WorldWideScience

Sample records for subject surface roughness

  1. Surface roughness of composite resins subjected to hydrochloric acid.

    Science.gov (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  2. Rough Surface Contact

    Directory of Open Access Journals (Sweden)

    T Nguyen

    2017-06-01

    Full Text Available This paper studies the contact of general rough curved surfaces having nearly identical geometries, assuming the contact at each differential area obeys the model proposed by Greenwood and Williamson. In order to account for the most general gross geometry, principles of differential geometry of surface are applied. This method while requires more rigorous mathematical manipulations, the fact that it preserves the original surface geometries thus makes the modeling procedure much more intuitive. For subsequent use, differential geometry of axis-symmetric surface is considered instead of general surface (although this “general case” can be done as well in Chapter 3.1. The final formulas for contact area, load, and frictional torque are derived in Chapter 3.2.

  3. Rock discontinuity surface roughness variation with scale

    Science.gov (United States)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We

  4. General Regularities of Wood Surface Roughness

    Directory of Open Access Journals (Sweden)

    MAGOSS, Endre

    2008-01-01

    Full Text Available The surface roughness of wood products is depending on many factors related both towood properties and wood working operational parameters. Probably this is the reason why there areno generally valid correlation determining surface roughness parameters as a function of influencingfactors. In particular, the account of wood structure in the surface roughness interpretation proved tobe difficult.In the last years an important progress was made in recognizing the role of the anatomicalstructure of wood species in the attainable surface roughness. The introduction of a structure numbermade it possible to express and characterize the different wood species numerically.The aim of these studies was the separation of roughness components due to the anatomicalstructure and the woodworking operation. Using a special finishing technique, the roughnesscomponent due to woodworking operations was not significant and could be separated. The samespecimens were also subjected to different woodworking operations using cutting velocities between10 and 50 m/s. The processing of experimental data resulted in a chart showing the minimumroughness component due to different woodworking operations. Special experimental investigationwas conducted to clear the influence of edge dullness on the surface roughness, especially on itsAbbott-parameters. The measurements showed that the Rk-parameter is a good indicator to predictedge dullness.

  5. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    Directory of Open Access Journals (Sweden)

    İsmail Aydın

    2003-04-01

    Full Text Available Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomical properties of wood. Contact and non-contact tracing methods are used to measure of wood surface roughness. Surface roughness also affects the gluability and wettability of wood surfaces. The success in finishing also depends on the surface roughness of wood.

  6. Adhesion of liquid droplets to rough surfaces.

    Science.gov (United States)

    Li, Ri; Alizadeh, Azar; Shang, Wen

    2010-10-01

    We study the adhesion of liquid droplets to rough surfaces, focusing on how adhesion changes with surface chemistry and roughness. For hydrophobic surfaces (equilibrium contact angle θ(e)>90°), although increasing surface roughness augments apparent contact angle, it does not necessarily always reduce adhesion. In a domain defined by roughness and equilibrium contact angle, this study identifies regions where adhesion increases or decreases with increasing roughness. The two regions do not border at θ(e)=90°. It is found that making surfaces with low roughness ratio (close to 1) does not reduce adhesion unless the surface material is highly hydrophobic (θ(e)>120°). In other words, to reduce adhesion for existing hydrophobic materials (90°adhesion, the geometry of microstructures should be designed such that wetted fraction decreases with increasing roughness ratio. This study is of particular importance for the design of textured superhydrophobic surfaces.

  7. Computation of surface roughness using optical correlation

    Indian Academy of Sciences (India)

    The laser speckle photography is used to calculate the average surface rough- ness from the autocorrelation function of the aluminum diffuse objects. The computed results of surface roughness obtained from the profile shapes of the autocorrelation func- tion of the diffuser show good agreement with the results obtained by ...

  8. Calibration of surface roughness standards

    DEFF Research Database (Denmark)

    Thalmann, R.; Nicolet, A.; Meli, F.

    2016-01-01

    The key comparison EURAMET.L-K8.2013 on roughness was carried out in the framework of a EURAMET project starting in 2013 and ending in 2015. It involved the participation of 17 National Metrology Institutes from Europe, Asia, South America and Africa representing four regional metrology organisat...

  9. Specular Reflection from Rough Surfaces Revisited

    Science.gov (United States)

    Yasuda, Kensei; Kim, Alvin; Cho, Hayley; Timofejev, Timofej; Walecki, Wojciech J.; Klep, James; Edelson, Amy S.; Walecki, Abigail S.; Walecki, Eve S.; Walecki, Peter S.

    2016-01-01

    In his beautiful paper, Hasan Fakhruddin reported observations of mirror-like reflections in the rough surface of a ground glass plate. Similar effects have been recently employed for metrology of the roughness of optical diffusers used in modern light emitting device illumination systems. We report the observations of specular reflection in…

  10. Calibration of surface roughness standards

    DEFF Research Database (Denmark)

    Thalmann, R.; Nicolet, A.; Meli, F.

    2016-01-01

    the number of inconsistent results could be reduced to 20, which correspond to about 5% of the total and can statistically be expected. In addition to the material standards, two softgauges were circulated, which allow to test the software of the instruments used in the comparison. The comparison results......The key comparison EURAMET.L-K8.2013 on roughness was carried out in the framework of a EURAMET project starting in 2013 and ending in 2015. It involved the participation of 17 National Metrology Institutes from Europe, Asia, South America and Africa representing four regional metrology...

  11. SMEX03 Surface Roughness Data, Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set SMEX03 Surface Roughness Data is comprised of data collected over the regional study areas of Alabama, Georgia, and Oklahoma, USA as part of the 2003...

  12. Three-tier rough superhydrophobic surfaces.

    Science.gov (United States)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-07

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  13. Nanodrop impact on rough and textured surfaces

    Science.gov (United States)

    Zhang, Rui; Koplik, Joel

    2012-11-01

    We use molecular dynamics simulations to investigate the impact of a nanometer-sized drop onto structured atomic surfaces. Rough surfaces with Gaussian or power-law correlations are constructed using a Fourier synthesis algorithm. At low impact velocity drops spread into a lamella, and we study its shape and maximum extension as a function of surface roughness and wettability. At higher impact velocities a prompt splash occurs, and we examine the effects of the surface and external vapor on the behavior of the lamella rim. We also consider the effect of surface wettability patterns on splashing and spreading, and compare the results to lattice-Boltzmann simulations in the same geometry.

  14. Turbulent thermal convection over rough surfaces

    Science.gov (United States)

    Stringano, G.; Verzicco, R.; Pascazio, G.

    2005-05-01

    Convective heat transport has important applications in engineering and meteorology and a better understanding of heat transport phenomena would lead to improvements in technological applications such as cooling of thermal machines and micro-electronic components or cooling during a metallurgical fusion. It would also improve the prediction of geophysical motions in oceans and atmosphere. The use of rough surfaces is a way to enhance the heat flux. The interaction between the main shear flow and the rough surface creates secondary vortices that enhance the detachment of thermal plumes from the tip of the rough elements. In this work numerical simulations are conducted in a cylindrical cell heated from below and cooled from above in presence of rough surfaces. A comparison of Rayleigh versus Nusselt number scaling between rough surfaces and smooth ones shows enhanced heat fluxes. The flow is solved using a direct numerical simulation (DNS) of the three dimensional unsteady Navier Stokes equations with the Boussinesq approximation and an immersed boundary approach is used for the treatment of rough surfaces.

  15. Growth of rough epitaxial surfaces

    Indian Academy of Sciences (India)

    Among various physical processes which have been taken into account in models of growing interfaces, surface diffusion has been considered as the most important process involved. One such model involves the linear fourth-order Mullins–Herring continuum equation [10,11] supported by the discrete model of Wolf and ...

  16. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low....... The scaling properties of the predicted thickness average fracture surfaces are calculated and the results are discussed in light of experimental observations....

  17. Spectrophotometric Examination of Rough Print Surfaces

    OpenAIRE

    Erzsébet Novotny

    2011-01-01

    The objective was to assess the impact of the surface texture of individual creative paper types (coated or patterned)on the quality of printing and to identify to what extent the various creative paper types require specific types ofspectrophotometers. We used stereomicroscopic images to illustrate unprinted and printed surfaces of creative papertypes. Surface roughness was measured to obtain data on the unevenness of surfaces. Spectrophotometric tests wereused to select the most suitable sp...

  18. Surface roughness and wear of resin cements after toothbrush abrasion

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi ISHIKIRIAMA

    2015-01-01

    Full Text Available Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm were fabricated according to manufacturer instructions for each group (n = 10: Nexus 3, Kerr (NX3; RelyX ARC, 3M ESPE (ARC; RelyX U100, 3M ESPE (U100; and Variolink II, Ivoclar/Vivadent (VL2. Initial roughness (Ra, µm was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles, and further evaluation was conducted for final roughness. Vertical wear (µm was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey’s test (p < 0.05. The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05. The mean values of initial/final roughness (Ra, µm/wear (µm were as follows: NX3 (0.078/0.127/23.175; ARC (0.086/0.246/20.263; U100 (0.296/0.589/16.952; and VL2 (0.313/0.512/22.876. Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  19. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  20. High speed machined surface roughness measurement ...

    African Journals Online (AJOL)

    Surface roughness monitoring techniques using non-contact methods based on computer vision technology are becoming popular and cost effective. An evolvable hardware configuration using reconfigurable Xilinx Virtex FPGA xcv1000 architecture with capability to compensate for poor illumination environment is ...

  1. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  2. Roughness Length Variability over Heterogeneous Surfaces

    Science.gov (United States)

    2010-03-01

    By this definition , roughness length, although defined at a specific point , substantially depends upon the morphology of the surface in some...circulations at Cape Canaveral have been conducted in situ using Doppler radar and cloud photogrammetry (Wakimoto and Atkins 1993); observations (Reed 1979...the sea-breeze front during CaPE. part I: single-Doppler, satellite, and cloud photogrammetry analysis. Mon. Wea. Rev., 122, 1092–1114. Wang, Q

  3. Surface energy, elasticity and the homogenization of rough surfaces

    Science.gov (United States)

    Mohammadi, P.; Liu, L. P.; Sharma, P.; Kukta, R. V.

    2013-02-01

    The concept of surface energy is widely used to understand numerous aspects of material behavior: fracture, self-assembly, catalysis, void formation, microstructure evolution, and size-effect exhibited by nanostructures. Extensive work exists on deriving homogenized constitutive responses for macroscopic composites—relating effective properties to various microstructural details. In the present work, we focus on homogenization of surfaces. Indeed, elucidation of the effect of surface roughness on the surface energy, stress, and elastic behavior is relatively under-studied and quite relevant to the behavior of both nanostructures and bulk material where surfaces are involved in some form or fashion. We present derivations that relate both periodic and random roughness to the effective surface elastic behavior. We find that the residual surface stress is hardly affected by roughness while the superficial elastic properties are dramatically altered and, importantly, they may also change sign—this has significant ramifications in the interpretation of sensing based on frequency measurement changes. Interestingly, even if the bare surface has a zero surface elasticity modulus, roughness is seen to endow it with one. Using atomistic calculations, we verify the qualitative validity of the obtained theoretical insights. We show, through an illustrative example, that the square of resonance frequency of a cantilever beam with rough surface can decrease almost by a factor of two compared to a flat surface.

  4. Water sorption, solubility and surface roughness of resin surface sealants

    OpenAIRE

    Biazuz,Jaqueline; Zardo,Patrícia; Rodrigues-Junior,Sinval Adalberto

    2015-01-01

    Surface sealants have been suggested as final glaze of the surface of composite restorations. However, little is known about bulk and surface properties of these materials aiming the long-term preservation of the surface integrity of these restorations. AIM: To evaluate the water sorption, solubility and surface roughness of commercial surface sealants for restorations. METHODS: Five disc-shaped specimens 15 mm diameter X 1 mm high were made from the surface sealants Natural Glaze DFL and Per...

  5. SMEX02 Land Surface Information: Geolocation, Surface Roughness, and Photographs

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set combines various ancillary data (geolocation, surface roughness, and photographs) collected for the Iowa Soil Moisture Experiment 2002 (SMEX02) study...

  6. Albedo over rough snow and ice surfaces

    Science.gov (United States)

    Lhermitte, S.; Abermann, J.; Kinnard, C.

    2014-06-01

    Both satellite and ground-based broadband albedo measurements over rough and complex terrain show several limitations concerning feasibility and representativeness. To assess these limitations and understand the effect of surface roughness on albedo, firstly, an intrasurface radiative transfer (ISRT) model is combined with albedo measurements over different penitente surfaces on Glaciar Tapado in the semi-arid Andes of northern Chile. Results of the ISRT model show effective albedo reductions over the penitentes up to 0.4 when comparing the rough surface albedo relative to the albedo of the flat surface. The magnitude of these reductions primarily depends on the opening angles of the penitentes, but the shape of the penitentes and spatial variability of the material albedo also play a major role. Secondly, the ISRT model is used to reveal the effect of using albedo measurements at a specific location (i.e., apparent albedo) to infer the true albedo of a penitente field (i.e., effective albedo). This effect is especially strong for narrow penitentes, resulting in sampling biases of up to ±0.05. The sampling biases are more pronounced when the sensor is low above the surface, but remain relatively constant throughout the day. Consequently, it is important to use a large number of samples at various places and/or to locate the sensor sufficiently high in order to avoid this sampling bias of surface albedo over rough surfaces. Thirdly, the temporal evolution of broadband albedo over a penitente-covered surface is analyzed to place the experiments and their uncertainty into a longer temporal context. Time series of albedo measurements at an automated weather station over two ablation seasons reveal that albedo decreases early in the ablation season. These decreases stabilize from February onwards with variations being caused by fresh snowfall events. The 2009/2010 and 2011/2012 seasons differ notably, where the latter shows lower albedo values caused by larger

  7. Lacunarity study of speckle patterns produced by rough surfaces

    Science.gov (United States)

    Dias, M. R. B.; Dornelas, D.; Balthazar, W. F.; Huguenin, J. A. O.; da Silva, L.

    2017-11-01

    In this work we report on the study of Lacunarity of digital speckle patterns generated by rough surfaces. The study of Lacunarity of speckle patterns was performed on both static and moving rough surfaces. The results show that the Lacunarity is sensitive to the surface roughness, which suggests that it can be used to perform indirect measurement of surface roughness as well as to monitor defects, or variations of roughness, of metallic moving surfaces. Our results show the robustness of this statistical tool applied to speckle pattern in order to study surface roughness.

  8. Reproducibility of surface roughness in reaming

    DEFF Research Database (Denmark)

    Müller, Pavel; De Chiffre, Leonardo

    An investigation on the reproducibility of surface roughness in reaming was performed to document the applicability of this approach for testing cutting fluids. Austenitic stainless steel was used as a workpiece material and HSS reamers as cutting tools. Reproducibility of the results was evaluated...... of tool geometry and path. 2D and 3D reference measurements were done to ensure traceability of the measurement. Moreover, surface profiles were examined under the 3D optical microscope. Measuring uncertainty evaluation using statistical methods was applied. Surfaces produced with a low cutting speed were....... High reproducibility of different operators, especially when low cutting speed was applied, was achieved. From the surface profiles, an identification of individual feed marks from the tool is possible, tool replication being most clear from the 3D reference measurements....

