WorldWideScience

Sample records for subject-specific computer simulation

  1. Subject-specific computer simulation model for determining elbow loading in one-handed tennis backhand groundstrokes.

    Science.gov (United States)

    King, Mark A; Glynn, Jonathan A; Mitchell, Sean R

    2011-11-01

    A subject-specific angle-driven computer model of a tennis player, combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts, was developed to determine the effect of ball-racket impacts on loading at the elbow for one-handed backhand groundstrokes. Matching subject-specific computer simulations of a typical topspin/slice one-handed backhand groundstroke performed by an elite tennis player were done with root mean square differences between performance and matching simulations of elbow loading for a topspin and slice one-handed backhand groundstroke is relatively small. In this study, the relatively small differences in elbow loading may be due to comparable angle-time histories at the wrist and elbow joints with the major kinematic differences occurring at the shoulder. Using a subject-specific angle-driven computer model combined with a forward dynamics, equipment-specific computer model of tennis ball-racket impacts allows peak internal loading, net impulse, and shock due to ball-racket impact to be calculated which would not otherwise be possible without impractical invasive techniques. This study provides a basis for further investigation of the factors that may increase elbow loading during tennis strokes.

  2. Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand groundstrokes.

    Science.gov (United States)

    Kentel, Behzat B; King, Mark A; Mitchell, Sean R

    2011-11-01

    A torque-driven, subject-specific 3-D computer simulation model of the impact phase of one-handed tennis backhand strokes was evaluated by comparing performance and simulation results. Backhand strokes of an elite subject were recorded on an artificial tennis court. Over the 50-ms period after impact, good agreement was found with an overall RMS difference of 3.3° between matching simulation and performance in terms of joint and racket angles. Consistent with previous experimental research, the evaluation process showed that grip tightness and ball impact location are important factors that affect postimpact racket and arm kinematics. Associated with these factors, the model can be used for a better understanding of the eccentric contraction of the wrist extensors during one-handed backhand ground strokes, a hypothesized mechanism of tennis elbow.

  3. High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods.

    Science.gov (United States)

    Toma, Milan; Bloodworth, Charles H; Einstein, Daniel R; Pierce, Eric L; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2016-12-01

    The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.

  4. Subject-specific computational modeling of DBS in the PPTg area

    Directory of Open Access Journals (Sweden)

    Laura M. Zitella

    2015-07-01

    Full Text Available Deep brain stimulation (DBS in the pedunculopontine tegmental nucleus (PPTg has been proposed to alleviate medically intractable gait difficulties associated with Parkinson’s disease. Clinical trials have shown somewhat variable outcomes, stemming in part from surgical targeting variability, modulating fiber pathways implicated in side effects, and a general lack of mechanistic understanding of DBS in this brain region. Subject-specific computational models of DBS are a promising tool to investigate the underlying therapy and side effects. In this study, a parkinsonian rhesus macaque was implanted unilaterally with an 8-contact DBS lead in the PPTg region. Fiber tracts adjacent to PPTg, including the oculomotor nerve, central tegmental tract, and superior cerebellar peduncle, were reconstructed from a combination of pre-implant 7T MRI, post-implant CT, and post-mortem histology. These structures were populated with axon models and coupled with a finite element model simulating the voltage distribution in the surrounding neural tissue during stimulation. This study introduces two empirical approaches to evaluate model parameters. First, incremental monopolar cathodic stimulation (20Hz, 90µs pulse width was evaluated for each electrode, during which a right eyelid flutter was observed at the proximal four contacts (-1.0 to -1.4mA. These current amplitudes followed closely with model predicted activation of the oculomotor nerve when assuming an anisotropic conduction medium. Second, PET imaging was collected OFF-DBS and twice during DBS (two different contacts, which supported the model predicted activation of the central tegmental tract and superior cerebellar peduncle. Together, subject-specific models provide a framework to more precisely predict pathways modulated by DBS.

  5. Computer codes for simulating atomic-displacement cascades in solids subject to irradiation

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko

    1979-03-01

    In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)

  6. A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity

    Science.gov (United States)

    Harris, Michael D.; Cyr, Adam J.; Ali, Azhar A.; Fitzpatrick, Clare K.; Rullkoetter, Paul J.; Maletsky, Lorin P.; Shelburne, Kevin B.

    2016-01-01

    Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community. PMID:27306137

  7. Digital control computer upgrade at the Cernavoda NPP simulator

    International Nuclear Information System (INIS)

    Ionescu, T.

    2006-01-01

    The Plant Process Computer equips some Nuclear Power Plants, like CANDU-600, with Centralized Control performed by an assembly of two computers known as Digital Control Computers (DCC) and working in parallel for safely driving of the plan at steady state and during normal maneuvers but also during abnormal transients when the plant is automatically steered to a safe state. The Centralized Control means both hardware and software with obligatory presence in the frame of the Full Scope Simulator and subject to changing its configuration with specific requirements during the plant and simulator life and covered by this subsection

  8. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  9. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model--a report on the Virtual Intracranial Stenting Challenge 2007.

    Science.gov (United States)

    Radaelli, A G; Augsburger, L; Cebral, J R; Ohta, M; Rüfenacht, D A; Balossino, R; Benndorf, G; Hose, D R; Marzo, A; Metcalfe, R; Mortier, P; Mut, F; Reymond, P; Socci, L; Verhegghe, B; Frangi, A F

    2008-07-19

    This paper presents the results of the Virtual Intracranial Stenting Challenge (VISC) 2007, an international initiative whose aim was to establish the reproducibility of state-of-the-art haemodynamical simulation techniques in subject-specific stented models of intracranial aneurysms (IAs). IAs are pathological dilatations of the cerebral artery walls, which are associated with high mortality and morbidity rates due to subarachnoid haemorrhage following rupture. The deployment of a stent as flow diverter has recently been indicated as a promising treatment option, which has the potential to protect the aneurysm by reducing the action of haemodynamical forces and facilitating aneurysm thrombosis. The direct assessment of changes in aneurysm haemodynamics after stent deployment is hampered by limitations in existing imaging techniques and currently requires resorting to numerical simulations. Numerical simulations also have the potential to assist in the personalized selection of an optimal stent design prior to intervention. However, from the current literature it is difficult to assess the level of technological advancement and the reproducibility of haemodynamical predictions in stented patient-specific models. The VISC 2007 initiative engaged in the development of a multicentre-controlled benchmark to analyse differences induced by diverse grid generation and computational fluid dynamics (CFD) technologies. The challenge also represented an opportunity to provide a survey of available technologies currently adopted by international teams from both academic and industrial institutions for constructing computational models of stented aneurysms. The results demonstrate the ability of current strategies in consistently quantifying the performance of three commercial intracranial stents, and contribute to reinforce the confidence in haemodynamical simulation, thus taking a step forward towards the introduction of simulation tools to support diagnostics and

  10. Medical Image Processing for Fully Integrated Subject Specific Whole Brain Mesh Generation

    Directory of Open Access Journals (Sweden)

    Chih-Yang Hsu

    2015-05-01

    control in virtual reality. Subject-specific computational meshes are also a prerequisite for computer simulations of cerebral hemodynamics and the effects of traumatic brain injury.

  11. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  12. Validating subject-specific RF and thermal simulations in the calf muscle using MR-based temperature measurements

    NARCIS (Netherlands)

    Simonis, Ffj; Raaijmakers, Aje; Lagendijk, Jjw; van den Berg, Cat

    2017-01-01

    Purpose: Ongoing discussions occur to translate the safety restrictions on MR scanners from specific absorption rate (SAR) to thermal dose. Therefore, this research focuses on the accuracy of thermal simulations in human subjects during an MR exam, which is fundamental information in that debate.

  13. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  14. A Computational Framework to Optimize Subject-Specific Hemodialysis Blood Flow Rate to Prevent Intimal Hyperplasia

    Science.gov (United States)

    Mahmoudzadeh, Javid; Wlodarczyk, Marta; Cassel, Kevin

    2017-11-01

    Development of excessive intimal hyperplasia (IH) in the cephalic vein of renal failure patients who receive chronic hemodialysis treatment results in vascular access failure and multiple treatment complications. Specifically, cephalic arch stenosis (CAS) is known to exacerbate hypertensive blood pressure, thrombosis, and subsequent cardiovascular incidents that would necessitate costly interventional procedures with low success rates. It has been hypothesized that excessive blood flow rate post access maturation which strongly violates the venous homeostasis is the main hemodynamic factor that orchestrates the onset and development of CAS. In this article, a computational framework based on a strong coupling of computational fluid dynamics (CFD) and shape optimization is proposed that aims to identify the effective blood flow rate on a patient-specific basis that avoids the onset of CAS while providing the adequate blood flow rate required to facilitate hemodialysis. This effective flow rate can be achieved through implementation of Miller's surgical banding method after the maturation of the arteriovenous fistula and is rooted in the relaxation of wall stresses back to a homeostatic target value. The results are indicative that this optimized hemodialysis blood flow rate is, in fact, a subject-specific value that can be assessed post vascular access maturation and prior to the initiation of chronic hemodialysis treatment as a mitigative action against CAS-related access failure. This computational technology can be employed for individualized dialysis treatment.

  15. Sophistication of computational science and fundamental physics simulations

    International Nuclear Information System (INIS)

    Ishiguro, Seiji; Ito, Atsushi; Usami, Shunsuke; Ohtani, Hiroaki; Sakagami, Hitoshi; Toida, Mieko; Hasegawa, Hiroki; Horiuchi, Ritoku; Miura, Hideaki

    2016-01-01

    Numerical experimental reactor research project is composed of the following studies: (1) nuclear fusion simulation research with a focus on specific physical phenomena of specific equipment, (2) research on advanced simulation method to increase predictability or expand its application range based on simulation, (3) visualization as the foundation of simulation research, (4) research for advanced computational science such as parallel computing technology, and (5) research aiming at elucidation of fundamental physical phenomena not limited to specific devices. Specifically, a wide range of researches with medium- to long-term perspectives are being developed: (1) virtual reality visualization, (2) upgrading of computational science such as multilayer simulation method, (3) kinetic behavior of plasma blob, (4) extended MHD theory and simulation, (5) basic plasma process such as particle acceleration due to interaction of wave and particle, and (6) research related to laser plasma fusion. This paper reviews the following items: (1) simultaneous visualization in virtual reality space, (2) multilayer simulation of collisionless magnetic reconnection, (3) simulation of microscopic dynamics of plasma coherent structure, (4) Hall MHD simulation of LHD, (5) numerical analysis for extension of MHD equilibrium and stability theory, (6) extended MHD simulation of 2D RT instability, (7) simulation of laser plasma, (8) simulation of shock wave and particle acceleration, and (9) study on simulation of homogeneous isotropic MHD turbulent flow. (A.O.)

  16. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  17. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  18. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  19. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  20. Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton.

    Science.gov (United States)

    Szwedowski, T D; Fialkov, J; Whyne, C M

    2011-01-01

    Developing a more complete understanding of the mechanical response of the craniofacial skeleton (CFS) to physiological loads is fundamental to improving treatment for traumatic injuries, reconstruction due to neoplasia, and deformities. Characterization of the biomechanics of the CFS is challenging due to its highly complex structure and heterogeneity, motivating the utilization of experimentally validated computational models. As such, the objective of this study was to develop, experimentally validate, and parametrically analyse a patient-specific finite element (FE) model of the CFS to elucidate a better understanding of the factors that are of intrinsic importance to the skeletal structural behaviour of the human CFS. An FE model of a cadaveric craniofacial skeleton was created from subject-specific computed tomography data. The model was validated based on bone strain measurements taken under simulated physiological-like loading through the masseter and temporalis muscles (which are responsible for the majority of craniofacial physiologic loading due to mastication). The baseline subject-specific model using locally defined cortical bone thicknesses produced the strongest correlation to the experimental data (r2 = 0.73). Large effects on strain patterns arising from small parametric changes in cortical thickness suggest that the very thin bony structures present in the CFS are crucial to characterizing the local load distribution in the CFS accurately.

  1. Cluster computing software for GATE simulations

    International Nuclear Information System (INIS)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-01-01

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values

  2. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  3. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  4. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.

    Science.gov (United States)

    Valente, Giordano; Crimi, Gianluigi; Vanella, Nicola; Schileo, Enrico; Taddei, Fulvia

    2017-12-01

    Musculoskeletal modeling and simulations of movement have been increasingly used in orthopedic and neurological scenarios, with increased attention to subject-specific applications. In general, musculoskeletal modeling applications have been facilitated by the development of dedicated software tools; however, subject-specific studies have been limited also by time-consuming modeling workflows and high skilled expertise required. In addition, no reference tools exist to standardize the process of musculoskeletal model creation and make it more efficient. Here we present a freely available software application, nmsBuilder 2.0, to create musculoskeletal models in the file format of OpenSim, a widely-used open-source platform for musculoskeletal modeling and simulation. nmsBuilder 2.0 is the result of a major refactoring of a previous implementation that moved a first step toward an efficient workflow for subject-specific model creation. nmsBuilder includes a graphical user interface that provides access to all functionalities, based on a framework for computer-aided medicine written in C++. The operations implemented can be used in a workflow to create OpenSim musculoskeletal models from 3D surfaces. A first step includes data processing to create supporting objects necessary to create models, e.g. surfaces, anatomical landmarks, reference systems; and a second step includes the creation of OpenSim objects, e.g. bodies, joints, muscles, and the corresponding model. We present a case study using nmsBuilder 2.0: the creation of an MRI-based musculoskeletal model of the lower limb. The model included four rigid bodies, five degrees of freedom and 43 musculotendon actuators, and was created from 3D surfaces of the segmented images of a healthy subject through the modeling workflow implemented in the software application. We have presented nmsBuilder 2.0 for the creation of musculoskeletal OpenSim models from image-based data, and made it freely available via nmsbuilder

  5. Computer simulation in cell radiobiology

    International Nuclear Information System (INIS)

    Yakovlev, A.Y.; Zorin, A.V.

    1988-01-01

    This research monograph demonstrates the possible ways of using stochastic simulation for exploring cell kinetics, emphasizing the effects of cell radiobiology. In vitro kinetics of normal and irradiated cells is the main subject, but some approaches to the simulation of controlled cell systems are considered as well: the epithelium of the small intestine in mice taken as a case in point. Of particular interest is the evaluation of simulation modelling as a tool for gaining insight into biological processes and hence the new inferences from concrete experimental data, concerning regularities in cell population response to irradiation. The book is intended to stimulate interest among computer science specialists in developing new, more efficient means for the simulation of cell systems and to help radiobiologists in interpreting the experimental data

  6. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  7. Optimal Multitrial Prediction Combination and Subject-Specific Adaptation for Minimal Training Brain Switch Designs

    NARCIS (Netherlands)

    Spyrou, L.; Blokland, Y.M.; Farquhar, J.D.R.; Bruhn, J.

    2016-01-01

    Brain-Computer Interface (BCI) systems are traditionally designed by taking into account user-specific data to enable practical use. More recently, subject independent (SI) classification algorithms have been developed which bypass the subject specific adaptation and enable rapid use of the system.

  8. Optimal multitrial prediction combination and subject-specific adaptation for minimal training brain switch designs

    NARCIS (Netherlands)

    Spyrou, L.; Blokland, Y.M.; Farquhar, J.D.R.; Bruhn, J.

    2016-01-01

    Brain-Computer Interface systems are traditionally designed by taking into account user-specific data to enable practical use. More recently, subject independent (SI) classification algorithms have been developed which bypass the subject specific adaptation and enable rapid use of the system. A

  9. Subjective Response to Simulated Sonic Booms in Homes

    Science.gov (United States)

    McCurdy, David A.; Brown, Sherilyn A.

    1996-01-01

    One of the environmental issues affecting the development of a second-generation supersonic commercial transport is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonic over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' ratings and can be placed and operated in individual homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment. The effects on annoyance of several other parameters were also examined. Initially, data analyses were based on all the data collected. However, further analyser found that test subjects adapted to the sonic

  10. Simulation of biological ion channels with technology computer-aided design.

    Science.gov (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H

    2007-01-01

    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  11. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  12. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  13. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  14. Computer task performance by subjects with Duchenne muscular dystrophy.

    Science.gov (United States)

    Malheiros, Silvia Regina Pinheiro; da Silva, Talita Dias; Favero, Francis Meire; de Abreu, Luiz Carlos; Fregni, Felipe; Ribeiro, Denise Cardoso; de Mello Monteiro, Carlos Bandeira

    2016-01-01

    Two specific objectives were established to quantify computer task performance among people with Duchenne muscular dystrophy (DMD). First, we compared simple computational task performance between subjects with DMD and age-matched typically developing (TD) subjects. Second, we examined correlations between the ability of subjects with DMD to learn the computational task and their motor functionality, age, and initial task performance. The study included 84 individuals (42 with DMD, mean age of 18±5.5 years, and 42 age-matched controls). They executed a computer maze task; all participants performed the acquisition (20 attempts) and retention (five attempts) phases, repeating the same maze. A different maze was used to verify transfer performance (five attempts). The Motor Function Measure Scale was applied, and the results were compared with maze task performance. In the acquisition phase, a significant decrease was found in movement time (MT) between the first and last acquisition block, but only for the DMD group. For the DMD group, MT during transfer was shorter than during the first acquisition block, indicating improvement from the first acquisition block to transfer. In addition, the TD group showed shorter MT than the DMD group across the study. DMD participants improved their performance after practicing a computational task; however, the difference in MT was present in all attempts among DMD and control subjects. Computational task improvement was positively influenced by the initial performance of individuals with DMD. In turn, the initial performance was influenced by their distal functionality but not their age or overall functionality.

  15. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    Science.gov (United States)

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Computer Networks E-learning Based on Interactive Simulations and SCORM

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Candelas

    2011-05-01

    Full Text Available This paper introduces a new set of compact interactive simulations developed for the constructive learning of computer networks concepts. These simulations, which compose a virtual laboratory implemented as portable Java applets, have been created by combining EJS (Easy Java Simulations with the KivaNS API. Furthermore, in this work, the skills and motivation level acquired by the students are evaluated and measured when these simulations are combined with Moodle and SCORM (Sharable Content Object Reference Model documents. This study has been developed to improve and stimulate the autonomous constructive learning in addition to provide timetable flexibility for a Computer Networks subject.

  17. Computer simulation as representation of knowledge in education

    International Nuclear Information System (INIS)

    Krekic, Valerija Pinter; Namestovski, Zolt

    2009-01-01

    According to Aebli's operative method (1963) and Bruner's (1974) theory of representation the development of the process of thinking in teaching has the following phases - levels of abstraction: manipulation with specific things (specific phase), iconic representation (figural phase), symbolic representation (symbolic phase). Modern information technology has contributed to the enrichment of teaching and learning processes, especially in the fields of natural sciences and mathematics and those of production and technology. Simulation appears as a new possibility in the representation of knowledge. According to Guetzkow (1972) simulation is an operative representation of reality from a relevant aspect. It is about a model of an objective system, which is dynamic in itself. If that model is material it is a simple simulation, if it is abstract it is a reflective experiment, that is a computer simulation. This present work deals with the systematization and classification of simulation methods in the teaching of natural sciences and mathematics and of production and technology with special retrospective view on computer simulations and exemplar representation of the place and the role of this modern method of cognition. Key words: Representation of knowledge, modeling, simulation, education

  18. Place-Specific Computing

    DEFF Research Database (Denmark)

    Messeter, Jörn; Johansson, Michael

    project place- specific computing is explored through design oriented research. This article reports six pilot studies where design students have designed concepts for place-specific computing in Berlin (Germany), Cape Town (South Africa), Rome (Italy) and Malmö (Sweden). Background and arguments...... for place-specific computing as a genre of interaction design are described. A total number of 36 design concepts designed for 16 designated zones in the four cities are presented. An analysis of the design concepts is presented indicating potentials, possibilities and problems as directions for future......An increased interest in the notion of place has evolved in interaction design. Proliferation of wireless infrastructure, developments in digital media, and a ‘spatial turn’ in computing provides the base for place-specific computing as a suggested new genre of interaction design. In the REcult...

  19. Asymptotic optimality and efficient computation of the leave-subject-out cross-validation

    KAUST Repository

    Xu, Ganggang

    2012-12-01

    Although the leave-subject-out cross-validation (CV) has been widely used in practice for tuning parameter selection for various nonparametric and semiparametric models of longitudinal data, its theoretical property is unknown and solving the associated optimization problem is computationally expensive, especially when there are multiple tuning parameters. In this paper, by focusing on the penalized spline method, we show that the leave-subject-out CV is optimal in the sense that it is asymptotically equivalent to the empirical squared error loss function minimization. An efficient Newton-type algorithm is developed to compute the penalty parameters that optimize the CV criterion. Simulated and real data are used to demonstrate the effectiveness of the leave-subject-out CV in selecting both the penalty parameters and the working correlation matrix. © 2012 Institute of Mathematical Statistics.

  20. Asymptotic optimality and efficient computation of the leave-subject-out cross-validation

    KAUST Repository

    Xu, Ganggang; Huang, Jianhua Z.

    2012-01-01

    Although the leave-subject-out cross-validation (CV) has been widely used in practice for tuning parameter selection for various nonparametric and semiparametric models of longitudinal data, its theoretical property is unknown and solving the associated optimization problem is computationally expensive, especially when there are multiple tuning parameters. In this paper, by focusing on the penalized spline method, we show that the leave-subject-out CV is optimal in the sense that it is asymptotically equivalent to the empirical squared error loss function minimization. An efficient Newton-type algorithm is developed to compute the penalty parameters that optimize the CV criterion. Simulated and real data are used to demonstrate the effectiveness of the leave-subject-out CV in selecting both the penalty parameters and the working correlation matrix. © 2012 Institute of Mathematical Statistics.

  1. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...

  2. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    Science.gov (United States)

    Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans

    2017-05-01

    Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  3. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  4. Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine

    International Nuclear Information System (INIS)

    Sharma, Gulshan B.; Robertson, Douglas D.

    2013-01-01

    Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapula’s material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone element’s remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than

  5. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  6. Perceptual Computing Aiding People in Making Subjective Judgments

    CERN Document Server

    Mendel, Jerry

    2010-01-01

    Explains for the first time how "computing with words" can aid in making subjective judgments. Lotfi Zadeh, the father of fuzzy logic, coined the phrase "computing with words" (CWW) to describe a methodology in which the objects of computation are words and propositions drawn from a natural language. Perceptual Computing explains how to implement CWW to aid in the important area of making subjective judgments, using a methodology that leads to an interactive device—a "Perceptual Computer"—that propagates random and linguistic uncertainties into the subjective judg

  7. Place-Specific Computing

    DEFF Research Database (Denmark)

    Messeter, Jörn

    2009-01-01

    An increased interest in the notion of place has evolved in interaction design based on the proliferation of wireless infrastructures, developments in digital media, and a ‘spatial turn’ in computing. In this article, place-specific computing is suggested as a genre of interaction design that add......An increased interest in the notion of place has evolved in interaction design based on the proliferation of wireless infrastructures, developments in digital media, and a ‘spatial turn’ in computing. In this article, place-specific computing is suggested as a genre of interaction design...... that addresses the shaping of interactions among people, place-specific resources and global socio-technical networks, mediated by digital technology, and influenced by the structuring conditions of place. The theoretical grounding for place-specific computing is located in the meeting between conceptions...... of place in human geography and recent research in interaction design focusing on embodied interaction. Central themes in this grounding revolve around place and its relation to embodiment and practice, as well as the social, cultural and material aspects conditioning the enactment of place. Selected...

  8. User interfaces for computational science: A domain specific language for OOMMF embedded in Python

    Directory of Open Access Journals (Sweden)

    Marijan Beg

    2017-05-01

    Full Text Available Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i the re-compilation of source code, (ii the use of configuration files, (iii the graphical user interface, and (iv embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF. We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.

  9. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  10. The use of micro-computers in the simulation of ion beam optics

    International Nuclear Information System (INIS)

    Spaedtke, P.; Ivens, D.

    1989-01-01

    With computer simulation codes specific problems of the ion beam optics can be studied, which is useful in the design as in optimization of existing systems. Several such codes have been developed, unfortunately requiring substantial computer resources. Recent advances of mini- and micro-computers have now made it possible to develop simulation codes which can be run on these small computers also. In this paper, some of these codes will be presented and their computing time discussed. (author)

  11. Computational simulation of laser heat processing of materials

    Science.gov (United States)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  12. Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Ghanouni, Pejman; Halpern, Casey H.; Pauly, Kim Butts [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Elias, Jeff [Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2016-09-15

    Purpose: In transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) treatments, the acoustic and spatial heterogeneity of the skull cause reflection, absorption, and scattering of the acoustic beams. These effects depend on skull-specific parameters and can lead to patient-specific thermal responses to the same transducer power. In this work, the authors develop a simulation tool to help predict these different experimental responses using 3D heterogeneous tissue models based on the subject CT images. The authors then validate and compare the predicted skull efficiencies to an experimental metric based on the subject thermal responses during tcMRgFUS treatments in a dataset of seventeen human subjects. Methods: Seventeen human head CT scans were used to create tissue acoustic models, simulating the effects of reflection, absorption, and scattering of the acoustic beam as it propagates through a heterogeneous skull. The hybrid angular spectrum technique was used to model the acoustic beam propagation of the InSightec ExAblate 4000 head transducer for each subject, yielding maps of the specific absorption rate (SAR). The simulation assumed the transducer was geometrically focused to the thalamus of each subject, and the focal SAR at the target was used as a measure of the simulated skull efficiency. Experimental skull efficiency for each subject was calculated using the thermal temperature maps from the tcMRgFUS treatments. Axial temperature images (with no artifacts) were reconstructed with a single baseline, corrected using a referenceless algorithm. The experimental skull efficiency was calculated by dividing the reconstructed temperature rise 8.8 s after sonication by the applied acoustic power. Results: The simulated skull efficiency using individual-specific heterogeneous models predicts well (R{sup 2} = 0.84) the experimental energy efficiency. Conclusions: This paper presents a simulation model to predict the variation in thermal responses

  13. Simulation of quantum computers

    NARCIS (Netherlands)

    De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  14. Simulation of quantum computers

    NARCIS (Netherlands)

    Raedt, H. De; Michielsen, K.; Hams, A.H.; Miyashita, S.; Saito, K.

    2000-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  15. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  16. Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation.

    Science.gov (United States)

    Cline, Christopher C; Johnson, Nessa N; He, Bin

    2015-01-01

    The goal of this work is to develop a focal transcranial magnetic stimulation (TMS) system using a multichannel coil array for high-resolution neuromodulation. We proposed a novel spatially-distributed stimulation strategy to significantly improve the focality of TMS. Computer simulations were conducted to evaluate the proposed approach and test the merits of multichannel TMS. Three different multichannel coil arrays were modeled in addition to a conventional figure-8 coil for comparison. Simulations were performed on finite element head models of six subjects constructed from anatomical MR images via an automated pipeline. Multichannel TMS arrays exhibited significantly more focal induced electric field magnitudes compared to the figure-8 coil. Additionally, electrical steering of stimulation sites without physical movement of the coil array was demonstrated.

  17. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  18. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  19. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  20. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    International Nuclear Information System (INIS)

    Foster, C.

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  1. Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.

    Science.gov (United States)

    Cooper, Robert J; Caffini, Matteo; Dubb, Jay; Fang, Qianqian; Custo, Anna; Tsuzuki, Daisuke; Fischl, Bruce; Wells, William; Dan, Ippeita; Boas, David A

    2012-09-01

    We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated cortical activations when using a registered atlas is due to a combination of imperfect registration, anatomical differences between atlas and subject anatomies and the localization error associated with diffuse optical image reconstruction. When using a subject-specific MRI, any localization error is due to diffuse optical image reconstruction only. In this study we determine that using a registered anatomical brain atlas results in an average localization error of approximately 18 mm in Euclidean space. The corresponding error when the subject's own MRI is employed is 9.1 mm. In general, the cost of using atlas-guided DOT in place of subject-specific MRI-guided DOT is a doubling of the localization error. Our results show that despite this increase in error, reasonable anatomical localization is achievable even in cases where the subject-specific anatomy is unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  3. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  4. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  6. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  7. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  8. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.

