m thick salt deposits, but only with a basaltic overburden. Halite diapirism generally requires approx. ≥ 1 km thick halite deposits in order to reproduce the observed honeycomb wavelengths. Hellas basin is a distinctive environment for diapirism on Mars due to its thin crust (which reduces surface heat flux), low elevation (which allows Hellas to act as a water/ice/sediment sink and increases the surface temperature), and location within the southern highlands (which may provide proximity to inflowing saline water or glacial ice). The plausibility of an ice diapir mechanism generally requires temperatures ≤ 250

  20. Enthalpies of solution, enthalpies of fusion and enthalpies of solvation of polyaromatic hydrocarbons: Instruments for determination of sublimation enthalpy at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru; Varfolomeev, Mikhail A.; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.; Novikov, Vladimir B.

    2015-12-20

    Graphical abstract: - Highlights: • Solution enthalpies of aromatic hydrocarbons were measured at 298.15 K. • Solution enthalpy of aromatic hydrocarbons in benzene is equal to their fusion enthalpy. • Method for calculation of solvation enthalpy of aromatic hydrocarbons was proposed. • Approach for estimation of aromatic hydrocarbons sublimation enthalpy was developed. • Obtained sublimation enthalpies coincide well with the recommended literature data. - Abstract: In this work a simple method for calculation of solvation enthalpies of polyaromatic hydrocarbons (PAHs) in various solvents at 298.15 K was proposed. According to this method the enthalpy of solvation of any polyaromatic hydrocarbon in a particular solvent can be calculated on the basis of the general formula of the compound, the solvation enthalpy of benzene in the same solvent and parameter related to the contribution of hydrogen atom into solvation enthalpy. The validity of the proposed method was confirmed by the comparison of calculated and experimentally measured values of solvation enthalpies of PAHs in benzene, tetrahydrofuran and acetonitrile. This method was used for determination of the sublimation enthalpy of PAHs at 298.15 K based on the general relationship between the enthalpy of sublimation/vaporization of the compound of interest and its enthalpies of solution and solvation in the same solvent at 298.15 K. Enthalpies of solution at infinite dilution of several PAHs were measured in acetonitrile, benzene and tetrahydrofuran at 298.15 K. It was shown that solution enthalpies of PAHs in benzene at 298.15 K are approximately equal to their fusion enthalpies at the melting temperature. Solvation enthalpies of 15 PAHs at 298.15 K calculated according to the proposed method together with corresponding fusion enthalpy values (at the melting temperature) were used to calculate the sublimation enthalpy values at 298.15 K. Comparison of the obtained results with recommended values of

  1. Ice cores and palaeoclimate

    International Nuclear Information System (INIS)

    Krogh Andersen, K.; Ditlevsen, P.; Steffensen, J.P.

    2001-01-01

    Ice cores from Greenland give testimony of a highly variable climate during the last glacial period. Dramatic climate warmings of 15 to 25 deg. C for the annual average temperature in less than a human lifetime have been documented. Several questions arise: Why is the Holocene so stable? Is climatic instability only a property of glacial periods? What is the mechanism behind the sudden climate changes? Are the increased temperatures in the past century man-made? And what happens in the future? The ice core community tries to attack some of these problems. The NGRIP ice core currently being drilled is analysed in very high detail, allowing for a very precise dating of climate events. It will be possible to study some of the fast changes on a year by year basis and from this we expect to find clues to the sequence of events during rapid changes. New techniques are hoped to allow for detection of annual layers as far back as 100,000 years and thus a much improved time scale over past climate changes. It is also hoped to find ice from the Eemian period. If the Eemian layers confirm the GRIP sequence, the Eemian was actually climatically unstable just as the glacial period. This would mean that the stability of the Holocene is unique. It would also mean, that if human made global warming indeed occurs, we could jeopardize the Holocene stability and create an unstable 'Eemian situation' which ultimately could start an ice age. Currenlty mankind is changing the composition of the atmosphere. Ice cores document significant increases in greenhouse gases, and due to increased emissions of sulfuric and nitric acid from fossil fuel burning, combustion engines and agriculture, modern Greenland snow is 3 - 5 times more acidic than pre-industrial snow (Mayewski et al., 1986). However, the magnitude and abruptness of the temperature changes of the past century do not exceed the magnitude of natural variability. It is from the ice core perspective thus not possible to attribute the

  2. Ice Lens Formation and Frost Heave at the Phoenix Landing Site

    Science.gov (United States)

    Zent, A. P.; Sizemore, H. G.; Remple, A. W.

    2011-01-01

    Several lines of evidence indicate that the volume of shallow ground ice in the martian high latitudes exceeds the pore volume of the host regolith. Boynton et al. found an optimal fit to the Mars Odyssey Gamma Ray Spectrometer (GRS) data at the Phoenix landing site by modeling a buried layer of 50-75% ice by mass (up to 90% ice by volume). Thermal and optical observations of recent impact craters in the northern hemisphere have revealed nearly pure ice. Ice deposits containing only 1-2% soil by volume were excavated by Phoenix. The leading hypothesis for the origin of this excess ice is that it developed in situ by a mechanism analogous to the formation of terrestrial ice lenses and needle ice. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycling and the movement of bulk water, neither of which are expected to have occurred in the geologically recent past on Mars. If however ice lens formation is possible at temperatures less than 273 K, there are possible implications for the habitability of Mars permafrost, since the same thin films of unfrozen water that lead to ice segregation are used by terrestrial psychrophiles to metabolize and grow down to temperatures of at least 258 K.