  9. Backscatter enhancement in scattering from rough surfaces

    Science.gov (United States)

    Papa, Robert J.; Woodworth, Margaret B.

    1989-06-01

    Stealth technology has advanced to the point where radar target cross sections are so small there is a great need to determine mean clutter cross sections and clutter variability with great accuracy. Established clutter prediction techniques result in forward scatter values that exceed backscatter. There is some new experimental data on light scattering from rough metallic surfaces which shows there is an enhancement of backscattering in the antispecular direction under some conditions. This unusual result has been addressed by several theoretical analyses with varying success at confirmation. In this report an integral form of a physical optics representation is used to simulate the experimental conditions. For a one-dimensional surface height variation this model predicts enhanced backscatter at optical frequencies. Additional calculations for the more significant radar case of microwave frequencies and a dielectric surface again predict an increase in backscatter for large or intermediate surface slope conditions.

  10. Surface roughness and enamel loss with two microabrasion techniques.

    Science.gov (United States)

    Meireles, Sonia Saeger; Andre, Darvi de Almeida; Leida, Ferdinan Luis; Bocangel, Jorge Saldivar; Demarco, Flavio Fernando

    2009-01-01

    The aim of this study was to evaluate and compare the surface roughness and enamel loss produced by two microabrasion techniques. Bovine teeth were selected and an area was delimited for microabrasion techniques. Surface roughness was determined before and after treatment using a digital profilometer. Specimens were randomized to one of two acid treatments (n = 10): 18% hydrochloric acid (HCl) and pumice or 37% phosphoric acid (H3PO4) and pumice. Acid treatments were applied using a wooden spatula for 5 seconds for a total of ten applications. Then, specimens were sectioned through the center of the demineralization area to obtain 80 microm thick slices. The wear produced by the microabrasion techniques was evaluated using stereomicroscopy (40 x). The greatest depth (microm) and the total surface area (microm(2)) of demineralization were measured using the Image Tool software (University of Texas Health Science, San Antonio, TX, USA). In addition, three specimens of each group were subjected to SEM analysis at different magnifications. The mean surface roughness was statistically lower for HCl than for H3PO4 (p Microabrasion using H3PO4 produced greater surface roughness but less demineralization than the microabrasion technique using HCl. Both microabrasion techniques effectively remove the superficial enamel layer. However, the technique using H3PO4 was less aggressive, safer, and easier to perform.

  11. Wave scattering from statistically rough surfaces

    CERN Document Server

    Bass, F G; ter Haar, D

    2013-01-01

    Wave Scattering from Statistically Rough Surfaces discusses the complications in radio physics and hydro-acoustics in relation to wave transmission under settings seen in nature. Some of the topics that are covered include radar and sonar, the effect of variations in topographic relief or ocean waves on the transmission of radio and sound waves, the reproduction of radio waves from the lower layers of the ionosphere, and the oscillations of signals within the earth-ionosphere waveguide. The book begins with some fundamental idea of wave transmission theory and the theory of random processes a

  12. EFFECT OF SURFACE TREATMENT ON ENAMEL SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Şeyda Erşahan

    2016-01-01

    Full Text Available Purpose: To compare the effects of different methods of surface treatment on enamel roughness. Materials and Methods: Ninety human maxillary first premolars were randomly divided into three groups (n=30 according to type of enamel surface treatment: I, acid etching; II, Er:YAG laser; III, Nd:YAG laser. The surface roughness of enamel was measured with a noncontact optical profilometer. For each enamel sample, two readings were taken across the sample—before enamel surface treatment (T1 and after enamel surface treatment (T2. The roughness parameter analyzed was the average roughness (Ra. Statistical analysis was performed using a Paired sample t test and the post-hoc Mann- Whitney U test, with the significance level set at 0.05. Results: The highest Ra (average roughness values were observed for Group II, with a significant difference with Groups I and III (P<0.001. Ra values for the acid etching group (Group I were significantly lower than other groups (P<0.001. Conclusion: Surface treatment of enamel with Er:YAG laser and Nd:YAG laser results in significantly higher Ra than acid-etching. Both Er:YAG laser or Nd:YAG laser can be recommended as viable treatment alternatives to acid etching.

  13. Understanding EUV mask blank surface roughness induced LWR and associated roughness requirement

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pei-Yang [Intel Corp., Santa Clara, CA (United States); Zhang, Guojing [Intel Corp., Santa Clara, CA (United States); Gullickson, Eric M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldberg, Kenneth A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benk, Markus P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-01

    Extreme ultraviolet lithography (EUVL) mask multi-layer (ML) blank surface roughness specification historically comes from blank defect inspection tool requirement. Later, new concerns on ML surface roughness induced wafer pattern line width roughness (LWR) arise. In this paper, we have studied wafer level pattern LWR as a function of EUVL mask surface roughness via High-NA Actinic Reticle Review Tool. We found that the blank surface roughness induced LWR at current blank roughness level is in the order of 0.5nm 3σ for NA=0.42 at the best focus. At defocus of ±40nm, the corresponding LWR will be 0.2nm higher. Further reducing EUVL mask blank surface roughness will increase the blank cost with limited benefit in improving the pattern LWR, provided that the intrinsic resist LWR is in the order of 1nm and above.

  14. Spectrophotometric Examination of Rough Print Surfaces

    Directory of Open Access Journals (Sweden)

    Erzsébet Novotny

    2011-05-01

    Full Text Available The objective was to assess the impact of the surface texture of individual creative paper types (coated or patternedon the quality of printing and to identify to what extent the various creative paper types require specific types ofspectrophotometers. We used stereomicroscopic images to illustrate unprinted and printed surfaces of creative papertypes. Surface roughness was measured to obtain data on the unevenness of surfaces. Spectrophotometric tests wereused to select the most suitable spectrophotometer from meters with different illumination setup for testing anygiven print. For the purpose of testing, we used spectrophotometers which are commonly available generally used totest print products for colour accuracy. With the improvement of measuring geometries, illumination setup, colourmeasurement becomes more and more capable of producing reliable results unaffected by surface textures. Our testshave proved this fact by showing that the GretagMacbeth Spectrolino with annular illumination is less sensitive tosurface texture than the X-Rite Spetrodensitometer and the Techkon SpetroDens with directional illumination. Furthertests have brought us to the conclusion that there is a difference even between the two devices with directionalillumination. While the X-Rite 530 Spectrodensitometer is more suitable for testing coated surfaces, the TechkonSpectroDens can come close to ΔE*ab values produced by the annular illuminated device for textured surfaces.

  15. Incorporating Skew into RMS Surface Roughness Probability Distribution

    Science.gov (United States)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  16. Physical model for turbulent friction on rough surfaces

    CERN Document Server

    Li, Zhuoqun

    2016-01-01

    We present an analytical expression for turbulent friction on rough surfaces with regularly distributed roughness elements. Wall shear stresses are expressed as functions of physical quantities. Surfaces with varying roughness densities and roughness elements with different aspect ratios are considered. As the drag on each roughness element decreases as roughness density increases, we propose a straight forward method based on momentum conservation to deduce drag on elements by expressing it as a function of the maximum drag on elements and drag reductions ratios. We proposed a drag reduction effect of momentum redistribution and studied the mutual sheltering effect. Reduction ratios for redistribution effect and mutual sheltering effect are deduced, for different rough surfaces. These two drag reduction mechanisms are significant for sparse and dense surfaces, respectively. The shear stress on elements and the total shear stress are obtained as the result of the drag analysis. The estimated wall shear stress...

  17. Internal surface roughness of plastic pipes for irrigation

    Directory of Open Access Journals (Sweden)

    Hermes S. da Rocha

    Full Text Available ABSTRACT Assuming that a roughness meter can be successfully employed to measure the roughness on the internal surface of irrigation pipes, this research had the purpose of defining parameters and procedures required to represent the internal surface roughness of plastic pipes used in irrigation. In 2013, the roughness parameter Ra, traditional for the representation of surface irregularities in most situations, and the parameters Rc, Rq, and Ry were estimated based on 350 samples of polyvinyl chloride (PVC and low-density polyethylene (LDPE pipes. Pressure losses were determined from experiments carried out in laboratory. Estimations of pressure loss varied significantly according to the roughness parameters (Ra, Rc, Rq, and Ry and the corresponding pipe diameter. Therefore, specific values of roughness for each pipe diameter improves accuracy in pressure losses estimation. The average values of internal surface roughness were 3.334 and 8.116 μm for PVC and LDPE pipes, respectively.

  18. Use of roughness maps in visualisation of surfaces

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2005-01-01

    monohydrate, theophylline anhydrate, sodium chloride and potassium chloride. The roughness determinations were made by a laser profilometer. The new matrix method gives detailed roughness maps, which are able to show local variations in surface roughness values and provide an illustrative picture...

  19. Comparison Between 2D And 3D Surface Roughness Parameters ...

    African Journals Online (AJOL)

    For many decades engineers and researchers have been using two-dimensional (2D) instruments to measure the roughness of a surface. Several 2D surface roughness parameters have been developed, and have emerged in different countries where researches in the area of surface metrology were carried out. The most ...

  20. Drag force and surface roughness measurements on freshwater biofouled surfaces.

    Science.gov (United States)

    Andrewartha, J; Perkins, K; Sargison, J; Osborn, J; Walker, G; Henderson, A; Hallegraeff, G

    2010-05-01

    The detrimental effect of biofilms on skin friction for near wall flows is well known. The diatom genera Gomphonema and Tabellaria dominated the biofilm mat in the freshwater open channels of the Tarraleah Hydropower Scheme in Tasmania, Australia. A multi-faceted approach was adopted to investigate the drag penalty for biofouled 1.0 m x 0.6 m test plates which incorporated species identification, drag measurement in a recirculating water tunnel and surface characterisation using close-range photogrammetry. Increases in total drag coefficient of up to 99% were measured over clean surface values for biofouled test plates incubated under flow conditions in a hydropower canal. The effective roughness of the biofouled surfaces was found to be larger than the physical roughness; the additional energy dissipation was caused in part by the vibration of the biofilms in three-dimensions under flow conditions. The data indicate that there was a roughly linear relationship between the maximum peak-to-valley height of a biofilm and the total drag coefficient.

  1. Experimental investigation of turbulent flow-roughness interaction over surfaces of rigid and flexible roughness

    Science.gov (United States)

    Toloui, Mostafa; Hong, Jiarong

    2017-11-01

    The influence of flexible surface roughness on wall-bounded turbulent flows is examined experimentally via simultaneous 3D fluid velocity and roughness deformation measurements using Digital inline holographic PTV (i.e. DIH-PTV, Toloui et al. Meas. Sci. & Tech 2017). The experiments are conducted in a refractive-index-matched turbulent channel over two rough surface panels of similar geometry but with an order of magnitude difference in elastic modulus (1.8 Mpa vs. 0.2 Mpa). The roughness elements (i.e. tapered cylinders of 0.35 mm in base diameter, 3 mm in height, 4 mm spacing) are designed such that the rough surface with higher modulus shows no deformation (namely rigid roughness) while the one with lower elasticity deforms appreciably under the same flow conditions (Reh 32500 , based on centerline velocity and channel width). The concurrent fluid velocity and roughness deformation measurements are acquired with 160 μs temporal, 1.1 mm/vector velocity, and linked to roughness deformation. The fingerprint of this energy exchange on shortening the instantaneous flow structures, reduction of Reynolds stresses as well as flow features in energy spectra are examined and will be presented in detail.

  2. Investigation of surface roughness influence on hyperbolic metamaterial performance

    Directory of Open Access Journals (Sweden)

    S. Kozik

    2014-12-01

    Full Text Available The main goal of this work was to introduce simple model of surface roughness which does not involve objects with complicated shapes and could help to reduce computational costs. We described and proved numerically that the influence of surface roughness at the interfaces in metal-dielectric composite materials could be described by proper selection of refractive index of dielectric layers. Our calculations show that this model works for roughness with RMS value about 1 nm and below.

  3. STUDIES ON TIME VARIATION OF AMBIENT SEA NOISE AND SCATTERING OF ACOUSTIC SIGNALS FROM ROUGH SURFACES.

    Science.gov (United States)

    This report is a collection of three papers on two subjects: the scattering of acoustic waves from rough surfaces and the time variation of ambient ...experimental program to investigate the time variation of low-frequency ambient sea noise. (Author)

  4. Surface roughness and morphologic changes of zirconia: Effect of ...

    African Journals Online (AJOL)

    Surface roughness of zirconia ceramics. 125. Nigerian Journal of Clinical Practice • Jan-Feb 2015 • Vol 18 • Issue 1. Researchers evaluated the effect of the aggressive mechanical abrasion methods used to increase surface roughness on. ZrO2. These treatments are: Abrasion with diamond (or other) rotary instruments,[17] ...

  5. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Michael Horsfall

    in the present industrial age, in which the growing competition calls for all the efforts to be directed towards the economical manufacture of ... used a neural network modeling approach to predict surface roughness and tool wear in ... networks in machining process modeling to predict surface roughness in turning operation ...

  6. Determining the Effect of Cutting Parameters on Surface Roughness ...

    African Journals Online (AJOL)

    methodology (RSM) was implemented to investigate the effect of the cutting parameters such as cutting speed, feed rate, and depth of cut on the surface roughness. In this study, the surface roughness is measured during turning operation at different cutting parameters such as speed, feed, and depth of cut on Alumunium ...

  7. Friction behaviors of rough chromium surfaces under starving lubrication conditions

    Science.gov (United States)

    Liu, Derong; Yan, Bo; Shen, Bin; Liu, Lei; Hu, Wenbin

    2018-01-01

    Surface texturing has become an effective method for improving the tribological properties of mechanical components under the oil lubrication. In this study, a rough surface, with the bumps arranged in a random array, was prepared by means of electrodeposition. A post-grinding and polishing processing was employed to fabricate flat areas for tribological tests under conformal contact. Compared with the smooth surfaces, the rough surface improves the load capacity of coatings at high loads. The effects of rough surfaces on friction reduction become more pronounced at higher speeds and lower normal loads due to the transition of lubricant regime from the boundary to mixed lubrication.

  8. Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi

    2013-01-01

    called “optically smooth” plastic surfaces is one example, where low roughness of a tool cavity is desirable. Such tool surfaces can be very expensive to fabricate using conventional means, such as abrasive diamond polishing or diamond turning. We present a novel process to coat machined metal parts...... with hydrogen silsesquioxane (HSQ) to reduce their surface roughness. Results from the testing of surfaces made from two starting roughnesses are presented; one polished with grit 2500 sandpaper, another with grit 11.000 diamond polishing paste. We characterize the two surfaces with AFM, SEM and optical...

  9. Pressure variation of developed lapping tool on surface roughness

    Science.gov (United States)

    Hussain, A. K.; Lee, K. Q.; Aung, L. M.; Abu, A.; Tan, L. K.; Kang, H. S.

    2018-01-01

    Improving the surface roughness is always one of the major concerns in the development of lapping process as high precision machining caters a great demand in manufacturing process. This paper aims to investigate the performance of a newly designed lapping tool in term of surface roughness. Polypropylene is used as the lapping tool head. The lapping tool is tested for different pressure to identify the optimum working pressure for lapping process. The theoretical surface roughness is also calculated using Vickers Hardness. The present study shows that polypropylene is able to produce good quality and smooth surface roughness. The optimum lapping pressure in the present study is found to be 45 MPa. By comparing the theoretical and experimental values, the present study shows that the newly designed lapping tool is capable to produce finer surface roughness.