    Science.gov (United States)

    Martelli, Saulo; Valente, Giordano; Viceconti, Marco; Taddei, Fulvia

    2015-01-01

    Subject-specific musculoskeletal models have become key tools in the clinical decision-making process. However, the sensitivity of the calculated solution to the unavoidable errors committed while deriving the model parameters from the available information is not fully understood. The aim of this study was to calculate the sensitivity of all the kinematics and kinetics variables to the inter-examiner uncertainty in the identification of the lower limb joint models. The study was based on the computer tomography of the entire lower-limb from a single donor and the motion capture from a body-matched volunteer. The hip, the knee and the ankle joint models were defined following the International Society of Biomechanics recommendations. Using a software interface, five expert anatomists identified on the donor's images the necessary bony locations five times with a three-day time interval. A detailed subject-specific musculoskeletal model was taken from an earlier study, and re-formulated to define the joint axes by inputting the necessary bony locations. Gait simulations were run using OpenSim within a Monte Carlo stochastic scheme, where the locations of the bony landmarks were varied randomly according to the estimated distributions. Trends for the joint angles, moments, and the muscle and joint forces did not substantially change after parameter perturbations. The highest variations were as follows: (a) 11° calculated for the hip rotation angle, (b) 1% BW × H calculated for the knee moment and (c) 0.33 BW calculated for the ankle plantarflexor muscles and the ankle joint forces. In conclusion, the identification of the joint axes from clinical images is a robust procedure for human movement modelling and simulation.

  9. GEANT4 simulations for Proton computed tomography applications

    International Nuclear Information System (INIS)

    Yevseyeva, Olga; Assis, Joaquim T. de; Evseev, Ivan; Schelin, Hugo R.; Shtejer Diaz, Katherin; Lopes, Ricardo T.

    2011-01-01

    Proton radiation therapy is a highly precise form of cancer treatment. In existing proton treatment centers, dose calculations are performed based on X-ray computed tomography (CT). Alternatively, one could image the tumor directly with proton CT (pCT). Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. The spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through gold absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadron therapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. The authors want to thank CNPq, CAPES and 'Fundacao Araucaria' for financial support of this work. (Author)

  10. Faster quantum chemistry simulation on fault-tolerant quantum computers

    International Nuclear Information System (INIS)

    Cody Jones, N; McMahon, Peter L; Yamamoto, Yoshihisa; Whitfield, James D; Yung, Man-Hong; Aspuru-Guzik, Alán; Van Meter, Rodney

    2012-01-01

    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ϵ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ϵ) or O(log log ϵ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride. (paper)

  11. Computer simulation of complexity in plasmas

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Sato, Tetsuya

    1998-01-01

    By making a comprehensive comparative study of many self-organizing phenomena occurring in magnetohydrodynamics and kinetic plasmas, we came up with a hypothetical grand view of self-organization. This assertion is confirmed by a recent computer simulation for a broader science field, specifically, the structure formation of short polymer chains, where the nature of the interaction is completely different from that of plasmas. It is found that the formation of the global orientation order proceeds stepwise. (author)

  12. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  13. Application of computer simulation in the stereology of materials

    Czech Academy of Sciences Publication Activity Database

    Saxl, Ivan; Ponížil, P.; Löflerová, M.

    2009-01-01

    Roč. 4, č. 2 (2009), s. 231-249 ISSN 1741-8410 R&D Projects: GA ČR GA201/06/0302 Grant - others:GA ČR(CZ) GA106/05/0550 Institutional research plan: CEZ:AV0Z10190503 Keywords : 3D computer simulation * fibre anisotropy * fracture surface * grain size estimation * random tessellation * rough surface analysis * fibre processes Subject RIV: BA - General Mathematics

  14. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  15. Simulation of skill acquisition in sequential learning of a computer game

    DEFF Research Database (Denmark)

    Hansen, John Paulin; Nielsen, Finn Ravnsbjerg; Rasmussen, Jens

    1995-01-01

    The paper presents some theoretical assumptions about the cognitive control mechanisms of subjects learning to play a computer game. A simulation model has been developed to investigate these assumptions. The model is an automaton, reacting to instruction-like cue action rules. The prototypical...... performances of 23 experimental subjects at succeeding levels of training are compared to the performance of the model. The findings are interpreted in terms of a general taxonomy for cognitive task analysis....

  16. Estimation of left ventricular blood flow parameters: clinical application of patient-specific CFD simulations from 4D echocardiography

    Science.gov (United States)

    Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda

    2017-03-01

    Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex

  17. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  18. Development and validation of rear impact computer simulation model of an adult manual transit wheelchair with a seated occupant.

    Science.gov (United States)

    Salipur, Zdravko; Bertocci, Gina

    2010-01-01

    It has been shown that ANSI WC19 transit wheelchairs that are crashworthy in frontal impact exhibit catastrophic failures in rear impact and may not be able to provide stable seating support and thus occupant protection for the wheelchair occupant. Thus far only limited sled test and computer simulation data have been available to study rear impact wheelchair safety. Computer modeling can be used as an economic and comprehensive tool to gain critical knowledge regarding wheelchair integrity and occupant safety. This study describes the development and validation of a computer model simulating an adult wheelchair-seated occupant subjected to a rear impact event. The model was developed in MADYMO and validated rigorously using the results of three similar sled tests conducted to specifications provided in the draft ISO/TC 173 standard. Outcomes from the model can provide critical wheelchair loading information to wheelchair and tiedown manufacturers, resulting in safer wheelchair designs for rear impact conditions. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  20. SPINET: A Parallel Computing Approach to Spine Simulations

    Directory of Open Access Journals (Sweden)

    Peter G. Kropf

    1996-01-01

    Full Text Available Research in scientitic programming enables us to realize more and more complex applications, and on the other hand, application-driven demands on computing methods and power are continuously growing. Therefore, interdisciplinary approaches become more widely used. The interdisciplinary SPINET project presented in this article applies modern scientific computing tools to biomechanical simulations: parallel computing and symbolic and modern functional programming. The target application is the human spine. Simulations of the spine help us to investigate and better understand the mechanisms of back pain and spinal injury. Two approaches have been used: the first uses the finite element method for high-performance simulations of static biomechanical models, and the second generates a simulation developmenttool for experimenting with different dynamic models. A finite element program for static analysis has been parallelized for the MUSIC machine. To solve the sparse system of linear equations, a conjugate gradient solver (iterative method and a frontal solver (direct method have been implemented. The preprocessor required for the frontal solver is written in the modern functional programming language SML, the solver itself in C, thus exploiting the characteristic advantages of both functional and imperative programming. The speedup analysis of both solvers show very satisfactory results for this irregular problem. A mixed symbolic-numeric environment for rigid body system simulations is presented. It automatically generates C code from a problem specification expressed by the Lagrange formalism using Maple.

  1. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  2. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  3. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  4. Study on computer-aided simulation procedure for multicomponent separating cascade

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro

    1982-11-01

    The present report reviews the author's study on the computer-aided simulation procedure for a multicomponent separating cascade. As a conclusion, two very powerful simulation procedures have been developed for cascades composed of separating elements whose separation factors are very large. They are applicable in cases where interstage flow rates are input variables for the calculation and stage separation factors are given either as constants or as functions of compositions of the up and down streams. As an application of the new procedure, a computer-aided simulation study has been performed for hydrogen isotope separating cascades by porous membrane method. A cascade system configuration is developed and pertinent design specifications are determined in an example case of the feed conditions and separation requirements. (author)

  5. Computer Simulation Model to Train Medical Personnel on Glucose Clamp Procedures.

    Science.gov (United States)

    Maghoul, Pooya; Boulet, Benoit; Tardif, Annie; Haidar, Ahmad

    2017-10-01

    A glucose clamp procedure is the most reliable way to quantify insulin pharmacokinetics and pharmacodynamics, but skilled and trained research personnel are required to frequently adjust the glucose infusion rate. A computer environment that simulates glucose clamp experiments can be used for efficient personnel training and development and testing of algorithms for automated glucose clamps. We built 17 virtual healthy subjects (mean age, 25±6 years; mean body mass index, 22.2±3 kg/m 2 ), each comprising a mathematical model of glucose regulation and a unique set of parameters. Each virtual subject simulates plasma glucose and insulin concentrations in response to intravenous insulin and glucose infusions. Each virtual subject provides a unique response, and its parameters were estimated from combined intravenous glucose tolerance test-hyperinsulinemic-euglycemic clamp data using the Bayesian approach. The virtual subjects were validated by comparing their simulated predictions against data from 12 healthy individuals who underwent a hyperglycemic glucose clamp procedure. Plasma glucose and insulin concentrations were predicted by the virtual subjects in response to glucose infusions determined by a trained research staff performing a simulated hyperglycemic clamp experiment. The total amount of glucose infusion was indifferent between the simulated and the real subjects (85±18 g vs. 83±23 g; p=NS) as well as plasma insulin levels (63±20 mU/L vs. 58±16 mU/L; p=NS). The virtual subjects can reliably predict glucose needs and plasma insulin profiles during hyperglycemic glucose clamp conditions. These virtual subjects can be used to train personnel to make glucose infusion adjustments during clamp experiments. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  6. Summer Computer Simulation Conference, Washington, DC, July 15-17, 1981, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Aspects of simulation technology are discussed, taking into account microcomputers in simulation, heuristic/adaptive systems, differential equations approaches, available simulation packages, selected operations research applications, and mathematical and statistical tools. Hybrid systems are discussed along with topics of chemical sciences. Subjects related to physical and engineering sciences are explored, giving attention to aeronautics and astronautics, physical processes, nuclear/electrical power technology, advanced computational methods and systems, avionics systems, dynamic systems analysis and control, and industrial systems. Environmental sciences are considered along with biomedical systems, managerial and social sciences, questions of simulation credibility and validation, and energy systems. A description is provided of simulation facilities, and topics related to system engineering and transportation are investigated

  7. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  8. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  9. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  10. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.

    Science.gov (United States)

    Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan

    2016-06-01

    Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate

  11. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  12. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Thing, Rune S.; Bernchou, Uffe; Brink, Carsten; Mainegra-Hing, Ernesto

    2013-01-01

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egs c bct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  13. Computer simulation of stair falls to investigate scenarios in child abuse.

    Science.gov (United States)

    Bertocci, G E; Pierce, M C; Deemer, E; Aguel, F

    2001-09-01

    To demonstrate the usefulness of computer simulation techniques in the investigation of pediatric stair falls. Since stair falls are a common falsely reported injury scenario in child abuse, our specific aim was to investigate the influence of stair characteristics on injury biomechanics of pediatric stair falls by using a computer simulation model. Our long-term goal is to use knowledge of biomechanics to aid in distinguishing between accidents and abuse. A computer simulation model of a 3-year-old child falling down stairs was developed using commercially available simulation software. This model was used to investigate the influence that stair characteristics have on biomechanical measures associated with injury risk. Since femur fractures occur in unintentional and abuse scenarios, biomechanical measures were focused on the lower extremities. The number and slope of steps and stair surface friction and elasticity were found to affect biomechanical measures associated with injury risk. Computer simulation techniques are useful for investigating the biomechanics of stair falls. Using our simulation model, we determined that stair characteristics have an effect on potential for lower extremity injuries. Although absolute values of biomechanical measures should not be relied on in an unvalidated model such as this, relationships between accident-environment factors and biomechanical measures can be studied through simulation. Future efforts will focus on model validation.

  14. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  15. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait

    NARCIS (Netherlands)

    Carbone, V.; Krogt, M.M. van der; Koopman, H.F.J.M.; Verdonschot, N.J.

    2016-01-01

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of

  16. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait

    NARCIS (Netherlands)

    Carbone, Vincenzo; van der Krogt, Marjolein; Koopman, Hubertus F.J.M.; Verdonschot, Nicolaas Jacobus Joseph

    2016-01-01

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle–tendon (MT) model parameters for each of

  17. A computer simulation model to compute the radiation transfer of mountainous regions

    Science.gov (United States)

    Li, Yuguang; Zhao, Feng; Song, Rui

    2011-11-01

    In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.

  18. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  19. A computer code package for electron transport Monte Carlo simulation

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    1999-01-01

    A computer code package was developed for solving various electron transport problems by Monte Carlo simulation. It is based on condensed history Monte Carlo algorithm. In order to get reliable results over wide ranges of electron energies and target atomic numbers, specific techniques of electron transport were implemented such as: Moliere multiscatter angular distributions, Blunck-Leisegang multiscatter energy distribution, sampling of electron-electron and Bremsstrahlung individual interactions. Path-length and lateral displacement corrections algorithms and the module for computing collision, radiative and total restricted stopping powers and ranges of electrons are also included. Comparisons of simulation results with experimental measurements are finally presented. (author)

  20. Computational strategies for three-dimensional flow simulations on distributed computer systems

    Science.gov (United States)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-08-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  1. Computational strategies for three-dimensional flow simulations on distributed computer systems

    Science.gov (United States)

    Sankar, Lakshmi N.; Weed, Richard A.

    1995-01-01

    This research effort is directed towards an examination of issues involved in porting large computational fluid dynamics codes in use within the industry to a distributed computing environment. This effort addresses strategies for implementing the distributed computing in a device independent fashion and load balancing. A flow solver called TEAM presently in use at Lockheed Aeronautical Systems Company was acquired to start this effort. The following tasks were completed: (1) The TEAM code was ported to a number of distributed computing platforms including a cluster of HP workstations located in the School of Aerospace Engineering at Georgia Tech; a cluster of DEC Alpha Workstations in the Graphics visualization lab located at Georgia Tech; a cluster of SGI workstations located at NASA Ames Research Center; and an IBM SP-2 system located at NASA ARC. (2) A number of communication strategies were implemented. Specifically, the manager-worker strategy and the worker-worker strategy were tested. (3) A variety of load balancing strategies were investigated. Specifically, the static load balancing, task queue balancing and the Crutchfield algorithm were coded and evaluated. (4) The classical explicit Runge-Kutta scheme in the TEAM solver was replaced with an LU implicit scheme. And (5) the implicit TEAM-PVM solver was extensively validated through studies of unsteady transonic flow over an F-5 wing, undergoing combined bending and torsional motion. These investigations are documented in extensive detail in the dissertation, 'Computational Strategies for Three-Dimensional Flow Simulations on Distributed Computing Systems', enclosed as an appendix.

  2. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  3. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  4. ASAS: Computational code for Analysis and Simulation of Atomic Spectra

    Directory of Open Access Journals (Sweden)

    Jhonatha R. dos Santos

    2017-01-01

    Full Text Available The laser isotopic separation process is based on the selective photoionization principle and, because of this, it is necessary to know the absorption spectrum of the desired atom. Computational resource has become indispensable for the planning of experiments and analysis of the acquired data. The ASAS (Analysis and Simulation of Atomic Spectra software presented here is a helpful tool to be used in studies involving atomic spectroscopy. The input for the simulations is friendly and essentially needs a database containing the energy levels and spectral lines of the atoms subjected to be studied.

  5. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  6. Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?

    Energy Technology Data Exchange (ETDEWEB)

    Braun, S. [Visual Analysis AG, Muenchen (Germany)

    2001-07-01

    Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)

  7. A subject-independent pattern-based Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Andreas Markus Ray

    2015-10-01

    Full Text Available While earlier Brain-Computer Interface (BCI studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e. happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to match their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.

  8. Framework for utilizing computational devices within simulation

    Directory of Open Access Journals (Sweden)

    Miroslav Mintál

    2013-12-01

    Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.

  9. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    Science.gov (United States)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  10. A novel patient-specific model to compute coronary fractional flow reserve.

    Science.gov (United States)

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  11. Trends in Social Science: The Impact of Computational and Simulative Models

    Science.gov (United States)

    Conte, Rosaria; Paolucci, Mario; Cecconi, Federico

    This paper discusses current progress in the computational social sciences. Specifically, it examines the following questions: Are the computational social sciences exhibiting positive or negative developments? What are the roles of agent-based models and simulation (ABM), network analysis, and other "computational" methods within this dynamic? (Conte, The necessity of intelligent agents in social simulation, Advances in Complex Systems, 3(01n04), 19-38, 2000; Conte 2010; Macy, Annual Review of Sociology, 143-166, 2002). Are there objective indicators of scientific growth that can be applied to different scientific areas, allowing for comparison among them? In this paper, some answers to these questions are presented and discussed. In particular, comparisons among different disciplines in the social and computational sciences are shown, taking into account their respective growth trends in the number of publication citations over the last few decades (culled from Google Scholar). After a short discussion of the methodology adopted, results of keyword-based queries are presented, unveiling some unexpected local impacts of simulation on the takeoff of traditionally poorly productive disciplines.

  12. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  13. Computer simulation of RBS spectra from samples with surface roughness

    Czech Academy of Sciences Publication Activity Database

    Malinský, Petr; Hnatowicz, Vladimír; Macková, Anna

    2016-01-01

    Roč. 371, MAR (2016), s. 101-105 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : computer simulation * Rutherford backscattering * surface roughness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  14. Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

  15. REMC Computer Simulation of the Thermodynamic Properties of Argon and Air Plasmas

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Smith, W. R.; Bureš, M.; Vacek, V.; Navrátil, J.

    2002-01-01

    Roč. 100, č. 15 (2002), s. 2487-2497 ISSN 0026-8976 R&D Projects: GA ČR GA203/98/1446; GA ČR GA203/02/0805 Grant - others:NSERC(CA) OGP1041 Keywords : computer simulation * plasma * thermodynamic properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.617, year: 2002

  16. Purex optimization by computer simulation

    International Nuclear Information System (INIS)

    Campbell, T.G.; McKibben, J.M.

    1980-08-01

    For the past 2 years computer simulation has been used to study the performance of several solvent extraction banks in the Purex facility at the Savannah River Plant in Aiken, South Carolina. Individual process parameters were varied about their normal base case values to determine their individual effects on concentration profiles and end-stream compositions. The data are presented in graphical form to show the extent to which product losses, decontamination factors, solvent extraction bank inventories of fissile materials, and other key properties are affected by process changes. Presented in this way, the data are useful for adapting flowsheet conditions to a particular feed material or product specification, and for evaluating nuclear safety as related to bank inventories

  17. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  18. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    Science.gov (United States)

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Computer Simulations, Disclosure and Duty of Care

    Directory of Open Access Journals (Sweden)

    John Barlow

    2006-05-01

    Full Text Available Computer simulations provide cost effective methods for manipulating and modeling 'reality'. However they are not real. They are imitations of a system or event, real or fabricated, and as such mimic, duplicate or represent that system or event. The degree to which a computer simulation aligns with and reproduces the ‘reality’ of the system or event it attempts to mimic or duplicate depends upon many factors including the efficiency of the simulation algorithm, the processing power of the computer hardware used to run the simulation model, and the expertise, assumptions and prejudices of those concerned with designing, implementing and interpreting the simulation output. Computer simulations in particular are increasingly replacing physical experimentation in many disciplines, and as a consequence, are used to underpin quite significant decision-making which may impact on ‘innocent’ third parties. In this context, this paper examines two interrelated issues: Firstly, how much and what kind of information should a simulation builder be required to disclose to potential users of the simulation? Secondly, what are the implications for a decision-maker who acts on the basis of their interpretation of a simulation output without any reference to its veracity, which may in turn comprise the safety of other parties?

  20. YASS: A System Simulator for Operating System and Computer Architecture Teaching and Learning

    Science.gov (United States)

    Mustafa, Besim

    2013-01-01

    A highly interactive, integrated and multi-level simulator has been developed specifically to support both the teachers and the learners of modern computer technologies at undergraduate level. The simulator provides a highly visual and user configurable environment with many pedagogical features aimed at facilitating deep understanding of concepts…

  1. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  2. Multivariate stochastic simulation with subjective multivariate normal distributions

    Science.gov (United States)

    P. J. Ince; J. Buongiorno

    1991-01-01

    In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...

  3. Are Autonomous and Controlled Motivations School-Subjects-Specific?

    Science.gov (United States)

    Chanal, Julien; Guay, Frédéric

    2015-01-01

    This research sought to test whether autonomous and controlled motivations are specific to school subjects or more general to the school context. In two cross-sectional studies, 252 elementary school children (43.7% male; mean age = 10.7 years, SD = 1.3 years) and 334 junior high school children (49.7% male, mean age = 14.07 years, SD = 1.01 years) were administered a questionnaire assessing their motivation for various school subjects. Results based on structural equation modeling using the correlated trait-correlated method minus one model (CTCM-1) showed that autonomous and controlled motivations assessed at the school subject level are not equally school-subject-specific. We found larger specificity effects for autonomous (intrinsic and identified) than for controlled (introjected and external) motivation. In both studies, results of factor loadings and the correlations with self-concept and achievement demonstrated that more evidence of specificity was obtained for autonomous regulations than for controlled ones. These findings suggest a new understanding of the hierarchical and multidimensional academic structure of autonomous and controlled motivations and of the mechanisms involved in the development of types of regulations for school subjects. PMID:26247788

  4. Simulation of a small computer of the TRA-1001 type on the BESM computer

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    1975-01-01

    Considered are the purpose and probable simulation ways of one computer by the other. The emulator (simulation program) is given for a small computer of TRA-1001 type on BESM-6 computer. The simulated computer basic elements are the following: memory (8 K words), central processor, input-output program channel, interruption circuit, computer panel. The work with the input-output devices, teletypes ASP-33, FS-1500 is also simulated. Under actual operation the emulator has been used for translating the programs prepared on punched cards with the aid of translator SLANG-1 by BESM-6 computer. The translator alignment from language COPLAN has been realized with the aid of the emulator

  5. Eternity Variables to Prove Simulation of Specifications

    NARCIS (Netherlands)

    Hesselink, Wim H.

    2005-01-01

    Simulations of specifications are introduced as a unification and generalization of refinement mappings, history variables, forward simulations, prophecy variables, and backward simulations. A specification implements another specification if and only if there is a simulation from the first one to

  6. Development of a subjective refraction simulator

    Science.gov (United States)

    Perches, S.; Ares, J.; Collados, M. V.

    2013-11-01

    We have developed simulation software by Matlab (MathworksInc.) with a graphical interface designed for non-expert users. This simulator allows you to complete the process of subjective refraction starting from the aberrometry of the patients and analyse the influence of different factors during the exam. In addition to explain the graphical interface and its working, we show two examples about a complete process of subjective refraction with the influence of high order aberrations and without them showing the retinal image obtained in each step of the refraction process. When the Jackson Cross-Cylinder technique is made with this software, it becomes clear the difficulty of chosen between two images when high order aberrations are present. Therefore, the variability of response during the refraction can be a problem when the examiner has to reach an adequate optical prescription.

  7. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  8. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  9. Development of a Subject-Specific Foot-Ground Contact Model for Walking.

    Science.gov (United States)

    Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J

    2016-09-01

    Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The

  10. The transesophageal echocardiography simulator based on computed tomography images.

    Science.gov (United States)

    Piórkowski, Adam; Kempny, Aleksander

    2013-02-01

    Simulators are a new tool in education in many fields, including medicine, where they greatly improve familiarity with medical procedures, reduce costs, and, importantly, cause no harm to patients. This is so in the case of transesophageal echocardiography (TEE), in which the use of a simulator facilitates spatial orientation and helps in case studies. The aim of the project described in this paper is to simulate an examination by TEE. This research makes use of available computed tomography data to simulate the corresponding echocardiographic view. This paper describes the essential characteristics that distinguish these two modalities and the key principles of the wave phenomena that should be considered in the simulation process, taking into account the conditions specific to the echocardiography. The construction of the CT2TEE (Web-based TEE simulator) is also presented. The considerations include ray-tracing and ray-casting techniques in the context of ultrasound beam and artifact simulation. An important aspect of the interaction with the user is raised.

  11. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    Science.gov (United States)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  12. Selection, specification, design and use of various nuclear power plant training simulators

    International Nuclear Information System (INIS)

    Bruno, R.; Neboyan, V.

    1997-01-01

    Several IAEA guidance publications on safety culture and NPP personnel training consider the role of training and particularly the role of simulators training to enhance the safety of NPP operations. Initially, the focus has been on full-scope simulators for the training of main control room operators. Presently, a wide range of different types of simulators are used at training center. Several guidance publications concerning development and use of full-scope simulators are currently available. Experience shows that other types of simulators are also effective training tools that allow simulator training for a broader range of target groups and training objectives. Based on this need, the IAEA undertook a project to prepare a report on selection, specification, design and use of various training simulators, which provides guidance to training centers and suppliers for proper selection, specification, design, and use of various form of simulators. In addition, it provides examples of their use in several Member States. This paper presents a summary of the IAEATECDOC publication on the subject. (author)

  13. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  14. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  15. Plant specific basic principle simulator as a first step to plant specific full scope simulator

    International Nuclear Information System (INIS)

    Krajnc, B.; Pribozic, F.; Novsak, M.

    1996-01-01

    Nuklearna Elektrarna Krsko (NEK) decided to enhance the quality and scope of initial training of NEK technical personnel, mainly in so called Phase 1 and 2 of training for licensed personnel. This training is a prerequisite for further training on the full scope simulator for future operators and is also given to larger number of engineers, working in different important areas where thorough knowledge of nuclear technology and plant systems is required. Due to that it was decided that plant specific Basis Principle Simulators (BPS) should be developed. The other important reason for such decision was an indication that NEK specific full scope simulator will have to be purchased. Based on that it was concluded that BPS should serve as a good opportunity to learn about the state of the art approaches in the modeling area, to see in which direction development of software in conjunction with state of the art hardware is going and in particular to the extent possible verify the existence of required plant documentation in support BPS and later plant specific full scope simulator. In this paper the scope of NEK BPS simulation, experience in initial data gathering, experience with know-how transfer based on direct involvement of NEK and Izobrazevalni Center za Jedrsko Tehnnologijo (ICJT) personnel in modeling of instrumentation and control will be presented. Lessons learned, particularly in light of coming project for NEK full scope simulator, will also be addressed. The future use of the BPS in the NEK training programs will be described. It can be concluded that due to very complex technology, phase approaches in training of key NEK technical personnel, the development of NEK plant specific BPS is justifiable, regardless of the fact that NEK will also obtain specific full scope simulator. It has to be pointed out that BPS can not be supplement for plant specific full scope simulator, due to number of reasons discussed in the paper. (author)

  16. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  17. Computer simulation of fatigue under diametrical compression

    International Nuclear Information System (INIS)

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings

  18. Fel simulations using distributed computing

    NARCIS (Netherlands)

    Einstein, J.; Biedron, S.G.; Freund, H.P.; Milton, S.V.; Van Der Slot, P. J M; Bernabeu, G.

    2016-01-01

    While simulation tools are available and have been used regularly for simulating light sources, including Free-Electron Lasers, the increasing availability and lower cost of accelerated computing opens up new opportunities. This paper highlights a method of how accelerating and parallelizing code

  19. CUBESIM, Hypercube and Denelcor Hep Parallel Computer Simulation

    International Nuclear Information System (INIS)

    Dunigan, T.H.

    1988-01-01

    1 - Description of program or function: CUBESIM is a set of subroutine libraries and programs for the simulation of message-passing parallel computers and shared-memory parallel computers. Subroutines are supplied to simulate the Intel hypercube and the Denelcor HEP parallel computers. The system permits a user to develop and test parallel programs written in C or FORTRAN on a single processor. The user may alter such hypercube parameters as message startup times, packet size, and the computation-to-communication ratio. The simulation generates a trace file that can be used for debugging, performance analysis, or graphical display. 2 - Method of solution: The CUBESIM simulator is linked with the user's parallel application routines to run as a single UNIX process. The simulator library provides a small operating system to perform process and message management. 3 - Restrictions on the complexity of the problem: Up to 128 processors can be simulated with a virtual memory limit of 6 million bytes. Up to 1000 processes can be simulated

  20. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  1. Sensitivity of subject-specific models to errors in musculo-skeletal geometry.

    Science.gov (United States)

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2012-09-21

    Subject-specific musculo-skeletal models of the lower extremity are an important tool for investigating various biomechanical problems, for instance the results of surgery such as joint replacements and tendon transfers. The aim of this study was to assess the potential effects of errors in musculo-skeletal geometry on subject-specific model results. We performed an extensive sensitivity analysis to quantify the effect of the perturbation of origin, insertion and via points of each of the 56 musculo-tendon parts contained in the model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by only the perturbed musculo-tendon parts and by all the remaining musculo-tendon parts, respectively, during a simulated gait cycle. Results indicated that, for each musculo-tendon part, only two points show a significant sensitivity: its origin, or pseudo-origin, point and its insertion, or pseudo-insertion, point. The most sensitive points belong to those musculo-tendon parts that act as prime movers in the walking movement (insertion point of the Achilles Tendon: LSI=15.56%, OSI=7.17%; origin points of the Rectus Femoris: LSI=13.89%, OSI=2.44%) and as hip stabilizers (insertion points of the Gluteus Medius Anterior: LSI=17.92%, OSI=2.79%; insertion point of the Gluteus Minimus: LSI=21.71%, OSI=2.41%). The proposed priority list provides quantitative information to improve the predictive accuracy of subject-specific musculo-skeletal models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Computer simulation of kinetic properties of plasmas. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Denavit, J.