  3. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  4. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  5. Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades

    Science.gov (United States)

    Palacios, Jose Luis

    A low-power, non-thermal ultrasonic de-icing system is introduced as a possible substitute for current electro-thermal systems. The system generates delaminating ultrasonic transverse shear stresses at the interface of accreted ice. A PZT-4 disk driven at 28.5 KHz (radial resonance of the disk) instantaneously de-bonds 2 mm thick freezer ice layers. The ice layers are accreted to a 0.7 mm thick, 30.4 cm x 30.4 cm steel plate at an environment temperature of -20°C. A power input of 50 Watts is applied to the actuator (50 V, 19.6 KV/m), which translates to a de-icing power of 0.07 W/cm2. A finite element model of the actuator bonded to the isotropic plate is used to guide the design of the system, and predicts the transverse shear stresses at the ice interface. Wind tunnel icing tests were conducted to demonstrate the potential use of the proposed system under impact icing conditions. Both glaze ice and rime ice were generated on steel and composite plates by changing the cloud conditions of the wind tunnel. Continuous ultrasonic vibration prevented impact ice formation around the actuator location at an input power not exceeding 0.18 W/cm 2 (1.2 W/in2). As ice thickness reached a critical thickness of approximately 1.2 mm, shedding occurred on those locations where ultrasonic transverse shear stresses exceeded the shear adhesion strength of the ice. Finite element transverse shear stress predictions correlate with observed experimental impact ice de-bonding behavior. To increase the traveling distance of propagating ultrasonic waves, ultrasonic shear horizontal wave modes are studied. Wave modes providing large modal interface transverse shear stress concentration coefficients (ISCC) between the host structure (0.7 mm thick steel plate) and accreted ice (2.5 mm thick ice layer) are identified and investigated for a potential increase in the wave propagation distance. Ultrasonic actuators able to trigger these optimum wave modes are designed and fabricated. Despite

  6. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  7. Some aspects of floating ice related to sea surface operations in the Barents sea

    International Nuclear Information System (INIS)

    Loeset, S.

    1993-01-01

    The present work highlights some aspects of floating ice related to sea surface operations in the Barents sea. The thesis consists of eight papers which fall into two main categories; one part deals with numerical modeling of the temperature distribution and ablation of icebergs (three papers), and the other part studies the behavior of broken ice, focusing on both laboratory experiments and numerical modeling. The temperature distribution within an iceberg affects the mechanical strength of the ice and is therefore crucial in engineering applications when estimating loads from impinging icebergs on offshore structures. A numerical model which simulates the temperature distribution and ablation of icebergs has been developed. The model shows that the depth of the thermal disturbance and slope of the temperature gradient of an iceberg depend on the boundary conditions and the time at sea. By about 12 m into the ice, the temperature is virtually free of any thermal boundary influence. Oil spill response techniques are vulnerable to the presence of sea ice. Deflecting ice upstream of a spill site by means of a flexible boom will facilitate the application of conventional oil spill recovery systems such as oil skimmers and booms. Experiments with such an ice deflecting boom were conducted in an ice tank to determine the loads on the boom and to study the ice-free wake. The study indicated the technical feasibility of the ice boom concept as an operational tool for oil spill cleanups. A two-dimensional discrete element model has been developed. This model simulates the dynamics and interaction forces between distinct ice floes in a broken ice field. The numerical model was applied to estimate the loads on a boom used for ice management. 121 refs., 70 figs., 10 tabs

  8. Dynamics and Structural Details of Amorphous Phases of Ice Determined by Incoherent Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Klug, D.D.; Tulk, C.A.; Svensson, E.C.; Loong, C.

    1999-01-01

    Incoherent-inelastic neutron scattering data are obtained over the energy range of lattice and internal vibrations of water molecules in phases of ice prepared by pressure-induced amorphization (high-density amorphous ice, hda), by thermal annealing of hda (low-density amorphous ice, lda), and by rapidly cooling water, as well as in ice Ih and Ic . Hydrogen bonding interactions in lda differ significantly from those in the glass obtained by rapid quenching, which has hydrogen-bond interactions characteristic of highly supercooled water. Hydrogen-bond interactions in hda are weaker than in the low-density phases. copyright 1999 The American Physical Society

  9. Human impacts on river ice regime in the Carpathian Basin

    Science.gov (United States)

    Takács, Katalin; Nagy, Balázs; Kern, Zoltán

    2014-05-01

    River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected

  10. The IceProd Framework

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2015-01-01

    of computational resources. IceProd is a distributed management system based on Python, XML-RPC and GridFTP. It is driven by a central database in order to coordinate and admin- ister production of simulations and processing of data produced by the IceCube detector. IceProd runs as a separate layer on top of other...

  11. 2006 Program of Study: Ice

    Science.gov (United States)

    2007-03-01

    form a debris flow. One such debris flow, initiated by a glacial lake flood in Peru in 1941, devastated the city of Huaraz, killing over 6000 people [5...ice, a series of’ prototype interlocking fingers is formed which grow ats the ice floes areI compressed and the ice floes plough through one another

  12. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  13. Polar Stereographic Valid Ice Masks Derived from National Ice Center Monthly Sea Ice Climatologies, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — These valid ice masks provide a way to remove spurious ice caused by residual weather effects and land spillover in passive microwave data. They are derived from the...

  14. Circulation and Respiration in Ice-covered Alaskan Arctic Lakes

    Science.gov (United States)

    MacIntyre, S.; Cortés, A.

    2016-12-01

    Arctic lakes are ice-covered 9 months of the year. For some of this time, the sediments heat the overlying water, and respiration in the sediments increases specific conductivity, depletes oxygen, and produces greenhouse gases (GHG). Whether anoxia forms and whether the greenhouse gases are sequestered at depth depends on processes inducing circulation and upward fluxes. Similarly, whether the GHG are released at ice off depends on the extent of vertical mixing at that time. Using time series meteorological data and biogeochemical arrays with temperature, specific conductivity, and optical oxygen sensors in 5 lakes ranging from 1 to 150 ha, we illustrate the connections between meteorological forcing and within lake processes including gravity currents resulting from increased density just above the sediment water interface and internal waves including those induced by winds acting on the surface of the ice and at ice off. CO2 production was well predicted by the initial rate of oxygen drawdown near the bottom at ice on and that the upward density flux depended on lake size, with values initially high in all lakes but near molecular in lakes of a few hectares in size by mid-winter. Both CO2 production and within lake vertical fluxes were independent of the rate of cooling in fall and subsequent within lake temperatures under the ice. Anoxia formed near the sediments in all 5 lakes with the concentration of CH4 dependent, in part, on lake size and depth. Twenty to fifty percent of the greenhouse gases produced under the ice remained in the lakes by the time thermal stratification was established in summer despite considerable internal wave induced mixing at the time of ice off. These observations and analysis lay a framework for understanding the links between within lake hydrodynamics, within year variability, and the fraction of greenhouse gases produced over the winter which evade at ice off.