  10. Surface roughness and chemical properties of porous inorganic films

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, Carrie L.; McAfee, Paul M. [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jin, Yi [China Electric Power Research Institute, Beijing 100192 (China); Lin, Y.S., E-mail: jerry.lin@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2015-09-30

    Porous inorganic films of different materials and pore architecture: mesoporous γ-alumina, mesoporous yttria stabilized zirconia (YSZ), macroporous YSZ and macroporous/microporous zeolite silicalite, were synthesized by the sol–gel spin-coating or dip-coating methods on silicon wafers of different surface roughness. Their surface chemical properties, pore and phase structure, and surface roughness were studied by various surface characterization methods. The pore sizes of these films are determined by their primary particle size. All the films studied are hydrophilic due to the presence of hydroxyl groups on the external crystallite surface, and their hydrophilicity increases in the order: macroporous YSZ < mesoporous YSZ < silicalite < γ-alumina. The γ-alumina films have highly smooth surfaces, while mesoporous YSZ, macroporous YSZ and silicalite films have similar surface roughness much rougher than γ-alumina films. The surface roughness of these coated films does not depend on the coating method, surface roughness of the substrate, surface chemistry or pore structure of the films. It is more controlled by the shape and size of the primary particles and aggregates in the sol or suspension from which the films are obtained. - Highlights: • Porous films of various pore structures are prepared by sol–gel methods. • γ-Alumina films have much smoother surface than thin films of other materials. • Film surface roughness is controlled by the shape and size of particles in the sols.

  11. Site-specific retention of colloids at rough rock surfaces.

    Science.gov (United States)

    Darbha, Gopala Krishna; Fischer, Cornelius; Luetzenkirchen, Johannes; Schäfer, Thorsten

    2012-09-04

    The spatial deposition of polystyrene latex colloids (d = 1 μm) at rough mineral and rock surfaces was investigated quantitatively as a function of Eu(III) concentration. Granodiorite samples from Grimsel test site (GTS), Switzerland, were used as collector surfaces for sorption experiments. At a scan area of 300 × 300 μm(2), the surface roughness (rms roughness, Rq) range was 100-2000 nm, including roughness contribution from asperities of several tens of nanometers in height to the sample topography. Although, an increase in both roughness and [Eu(III)] resulted in enhanced colloid deposition on granodiorite surfaces, surface roughness governs colloid deposition mainly at low Eu(III) concentrations (≤5 × 10(-7) M). Highest deposition efficiency on granodiorite has been found at walls of intergranular pores at surface sections with roughness Rq = 500-2000 nm. An about 2 orders of magnitude lower colloid deposition has been observed at granodiorite sections with low surface roughness (Rq colloids at intergranular pores is induced by small scale protrusions (mean height = 0.5 ± 0.3 μm). These protrusions diminish locally the overall DLVO interaction energy at the interface. The protrusions prevent further rolling over the surface by increasing the hydrodynamic drag required for detachment. Moreover, colloid sorption is favored at surface sections with high density of small protrusions (density (D) = 2.6 ± 0.55 μm(-1), asperity diameter (φ) = 0.6 ± 0.2 μm, height (h) = 0.4 ± 0.1 μm) in contrast to surface sections with larger asperities and lower asperity density (D = 1.2 ± 0.6 μm(-1), φ = 1.4 ± 0.4 μm, h = 0.6 ± 0.2 μm). The study elucidates the importance to include surface roughness parameters into predictive colloid-borne contaminant migration calculations.

  12. Estimating aerodynamic resistance of rough surfaces from angular reflectance

    Science.gov (United States)

    Current wind erosion and dust emission models neglect the heterogeneous nature of surface roughness and its geometric anisotropic effect on aerodynamic resistance, and over-estimate the erodible area by assuming it is not covered by roughness elements. We address these shortfalls with a new model wh...

  13. Extreme ultraviolet mask substrate surface roughness effects on lithography patterning

    Energy Technology Data Exchange (ETDEWEB)

    George, Simi; Naulleau, Patrick; Salmassi, Farhad; Mochi, Iacopo; Gullikson, Eric; Goldberg, Kenneth; Anderson, Erik

    2010-06-21

    In extreme ultraviolet lithography exposure systems, mask substrate roughness induced scatter contributes to LER at the image plane. In this paper, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programmed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. We find that the roughness measurements by top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. We suggest at wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects.

  14. Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L

    NARCIS (Netherlands)

    Arifvianto, B.; Suyitno, [No Value; Mahardika, M.; Dewo, P.; Iswanto, P. T.; Salim, U. A.

    2011-01-01

    Surface roughness and wettability are among the surface properties which determine the service lifetime of materials. Mechanical treatments subjected to the surface layer of materials are often performed to obtain the desired surface properties and to enhance the mechanical strength of materials. In

  15. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler....... For each instrument, the effective range of spatial surface wavelengths is determined, and the common bandwidth used when comparing the evaluated roughness parameters. The compared roughness parameters are: the root-mean-square (RMS) profile deviation (Rq), the RMS profile slope (Rdq), and the variance...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  16. Computer simulation of RBS spectra from samples with surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Malinský, P., E-mail: malinsky@ujf.cas.cz [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v. v. i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J. E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Hnatowicz, V., E-mail: hnatowicz@ujf.cas.cz [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v. v. i., 250 68 Rez (Czech Republic); Macková, A., E-mail: mackova@ujf.cas.cz [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v. v. i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J. E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic)

    2016-03-15

    A fast code for the simulation of common RBS spectra including surface roughness effects has been written and tested on virtual samples comprising either a rough layer deposited on a smooth substrate or smooth layer deposited on a rough substrate and simulated at different geometries. The sample surface or interface relief has been described by a polyline and the simulated RBS spectrum has been obtained as the sum of many particular spectra from randomly chosen particle trajectories. The code includes several procedures generating virtual samples with random and regular (periodical) roughness. The shape of the RBS spectra has been found to change strongly with increasing sample roughness and an increasing angle of the incoming ion beam.

  17. Surface Roughness and Snow Accumulation in East Antarctica

    Science.gov (United States)

    Scambos, T. A.; Vornberger, P. L.; Bohlander, J. A.; Das, I.; Klinger, M.; Pope, A.; Lenaerts, J.; Fahnestock, M. A.

    2015-12-01

    A complex relationship exists between snow accumulation (e.g., net surface mass balance) and meter-scale surface roughness as represented by sastrugi and erosional structures over the East Antarctic Ice Sheet (EAIS). The morphology of the ice sheet at this scale is a result of a complex interaction between katabatic winds, synoptic storms, and the slope of the surface, all driving local patterns of snow accretion and sublimation. In megadune regions, the accumulation, surface slope, and surface roughness are highly correlated with slope. Smooth glazed surfaces are present on the steeper leeward wind-faces, and much rougher snow-accreting megadunes are present on the windward (depositional) slope. However, the highest elevation areas near the ridge crest of the EAIS (above ~3200 m) have a converse relationship between roughness and accumulation. Here, very low wind ridge crest areas are smooth and have higher accumulation than adjacent, slightly steeper regions that exhibit a slight increase in roughness. Below the main regions of megadunes (Landsat 8 acquisitions with available wind and accumulation data from climate model results and field measurements. Roughness is determined by sunlight scattering relative to viewing geometry (MISR) or from the amplitude of textural characteristics tied to surface sastrugi (Landsat 8). Both are validated by comparison with meter-scale images (WorldView-1) and field observations. MISR roughness mapping shows persistent qualitative patterns of surface roughness across the EAIS, but an absolute roughness scale mapping is difficult to generate because of complex viewing, illumination, and bi-directional reflectance variations of the snow surface. Landsat 8 band 8 provides a more constrained viewing geometry (nadir, sun-synchronous observations) and has a high radiometric sensitivity and adequate resolution (15 m) to reveal textural details in a consistent and quantitative way.

  18. The influence of surface treatment on the implant roughness pattern

    Science.gov (United States)

    ROSA, Marcio Borges; ALBREKTSSON, Tomas; FRANCISCHONE, Carlos Eduardo; SCHWARTZ FILHO, Humberto Osvaldo; WENNERBERG, Ann

    2012-01-01

    An important parameter for the clinical success of dental implants is the formation of direct contact between the implant and surrounding bone, whose quality is directly influenced by the implant surface roughness. A screw-shaped design and a surface with an average roughness of Sa of 1-2 µm showed a better result. The combination of blasting and etching has been a commonly used surface treatment technique. The versatility of this type of treatment allows for a wide variation in the procedures in order to obtain the desired roughness. Objectives To compare the roughness values and morphological characteristics of 04 brands of implants, using the same type of surface treatment. In addition, to compare the results among brands, in order to assess whether the type of treatment determines the values and the characteristics of implant surface roughness. Material and methods Three implants were purchased directly from each selected company in the market, i.e., 03 Brazilian companies (Biomet 3i of Brazil, Neodent and Titaniumfix) and 01 Korean company (Oneplant). The quantitative or numerical characterization of the roughness was performed using an interferometer. The qualitative analysis of the surface topography obtained with the treatment was analyzed using scanning electron microscopy images. Results The evaluated implants showed a significant variation in roughness values: Sa for Oneplant was 1.01 µm; Titaniumfix reached 0.90 µm; implants from Neodent 0.67 µm, and Biomet 3i of Brazil 0.53 µm. Moreover, the SEM images showed very different patterns for the surfaces examined. Conclusions The surface treatment alone is not able to determine the roughness values and characteristics. PMID:23138742

  19. Secondary flows in turbulent boundary layers over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2018-01-01

    Direct numerical simulations of turbulent boundary layers over longitudinal surface roughness are performed to investigate the impact of the surface roughness on the mean flow characteristics related to counter-rotating large-scale secondary flows. By systematically changing the two parameters of the pitch (P) and width (S) for roughness elements in the ranges of 0.57 ≤P /δ ≤2.39 and 0.15 ≤S /δ ≤1.12 , where δ is the boundary layer thickness, we find that the size of the secondary flow in each case is mostly determined by the value of P - S, i.e., the valley width, over the ridge-type roughness. However, the strength of the secondary flows on the cross-stream plane relative to the flow is increased when the value of P increases or when the value of S decreases. In addition to the secondary flows, additional tertiary and quaternary flows are observed both above the roughness crest and in the valley as the values of P and S increase further. Based on an analysis using the turbulent kinetic energy transport equation, it is shown that the secondary flow over the ridge-type roughness is both driven and sustained by the anisotropy of turbulence, consistent with previous observations of a turbulent boundary layer over strip-type roughness [Anderson et al., J. Fluid Mech. 768, 316 (2015), 10.1017/jfm.2015.91]. Careful inspection of the turbulent kinetic energy budget reveals that the opposite rotational sense of the secondary flow between the ridge- and strip-type roughness elements is primarily attributed to the local imbalance of energy budget created by the strong turbulent transport term over the ridge-type roughness. The active transport of the kinetic energy over the ridge-type roughness is closely associated with the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.

  20. Detection of a periodic structure embedded in surface roughness, for ...

    Indian Academy of Sciences (India)

    Abstract. This paper deals with surface profilometry, where we try to detect a periodic structure, hidden in randomness using the matched filter method of analysing the intensity of light, scattered from the surface. From the direct problem of light scattering from a composite rough surface of the above type, we find that the ...

  1. Roughness and waviness requirements for laminar flow surfaces

    Science.gov (United States)

    Obara, Clifford J.; Holmes, Bruce J.

    1986-12-01

    Many modern metal and composite airframe manufacturing techniques can provide surface smoothness which is compatible with natural laminar flow (NLF) requirements. An important consideration is manufacturing roughness of the surface in the form of steps and gaps perpendicular to the freestream. The principal challenge to the design and manufacture of laminar flow surfaces today appears to be in the installation of leading-edge panels on wing, nacelle, and empennage surfaces. A similar challenge is in the installation of access panels, doors, windows, fuselage noses, and engine nacelles. Past work on roughness and waviness manufacturing tolerances and comparisons with more recent experiments are reviewed.

  2. From vicinal to rough crystal surfaces

    Science.gov (United States)

    Balibar, S.; Guthmann, C.; Rolley, E.

    1993-06-01

    One generally expects the properties of a vicinal surface to be independent of the existence of steps as soon as these steps overlap, i.e. when their mutual distance is smaller than their width. By using the roughening theory by Nozières and Gallet [1], we show that, at least for surfaces weakly coupled to the lattice, this overlap occurs for distances significantly larger than the commonly defined width. Our prediction is supported by an analysis of the various measurements of the angular variation of the surface stiffness of helium crystals, which were performed by Wolf et al. [2], Andreeva et al. [3] and Babkin et al. [4]. As a consequence, the interaction between crystal steps should be studied on vicinal surfaces with a much smaller tilt angle than previously thought. This article is also an opportunity to return to the relation between the step width and the correlation length on smooth surfaces, as well as to the treatment of the various finite size effects which occur in the problem of roughening. We finally reconsider how the weak coupling hypothesis applies to the case of helium crystals. On s'attend généralement à ce que les propriétés d'une surface vicinale ne soient plus contrôlées par l'existence des marches lorsque celles-ci se recouvrent, donc lorsque leur distance mutuelle devient inférieure à leur largeur. En reprenant la théorie de la transition rugueuse élaborée par Nozières et Gallet [1], nous montrons que, pour des surfaces faiblement couplées au réseau cristallin, ce recouvrement doit se produire pour des distances nettement plus grandes que la largeur (telle qu'elle est habituellement définie). Notre prédiction est confirmée par l'analyse des différentes mesures de la variation angulaire de la rigidité de surface des cristaux d'hélium réalisées par Wolf et al. [2], Andreeva et al. [3] and Babkin et al. [4]. Il s'ensuit que l'étude de l'interaction entre marches cristallines doit être effectuée sur des surfaces

  3. Multipoint contact modeling of nanoparticle manipulation on rough surface

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M., E-mail: m.zakeri@tabrizu.ac.ir; Faraji, J.; Kharazmi, M. [University of Tabriz, School of Engineering Emerging Technologies (Iran, Islamic Republic of)

    2016-12-15

    In this paper, the atomic force microscopy (AFM)-based 2-D pushing of nano/microparticles investigated on rough substrate by assuming a multipoint contact model. First, a new contact model was extracted and presented based on the geometrical profiles of Rumpf, Rabinovich and George models and the contact mechanics theories of JKR and Schwartz, to model the adhesion forces and the deformations in the multipoint contact of rough surfaces. The geometry of a rough surface was defined by two main parameters of asperity height (size of roughness) and asperity wavelength (compactness of asperities distribution). Then, the dynamic behaviors of nano/microparticles with radiuses in range of 50–500 nm studied during their pushing on rough substrate with a hexagonal or square arrangement of asperities. Dynamic behavior of particles were simulated and compared by assuming multipoint and single-point contact schemes. The simulation results show that the assumption of multipoint contact has a considerable influence on determining the critical manipulation force. Additionally, the assumption of smooth surfaces or single-point contact leads to large error in the obtained results. According to the results of previous research, it anticipated that a particles with the radius less than about 550 nm start to slide on smooth substrate; but by using multipoint contact model, the predicted behavior changed, and particles with radii of smaller than 400 nm begin to slide on rough substrate for different height of asperities, at first.