    1978-01-01

    The research is directed toward the development and testing of new numerical methods for particle and hybrid simulation of plasmas and their application to physical problems of current significance to Magnetic Fusion Energy. During the past year, research on the project has been concerned with the following specific problems: (1) analysis and computer simulations of the dissipative trapped-electron instability in tokamaks; (2) long-time-scale algorithms for numerical solutions of the drift-kinetic equation; and (3) computer simulation of field-reversed ion ring stability

  3. Computer Simulation in Information and Communication Engineering

    CERN Multimedia

    Anton Topurov

    2005-01-01

    CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...

  4. Eternity Variables to Simulate Specifications

    NARCIS (Netherlands)

    Hesselink, WH; Boiten, EA; Moller, B

    2002-01-01

    Simulation of specifications is introduced as a unification and generalization of refinement mappings, history variables, forward simulations, prophecy variables, and backward simulations. Eternity variables are introduced as a more powerful alternative for prophecy variables and backward

  5. Dopamine Receptor-Specific Contributions to the Computation of Value.

    Science.gov (United States)

    Burke, Christopher J; Soutschek, Alexander; Weber, Susanna; Raja Beharelle, Anjali; Fehr, Ernst; Haker, Helene; Tobler, Philippe N

    2018-05-01

    Dopamine is thought to play a crucial role in value-based decision making. However, the specific contributions of different dopamine receptor subtypes to the computation of subjective value remain unknown. Here we demonstrate how the balance between D1 and D2 dopamine receptor subtypes shapes subjective value computation during risky decision making. We administered the D2 receptor antagonist amisulpride or placebo before participants made choices between risky options. Compared with placebo, D2 receptor blockade resulted in more frequent choice of higher risk and higher expected value options. Using a novel model fitting procedure, we concurrently estimated the three parameters that define individual risk attitude according to an influential theoretical account of risky decision making (prospect theory). This analysis revealed that the observed reduction in risk aversion under amisulpride was driven by increased sensitivity to reward magnitude and decreased distortion of outcome probability, resulting in more linear value coding. Our data suggest that different components that govern individual risk attitude are under dopaminergic control, such that D2 receptor blockade facilitates risk taking and expected value processing.

  6. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  7. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?

    Directory of Open Access Journals (Sweden)

    Giordano Valente

    Full Text Available Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312 across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force

  8. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  9. Validation of a low dose simulation technique for computed tomography images.

    Directory of Open Access Journals (Sweden)

    Daniela Muenzel

    Full Text Available PURPOSE: Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT images from an original higher dose scan. MATERIALS AND METHODS: Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV of a swine were acquired (approved by the regional governmental commission for animal protection. Simulations of CT acquisition with a lower dose (simulated 10-80 mAs were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. RESULTS: Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was -1.2% (range -9% to 3.2% and -0.2% (range -8.2% to 3.2%, respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9-10.2 HU (noise and 1.9-13.4 HU (CT values, without significant differences (p>0.05. Subjective observer evaluation of image appearance showed no visually detectable difference. CONCLUSION: Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques.

  10. Optimizing qubit resources for quantum chemistry simulations in second quantization on a quantum computer

    International Nuclear Information System (INIS)

    Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano

    2016-01-01

    Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi–Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources. (paper)

  11. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  12. Computer-Based Simulation Games in Public Administration Education

    Directory of Open Access Journals (Sweden)

    Kutergina Evgeniia

    2017-12-01

    Full Text Available Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently in Russia the use of computer-based simulation games in Master of Public Administration (MPA curricula is quite limited. Th is paper focuses on computer- based simulation games for students of MPA programmes. Our aim was to analyze outcomes of implementing such games in MPA curricula. We have done so by (1 developing three computer-based simulation games about allocating public finances, (2 testing the games in the learning process, and (3 conducting a posttest examination to evaluate the effect of simulation games on students’ knowledge of municipal finances. Th is study was conducted in the National Research University Higher School of Economics (HSE and in the Russian Presidential Academy of National Economy and Public Administration (RANEPA during the period of September to December 2015, in Saint Petersburg, Russia. Two groups of students were randomly selected in each university and then randomly allocated either to the experimental or the control group. In control groups (n=12 in HSE, n=13 in RANEPA students had traditional lectures. In experimental groups (n=12 in HSE, n=13 in RANEPA students played three simulation games apart from traditional lectures. Th is exploratory research shows that the use of computer-based simulation games in MPA curricula can improve students’ outcomes by 38 %. In general, the experimental groups had better performances on the post-test examination (Figure 2. Students in the HSE experimental group had 27.5 % better

  13. Ravenscar Computational Model compliant AADL Simulation on LEON2

    Directory of Open Access Journals (Sweden)

    Roberto Varona-Gómez

    2013-02-01

    Full Text Available AADL has been proposed for designing and analyzing SW and HW architectures for real-time mission-critical embedded systems. Although the Behavioral Annex improves its simulation semantics, AADL is a language for analyzing architectures and not for simulating them. AADS-T is an AADL simulation tool that supports the performance analysis of the AADL specification throughout the refinement process from the initial system architecture until the complete, detailed application and execution platform are developed. In this way, AADS-T enables the verification of the initial timing constraints during the complete design process. In this paper we focus on the compatibility of AADS-T with the Ravenscar Computational Model (RCM as part of the TASTE toolset. Its flexibility enables AADS-T to support different processors. In this work we have focused on performing the simulation on a LEON2 processor.

  14. Computational model to simulate the interplay effect in dynamic IMRT delivery

    International Nuclear Information System (INIS)

    Yoganathan, S A; Maria Das, K J; Kumar, Shaleen

    2014-01-01

    The purpose of this study was to develop and experimentally verify a patient specific model for simulating the interplay effect in a DMLC based IMRT delivery. A computational model was developed using MATLAB program to incorporate the interplay effect in a 2D beams eye view fluence of dynamic IMRT fields. To simulate interplay effect, the model requires two inputs: IMRT field (DMLC file with dose rate and MU) and the patient specific respiratory motion. The interplay between the DMLC leaf motion and target was simulated for three lung patients. The target trajectory data was acquired using RPM system during the treatment simulation. The model was verified experimentally for the same patients using Imatrix 2D array device placed over QUASAR motion platform in CL2100 linac. The simulated fluences and measured fluences were compared with the TPS generated static fluence (no motion) using an in-house developed gamma evaluation program (2%/2mm). The simulated results were well within agreement with the measured. Comparison of the simulated and measured fluences with the TPS static fluence resulted 55.3% and 58.5% pixels passed the gamma criteria. A patient specific model was developed and validated for simulating the interplay effect in the dynamic IMRT delivery. This model can be clinically used to quantify the dosimetric uncertainty due to the interplay effect prior to the treatment delivery.

  15. COMPUTER SIMULATION IN MECHANICS TEACHING AND LEARNING: A CASE STUDY ON STUDENTS’ UNDERSTANDING OF FORCE AND MOTION

    Directory of Open Access Journals (Sweden)

    Dyah Permata Sari

    2015-12-01

    Full Text Available The objective of this research was to develop a force and motion simulation based on the open-source Easy Java Simulation. The process of computer simulation development was done following the ADDIE model. Based on the Analysis and Design phases, the Development phase used the open-source Easy Java Simulation (EJS to develop a computer simulation with physics content that was relevant to the subtopic. Computing and communication technology continue to make an increasing impact on all aspects of education. EJS is a powerful didactic resource that gives us the ability to focus our students’ attention on the principles of physics. Using EJS, a computer simulation was created through which the motion of a particle under the action of a specific force can be studied. The implementation phase is implemented the computer simulation in the teaching and learning process. To describe the improvements in the students’ understanding of the force and motion concepts, we used a t-test to evaluate each of the four phases. These results indicated that the use of the computer simulation could improve students’ force and motion conceptual competence regarding Newton's second law of motion.

  16. Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory

    International Nuclear Information System (INIS)

    Paul, Wolfgang; Smith, Grant D

    2004-01-01

    This contribution considers recent developments in the computer modelling of amorphous polymeric materials. Progress in our capabilities to build models for the computer simulation of polymers from the detailed atomistic scale up to coarse-grained mesoscopic models, together with the ever-improving performance of computers, have led to important insights from computer simulations into the structural and dynamic properties of amorphous polymers. Structurally, chain connectivity introduces a range of length scales from that of the chemical bond to the radius of gyration of the polymer chain covering 2-4 orders of magnitude. Dynamically, this range of length scales translates into an even larger range of time scales observable in relaxation processes in amorphous polymers ranging from about 10 -13 to 10 -3 s or even to 10 3 s when glass dynamics is concerned. There is currently no single simulation technique that is able to describe all these length and time scales efficiently. On large length and time scales basic topology and entropy become the governing properties and this fact can be exploited using computer simulations of coarse-grained polymer models to study universal aspects of the structure and dynamics of amorphous polymers. On the largest length and time scales chain connectivity is the dominating factor leading to the strong increase in longest relaxation times described within the reptation theory of polymer melt dynamics. Recently, many of the universal aspects of this behaviour have been further elucidated by computer simulations of coarse-grained polymer models. On short length scales the detailed chemistry and energetics of the polymer are important, and one has to be able to capture them correctly using chemically realistic modelling of specific polymers, even when the aim is to extract generic physical behaviour exhibited by the specific chemistry. Detailed studies of chemically realistic models highlight the central importance of torsional dynamics

  17. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  18. Software Engineering for Scientific Computer Simulations

    Science.gov (United States)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  19. Practice Makes Perfect: Using a Computer-Based Business Simulation in Entrepreneurship Education

    Science.gov (United States)

    Armer, Gina R. M.

    2011-01-01

    This article explains the use of a specific computer-based simulation program as a successful experiential learning model and as a way to increase student motivation while augmenting conventional methods of business instruction. This model is based on established adult learning principles.

  20. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data

    International Nuclear Information System (INIS)

    Hsu, Christina M. L.; Palmeri, Mark L.; Segars, W. Paul; Veress, Alexander I.; Dobbins, James T. III

    2013-01-01

    Purpose: The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n= 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared. Methods: Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the “base” and “target” for morphing. Several combinations of transformations were applied to morph between the “base’ and “target” datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing

  1. Discrete Event Simulation Computers can be used to simulate the ...

    Indian Academy of Sciences (India)

    IAS Admin

    people who use computers every moment of their waking lives, others even ... How is discrete event simulation different from other kinds of simulation? ... time, energy consumption .... Schedule the CustomerDeparture event for this customer.

  2. An efficient parallel simulation of unsteady blood flows in patient-specific pulmonary artery.

    Science.gov (United States)

    Kong, Fande; Kheyfets, Vitaly; Finol, Ender; Cai, Xiao-Chuan

    2018-04-01

    Simulation of blood flows in the pulmonary artery provides some insight into certain diseases by examining the relationship between some continuum metrics, eg, the wall shear stress acting on the vascular endothelium, which responds to flow-induced mechanical forces by releasing vasodilators/constrictors. V. Kheyfets, in his previous work, studies numerically a patient-specific pulmonary circulation to show that decreasing wall shear stress is correlated with increasing pulmonary vascular impedance. In this paper, we develop a scalable parallel algorithm based on domain decomposition methods to investigate an unsteady model with patient-specific pulsatile waveforms as the inlet boundary condition. The unsteady model offers tremendously more information about the dynamic behavior of the flow field, but computationally speaking, the simulation is a lot more expensive since a problem which is similar to the steady-state problem has to be solved many times, and therefore, the traditional sequential approach is not suitable anymore. We show computationally that simulations using the proposed parallel approach with up to 10 000 processor cores can be obtained with much reduced compute time. This makes the technology potentially usable for the routine study of the dynamic behavior of blood flows in the pulmonary artery, in particular, the changes of the blood flows and the wall shear stress in the spatial and temporal dimensions. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Launch Site Computer Simulation and its Application to Processes

    Science.gov (United States)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  4. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  5. Numerical simulation of NQR/NMR: Applications in quantum computing.

    Science.gov (United States)

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Application of parallel computing to seismic damage process simulation of an arch dam

    International Nuclear Information System (INIS)

    Zhong Hong; Lin Gao; Li Jianbo

    2010-01-01

    The simulation of damage process of high arch dam subjected to strong earthquake shocks is significant to the evaluation of its performance and seismic safety, considering the catastrophic effect of dam failure. However, such numerical simulation requires rigorous computational capacity. Conventional serial computing falls short of that and parallel computing is a fairly promising solution to this problem. The parallel finite element code PDPAD was developed for the damage prediction of arch dams utilizing the damage model with inheterogeneity of concrete considered. Developed with programming language Fortran, the code uses a master/slave mode for programming, domain decomposition method for allocation of tasks, MPI (Message Passing Interface) for communication and solvers from AZTEC library for solution of large-scale equations. Speedup test showed that the performance of PDPAD was quite satisfactory. The code was employed to study the damage process of a being-built arch dam on a 4-node PC Cluster, with more than one million degrees of freedom considered. The obtained damage mode was quite similar to that of shaking table test, indicating that the proposed procedure and parallel code PDPAD has a good potential in simulating seismic damage mode of arch dams. With the rapidly growing need for massive computation emerged from engineering problems, parallel computing will find more and more applications in pertinent areas.

  7. The role of computer simulation in nuclear technologies development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, V. V.; Ryazanov, D.K.; Tellin, A.I.

    2001-01-01

    In the report the role and purposes of computer simulation in nuclear technologies development is discussed. The authors consider such applications of computer simulation as nuclear safety researches, optimization of technical and economic parameters of acting nuclear plant, planning and support of reactor experiments, research and design new devices and technologies, design and development of 'simulators' for operating personnel training. Among marked applications the following aspects of computer simulation are discussed in the report: neutron-physical, thermal and hydrodynamics models, simulation of isotope structure change and damage dose accumulation for materials under irradiation, simulation of reactor control structures. (authors)

  8. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach

    Science.gov (United States)

    Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London. PMID:26609369

  9. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  10. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  11. Real time simulation of large systems on mini-computer

    International Nuclear Information System (INIS)

    Nakhle, Michel; Roux, Pierre.

    1979-01-01

    Most simulation languages will only accept an explicit formulation of differential equations, and logical variables hold no special status therein. The pace of the suggested methods of integration is limited by the smallest time constant of the model submitted. The NEPTUNIX 2 simulation software has a language that will take implicit equations and an integration method of which the variable pace is not limited by the time constants of the model. This, together with high time and memory ressources optimization of the code generated, makes NEPTUNIX 2 a basic tool for simulation on mini-computers. Since the logical variables are specific entities under centralized control, correct processing of discontinuities and synchronization with a real process are feasible. The NEPTUNIX 2 is the industrial version of NEPTUNIX 1 [fr

  12. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  13. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  14. Musculoskeletal Simulation Model Generation from MRI Data Sets and Motion Capture Data

    Science.gov (United States)

    Schmid, Jérôme; Sandholm, Anders; Chung, François; Thalmann, Daniel; Delingette, Hervé; Magnenat-Thalmann, Nadia

    Today computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from magnetic resonance imaging (MRI) data sets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information, and muscle-tendon actuators is finally used to create a subject-specific musculoskeletal model.

  15. Computer simulation of kinetic properties of plasmas. Progress report, October 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Denavit, J.

    1979-01-01

    The research is directed toward the development and testing of new numerical methods for particle and hybrid simulation of plasmas, and their application to physical problems of current significance to Magnetic Fusion Energy. During the present period, research on the project has been concerned with the following specific problems: (1) Computer simulations of drift and dissipative trapped-electron instabilities in tokamaks, including radial dependence and shear stabilization. (2) Long-time-scale algorithms for numerical solutions of the drift-kinetic equation. (3) Computer simulation of field-reversed ion ring stability. (4) Nonlinear, single-mode saturation of the bump-on-tail instability

  16. The role of computer simulation in nuclear technology development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, VV.; Ryazanov, D.K.; Tellin, A.I.

    2000-01-01

    In the report, the role and purpose of computer simulation in nuclear technology development is discussed. The authors consider such applications of computer simulation as: (a) Nuclear safety research; (b) Optimization of technical and economic parameters of acting nuclear plant; (c) Planning and support of reactor experiments; (d) Research and design new devices and technologies; (f) Design and development of 'simulators' for operating personnel training. Among marked applications, the following aspects of computer simulation are discussed in the report: (g) Neutron-physical, thermal and hydrodynamics models; (h) Simulation of isotope structure change and dam- age dose accumulation for materials under irradiation; (i) Simulation of reactor control structures. (authors)

  17. Development of computational science in JAEA. R and D of simulation

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Araya, Fumimasa; Hirayama, Toshio

    2006-01-01

    R and D of computational science in JAEA (Japan Atomic Energy Agency) is described. Environment of computer, R and D system in CCSE (Center for Computational Science and e-Systems), joint computational science researches in Japan and world, development of computer technologies, the some examples of simulation researches, 3-dimensional image vibrational platform system, simulation researches of FBR cycle techniques, simulation of large scale thermal stress for development of steam generator, simulation research of fusion energy techniques, development of grid computing technology, simulation research of quantum beam techniques and biological molecule simulation researches are explained. Organization of JAEA, development of computational science in JAEA, network of JAEA, international collaboration of computational science, and environment of ITBL (Information-Technology Based Laboratory) project are illustrated. (S.Y.)

  18. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  19. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  20. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  1. An integrated computational tool for precipitation simulation

    Science.gov (United States)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  2. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  3. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    Science.gov (United States)

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  5. A Review of Freely Available Quantum Computer Simulation Software

    OpenAIRE

    Brandhorst-Satzkorn, Johan

    2012-01-01

    A study has been made of a few different freely available Quantum Computer simulators. All the simulators tested are available online on their respective websites. A number of tests have been performed to compare the different simulators against each other. Some untested simulators of various programming languages are included to show the diversity of the quantum computer simulator applications. The conclusion of the review is that LibQuantum is the best of the simulators tested because of ea...

  6. NATO Advanced Study Institute on Advances in the Computer Simulations of Liquid Crystals

    CERN Document Server

    Zannoni, Claudio

    2000-01-01

    Computer simulations provide an essential set of tools for understanding the macroscopic properties of liquid crystals and of their phase transitions in terms of molecular models. While simulations of liquid crystals are based on the same general Monte Carlo and molecular dynamics techniques as are used for other fluids, they present a number of specific problems and peculiarities connected to the intrinsic properties of these mesophases. The field of computer simulations of anisotropic fluids is interdisciplinary and is evolving very rapidly. The present volume covers a variety of techniques and model systems, from lattices to hard particle and Gay-Berne to atomistic, for thermotropics, lyotropics, and some biologically interesting liquid crystals. Contributions are written by an excellent panel of international lecturers and provides a timely account of the techniques and problems in the field.

  7. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  8. LIAR: A COMPUTER PROGRAM FOR THE SIMULATION AND MODELING OF HIGH PERFORMANCE LINACS

    International Nuclear Information System (INIS)

    Adolphsen, Chris

    2003-01-01

    The computer program LIAR (''LInear Accelerator Research code'') is a numerical simulation and tracking program for linear colliders. The LIAR project was started at SLAC in August 1995 in order to provide a computing and simulation tool that specifically addresses the needs of high energy linear colliders. LIAR is designed to be used for a variety of different linear accelerators. It has been applied for and checked against the existing Stanford Linear Collider (SLC) as well as the linacs of the proposed Next Linear Collider (NLC) and the proposed Linac Coherent Light Source (LCLS). The program includes wakefield effects, a 4D coupled beam description, specific optimization algorithms and other advanced features. We describe the most important concepts and highlights of the program. After having presented the LIAR program at the LINAC96 and the PAC97 conferences, we do now introduce it to the European particle accelerator community

  9. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  10. Computer security simulation

    International Nuclear Information System (INIS)

    Schelonka, E.P.

    1979-01-01

    Development and application of a series of simulation codes used for computer security analysis and design are described. Boolean relationships for arrays of barriers within functional modules are used to generate composite effectiveness indices. The general case of multiple layers of protection with any specified barrier survival criteria is given. Generalized reduction algorithms provide numerical security indices in selected subcategories and for the system as a whole. 9 figures, 11 tables

  11. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models

    Directory of Open Access Journals (Sweden)

    Anderson Chun On Tsang

    2015-04-01

    Full Text Available Purpose: The aim of this study was to validate a computational fluid dynamics (CFD simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents.

  12. Suitability of new anode materials in mammography: Dose and subject contrast considerations using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2006-01-01

    Mammography is the technique with the highest sensitivity and specificity, for the early detection of nonpalpable lesions associated with breast cancer. As screening mammography refers to asymptomatic women, the task of optimization between the image quality and the radiation dose is critical. A way toward optimization could be the introduction of new anode materials. A method for producing the x-ray spectra of different anode/filter combinations is proposed. The performance of several mammographic spectra, produced by both existing and theoretical anode materials, is evaluated, with respect to their dose and subject contrast characteristics, using a Monte Carlo simulation.The mammographic performance is evaluated utilizing a properly designed mathematical phantom with embedded inhomogeneities, irradiated with different spectra, based on combinations of conventional and new (Ru, Ag) anode materials, with several filters (Mo, Rh, Ru, Ag, Nb, Al). An earlier developed and validated Monte Carlo model, for deriving both image and dose characteristics in mammography, was utilized and overall performance results were derived in terms of subject contrast to dose ratio and squared subject contrast to dose ratio. Results demonstrate that soft spectra, mainly produced from Mo, Rh, and Ru anodes and filtered with k-edge filters, provide increased subject contrast for inhomogeneities of both small size, simulating microcalcifications and low density, simulating masses. The harder spectra (W and Ag anode) come short in the discrimination task but demonstrate improved performance when considering the dose delivered to the breast tissue. As far as the overall performance is concerned, new theoretical spectra demonstrate a noticeable good performance that is similar, and in some cases better compared to commonly used systems, stressing the possibility of introducing new materials in mammographic practice as a possible contribution to its optimization task. In the overall

  13. Towards an integrated multiscale simulation of turbulent clouds on PetaScale computers

    International Nuclear Information System (INIS)

    Wang Lianping; Ayala, Orlando; Parishani, Hossein; Gao, Guang R; Kambhamettu, Chandra; Li Xiaoming; Rossi, Louis; Orozco, Daniel; Torres, Claudio; Grabowski, Wojciech W; Wyszogrodzki, Andrzej A; Piotrowski, Zbigniew

    2011-01-01

    The development of precipitating warm clouds is affected by several effects of small-scale air turbulence including enhancement of droplet-droplet collision rate by turbulence, entrainment and mixing at the cloud edges, and coupling of mechanical and thermal energies at various scales. Large-scale computation is a viable research tool for quantifying these multiscale processes. Specifically, top-down large-eddy simulations (LES) of shallow convective clouds typically resolve scales of turbulent energy-containing eddies while the effects of turbulent cascade toward viscous dissipation are parameterized. Bottom-up hybrid direct numerical simulations (HDNS) of cloud microphysical processes resolve fully the dissipation-range flow scales but only partially the inertial subrange scales. it is desirable to systematically decrease the grid length in LES and increase the domain size in HDNS so that they can be better integrated to address the full range of scales and their coupling. In this paper, we discuss computational issues and physical modeling questions in expanding the ranges of scales realizable in LES and HDNS, and in bridging LES and HDNS. We review our on-going efforts in transforming our simulation codes towards PetaScale computing, in improving physical representations in LES and HDNS, and in developing better methods to analyze and interpret the simulation results.

  14. Understanding Islamist political violence through computational social simulation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  15. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  16. REACTOR: a computer simulation for schools

    International Nuclear Information System (INIS)

    Squires, D.

    1985-01-01

    The paper concerns computer simulation of the operation of a nuclear reactor, for use in schools. The project was commissioned by UKAEA, and carried out by the Computers in the Curriculum Project, Chelsea College. The program, for an advanced gas cooled reactor, is briefly described. (U.K.)

  17. Learning and instruction with computer simulations

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.

    1991-01-01

    The present volume presents the results of an inventory of elements of such a computer learning environment. This inventory was conducted within a DELTA project called SIMULATE. In the project a learning environment that provides intelligent support to learners and that has a simulation as its

  18. Sequenced subjective accents for brain-computer interfaces

    Science.gov (United States)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  19. Development of a voxel phantom specific for simulation of eye brachytherapy

    International Nuclear Information System (INIS)

    Santos, Marcilio S.; Lima, Fernando R.A.

    2013-01-01

    The ophthalmic brachytherapy involves inserting a plate with seeds of radioactive material in the patient's eye for the treatment of tumors. The radiation dose to be taken by the patient is prescribed by physicians and time of application of the material is calculated from calibration curves supplied by the manufacturers of the plates. To estimate the dose absorbed by the patient, in a series of diagnostic tests, it is necessary to perform simulations using a computational model of exposure. These models are composed primarily by a anthropomorphic phantom, and a Monte Carlo code. The coupling of a phantom voxel whole body to a Monte Carlo code is a complex process because the computer model simulations with exposure takes time, knowledge of the code used and various adjustments to be implemented. The problem is aggravated even more complex when you want to radiate one region of the body. In this work we developed a phantom, specifically the region containing the eyeball, from MASH (Male Adult voxel). This model was coupled to the Monte Carlo code EGSnrc (Electron Gamma Shower) together with an algorithm simulator source of I-125 , considering only its effect of higher energy range

  20. A Computer Simulation of Auroral Arc Formation.

    Science.gov (United States)

    Wagner, John Scott

    Recent satellite measurements have revealed two intriguing features associated with the formation of auroral arcs. The first is that an auroral arc is produced by a sheet of electrons accelerated along a geomagnetic field -aligned potential drop, and the second is that these electrons carry a field-aligned, upward directed electric current. In order to explain these measurements, a self-consistent, time dependent, computer simulation of auroral arc formation has been developed. The simulation demonstrates for the first time that a stable V-shaped potential structure, called an auroral double layer, develops spontaneously as a result of an ion shielded electron current sheet interacting with a conducting ionosphere. The double layer accelerates current-carrying electrons into the upper atmosphere at auroral energies. The double layer potential depends critically on the drift speed of the current-carrying electrons and on the temperature of the ambient shielding ions. Localized double layers occur near the ionosphere when the geomagnetic field is assumed to be uniform, but when a converging magnetic field is introduced, the double layer becomes extended due to the presence of an additional population of electrons trapped between the magnetic mirror and the double layer potential. The simulated auroral current sheet is subject to auroral curl and fold type deformations due to unstable Kelvin-Helmholtz waves. The previous incompletely understood auroral fold producing mechanism is described.

  1. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  2. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  3. Scientific and computational challenges of the fusion simulation project (FSP)

    International Nuclear Information System (INIS)

    Tang, W M

    2008-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Project (FSP). The primary objective is to develop advanced software designed to use leadership-class computers for carrying out multiscale physics simulations to provide information vital to delivering a realistic integrated fusion simulation model with unprecedented physics fidelity. This multiphysics capability will be unprecedented in that in the current FES applications domain, the largest-scale codes are used to carry out first-principles simulations of mostly individual phenomena in realistic 3D geometry while the integrated models are much smaller-scale, lower-dimensionality codes with significant empirical elements used for modeling and designing experiments. The FSP is expected to be the most up-to-date embodiment of the theoretical and experimental understanding of magnetically confined thermonuclear plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing a reliable ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales. From a computational perspective, the fusion energy science application goal to produce high-fidelity, whole-device modeling capabilities will demand computing resources in the petascale range and beyond, together with the associated multicore algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative device involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics

  4. Interoceanic canal excavation scheduling via computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baldonado, Orlino C [Holmes and Narver, Inc., Los Angeles, CA (United States)

    1970-05-15

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  5. Interoceanic canal excavation scheduling via computer simulation

    International Nuclear Information System (INIS)

    Baldonado, Orlino C.