  15. User's guide for ICE

    International Nuclear Information System (INIS)

    Fraley, S.K.

    1976-07-01

    ICE is a cross-section mixing code which will accept cross sections from an AMPX working library and produce mixed cross sections in the AMPX working library format, ANISN format, and the group-independent ANISN format. User input is in the free-form or fixed-form FIDO structure. The code is operable as a module in the AMPX system

  16. Autosub under ice

    OpenAIRE

    Griffiths, G.

    2005-01-01

    Autosub made headlines recently when it became trapped under 200m of ice in Antarctica.Here we explore the ideas behind the £5.86 million research programme, and look back at an earlier expedition which took place last summer off the coast of Greenland.

  17. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  18. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  19. An Explorative Study to Use DBD Plasma Generation for Aircraft Icing Mitigation

    Science.gov (United States)

    Hu, Hui; Zhou, Wenwu; Liu, Yang; Kolbakir, Cem

    2017-11-01

    An explorative investigation was performed to demonstrate the feasibility of utilizing thermal effect induced by Dielectric-Barrier-Discharge (DBD) plasma generation for aircraft icing mitigation. The experimental study was performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT). A NACA0012 airfoil/wing model embedded with DBD plasma actuators was installed in ISU-IRT under typical glaze icing conditions pertinent to aircraft inflight icing phenomena. While a high-speed imaging system was used to record the dynamic ice accretion process over the airfoil surface for the test cases with and without switching on the DBD plasma actuators, an infrared (IR) thermal imaging system was utilized to map the corresponding temperature distributions to quantify the unsteady heat transfer and phase changing process over the airfoil surface. The thermal effect induced by DBD plasma generation was demonstrated to be able to keep the airfoil surface staying free of ice during the entire ice accretion experiment. The measured quantitative surface temperature distributions were correlated with the acquired images of the dynamic ice accretion and water runback processes to elucidate the underlying physics. National Science Foundation CBET-1064196 and CBET-1435590.

  20. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  1. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  2. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    Science.gov (United States)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  3. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  4. Load Shifting and Storage of Cooling Energy through Ice Bank or Ice Slurry Systems: modelling and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino

    2009-10-15

    Ice based Cool Thermal Energy Storage (CTES) systems have attracted much attention during last few decades. The reasons are mainly of economical and environmental nature. Compared to conventional refrigeration and air-conditioning systems without cool thermal energy storage, implementation of CTES will increase environmental standards and overall efficiency of the energy systems as it contributes to the phase-out of synthetic refrigerants and reduces peak loads in electricity grids. For the application of a cool thermal energy storages in refrigeration installations and HVAC systems in industry and building sector, it is necessary to have appropriate design tools in order to sufficiently accurate predict their performance. In this thesis theoretical and experimental investigations of two ice based cool thermal energy storage systems, namely static, indirect, external melt, ice-on-coil, i.e. ice bank system and dynamic, ice slurry cool thermal energy storage system are carried out. An ice bank storage technology for cooling purposes is known for a long time. The main drawbacks which are hindering its wider use are the system complexity, high first costs, system efficiency which is highly dependant on design, control and monitoring of the system, etc. On the other hand, ice slurry technology was not well studied until recently, while in the current scientific literature there are still differences between results and conclusions reported by different investigators. The aim of the present thesis is to extend the knowledge in the field of ice based CTES systems, thereby contributing in the development and wider utilization of those systems. In the first part of the thesis a computer application, named 'BankaLeda' is presented. It enables simulation of an ice bank system performance. In order to verify developed simulation model an experimental evaluation has been performed. Field measurements have been conducted on a two module silo which was installed as a

  5. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  6. Time Dependent Frictional Changes in Ice due to Contact Area Changes

    Science.gov (United States)

    Sevostianov, V.; Lipovsky, B. P.; Rubinstein, S.; Dillavou, S.

    2017-12-01

    Sliding processes along the ice-bed interface of Earth's great ice sheets are the largest contributor to our uncertainty in future sea level rise. Laboratory experiments that have probed sliding processes have ubiquitously shown that ice-rock interfaces strengthen while in stationary contact (Schulson and Fortt, 2013; Zoet et al., 2013; McCarthy et al., 2017). This so-called frictional ageing effect may have profound consequences for ice sheet dynamics because it introduces the possibility of basal strength hysteresis. Furthermore this effect is quite strong in ice-rock interfaces (more than an order of magnitude more pronounced than in rock-rock sliding) and can double in frictional strength in a matter of minutes, much faster than most frictional aging (Dieterich, 1972; Baumberger and Caroli, 2006). Despite this importance, the underling physics of frictional ageing of ice remain poorly understood. Here we conduct laboratory experiments to image the microscopic points of contact along an ice-glass interface. We optically measure changes in the real area of contact over time using measurements of this reflected optical light intensity. We show that contact area increases with time of stationary contact. This result suggests that thermally enhanced creep of microscopic icy contacts is responsible for the much larger frictional ageing observed in ice-rock versus rock-rock interfaces. Furthermore, this supports a more physically detailed description of the thermal dependence of basal sliding than that used in the current generation of large scale ice sheet models.