  4. Analysis of surface roughness generation in aircraft ice accretion

    Science.gov (United States)

    Hansman, R. J., Jr.; Reehorst, Andrew; Sims, James

    1992-01-01

    Patterns of roughness evolution have been studied analysis of high magnification video observations of accreting ice surfaces provided by the NASA Lewis Research Center. Three distinct patterns of surface roughness generation have been identified within the parametric regions studied. They include: Rime, Multi-Zone Glaze, and Uniform Glaze. Under most icing conditions, a brief period of transient rime ice growth was observed caused by heat conduction into the body. The resulting thin rime layer explains previously observed insensitivity of some ice accretions to substrate insensitivity of some ice accretions to substrate surface chemistry and may provide justification for simplifying assumptions in ice accretion sailing and modeling effects.

  5. The effect of toothbrush bristle stiffness on nanohybrid surface roughness

    Science.gov (United States)

    Zairani, O.; Irawan, B.; Damiyanti, M.

    2017-08-01

    The surface of a restoration can be affected by toothpaste containing abrasive agents and the stiffness of toothbrush bristles. Objective: To identify the effect of toothbrush bristle stiffness on nanohybrid surface roughness. Methods: Sixteen nanohybrid specimens were separated into two groups. The first group was brushed using soft-bristle toothbrushes, and the second group was brushed using medium-bristle toothbrushes. Media such as aqua bides was used for brushing in both groups. Brushing was done 3 times for 5 minutes. Surface roughness was measured initially and at 5, 10, and 15 minutes using a surface roughness tester. Results: The results, tested with One-Way ANOVA and Independent Samples t Test, demonstrated that after brushing for 15 minutes, the soft-bristle toothbrush group showed a significantly different value (p toothbrushes showed the value of nano hybrid surface roughness significant difference after brushing for 10 minutes. Conclusion: Roughness occurs more rapidly when brushing with medium-bristle tooth brushes than when brushing with soft-bristle toothbrushes.

  6. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-01-01

    Full Text Available Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and high level are considered to optimize the surface roughness for finish turning based on L9(34 orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for surface roughness are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed. Thus, the optimum general fuzzy linguistic parameters can then be received. The confirmation experiment result showed that the surface roughness from the fuzzy linguistic optimization parameters is significantly advanced compared to that from the benchmark. This paper certainly proposes a general optimization scheme using orthogonal array fuzzy linguistic approach to the surface roughness for CNC turning with profound insight.

  7. Dynamics of wetting on smooth and rough surfaces.

    NARCIS (Netherlands)

    Cazabat, A.M.; Cohen Stuart, M.A.

    1987-01-01

    The rate of spreading of non-volatile liquids on smooth and on rough surfaces was investigated. The radius of the wetted spot was found to agree with recently proposed scaling laws (t 1/10 for capillarity driven andt 1/8 for gravity driven spreading) when the surface was smooth. However, the

  8. Influence of roughness on capillary forces between hydrophilic surfaces

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.

    Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range

  9. Influence of Surface Roughness of Stainless steel on Microbial Adhesion

    DEFF Research Database (Denmark)

    Bagge, D.; Hilbert, Lisbeth Rischel; Gram, L.

    2002-01-01

    Bacterial adhesion and biofilm formation is of growing interest in the food processing industry where bacteria can survive on surfaces and resist cleaning and disinfection. The condition of the surfaces (eg lack of cracks) and their general roughness is assumed to be important for the hygienic...

  10. RMS slope of exponentially correlated surface roughness for radar applications

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    2000-01-01

    In radar signature analysis, the root mean square (RMS) surface slope is utilized to assess the relative contribution of multiple scattering effects. For an exponentially correlated surface, an effective RMS slope can be determined by truncating the high frequency tail of the roughness spectrum...

  11. Optimization of surface roughness in CNC end milling using ...

    African Journals Online (AJOL)

    The experiments were conducted using Taguchi's L50 orthogonal array in the design of experiments (DOE) by considering the machining parameters such as Nose radius (R), Cutting speed (V), feed (f), axial depth of cut (d) and radial depth of cut(rd). A predictive response surface model for surface roughness is developed ...

  12. Simulation of synthetic gecko arrays shearing on rough surfaces.

    Science.gov (United States)

    Gillies, Andrew G; Fearing, Ronald S

    2014-06-06

    To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson-Kendall-Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features.

  13. Noise reduction in tunnels by hard rough surfaces.

    Science.gov (United States)

    Law, Ming Kan; Li, Kai Ming; Leung, Chun Wah

    2008-08-01

    This paper examines the feasibility of using two-dimensional hard rough surfaces to reduce noise levels in traffic tunnels with perfectly reflecting boundaries. First, the Twersky boss model is used to estimate the acoustic impedance of a hard rough surface. Second, an image source model is then used to compute the propagation of sound in a long rectangular enclosure with finite impedance. The total sound fields are calculated by summing the contributions from all image sources coherently. Two model tunnels are built to validate the proposed model experimentally. Finally, a case study for a realistic geometrical configuration is presented to explore the use of hard rough surfaces for reducing traffic noise in a tunnel which is constructed with hard boundaries.

  14. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  15. Applying Terrestrial Laser Scanning for Soil Surface Roughness Assessment

    Directory of Open Access Journals (Sweden)

    Milutin Milenković

    2015-02-01

    Full Text Available Terrestrial laser scanning can provide high-resolution, two-dimensional sampling of soil surface roughness. While previous studies demonstrated the usefulness of these roughness measurements in geophysical applications, questions about the number of required scans and their resolution were not investigated thoroughly. Here, we suggest a method to generate digital elevation models, while preserving the surface’s stochastic properties at high frequencies and additionally providing an estimate of their spatial resolution. We also study the impact of the number and positions of scans on roughness indices’ estimates. An experiment over a smooth and isotropic soil plot accompanies the analysis, where scanning results are compared to results from active triangulation. The roughness measurement conditions for ideal sampling are revisited and updated for diffraction-limited sampling valid for close-range laser scanning over smooth and isotropic soil roughness. Our results show that terrestrial laser scanning can be readily used for roughness assessment on scales larger than 5 cm, while for smaller scales, special processing is required to mitigate the effect of the laser beam footprint. Interestingly, classical roughness parametrization (correlation length, root mean square height (RMSh was not sensitive to these effects. Furthermore, comparing the classical roughness parametrization between one- and four-scan setups shows that the one-scan data can replace the four-scan setup with a relative loss of accuracy below 1% for ranges up to 3 m and incidence angles no larger than 50°, while two opposite scans can replace it over the whole plot. The incidence angle limit for the spectral slope is even stronger and is 40°. These findings are valid for scanning over smooth and isotropic soil roughness.

  16. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter

    2011-01-01

    (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel...... coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel...

  17. Characterising soil surface roughness with a frequency modulated polarimetric radar

    Science.gov (United States)

    Seeger, Manuel; Gronz, Oliver; Beiske, Joshua; Klein, Tobias

    2014-05-01

    Soil surface roughness is considered crucial for soil erosion as it determines the effective surface exposed to the raindrop impact. It regulates surface runoff velocity and it causes runoff concentration. But a comprehensive characterisation of the shape of the soils' surface is still difficult to achieve. Photographic systems and terrestrial laser-scanning are nowadays able to generate high resolution DEMs, but the derivation of roughness parameters is still not clear. Spaceborne radar systems are used for about 3 decades for earth survey. Spatial soil moisture distribution, ice sheet monitoring and earth-wide topographic survey are the main objectives of these radar systems, working generally with frequencies <10 GHz. Contrasting with this, technologies emitting frequencies up to 77 GHz are generally used for object tracking purposes. But it is known, that the reflection characteristics, such as intensity and polarisation, strongly depend on the properties of the target object. A new design of a frequency modulated continuous wave radar, emitting a right hand shaped circular polarization and receiving both polarization directions, right and left-hand shaped, is tested here for its ability to detect and quantify different surface roughness. The reflection characteristics of 4 different materials 1) steel, 2) sand (0,5-1 mm), 3) fine (2-4 mm) and 4) coarse (15-30 mm) rock-fragments and different roughness as well as moisture content are analysed. In addition, the signals are taken at 2 different angles to the soil's surface (90° and 70°). For quantification of the roughness, a photographic method (Structure-from-Motion) is applied to generate a detailed DEM and random roughness (RR) is calculated. To characterise the radar signal, different ratios of the reflected channels and polarisations are calculated. The signals show differences for all substrates, also clearly visible between sand and fine rock fragments, despite a wavelength of 1 cm of the

  18. Data fusion for accurate microscopic rough surface metrology

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuhang, E-mail: chenyh@ustc.edu.cn

    2016-06-15

    Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy. Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that the fusion based on Gaussian process models is effective and robust under different measurement biases and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original sample structure can be precisely recovered, with better metrological performance than any individual measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly improved. It is thus expected to have potential applications in development of hybrid microscopy and in surface metrology. - Highlights: • Data fusion for rough surface nanometrology has been investigated. • Gaussian process based fusion is robust under different biases and noise strengths. • Sampling interval should be smaller than a threshold to enable accurate fusion. • Measurement accuracy, resolution, and efficiency can all be significantly improved. • Data fusion is expected to have potential applications in hybrid microscopy.

  19. Effects of surface roughness and energy on ice adhesion strength

    Energy Technology Data Exchange (ETDEWEB)

    Zou, M., E-mail: mzou@uark.edu [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Beckford, S. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Wei, R.; Ellis, C. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Hatton, G. [Shell Global Solutions, Inc., Houston, TX 77210 (United States); Miller, M.A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States)

    2011-02-01

    The aim of this study is to investigate the effects of surface roughness and surface energy on ice adhesion strength. Sandblasting technique was used to prepare samples with high roughness. Silicon-doped hydrocarbon and fluorinated-carbon thin films were employed to alter the surface energy of the samples. Silicon-doped hydrocarbon films were deposited by plasma-enhanced chemical vapor deposition, while fluorinated-carbon films were produced using deep reactive ion etching equipment by only activating the passivation step. Surface topographies were characterized using scanning electron microscopy and a stylus profilometer. The surface wetting properties were characterized by a video-based contact angle measurement system. The adhesion strength of ice formed from a water droplet on these surfaces was studied using a custom-built shear force test apparatus. It was found that the ice adhesion strength is correlated to the water contact angles of the samples only for surfaces with similar roughness: the ice adhesion strength decreases with the increase in water contact angle. The study also shows that smoother as-received sample surfaces have lower ice adhesion strength than the much rougher sandblasted surfaces.

  20. Soil surface roughness and porosity under different tillage systems

    Science.gov (United States)

    Rodriguez-Gonzalez, J.; Saa-Requejo, A.; Gómez, J. A.; Valencia, J. L.; Zarco, P.; Tarquis, A. M.

    2012-04-01

    Both soil porosity and surface elevation can be altered by tillage operation. Even though the surface porosity is an important parameter of a tilled field, however, no practical technique for rapid and non-contact measurement of surface porosity has been developed yet. On the contrary, the surface elevation of tilled soil can be quickly determined with a laser profiler. Working under the assumption that the surface elevation of a tilled field is a complicated superposition of the soil terrain profile at a larger-scale and the roughness at a fine-scale, this study included three aspects: (i) to establish an index (Roughness Index, RI) at a fine-scale to associate the surface roughness with porosity; (ii) to examine the correlation between surface porosity and the proposed RI by three types of tillage treatment in the field; and (iii) to check the scaling/multiscaling behavior among different grid sizes of calculating RI on predicting surface porosity. Consequently, the statistical results from each tilled plot show a strong correlation between the surface porosity and the defined RI in an early stage (ca. 2 days) after tillage. Acknowledgements Funding provided by CEIGRAM (Research Centre for the Management of Agricultural and Environmental Risks)and Spanish Ministerio de Ciencia e Innovación (MICINN) through project AGL2010-21501/AGR is greatly appreciated.

  1. Surface roughness of orthodontic band cements with different compositions

    Directory of Open Access Journals (Sweden)

    Françoise Hélène van de Sande

    2011-06-01

    Full Text Available OBJECTIVES: The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. MATERIAL AND METHODS: Eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP, compomer (C, resin-modified glass ionomer cement (RMGIC and resin cement (RC. Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0 or 0.1 M lactic acid solution (pH 4.0 for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200 before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions or paired t-test (comparison before and after the storage period at 5% significance level. RESULTS: The values for average surface roughness were statistically different (pRMGIC>C>R (p0.05. Compared to the current threshold (0.2 µm related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. CONCLUSIONS: Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions.

  2. Surface roughness control by extreme ultraviolet (EUV) radiation

    Science.gov (United States)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  3. Study the Relationship between Pavement Surface Distress and Roughness Data

    Directory of Open Access Journals (Sweden)

    Mubaraki Muhammad

    2016-01-01

    Full Text Available In this paper, pavement sections from the highway connected Jeddah to Jazan were selected and analyzed to investigate the relationship between International Roughness Index (IRI and pavement damage including; cracking, rutting, and raveling. The Ministry of Transport (MOT of Saudi Arabia has been collecting pavement condition data using the Road Surface Tester (RST vehicle. The MOT measures Roughness, Rutting (RUT, Cracking (CRA, raveling (RAV. Roughness measurements are calculated in terms of the International Roughness Index (IRI. The IRI is calculated over equally spaced intervals along the road profile. Roughness measurements are performed at speed between at 80 kilometers per hour. Thus RST vehicle has been used to evaluate highways across the country. The paper shows three relationships including; cracking (CRA verses roughness (IRI, rutting (RUT verses IRI, and raveling (RAV verses IRI. Also, the paper developed two models namely; model relates IRI to the three distress under study, and model relates IRI to ride quality. The results of the analysis claim at 95% confidence that a significant relationship exist between IRI and cracking, and raveling. It’s also shown that rutting did not show significant relationship to IRI values. That’s leads to conclude that the distresses types: cracking and raveling may possibly be described as ride quality distresses at different level of significant. Rutting distress described as non-ride quality type’s distresses.

  4. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Science.gov (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  5. The Impedance Due to the Roughness of Metallic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl L.F.; Chao, Alex W.; Ng, Cho-K.; /SLAC

    2011-08-26

    In some future accelerator designs, such as that of the Linear Coherent Light Source (LCLS), the bunch is very short, with an rms length on the order of 10's of microns, and the effective skin depth of the vacuum chamber walls can be very small compared to 1 micron. If the skin depth is small compared to the scale of the surface roughness then the wakefield due to the walls will be dominated by the roughness, and not by the wall resistance. To estimate the wakefields of a rough, metallic surface we begin with a simple, analytical model. Then we apply the MAFIA 3-dimensional, time-domain computer module, T3 to check and find the correct coefficient for the model.

  6. Direct numerical simulation of the dynamics of sliding rough surfaces

    CERN Document Server

    Dang, Viet Hung; Scheibert, Julien; Bot, Alain Le

    2013-01-01

    The noise generated by the friction of two rough surfaces under weak contact pressure is usually called roughness noise. The underlying vibration which produces the noise stems from numerous instantaneous shocks (in the microsecond range) between surface micro-asperities. The numerical simulation of this problem using classical mechanics requires a fine discretization in both space and time. This is why the finite element method takes much CPU time. In this study, we propose an alternative numerical approach which is based on a truncated modal decomposition of the vibration, a central difference integration scheme and two algorithms for contact: The penalty algorithm and the Lagrange multiplier algorithm. Not only does it reproduce the empirical laws of vibration level versus roughness and sliding speed found experimentally but it also provides the statistical properties of local events which are not accessible by experiment. The CPU time reduction is typically a factor of 10.