    1970-01-01

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  6. Building Energy Assessment and Computer Simulation Applied to Social Housing in Spain

    Directory of Open Access Journals (Sweden)

    Juan Aranda

    2018-01-01

    Full Text Available The actual energy consumption and simulated energy performance of a building usually differ. This gap widens in social housing, owing to the characteristics of these buildings and the consumption patterns of economically vulnerable households affected by energy poverty. The aim of this work is to characterise the energy poverty of the households that are representative of those residing in social housing, specifically in blocks of apartments in Southern Europe. The main variables that affect energy consumption and costs are analysed, and the models developed for software energy-performance simulations (which are applied to predict energy consumption in social housing are validated against actual energy-consumption values. The results demonstrate that this type of household usually lives in surroundings at a temperature below the average thermal comfort level. We have taken into account that a standard thermal comfort level may lead to significant differences between computer-aided energy building simulation and actual consumption data (which are 40–140% lower than simulated consumption. This fact is of integral importance, as we use computer simulation to predict building energy performance in social housing.

  7. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  8. Computer graphics in heat-transfer simulations

    International Nuclear Information System (INIS)

    Hamlin, G.A. Jr.

    1980-01-01

    Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges

  9. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E

    2017-01-01

    Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration....... The structural changes could be followed in real time, and in addition, an intermediate amorphous phase was identified. The computationally identified dehydrated structure (anhydrate) was slightly different from the experimentally known anhydrate structure suggesting that the simulated computational structure...

  11. Coupling of EIT with computational lung modeling for predicting patient-specific ventilatory responses.

    Science.gov (United States)

    Roth, Christian J; Becher, Tobias; Frerichs, Inéz; Weiler, Norbert; Wall, Wolfgang A

    2017-04-01

    Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. NEW & NOTEWORTHY In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results

  12. Correction of computed tomography motion artifacts using pixel-specific back-projection

    International Nuclear Information System (INIS)

    Ritchie, C.J.; Crawford, C.R.; Godwin, J.D.; Kim, Y. King, K.F.

    1996-01-01

    Cardiac and respiratory motion can cause artifacts in computed tomography scans of the chest. The authors describe a new method for reducing these artifacts called pixel-specific back-projection (PSBP). PSBP reduces artifacts caused by in-plane motion by reconstructing each pixel in a frame of reference that moves with the in-plane motion in the volume being scanned. The motion of the frame of reference is specified by constructing maps that describe the motion of each pixel in the image at the time each projection was measured; these maps are based on measurements of the in-plane motion. PSBP has been tested in computer simulations and with volunteer data. In computer simulations, PSBP removed the structured artifacts caused by motion. In scans of two volunteers, PSBP reduced doubling and streaking in chest scans to a level that made the images clinically useful. PSBP corrections of liver scans were less satisfactory because the motion of the liver is predominantly superior-inferior (S-I). PSBP uses a unique set of motion parameters to describe the motion at each point in the chest as opposed to requiring that the motion be described by a single set of parameters. Therefore, PSBP may be more useful in correcting clinical scans than are other correction techniques previously described

  13. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  14. A Computer-Based Simulation of an Acid-Base Titration

    Science.gov (United States)

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  15. Quantum simulations with noisy quantum computers

    Science.gov (United States)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  16. Learning Support Assessment Study of a Computer Simulation for the Development of Microbial Identification Strategies

    Directory of Open Access Journals (Sweden)

    Tristan E. Johnson

    2009-12-01

    Full Text Available This paper describes a study that examined how microbiology students construct knowledge of bacterial identification while using a computer simulation. The purpose of this study was to understand how the simulation affects the cognitive processing of students during thinking, problem solving, and learning about bacterial identification and to determine how the simulation facilitates the learning of a domain-specific problem-solving strategy. As part of an upper-division microbiology course, five students participated in several simulation assignments. The data were collected using think-aloud protocol and video action logs as the students used the simulation. The analysis revealed two major themes that determined the performance of the students: Simulation Usage—how the students used the software features and Problem-Solving Strategy Development—the strategy level students started with and the skill level they achieved when they completed their use of the simulation. Several conclusions emerged from the analysis of the data: (i The simulation affects various aspects of cognitive processing by creating an environment that makes it possible to practice the application of a problem-solving strategy. The simulation was used as an environment that allowed students to practice the cognitive skills required to solve an unknown. (ii Identibacter (the computer simulation may be considered to be a cognitive tool to facilitate the learning of a bacterial identification problem-solving strategy. (iii The simulation characteristics did support student learning of a problem-solving strategy. (iv Students demonstrated problem-solving strategy development specific to bacterial identification. (v Participants demonstrated an improved performance from their repeated use of the simulation.

  17. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  18. Simulations of Probabilities for Quantum Computing

    Science.gov (United States)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  19. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, G C; Ploussi, A; Kordolaimi, S; Papamichail, D; Karavasilis, E; Syrgiamiotis, V; Loudos, G

    2015-01-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼10 10 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition. (paper)

  20. Patient-specific surgical simulation.

    Science.gov (United States)

    Soler, Luc; Marescaux, Jacques

    2008-02-01

    Technological innovations of the twentieth century have provided medicine and surgery with new tools for education and therapy definition. Thus, by combining Medical Imaging and Virtual Reality, patient-specific applications providing preoperative surgical simulation have become possible.

  1. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    Science.gov (United States)

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to

  2. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    Science.gov (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  3. Computer Simulation of Reading.

    Science.gov (United States)

    Leton, Donald A.

    In recent years, coding and decoding have been claimed to be the processes for converting one language form to another. But there has been little effort to locate these processes in the human learner or to identify the nature of the internal codes. Computer simulation of reading is useful because the similarities in the human reception and…

  4. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    Science.gov (United States)

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  5. On-Track Testing as a Validation Method of Computational Fluid Dynamic Simulations of a Formula SAE Vehicle

    Science.gov (United States)

    Weingart, Robert

    This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.

  6. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  7. Computer Simulation of a Hardwood Processing Plant

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  8. Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Sirota, A.M.; Húsek, Dušan; Muraviev, I. P.

    2004-01-01

    Roč. 14, č. 2 (2004), s. 139-152 ISSN 1210-0552 R&D Projects: GA ČR GA201/01/1192 Grant - others:BARRANDE(EU) 99010-2/99053; Intellectual computer Systems(EU) Grant 2.45 Institutional research plan: CEZ:AV0Z1030915 Keywords : nonlinear binary factor analysis * feature extraction * recurrent neural network * Single-Step approximation * neurodynamics simulation * attraction basins * Hebbian learning * unsupervised learning * neuroscience * brain function modeling Subject RIV: BA - General Mathematics

  9. Interferences and events on epistemic shifts in physics through computer simulations

    CERN Document Server

    Warnke, Martin

    2017-01-01

    Computer simulations are omnipresent media in today's knowledge production. For scientific endeavors such as the detection of gravitational waves and the exploration of subatomic worlds, simulations are essential; however, the epistemic status of computer simulations is rather controversial as they are neither just theory nor just experiment. Therefore, computer simulations have challenged well-established insights and common scientific practices as well as our very understanding of knowledge. This volume contributes to the ongoing discussion on the epistemic position of computer simulations in a variety of physical disciplines, such as quantum optics, quantum mechanics, and computational physics. Originating from an interdisciplinary event, it shows that accounts of contemporary physics can constructively interfere with media theory, philosophy, and the history of science.

  10. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  11. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  12. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  13. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  14. Optimisation of phase ratio in the triple jump using computer simulation.

    Science.gov (United States)

    Allen, Sam J; King, Mark A; Yeadon, M R Fred

    2016-04-01

    The triple jump is an athletic event comprising three phases in which the optimal proportion of each phase to the total distance jumped, termed the phase ratio, is unknown. This study used a whole-body torque-driven computer simulation model of all three phases of the triple jump to investigate optimal technique. The technique of the simulation model was optimised by varying torque generator activation parameters using a Genetic Algorithm in order to maximise total jump distance, resulting in a hop-dominated technique (35.7%:30.8%:33.6%) and a distance of 14.05m. Optimisations were then run with penalties forcing the model to adopt hop and jump phases of 33%, 34%, 35%, 36%, and 37% of the optimised distance, resulting in total distances of: 13.79m, 13.87m, 13.95m, 14.05m, and 14.02m; and 14.01m, 14.02m, 13.97m, 13.84m, and 13.67m respectively. These results indicate that in this subject-specific case there is a plateau in optimum technique encompassing balanced and hop-dominated techniques, but that a jump-dominated technique is associated with a decrease in performance. Hop-dominated techniques are associated with higher forces than jump-dominated techniques; therefore optimal phase ratio may be related to a combination of strength and approach velocity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Inovation of the computer system for the WWER-440 simulator

    International Nuclear Information System (INIS)

    Schrumpf, L.

    1988-01-01

    The configuration of the WWER-440 simulator computer system consists of four SMEP computers. The basic data processing unit consists of two interlinked SM 52/11.M1 computers with 1 MB of main memory. This part of the computer system of the simulator controls the operation of the entire simulator, processes the programs of technology behavior simulation, of the unit information system and of other special systems, guarantees program support and the operation of the instructor's console. An SM 52/11 computer with 256 kB of main memory is connected to each unit. It is used as a communication unit for data transmission using the DASIO 600 interface. Semigraphic color displays are based on the microprocessor modules of the SM 50/40 and SM 53/10 kit supplemented with a modified TESLA COLOR 110 ST tv receiver. (J.B.). 1 fig

  16. Equation-oriented specification of neural models for simulations

    Directory of Open Access Journals (Sweden)

    Marcel eStimberg

    2014-02-01

    Full Text Available Simulating biological neuronal networks is a core method of research in computational neuroscience. A full specification of such a network model includes a description of the dynamics and state changes of neurons and synapses, as well as the synaptic connectivity patterns and the initial values of all parameters. A standard approach in neuronal modelling software is to build models based on a library of pre-defined models and mechanisms; if a model component does not yet exist, it has to be defined in a special-purpose or general low-level language and potentially be compiled and linked with the simulator. Here we propose an alternative approach that allows flexible definition of models by writing textual descriptions based on mathematical notation. We demonstrate that this approach allows the definition of a wide range of models with minimal syntax. Furthermore, such explicit model descriptions allow the generation of executable code for various target languages and devices, since the description is not tied to an implementation. Finally, this approach also has advantages for readability and reproducibility, because the model description is fully explicit, and because it can be automatically parsed and transformed into formatted descriptions.The presented approach has been implemented in the Brian2 simulator.

  17. Nonlinear simulations with and computational issues for NIMROD

    International Nuclear Information System (INIS)

    Sovinec, C.R.

    1998-01-01

    The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code development project was commissioned by the US Department of Energy in February, 1996 to provide the fusion research community with a computational tool for studying low-frequency behavior in experiments. Specific problems of interest include the neoclassical evolution of magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an additional requirement is the ability to perform the computations in realistic geometries. The NIMROD Team is using contemporary management and computational methods to develop a computational tool for investigating low-frequency behavior in plasma fusion experiments. The authors intend to make the code freely available, and are taking steps to make it as easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal RFP simulation--the first in a series to investigate how toroidal geometry affects MHD activity in RFPs. Finally, the most important issue facing the project is execution time, and they are exploring better matrix solvers and a better parallel decomposition to address this

  18. Nonlinear simulations with and computational issues for NIMROD

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, C.R. [Los Alamos National Lab., NM (United States)

    1998-12-31

    The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code development project was commissioned by the US Department of Energy in February, 1996 to provide the fusion research community with a computational tool for studying low-frequency behavior in experiments. Specific problems of interest include the neoclassical evolution of magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an additional requirement is the ability to perform the computations in realistic geometries. The NIMROD Team is using contemporary management and computational methods to develop a computational tool for investigating low-frequency behavior in plasma fusion experiments. The authors intend to make the code freely available, and are taking steps to make it as easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal RFP simulation--the first in a series to investigate how toroidal geometry affects MHD activity in RFPs. Finally, the most important issue facing the project is execution time, and they are exploring better matrix solvers and a better parallel decomposition to address this.

  19. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Formal specification is an experimental science

    Energy Technology Data Exchange (ETDEWEB)

    Bjorner, D. [Technical Univ., Lyngby (Denmark)

    1992-09-01

    Traditionally, abstract models of large, complex systems have been given in free-form mathematics, combining - often in ad-hoc, not formally supported ways - notions from the disciplines of partial differential equations, functional analysis, mathematical statistics, etc. Such models have been very useful for assimilation of information, analysis (investigation), and prediction (simulation). These models have, however, usually not been helpful in deriving computer representations of the modelled systems - for the purposes of computerized monitoring and control, Computing science, concerned with how to construct objects that can exist within the computer, offers ways of complementing, and in some cases, replacing or combining traditional mathematical models. Formal, model-, as well as property-oriented, specifications in the styles of denotational (respectively, algebraic semantics) represent major approaches to such modelling. In this expository, discursive paper we illustrate what we mean by model-oriented specifications of large, complex technological computing systems. The three modelling examples covers the introvert programming methodological subject of SDEs: software development environments, the distributed computing system subject of wfs`s: (transaction) work flow systems, and the extrovert subject of robots: robotics! the thesis is, just as for mathematical modelling, that we can derive much understanding, etc., from experimentally creating such formally specified models - on paper - and that we gain little in additionally building ad-hoc prototypes. Our models are expressed in a model-oriented style using the VDM specification language Meta-IV In this paper the models only reflect the {open_quotes}data modelling{close_quotes} aspects. We observe that such data models are more easily captured in the model-oriented siyle than in the algebraic semantics property-oriented style which originally was built of the abstraction of operations. 101 refs., 4 figs.

  1. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  2. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  3. Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  4. Scientific and computational challenges of the fusion simulation program (FSP)

    International Nuclear Information System (INIS)

    Tang, William M.

    2011-01-01

    This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e

  5. Computational algorithms for simulations in atmospheric optics.

    Science.gov (United States)

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  6. SiMon: Simulation Monitor for Computational Astrophysics

    Science.gov (United States)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  7. Numerical simulation of forced convection in a duct subjected to microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Kuznetsov, A.V. [North Carolina State University, Department of Mechanical and Aerospace Engineering, Campus Box 7910, Raleigh, NC (United States); Sandeep, K.P. [North Carolina State University, Department of Food Science, Raleigh, NC (United States)

    2007-01-15

    In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell's equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell's equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system. (orig.)

  8. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  9. Using Computer Simulations for Investigating a Sex Education Intervention: An Exploratory Study.

    Science.gov (United States)

    Eleftheriou, Anastasia; Bullock, Seth; Graham, Cynthia A; Ingham, Roger

    2017-05-03

    Sexually transmitted infections (STIs) are ongoing concerns. The best method for preventing the transmission of these infections is the correct and consistent use of condoms. Few studies have explored the use of games in interventions for increasing condom use by challenging the false sense of security associated with judging the presence of an STI based on attractiveness. The primary purpose of this study was to explore the potential use of computer simulation as a serious game for sex education. Specific aims were to (1) study the influence of a newly designed serious game on self-rated confidence for assessing STI risk and (2) examine whether this varied by gender, age, and scores on sexuality-related personality trait measures. This paper undertook a Web-based questionnaire study employing between and within subject analyses. A Web-based platform hosted in the United Kingdom was used to deliver male and female stimuli (facial photographs) and collect data. A convenience sample group of 66 participants (64%, 42/66) male, mean age 22.5 years) completed the Term on the Tides, a computer simulation developed for this study. Participants also completed questionnaires on demographics, sexual preferences, sexual risk evaluations, the Sexual Sensation Seeking Scale (SSS), and the Sexual Inhibition Subscale 2 (SIS2) of the Sexual Inhibition/Sexual Excitation Scales-Short Form (SIS/SES - SF). The overall confidence of participants to evaluate sexual risks reduced after playing the game (Psimulations as a serious game for sex education. Engaging in the Term on the Tides game had an impact on participants' confidence in evaluating sexual risks. ©Anastasia Eleftheriou, Seth Bullock, Cynthia A Graham, Roger Ingham. Originally published in JMIR Serious Games (http://games.jmir.org), 03.05.2017.

  10. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    Science.gov (United States)

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  11. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  12. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  13. Impact of subject related factors and position of flight control stick on acquisition of simulated flying skills using a flight simulator

    Science.gov (United States)

    Cho, Bo-Keun

    Increasing demand on aviation industry calls for more pilots. Thus, pilot training systems and pilot-candidate screening systems are essential for civil and military flying training institutes. Before actual flight training, it is not easy to determine whether a flight trainee will be successful in the training. Due to the high cost of actual flight training, it would be better if there were low cost methods for screening and training candidates prior to the actual flight training. This study intended to determine if subject related factors and flight control stick position have an impact on acquisition of simulated flying skills using a PC-based flight simulator. The experimental model was a factorial design with repeated measures. Sixty-four subjects participated in the experiment and were divided into 8 groups. Experiment consisted of 8 sessions in which performance data, such as heading, altitude and airspeed were collected every 15 seconds. Collected data were analyzed using SAS statistical program. Result of multivariate analysis of variance indicated that the three independent variables: nationality, computer game experience, and flight stick position have significant impact on acquiring simulated flying skill. For nationality, Americans recorded higher scores in general (mean: 81.7) than Koreans (mean: 78.9). The difference in mean scores between Americans and Koreans was 2.8 percent. Regarding computer game experience, the difference between high experience group (82.3) and low experience group (78.3) is significant. For high experience group, American side-stick group recorded the highest (mean: 85.6), and Korean side-stick group (mean: 77.2) scored the lowest. For the low experience group, American center-stick group scored the highest (80.6), and the Korean side-stick group (74.2) scored the lowest points. Therefore, there is a significant difference between high experience group and low experience group. The results also reveal that the center

  14. Use of computer graphics simulation for teaching of flexible sigmoidoscopy.

    Science.gov (United States)

    Baillie, J; Jowell, P; Evangelou, H; Bickel, W; Cotton, P

    1991-05-01

    The concept of simulation training in endoscopy is now well-established. The systems currently under development employ either computer graphics simulation or interactive video technology; each has its strengths and weaknesses. A flexible sigmoidoscopy training device has been designed which uses graphic routines--such as object oriented programming and double buffering--in entirely new ways. These programming techniques compensate for the limitations of currently available desk-top microcomputers. By boosting existing computer 'horsepower' with next generation coprocessors and sophisticated graphics tools such as intensity interpolation (Gouraud shading), the realism of computer simulation of flexible sigmoidoscopy is being greatly enhanced. The computer program has teaching and scoring capabilities, making it a truly interactive system. Use has been made of this ability to record, grade and store each trainee encounter in computer memory as part of a multi-center, prospective trial of simulation training being conducted currently in the USA. A new input device, a dummy endoscope, has been designed that allows application of variable resistance to the insertion tube. This greatly enhances tactile feedback, such as resistance during looping. If carefully designed trials show that computer simulation is an attractive and effective training tool, it is expected that this technology will evolve rapidly and be made widely available to trainee endoscopists.

  15. Effect of computer game playing on baseline laparoscopic simulator skills.

    Science.gov (United States)

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  16. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  17. BMI and risk of serious upper body injury following motor vehicle crashes: concordance of real-world and computer-simulated observations.

    Directory of Open Access Journals (Sweden)

    Shankuan Zhu

    2010-03-01

    Full Text Available Men tend to have more upper body mass and fat than women, a physical characteristic that may predispose them to severe motor vehicle crash (MVC injuries, particularly in certain body regions. This study examined MVC-related regional body injury and its association with the presence of driver obesity using both real-world data and computer crash simulation.Real-world data were from the 2001 to 2005 National Automotive Sampling System Crashworthiness Data System. A total of 10,941 drivers who were aged 18 years or older involved in frontal collision crashes were eligible for the study. Sex-specific logistic regression models were developed to analyze the associations between MVC injury and the presence of driver obesity. In order to confirm the findings from real-world data, computer models of obese subjects were constructed and crash simulations were performed. According to real-world data, obese men had a substantially higher risk of injury, especially serious injury, to the upper body regions including head, face, thorax, and spine than normal weight men (all p<0.05. A U-shaped relation was found between body mass index (BMI and serious injury in the abdominal region for both men and women (p<0.05 for both BMI and BMI(2. In the high-BMI range, men were more likely to be seriously injured than were women for all body regions except the extremities and abdominal region (all p<0.05 for interaction between BMI and sex. The findings from the computer simulation were generally consistent with the real-world results in the present study.Obese men endured a much higher risk of injury to upper body regions during MVCs. This higher risk may be attributed to differences in body shape, fat distribution, and center of gravity between obese and normal-weight subjects, and between men and women. Please see later in the article for the Editors' Summary.

  18. Prototyping and Simulating Parallel, Distributed Computations with VISA

    National Research Council Canada - National Science Library

    Demeure, Isabelle M; Nutt, Gary J

    1989-01-01

    ...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...

  19. Computational assessment of hemodynamics-based diagnostic tools using a database of virtual subjects: Application to three case studies.

    Science.gov (United States)

    Willemet, Marie; Vennin, Samuel; Alastruey, Jordi

    2016-12-08

    Many physiological indexes and algorithms based on pulse wave analysis have been suggested in order to better assess cardiovascular function. Because these tools are often computed from in-vivo hemodynamic measurements, their validation is time-consuming, challenging, and biased by measurement errors. Recently, a new methodology has been suggested to assess theoretically these computed tools: a database of virtual subjects generated using numerical 1D-0D modeling of arterial hemodynamics. The generated set of simulations encloses a wide selection of healthy cases that could be encountered in a clinical study. We applied this new methodology to three different case studies that demonstrate the potential of our new tool, and illustrated each of them with a clinically relevant example: (i) we assessed the accuracy of indexes estimating pulse wave velocity; (ii) we validated and refined an algorithm that computes central blood pressure; and (iii) we investigated theoretical mechanisms behind the augmentation index. Our database of virtual subjects is a new tool to assist the clinician: it provides insight into the physical mechanisms underlying the correlations observed in clinical practice. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Computational simulation of acoustic fatigue for hot composite structures

    Science.gov (United States)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  1. The tension of framed membranes from computer simulations

    DEFF Research Database (Denmark)

    Hamkens, Daniel; Jeppesen, Claus; Ipsen, John H.

    2018-01-01

    the membranes display power-law characteristics for the equation of state, while higher tension levels includes both an extended linear (elastic) as well as a highly non-linear stretching regime. For semi-flexible membranes a transition from extended to buckled conformations takes place at negative frame......Abstract.: We have analyzed the behavior of a randomly triangulated, self-avoiding surface model of a flexible, fluid membrane subject to a circular boundary by Wang-Landau Monte Carlo computer simulation techniques. The dependence of the canonical free energy and frame tension on the frame area...... is obtained for flexible membranes. It is shown that for low bending rigidities the framed membrane is only stable above a threshold tension, suggesting a discontinuous transition from the collapsed (branched polymer) state to a finite tension extended state. In a tension range above this threshold tension...

  2. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  3. First principles simulations

    International Nuclear Information System (INIS)

    Palummo, M.; Reining, L.; Ballone, P.

    1993-01-01

    In this paper we outline the major features of the ''ab-initio'' simulation scheme of Car and Parrinello, focusing on the physical ideas and computational details at the basis of its efficiency and success. We briefly review the main applications of the method. We discuss the limitations of the standard scheme, as well as recent developments proposed in order to extend the reach of the method. Moreover, we consider more in detail two specific subjects. First, we describe a simple improvement (Gradient Corrections) on the basic approximation of the ''ab-initio'' simulation, i.e. the Local Density Approximation. These corrections can be easily and efficiently included in the Car-Parrinello code, bringing computed structural and cohesive properties significantly closer to their experimental values. Finally, we discuss the choice of the pseudopotential, with special attention to the possibilities and limitations of the last generation of soft pseudopotentials. (orig.)

  4. How Many Times Should One Run a Computational Simulation?

    DEFF Research Database (Denmark)

    Seri, Raffaello; Secchi, Davide

    2017-01-01

    This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces statisti......This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces...

  5. Development of a fast running accident analysis computer program for use in a simulator

    International Nuclear Information System (INIS)

    Cacciabue, P.C.

    1985-01-01

    This paper describes how a reactor safety nuclear computer program can be modified and improved with the aim of reaching a very fast running tool to be used as a physical model in a plant simulator, without penalizing the accuracy of results. It also discusses some ideas on how the physical theoretical model can be combined to a driving statistical tool for the build up of the entire package of software to be implemented in the simulator for risk and reliability analysis. The approach to the problem, although applied to a specific computer program, can be considered quite general if an already existing and well tested code is being used for the purpose. The computer program considered is ALMOD, originally developed for the analysis of the thermohydraulic and neutronic behaviour of the reactor core, primary circuit and steam generator during operational and special transients. (author)

  6. Computer simulation of gear tooth manufacturing processes

    Science.gov (United States)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  7. Utilization of NPP Krsko plant specific simulator

    International Nuclear Information System (INIS)

    Fifnja, I.; Pribozic, F.; Krajnc, J.

    2002-01-01

    NPP Krsko started with licensed operator training using its own plant-specific full scope simulator in April 2000. Today, two years after simulator was completed, the benefits of simulator use are visible in various fields. The simulator was effectively used to conduct licensed operator continuing training and practical examinations. Two-year continuous training program was designed to help maintain and improve operator performance. The simulator was also used to provide just-in-time training prior to plant evolutions. Together with licensed operators the non-licensed operators are also included into simulator training to provide affective team training opportunity and to foster good communication and increase scenario realism. Now, the first group of initial licensed operator training using plant-specific simulator is also almost completed. It is the first time that NPP Krsko training department conducted complete initial training and this will represent the great experience for future training. Besides training, the simulator was also utilized for procedure development and validation, operating standards development, testing of plant modifications and other activities, like emergency preparedness procedures validation and training exercises.(author)

  8. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    Science.gov (United States)

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  9. CFD Simulations of Floating Point Absorber Wave Energy Converter Arrays Subjected to Regular Waves

    Directory of Open Access Journals (Sweden)

    Brecht Devolder

    2018-03-01

    Full Text Available In this paper we use the Computational Fluid Dynamics (CFD toolbox OpenFOAM to perform numerical simulations of multiple floating point absorber wave energy converters (WECs arranged in a geometrical array configuration inside a numerical wave tank (NWT. The two-phase Navier-Stokes fluid solver is coupled with a motion solver to simulate the hydrodynamic flow field around the WECs and the wave-induced rigid body heave motion of each WEC within the array. In this study, the numerical simulations of a single WEC unit are extended to multiple WECs and the complexity of modelling individual floating objects close to each other in an array layout is tackled. The NWT is validated for fluid-structure interaction (FSI simulations by using experimental measurements for an array of two, five and up to nine heaving WECs subjected to regular waves. The validation is achieved by using mathematical models to include frictional forces observed during the experimental tests. For all the simulations presented, a good agreement is found between the numerical and the experimental results for the WECs’ heave motions, the surge forces on the WECs and the perturbed wave field around the WECs. As a result, our coupled CFD–motion solver proves to be a suitable and accurate toolbox for the study of fluid-structure interaction problems of WEC arrays.

  10. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Buchert, R.; Brenner, W.; Apostolova, I.; Mester, J.; Clausen, M. [University Medical Center Hamburg-Eppendorf (Germany). Dept. of Nuclear Medicine; Santer, R. [University Medical Center Hamburg-Eppendorf (Germany). Center for Gynaecology, Obstetrics and Paediatrics; Silverman, D.H.S. [David Geffen School of Medicine at UCLA, Los Angeles, CA (United States). Dept. of Molecular and Medical Pharmacology

    2009-07-01

    FDG PET in hyperglycaemic subjects often suffers from limited statistical image quality, which may hamper visual and quantitative evaluation. In our study the following insulin bolus protocol is proposed for acute correction of hyperglycaemia (> 7.0 mmol/l) in brain FDG PET. (i) Intravenous bolus injection of short-acting insulin, one I.E. for each 0.6 mmol/l blood glucose above 7.0. (ii) If 20 min after insulin administration plasma glucose is {<=} 7.0 mmol/l, proceed to (iii). If insulin has not taken sufficient effect step back to (i). Compute insulin dose with the updated blood glucose level. (iii) Wait further 20 min before injection of FDG. (iv) Continuous supervision of the patient during the whole scanning procedure. The potential of this protocol for improvement of image quality in brain FDG PET in hyperglycaemic subjects was evaluated by computer simulations within the Sokoloff model. A plausibility check of the prediction of the computer simulations on the magnitude of the effect that might be achieved by correction of hyperglycaemia was performed by retrospective evaluation of the relation between blood glucose level and brain FDG uptake in 89 subjects in whom FDG PET had been performed for diagnosis of Alzheimer's disease. The computer simulations suggested that acute correction of hyperglycaemia according to the proposed bolus insulin protocol might increase the FDG uptake of the brain by up to 80%. The magnitude of this effect was confirmed by the patient data. The proposed management protocol for acute correction of hyperglycaemia with insulin has the potential to significantly improve the statistical quality of brain FDG PET images. This should be confirmed in a prospective study in patients. (orig.)