  7. Heterogeneous ice nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bogdan, A. [Helsinki Univ. (Finland). Dept. of Physics

    1994-12-31

    The classical theory of heterogenous ice nucleation is reviewed in detail. The modelling of ice nucleation in the adsorbed water films on natural particles by analogous ice nucleation in adsorbed water films on the walls of porous media is discussed. Ice nucleation in adsorbed films of purewater and the HNO{sub 3}/H{sub 2}0 binary system on the surface of porous aerosol (SiO{sub 2}) was investigated using the method of NMR spectroscopy. The median freezing temperature and freezing temperature region were shown to be highly sensitive both to the average thickness of the adsorbed films and to the amount of adsorbed nitric acid. The character of the ice phase formation tends to approach that of bulk liquid with increasing adsorbed film thickness. Under the given conditions the thickness of the adsorbed films decreases with an increasing amount of adsorbed nitric acid molecules The molar concentration of nitric acid in the adsorbed films is very small (of the order of 10{sup -}3 10{sup -}2 (M/l)). Nitric acid molecules tend to adsorb on the surface of aerosol to a greater extent than in subsequent layers. The concentration is greatest in layers situated close to the surface and sharply decreases with the distance from the surface. The difference between the median freezing temperatures for adsorbed pure water and for the binary system was found to be about 9 K for films of equal thickness. This is about 150 times greater than the difference between the median freezing temperatures of bulk pure water and a solution with the same concentration of nitric acid. (orig.)

  8. The Heat Flux through the Ice Shell on Europa, Constraints from Measurements in Terrestrial Conditions

    Science.gov (United States)

    Hruba, J.; Kletetschka, G.

    2017-12-01

    Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick

  9. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    Science.gov (United States)

    1980-09-01

    N. and Tabata , T., Ice study in the Gulf of Peschanskii, I.S., Ice science and ice technology, Bothnia, III: observations on large grains of ice...ice and by Sterrett, K.F., The arctic environment and the hitting ice floes. Results of these measurements have arctic surface effect vehicle, Cold...ice growth, temperature 26-3673 effects, ice cover thickness. 28-557 Determining contact stresses when a ship’s stem hits the ice, Kheisin, D.E

  10. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites

    Science.gov (United States)

    Friedson, A. J.; Stevenson, D. J.

    1983-01-01

    Theory and experiments are used to establish lower and upper bounds on the ratio of actual viscosity to pure ice viscosity for a suspension of rock particles in a water ice matrix. A rheological model for rock-ice mixtures is described, establishing bounds for the range of possible viscosity enhancements provided by a suspension of silicate spheres in an ice matrix. A parametrized thermal convection model is described and used to determine a criterion for criticality, defined as the heat flow and/or silicate volume fraction for which the satellite temperature profile intercepts the melting curve of water ice. The consequences of achieving this critical state are examined, and it is shown that under certain circumstances a 'runaway' differentiation can occur in which the silicates settle to form a core and extensive melting of water ice takes place, the latent heat being supplied by the gravitational energy of differentiation. A possible application of these results to Ganymede and Callisto is described.

  11. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    Science.gov (United States)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  12. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons

    Science.gov (United States)

    Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena

    2017-06-01

    Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.

  13. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  14. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate

    Science.gov (United States)

    Hughes, T.

    2008-12-01

    Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions

  15. An ice-binding and tandem beta-sandwich domain-containing protein in Shewanella frigidimarina is a potential new type of ice adhesin.

    Science.gov (United States)

    Vance, Tyler D R; Graham, Laurie A; Davies, Peter L

    2018-04-01

    Out of the dozen different ice-binding protein (IBP) structures known, the DUF3494 domain is the most widespread, having been passed many times between prokaryotic and eukaryotic microorganisms by horizontal gene transfer. This ~25-kDa β-solenoid domain with an adjacent parallel α-helix is most commonly associated with an N-terminal secretory signal peptide. However, examples of the DUF3494 domain preceded by tandem Bacterial Immunoglobulin-like (BIg) domains are sometimes found, though uncharacterized. Here, we present one such protein (SfIBP_1) from the Antarctic bacterium Shewanella frigidimarina. We have confirmed and characterized the ice-binding activity of its ice-binding domain using thermal hysteresis measurements, fluorescent ice plane affinity analysis, and ice recrystallization inhibition assays. X-ray crystallography was used to solve the structure of the SfIBP_1 ice-binding domain, to further characterize its ice-binding surface and unique method of stabilizing or 'capping' the ends of the solenoid structure. The latter is formed from the interaction of two loops mediated by a combination of tandem prolines and electrostatic interactions. Furthermore, given their domain architecture and membrane association, we propose that these BIg-containing DUF3494 IBPs serve as ice-binding adhesion proteins that are capable of adsorbing their host bacterium onto ice. Submitted new structure to the Protein Data Bank (PDB: 6BG8). © 2018 Federation of European Biochemical Societies.

  16. Modelling sea ice formation in the Terra Nova Bay polynya

    Science.gov (United States)

    Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.

    2017-02-01

    Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to

  17. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  18. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.

    Science.gov (United States)

    Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  19. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices

    Science.gov (United States)

    Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  20. GPR capabilities for ice thickness sampling of low salinity ice and for detecting oil in ice

    Energy Technology Data Exchange (ETDEWEB)

    Lalumiere, Louis [Sensors by Design Ltd. (Canada)

    2011-07-01

    This report discusses the performance and capabilities test of two airborne ground-penetrating radar (GPR) systems of the Bedford Institute of Oceanography (BIO), Noggin 1000 and Noggin 500, for monitoring low salinity snow and ice properties which was used to measure the thickness of brackish ice on Lake Melville in Labrador and on a tidal river in Prince Edward Island. The work of other researchers is documented and the measurement techniques proposed are compared to the actual GPR approach. Different plots of GPR data taken over snow and freshwater ice and over ice with changing salinity are discussed. An interpretation of brackish ice GPR plots done by the Noggin 1000 and Noggin 500 systems is given based on resolution criterion. Additionally, the capability of the BIO helicopter-borne GPR to detect oil-in-ice has been also investigated, and an opinion on the likelihood of the success of GPR as an oil-in-ice detector is given.