  7. Surface roughness of polyvinyl siloxane impression materials following chemical disinfection, autoclave and microwave sterilization.

    Science.gov (United States)

    Al Kheraif, Abdulaziz Abdullah

    2013-05-01

    Autoclave sterilization and microwave sterilization has been suggested as the effective methods for the disinfection of elastomeric impressions, but subjecting elastomeric impressions to extreme temperature may have adverse effects on critical properties of the elastomers. To evaluate the effect of chemical disinfection as well as autoclave and microwave sterilization on the surface roughness of elastomeric impression materials. The surface roughness of five commercially available polyvinyl siloxane impression materials (Coltene President, Affinis Perfect impression, Aquasil, 3M ESPE Express and GC Exafast) were evaluated after subjecting them to chemical disinfection, autoclaving and microwave sterilization using a Talysurf Intra 50 instrument. Twenty specimens from each material were fabricated and divided into four equal groups, three experimental and one control (n=25). The differences in the mean surface roughness between the treatment groups were recorded and statistically analyzed. No statistically significant increase in the surface roughness was observed when the specimens were subjected to chemical disinfection and autoclave sterilization, increase in roughness and discoloration was observed in all the materials when specimens were subjected to microwave sterilization. Chemical disinfection did not have a significant effect but, since it is less effective, autoclave sterilization can be considered effective and autoclaving did not show any specimen discoloration as in microwave sterilization. Microwave sterilization may be considered when impressions are used to make diagnostic casts. A significant increase in surface roughness may produce rougher casts, resulting in rougher tissue surfaces for denture and cast restorations. Autoclave sterilization of vinyl polysiloxane elastomeric impressions for 5 minutes at 134°C at 20 psi may be considered an effective method over chemical disinfection and microwave sterilization, because chemical disinfection does

  8. Effect of simulated mastication on the surface roughness of three ceramic systems.

    Science.gov (United States)

    Amer, Rafat; Kürklü, Duygu; Johnston, William

    2015-08-01

    Zirconia complete coverage crowns are being widely used as restorations because of their high strength and improved esthetics. Data are sparse about the change in surface roughness of this ceramic material after repeated mastication cycles of opposing enamel. The purpose of this study was to investigate changes in the surface roughness after being subjected to 3-body wear-opposing human enamel of 3 types of ceramics: dense sintered yttrium-stabilized zirconia (Z); lithium disilicate (L); and a conventional low-fusing feldspathic porcelain (P) treated to impart a rough, smooth, or glazed surface. Twenty-four specimens of each of the Z and L ceramic were sectioned from computer-aided design and computer-aided manufacturing blocks into rectangular plates (15×12×2 mm). Twenty-four specimens of the feldspathic porcelain were formed into disks (12-mm diameter) from powders compressed in a silicone mold. All specimens (n=72) were prepared according to the manufacturers' recommendations. Specimens of each ceramic group were placed into 1 of 3 groups: group R, rough surface finish; group S, smooth surface finish; and group G, glazed surface finish. A total of 72 specimens (9 groups with 8 specimens each) was placed in a 3-body wear simulator, with standardized enamel specimens (n=72) acting as the substrate. The changes in surface roughness of the ceramic specimens were evaluated after 50,000 cycles. Data were analyzed by a repeated measures 3-way ANOVA mixed procedure with the Satterthwaite method for degrees of freedom and maximum likelihood estimation of the covariance parameters (α=.05). Data showed that the PS group exhibited the largest change in surface roughness, becoming significantly rougher (P<.004). The LR group became significantly smoother (P=.012). The surfaces of monolithic zirconia ceramic and lithium disilicate did not become as rough as the surface of conventional feldspathic porcelain after enamel wear. Copyright © 2015 Editorial Council for the

  9. Effect of Whitening Dentifrice on Micro Hardness, Colour Stability and Surface Roughness of Aesthetic Restorative Materials.

    Science.gov (United States)

    Roopa, K B; Basappa, N; Prabhakar, A R; Raju, O S; Lamba, Gagandeep

    2016-03-01

    Whitening agents present in the novel whitening dentifrices may have deleterious effects over the aesthetic restorations. The present study evaluated the invitro effect of whitening dentifrice on micro hardness, colour stability and surface roughness on aesthetic restorative materials. Forty specimens each of compomer and of composite were prepared using brass mould. Specimens were equally divided into 4 groups. Group I (20 disks of compomer are subjected to brushing with conventional tooth paste) Group II (20 disks of composite subjected to brushing with conventional tooth paste), Group III (20 disks of compomer subjected to brushing with whitening tooth paste). Group IV (20 disks of composite subjected to brushing with whitening toothpaste). Each group was further divided into two subgroups, where 10 sample were subjected for two weeks of brushing with respective tooth paste and other 10 were subjected for four weeks of brushing. For the evaluation of micro hardness, colour stability and surface roughness, micro hardness testing machine, spectrophotometer and surface testing machine were used respectively. Initial and final readings were taken for each specimen and difference obtained was subjected to statistical analysis. One-way ANOVA was used for multiple group comparison followed by post-hoc Tukey's-test. The paried t-test was used for intra group comparison and unpaired t-test for comparing independent sample groups. The compomer and composite showed no significant difference in micro hardness either with conventional or whitening tooth paste both at two and four weeks. Although there was a highly significant colour change observed after using whitening tooth paste for both compomer and composite. Regarding surface roughness, there was a significant change in roughness in both conventional and whitening tooth paste with compomer and composite. However, whitening tooth paste had a significant change in surface roughness compared with conventional tooth paste

  10. Fine tuning the roughness of powder blasted surfaces

    NARCIS (Netherlands)

    Wensink, H.; Schlautmann, Stefan; Goedbloed, M.H.; Elwenspoek, Michael Curt

    Powder blasting (abrasive jet machining) has recently been introduced as a bulk-micromachining technique for brittle materials. The surface roughness that is created with this technique is much higher (with a value of Ra between 1-2.5 μm) compared to general micromachining techniques. In this paper

  11. An investigation on surface roughness of granite machined by ...

    Indian Academy of Sciences (India)

    The philosophy of the Taguchi design is followed in the experimental study. Effects of the control (process) factors on the surface roughness are presented in terms of the mean of means responses. Additionally, the data obtained are evaluated statistically using the analysis of variance (ANOVA) to determine significant ...

  12. Surface shape analysis of rough lumber for wane detection

    Science.gov (United States)

    Sang-Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt

    2003-01-01

    The initial breakdown of hardwood logs into lumber produces boards with rough surfaces. These boards contain wane (missing wood that emanates from the log exterior, often containing residual bark) that is removed by edge and trim cuts prior to sale. Because hardwood lumber value is determined based on board size and quality, knowledge of wane position and defects is...

  13. Surface roughness and morphologic changes of zirconia: Effect of ...

    African Journals Online (AJOL)

    Purpose: The purpose of this study was to investigate the surface roughness and morphologic changes of pre.sintered ZrO2 after sandblasting and erbium, chromium: Yttrium, scandium, gallium, garnet (Er, Cr: YSGG) laser application of different intensities. Material and Methods: Eighty pre-sintered ZrO2 cylinders (7 mm ...

  14. Modeling and analysis for surface roughness and material removal ...

    African Journals Online (AJOL)

    Experiments were conducted based on the established Taguchi's technique L18 orthogonal array on a lathe machine. The cutting parameters considered were tool nose radius, tool rake angle, feed rate, cutting speed, depth of cut and cutting environment (dry, wet and cooled) on the surface roughness and material removal ...

  15. Droplet impact on hydrophobic surfaces with hierarchical roughness

    NARCIS (Netherlands)

    Raza, M.A.; van Swigchem, J.; Jansen, H.P.; Zandvliet, Henricus J.W.; Poelsema, Bene; Kooij, Ernst S.

    2014-01-01

    We investigate the dynamic properties of microliter droplets impacting with velocities up to $0.4\\:{\\rm{m}}\\:{{\\rm{s}}^{ - 1}}$ on hydrophobic surfaces with hierarchical roughness. The substrates consist of multiple layers of silica microspheres, which are decorated with gold nanoparticles; the

  16. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations

    Science.gov (United States)

    Wang, Min; Chen, Yi-Feng; Ma, Guo-Wei; Zhou, Jia-Qing; Zhou, Chuang-Bing

    2016-10-01

    This study investigates the impacts of surface roughness on the nonlinear fluid flow through three-dimensional (3D) self-affine rock fractures, whose original surface roughness is decomposed into primary roughness (i.e. the large-scale waviness of the fracture morphology) and secondary roughness (i.e. the small-scale unevenness) with a wavelet analysis technique. A 3D Lattice Boltzmann method (LBM) is adopted to predict the flow physics in rock fractures numerically created with and without consideration of the secondary roughness, respectively. The simulation results show that the primary roughness mostly controls the pressure distribution and fracture flow paths at a large scale, whereas the secondary roughness determines the nonlinear properties of the fluid flow at a local scale. As the pressure gradient increases, the secondary roughness enhances the local complexity of velocity distribution by generating and expanding the eddy flow and back flow regions in the vicinity of asperities. It was found that the Forchheimer's law characterizes well the nonlinear flow behavior in fractures of varying roughness. The inertial effects induced by the primary roughness differ only marginally in fractures with the roughness exponent varying from 0.5 to 0.8, and it is the secondary roughness that significantly enhances the nonlinear flow and leads to earlier onset of nonlinearity. Further examined were the effects of surface roughness on the transmissivity, hydraulic aperture and the tortuosity of flow paths, demonstrating again the dominant role of the secondary roughness, especially for the apparent transmissivity and the equivalent hydraulic aperture at high pressure gradient or high Reynolds number. The results may enhance our understanding of the role of surface roughness in the nonlinear flow behaviors in natural rock fractures.

  17. Comparison of different polishing methods on the surface roughness of microhybrid, microfill, and nanofill composite resins.

    Science.gov (United States)

    Moda, Mariana D; Godas, André Gustavo de L; Fernandes, Juliana C; Suzuki, Thaís Y U; Guedes, Ana Paula A; Briso, André L F; Bedran-Russo, Ana Karina; Dos Santos, Paulo H

    2018-02-01

    The aim of the present study was to evaluate the effect of different polishing methods on the surface roughness of resin-based composites subjected to a thermocycling procedure. A total of 192 specimens were divided into 24 groups, according to composite materials (Filtek Z250, Point 4, Renamel Nanofill, Filtek Supreme Plus, Renamel Microfill, and Premise) and finishing and polishing systems (Sof-Lex Pop On, Super Snap, Flexidisc, and Flexidisc+Enamelize). The specimens were subjected to thermocycling (5000 cycles). Filtek Supreme Plus showed the lowest surface roughness values before thermocycling. After thermocycling, Filtek Supreme Plus continued to have the lowest surface roughness, with a statistically-significant difference for the other materials. After thermocycling, there was no statistically-significant difference among all the polishing techniques studied. The thermocycling was concluded as being able to change composite resins' surface roughness, whereas different finishing and polishing methods did not result in surface roughness changes after thermocycling. © 2017 John Wiley & Sons Australia, Ltd.

  18. Investigation on Surface Roughness of Inconel 718 in Photochemical Machining

    Directory of Open Access Journals (Sweden)

    Nitin D. Misal

    2017-01-01

    Full Text Available The present work is focused on estimating the optimal machining parameters required for photochemical machining (PCM of an Inconel 718 and effects of these parameters on surface topology. An experimental analysis was carried out to identify optimal values of parameters using ferric chloride (FeCl3 as an etchant. The parameters considered in this analysis are concentration of etchant, etching time, and etchant temperature. The experimental analysis shows that etching performance as well as surface topology improved by appropriate selection of etching process parameters. Temperature of the etchant found to be dominant parameter in the PCM of Inconel 718 for surface roughness. At optimal etching conditions, surface roughness was found to be 0.201 μm.

  19. Determining the surface roughness coefficient by 3D Scanner

    Directory of Open Access Journals (Sweden)

    Karmen Fifer Bizjak

    2010-12-01

    Full Text Available Currently, several test methods can be used in the laboratory to determine the roughness of rock joint surfaces.However, true roughness can be distorted and underestimated by the differences in the sampling interval of themeasurement methods. Thus, these measurement methods produce a dead zone and distorted roughness profiles.In this paper a new rock joint surface roughness measurement method is presented, with the use of a camera-typethree-dimensional (3D scanner as an alternative to current methods. For this study, the surfaces of ten samples oftuff were digitized by means of a 3D scanner, and the results were compared with the corresponding Rock JointCoefficient (JRC values. Up until now such 3D scanner have been mostly used in the automotive industry, whereastheir use for comparison with obtained JRC coefficient values in rock mechanics is presented here for the first time.The proposed new method is a faster, more precise and more accurate than other existing test methods, and is apromising technique for use in this area of study in the future.

  20. New horizons in selective laser sintering surface roughness characterization

    Science.gov (United States)

    Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.

    2017-12-01

    Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.

  1. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent...... numerical results from higher-order closure models, it is found that, even at a downwind distance such that the internal boundary layer has grown to the full height of the planetary boundary layers, the surface stress still considerably exceeds the equilibrium value...

  2. The Effective Surface Roughness Scaling of the Gelation Surface Pattern Formation

    Science.gov (United States)

    Mizoue, T.; Tokita, M.; Honjo, H.; Barraza, H. J.; Katsuragi, H.

    The surface pattern formation on a gelation surface is analyzed using an effective surface roughness. The spontaneous surface deformation on DiMethylAcrylAmide (DMAA) gelation surface is controlled by temperature, initiator concentration, and ambient oxygen. The effective surface roughness is defined using 2-dimensional photo data to characterize the surface deformation. Parameter dependence of the effective surface roughness is systematically investigated. We find that decrease of ambient oxygen, increase of initiator concentration, and high temperature tend to suppress the surface deformation in almost similar manner. That trend allows us to collapse all the data to a unified master curve. As a result, we finally obtain an empirical scaling form of the effective surface roughness. This scaling is useful to control the degree of surface patterning. However, the actual dynamics of this pattern formation is not still uncovered.

  3. Data fusion for accurate microscopic rough surface metrology.

    Science.gov (United States)

    Chen, Yuhang

    2016-06-01

    Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy. Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that the fusion based on Gaussian process models is effective and robust under different measurement biases and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original sample structure can be precisely recovered, with better metrological performance than any individual measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly improved. It is thus expected to have potential applications in development of hybrid microscopy and in surface metrology. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Differences in surface roughness of nanohybrid composites immersed in varying concentrations of citric acid

    Directory of Open Access Journals (Sweden)

    Gabriela Kevina Alifen

    2017-06-01

    Full Text Available Background: The surface roughness of restoration is important in predicting the length of time it might remain in the mouth. Conditions within the oral cavity can affect the surface roughness of a restoration. Nanohybrid composite is widely used in dentistry because it can be applied to restore anterior and posterior teeth. Athletes routinely consume isotonic drinks which are acidic and even more erosive than the carbonated variety because they contain a range of acids; the highest content of which being citric acid. Purpose: The aim of the study was to analyze the surface roughness of nanohybrid composite after having been subjected to immersion in varying concentrations of citric acid. Methods: Two isotonic drinks (Pocari Sweat and Mizone were analyzed using high performance liquid chromatography (HPLC to quantify the respective concentrations of citric acid which they contained. A total of 27 samples of cylindrical nanohybrid composite were prepared before being divided into three groups. In Group 1, samples were immersed in citric acid solution derived from Pocari Sweat. Those of Group 2 were immersed in citric acid solution derived from Mizone; while Group 3, samples were immersed in distilled water as a control. All samples were immersed for 7 days, before their surface roughness was tested by means of a surface roughness tester (Mitutoyo SJ-201. Data was analyzed using a one-way ANOVA test. Results: The results showed that there was no significant difference in surface roughness between Groups 1, 2 and 3 (p=0.985. Conclusion: No difference in surface roughness of nanohybrid composites results from prolonged immersion in varying concentrations of citric acid.