  11. Computer simulations suggest that acute correction of hyperglycaemia with an insulin bolus protocol might be useful in brain FDG PET

    International Nuclear Information System (INIS)

    Buchert, R.; Brenner, W.; Apostolova, I.; Mester, J.; Clausen, M.; Santer, R.; Silverman, D.H.S.

    2009-01-01

    FDG PET in hyperglycaemic subjects often suffers from limited statistical image quality, which may hamper visual and quantitative evaluation. In our study the following insulin bolus protocol is proposed for acute correction of hyperglycaemia (> 7.0 mmol/l) in brain FDG PET. (i) Intravenous bolus injection of short-acting insulin, one I.E. for each 0.6 mmol/l blood glucose above 7.0. (ii) If 20 min after insulin administration plasma glucose is ≤ 7.0 mmol/l, proceed to (iii). If insulin has not taken sufficient effect step back to (i). Compute insulin dose with the updated blood glucose level. (iii) Wait further 20 min before injection of FDG. (iv) Continuous supervision of the patient during the whole scanning procedure. The potential of this protocol for improvement of image quality in brain FDG PET in hyperglycaemic subjects was evaluated by computer simulations within the Sokoloff model. A plausibility check of the prediction of the computer simulations on the magnitude of the effect that might be achieved by correction of hyperglycaemia was performed by retrospective evaluation of the relation between blood glucose level and brain FDG uptake in 89 subjects in whom FDG PET had been performed for diagnosis of Alzheimer's disease. The computer simulations suggested that acute correction of hyperglycaemia according to the proposed bolus insulin protocol might increase the FDG uptake of the brain by up to 80%. The magnitude of this effect was confirmed by the patient data. The proposed management protocol for acute correction of hyperglycaemia with insulin has the potential to significantly improve the statistical quality of brain FDG PET images. This should be confirmed in a prospective study in patients. (orig.)

  12. The visual simulators for architecture and computer organization learning

    OpenAIRE

    Nikolić Boško; Grbanović Nenad; Đorđević Jovan

    2009-01-01

    The paper proposes a method of an effective distance learning of architecture and computer organization. The proposed method is based on a software system that is possible to be applied in any course in this field. Within this system students are enabled to observe simulation of already created computer systems. The system provides creation and simulation of switch systems, too.

  13. Population of 224 realistic human subject-based computational breast phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David W. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Wells, Jered R., E-mail: jered.wells@duke.edu [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Sturgeon, Gregory M. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Dobbins, James T. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Segars, W. Paul [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-01-15

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  14. Programme for the simulation of the TPA-i 1001 computer on the CDC-1604-A computer

    International Nuclear Information System (INIS)

    Belyaev, A.V.

    1976-01-01

    The basic features and capacities of the program simulating the 1001 TPA-i computer with the help of CDC-1604-A are described. The program is essentially aimed at translation of programs in the SLAHG language for the TPA-type computers. The basic part of the program simulates the work of the central TPA processor. This subprogram consequently performs the actions changing in the necessary manner the registers and memory states of the TPA computer. The simulated TPA computer has subprograms-analogous of external devices, i.e. the ASR-33 teletype, the FS 1501 tape reader, and the FACIT perforator. Work according to the program takes 1.65 - 2 times less time as against the work with TPA with the minimum set of external equipment [ru

  15. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  16. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  17. Uses of Computer Simulation Models in Ag-Research and Everyday Life

    Science.gov (United States)

    When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...

  18. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  19. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    Science.gov (United States)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  20. Using computer simulation to improve high order thinking skills of physics teacher candidate students in Compton effect

    Science.gov (United States)

    Supurwoko; Cari; Sarwanto; Sukarmin; Fauzi, Ahmad; Faradilla, Lisa; Summa Dewi, Tiarasita

    2017-11-01

    The process of learning and teaching in Physics is often confronted with abstract concepts. It makes difficulty for students to understand and teachers to teach the concept. One of the materials that has an abstract concept is Compton Effect. The purpose of this research is to evaluate computer simulation model on Compton Effect material which is used to improve high thinking ability of Physics teacher candidate students. This research is a case study. The subject is students at physics educations who have attended Modern Physics lectures. Data were obtained through essay test for measuring students’ high-order thinking skills and quisioners for measuring students’ responses. The results obtained indicate that computer simulation model can be used to improve students’ high order thinking skill and can be used to improve students’ responses. With this result it is suggested that the audiences use the simulation media in learning

  1. Analysis of TIMS performance subjected to simulated wind blast

    Science.gov (United States)

    Jaggi, S.; Kuo, S.

    1992-01-01

    The results of the performance of the Thermal Infrared Multispectral Scanner (TIMS) when it is subjected to various wind conditions in the laboratory are described. Various wind conditions were simulated using a 24 inch fan or combinations of air jet streams blowing toward either or both of the blackbody surfaces. The fan was used to simulate a large volume of air flow at moderate speeds (up to 30 mph). The small diameter air jets were used to probe TIMS system response in reaction to localized wind perturbations. The maximum nozzle speed of the air jet was 60 mph. A range of wind directions and speeds were set up in the laboratory during the test. The majority of the wind tests were conducted under ambient conditions with the room temperature fluctuating no more than 2 C. The temperature of the high speed air jet was determined to be within 1 C of the room temperature. TIMS response was recorded on analog tape. Additional thermistor readouts of the blackbody temperatures and thermocouple readout of the ambient temperature were recorded manually to be compared with the housekeeping data recorded on the tape. Additional tests were conducted under conditions of elevated and cooled room temperatures. The room temperature was varied between 19.5 to 25.5 C in these tests. The calibration parameters needed for quantitative analysis of TIMS data were first plotted on a scanline-by-scanline basis. These parameters are the low and high blackbody temperature readings as recorded by the TIMS and their corresponding digitized count values. Using these values, the system transfer equations were calculated. This equation allows us to compute the flux for any video count by computing the slope and intercept of the straight line that relates the flux to the digital count. The actual video of the target (the lab floor in this case) was then compared with a simulated target. This simulated target was assumed to be a blackbody at emissivity of .95 degrees and the temperature was

  2. A Computer Simulation of Community Pharmacy Practice for Educational Use.

    Science.gov (United States)

    Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-11-15

    To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.

  3. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  4. Parallel Monte Carlo simulations on an ARC-enabled computing grid

    International Nuclear Information System (INIS)

    Nilsen, Jon K; Samset, Bjørn H

    2011-01-01

    Grid computing opens new possibilities for running heavy Monte Carlo simulations of physical systems in parallel. The presentation gives an overview of GaMPI, a system for running an MPI-based random walker simulation on grid resources. Integrating the ARC middleware and the new storage system Chelonia with the Ganga grid job submission and control system, we show that MPI jobs can be run on a world-wide computing grid with good performance and promising scaling properties. Results for relatively communication-heavy Monte Carlo simulations run on multiple heterogeneous, ARC-enabled computing clusters in several countries are presented.

  5. Simulated Prism Therapy in Virtual Reality produces larger after-effects than standard prism exposure in normal healthy subject - Implications for Neglect Therapy

    DEFF Research Database (Denmark)

    Wilms, Inge Linda

    2018-01-01

    BACKGROUND: Virtual reality is an important area of exploration within computer-based cognitive rehabilitation of visual neglect. Virtual reality will allow for closer monitoring of patient behaviour during prism adaptation therapy and perhaps change the way we induce prismatic after......-effects. OBJECTIVE: This study compares the effect of two different prism simulation conditions in virtual reality to a standard exposure to prism goggles after one session of Prism Adaptation Therapy in healthy subjects. METHOD: 20 healthy subjects were subjected to one session of prism adaptation therapy under...... training for rehabilitation of hemi spatial attentional deficits such as visual neglect....

  6. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  7. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  8. COMPUTER LEARNING SIMULATOR WITH VIRTUAL REALITY FOR OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Valeria V. Gribova

    2013-01-01

    Full Text Available A toolset of a medical computer learning simulator for ophthalmology with virtual reality and its implementation are considered in the paper. The simulator is oriented for professional skills training for students of medical universities. 

  9. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    Science.gov (United States)

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  10. Computer science security research and human subjects: emerging considerations for research ethics boards.

    Science.gov (United States)

    Buchanan, Elizabeth; Aycock, John; Dexter, Scott; Dittrich, David; Hvizdak, Erin

    2011-06-01

    This paper explores the growing concerns with computer science research, and in particular, computer security research and its relationship with the committees that review human subjects research. It offers cases that review boards are likely to confront, and provides a context for appropriate consideration of such research, as issues of bots, clouds, and worms enter the discourse of human subjects review.

  11. Student measurement of blood pressure using a simulator arm compared with a live subject's arm.

    Science.gov (United States)

    Lee, Jennifer J; Sobieraj, Diana M; Kuti, Effie L

    2010-06-15

    To compare accuracy of blood pressure measurements using a live subject and a simulator arm, and to determine students' preferences regarding measurement. This was a crossover study comparing blood pressure measurements from a live subject and a simulator arm. Students completed an anonymous survey instrument defining opinions on ease of measurement. Fifty-seven students completed blood pressure measurements on live subjects while 72 students completed blood pressure measurements using the simulator arm. There were no significant systematic differences between the 2 measurement techniques. Systolic blood pressure measurements from a live subject arm were less likely to be within 4 mm Hg compared with measurements of a simulator arm. Diastolic blood pressure measurements were not significantly different between the 2 techniques. Accuracy of student measurement of blood pressure using a simulator arm was similar to the accuracy with a live subject. There was no difference in students' preferences regarding measurement techniques.

  12. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  13. Augmented Reality Simulations on Handheld Computers

    Science.gov (United States)

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  14. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  15. Using EDUCache Simulator for the Computer Architecture and Organization Course

    Directory of Open Access Journals (Sweden)

    Sasko Ristov

    2013-07-01

    Full Text Available The computer architecture and organization course is essential in all computer science and engineering programs, and the most selected and liked elective course for related engineering disciplines. However, the attractiveness brings a new challenge, it requires a lot of effort by the instructor, to explain rather complicated concepts to beginners or to those who study related disciplines. The usage of visual simulators can improve both the teaching and learning processes. The overall goal is twofold: 1~to enable a visual environment to explain the basic concepts and 2~to increase the student's willingness and ability to learn the material.A lot of visual simulators have been used for the computer architecture and organization course. However, due to the lack of visual simulators for simulation of the cache memory concepts, we have developed a new visual simulator EDUCache simulator. In this paper we present that it can be effectively and efficiently used as a supporting tool in the learning process of modern multi-layer, multi-cache and multi-core multi-processors.EDUCache's features enable an environment for performance evaluation and engineering of software systems, i.e. the students will also understand the importance of computer architecture building parts and hopefully, will increase their curiosity for hardware courses in general.

  16. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. NeuroManager: A workflow analysis based simulation management engine for computational neuroscience

    Directory of Open Access Journals (Sweden)

    David Bruce Stockton

    2015-10-01

    Full Text Available We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach 1 provides flexibility to adapt to a variety of neuroscience simulators, 2 simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and 3 improves tracking of simulator/simulation evolution. We implemented NeuroManager in Matlab, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in twenty-two stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to Matlab's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  18. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  19. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  20. The Accuracy of 3D Optical Reconstruction and Additive Manufacturing Processes in Reproducing Detailed Subject-Specific Anatomy

    OpenAIRE

    Paolo Ferraiuoli; Jonathan C. Taylor; Emily Martin; John W. Fenner; Andrew J. Narracott

    2017-01-01

    3D reconstruction and 3D printing of subject-specific anatomy is a promising technology for supporting clinicians in the visualisation of disease progression and planning for surgical intervention. In this context, the 3D model is typically obtained from segmentation of magnetic resonance imaging (MRI), computed tomography (CT) or echocardiography images. Although these modalities allow imaging of the tissues in vivo, assessment of quality of the reconstruction is limited by the lack of a ref...

  1. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  2. The adaptation method in the Monte Carlo simulation for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Gun; Yoon, Chang Yeon; Lee, Won Ho [Dept. of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Cho, Seung Ryong [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)

    2015-06-15

    The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.

  3. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  4. Using computer simulations to probe the structure and dynamics of biopolymers

    International Nuclear Information System (INIS)

    Levy, R.M.; Hirata, F.; Kim, K.; Zhang, P.

    1987-01-01

    The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper the authors review recent work in their laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized: (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper the authors review a more analytical approach they developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations

  5. Anatomy-Specific Virtual Reality Simulation in Temporal Bone Dissection: Perceived Utility and Impact on Surgeon Confidence.

    Science.gov (United States)

    Locketz, Garrett D; Lui, Justin T; Chan, Sonny; Salisbury, Kenneth; Dort, Joseph C; Youngblood, Patricia; Blevins, Nikolas H

    2017-06-01

    Objective To evaluate the effect of anatomy-specific virtual reality (VR) surgical rehearsal on surgeon confidence and temporal bone dissection performance. Study Design Prospective pre- and poststudy of a novel virtual surgical rehearsal platform. Setting Academic otolaryngology-head and neck surgery residency training programs. Subjects and Methods Sixteen otolaryngology-head and neck surgery residents from 2 North American training institutions were recruited. Surveys were administered to assess subjects' baseline confidence in performing 12 subtasks of cortical mastoidectomy with facial recess. A cadaver temporal bone was randomly assigned to each subject. Cadaver specimens were scanned with a clinical computed tomography protocol, allowing the creation of anatomy-specific models for use in a VR surgical rehearsal platform. Subjects then rehearsed a virtual mastoidectomy on data sets derived from their specimens. Surgical confidence surveys were administered again. Subjects then dissected assigned cadaver specimens, which were blindly graded with a modified Welling scale. A final survey assessed the perceived utility of rehearsal on dissection performance. Results Of 16 subjects, 14 (87.5%) reported a significant increase in overall confidence after conducting an anatomy-specific VR rehearsal. A significant correlation existed between perceived utility of rehearsal and confidence improvement. The effect of rehearsal on confidence was dependent on trainee experience and the inherent difficulty of the surgical subtask. Postrehearsal confidence correlated strongly with graded dissection performance. Subjects rated anatomy-specific rehearsal as having a moderate to high contribution to their dissection performance. Conclusion Anatomy-specific virtual rehearsal improves surgeon confidence in performing mastoid dissection, dependent on surgeon experience and task difficulty. The subjective confidence gained through rehearsal correlates positively with subsequent

  6. Computer based training simulator for Hunterston Nuclear Power Station

    International Nuclear Information System (INIS)

    Bowden, R.S.M.; Hacking, D.

    1978-01-01

    For reasons which are stated, the Hunterston-B nuclear power station automatic control system includes a manual over-ride facility. It is therefore essential for the station engineers to be trained to recognise and control all feasible modes of plant and logic malfunction. A training simulator has been built which consists of a replica of the shutdown monitoring panel in the Central Control Room and is controlled by a mini-computer. This paper highlights the computer aspects of the simulator and relevant derived experience, under the following headings: engineering background; shutdown sequence equipment; simulator equipment; features; software; testing; maintenance. (U.K.)

  7. Modelling and subject-specific validation of the heart-arterial tree system.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Tosello, Francesco; Canuto, Claudio; Ridolfi, Luca

    2015-01-01

    A modeling approach integrated with a novel subject-specific characterization is here proposed for the assessment of hemodynamic values of the arterial tree. A 1D model is adopted to characterize large-to-medium arteries, while the left ventricle, aortic valve and distal micro-circulation sectors are described by lumped submodels. A new velocity profile and a new formulation of the non-linear viscoelastic constitutive relation suitable for the {Q, A} modeling are also proposed. The model is firstly verified semi-quantitatively against literature data. A simple but effective procedure for obtaining subject-specific model characterization from non-invasive measurements is then designed. A detailed subject-specific validation against in vivo measurements from a population of six healthy young men is also performed. Several key quantities of heart dynamics-mean ejected flow, ejection fraction, and left-ventricular end-diastolic, end-systolic and stroke volumes-and the pressure waveforms (at the central, radial, brachial, femoral, and posterior tibial sites) are compared with measured data. Mean errors around 5 and 8%, obtained for the heart and arterial quantities, respectively, testify the effectiveness of the model and its subject-specific characterization.

  8. Computer simulation games in population and education.

    Science.gov (United States)

    Moreland, R S

    1988-01-01

    Computer-based simulation games are effective training tools that have several advantages. They enable players to learn in a nonthreatening manner and develop strategies to achieve goals in a dynamic environment. They also provide visual feedback on the effects of players' decisions, encourage players to explore and experiment with options before making final decisions, and develop players' skills in analysis, decision making, and cooperation. 2 games have been developed by the Research Triangle Institute for public-sector planning agencies interested in or dealing with developing countries. The UN Population and Development Game teaches players about the interaction between population variables and the national economy and how population policies complement other national policies, such as education. The BRIDGES Education Planning Game focuses on the effects education has on national policies. In both games, the computer simulates the reactions of a fictional country's socioeconomic system to players' decisions. Players can change decisions after seeing their effects on a computer screen and thus can improve their performance in achieving goals.

  9. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til [Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany) and Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany); Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany); Philips Healthcare, X-Ray Pre-Development, Veenpluis 4-6, 5684PC Best (Netherlands); Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany)

    2010-09-15

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  10. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    International Nuclear Information System (INIS)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til

    2010-01-01

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  11. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  12. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    The concepts, principles and implementation of simulated Annealing as a modem heuristic technique is presented. Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing ...

  13. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  14. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    Science.gov (United States)

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  15. Computer simulations of long-time tails: what's new?

    NARCIS (Netherlands)

    Hoef, van der M.A.; Frenkel, D.

    1995-01-01

    Twenty five years ago Alder and Wainwright discovered, by simulation, the 'long-time tails' in the velocity autocorrelation function of a single particle in fluid [1]. Since then, few qualitatively new results on long-time tails have been obtained by computer simulations. However, within the

  16. Lessons Learned From the Development and Parameterization of a Computer Simulation Model to Evaluate Task Modification for Health Care Providers.

    Science.gov (United States)

    Kasaie, Parastu; David Kelton, W; Ancona, Rachel M; Ward, Michael J; Froehle, Craig M; Lyons, Michael S

    2018-02-01

    Computer simulation is a highly advantageous method for understanding and improving health care operations with a wide variety of possible applications. Most computer simulation studies in emergency medicine have sought to improve allocation of resources to meet demand or to assess the impact of hospital and other system policies on emergency department (ED) throughput. These models have enabled essential discoveries that can be used to improve the general structure and functioning of EDs. Theoretically, computer simulation could also be used to examine the impact of adding or modifying specific provider tasks. Doing so involves a number of unique considerations, particularly in the complex environment of acute care settings. In this paper, we describe conceptual advances and lessons learned during the design, parameterization, and validation of a computer simulation model constructed to evaluate changes in ED provider activity. We illustrate these concepts using examples from a study focused on the operational effects of HIV screening implementation in the ED. Presentation of our experience should emphasize the potential for application of computer simulation to study changes in health care provider activity and facilitate the progress of future investigators in this field. © 2017 by the Society for Academic Emergency Medicine.

  17. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  18. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness

    Directory of Open Access Journals (Sweden)

    S. Voß

    2016-01-01

    Full Text Available Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches—when averaged over the complete aneurysm sac—are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  19. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  20. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    International Nuclear Information System (INIS)

    Wang, Henry; Ma Yunzhi; Pratx, Guillem; Xing Lei

    2011-01-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  1. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  2. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  3. Computer aided analysis, simulation and optimisation of thermal sterilisation processes.

    Science.gov (United States)

    Narayanan, C M; Banerjee, Arindam

    2013-04-01

    Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares.

  4. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    Drummond, L.A.; Marques, O.

    2002-01-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  5. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  6. The Use of Computer Simulation Gaming in Teaching Broadcast Economics.

    Science.gov (United States)

    Mancuso, Louis C.

    The purpose of this study was to develop a broadcast economic computer simulation and to ascertain how a lecture-computer simulation game compared as a teaching method with a more traditional lecture and case study instructional methods. In each of three sections of a broadcast economics course, a different teaching methodology was employed: (1)…

  7. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  8. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  9. Factors cost effectively improved using computer simulations of ...

    African Journals Online (AJOL)

    LPhidza

    effectively managed using computer simulations in semi-arid conditions pertinent to much of sub-Saharan Africa. ... small scale farmers to obtain optimal crop yields thus ensuring their food security and livelihood is ... those that simultaneously incorporate and simulate processes involved throughout the course of crop ...

  10. CloudMC: a cloud computing application for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-01-01

    This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)

  11. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  12. Wavelet subband coding of computer simulation output using the A++ array class library

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.; Quinlan, D.J.; Zhang, H.D. [Los Alamos National Lab., NM (United States); Nuri, V. [Washington State Univ., Pullman, WA (United States). School of EECS

    1995-07-01

    The goal of the project is to produce utility software for off-line compression of existing data and library code that can be called from a simulation program for on-line compression of data dumps as the simulation proceeds. Naturally, we would like the amount of CPU time required by the compression algorithm to be small in comparison to the requirements of typical simulation codes. We also want the algorithm to accomodate a wide variety of smooth, multidimensional data types. For these reasons, the subband vector quantization (VQ) approach employed in has been replaced by a scalar quantization (SQ) strategy using a bank of almost-uniform scalar subband quantizers in a scheme similar to that used in the FBI fingerprint image compression standard. This eliminates the considerable computational burdens of training VQ codebooks for each new type of data and performing nearest-vector searches to encode the data. The comparison of subband VQ and SQ algorithms in indicated that, in practice, there is relatively little additional gain from using vector as opposed to scalar quantization on DWT subbands, even when the source imagery is from a very homogeneous population, and our subjective experience with synthetic computer-generated data supports this stance. It appears that a careful study is needed of the tradeoffs involved in selecting scalar vs. vector subband quantization, but such an analysis is beyond the scope of this paper. Our present work is focused on the problem of generating wavelet transform/scalar quantization (WSQ) implementations that can be ported easily between different hardware environments. This is an extremely important consideration given the great profusion of different high-performance computing architectures available, the high cost associated with learning how to map algorithms effectively onto a new architecture, and the rapid rate of evolution in the world of high-performance computing.

  13. Standard Specification for Solar Simulation for Terrestrial Photovoltaic Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification provides means for classifying solar simulators intended for indoor testing of photovoltaic devices (solar cells or modules), according to their spectral match to a reference spectral irradiance, non-uniformity of spatial irradiance, and temporal instability of irradiance. 1.2 Testing of photovoltaic devices may require the use of solar simulators. Test Methods that require specific classification of simulators as defined in this specification include Test Methods E948, E1036, and E1362. 1.3 This standard is applicable to both pulsed and steady state simulators and includes recommended test requirements used for classifying such simulators. 1.4 A solar simulator usually consists of three major components: (1) light source(s) and associated power supply; (2) any optics and filters required to modify the output beam to meet the classification requirements in Section 4; and (3) the necessary controls to operate the simulator, adjust irradiance, etc. 1.5 A light source that does not mee...

  14. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  15. Age- and sex-specific thorax finite element model development and simulation.

    Science.gov (United States)

    Schoell, Samantha L; Weaver, Ashley A; Vavalle, Nicholas A; Stitzel, Joel D

    2015-01-01

    The shape, size, bone density, and cortical thickness of the thoracic skeleton vary significantly with age and sex, which can affect the injury tolerance, especially in at-risk populations such as the elderly. Computational modeling has emerged as a powerful and versatile tool to assess injury risk. However, current computational models only represent certain ages and sexes in the population. The purpose of this study was to morph an existing finite element (FE) model of the thorax to depict thorax morphology for males and females of ages 30 and 70 years old (YO) and to investigate the effect on injury risk. Age- and sex-specific FE models were developed using thin-plate spline interpolation. In order to execute the thin-plate spline interpolation, homologous landmarks on the reference, target, and FE model are required. An image segmentation and registration algorithm was used to collect homologous rib and sternum landmark data from males and females aged 0-100 years. The Generalized Procrustes Analysis was applied to the homologous landmark data to quantify age- and sex-specific isolated shape changes in the thorax. The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant model was morphed to create age- and sex-specific thoracic shape change models (scaled to a 50th percentile male size). To evaluate the thoracic response, 2 loading cases (frontal hub impact and lateral impact) were simulated to assess the importance of geometric and material property changes with age and sex. Due to the geometric and material property changes with age and sex, there were observed differences in the response of the thorax in both the frontal and lateral impacts. Material property changes alone had little to no effect on the maximum thoracic force or the maximum percent compression. With age, the thorax becomes stiffer due to superior rotation of the ribs, which can result in increased bone strain that can increase the risk of fracture. For the 70-YO models

  16. Computer Simulation of Robotic Device Components in 3D Printer Manufacturing

    Directory of Open Access Journals (Sweden)

    M. A. Kiselev

    2016-01-01

    Full Text Available The paper considers a relevant problem "Computer simulation of robotic device components in manufacturing on a 3D printer" and highlights the problem of computer simulation based on the cognitive programming technology of robotic device components. The paper subject is urgent because computer simulation of force-torque and accuracy characteristics of robot components in terms of their manufacturing properties and conditions from polymeric and metallic materials is of paramount importance for programming and manufacturing on the 3D printers. Two types of additive manufacturing technologies were used:1. FDM (Fused deposition modeling - layered growth of products from molten plastic strands;2. SLM (Selective laser melting - selective laser sintering of metal powders, which, in turn, create:• conditions for reducing the use of expensive equipment;• reducing weight and increasing strength through optimization of  the lattice structures when using a bionic design;• a capability to implement mathematical modeling of individual components of robotic and other devices in terms of appropriate characteristics;• a 3D printing capability to create unique items, which cannot be made by other known methods.The paper aim was to confirm the possibility of ensuring the strength and accuracy characteristics of cases when printing from polymeric and metallic materials on a 3D printer. The investigation emphasis is on mathematical modeling based on the cognitive programming technology using the additive technologies in their studies since it is, generally, impossible to make the obtained optimized structures on the modern CNC machines.The latter allows us to create a program code to be clear to other developers without cost, additional time for development, adaptation and implementation.Year by year Russian companies increasingly use a 3D-print system in mechanical engineering, aerospace industry, and for scientific purposes. Machines for the additive

  17. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Science.gov (United States)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  18. Formal Analysis of Dynamics Within Philosophy of Mind by Computer Simulation

    NARCIS (Netherlands)

    Bosse, T.; Schut, M.C.; Treur, J.

    2009-01-01

    Computer simulations can be useful tools to support philosophers in validating their theories, especially when these theories concern phenomena showing nontrivial dynamics. Such theories are usually informal, whilst for computer simulation a formally described model is needed. In this paper, a

  19. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  20. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  1. A compositional reservoir simulator on distributed memory parallel computers

    International Nuclear Information System (INIS)

    Rame, M.; Delshad, M.

    1995-01-01

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented

  2. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  3. Computational simulation of radiographic film

    International Nuclear Information System (INIS)

    Goncalves, Elicardo A. de S.; Santos, Marcio H. dos; Anjos, Marcelino J.; Oliveira, Luis F. de

    2013-01-01

    The composition of a radiographic film gives its values of speed, spatial resolution and base density. The technical knowledge allows to predict how a film with a known composition works, and simulate how this film will work with changes in composition and exposure. In this paper, characterization of films composed by different emulsions was realized, in a way to know the characteristic curve, and to study how the format, organization and concentration of silver salt crystals set the radiographic film images.This work aims to increase an existing simulator, where parallel programming was used to simulate X-ray fluorescence processes. The setup of source and X-ray interactions with objects stills the same, and the detector constructed in this work was placed to form images. At first, considering the approach that the film is a square matrix where each element has a specific quantity of silver grains, that each grain fills a specific area, and that each interaction to radiation transforms a salt silver grain in to metallic silver grain (black grain), we have a blackening standard, and it should show how is the behavior of a optic density in a specific area of the film. Each matrix element has a degree of blackening, and it is proportional to the black grains area. (author)

  4. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  5. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  6. A review of computer-based simulators for ultrasound training.