  1. Archival processes of the water stable isotope signal in East Antarctic ice cores

    Science.gov (United States)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  2. Animals and ICE

    DEFF Research Database (Denmark)

    van Hemmen, J Leo; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2016-01-01

    experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction i......TD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special...... issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source....

  3. Skating on slippery ice

    Directory of Open Access Journals (Sweden)

    J. M. J. van Leeuwen

    2017-12-01

    Full Text Available The friction of a stationary moving skate on smooth ice is investigated, in particular in relation to the formation of a thin layer of water between skate and ice. It is found that the combination of ploughing and sliding gives a friction force that is rather insensitive for parameters such as velocity and temperature. The weak dependence originates from the pressure adjustment inside the water layer. For instance, high velocities, which would give rise to high friction, also lead to large pressures, which, in turn, decrease the contact zone and so lower the friction. The theory is a combination and completion of two existing but conflicting theories on the formation of the water layer.

  4. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  5. Heat transfer coefficients obtainment by means of naphthalene sublimation in air; Obtencion de coeficientes de transferencia de calor por medio de la tecnica de sublimacion de naftalina en aire

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galindo, Jose Arturo; Garcia Gutierrez, Alonso [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    This work describes the experimental technique for the sublimation of naphthalene in air which measures heat transfer coefficients through the use of the analogy between the transference phenomena of heat and mass. The technique used to substitute the experimental measurements of heat transfer, in which it is difficult to control the border thermal conditions, when they are dimmed by the omnipresent problem of heat conduction through the walls of the transference surfaces. Two examples are included of the application technique and its potential is outlined. [Espanol] En este trabajo se describe la tecnica experimental de la sublimacion de naftalina en aire mediante la que se miden coeficientes de transferencia de masa. Los datos asi obtenidos pueden convertirse en coeficientes de transferencia de calor a traves del uso de la analogia entre los fenomenos de transferencia de calor y masa. La tecnica se utiliza para substituir las mediciones experimentales de transferencia de calor, en las que es dificil controlar las condiciones termicas de frontera, cuando las empana el problema omnipresente de la conduccion de calor a traves de las paredes de las superficies de transferencia. Se incluyen dos ejemplos de la aplicacion de la tecnica y se destaca su potencial.

  6. Heat transfer coefficients obtainment by means of naphthalene sublimation in air; Obtencion de coeficientes de transferencia de calor por medio de la tecnica de sublimacion de naftalina en aire

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galindo, Jose Arturo; Garcia Gutierrez, Alonso [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    This work describes the experimental technique for the sublimation of naphthalene in air which measures heat transfer coefficients through the use of the analogy between the transference phenomena of heat and mass. The technique used to substitute the experimental measurements of heat transfer, in which it is difficult to control the border thermal conditions, when they are dimmed by the omnipresent problem of heat conduction through the walls of the transference surfaces. Two examples are included of the application technique and its potential is outlined. [Espanol] En este trabajo se describe la tecnica experimental de la sublimacion de naftalina en aire mediante la que se miden coeficientes de transferencia de masa. Los datos asi obtenidos pueden convertirse en coeficientes de transferencia de calor a traves del uso de la analogia entre los fenomenos de transferencia de calor y masa. La tecnica se utiliza para substituir las mediciones experimentales de transferencia de calor, en las que es dificil controlar las condiciones termicas de frontera, cuando las empana el problema omnipresente de la conduccion de calor a traves de las paredes de las superficies de transferencia. Se incluyen dos ejemplos de la aplicacion de la tecnica y se destaca su potencial.

  7. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In{sub 2}O{sub 3} from In(tmhd){sub 3} as a solid precursor

    Energy Technology Data Exchange (ETDEWEB)

    Szkutnik, P. D., E-mail: pierre.szkutnik@cea.fr; Jiménez, C. [Université Grenoble Alpes, CNRS, LMGP, 3 Parvis Louis Néel, Minatec CS 50257, 38016 Grenoble Cedex 1 (France); Angélidès, L.; Todorova, V. [Air Liquide Electronics Systems, 8 rue des Méridiens–Sud Galaxie BP 228, 38433 Échirolles Cedex (France)

    2016-02-15

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd){sub 3} solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min{sup −1} in specified conditions) and the critical mass (defined as the minimum amount of precursor able to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In{sub 2}O{sub 3} layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.

  8. Arctic Ice Studies

    Science.gov (United States)

    1993-02-01

    i heoriotlscale wace s 50 kin wthe11 aii vertical leadi tof M o.ChrlesA Lcur the siir-ai’.orc~5 . ~ ~G. RLI Lt(lWA~S II I Shuchln P A P Ut alI 9...can be utilized msccesafully. distinguish between these two major ice types and open I. INTRODUCTION water. S THE geophysical and economic importance of

  9. Car engine breather icing

    OpenAIRE

    Horoufi, Aryan

    2012-01-01

    Icing in an engine breather system can block the engine breather pipe, cause excessive crankcase pressure and degrade the engine performance. In this project, a numerical study, experimental tests and CFD analysis are employed in order to understand condensation and the extent of freezing inside a vertical pipe, a horizontal pipe and a T-joint pipe which are exposed to an external convective cooling. The pipe internal flow is assumed to be a vapour/air mixture. This study has l...

  10. Marginal Ice Zone Bibliography.

    Science.gov (United States)

    1985-06-01

    Tsunamis, Gravimetry , Earth Tides, World Data Center A: Oceanography Recent Movements of the Earth’s National Oceanographic Data Center Crust...sufficiently low, the dissolved salts precipitate out in the form of solid hydrates. It has been proposed that these solid hydrates add to the overall...strength of the ice. The first salt hydrate to precipitate should be that of sodium sul- * fate, Na2SO4IOH2O (the sulfate ion is the second most

  11. Ice condenser experimental plan

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.

    1986-01-01

    An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points

  12. Vaporization, fusion and sublimation enthalpies of the dicarboxylic acids from C4 to C14 and C16

    International Nuclear Information System (INIS)

    Roux, Maria Victoria; Temprado, Manuel; Chickos, James S.