  5. Surface roughness and translucency of resin composites after immersion in coffee and soft drink.

    Science.gov (United States)

    de Gouvea, Cresus V Depes; Bedran, Luciane M; de Faria, Márcia Aguiar; Cunha-Ferreira, Neli

    2011-01-01

    The aim of this study was to evaluate the in vitro changes in color and surface roughness of different composite resins when subjected to cycles of immersion in three coloring solutions: coffee, soft drink, and coffee plus soft drink. Sixty test specimens were made of each material, all in shade A3. Translucency and initial roughness measurements were taken by spectrophotometer and roughness meter. Then the samples were submitted to three cycles per day of exposure to potentially coloring solutions for a period of 15 days. Final roughness and translucency measurements were taken, the mean and standard deviation calculated for each resin and each variable. Data were initially analyzed by the one away ANOVA test, which showed significant differences between groups (p<0.05). Subsequently the post hoc and Tukey tests were performed with level of significance of 0.05. The results showed that the coloring substances altered translucency and surface roughness. DURAFILL resin immersed in the soft drink (M3) was the least pigmented, while CONCEPT resin immersed in the coffee (M2) showed the the least loss of surface smoothness. The Spearman and Pearson coefficients were 0.38 and 0.04 respectively, signifying that there is no correlation between roughness and translucency.

  6. Biofilm retention on surfaces with variable roughness and hydrophobicity.

    Science.gov (United States)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter; Schramm, Andreas; Bischoff, Claus; Meyer, Rikke Louise

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher's shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study.

  7. Subband analysis and synthesis of real-world textures for objective and subjective determination of roughness

    NARCIS (Netherlands)

    Van Egmond, R.; Pappas, T.N.; De Ridder, H.

    2010-01-01

    In a previous study we investigated the roughness of real world textures taken from the CUReT database. We showed that people could systematically judge the subjective roughness of these textures. However, we did not determine which objective factors relate to these perceptual judgments of

  8. Effect of Relative Velocity Between Rough Surfaces: Hydrodynamic Lubrication of Rotary Lip Seal

    Science.gov (United States)

    Lahjouji, I.; Gadari, M. El; Fahime, B. El; Radouani, M.

    2017-05-01

    Since the sixties, most of numerical studies that model the rotary lip seal lubrication have been restricted by assuming that one of the two opposing surfaces is smooth: either the lip or the shaft. This hypothesis, although it is verified only for a shaft roughness ten times smaller than that of the seal, is the best solution to avoid the transient term "∂h/∂t" in the deterministic approach. Thus, the subject of the present study is twofold. The first part validates the current hydrodynamic model with the international literature by assuming the asperities on the lip and shaft as a two-dimensional cosine function. In the second part the Reynolds equation for rough surfaces with relative motion is solved. The numerical results show that the relative motion between rough surfaces impacts significantly the load support and the leakage rate, but affects slightly the friction torque.

  9. Evaluation of Chlorine Dioxide Irrigation Solution on the Microhardness and Surface Roughness of Root Canal Dentin.

    Science.gov (United States)

    Ballal, Nidambur Vasudev; Khandewal, Deepika; Karthikeyan, Saravana; Somayaji, Krishnaraj; Foschi, Federico

    2015-12-01

    The aim of this study was to evaluate the effect of chlorine dioxide and various other more common irrigation solutions on the microhardness and surface roughness of root canal dentin. Fifty human maxillary central incisors were sectioned longitudinally and treated for 1 minute with 5 ml of the following aqueous solutions (v/v%): Group 1: 13.8% chlorine dioxide, Group 2: 17% ethylene diamine tetraacetic acid (EDTA). Group 3: 7% maleic acid, Group 4: 2.5% sodium hypochlorite (5 ml/min), Group 5: Saline (control). Specimens were subjected to microhardness and surface roughness testing. Chlorine dioxide and sodium hypochlorite reduced the microhardness more than other test agents. The highest surface roughness was produced with maleic acid. Chlorine dioxide should be used cautiously during chemomechanical preparation of the root canal system in order to prevent untoward damage to the teeth.

  10. Energetics of protein nucleation on rough polymeric surfaces.

    Science.gov (United States)

    Curcio, Efrem; Curcio, Valerio; Di Profio, Gianluca; Fontananova, Enrica; Drioli, Enrico

    2010-11-04

    Metropolis Monte Carlo (MC) algorithm of the two-dimensional Ising model is used to study the heterogeneous nucleation of protein crystals on rough polymeric surfaces. The theoretical findings are compared to those obtained from classical nucleation theory (CNT), and to experimental data from protein model hen egg white lysozyme (HEWL) crystallized on poly(vinylidene fluoride) or PVDF, poly(dimethylsiloxane) or PDMS and Hyflon homemade membranes. The reduction of the activation energy for the nucleation process on polymeric membranes, predicted to occur at increasing surface roughness, results in a nucleation kinetics that is many orders of magnitude faster than in homogeneous phase. In general, MC stochastic dynamics offers the unique opportunity to investigate the effects of collective molecular aggregation at site level on the nucleation rate and, consequently, allows to identify optimal morphological and structural properties of polymeric membranes for a fine control of the crystallization kinetics.

  11. Laser assisted fabrication of random rough surfaces for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Brissonneau, V., E-mail: vincent.brissonneau@im2np.fr [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Escoubas, L. [Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Flory, F. [Institut Materiaux Microelectronique Nanosciences de Provence, Ecole Centrale Marseille, Marseille (France); Berginc, G. [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Maire, G.; Giovannini, H. [Institut Fresnel, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Random rough surfaces are photofabricated using an argon ion laser. Black-Right-Pointing-Pointer Speckle and surface correlation function are linked. Black-Right-Pointing-Pointer Exposure beam is modified allowing tuning the correlation. Black-Right-Pointing-Pointer Theoretical examples are presented. Black-Right-Pointing-Pointer Experimental results are compared with theoretical expectation. - Abstract: Optical surface structuring shows great interest for antireflective or scattering properties. Generally, fabricated surface structures are periodical but random surfaces that offer new degrees of freedom and possibilities by the control of their statistical properties. We propose an experimental method to create random rough surfaces on silicon by laser processing followed by etching. A photoresist is spin coated onto a silicon substrate and then exposed to the scattering of a modified laser beam. The beam modification is performed by using a micromirror matrix allowing laser beam shaping. An example of tuning is presented. An image composed of two white circles with a black background is displayed and the theoretical shape of the correlation is calculated. Experimental surfaces are elaborated and the correlation function calculated from height mapping. We finally compared the experimental and theoretical correlation functions.

  12. Surface roughness of two dental amalgams after various polishing techniques.

    Science.gov (United States)

    Creaven, P J; Dennison, J B; Charbeneau, G T

    1980-03-01

    1. In comparison with standard polishing after 24 hours, no advantage is gained by using an abrasive paste after 10 minutes. Polishing after 24 hours produced a significantly smoother surface for both amalgam alloys on both the simulated proximal and occlusal surfaces. 2. The standard polishing procedures after 24 hours produced a smoother surface than any of the immediate finishing procedures tested. 3. The high-copper amalgam was signijficantly rougher with initial carving and immediate finishing, but surfaces of both alloys were equally smooth when polished after 24 hours. 4. Both amalgam alloys, when condensed against a new matrix band lacked smoothness when compared to the surfaces obtained by finishing after 24 hours. 5. There was a high correlation between arithmetic average roughness and average maximum peak height as quantitative measurements of surface texture.

  13. Comparative evaluation of effect of different polishing systems on surface roughness of composite resin: An in vitro study.

    Science.gov (United States)

    Chour, Rashmi G; Moda, Aman; Arora, Arpana; Arafath, Muhmmed Y; Shetty, Vikram K; Rishal, Yousef

    2016-08-01

    Satisfactory composite restoration depends upon its smooth finish, quality of polishing agents, type of composite material used, and its composition. The present study evaluated the effect of different polishing systems on the surface roughness of composite resin. Forty discs of composite were prepared and equally subjected to different finishing and polishing procedures; (i) unpolished control group, (ii) sof-lex discs, (iii) diamond tips, and (iv) Astrobrush groups. Later, the surface roughness for the entire specimen was evaluated using Profilomotor. Data were tabulated and statistically analyzed using analysis of variance and Tukey's test at significance level of 0.001. Composite surface roughness after polishing was statistically significant between the groups. Sof-lex group produced lesser surface roughness compared to control, Astrobrush, and diamond group. The present study indicated that diamond tips can be used to remove rough surface whereas sof-lex can be used for final finish and polish of the composite restoration.

  14. Mars radar clutter and surface roughness characteristics from MARSIS data

    Science.gov (United States)

    Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.

    2018-01-01

    Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.

  15. Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    Directory of Open Access Journals (Sweden)

    Ana Luísa Botta Martins de Oliveira

    2010-09-01

    Full Text Available This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140 with half of the samples finished and polished with Super-Snap® disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard. The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level. For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods.

  16. Surface forces between rough and topographically structured interfaces

    DEFF Research Database (Denmark)

    Thormann, Esben

    2017-01-01

    on the interaction between interfaces. This paper presents a review of the current state of understanding of the effect of surface roughness on DLVO forces, as well as on the interactions between topographically structured hydrophobic surfaces in water. While the first case is a natural choice because it represents......Within colloidal science, direct or indirect measurements of surface forces represent an important tool for developing a fundamental understanding of colloidal systems, as well as for predictions of the stability of colloidal suspensions. While the general understanding of colloidal interactions...... has developed significantly since the formulation of the DLVO theory, many problems still remain to be solved. One concrete problem is that the current theory has been developed for interaction between flat and chemically homogenous surfaces, which is in contrast to the surfaces of most natural...

  17. Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering

    Science.gov (United States)

    Duan, Guotao; Cai, Weiping; Luo, Yuanyuan; Li, Yue; Lei, Yong

    2006-10-01

    A simple, effective, and low-cost method is presented to fabricate an ordered Au particle array with hierarchical surface roughness on an indium tin oxide substrate based on an ordered alumina through-pore template, induced by solution dipping on colloidal monolayer, using an electrochemical deposition strategy. The array consists of periodically arranged and isolated Au microparticles, which show nanoscaled surface roughness. Importantly, this hierarchically rough particle array exhibits strong surface-enhanced Raman scattering effect using rhodamine 6G as probe molecules, associated with its surface geometry. Such structure could be useful, e.g., in sensors, biotechnology, and nanodevices.

  18. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  19. Surface roughness of the restored enamel after orthodontic treatment.

    Science.gov (United States)

    Ozer, Törün; Başaran, Güvenç; Kama, Jalen Devecioğlu

    2010-03-01

    After fixed appliance treatment, one concern is to restore the enamel surface as closely to its original state as possible. A variety of cleanup processes are available, but all are time-consuming and carry some risk of enamel damage. The purpose of this study was to examine tooth surfaces restored with different cleanup protocols. Ninety-nine premolars extracted for orthodontic purposes were used. The 2 materials tested were Sof-Lex disks (3 M ESPE AG, Seefeld, Germany) and fiberglass burs (Stain Buster, Carbotech, Ganges, France). These were used alone and in combination with high- and low-speed handpieces, with which they were also compared. Eight groups were ultimately tested. All groups were compared with intact enamel, which served as the control group. From each group, 10 samples were examined with profilometry and 1 with scanning electron microscopy. Adhesive remnant index scores were recorded to ensure equal distributions for the groups. The time required for the cleanup processes and profilometry test results were also recorded. The fastest procedure was performed with high-speed handpieces, followed by low-speed handpieces. Sof-Lex disks and fiberglass burs required more time than carbide burs but did not result in significantly longer times for the cleanup procedure when combined with tungsten carbide-driven low- or high-speed handpieces or when used alone with low-speed handpieces. Although Sof-Lex disks were the most successful for restoring the enamel, it was not necessary to restore the enamel to its original surface condition. Generally, all enamel surface-roughness parameters were increased when compared with the values of intact enamel. The average roughness and maximum roughness depth measurements with Sof-Lex disks were statistically similar to measurements of intact enamel. No cleanup procedure used in this study restored the enamel to its original roughness. The most successful was Sof-Lex disks, which restored the enamel closer to its

  20. Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces.

    Science.gov (United States)

    Belyaev, Aleksey V

    2017-01-01

    Isolation of microparticles and biological cells from mixtures and suspensions is a central problem in a variety of biomedical applications. This problem, for instance, is of an immense importance for microfluidic devices manipulating with whole blood samples. It is instructive to know how the mobility and dynamics of rigid microparticles is altered by the presence of micrometer-size roughness on walls. The presented theoretical study addresses this issue via computer simulations. The approach is based on a combination of the Lattice Boltzmann method for calculating hydrodynamics and the Lagrangian Particle dynamics method to describe the dynamics of cell membranes. The effect of the roughness on the mobility of spheroidal microparticles in a shear fluid flow was quantified. We conclude that mechanical and hydrodynamic interactions lift the particles from the surface and change their mobility. The effect is sensitive to the shape of particles.

  1. Anisotropic spreading of liquid metal on a rough intermetallic surface

    Directory of Open Access Journals (Sweden)

    Liu Wen

    2011-01-01

    Full Text Available An anisotropic wicking of molten Sn-Pb solder over an intermetallic rough surface has been studied. The phenomenon features preferential spreading and forming of an elliptical spread domain. A theoretically formulated model was established to predict the ratio of the wicking distance along the long axis (rx to that along the short axis (ry of the final wicking pattern. The phenomenon was simultaneously experimentally observed and recorded with a hotstage microscopy technique. The anisotropic wicking is established to be caused by a non-uniform topography of surface micro structures as opposed to an isotropic wicking on an intermetallic surface with uniformly distributed surface micro features. The relative deviation between the theoretically predicted rx/ry ratio and the corresponding average experimental value is 5%. Hence, the small margin of error confirms the validity of the proposed theoretical model of anisotropic wicking.

  2. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    1999-01-01

    Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power-law ......-law roughness spectrum (fractal model). In the former case, it must be considered that for short profiles (L...

  3. Subgap in the Surface Bound States Spectrum of Superfluid ^3 He-B with Rough Surface

    Science.gov (United States)

    Nagato, Y.; Higashitani, S.; Nagai, K.

    2017-12-01

    The subgap structure in the surface bound states spectrum of superfluid ^3 He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3 He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.