    Science.gov (United States)

    Blum, Tobias; Rieger, Andreas; Navab, Nassir; Friess, Helmut; Martignoni, Marc

    2013-04-01

    Computer-based simulators for ultrasound training are a topic of recent interest. During the last 15 years, many different systems and methods have been proposed. This article provides an overview and classification of systems in this domain and a discussion of their advantages. Systems are classified and discussed according to the image simulation method, user interactions and medical applications. Computer simulation of ultrasound has one key advantage over traditional training. It enables novel training concepts, for example, through advanced visualization, case databases, and automatically generated feedback. Qualitative evaluations have mainly shown positive learning effects. However, few quantitative evaluations have been performed and long-term effects have to be examined.

  7. Computer Graphics Simulations of Sampling Distributions.

    Science.gov (United States)

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  8. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  9. Changes in the specific migration characteristics of packaging-food simulant combinations caused by ionizing radiation: Effect of food simulant

    Science.gov (United States)

    Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.

    2011-08-01

    The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected

  10. Changes in the specific migration characteristics of packaging-food simulant combinations caused by ionizing radiation: Effect of food simulant

    International Nuclear Information System (INIS)

    Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.

    2011-01-01

    The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 o C for 10 days for the aqueous simulants, and at 20 o C for 2 days for the fatty food simulant (). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [ 60 Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not

  11. Changes in the specific migration characteristics of packaging-food simulant combinations caused by ionizing radiation: Effect of food simulant

    Energy Technology Data Exchange (ETDEWEB)

    Zygoura, Panagiota D., E-mail: me00806@cc.uoi.g [Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, GR-45110 Ioannina (Greece); Paleologos, Evangelos K.; Kontominas, Michael G. [Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, GR-45110 Ioannina (Greece)

    2011-08-15

    The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 {sup o}C for 10 days for the aqueous simulants, and at 20 {sup o}C for 2 days for the fatty food simulant (). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [{sup 60}Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since

  12. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  13. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    Science.gov (United States)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a

  14. Quantum computer gate simulations | Dada | Journal of the Nigerian ...

    African Journals Online (AJOL)

    A new interactive simulator for Quantum Computation has been developed for simulation of the universal set of quantum gates and for construction of new gates of up to 3 qubits. The simulator also automatically generates an equivalent quantum circuit for any arbitrary unitary transformation on a qubit. Available quantum ...

  15. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    Science.gov (United States)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  16. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han; Yang, Yong Liang; Bao, Fan; Fink, Daniel; Yan, Dongming; Wonka, Peter; Mitra, Niloy J.

    2016-01-01

    of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications

  17. MASADA: A MODELING AND SIMULATION AUTOMATED DATA ANALYSIS FRAMEWORK FOR CONTINUOUS DATA-INTENSIVE VALIDATION OF SIMULATION MODELS

    CERN Document Server

    Foguelman, Daniel Jacob; The ATLAS collaboration

    2016-01-01

    Complex networked computer systems are usually subjected to upgrades and enhancements on a continuous basis. Modeling and simulation of such systems helps with guiding their engineering processes, in particular when testing candi- date design alternatives directly on the real system is not an option. Models are built and simulation exercises are run guided by specific research and/or design questions. A vast amount of operational conditions for the real system need to be assumed in order to focus on the relevant questions at hand. A typical boundary condition for computer systems is the exogenously imposed workload. Meanwhile, in typical projects huge amounts of monitoring information are logged and stored with the purpose of studying the system’s performance in search for improvements. Also research questions change as systems’ operational conditions vary throughout its lifetime. This context poses many challenges to determine the validity of simulation models. As the behavioral empirical base of the sys...

  18. MASADA: A Modeling and Simulation Automated Data Analysis framework for continuous data-intensive validation of simulation models

    CERN Document Server

    Foguelman, Daniel Jacob; The ATLAS collaboration

    2016-01-01

    Complex networked computer systems are usually subjected to upgrades and enhancements on a continuous basis. Modeling and simulation of such systems helps with guiding their engineering processes, in particular when testing candi- date design alternatives directly on the real system is not an option. Models are built and simulation exercises are run guided by specific research and/or design questions. A vast amount of operational conditions for the real system need to be assumed in order to focus on the relevant questions at hand. A typical boundary condition for computer systems is the exogenously imposed workload. Meanwhile, in typical projects huge amounts of monitoring information are logged and stored with the purpose of studying the system’s performance in search for improvements. Also research questions change as systems’ operational conditions vary throughout its lifetime. This context poses many challenges to determine the validity of simulation models. As the behavioral empirical base of the sys...

  19. Specifications of the BWR simulator for HAMMLAB 2000

    International Nuclear Information System (INIS)

    Grini, Rolf-Einar; Miettinen, Jaakko; Nurmilaukas, Pekka; Raussi; Pekka; Saarni, Ray; Stokke; Egil; Soerensen, Aimar; Tiihonen, Olli

    1998-02-01

    The Boiling Water Reactor (BWR) simulator for HAMMLAB 2000 will be a model of the Swedish plant Forsmark-3. This report gives the specifications of the BWR simulator. The bulk of the report is a copy of the relevant addendum to the contract with the developer, and to the contract with the group of utilities and with ABB Atom. After a general overview, each plant system is described one after the other (using the reference plant system coding), and the simulation of each system is specified. Even the systems that shall not be simulated are included; in those cases the specification is: It is not required that ... is simulated. A list of malfunctions is given, as well as a list of validation transients. Finally the operator interface is specified. (author)

  20. Application of parallel computing techniques to a large-scale reservoir simulation

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-01-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance

  1. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  2. Cluster computing for lattice QCD simulations

    International Nuclear Information System (INIS)

    Coddington, P.D.; Williams, A.G.

    2000-01-01

    Full text: Simulations of lattice quantum chromodynamics (QCD) require enormous amounts of compute power. In the past, this has usually involved sharing time on large, expensive machines at supercomputing centres. Over the past few years, clusters of networked computers have become very popular as a low-cost alternative to traditional supercomputers. The dramatic improvements in performance (and more importantly, the ratio of price/performance) of commodity PCs, workstations, and networks have made clusters of off-the-shelf computers an attractive option for low-cost, high-performance computing. A major advantage of clusters is that since they can have any number of processors, they can be purchased using any sized budget, allowing research groups to install a cluster for their own dedicated use, and to scale up to more processors if additional funds become available. Clusters are now being built for high-energy physics simulations. Wuppertal has recently installed ALiCE, a cluster of 128 Alpha workstations running Linux, with a peak performance of 158 G flops. The Jefferson Laboratory in the US has a 16 node Alpha cluster and plans to upgrade to a 256 processor machine. In Australia, several large clusters have recently been installed. Swinburne University of Technology has a cluster of 64 Compaq Alpha workstations used for astrophysics simulations. Early this year our DHPC group constructed a cluster of 116 dual Pentium PCs (i.e. 232 processors) connected by a Fast Ethernet network, which is used by chemists at Adelaide University and Flinders University to run computational chemistry codes. The Australian National University has recently installed a similar PC cluster with 192 processors. The Centre for the Subatomic Structure of Matter (CSSM) undertakes large-scale high-energy physics calculations, mainly lattice QCD simulations. The choice of the computer and network hardware for a cluster depends on the particular applications to be run on the machine. Our

  3. Computer Simulation of Angle-measuring System of Photoelectric Theodolite

    International Nuclear Information System (INIS)

    Zeng, L; Zhao, Z W; Song, S L; Wang, L T

    2006-01-01

    In this paper, a virtual test platform based on malfunction phenomena is designed, using the methods of computer simulation and numerical mask. It is used in the simulation training of angle-measuring system of photoelectric theodolite. Actual application proves that this platform supplies good condition for technicians making deep simulation training and presents a useful approach for the establishment of other large equipment simulation platforms

  4. SELF-HEALING CAPACITY OF CONCRETE - COMPUTER SIMULATION STUDY OF UNHYDRATED CEMENT STRUCTURE

    Directory of Open Access Journals (Sweden)

    Huan He

    2011-05-01

    Full Text Available Aggregate occupies at least three-quarters of the volume of concrete, so its impact on concrete's properties is large. The aggregate's influence on the non-hydrated part of the matured paste is assessed by concurrent algorithm-based computer simulation system SPACE in this paper. A distinction is made between interfacial zones (ITZs and bulk paste. Containers with rigid boundaries were employed for the production of series of cement pastes. They were subjected to quantitative microstructure analysis. Relevant gradient structures in the ITZ and bulk are presented and discussed. The relevance of this structure information for possible selfhealing of cracks is briefly discussed.

  5. What do we want from computer simulation of SIMS using clusters?

    International Nuclear Information System (INIS)

    Webb, R.P.

    2008-01-01

    Computer simulation of energetic cluster interactions with surfaces has provided much needed insight into some of the complex processes which occur and are responsible for the desirable as well as undesirable effects which make the use of clusters in SIMS both useful and challenging. Simulations have shown how cluster impacts can cause meso-scale motion of the target material which can result in the relatively gentle up-lift of large intact molecules adsorbed on the surface in contrast to the behaviour of single atom impacts which tend to create discrete motion in the surface often ejecting fragments of adsorbed molecules instead. With the insight provided from simulations experimentalists can then improve their equipment to best maximise the desired effects. The past 40 years has seen great progress in simulation techniques and computer equipment. 40 years ago simulations were performed on simple atomic systems of around 300 atoms employing only simple pair-wise interaction potentials to times of several hundred femtoseconds. Currently simulations can be performed on large organic materials employing many body potentials for millions of atoms for times of many picoseconds. These simulations, however, can take several months of computation time. Even with the degree of realism introduced with these long time simulations they are still not perfect are often not capable of being used in a completely predictive way. Computer simulation is reaching a position where by any more effort to increase its realism will make it completely intractable to solution in a reasonable time frame and yet there is an increasing demand from experimentalists for something that can help in a predictive way to help in experiment design and interpretation. This paper will discuss the problems of computer simulation and what might be possible to achieve in the short term, what is unlikely ever to be possible without a major new break through and how we might exploit the meso-scale effects in

  6. Validation and computing and performance studies for the ATLAS simulation

    CERN Document Server

    Marshall, Z; The ATLAS collaboration

    2009-01-01

    We present the validation of the ATLAS simulation software pro ject. Software development is controlled by nightly builds and several levels of automatic tests to ensure stability. Computing validation, including CPU time, memory, and disk space required per event, is benchmarked for all software releases. Several different physics processes and event types are checked to thoroughly test all aspects of the detector simulation. The robustness of the simulation software is demonstrated by the production of 500 million events on the World-wide LHC Computing Grid in the last year.

  7. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    Science.gov (United States)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  8. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: A case study with toluene

    International Nuclear Information System (INIS)

    Nong, A.; McCarver, D.G.; Hines, R.N.; Krishnan, K.

    2006-01-01

    The objective of the present study was to evaluate the magnitude of interindividual variability in the internal dose of toluene in children of various age groups, on the basis of subject-specific hepatic CYP2E1 content and physiology. The methodology involved the use of a previously validated physiologically based pharmacokinetic (PBPK) model, in which the intrinsic clearance for hepatic metabolism (CL int ) was expressed in terms of the CYP2E1 content. The adult toluene PBPK model, with enzyme content-normalized CL int , facilitated the calculation of child-specific CL int based on knowledge of hepatic CYP2E1 protein levels. The child-specific physiological parameters, except liver volume, were computed with knowledge of age and body weight, whereas physicochemical parameters for toluene were kept age-invariant based on available data. The actual individual-specific liver volume (autopsy data) was also included in the model. The resulting model was used to simulate the blood concentration profiles in children exposed by inhalation, to 1 ppm toluene for 24 h. For this exposure scenario, the area under the venous blood concentration vs. time curve (AUC) ranged from 0.30 to 1.01 μg/ml x h in neonates with low CYP2E1 concentration (<3.69 pmol/mg protein). The simulations indicated that neonates with higher levels of CYP2E1 (4.33 to 55.93 pmol/mg protein) as well as older children would have lower AUC (0.16 to 0.43 μg/ml x h). The latter values were closer to those simulated for adults. Similar results were also obtained for 7 h exposure to 17 ppm toluene, a scenario previously evaluated in human volunteers. The interindividual variability factor for each subgroup of children and adults, calculated as the ratio of the 95th and 50th percentile values of AUC, was within a factor of 2. The 95th percentile value of the low metabolizing neonate group, however, was greater than the mean adult AUC by a factor of 3.9. This study demonstrates the feasibility of incorporating

  9. Computational simulator of robotic manipulators

    International Nuclear Information System (INIS)

    Leal, Alexandre S.; Campos, Tarcisio P.R.

    1995-01-01

    Robotic application for industrial plants is discussed and a computational model for a mechanical manipulator of three links is presented. A neural network feed-forward type has been used to model the dynamic control of the manipulator. A graphic interface was developed in C programming language as a virtual world in order to visualize and simulate the arm movements handling radioactive waste environment. (author). 7 refs, 5 figs

  10. Computer simulation of phenomena in plasma via particles

    International Nuclear Information System (INIS)

    Alves, M.V.; Bittencourt, J.A.

    1988-06-01

    The method of plasma computer simulation via particles has become an efficient tool to investigate the time and spatial evolution of various physical phenomena in plasmas. This method is based on the study of the individual plasma particle motions interacting with one another and with the externally applied fields. Although fairly simple, it allows a non-linear analysis of complex plasma physical phenomena and to obtain diagnostics even for regions of the system where experimental measurements would be difficult to make. In this report, a general view of the electrostatic one-dimensional computer code ES1, originally developed by A. Bruce Langdon, is presented. The main mathematical artifice in this code is the use of a spatial grid in which various plasma particles are represented by ''superparticles'', using a given shape function. The principal characteristics of the model, the approximations made and the mathematical methods used to solve the equations involved, are described. The specification of the input parameters which characterize the system, the initial conditions and the graphic diagnostics which can be utilized, are also described. Results are presented illustrating graphically the behavior of the plasma oscillations, the two-stream instability and the beam-plasma instability. (author) [pt

  11. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.

    Science.gov (United States)

    Dubin, Ariel K; Smith, Roger; Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia

    To answer the question of whether there is a difference between robotic virtual reality simulator performance assessment and validated human reviewers. Current surgical education relies heavily on simulation. Several assessment tools are available to the trainee, including the actual robotic simulator assessment metrics and the Global Evaluative Assessment of Robotic Skills (GEARS) metrics, both of which have been independently validated. GEARS is a rating scale through which human evaluators can score trainees' performances on 6 domains: depth perception, bimanual dexterity, efficiency, force sensitivity, autonomy, and robotic control. Each domain is scored on a 5-point Likert scale with anchors. We used 2 common robotic simulators, the dV-Trainer (dVT; Mimic Technologies Inc., Seattle, WA) and the da Vinci Skills Simulator (dVSS; Intuitive Surgical, Sunnyvale, CA), to compare the performance metrics of robotic surgical simulators with the GEARS for a basic robotic task on each simulator. A prospective single-blinded randomized study. A surgical education and training center. Surgeons and surgeons in training. Demographic information was collected including sex, age, level of training, specialty, and previous surgical and simulator experience. Subjects performed 2 trials of ring and rail 1 (RR1) on each of the 2 simulators (dVSS and dVT) after undergoing randomization and warm-up exercises. The second RR1 trial simulator performance was recorded, and the deidentified videos were sent to human reviewers using GEARS. Eight different simulator assessment metrics were identified and paired with a similar performance metric in the GEARS tool. The GEARS evaluation scores and simulator assessment scores were paired and a Spearman rho calculated for their level of correlation. Seventy-four subjects were enrolled in this randomized study with 9 subjects excluded for missing or incomplete data. There was a strong correlation between the GEARS score and the simulator metric

  12. Macromod: Computer Simulation For Introductory Economics

    Science.gov (United States)

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  13. Modeling of requirement specification for safety critical real time computer system using formal mathematical specifications

    International Nuclear Information System (INIS)

    Sankar, Bindu; Sasidhar Rao, B.; Ilango Sambasivam, S.; Swaminathan, P.

    2002-01-01

    Full text: Real time computer systems are increasingly used for safety critical supervision and control of nuclear reactors. Typical application areas are supervision of reactor core against coolant flow blockage, supervision of clad hot spot, supervision of undesirable power excursion, power control and control logic for fuel handling systems. The most frequent cause of fault in safety critical real time computer system is traced to fuzziness in requirement specification. To ensure the specified safety, it is necessary to model the requirement specification of safety critical real time computer systems using formal mathematical methods. Modeling eliminates the fuzziness in the requirement specification and also helps to prepare the verification and validation schemes. Test data can be easily designed from the model of the requirement specification. Z and B are the popular languages used for modeling the requirement specification. A typical safety critical real time computer system for supervising the reactor core of prototype fast breeder reactor (PFBR) against flow blockage is taken as case study. Modeling techniques and the actual model are explained in detail. The advantages of modeling for ensuring the safety are summarized

  14. An Investigation of Computer-based Simulations for School Crises Management.

    Science.gov (United States)

    Degnan, Edward; Bozeman, William

    2001-01-01

    Describes development of a computer-based simulation program for training school personnel in crisis management. Addresses the data collection and analysis involved in developing a simulated event, the systems requirements for simulation, and a case study of application and use of the completed simulation. (Contains 21 references.) (Authors/PKP)

  15. Computer simulation of driven Alfven waves

    International Nuclear Information System (INIS)

    Geary, J.L. Jr.

    1986-01-01

    The first particle simulation study of shear Alfven wave resonance heating is presented. Particle simulation codes self-consistently follow the time evolution of the individual and collective aspects of particle dynamics as well as wave dynamics in a fully nonlinear fashion. Alfven wave heating is a possible means of increasing the temperature of magnetized plasmas. A new particle simulation model was developed for this application that incorporates Darwin's formulation of the electromagnetic fields with a guiding center approximation for electron motion perpendicular to the ambient magnetic field. The implementation of this model and the examination of its theoretical and computational properties are presented. With this model, several cases of Alfven wave heating is examined in both uniform and nonuniform simulation systems in a two dimensional slab. For the inhomogeneous case studies, the kinetic Alfven wave develops in the vicinity of the shear Alfven resonance region

  16. Man-machine interfaces analysis system based on computer simulation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Gao Zuying; Zhou Zhiwei; Zhao Bingquan

    2004-01-01

    The paper depicts a software assessment system, Dynamic Interaction Analysis Support (DIAS), based on computer simulation technology for man-machine interfaces (MMI) of a control room. It employs a computer to simulate the operation procedures of operations on man-machine interfaces in a control room, provides quantified assessment, and at the same time carries out analysis on operational error rate of operators by means of techniques for human error rate prediction. The problems of placing man-machine interfaces in a control room and of arranging instruments can be detected from simulation results. DIAS system can provide good technical supports to the design and improvement of man-machine interfaces of the main control room of a nuclear power plant

  17. Using Palm Technology in Participatory Simulations of Complex Systems: A New Take on Ubiquitous and Accessible Mobile Computing

    Science.gov (United States)

    Klopfer, Eric; Yoon, Susan; Perry, Judy

    2005-09-01

    This paper reports on teachers' perceptions of the educational affordances of a handheld application called Participatory Simulations. It presents evidence from five cases representing each of the populations who work with these computational tools. Evidence across multiple data sources yield similar results to previous research evaluations of handheld activities with respect to enhancing motivation, engagement and self-directed learning. Three additional themes are discussed that provide insight into understanding curricular applicability of Participatory Simulations that suggest a new take on ubiquitous and accessible mobile computing. These themes generally point to the multiple layers of social and cognitive flexibility intrinsic to their design: ease of adaptation to subject-matter content knowledge and curricular integration; facility in attending to teacher-individualized goals; and encouraging the adoption of learner-centered strategies.

  18. Computational methods for coupling microstructural and micromechanical materials response simulations

    Energy Technology Data Exchange (ETDEWEB)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.; FANG,HUEI ELIOT; RINTOUL,MARK DANIEL; VEDULA,VENKATA R.; GLASS,S. JILL; KNOROVSKY,GERALD A.; NEILSEN,MICHAEL K.; WELLMAN,GERALD W.; SULSKY,DEBORAH; SHEN,YU-LIN; SCHREYER,H. BUCK

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

  19. Positive Wigner functions render classical simulation of quantum computation efficient.

    Science.gov (United States)

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  20. Assessing Practical Skills in Physics Using Computer Simulations

    Science.gov (United States)

    Walsh, Kevin

    2018-01-01

    Computer simulations have been used very effectively for many years in the teaching of science but the focus has been on cognitive development. This study, however, is an investigation into the possibility that a student's experimental skills in the real-world environment can be judged via the undertaking of a suitably chosen computer simulation…

  1. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.

    2018-04-01

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.

  2. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  3. Simulation of radiation effects on three-dimensional computer optical memories

    Science.gov (United States)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  4. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  5. Patient-Specific Simulation Models of the Abdominal Aorta With and Without Aneurysms

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand

    to be isotropic, which may allow simpler phenomenological models to capture these effects. There is a pressing need, however, for more detailed histological information coupled with more complete experimental data for the systemic arteries. The second study was aimed at developing computational simulation models...... relations for computational analysis, and evaluation of the material model predictability. The constitutive framework applied is the four fiber family (4FF) model. This model assumes that the wall is a constrained mixture of an amorphous isotropic elastin dominated matrix reinforced by collagen fibers....... The collagen fibers are grouped in four directions of orientation. The purpose of the first study was to investigate whether significant risk factors related to AAA development can be identified from a specific pattern in the material parameters of the 4FF model. Smoking is a leading self-inflicted risk factor...

  6. The effect of teacher interpersonal behaviour on students' subject-specific motivation

    NARCIS (Netherlands)

    den Brok, P.; Levy, J.; Brekelmans, M.; Wubbels, Th.

    2006-01-01

    This study brings together insights from research on teaching and learning in specific subjects, learning environments research and effectiveness research by linking teacher interpersonal behaviour to students’ subject-related attitudes. Teaching was studied in terms of a model originating from

  7. Integrated computer control system CORBA-based simulator FY98 LDRD project final summary report

    International Nuclear Information System (INIS)

    Bryant, R M; Holloway, F W; Van Arsdall, P J.

    1999-01-01

    The CORBA-based Simulator was a Laboratory Directed Research and Development (LDRD) project that applied simulation techniques to explore critical questions about distributed control architecture. The simulator project used a three-prong approach comprised of a study of object-oriented distribution tools, computer network modeling, and simulation of key control system scenarios. This summary report highlights the findings of the team and provides the architectural context of the study. For the last several years LLNL has been developing the Integrated Computer Control System (ICCS), which is an abstract object-oriented software framework for constructing distributed systems. The framework is capable of implementing large event-driven control systems for mission-critical facilities such as the National Ignition Facility (NIF). Tools developed in this project were applied to the NIF example architecture in order to gain experience with a complex system and derive immediate benefits from this LDRD. The ICCS integrates data acquisition and control hardware with a supervisory system, and reduces the amount of new coding and testing necessary by providing prebuilt components that can be reused and extended to accommodate specific additional requirements. The framework integrates control point hardware with a supervisory system by providing the services needed for distributed control such as database persistence, system start-up and configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. The design is interoperable among computers of different kinds and provides plug-in software connections by leveraging a common object request brokering architecture (CORBA) to transparently distribute software objects across the network of computers. Because object broker distribution applied to control systems is relatively new and its inherent performance is roughly threefold less than traditional point

  8. Computer Access and Flowcharting as Variables in Learning Computer Programming.

    Science.gov (United States)

    Ross, Steven M.; McCormick, Deborah

    Manipulation of flowcharting was crossed with in-class computer access to examine flowcharting effects in the traditional lecture/laboratory setting and in a classroom setting where online time was replaced with manual simulation. Seventy-two high school students (24 male and 48 female) enrolled in a computer literacy course served as subjects.…

  9. Bibliography for Verification and Validation in Computational Simulation

    International Nuclear Information System (INIS)

    Oberkampf, W.L.

    1998-01-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering

  10. Bibliography for Verification and Validation in Computational Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.

    1998-10-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  11. Computer Simulation Surgery for Mandibular Reconstruction Using a Fibular Osteotomy Guide

    Directory of Open Access Journals (Sweden)

    Woo Shik Jeong

    2014-09-01

    Full Text Available In the present study, a fibular osteotomy guide based on a computer simulation was applied to a patient who had undergone mandibular segmental ostectomy due to oncological complications. This patient was a 68-year-old woman who presented to our department with a biopsy-proven squamous cell carcinoma on her left gingival area. This lesion had destroyed the cortical bony structure, and the patient showed attenuation of her soft tissue along the inferior alveolar nerve, indicating perineural spread of the tumor. Prior to surgery, a three-dimensional computed tomography scan of the facial and fibular bones was performed. We then created a virtual computer simulation of the mandibular segmental defect through which we segmented the fibular to reconstruct the proper angulation in the original mandible. Approximately 2-cm segments were created on the basis of this simulation and applied to the virtually simulated mandibular segmental defect. Thus, we obtained a virtual model of the ideal mandibular reconstruction for this patient with a fibular free flap. We could then use this computer simulation for the subsequent surgery and minimize the bony gaps between the multiple fibular bony segments.

  12. SNOW: a digital computer program for the simulation of ion beam devices

    International Nuclear Information System (INIS)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented

  13. Large Atmospheric Computation on the Earth Simulator: The LACES Project

    Directory of Open Access Journals (Sweden)

    Michel Desgagné

    2006-01-01

    Full Text Available The Large Atmospheric Computation on the Earth Simulator (LACES project is a joint initiative between Canadian and Japanese meteorological services and academic institutions that focuses on the high resolution simulation of Hurricane Earl (1998. The unique aspect of this effort is the extent of the computational domain, which covers all of North America and Europe with a grid spacing of 1 km. The Canadian Mesoscale Compressible Community (MC2 model is shown to parallelize effectively on the Japanese Earth Simulator (ES supercomputer; however, even using the extensive computing resources of the ES Center (ESC, the full simulation for the majority of Hurricane Earl's lifecycle takes over eight days to perform and produces over 5.2 TB of raw data. Preliminary diagnostics show that the results of the LACES simulation for the tropical stage of Hurricane Earl's lifecycle compare well with available observations for the storm. Further studies involving advanced diagnostics have commenced, taking advantage of the uniquely large spatial extent of the high resolution LACES simulation to investigate multiscale interactions in the hurricane and its environment. It is hoped that these studies will enhance our understanding of processes occurring within the hurricane and between the hurricane and its planetary-scale environment.

  14. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    Science.gov (United States)

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems. PMID:29503613

  15. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers.

    Science.gov (United States)

    Jordan, Jakob; Ippen, Tammo; Helias, Moritz; Kitayama, Itaru; Sato, Mitsuhisa; Igarashi, Jun; Diesmann, Markus; Kunkel, Susanne

    2018-01-01

    State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  16. Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

    Directory of Open Access Journals (Sweden)

    Jakob Jordan

    2018-02-01

    Full Text Available State-of-the-art software tools for neuronal network simulations scale to the largest computing systems available today and enable investigations of large-scale networks of up to 10 % of the human cortex at a resolution of individual neurons and synapses. Due to an upper limit on the number of incoming connections of a single neuron, network connectivity becomes extremely sparse at this scale. To manage computational costs, simulation software ultimately targeting the brain scale needs to fully exploit this sparsity. Here we present a two-tier connection infrastructure and a framework for directed communication among compute nodes accounting for the sparsity of brain-scale networks. We demonstrate the feasibility of this approach by implementing the technology in the NEST simulation code and we investigate its performance in different scaling scenarios of typical network simulations. Our results show that the new data structures and communication scheme prepare the simulation kernel for post-petascale high-performance computing facilities without sacrificing performance in smaller systems.

  17. Experiences Using an Open Source Software Library to Teach Computer Vision Subjects

    Science.gov (United States)

    Cazorla, Miguel; Viejo, Diego

    2015-01-01

    Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…

  18. Computer simulation of fatigue under diametrical compression

    OpenAIRE

    Carmona, H. A.; Kun, F.; Andrade Jr., J. S.; Herrmann, H. J.

    2006-01-01

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the ...