    2005-01-01

    The fusion enthalpies of the series butanedioic acid through to tetradecanedioic acid and hexadecanedioic acids have been measured by DSC. In addition to fusion, a number of solid-solid phase transitions have also been detected in these diacids. The vaporization enthalpies of these compounds have been measured by correlation gas chromatography using the vaporization enthalpies of butanedioic, hexanedioic and decanedioic acids as standards. The vaporization enthalpies of the diacids from C 4 to C 10 correlated linearly with the number of methylene groups present. Above C 10 , the vaporization enthalpies of C 11 -C 14 and C 16 begin to deviate from linearity. The vaporization enthalpies for these compounds are dependent on the temperature of the GC column used. Similar departure from linearity has also been observed previously in the sublimation enthalpies for these compounds. The results are discussed in terms of formation of a cyclic intramolecular hydrogen bonded network in the gas phase similar to the bimolecular association observed in smaller mono-carboxylic acids at ambient temperatures

  13. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method

    Science.gov (United States)

    Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo

    2018-05-01

    The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.

  14. Plasma assisted growth of MoO{sub 3} films on different substrate locations relative to sublimation source

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Saini, Sujit K.; Kumar, Prabhat; Singh, Megha; Reddy, G. B. [Thin film laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India)

    2016-05-06

    In the present paper, we reported the role of substrate locations relative to source on the growth of MoO{sub 3} films deposited on Ni coated glass substrates using plasma assisted sublimation process (PASP). According to the XRD and SEM results, substrate location is very crucial factor to control the morphology of MoO{sub 3} films and the best nanostructure growth (in terms of alignments and features) is obtained in case of Sample B (in which substrate is placed on source). The structural results point out that all films exhibit only orthorhombic phase of molybdenum oxide (i.e. α-MoO{sub 3})but the most preferential growth is recorded in Sample B due to the presence of intense peaks crossponding to only (0 k 0) family of crystal planes (k = 2, 4,6..). The Raman analysis again confirms the orthorhombic nature of MoO{sub 3} NFs and details of vibrational bondsin Sample B have been given in the present report. The MoO{sub 3} NFs show intense PL emission in wavelength range of 300-700 nm with three peaks located at 415, 490, and 523 nm in accordance to the improved crystallinity in Sample B.

  15. Using ice melting and ice rolling technologies to remove ice from sub-transmission and transmission lines at Manitoba Hydro

    International Nuclear Information System (INIS)

    Farias, A. R.

    1999-01-01

    Development of an of an Ice Storm Management program by Manitoba Hydro to reduce ice storm damage to its 8 kV feeders to 115 kV transmission lines, is discussed. The program consists of the de-icing of overhead lines, either by ice melting, or ice rolling. Ice melting involves the placement of a three-phase short at a calculated point. The term ice rolling denotes a process of mechanically stripping the ice from conductors. The most recent major ice storm experienced by Manitoba Hydro was in the winter of 1997/1998. During the period from February 6 to February 17, 1998, a total of 83 'ice melt' procedures were performed to melt the ice from 2,628 km of overhead line (7,883 km of conductor), in addition to 'ice rolling'. This paper describes Manitoba Hydro's 25-years' experience with ice melting and it also describes the advantages and disadvantages of both ice melting and ice rolling. Although not a panacea to combat the effects of ice storms, ice melting was found to be the most effective way of removing ice from overhead transmission and sub-transmission lines. Ice rolling was also found to be effective. Other tools that have been found to be useful by various utilities in combating ice storm damage include improved structure and line design, system design that provide more redundancies and emergency sources, and standby generators at critical load points

  16. ON THE FORMATION OF CO2 AND OTHER INTERSTELLAR ICES

    International Nuclear Information System (INIS)

    Garrod, R. T.; Pauly, T.

    2011-01-01

    We investigate the formation and evolution of interstellar dust-grain ices under dark-cloud conditions, with a particular emphasis on CO 2 . We use a three-phase model (gas/surface/mantle) to simulate the coupled gas-grain chemistry, allowing the distinction of the chemically active surface from the ice layers preserved in the mantle beneath. The model includes a treatment of the competition between barrier-mediated surface reactions and thermal-hopping processes. The results show excellent agreement with the observed behavior of CO 2 , CO, and water ice in the interstellar medium. The reaction of the OH radical with CO is found to be efficient enough to account for CO 2 ice production in dark clouds. At low visual extinctions, with dust temperatures ∼>12 K, CO 2 is formed by direct diffusion and reaction of CO with OH; we associate the resultant CO 2 -rich ice with the observational polar CO 2 signature. CH 4 ice is well correlated with this component. At higher extinctions, with lower dust temperatures, CO is relatively immobile and thus abundant; however, the reaction of H and O atop a CO molecule allows OH and CO to meet rapidly enough to produce a CO:CO 2 ratio in the range ∼2-4, which we associate with apolar signatures. We suggest that the observational apolar CO 2 /CO ice signatures in dark clouds result from a strongly segregated CO:H 2 O ice, in which CO 2 resides almost exclusively within the CO component. Observed visual-extinction thresholds for CO 2 , CO, and H 2 O are well reproduced by depth-dependent models. Methanol formation is found to be strongly sensitive to dynamical timescales and dust temperatures.

  17. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  18. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  19. Modeling the heating and melting of sea ice through light absorption by microalgae

    Science.gov (United States)

    Zeebe, Richard E.; Eicken, Hajo; Robinson, Dale H.; Wolf-Gladrow, Dieter; Dieckmann, Gerhard S.