  4. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  5. Roughness of sandstone fracture surfaces: Profilometry and shadow length investigations

    OpenAIRE

    Boffa, Jean-Marc; Allain, C.; Chertcoff, R.; Hulin, Jean-Pierre; Plouraboué, Franck; Roux, Stéphane

    1999-01-01

    The geometrical properties of fractured sandstone surfaces were studied by measuring the length distribution of the shadows appearing under grazing illumination. Three distinct domains of variation were found: at short length scales a cut-off of self-affinity is observed due to the inter-granular rupture of sandstones, at long length scales, the number of shadows falls off very rapidly because of the non-zero illumination angle and of the finite roughness amplitude. Finally, in the intermediate do...

  6. Estimation of scattering from a moist rough surface with spheroidal ...

    Indian Academy of Sciences (India)

    Administrator

    x y. E. D K K g K K π. ∞. −∞. = ∫ ∫. (7). 1. 1. ( . ) d d ,. 2 z z x y x y. E. D K K g K K π. ∞. −∞. = ∫ ∫. (8) where. 1 exp( . ). x x y z g. jK. jK y jK Z. = +. +. Now the expression for transmission loss and absorption loss for the wave guide scattering pattern model under rough surface can be written as (Shimaru 1978), r abs r. 2 cos.

  7. Influence of Surface Roughness in Electron Beam Welding

    Science.gov (United States)

    Wiednig, C.; Stiefler, F.; Enzinger, N.

    2016-03-01

    The requirements of welded components are rising continuously through increasing demands in engineering. But in engineering not only the quality of welds is important also an economic and timesaving production is crucial. Especially in welding of large cross sections economization potential is existing and significant. Beside the welding technique itself the joint preparation is a major part of work. Electron beam welding has some major advantages in this area. Due the high energy density a very short welding time as well as a small heat affected zone can be achieved. Furthermore the joint preparation can be held simple. Nevertheless, a careful machining and cleaning of the joint surfaces is recommended in literature. In addition to geometric tolerances a specific surface roughness should be kept. These statements are quite general and unspecific. In this contribution a systematic investigation on the influence of joint preparation on the joint properties is presented. By performing several welding experiments with different surface roughness this study provides empirical conclusions. Beside the microscopic investigation of different cross sections and mechanical tests of the welded samples also the process stability during welding was reviewed.

  8. Simulation of the surface roughness formation process in finishing

    Energy Technology Data Exchange (ETDEWEB)

    Losev, V.A.; Plyusnin, Y.G.

    1983-09-01

    Geometric, energy, and impulse models were developed to study the interaction of the abrasive and the ground surfaces in finishing. The geometric and energy models describe the process of finishing in the case of the use of tools with a fastened abrasive. The impulse model reflects the real picture of the action of unfastened abrasive grains on the surface being ground. The spectral density of the input signal is determined. The weight function and transfer function are treated. The spectral theory of the linear transformation of the stationary random function is used. On the basis of the experimental data and theoretical solutions, equations are obtained with which it is possible to predict the changes in surface roughness for various abrasive particle sizes.

  9. Modeling of surface roughness: application to physical properties of paper

    Science.gov (United States)

    Bloch, Jean-Francis; Butel, Marc

    2000-09-01

    Papermaking process consists in a succession of unit operations having for main objective the expression of water out of the wet paper pad. The three main stages are successively, the forming section, the press section and finally the drying section. Furthermore, another operation (calendering) may be used to improve the surface smoothness. Forming, pressing and drying are not on the scope of this paper, but the influence of formation and calendering on surface roughness is analyzed. The main objective is to characterize the materials and specially its superficial structure. The proposed model is described in order to analyze this topographical aspect. Some experimental results are presented in order to illustrate the interest of this method to better understand physical properties. This work is therefore dedicated to the description of the proposed model: the studied surface is measured at a microscopic scale using for example, a classical stylus profilometry method. Then the obtained surface is transformed using a conformal mapping that retains the surface orientations. Due to the anisotropy of the fiber distribution in the plane of the sheet, the resulting surface is often not isotropic. Hence, the micro facets that identify the interfaces between pores and solid (fibers in the studied case) at the micro level are transformed into a macroscopic equivalent structure. Furthermore, an ellipsoid may be fit to the experimental data in order to obtain a simple model. The ellipticities are proved to be linked for paper to both fiber orientation (through other optical methods) and roughness. These parameters (ellipticities) are shown to be very significant for different end-use properties. Indeed, they shown to be correlated to printing or optical properties, such as gloss for example. We present in a first part the method to obtain a macroscopic description from physical microscopic measurements. Then measurements carried on different paper samples, using a classical

  10. Surface-roughness fractality effects in electrical conductivity of single metallic and semiconducting films

    NARCIS (Netherlands)

    Palasantzas, G.; Barnaś, J.

    1997-01-01

    Surface-roughness effects in electrical conductivity of thin metallic and semiconducting films with self-affine fractal surfaces are considered in the framework of the Born approximation. The surface roughness is described by the k-correlation model, and is characterized by the roughness exponent H

  11. Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy

    NARCIS (Netherlands)

    Lin, H.Y.; Liu, Y.; Wismeijer, D.; Crielaard, W.; Deng, D.M.

    2013-01-01

    Purpose: The aim of this study was to investigate the influence of oral implant surface roughness on bacterial biofilm formation and antimicrobial treatment efficacy. Materials and Methods: Titanium disks with low-roughness pickled surfaces and with moderately rough sandblasted, acid-etched surfaces

  12. When the going gets rough - studying the effect of surface roughness on the adhesive abilities of tree frogs.

    Science.gov (United States)

    Crawford, Niall; Endlein, Thomas; Pham, Jonathan T; Riehle, Mathis; Barnes, W Jon P

    2016-01-01

    Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales. It was shown that frogs can stick 2-3 times better on small scale roughnesses (3-6 µm asperities), producing higher adhesive and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5-562.5 µm asperities). Our experiments suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low elastic modulus, making it highly deformable.

  13. When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

    Directory of Open Access Journals (Sweden)

    Niall Crawford

    2016-12-01

    Full Text Available Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales. It was shown that frogs can stick 2–3 times better on small scale roughnesses (3–6 µm asperities, producing higher adhesive and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5–562.5 µm asperities. Our experiments suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low elastic modulus, making it highly deformable.

  14. Methods for evaluating leaf surface free energy and polarity having accounted for surface roughness.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison

    2017-09-01

    Leaf surfaces can have similar wettability, while their roughness and polarity may be very different. This may affect agrochemical bioefficacy, hence there is a need to characterise leaf surface polarity and roughness separately. This paper reviews established surface evaluation techniques and then uses a comprehensive dataset of static contact angles (12 chemical solutions on 15 different species) to compare and contrast them for their ability to characterise leaf surface polarity in isolation from roughness. Many techniques were severely limited when applied to leaf surfaces. A failing of the surface free energy (SFE) concept is that both physical and chemical properties affect the SFE. Additionally, whilst the leaf surface chemistry does not change, the SFE values generated are dependent on the chemical properties of the probe solution employed. The wetting tension-dielectric (WTD) method stands out due to its ability to isolate and quantify leaf surface roughness and polarity. A novel (WTD) roughness correction factor is proposed to improve SFE determination. The strong correlation between leaf polarity and leaf wettability for polar solutions (such as water) makes the WTD method a valuable tool for the evaluation of leaf surface-droplet behaviour and the advancement of agrochemical spray formulation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L. Wood

    Directory of Open Access Journals (Sweden)

    Nevzat Çakıcıer

    2008-09-01

    Full Text Available Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L. wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, wereb made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra, mean peak-to-valley height (Rz, root mean square roughness (Rq, and maximum roughness (Ry obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05 between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  16. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  17. Influence of surface roughness on X-ray computed tomography dimensional measurements of additive manufactured parts

    Directory of Open Access Journals (Sweden)

    Valentina Aloisi

    2016-11-01

    In this work, the influence of surface roughness on CT dimensional measurements, and the relation between tactile CMM and CT measurements are studied. Effects of larger as well as smaller surface roughness are taken into account, by means of three different additive manufactured samples characterized by different roughness. Experimental results prove the presence of a systematic error between tactile and CT measurements; the relation between this error and the Rz roughness parameter of the surface is analyzed.

  18. Measurement of surface roughness changes of unpolished and polished enamel following erosion.

    Directory of Open Access Journals (Sweden)

    Francesca Mullan

    Full Text Available To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion.Twenty human enamel sections (4x4 mm were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles. Median (IQR surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2 provided the Sa roughness data.For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR Sa roughness of 1.45 (2.58 μm and the four peripheral clusters had a median (IQR of 1.32 (4.86 μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35 μm and 0.34 (0.49 μm respectively (p<0.0001. Polished enamel had a median (IQR Sa roughness 0.04 (0.17 μm for the single central cluster and 0.05 (0.15 μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08 μm for both (p<0.0001.Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion.

  19. Development of sol-gel icephobic coatings: effect of surface roughness and surface energy.

    Science.gov (United States)

    Fu, Qitao; Wu, Xinghua; Kumar, Divya; Ho, Jeffrey W C; Kanhere, Pushkar D; Srikanth, Narasimalu; Liu, Erjia; Wilson, Peter; Chen, Zhong

    2014-12-10

    Sol-gel coatings with different roughness and surface energy were prepared on glass substrates. Methyl triethoxysilane (MTEOS), 3-Glycidyloxypropyl trimethoxysilane (GLYMO) and fluoroalkylsilane (FAS) were used to obtain a mechanically robust icephobic coating. Different amount of hydrophobic silica nano particles was added as fillers to introduce different roughness and surface energy to the coatings. The microstructure, roughness, and surface energy, together with elemental information and surface chemical state, were investigated at room temperature. The contact angle and sliding angle were measured at different temperatures to correlate the wetting behavior at low temperature with the anti-icing performance. The ice adhesion shear strength was measured inside an ice chamber using a self-designed tester. The factors influencing the ice adhesion were discussed, and the optimum anti-icing performance found in the series of coatings. It was found that lower surface energy leads to lower ice adhesion regardless of the roughness, while the roughness plays a more complicated role. The wetting behavior of the droplet on surface changes as temperature decreases. The anti-icing performance is closely related to the antiwetting property of the surfaces at subzero temperatures.

  20. PREDICTION OF SURFACE ROUGHNESS IN END MILLING OPERATION OF DUPLEX STAINLESS STEEL USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. D. PHILIP

    2015-03-01

    Full Text Available Response surface methodology has been used to study the effects of the machining parameters such as spindle speed, feed rate and axial depth of cut on surface roughness of duplex stainless steel in end milling operation. Dry milling experiments were conducted with three levels of spindle speed, feed rate and axial depth of cut. A mathematical model has been developed to predict the surface roughness in terms of the machining parameters using Box-Behnken design response surface methodology. The adequacy of the model was verified using analysis of variance. The prediction equation shows that the feed rate is the most important factor that influences the surface roughness followed by axial depth of cut and spindle speed. The validity of the model was verified by conducting the confirmation experiment.

  1. Fractal reconstruction of rough membrane surface related with membrane fouling in a membrane bioreactor.

    Science.gov (United States)

    Zhang, Meijia; Chen, Jianrong; Ma, Yuanjun; Shen, Liguo; He, Yiming; Lin, Hongjun

    2016-09-01

    In this paper, fractal reconstruction of rough membrane surface with a modified Weierstrass-Mandelbrot (WM) function was conducted. The topography of rough membrane surface was measured by an atomic force microscopy (AFM), and the results showed that the membrane surface was isotropous. Accordingly, the fractal dimension and roughness of membrane surface were calculated by the power spectrum method. The rough membrane surface was reconstructed on the MATLAB platform with the parameter values acquired from raw AFM data. The reconstructed membrane was much similar to the real membrane morphology measured by AFM. The parameters (including average roughness and root mean square (RMS) roughness) associated with membrane morphology for the model and real membrane were calculated, and a good match of roughness parameters between the reconstructed surface and real membrane was found, indicating the feasibility of the new developed method. The reconstructed membrane surface can be potentially used for interaction energy evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces

    NARCIS (Netherlands)

    Canas, N.; Kamperman, M.M.G.; Volker, B.; Kroner, E.; McMeeking, R.M.; Arzt, E.

    2012-01-01

    In this work, the adhesion of biomimetic polydimethylsiloxane (PDMS) pillar arrays with mushroom-shaped tips was studied on nano- and micro-rough surfaces and compared to unpatterned controls. The adhesion strength on nano-rough surfaces invariably decreased with increasing roughness, but pillar

  3. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces.

    Science.gov (United States)

    Eom, Namsoon; Parsons, Drew F; Craig, Vincent S J

    2017-07-06

    The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

  4. The impact of temperature changing on surface roughness of FFF process

    Science.gov (United States)

    Chaidas, D.; Kitsakis, K.; Kechagias, J.; Maropoulos, S.

    2016-11-01

    The current study investigates the surface roughness of models produced by a 3D printer. All models were produced by addition of solid material, a process called fused filament fabrication (FFF): initial extrusion into plastic filament, second extrusion and trace-binding during the 3D printing process. A low cost 3D printer Ultimaker was used to print these items. Polylactic acid (PLA) was used as main polymer material for printing. The temperature was parameter under direct variations in order to examine if there was an influence on roughness of 3d printed models. The surface roughness parameters were: the average mean surface roughness (Ra, μm), the surface roughness depth (Rz, μm), the total height of the roughness profile (Rt, μm) and the arithmetic mean width of profile elements (Rsm, μm). The examination showed conditionality: as temperature was increased the surface roughness parameters were further decreased.

  5. Surface roughness of ultra-thin silver films sputter deposited on a glass.

    Science.gov (United States)

    Rakocevic, Z; Petrovic, R; Strbac, S

    2008-12-01

    Silver was sputter deposited on a glass with a thin film thickness ranging from 10 to 80 nm. Scanning tunnelling microscopy was used to study the morphology of the obtained Ag-glass surfaces and to estimate the surface roughness. An equation for the surface roughness of the thin film was evaluated using parameters related to the thin film features: the surface roughness of the substrate, the compressibility of the thin film and the film thickness. The experimental results were fitted using the evaluated equation, and the conditions favouring lower or higher surface roughness were analyzed.

  6. Surface roughness and wettability of enamel and dentine surfaces prepared with different dental burs.

    Science.gov (United States)

    Al-Omari, W M; Mitchell, C A; Cunningham, J L

    2001-07-01

    The aim of dental adhesive restorations is to produce a long lasting union between the restoration and the tooth structure. This bond depends on many variables including the geometry of the preparation and the type of bonding agent or luting cement. It is therefore suggested that the topography of the tooth surface may influence the wettability and the bonding quality of adhesive systems. This study measured the surface roughness and wettability of enamel and dentine after preparation with different dental burs. The mesial and distal surfaces of 15 extracted sound human premolar teeth were prepared with a tungsten carbide crown bur, a diamond bur and a tungsten carbide finishing bur and finished in enamel or dentin, respectively. The prepared surfaces were analysed with a surface profilometer and scanning electron microscopy (SEM). The contact angle of distilled water on each of the prepared surfaces was used as the measure of wettability. The differences in average surface roughness (Ra) were significant between the rotary instrument groups, as revealed by a two-way ANOVA test. No differences were detected between enamel and dentine surfaces prepared with the same type of dental bur. The smoothest surfaces were those completed with tungsten carbide finishing burs. The diamond bur preparations were intermediate in the roughness assessment and the tungsten carbide crown burs gave the roughest surfaces. There were no significant differences in the contact angle measurements for the various groups. It was concluded that the surface roughness of enamel and dentine prepared by different rotary instruments had no significant influence on the wettability of distilled water on these surfaces.