  19. Computer simulations and the changing face of scientific experimentation

    CERN Document Server

    Duran, Juan M

    2013-01-01

    Computer simulations have become a central tool for scientific practice. Their use has replaced, in many cases, standard experimental procedures. This goes without mentioning cases where the target system is empirical but there are no techniques for direct manipulation of the system, such as astronomical observation. To these cases, computer simulations have proved to be of central importance. The question about their use and implementation, therefore, is not only a technical one but represents a challenge for the humanities as well. In this volume, scientists, historians, and philosophers joi

  20. Effects of instructions and cue subjectiveness on specificity of autobiographical memory recall

    Directory of Open Access Journals (Sweden)

    Jorge J. Ricarte-Trives

    2014-10-01

    Full Text Available The first aim of this study was to determine the power of instructions on the specificity of autobiographical memory as obtained with the Autobiographical Memory Test (AMT; Williams & Broadbent, 1986 and the efficacy of cue word criteria selection based on subjective parameters obtained with a standardized lexical program. Results showed a high power of specific instructions in its written version in contrast to non-directed memory recall to the same list of words three weeks later in a counterbalanced repeated measures within-subjects design. This effect was stronger when subjects previously were faced to the non-specific recovery task. Matched word lists using the "Buscapalabras" program (Davis & Perea, 2005 showed a very similar behaviour. These results point out that the same stimuli can be used repeatedly to obtain voluntary and involuntary retrieval with changes at instructional level. Additionally, standardized lexical programs can be employed to adapt cue-words of memory recall systems controlling for subjective differences related to language parameters (frequency, imageability and familiarity.

  1. A Computational Framework for Bioimaging Simulation

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508

  2. A Computational Framework for Bioimaging Simulation.

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  3. A Computational Framework for Bioimaging Simulation.

    Directory of Open Access Journals (Sweden)

    Masaki Watabe

    Full Text Available Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  4. A computational platform for modeling and simulation of pipeline georeferencing systems

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, A.G.; Pellanda, P.C.; Gois, J.A. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Roquette, P.; Pinto, M.; Durao, R. [Instituto de Pesquisas da Marinha (IPqM), Rio de Janeiro, RJ (Brazil); Silva, M.S.V.; Martins, W.F.; Camillo, L.M.; Sacsa, R.P.; Madeira, B. [Ministerio de Ciencia e Tecnologia (CT-PETRO2006MCT), Brasilia, DF (Brazil). Financiadora de Estudos e Projetos (FINEP). Plano Nacional de Ciencia e Tecnologia do Setor Petroleo e Gas Natural

    2009-07-01

    This work presents a computational platform for modeling and simulation of pipeline geo referencing systems, which was developed based on typical pipeline characteristics, on the dynamical modeling of Pipeline Inspection Gauge (PIG) and on the analysis and implementation of an inertial navigation algorithm. The software environment of PIG trajectory simulation and navigation allows the user, through a friendly interface, to carry-out evaluation tests of the inertial navigation system under different scenarios. Therefore, it is possible to define the required specifications of the pipeline geo referencing system components, such as: required precision of inertial sensors, characteristics of the navigation auxiliary system (GPS surveyed control points, odometers etc.), pipeline construction information to be considered in order to improve the trajectory estimation precision, and the signal processing techniques more suitable for the treatment of inertial sensors data. The simulation results are analyzed through the evaluation of several performance metrics usually considered in inertial navigation applications, and 2D and 3D plots of trajectory estimation error and of recovered trajectory in the three coordinates are made available to the user. This paper presents the simulation platform and its constituting modules and defines their functional characteristics and interrelationships.(author)

  5. simulate_CAT: A Computer Program for Post-Hoc Simulation for Computerized Adaptive Testing

    Directory of Open Access Journals (Sweden)

    İlker Kalender

    2015-06-01

    Full Text Available This paper presents a computer software developed by the author. The software conducts post-hoc simulations for computerized adaptive testing based on real responses of examinees to paper and pencil tests under different parameters that can be defined by user. In this paper, short information is given about post-hoc simulations. After that, the working principle of the software is provided and a sample simulation with required input files is shown. And last, output files are described

  6. The challenge of quantum computer simulations of physical phenomena

    International Nuclear Information System (INIS)

    Ortiz, G.; Knill, E.; Gubernatis, J.E.

    2002-01-01

    The goal of physics simulation using controllable quantum systems ('physics imitation') is to exploit quantum laws to advantage, and thus accomplish efficient simulation of physical phenomena. In this Note, we discuss the fundamental concepts behind this paradigm of information processing, such as the connection between models of computation and physical systems. The experimental simulation of a toy quantum many-body problem is described

  7. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  8. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  9. Towards an integrative computational model for simulating tumor growth and response to radiation therapy

    Science.gov (United States)

    Marrero, Carlos Sosa; Aubert, Vivien; Ciferri, Nicolas; Hernández, Alfredo; de Crevoisier, Renaud; Acosta, Oscar

    2017-11-01

    Understanding the response to irradiation in cancer radiotherapy (RT) may help devising new strategies with improved tumor local control. Computational models may allow to unravel the underlying radiosensitive mechanisms intervening in the dose-response relationship. By using extensive simulations a wide range of parameters may be evaluated providing insights on tumor response thus generating useful data to plan modified treatments. We propose in this paper a computational model of tumor growth and radiation response which allows to simulate a whole RT protocol. Proliferation of tumor cells, cell life-cycle, oxygen diffusion, radiosensitivity, RT response and resorption of killed cells were implemented in a multiscale framework. The model was developed in C++, using the Multi-formalism Modeling and Simulation Library (M2SL). Radiosensitivity parameters extracted from literature enabled us to simulate in a regular grid (voxel-wise) a prostate cell tissue. Histopathological specimens with different aggressiveness levels extracted from patients after prostatectomy were used to initialize in silico simulations. Results on tumor growth exhibit a good agreement with data from in vitro studies. Moreover, standard fractionation of 2 Gy/fraction, with a total dose of 80 Gy as a real RT treatment was applied with varying radiosensitivity and oxygen diffusion parameters. As expected, the high influence of these parameters was observed by measuring the percentage of survival tumor cell after RT. This work paves the way to further models allowing to simulate increased doses in modified hypofractionated schemes and to develop new patient-specific combined therapies.

  10. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation.

    Science.gov (United States)

    Mangado, Nerea; Ceresa, Mario; Duchateau, Nicolas; Kjer, Hans Martin; Vera, Sergio; Dejea Velardo, Hector; Mistrik, Pavel; Paulsen, Rasmus R; Fagertun, Jens; Noailly, Jérôme; Piella, Gemma; González Ballester, Miguel Ángel

    2016-08-01

    Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging. To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations was obtained, in an average time of 94 s. The framework has proven to be fast and robust, and is promising for a detailed prognosis of the cochlear implantation surgery.

  11. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Aadithya, Karthik V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Mei, Ting [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Russo, Thomas V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Schiek, Richard L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Sholander, Peter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Thornquist, Heidi K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation; Verley, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electrical Models and Simulation

    2016-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.

  12. Teaching Computer Organization and Architecture Using Simulation and FPGA Applications

    OpenAIRE

    D. K.M. Al-Aubidy

    2007-01-01

    This paper presents the design concepts and realization of incorporating micro-operation simulation and FPGA implementation into a teaching tool for computer organization and architecture. This teaching tool helps computer engineering and computer science students to be familiarized practically with computer organization and architecture through the development of their own instruction set, computer programming and interfacing experiments. A two-pass assembler has been designed and implemente...

  13. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    Full Text Available Abstract Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents.

  14. Exploring the Use of Computer Simulations in Unraveling Research and Development Governance Problems

    Science.gov (United States)

    Balaban, Mariusz A.; Hester, Patrick T.

    2012-01-01

    Understanding Research and Development (R&D) enterprise relationships and processes at a governance level is not a simple task, but valuable decision-making insight and evaluation capabilities can be gained from their exploration through computer simulations. This paper discusses current Modeling and Simulation (M&S) methods, addressing their applicability to R&D enterprise governance. Specifically, the authors analyze advantages and disadvantages of the four methodologies used most often by M&S practitioners: System Dynamics (SO), Discrete Event Simulation (DES), Agent Based Modeling (ABM), and formal Analytic Methods (AM) for modeling systems at the governance level. Moreover, the paper describes nesting models using a multi-method approach. Guidance is provided to those seeking to employ modeling techniques in an R&D enterprise for the purposes of understanding enterprise governance. Further, an example is modeled and explored for potential insight. The paper concludes with recommendations regarding opportunities for concentration of future work in modeling and simulating R&D governance relationships and processes.

  15. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    Science.gov (United States)

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  16. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tomoaki, E-mail: t-nishi@hosei.ac.jp

    2016-03-15

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of {sup 16}O({sup 4}He, {sup 4}He){sup 16}O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  17. An introduction to computer simulation methods applications to physical systems

    CERN Document Server

    Gould, Harvey; Christian, Wolfgang

    2007-01-01

    Now in its third edition, this book teaches physical concepts using computer simulations. The text incorporates object-oriented programming techniques and encourages readers to develop good programming habits in the context of doing physics. Designed for readers at all levels , An Introduction to Computer Simulation Methods uses Java, currently the most popular programming language. Introduction, Tools for Doing Simulations, Simulating Particle Motion, Oscillatory Systems, Few-Body Problems: The Motion of the Planets, The Chaotic Motion of Dynamical Systems, Random Processes, The Dynamics of Many Particle Systems, Normal Modes and Waves, Electrodynamics, Numerical and Monte Carlo Methods, Percolation, Fractals and Kinetic Growth Models, Complex Systems, Monte Carlo Simulations of Thermal Systems, Quantum Systems, Visualization and Rigid Body Dynamics, Seeing in Special and General Relativity, Epilogue: The Unity of Physics For all readers interested in developing programming habits in the context of doing phy...

  18. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-05-01

    Full Text Available Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal computer, a Graphics Processing Unit (GPU-based, high-performance computing method using the OpenACC application was adopted to parallelize the shallow water model. An unstructured data management method was presented to control the data transportation between the GPU and CPU (Central Processing Unit with minimum overhead, and then both computation and data were offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as much as possible. The parallel model was validated using various benchmarks and real-world case studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in comparison with the serial model. The proposed parallel model provides a fast and reliable tool with which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect for dynamic inundation risk identification and disaster assessment.

  19. Refining Pragmatically-Appropriate Oral Communication via Computer-Simulated Conversations

    Science.gov (United States)

    Sydorenko, Tetyana; Daurio, Phoebe; Thorne, Steven L.

    2018-01-01

    To address the problem of limited opportunities for practicing second language speaking in interaction, especially delicate interactions requiring pragmatic competence, we describe computer simulations designed for the oral practice of extended pragmatic routines and report on the affordances of such simulations for learning pragmatically…

  20. Simulation of quantum computation : A deterministic event-based approach

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, K; De Raedt, H

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  1. Simulation of Quantum Computation : A Deterministic Event-Based Approach

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, K. De; Raedt, H. De

    2005-01-01

    We demonstrate that locally connected networks of machines that have primitive learning capabilities can be used to perform a deterministic, event-based simulation of quantum computation. We present simulation results for basic quantum operations such as the Hadamard and the controlled-NOT gate, and

  2. Computer Simulation of the Relationship between Selected Properties of PVD Coatings

    Directory of Open Access Journals (Sweden)

    Śliwa A.

    2016-06-01

    Full Text Available The possibility to apply the Finite Element Method to calculate internal stresses which occur in Ti+TiN, Ti+Ti(CxN1-x and Ti+TiC coatings obtained in the magnetron PVD process on the sintered high-speed steel of the PM HS6-5-3-8 type. For the purpose of computer simulation of internal stresses in coatings with the use of MES, the correct model of analyzed specimens was worked out and then it was experimentally verified by comparison of calculation results with the results of computer simulation. Accurate analysis of correlations indicated especially strong dependence between internal stresses and microhardness and between microhardness and erosion resistance what created conditions for establishing the dependence between internal stresses obtained in the result of computer simulation and erosion resistance as basic functional quality of coating. It has essential practical meaning because it allows to estimate predictable erosion resistance of coating exclusively on the base of the results of computer simulation for used parameters in the process of coating manufacturing.

  3. Comparison of real and computer-simulated outcomes of LASIK refractive surgery

    Science.gov (United States)

    Cano, Daniel; Barbero, Sergio; Marcos, Susana

    2004-06-01

    Computer simulations of alternative LASIK ablation patterns were performed for corneal elevation maps of 13 real myopic corneas (range of myopia, -2.0 to -11.5 D). The computationally simulated ablation patterns were designed with biconic surfaces (standard Munnerlyn pattern, parabolic pattern, and biconic pattern) or with aberrometry measurements (customized pattern). Simulated results were compared with real postoperative outcomes. Standard LASIK refractive surgery for myopia increased corneal asphericity and spherical aberration. Computations with the theoretical Munnerlyn ablation pattern did not increase the corneal asphericity and spherical aberration. The theoretical parabolic pattern induced a slight increase of asphericity and spherical aberration, explaining only 40% of the clinically found increase. The theoretical biconic pattern controlled corneal spherical aberration. Computations showed that the theoretical customized pattern can correct high-order asymmetric aberrations. Simulations of changes in efficiency due to reflection and nonnormal incidence of the laser light showed a further increase in corneal asphericity. Consideration of these effects with a parabolic pattern accounts for 70% of the clinical increase in asphericity.

  4. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.

    Science.gov (United States)

    Chan, Sonny; Li, Peter; Locketz, Garrett; Salisbury, Kenneth; Blevins, Nikolas H

    2016-12-01

    Medical imaging techniques provide a wealth of information for surgical preparation, but it is still often the case that surgeons are examining three-dimensional pre-operative image data as a series of two-dimensional images. With recent advances in visual computing and interactive technologies, there is much opportunity to provide surgeons an ability to actively manipulate and interpret digital image data in a surgically meaningful way. This article describes the design and initial evaluation of a virtual surgical environment that supports patient-specific simulation of temporal bone surgery using pre-operative medical image data. Computational methods are presented that enable six degree-of-freedom haptic feedback during manipulation, and that simulate virtual dissection according to the mechanical principles of orthogonal cutting and abrasive wear. A highly efficient direct volume renderer simultaneously provides high-fidelity visual feedback during surgical manipulation of the virtual anatomy. The resulting virtual surgical environment was assessed by evaluating its ability to replicate findings in the operating room, using pre-operative imaging of the same patient. Correspondences between surgical exposure, anatomical features, and the locations of pathology were readily observed when comparing intra-operative video with the simulation, indicating the predictive ability of the virtual surgical environment.

  5. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases.

    Science.gov (United States)

    Iglesias, Juan Eugenio; Van Leemput, Koen; Augustinack, Jean; Insausti, Ricardo; Fischl, Bruce; Reuter, Martin

    2016-11-01

    The hippocampal formation is a complex, heterogeneous structure that consists of a number of distinct, interacting subregions. Atrophy of these subregions is implied in a variety of neurodegenerative diseases, most prominently in Alzheimer's disease (AD). Thanks to the increasing resolution of MR images and computational atlases, automatic segmentation of hippocampal subregions is becoming feasible in MRI scans. Here we introduce a generative model for dedicated longitudinal segmentation that relies on subject-specific atlases. The segmentations of the scans at the different time points are jointly computed using Bayesian inference. All time points are treated the same to avoid processing bias. We evaluate this approach using over 4700 scans from two publicly available datasets (ADNI and MIRIAD). In test-retest reliability experiments, the proposed method yielded significantly lower volume differences and significantly higher Dice overlaps than the cross-sectional approach for nearly every subregion (average across subregions: 4.5% vs. 6.5%, Dice overlap: 81.8% vs. 75.4%). The longitudinal algorithm also demonstrated increased sensitivity to group differences: in MIRIAD (69 subjects: 46 with AD and 23 controls), it found differences in atrophy rates between AD and controls that the cross sectional method could not detect in a number of subregions: right parasubiculum, left and right presubiculum, right subiculum, left dentate gyrus, left CA4, left HATA and right tail. In ADNI (836 subjects: 369 with AD, 215 with early cognitive impairment - eMCI - and 252 controls), all methods found significant differences between AD and controls, but the proposed longitudinal algorithm detected differences between controls and eMCI and differences between eMCI and AD that the cross sectional method could not find: left presubiculum, right subiculum, left and right parasubiculum, left and right HATA. Moreover, many of the differences that the cross-sectional method already found

  6. Use of computer simulations for the early introduction of nuclear engineering concepts

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Zerguini, T.H.

    1985-01-01

    A sophomore level nuclear engineering (NE) course is being introduced at the University of Illinois. Via computer simulations, this course presents materials covering the most important aspects of the field. It is noted that computer simulations in nuclear engineering are cheaper and safer than experiments yet they provide an effective teaching tool for the early introduction of advanced concepts. The new course material can be used as a tutorial and for remedial learning. The use of computer simulation motivates learning since students associate computer activities with games. Such a course can help in the dissemination of the proper information to students from different fields, including liberal arts, and eventually increase undergraduate student enrollment in nuclear engineering

  7. The use of computer simulations in whole-class versus small-group settings

    Science.gov (United States)

    Smetana, Lara Kathleen

    This study explored the use of computer simulations in a whole-class as compared to small-group setting. Specific consideration was given to the nature and impact of classroom conversations and interactions when computer simulations were incorporated into a high school chemistry course. This investigation fills a need for qualitative research that focuses on the social dimensions of actual classrooms. Participants included a novice chemistry teacher experienced in the use of educational technologies and two honors chemistry classes. The study was conducted in a rural school in the south-Atlantic United States at the end of the fall 2007 semester. The study took place during one instructional unit on atomic structure. Data collection allowed for triangulation of evidence from a variety of sources approximately 24 hours of video- and audio-taped classroom observations, supplemented with the researcher's field notes and analytic journal; miscellaneous classroom artifacts such as class notes, worksheets, and assignments; open-ended pre- and post-assessments; student exit interviews; teacher entrance, exit and informal interviews. Four web-based simulations were used, three of which were from the ExploreLearning collection. Assessments were analyzed using descriptive statistics and classroom observations, artifacts and interviews were analyzed using Erickson's (1986) guidelines for analytic induction. Conversational analysis was guided by methods outlined by Erickson (1982). Findings indicated (a) the teacher effectively incorporated simulations in both settings (b) students in both groups significantly improved their understanding of the chemistry concepts (c) there was no statistically significant difference between groups' achievement (d) there was more frequent exploratory talk in the whole-class group (e) there were more frequent and meaningful teacher-student interactions in the whole-class group (f) additional learning experiences not measured on the assessment

  8. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  9. Implementation of Grid-computing Framework for Simulation in Multi-scale Structural Analysis

    Directory of Open Access Journals (Sweden)

    Data Iranata

    2010-05-01

    Full Text Available A new grid-computing framework for simulation in multi-scale structural analysis is presented. Two levels of parallel processing will be involved in this framework: multiple local distributed computing environments connected by local network to form a grid-based cluster-to-cluster distributed computing environment. To successfully perform the simulation, a large-scale structural system task is decomposed into the simulations of a simplified global model and several detailed component models using various scales. These correlated multi-scale structural system tasks are distributed among clusters and connected together in a multi-level hierarchy and then coordinated over the internet. The software framework for supporting the multi-scale structural simulation approach is also presented. The program architecture design allows the integration of several multi-scale models as clients and servers under a single platform. To check its feasibility, a prototype software system has been designed and implemented to perform the proposed concept. The simulation results show that the software framework can increase the speedup performance of the structural analysis. Based on this result, the proposed grid-computing framework is suitable to perform the simulation of the multi-scale structural analysis.

  10. Plant Closings and Capital Flight: A Computer-Assisted Simulation.

    Science.gov (United States)

    Warner, Stanley; Breitbart, Myrna M.

    1989-01-01

    A course at Hampshire College was designed to simulate the decision-making environment in which constituencies in a medium-sized city would respond to the closing and relocation of a major corporate plant. The project, constructed as a role simulation with a computer component, is described. (MLW)

  11. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    International Nuclear Information System (INIS)

    Chow, J

    2015-01-01

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant

  12. SU-E-T-222: Computational Optimization of Monte Carlo Simulation On 4D Treatment Planning Using the Cloud Computing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, J [Princess Margaret Cancer Center, Toronto, ON (Canada)

    2015-06-15

    Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of compute node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.

  13. Computational plasticity algorithm for particle dynamics simulations

    Science.gov (United States)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  14. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  15. Topics in computer simulations of statistical systems

    International Nuclear Information System (INIS)

    Salvador, R.S.

    1987-01-01

    Several computer simulations studying a variety of topics in statistical mechanics and lattice gauge theories are performed. The first study describes a Monte Carlo simulation performed on Ising systems defined on Sierpinsky carpets of dimensions between one and four. The critical coupling and the exponent γ are measured as a function of dimension. The Ising gauge theory in d = 4 - epsilon, for epsilon → 0 + , is then studied by performing a Monte Carlo simulation for the theory defined on fractals. A high statistics Monte Carlo simulation for the three-dimensional Ising model is presented for lattices of sizes 8 3 to 44 3 . All the data obtained agrees completely, within statistical errors, with the forms predicted by finite-sizing scaling. Finally, a method to estimate numerically the partition function of statistical systems is developed

  16. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  17. A computer method for simulating the decay of radon daughters

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1988-01-01

    The analytical equations representing the decay of a series of radioactive atoms through a number of daughter products are well known. These equations are for an idealized case in which the expectation value of the number of atoms which decay in a certain time can be represented by a smooth curve. The real curve of the total number of disintegrations from a radioactive species consists of a series of Heaviside step functions, with the steps occurring at the time of the disintegration. The disintegration of radioactive atoms is said to be random but this random behaviour is such that a single species forms an ensemble of which the times of disintegration give a geometric distribution. Numbers which have a geometric distribution can be generated by computer and can be used to simulate the decay of one or more radioactive species. A computer method is described for simulating such decay of radioactive atoms and this method is applied specifically to the decay of the short half life daughters of radon 222 and the emission of alpha particles from polonium 218 and polonium 214. Repeating the simulation of the decay a number of times provides a method for investigating the statistical uncertainty inherent in methods for measurement of exposure to radon daughters. This statistical uncertainty is difficult to investigate analytically since the time of decay of an atom of polonium 218 is not independent of the time of decay of subsequent polonium 214. The method is currently being used to investigate the statistical uncertainties of a number of commonly used methods for the counting of alpha particles from radon daughters and the calculations of exposure

  18. Analysis and computer simulation for transient flow in complex system of liquid piping

    International Nuclear Information System (INIS)

    Mitry, A.M.

    1985-01-01

    This paper is concerned with unsteady state analysis and development of a digital computer program, FLUTRAN, that performs a simulation of transient flow behavior in a complex system of liquid piping. The program calculates pressure and flow transients in the liquid filled piping system. The analytical model is based on the method of characteristics solution to the fluid hammer continuity and momentum equations. The equations are subject to wide variety of boundary conditions to take into account the effect of hydraulic devices. Water column separation is treated as a boundary condition with known head. Experimental tests are presented that exhibit transients induced by pump failure and valve closure in the McGuire Nuclear Station Low Level Intake Cooling Water System. Numerical simulation is conducted to compare theory with test data. Analytical and test data are shown to be in good agreement and provide validation of the model

  19. Integrating Cloud-Computing-Specific Model into Aircraft Design

    Science.gov (United States)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  20. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.

  1. Computer simulation as an operational and training aid

    International Nuclear Information System (INIS)

    Lee, D.J.; Tottman-Trayner, E.

    1995-01-01

    The paper describes how the rapid development of desktop computing power, the associated fall in prices, and the advancement of computer graphics technology driven by the entertainment industry has enabled the nuclear industry to achieve improvements in operation and training through the use of computer simulation. Applications are focused on the fuel handling operations at Torness Power Station where visualization through computer modelling is being used to enhance operator awareness and to assist in a number of operational scenarios. It is concluded that there are significant benefits to be gained from the introduction of the facility at Torness as well as other locations. (author)

  2. Integration of adaptive process control with computational simulation for spin-forming

    International Nuclear Information System (INIS)

    Raboin, P. J. LLNL

    1998-01-01

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations

  3. Surgical resource utilization in urban terrorist bombing: a computer simulation.

    Science.gov (United States)

    Hirshberg, A; Stein, M; Walden, R

    1999-09-01

    The objective of this study was to analyze the utilization of surgical staff and facilities during an urban terrorist bombing incident. A discrete-event computer model of the emergency room and related hospital facilities was constructed and implemented, based on cumulated data from 12 urban terrorist bombing incidents in Israel. The simulation predicts that the admitting capacity of the hospital depends primarily on the number of available surgeons and defines an optimal staff profile for surgeons, residents, and trauma nurses. The major bottlenecks in the flow of critical casualties are the shock rooms and the computed tomographic scanner but not the operating rooms. The simulation also defines the number of reinforcement staff needed to treat noncritical casualties and shows that radiology is the major obstacle to the flow of these patients. Computer simulation is an important new tool for the optimization of surgical service elements for a multiple-casualty situation.

  4. [The research on bidirectional reflectance computer simulation of forest canopy at pixel scale].

    Science.gov (United States)

    Song, Jin-Ling; Wang, Jin-Di; Shuai, Yan-Min; Xiao, Zhi-Qiang

    2009-08-01

    Computer simulation is based on computer graphics to generate the realistic 3D structure scene of vegetation, and to simulate the canopy regime using radiosity method. In the present paper, the authors expand the computer simulation model to simulate forest canopy bidirectional reflectance at pixel scale. But usually, the trees are complex structures, which are tall and have many branches. So there is almost a need for hundreds of thousands or even millions of facets to built up the realistic structure scene for the forest It is difficult for the radiosity method to compute so many facets. In order to make the radiosity method to simulate the forest scene at pixel scale, in the authors' research, the authors proposed one idea to simplify the structure of forest crowns, and abstract the crowns to ellipsoids. And based on the optical characteristics of the tree component and the characteristics of the internal energy transmission of photon in real crown, the authors valued the optical characteristics of ellipsoid surface facets. In the computer simulation of the forest, with the idea of geometrical optics model, the gap model is considered to get the forest canopy bidirectional reflectance at pixel scale. Comparing the computer simulation results with the GOMS model, and Multi-angle Imaging SpectroRadiometer (MISR) multi-angle remote sensing data, the simulation results are in agreement with the GOMS simulation result and MISR BRF. But there are also some problems to be solved. So the authors can conclude that the study has important value for the application of multi-angle remote sensing and the inversion of vegetation canopy structure parameters.

  5. Computer simulation of bounded plasmas

    International Nuclear Information System (INIS)

    Lawson, W.S.

    1987-01-01

    The problems of simulating a one-dimensional bounded plasma system using particles in a gridded space are systematically explored and solutions to them are given. Such problems include the injection of particles at the boundaries, the solution of Poisson's equation, and the inclusion of an external circuit between the confining boundaries. A recently discovered artificial cooling effect is explained as being a side-effect of quiet injection, and its potential for causing serious but subtle errors in bounded simulation is noted. The methods described in the first part of the thesis are then applied to the simulation of an extension of the Pierce diode problem, specifically a Pierce diode modified by an external circuit between the electrodes. The results of these simulations agree to high accuracy with theory when a theory exists, and also show some interesting chaotic behavior in certain parameter regimes. The chaotic behavior is described in detail

  6. Computer simulations of the random barrier model

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    2002-01-01

    A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...

  7. Cognitive training in Parkinson disease: cognition-specific vs nonspecific computer training.

    Science.gov (United States)

    Zimmermann, Ronan; Gschwandtner, Ute; Benz, Nina; Hatz, Florian; Schindler, Christian; Taub, Ethan; Fuhr, Peter

    2014-04-08

    In this study, we compared a cognition-specific computer-based cognitive training program with a motion-controlled computer sports game that is not cognition-specific for their ability to enhance cognitive performance in various cognitive domains in patients with Parkinson disease (PD). Patients with PD were trained with either a computer program designed to enhance cognition (CogniPlus, 19 patients) or a computer sports game with motion-capturing controllers (Nintendo Wii, 20 patients). The effect of training in 5 cognitive domains was measured by neuropsychological testing at baseline and after training. Group differences over all variables were assessed with multivariate analysis of variance, and group differences in single variables were assessed with 95% confidence intervals of mean difference. The groups were similar regarding age, sex, and educational level. Patients with PD who were trained with Wii for 4 weeks performed better in attention (95% confidence interval: -1.49 to -0.11) than patients trained with CogniPlus. In our study, patients with PD derived at least the same degree of cognitive benefit from non-cognition-specific training involving movement as from cognition-specific computerized training. For patients with PD, game consoles may be a less expensive and more entertaining alternative to computer programs specifically designed for cognitive training. This study provides Class III evidence that, in patients with PD, cognition-specific computer-based training is not superior to a motion-controlled computer game in improving cognitive performance.