    1996-01-01

    In sea ice of polar regions, high concentrations of microalgae are observed during the spring. Algal standing stocks may attain peak values of over 300 mg chl a m-2 in the congelation ice habitat. As of yet, the effect of additional heating of sea ice through conversion of solar radiation into heat by algae has not been investigated in detail. Local effects, such as a decrease in albedo, increasing melt rates, and a decrease of the physical strength of ice sheets may occur. To investigate the effects of microalgae on the thermal regime of sea ice, a time-dependent, one-dimensional thermodynamic model of sea ice was coupled to a bio-optical model. A spectral one-stream model was employed to determine spectral attenuation by snow, sea ice, and microalgae. Beer's law was assumed to hold for every wavelength. Energy absorption was obtained by calculating the divergence of irradiance in every layer of the model (Δz = 1 cm). Changes in sea ice temperature profiles were calculated by solving the heat conduction equation with a finite difference scheme. Model results indicate that when algal biomass is concentrated at the bottom of congelation ice, melting of ice resulting from the additional conversion of solar radiation into heat may effectively destroy the algal habitat, thereby releasing algal biomass into the water column. An algal layer located in the top of the ice sheet induced a significant increase in sea ice temperature (ΔT > 0.3 K) for snow depths less than 5 cm and algal standing stocks higher than 150 mg chl a m-2. Furthermore, under these conditions, brine volume increased by 21% from 181 to 219 parts per thousand, which decreased the physical strength of the ice.

  20. Radiation effects in ice: New results

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J.

    2008-01-01

    Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices

  1. Study of a micro-sublimation apparatus with removal of the vapours by pumping; application to the analysis of fluorinated products (1963)

    International Nuclear Information System (INIS)

    Delvalle, P.

    1963-01-01

    Micro-sublimation analysis presents definite advantages both from the qualitative and quantitative points of view. An automatic micro-sublimation analysis apparatus has been developed for the analysis of fluorinated products (ClF 3 , HF, UF 6 , etc.) but this is only one particular application of a method which has a far wider field of possible applications. We give first the most favorable conditions for the operation of such an apparatus. These conditions are the use of a detector which is linear and independent of the nature of the gas, the flow of the sublimed vapours in the conditions of molecular flow, and finally a reproducible and linear re-heating of the separating trap. The apparatus thus built has the advantage of yielding any analysis without prior calibration. It also makes possible the easy identification of an unknown product by the determination of its vapour pressure curve and its molecular weight. The analysis of fluorinated products with this apparatus has shown that the experimental results agree well with what is expected. (author) [fr

  2. Vapor pressures and standard molar enthalpies, entropies, and Gibbs free energies of sublimation of 2,4- and 3,4-dinitrobenzoic acids

    International Nuclear Information System (INIS)

    Vecchio, Stefano; Brunetti, Bruno

    2009-01-01

    The vapor pressures of the solid and liquid 2,4- and 3,4-dinitrobenzoic acids were determined by torsion-effusion and thermogravimetry under both isothermal and non-isothermal conditions, respectively. From the temperature dependence of vapor pressure derived by the experimental torsion-effusion and thermogravimetry data the molar enthalpies of sublimation Δ cr g H m 0 ( ) and vaporization Δ l g H m 0 ( ) were determined, respectively, at the middle of the respective temperature intervals. The melting temperatures and the molar enthalpies of fusion of these compounds were measured by d.s.c. Finally, the results obtained by all the methods proposed were corrected at the reference temperature of 298.15 K using the estimated heat capacity differences between gas and liquid for vaporization experiments and the estimated heat capacity differences between gas and solid for sublimation experiments. Therefore, the averages of the standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation at 298.15 K, have been derived.

  3. Ülev ei Kivisildniku luules. Üks lugemisviis. The Sublime „No” in Kivisildnik’s Poetry: A Way of Reading

    Directory of Open Access Journals (Sweden)

    Leo Luks

    2012-04-01

    Full Text Available This article aims toward a phenomenological interpretation of the unmediated experience of reading Sven Kivisildnik’s poetry. As the basic theoretical thesis of the article, I assert that there is always an inherent negativity in the feeling of the sublime, since this feeling is caused by unrepresentable experience. Likewise, I claim that this negativity is not merely a lack in aesthetic representation, but that it has deep ontological meaning in itself. I make connections between the inherent negativity in the feeling of the sublime and the concept of failure of linguistic utterance worked out by Jaan Undusk, Jaak Tomberg and Jüri Lipping. I come to the conclusion that the „no” in the feeling of sublimity is given to us in unmediated form. The practical (or applied intention of this article is to show that the dominant sociocentric interpretation of Kivisildnik’s poetry is one-sided and limiting. From the theoretical positions I have worked out, I outline the fundamental motifs of Kivisildnik’s poetry, and by means of examples drawn from the text, demonstrate how the „no” of the sublime is found there. I come to the conclusion that the dominant direction in Kivisildnik’s poetry is destruction. The article consists of an introduction, five sections, and a summary. In the first section („Approaches”, I briefly introduce the phenomenological approach. My position is that the work is always created during the act of reading, as the outcome of the union of text and reader. However, I leave the reader as subject open to definition, leaving it to drift as it were, since I am sceptical about the possibility of defining the subject. I do not claim that the sublime is the only possible conceptual framework for understanding poetry; rather, I consider the sublime as one proper theoretical metaphor for conceptualizing personal experience of reading. In the second section of the article („Defining poetry”, I make use of Rein Raud

  4. Sediment transport via needle ice: a new method for diffusive transport on laboratory-scale hillslopes

    Science.gov (United States)

    Sweeney, K. E.; Roering, J. J.; Rempel, A. W.

    2012-12-01

    Convex hilltops formed by diffusive sediment transport are a fundamental feature of soil-mantled landscapes worldwide. Additionally, the competition and interaction between hillslopes and valleys control basic topographic metrics, such as relief, drainage density, and breaks in slope-area scaling. Despite recent progress in erosive landscape experiments, no published work has explored the competition of hillslope diffusion and channel advection experimentally. Here, we present preliminary findings on the plausibility of needle ice driven frost creep as a mechanism for laboratory hillslope transport of wet sediment. In nature, needle ice is a diurnal form of ice segregation, whereby liquid water held in sediment pore space is driven upward toward a near-surface freezing front by a temperature-controlled liquid pressure gradient. As needles grow perpendicular to the surface, sediment is incorporated in the growing needle ice by temperature perturbations and associated downward shifts in the freezing front. Sediment then moves downslope due to melting or sublimation of the ice needles. We constructed a slope of saturated sediment in a freezer to constrain the temperature, grain size, and soil moisture limits on laboratory needle ice growth and sediment transport. Surficial sediment transport is measured during experimentation by tracking the movement of colored grains. Additionally, at the end of each run we measure depth-dependent sediment transport by taking slices of the experimental slope and observing the displacement of buried columns of colored grains. In agreement with past work, we find that with temperatures just below freezing, soil moisture above 35%, and silt-sized sediment, the moisture migration induced by freezing releases enough latent heat to maintain the location of the freezing front and encourage needle ice growth. Our experiments demonstrate that the amount of sediment incorporated during needle growth, i.e., the transport efficiency, can be

  5. Thermal probe design for Europa sample acquisition

    Science.gov (United States)

    Horne, Mera F.

    2018-01-01

    The planned lander missions to the surface of Europa will access samples from the subsurface of the ice in a search for signs of life. A small thermal drill (probe) is proposed to meet the sample requirement of the Science Definition Team's (SDT) report for the Europa mission. The probe is 2 cm in diameter and 16 cm in length and is designed to access the subsurface to 10 cm deep and to collect five ice samples of 7 cm3 each, approximately. The energy required to penetrate the top 10 cm of ice in a vacuum is 26 Wh, approximately, and to melt 7 cm3 of ice is 1.2 Wh, approximately. The requirement stated in the SDT report of collecting samples from five different sites can be accommodated with repeated use of the same thermal drill. For smaller sample sizes, a smaller probe of 1.0 cm in diameter with the same length of 16 cm could be utilized that would require approximately 6.4 Wh to penetrate the top 10 cm of ice, and 0.02 Wh to collect 0.1 g of sample. The thermal drill has the advantage of simplicity of design and operations and the ability to penetrate ice over a range of densities and hardness while maintaining sample integrity.

  6. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  7. What Governs Ice-Sticking in Planetary Science Experiments?

    Science.gov (United States)

    Gaertner, Sabrina; Gundlach, B.; Blum, J.; Fraser, H. J.

    2018-06-01

    Water ice plays an important role, alongside dust, in current theories of planet formation. Decades of laboratory experiments have proven that water ice is far stickier in particle collisions than dust. However, water ice is known to be a metastable material. Its physical properties strongly depend on its environmental parameters, the foremost being temperature and pressure. As a result, the properties of ice change not only with the environment it is observed in, but also with its thermal history.The abundance of ice structures that can be created by different environments likely explains the discrepancies observed across the multitude of collisional laboratory studies in the past [1-16]; unless the ices for such experiments have been prepared in the same way and are collided under the same environmental conditions, these experiments simply do not collide the same ices.This raises several questions:1. Which conditions and ice properties are most favourable for ice sticking?2. Which conditions and ice properties are closest to the ones observed in protoplanetary disks?3. To what extent do these two regimes overlap?4. Consequently, which collisional studies are most relevant to planetary science and therefore best suited to inform models of planet formation?In this presentation, I will give a non-exhaustive overview of what we already know about the properties of ice particles, covering those used in planetary science experiments and those observed in planet forming regions. I will discuss to what extent we can already answer questions 1-3, and what information we still need to obtain from observations, laboratory experiments, and modelling to be able to answer question 4.References:1. Bridges et al. 1984 Natur 309.2. Bridges et al. 1996 Icar 123.3. Deckers & Teiser 2016 MNRAS 456.4. Dilley & Crawford 1996 JGRE 101.5. Gundlach & Blum 2015 ApJ 798.6. Hatzes et al. 1991 Icar 89.7. Hatzes et al. 1988 MNRAS 231.8. Heißelmann et al. 2010 Icar 206.9. Higa et al. 1996 P

  8. Does Arctic sea ice reduction foster shelf-basin exchange?

    Science.gov (United States)

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  9. Release of N 2, CH 4, CO 2, and H 2O from surface ices on Enceladus

    Science.gov (United States)

    Hodyss, Robert; Goguen, Jay D.; Johnson, Paul V.; Campbell, Colin; Kanik, Isik

    2008-09-01

    We vapor deposit at 20 K a mixture of gases with the specific Enceladus plume composition measured in situ by the Cassini INMS [Waite, J.H., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., Tseng, W.L., 2006. Science 311, 1419-1422] to form a mixed molecular ice. As the sample is slowly warmed, we monitor the escaping gas quantity and composition with a mass spectrometer. Pioneering studies [Schmitt, B., Klinger, J., 1987. Different trapping mechanisms of gases by water ice and their relevance for comet nuclei. In: Rolfe, E.J., Battrick, B. (Eds.), Diversity and Similarity of Comets. SP-278. ESA, Noordwijk, The Netherlands, pp. 613-619; Bar-Nun, A., Kleinfeld, I., Kochavi, E., 1988. Phys. Rev. B 38, 7749-7754; Bar-Nun, A., Kleinfeld, I., 1989. Icarus 80, 243-253] have shown that significant quantities of volatile gases can be trapped in a water ice matrix well above the temperature at which the pure volatile ice would sublime. For our Enceladus ice mixture, a composition of escaping gases similar to that detected by Cassini in the Enceladus plume can be generated by the sublimation of the H 2O:CO 2:CH 4:N 2 mixture at temperatures between 135 and 155 K, comparable to the high temperatures inferred from the CIRS measurements [Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C., 2006. Science 311, 1401-1405] of the Enceladus "tiger stripes." This suggests that the gas escape phenomena that we measure in our experiments are an important process contributing to the gases emitted from Enceladus. A similar experiment for ice deposited at 70 K shows that both the processes of volatile trapping and release are temperature dependent over the temperature range relevant to Enceladus.