  8. Technology computer aided design simulation for VLSI MOSFET

    CERN Document Server

    Sarkar, Chandan Kumar

    2013-01-01

    Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and

  9. Computer simulations of the mechanical properties of metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  10. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.

    Science.gov (United States)

    Cassereau, Didier; Nauleau, Pierre; Bendjoudi, Aniss; Minonzio, Jean-Gabriel; Laugier, Pascal; Bossy, Emmanuel; Grimal, Quentin

    2014-07-01

    The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Event Based Simulator for Parallel Computing over the Wide Area Network for Real Time Visualization

    Science.gov (United States)

    Sundararajan, Elankovan; Harwood, Aaron; Kotagiri, Ramamohanarao; Satria Prabuwono, Anton

    As the computational requirement of applications in computational science continues to grow tremendously, the use of computational resources distributed across the Wide Area Network (WAN) becomes advantageous. However, not all applications can be executed over the WAN due to communication overhead that can drastically slowdown the computation. In this paper, we introduce an event based simulator to investigate the performance of parallel algorithms executed over the WAN. The event based simulator known as SIMPAR (SIMulator for PARallel computation), simulates the actual computations and communications involved in parallel computation over the WAN using time stamps. Visualization of real time applications require steady stream of processed data flow for visualization purposes. Hence, SIMPAR may prove to be a valuable tool to investigate types of applications and computing resource requirements to provide uninterrupted flow of processed data for real time visualization purposes. The results obtained from the simulation show concurrence with the expected performance using the L-BSP model.

  12. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I

    Czech Academy of Sciences Publication Activity Database

    Kohn, V.G.; Khikhlukha, Danila

    2016-01-01

    Roč. 72, May (2016), s. 349-356 ISSN 2053-2733 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : X-ray diffraction * silicon crystal * six-beam diffraction * section topography * computer simulations Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.725, year: 2016

  13. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  14. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    Science.gov (United States)

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  15. Definition, modeling and simulation of a grid computing system for high throughput computing

    CERN Document Server

    Caron, E; Tsaregorodtsev, A Yu

    2006-01-01

    In this paper, we study and compare grid and global computing systems and outline the benefits of having an hybrid system called dirac. To evaluate the dirac scheduling for high throughput computing, a new model is presented and a simulator was developed for many clusters of heterogeneous nodes belonging to a local network. These clusters are assumed to be connected to each other through a global network and each cluster is managed via a local scheduler which is shared by many users. We validate our simulator by comparing the experimental and analytical results of a M/M/4 queuing system. Next, we do the comparison with a real batch system and we obtain an average error of 10.5% for the response time and 12% for the makespan. We conclude that the simulator is realistic and well describes the behaviour of a large-scale system. Thus we can study the scheduling of our system called dirac in a high throughput context. We justify our decentralized, adaptive and oppor! tunistic approach in comparison to a centralize...

  16. Sensitivity Analysis of Personal Exposure Assessment Using a Computer Simulated Person

    DEFF Research Database (Denmark)

    Brohus, Henrik; Jensen, H. K.

    2009-01-01

    The paper considers uncertainties related to personal exposure assessment using a computer simulated person. CFD is used to simulate a uniform flow field around a human being to determine the personal exposure to a contaminant source. For various vertical locations of a point contaminant source...... three additional factors are varied, namely the velocity, details of the computer simulated person, and the CFD model of the wind channel. The personal exposure is found to be highly dependent on the relative source location. Variation in the range of two orders of magnitude is found. The exposure...

  17. Computer simulation of multiple dynamic photorefractive gratings

    DEFF Research Database (Denmark)

    Buchhave, Preben

    1998-01-01

    The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...

  18. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke; Yokota, Rio; Koyama, Hiroshi; Morimoto, Gentaro; Hasegawa, Aki; Masumoto, Gen; Okimoto, Noriaki; Hirano, Yoshinori; Ibeid, Huda; Narumi, Tetsu; Taiji, Makoto

    2014-01-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  19. Petascale molecular dynamics simulation using the fast multipole method on K computer

    KAUST Repository

    Ohno, Yousuke

    2014-10-01

    In this paper, we report all-atom simulations of molecular crowding - a result from the full node simulation on the "K computer", which is a 10-PFLOPS supercomputer in Japan. The capability of this machine enables us to perform simulation of crowded cellular environments, which are more realistic compared to conventional MD simulations where proteins are simulated in isolation. Living cells are "crowded" because macromolecules comprise ∼30% of their molecular weight. Recently, the effects of crowded cellular environments on protein stability have been revealed through in-cell NMR spectroscopy. To measure the performance of the "K computer", we performed all-atom classical molecular dynamics simulations of two systems: target proteins in a solvent, and target proteins in an environment of molecular crowders that mimic the conditions of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520 million-atom simulation with cutoff of 28 Å. Furthermore, we discuss the performance and scaling of fast multipole methods for molecular dynamics simulations on the "K computer", as well as comparisons with Ewald summation methods. © 2014 Elsevier B.V. All rights reserved.

  20. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements.

    Science.gov (United States)

    Abdelgaied, A; Fisher, J; Jennings, L M

    2018-02-01

    A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and validated a comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements (TKR). The input mechanical (elastic modulus and Poisson's ratio) and wear parameters of the moderately cross-linked ultra-high molecular weight polyethylene (UHMWPE) bearing material were independently measured from experimental studies under realistic test conditions, similar to the loading conditions found in the total knee replacements. The wear predictions from the computational wear simulation were validated against the direct experimental wear measurements for size 3 Sigma curved total knee replacements (DePuy, UK) in an independent experimental wear simulation study under three different daily activities; walking, deep squat, and stairs ascending kinematic conditions. The measured compressive mechanical properties of the moderately cross-linked UHMWPE material were more than 20% lower than that reported in the literature under tensile test conditions. The pin-on-plate wear coefficient of moderately cross-linked UHMWPE was significantly dependant of the contact stress and the degree of cross-shear at the articulating surfaces. The computational wear predictions for the TKR from the current framework were consistent and in a good agreement with the independent full TKR experimental wear simulation measurements, with 0.94 coefficient of determination of the framework. In addition, the comprehensive combined experimental and computational framework was able to explain the complex experimental wear trends from the three different daily

  1. Recent advancements in medical simulation: patient-specific virtual reality simulation.

    Science.gov (United States)

    Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E

    2012-07-01

    Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.

  2. Subjective assessment of simulated helicopter blade-slap noise

    Science.gov (United States)

    Lawton, B. W.

    1976-01-01

    The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.

  3. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    Science.gov (United States)

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nanoelectronics: Metrology and Computation

    International Nuclear Information System (INIS)

    Lundstrom, Mark; Clark, Jason V.; Klimeck, Gerhard; Raman, Arvind

    2007-01-01

    Research in nanoelectronics poses new challenges for metrology, but advances in theory, simulation and computing and networking technology provide new opportunities to couple simulation and metrology. This paper begins with a brief overview of current work in computational nanoelectronics. Three examples of how computation can assist metrology will then be discussed. The paper concludes with a discussion of how cyberinfrastructure can help connect computing and metrology using the nanoHUB (www.nanoHUB.org) as a specific example

  5. Cloud Computing in Science and Engineering and the “SciShop.ru” Computer Simulation Center

    Directory of Open Access Journals (Sweden)

    E. V. Vorozhtsov

    2011-12-01

    Full Text Available Various aspects of cloud computing applications for scientific research, applied design, and remote education are described in this paper. An analysis of the different aspects is performed based on the experience from the “SciShop.ru” Computer Simulation Center. This analysis shows that cloud computing technology has wide prospects in scientific research applications, applied developments and also remote education of specialists, postgraduates, and students.

  6. SHIPBUILDING PRODUCTION PROCESS DESIGN METHODOLOGY USING COMPUTER SIMULATION

    OpenAIRE

    Marko Hadjina; Nikša Fafandjel; Tin Matulja

    2015-01-01

    In this research a shipbuilding production process design methodology, using computer simulation, is suggested. It is expected from suggested methodology to give better and more efficient tool for complex shipbuilding production processes design procedure. Within the first part of this research existing practice for production process design in shipbuilding was discussed, its shortcomings and problem were emphasized. In continuing, discrete event simulation modelling method, as basis of sugge...

  7. AFFECTIVE COMPUTING AND AUGMENTED REALITY FOR CAR DRIVING SIMULATORS

    Directory of Open Access Journals (Sweden)

    Dragoș Datcu

    2017-12-01

    Full Text Available Car simulators are essential for training and for analyzing the behavior, the responses and the performance of the driver. Augmented Reality (AR is the technology that enables virtual images to be overlaid on views of the real world. Affective Computing (AC is the technology that helps reading emotions by means of computer systems, by analyzing body gestures, facial expressions, speech and physiological signals. The key aspect of the research relies on investigating novel interfaces that help building situational awareness and emotional awareness, to enable affect-driven remote collaboration in AR for car driving simulators. The problem addressed relates to the question about how to build situational awareness (using AR technology and emotional awareness (by AC technology, and how to integrate these two distinct technologies [4], into a unique affective framework for training, in a car driving simulator.

  8. A computational model to generate simulated three-dimensional breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N., E-mail: wernick@iit.edu [Medical Imaging Research Center, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Schmidt, Robert A. [Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Nishikawa, Robert M. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-02-15

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  9. A computational model to generate simulated three-dimensional breast masses

    International Nuclear Information System (INIS)

    Sisternes, Luis de; Brankov, Jovan G.; Zysk, Adam M.; Wernick, Miles N.; Schmidt, Robert A.; Nishikawa, Robert M.

    2015-01-01

    Purpose: To develop algorithms for creating realistic three-dimensional (3D) simulated breast masses and embedding them within actual clinical mammograms. The proposed techniques yield high-resolution simulated breast masses having randomized shapes, with user-defined mass type, size, location, and shape characteristics. Methods: The authors describe a method of producing 3D digital simulations of breast masses and a technique for embedding these simulated masses within actual digitized mammograms. Simulated 3D breast masses were generated by using a modified stochastic Gaussian random sphere model to generate a central tumor mass, and an iterative fractal branching algorithm to add complex spicule structures. The simulated masses were embedded within actual digitized mammograms. The authors evaluated the realism of the resulting hybrid phantoms by generating corresponding left- and right-breast image pairs, consisting of one breast image containing a real mass, and the opposite breast image of the same patient containing a similar simulated mass. The authors then used computer-aided diagnosis (CAD) methods and expert radiologist readers to determine whether significant differences can be observed between the real and hybrid images. Results: The authors found no statistically significant difference between the CAD features obtained from the real and simulated images of masses with either spiculated or nonspiculated margins. Likewise, the authors found that expert human readers performed very poorly in discriminating their hybrid images from real mammograms. Conclusions: The authors’ proposed method permits the realistic simulation of 3D breast masses having user-defined characteristics, enabling the creation of a large set of hybrid breast images containing a well-characterized mass, embedded within real breast background. The computational nature of the model makes it suitable for detectability studies, evaluation of computer aided diagnosis algorithms, and

  10. Neurosurgical simulation by interactive computer graphics on iPad.

    Science.gov (United States)

    Maruyama, Keisuke; Kin, Taichi; Saito, Toki; Suematsu, Shinya; Gomyo, Miho; Noguchi, Akio; Nagane, Motoo; Shiokawa, Yoshiaki

    2014-11-01

    Presurgical simulation before complicated neurosurgery is a state-of-the-art technique, and its usefulness has recently become well known. However, simulation requires complex image processing, which hinders its widespread application. We explored handling the results of interactive computer graphics on the iPad tablet, which can easily be controlled anywhere. Data from preneurosurgical simulations from 12 patients (4 men, 8 women) who underwent complex brain surgery were loaded onto an iPad. First, DICOM data were loaded using Amira visualization software to create interactive computer graphics, and ParaView, another free visualization software package, was used to convert the results of the simulation to be loaded using the free iPad software KiwiViewer. The interactive computer graphics created prior to neurosurgery were successfully displayed and smoothly controlled on the iPad in all patients. The number of elements ranged from 3 to 13 (mean 7). The mean original data size was 233 MB, which was reduced to 10.4 MB (4.4% of original size) after image processing by ParaView. This was increased to 46.6 MB (19.9%) after decompression in KiwiViewer. Controlling the magnification, transfer, rotation, and selection of translucence in 10 levels of each element were smoothly and easily performed using one or two fingers. The requisite skill to smoothly control the iPad software was acquired within 1.8 trials on average in 12 medical students and 6 neurosurgical residents. Using an iPad to handle the result of preneurosurgical simulation was extremely useful because it could easily be handled anywhere.

  11. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    Science.gov (United States)

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights

  12. The null-event method in computer simulation

    International Nuclear Information System (INIS)

    Lin, S.L.

    1978-01-01

    The simulation of collisions of ions moving under the influence of an external field through a neutral gas to non-zero temperatures is discussed as an example of computer models of processes in which a probe particle undergoes a series of interactions with an ensemble of other particles, such that the frequency and outcome of the events depends on internal properties of the second particles. The introduction of null events removes the need for much complicated algebra, leads to a more efficient simulation and reduces the likelihood of logical error. (Auth.)

  13. Computational fluid dynamics for sport simulation

    CERN Document Server

    2009-01-01

    All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.

  14. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  15. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  16. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Tse, Kwong Ming; Chiu, Peixuan; Lee, Heow Pueh; Ho, Pei

    2011-03-15

    Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Computational fluid dynamics (CFD) simulation of hot air flow ...

    African Journals Online (AJOL)

    Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...

  18. Investigating the Effectiveness of Computer Simulations for Chemistry Learning

    Science.gov (United States)

    Plass, Jan L.; Milne, Catherine; Homer, Bruce D.; Schwartz, Ruth N.; Hayward, Elizabeth O.; Jordan, Trace; Verkuilen, Jay; Ng, Florrie; Wang, Yan; Barrientos, Juan

    2012-01-01

    Are well-designed computer simulations an effective tool to support student understanding of complex concepts in chemistry when integrated into high school science classrooms? We investigated scaling up the use of a sequence of simulations of kinetic molecular theory and associated topics of diffusion, gas laws, and phase change, which we designed…

  19. Monte Carlo simulation with the Gate software using grid computing

    International Nuclear Information System (INIS)

    Reuillon, R.; Hill, D.R.C.; Gouinaud, C.; El Bitar, Z.; Breton, V.; Buvat, I.

    2009-03-01

    Monte Carlo simulations are widely used in emission tomography, for protocol optimization, design of processing or data analysis methods, tomographic reconstruction, or tomograph design optimization. Monte Carlo simulations needing many replicates to obtain good statistical results can be easily executed in parallel using the 'Multiple Replications In Parallel' approach. However, several precautions have to be taken in the generation of the parallel streams of pseudo-random numbers. In this paper, we present the distribution of Monte Carlo simulations performed with the GATE software using local clusters and grid computing. We obtained very convincing results with this large medical application, thanks to the EGEE Grid (Enabling Grid for E-science), achieving in one week computations that could have taken more than 3 years of processing on a single computer. This work has been achieved thanks to a generic object-oriented toolbox called DistMe which we designed to automate this kind of parallelization for Monte Carlo simulations. This toolbox, written in Java is freely available on SourceForge and helped to ensure a rigorous distribution of pseudo-random number streams. It is based on the use of a documented XML format for random numbers generators statuses. (authors)

  20. Simulation and computation in health physics training

    International Nuclear Information System (INIS)

    Lakey, S.R.A.; Gibbs, D.C.C.; Marchant, C.P.

    1980-01-01

    The Royal Naval College has devised a number of computer aided learning programmes applicable to health physics which include radiation shield design and optimisation, environmental impact of a reactor accident, exposure levels produced by an inert radioactive gas cloud, and the prediction of radiation detector response in various radiation field conditions. Analogue computers are used on reduced or fast time scales because time dependent phenomenon are not always easily assimilated in real time. The build-up and decay of fission products, the dynamics of intake of radioactive material and reactor accident dynamics can be effectively simulated. It is essential to relate these simulations to real time and the College applies a research reactor and analytical phantom to this end. A special feature of the reactor is a chamber which can be supplied with Argon-41 from reactor exhaust gases to create a realistic gaseous contamination environment. Reactor accident situations are also taught by using role playing sequences carried out in real time in the emergency facilities associated with the research reactor. These facilities are outlined and the training technique illustrated with examples of the calculations and simulations. The training needs of the future are discussed, with emphasis on optimisation and cost-benefit analysis. (H.K.)

  1. Simulating Shopper Behavior using Fuzzy Logic in Shopping Center Simulation

    Directory of Open Access Journals (Sweden)

    Jason Christian

    2016-12-01

    Full Text Available To simulate real-world phenomena, a computer tool can be used to run a simulation and provide a detailed report. By using a computer-aided simulation tool, we can retrieve information relevant to the simulated subject in a relatively short time. This study is an extended and complete version of an initial research done by Christian and Hansun and presents a prototype of a multi-agent shopping center simulation tool along with a fuzzy logic algorithm implemented in the system. Shopping centers and all their components are represented in a simulated 3D environment. The simulation tool was created using the Unity3D engine to build the 3D environment and to run the simulation. To model and simulate the behavior of agents inside the simulation, a fuzzy logic algorithm that uses the agents’ basic knowledge as input was built to determine the agents’ behavior inside the system and to simulate human behaviors as realistically as possible.

  2. Computer Simulation of Multidimensional Archaeological Artefacts

    Directory of Open Access Journals (Sweden)

    Vera Moitinho de Almeida

    2012-11-01

    Our project focuses on the Neolithic lakeside site of La Draga (Banyoles, Catalonia. In this presentation we will begin by providing a clear overview of the major guidelines used to capture and process 3D digital data of several wooden artefacts. Then, we shall present the use of semi-automated relevant feature extractions. Finally, we intend to share preliminary computer simulation issues.

  3. Electromagnetic computer simulations of collective ion acceleration by a relativistic electron beam

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.R.

    1988-01-01

    A 2.5 electromagnetic particle-in-cell computer code is used to study the collective ion acceleration when a relativistic electron beam is injected into a drift tube partially filled with cold neutral plasma. The simulations of this system reveals that the ions are subject to electrostatic acceleration by an electrostatic potential that forms behind the head of the beam. This electrostatic potential develops soon after the beam is injected into the drift tube, drifts with the beam, and eventually settles to a fixed position. At later times, this electrostatic potential becomes a virtual cathode. When the permanent position of the electrostatic potential is at the edge of the plasma or further up, then ions are accelerated forward and a unidirectional ion flow is obtained otherwise a bidirectional ion flow occurs. The ions that achieve higher energy are those which drift with the negative potential. When the plasma density is varied, the simulations show that optimum acceleration occurs when the density ratio between the beam (n b ) and the plasma (n o ) is unity. Simulations were carried out by changing the ion mass. The results of these simulations corroborate the hypothesis that the ion acceleration mechanism is purely electrostatic, so that the ion acceleration depends inversely on the charge particle mass. The simulations also show that the ion maximum energy increased logarithmically with the electron beam energy and proportional with the beam current

  4. Supporting hypothesis generation by learners exploring an interactive computer simulation

    NARCIS (Netherlands)

    van Joolingen, Wouter R.; de Jong, Ton

    1992-01-01

    Computer simulations provide environments enabling exploratory learning. Research has shown that these types of learning environments are promising applications of computer assisted learning but also that they introduce complex learning settings, involving a large number of learning processes. This

  5. Environments for online maritime simulators with cloud computing capabilities

    Science.gov (United States)

    Raicu, Gabriel; Raicu, Alexandra

    2016-12-01

    This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.

  6. Non-intrusive uncertainty quantification of computational fluid dynamics simulations: notes on the accuracy and efficiency

    Science.gov (United States)

    Zimoń, Małgorzata; Sawko, Robert; Emerson, David; Thompson, Christopher

    2017-11-01

    Uncertainty quantification (UQ) is increasingly becoming an indispensable tool for assessing the reliability of computational modelling. Efficient handling of stochastic inputs, such as boundary conditions, physical properties or geometry, increases the utility of model results significantly. We discuss the application of non-intrusive generalised polynomial chaos techniques in the context of fluid engineering simulations. Deterministic and Monte Carlo integration rules are applied to a set of problems, including ordinary differential equations and the computation of aerodynamic parameters subject to random perturbations. In particular, we analyse acoustic wave propagation in a heterogeneous medium to study the effects of mesh resolution, transients, number and variability of stochastic inputs. We consider variants of multi-level Monte Carlo and perform a novel comparison of the methods with respect to numerical and parametric errors, as well as computational cost. The results provide a comprehensive view of the necessary steps in UQ analysis and demonstrate some key features of stochastic fluid flow systems.

  7. Computer simulation of the natural U 238 and U 235 radioactive series decay

    International Nuclear Information System (INIS)

    Barna, A.; Oncescu, M.

    1980-01-01

    The principles of the computer simulation of a radionuclide decay - its decay scheme adoption and codification -, and the adoption principle of a radionuclide chain in a series are applied to the natural U 238 and U 235 series radionuclide decay computer simulation. Using the computer simulation data of these two series adopted chains, the decay characteristic quantities of the series radionuclides, the gamma spectra and the basic characteristics of each of these series are determined and compared with the experimental values given in the literature. (author)

  8. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  9. Fast acceleration of 2D wave propagation simulations using modern computational accelerators.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent developments in modern computational accelerators like Graphics Processing Units (GPUs and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other

  10. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matzen, M. Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive

  11. Estimating the actual subject-specific genetic correlations in behavior genetics.

    Science.gov (United States)

    Molenaar, Peter C M

    2012-10-01

    Generalization of the standard behavior longitudinal genetic factor model for the analysis of interindividual phenotypic variation to a genetic state space model for the analysis of intraindividual variation enables the possibility to estimate subject-specific heritabilities.

  12. Reference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate BoilingReference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Pointer, William David [ORNL

    2017-08-01

    The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes were used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge

  13. Research on integrated simulation of fluid-structure system by computation science techniques

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1996-01-01

    In Power Reactor and Nuclear Fuel Development Corporation, the research on the integrated simulation of fluid-structure system by computation science techniques has been carried out, and by its achievement, the verification of plant systems which has depended on large scale experiments is substituted by computation science techniques, in this way, it has been aimed at to reduce development costs and to attain the optimization of FBR systems. For the purpose, it is necessary to establish the technology for integrally and accurately analyzing complicated phenomena (simulation technology), the technology for applying it to large scale problems (speed increasing technology), and the technology for assuring the reliability of the results of analysis when simulation technology is utilized for the permission and approval of FBRs (verifying technology). The simulation of fluid-structure interaction, the heat flow simulation in the space with complicated form and the related technologies are explained. As the utilization of computation science techniques, the elucidation of phenomena by numerical experiment and the numerical simulation as the substitute for tests are discussed. (K.I.)

  14. Computer simulation of gain fluctuations in proportional counters

    International Nuclear Information System (INIS)

    Demir, Nelgun; Tapan, . Ilhan

    2004-01-01

    A computer simulation code has been developed in order to examine the fluctuation in gas amplification in wire proportional counters which are common in detector applications in particle physics experiments. The magnitude of the variance in the gain dominates the statistical portion of the energy resolution. In order to compare simulation and experimental results, the gain and its variation has been calculated numerically for the well known Aleph Inner Tracking Detector geometry. The results show that the bias voltage has a strong influence on the variance in the gain. The simulation calculations are in good agreement with experimental results. (authors)

  15. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  16. Accelerating Climate Simulations Through Hybrid Computing

    Science.gov (United States)

    Zhou, Shujia; Sinno, Scott; Cruz, Carlos; Purcell, Mark

    2009-01-01

    Unconventional multi-core processors (e.g., IBM Cell B/E and NYIDIDA GPU) have emerged as accelerators in climate simulation. However, climate models typically run on parallel computers with conventional processors (e.g., Intel and AMD) using MPI. Connecting accelerators to this architecture efficiently and easily becomes a critical issue. When using MPI for connection, we identified two challenges: (1) identical MPI implementation is required in both systems, and; (2) existing MPI code must be modified to accommodate the accelerators. In response, we have extended and deployed IBM Dynamic Application Virtualization (DAV) in a hybrid computing prototype system (one blade with two Intel quad-core processors, two IBM QS22 Cell blades, connected with Infiniband), allowing for seamlessly offloading compute-intensive functions to remote, heterogeneous accelerators in a scalable, load-balanced manner. Currently, a climate solar radiation model running with multiple MPI processes has been offloaded to multiple Cell blades with approx.10% network overhead.

  17. The nature and use of prediction skills in a biological computer simulation

    Science.gov (United States)

    Lavoie, Derrick R.; Good, Ron

    The primary goal of this study was to examine the science process skill of prediction using qualitative research methodology. The think-aloud interview, modeled after Ericsson and Simon (1984), let to the identification of 63 program exploration and prediction behaviors.The performance of seven formal and seven concrete operational high-school biology students were videotaped during a three-phase learning sequence on water pollution. Subjects explored the effects of five independent variables on two dependent variables over time using a computer-simulation program. Predictions were made concerning the effect of the independent variables upon dependent variables through time. Subjects were identified according to initial knowledge of the subject matter and success at solving three selected prediction problems.Successful predictors generally had high initial knowledge of the subject matter and were formal operational. Unsuccessful predictors generally had low initial knowledge and were concrete operational. High initial knowledge seemed to be more important to predictive success than stage of Piagetian cognitive development.Successful prediction behaviors involved systematic manipulation of the independent variables, note taking, identification and use of appropriate independent-dependent variable relationships, high interest and motivation, and in general, higher-level thinking skills. Behaviors characteristic of unsuccessful predictors were nonsystematic manipulation of independent variables, lack of motivation and persistence, misconceptions, and the identification and use of inappropriate independent-dependent variable relationships.

  18. Computational Aspects of Asynchronous CA

    OpenAIRE

    Chandesris, Jérôme; Dennunzio, Alberto; Formenti, Enrico; Manzoni, Luca

    2011-01-01

    This work studies some aspects of the computational power of fully asynchronous cellular automata (ACA). We deal with some notions of simulation between ACA and Turing Machines. In particular, we characterize the updating sequences specifying which are "universal", i.e., allowing a (specific family of) ACA to simulate any TM on any input. We also consider the computational cost of such simulations.

  19. Simulation of electronic structure Hamiltonians in a superconducting quantum computer architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kaicher, Michael; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States)

    2015-07-01

    Quantum chemistry has become one of the most promising applications within the field of quantum computation. Simulating the electronic structure Hamiltonian (ESH) in the Bravyi-Kitaev (BK)-Basis to compute the ground state energies of atoms/molecules reduces the number of qubit operations needed to simulate a single fermionic operation to O(log(n)) as compared to O(n) in the Jordan-Wigner-Transformation. In this work we will present the details of the BK-Transformation, show an example of implementation in a superconducting quantum computer architecture and compare it to the most recent quantum chemistry algorithms suggesting a constant overhead.

  20. Application of CT-PSF-based computer-simulated lung nodules for evaluating the accuracy of computer-aided volumetry.

    Science.gov (United States)

    Funaki, Ayumu; Ohkubo, Masaki; Wada, Shinichi; Murao, Kohei; Matsumoto, Toru; Niizuma, Shinji

    2012-07-01

    With the wide dissemination of computed tomography (CT) screening for lung cancer, measuring the nodule volume accurately with computer-aided volumetry software is increasingly important. Many studies for determining the accuracy of volumetry software have been performed using a phantom with artificial nodules. These phantom studies are limited, however, in their ability to reproduce the nodules both accurately and in the variety of sizes and densities required. Therefore, we propose a new approach of using computer-simulated nodules based on the point spread function measured in a CT system. The validity of the proposed method was confirmed by the excellent agreement obtained between computer-simulated nodules and phantom nodules regarding the volume measurements. A practical clinical evaluation of the accuracy of volumetry software was achieved by adding simulated nodules onto clinical lung images, including noise and artifacts. The tested volumetry software was revealed to be accurate within an error of 20 % for nodules >5 mm and with the difference between nodule density and background (lung) (CT value) being 400-600 HU. Such a detailed analysis can provide clinically useful information on the use of volumetry software in CT screening for lung cancer. We concluded that the proposed method is effective for evaluating the performance of computer-aided volumetry software.