  7. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    Science.gov (United States)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  8. Self-affine roughness influence on the friction coefficient for rubbers onto solid surfaces

    NARCIS (Netherlands)

    Palasantzas, G

    2004-01-01

    In this paper we investigate the influence of self-affine roughness on the friction coefficient mu(f) of a rubber body under incomplete contact onto a solid surface. The roughness is characterized by the rms amplitude w, the correlation length xi, and the roughness exponent H. It is shown that with

  9. Hydration dynamics promote bacterial coexistence on rough surfaces

    OpenAIRE

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model ex...

  10. Ice particle habit and surface roughness derived from PARASOL polarization measurements

    OpenAIRE

    B. H. Cole; P. Yang; B. A. Baum; J. Riedi; L. C.-Labonnote

    2014-01-01

    Ice clouds are an important element in the radiative balance of the earth's climate system, but their microphysical and optical properties still are not well constrained, especially ice particle habit and the degree of particle surface roughness. In situ observations have revealed common ice particle habits and evidence for surface roughness, but these observations are limited. An alternative is to infer the ice particle shape and surface roughness from satellite observat...

  11. Effect of surface roughness on bidirectional reflectance of Antarctic snow

    Science.gov (United States)

    Warren, Stephen G.; Brandt, Richard E.; O'Rawe Hinton, Patricia

    1998-11-01

    The angular pattern of sunlight reflected by snow is altered by surface roughness, which in the interior of Antarctica is usually in the form of meter-scale longitudinal erosional features (sastrugi), whose axes align with the direction of strong winds. The bidirectional reflectance distribution function (BRDF) changes over the course of a day as the solar azimuth changes relative to the sastrugi axis. The normalized BRDF, or ``anisotropic reflectance factor'' R, was measured at South Pole Station from a 22-m tower at 600, 660, and 900 nm wavelengths. The R pattern was similar at the three wavelengths; it probably varies little from 300 to 900 nm. Measurements were made at solar zenith angles θ0 from 67° to 90°, over the full range of viewing zenith angle (θr), azimuth angle between Sun and view (ϕ), and azimuth angle between Sun and sastrugi (ϕsas). Variation of R with ϕsas was notable; sastrugi oriented perpendicular to the solar beam cause a reduction of the forward peak, and sastrugi at an oblique angle cause R to lose its symmetry about the solar azimuth. However, the effects of sastrugi are mostly restricted to large viewing zenith angles, so remote sensing of albedo and atmospheric properties can be carried out accurately without knowledge of sastrugi height and orientation if only near-nadir views are used. This recommendation is opposite that for observations of broken clouds over dark surfaces, for which large θr is preferred. A parameterization of R is developed, valid for viewing angles θrSastrugi can cause a reduction of the snow albedo by altering the angle of incidence and by trapping of photons. For the small sastrugi of the Antarctic Plateau, the albedo is unaffected at visible wavelengths but can be reduced by a few percent at near-infrared wavelengths when the Sun is low.

  12. Real Time Monitoring of Surface Roughness by Acoustic Emissions in CNC Turning

    Directory of Open Access Journals (Sweden)

    C. E. Reddy

    2010-01-01

    Full Text Available Machining is the most important part of the manufacturing processes. Machining deals with the process of removing materialfrom a work piece in the form of chips. Machining is necessary where tight tolerances on dimensions and finishes arerequired. The common feature is the use of a cutting tool to form a chip that is removed from the work part, called Swarf.Every tool is subjected to wear in machining. The wear of the tool is gradual and reaches certain limit of life which is identifiedwhen the tool no longer produce the parts to required quality. There are various types of wear a single point cuttingtool may be subjected to in turning. Of these, flank wear on the tool significantly affects surface roughness. The other typesof tool wears are generally avoided by proper selection of tool material and cutting conditions. On-line surface roughnessmeasurements gained significant importance in manufacturing systems to provide accurate machining. The Acoustic Emission(AE analysis is one of the most promising techniques for on-line surface roughness monitoring. The AE signals arevery sensitive to changes in cutting process conditions. The gradual flank wear of the tool in turning causes changes in AEsignal parameters. In the present work investigations are carried for turning operation on mild steel material using HSS tool.The AE signals are measured by highly sensitive piezoelectric element; the on-line signals are suitably amplified using ahigh gain pre-amplifier. The amplified signals then recorded on to a computer and then analyzed using MAT LAB. A programis developed to measure AE signal parameters like Ring down count (RDC, Signal Rise Time and RMS voltage. Thesurface roughness is measured by roller ended linear variable probe, fitted and moved along with tool post on a CNC lathemachine. The linear movements of probe are converted in the form of continuous signals and are displayed on-line in thecomputer. The results thus plotted show a

  13. EFFECT OF MINIMUM QUANTITY LUBRICATION ON SURFACE ROUGHNESS IN TOOL-BASED MICROMILLING

    Directory of Open Access Journals (Sweden)

    Mohammad Yeakub Ali

    2017-05-01

    Full Text Available Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.

  14. Quantitative comparisons of radar image, scatterometer, and surface roughness data from Pisgah Crater, CA

    Science.gov (United States)

    Farr, T. G.; Engheta, N.

    1983-01-01

    The relationships between radar image brightness and backscatter coefficient, between the backscatter coefficient and surface roughness, and between surface roughness and geology, must be established in order to satisfy criteria for the quantitative use of radar images. Attention is presently given to the merits of calibrated radar images and scatterometers as sources of the backscatter coefficient, theories that yield the coefficient on the basis of known surface roughness (and vice versa), and the geologic interpretation of surface roughness and backscatter signatures. These considerations are discussed in the case of the Pisgah Crater and lava field in the Mojave Desert of California.

  15. Observations of the properties of the water surface roughness structure under the action of wind and waves

    Science.gov (United States)

    Long, Steven R.; Huang, Norden E.

    1988-01-01

    The statistical properties of a water surface roughness structure subjected to wind and waves are analyzed in a laboratory wind wave channel. The surface slope is derived using elevation measurements and the pitot tube is employed to measure wind speed. The transient responses of the surface slope to a calm condition and low, medium, and high wind conditions are studied. Two methods for determining a critical wind speed range are described.

  16. Effect of different topical fluoride applications on the surface roughness of a colored compomer

    Directory of Open Access Journals (Sweden)

    Aysun Avşar

    2010-04-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of neutral sodium fluoride (NNaF gel and acidulated phosphate fluoride (APF gel on the surface roughness of colored compomer (Twinky Star, conventional compomer (Compoglass F and resin-modified glass-ionomer cement (RMGIC (Photac-Fil. MATERIAL AND METHODS: A total of 45 standardized disc-shaped specimens were prepared for each material. After 24 h, finishing and polishing of specimens were done with aluminum oxide disc. Surface treatments with topical fluoride agents or distilled water (control were performed four times, and interspersed with 8 pH cycles, simulating high cariogenic challenges. After the treatment, the surface roughness (Ra was determined using a profilometer. In each group, specimens with Ra closest to the mean were examined with a scanning electron microscope (SEM at ×1,000 and ×3,500 magnifications. Two-way ANOVA was used to evaluate Ra measurements, and the differences in Ra values between subgroups for each material and each topical applications were compared by Tukey's highly significant difference pairwise comparisons. RESULTS: No statistically significant difference in Ra between the Twinky Star and Compoglass F was found. However, Photac Fil showed significantly higher Ra than these materials after all surface treatments. There was a general trend of Ra increase from controls to NNaF and APF gels for all materials. SEM observations revealed that the surface micromorphology of Twinky-Star did not differ significantly from that of Compoglass F. CONCLUSION: Both the compomers and the RMGIC showed significantly higher surface roughness when subjected to APF gel application.

  17. Surface Roughness and Residual Stresses of High Speed Turning 300 M Ultrahigh Strength Steel

    Directory of Open Access Journals (Sweden)

    Zhang Huiping

    2014-03-01

    Full Text Available Firstly, a single factor test of the surface roughness about tuning 300 M steel is done. According to the test results, it is direct to find the sequence of various factors affecting the surface roughness. Secondly, the orthogonal cutting experiment is carried out from which the primary and secondary influence factors affecting surface roughness are obtained: feed rate and corner radius are the main factors affecting surface roughness. The more the feed rate, the greater the surface roughness. In a certain cutting speed rang, the surface roughness is smaller. The influence of depth of cut to the surface roughness is small. Thirdly, according to the results of the orthogonal experiment, the prediction model of surface roughness is established by using regressing analysis method. Using MatLab software, the prediction mode is optimized and the significance test of the optimized model is done. It showed that the prediction model matched the experiment results. Finally, the surface residual stress test of turning 300 M steel is done and the residual stress of the surface and along the depth direction is measured.

  18. The role of haptic cues from rough and slippery surfaces in human postural control

    Science.gov (United States)

    Jeka, J. J.; Lackner, J. R.

    1995-01-01

    Haptic information is critically important in complex sensory-motor tasks such as manipulating objects. Its comparable importance in spatial orientation is only beginning to be recognized. We have shown that postural sway in humans is significantly reduced by lightly touching a stable surface with a fingertip at contact force levels far below those physically necessary to stabilize the body. To investigate further the functional relationship between contact forces at the hand and postural equilibrium, we had subjects stand in the tandem Romberg stance while being allowed physically supportive (force contact) and non-physically supportive (touch contact) amounts of index fingertip force on surfaces with different frictional characteristics. Mean sway amplitude (MSA) was reduced by over 50% with both touch and force contact of the fingertip, compared to standing without fingertip contact. No differences in MSA were observed when touching rough or slippery surfaces. The amplitude of EMG activity in the peroneal muscles and the timing relationships between fingertip forces, body sway and EMG activity suggested that with touch contact of the finger or with force contact on a slippery surface long-loop "reflexes" involving postural muscles were stabilizing sway. With force contact of the fingertip on a rough surface, MSA reduction was achieved primarily through physical support of the body. This pattern of results indicates that light touch contact cues from the fingertip in conjunction with proprioceptive signals about arm configuration are providing information about body sway that can be used to reduce MSA through postural muscle activation.

  19. Numerical simulation of shock wave propagation in water droplet impact on a rough surface

    Science.gov (United States)

    Fujisawa, Kei

    2017-11-01

    In this work shock wave propagation in water droplet impact on a rough surface is numerically studied. The numerical simulation is carried out utilizing two phase full Eulerian approach based on high resolution finite volume method, which allows for shock wave propagation in multiphase flow. To study the shock wave propagation in water droplet impact on a rough surface, an immersed boundary method is used as wall boundary treatment. The maximum impact pressure is computed as a function of surface roughness, and show that the maximum impact pressure increases with increasing relative roughness.

  20. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  1. Numerical analysis of the bucket surface roughness effects in Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Zeng, C. J.; Zhang, J.; Yan, Z. G.; Wang, Z. W.

    2013-12-01

    The internal flow of a Pelton turbine is quite complex. It is difficult to analyse the unsteady free water sheet flow in the rotating bucket owing to the lack of a sound theory. Affected by manufacturing technique and silt abrasion during the operation, the bucket surface roughness of Pelton turbine may be too great, and thereby influence unit performance. To investigate the effect of bucket roughness on Pelton turbine performance, this paper presents the numerical simulation of the interaction between the jet and the bucket in a Pelton turbine. The unsteady three-dimensional numerical simulations were performed with CFX code by using the SST turbulence model coupling the two-phase flow volume of fluid method. Different magnitude orders of bucket surface roughness were analysed and compared. Unsteady numerical results of the free water sheet flow patterns on bucket surface, torque and unit performance for each bucket surface roughness were generated. The total pressure distribution on bucket surface is used to show the free water sheet flow pattern on bucket surface. By comparing the variation of water sheet flow patterns on bucket surface with different roughness, this paper qualitatively analyses how the bucket surface roughness magnitude influences the impeding effect on free water sheet flow. Comparison of the torque variation of different bucket surface roughness highlighted the effect of the bucket surface roughness on the Pelton turbine output capacity. To further investigate the effect of bucket surface roughness on Pelton turbine performance, the relation between the relative efficiency loss rate and bucket surface roughness magnitude is quantitatively analysed. The result can be used to predict and evaluate the Pelton turbine performance.

  2. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address...

  3. Effect of denture cleansers on color stability, surface roughness, and hardness of different denture base resins

    Directory of Open Access Journals (Sweden)

    Anand Porwal

    2017-01-01

    Conclusion: Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion.

  4. Using Multi-Dimensional Microwave Remote Sensing Information for the Retrieval of Soil Surface Roughness

    Science.gov (United States)

    Marzahn, P.; Ludwig, R.

    2016-06-01

    In this Paper the potential of multi parametric polarimetric SAR (PolSAR) data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  5. USING MULTI-DIMENSIONAL MICROWAVE REMOTE SENSING INFORMATION FOR THE RETRIEVAL OF SOIL SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    P. Marzahn

    2016-06-01

    Full Text Available In this Paper the potential of multi parametric polarimetric SAR (PolSAR data for soil surface roughness estimation is investigated and its potential for hydrological modeling is evaluated. The study utilizes microwave backscatter collected from the Demmin testsite in the North-East Germany during AgriSAR 2006 campaign using fully polarimetric L-Band airborne SAR data. For ground truthing extensive soil surface roughness in addition to various other soil physical properties measurements were carried out using photogrammetric image matching techniques. The correlation between ground truth roughness indices and three well established polarimetric roughness estimators showed only good results for Re[ρRRLL] and the RMS Height s. Results in form of multitemporal roughness maps showed only satisfying results due to the fact that the presence and development of particular plants affected the derivation. However roughness derivation for bare soil surfaces showed promising results.

  6. Effect of pressure and polishing technique on surface roughness of cold cured acrylic resin

    Directory of Open Access Journals (Sweden)

    Sianiwati Goenharto

    2007-06-01

    Full Text Available The smoothness of acrylic surface plays an important role in producing removable orthodontic appliances. Int this study, we examine the effect of pressure and polishing technique on surface roughness of cold cured acrylic resin. Forty eight samples were prepared and classified into two groups: acrylic resin polymerization with and without pressure. Each group was classified into four subgroups: being polished with abrasive stone, bur for acrylic, silicone polisher and without being polished as control group. Surface roughness was measured using surface roughness tester. The surface roughness of polymerized acrylic with and without pressure and polished with different technique was analyzed using One-Way ANOVA, continued by Dunnet test. T-test was done to know whether there was the effect of pressure on surface roughness after being polished using certain technique. The result showed that pressure and polishing technique affected surface roughness significantly (p = 0.001. On the group of polymerization with pressure, surface roughness resulted from polishing with bur of acrylic showed significant difference with silicone polisher, whereas on the group without pressure, polishing with bur of acrylic showed significant difference with abrasive stone. Of the three polishing techniques, there was significant difference of surface roughness of cold cured acrylic resin (t = 0.002. It is concluded that pressure and polishing technique affected the surface roughness of cold cured acrylic resin. Polishing technique using bur of acrylic, followed by abrasive paper, rotating felt cone and soft brush showed less surface roughness on the group of polymerization with or without pressure.

  7. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  8. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    Science.gov (United States)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  9. Comparative evaluation of effect of different polishing systems on surface roughness of composite resin: An in vitro study

    Science.gov (United States)

    Chour, Rashmi G.; Moda, Aman; Arora, Arpana; Arafath, Muhmmed Y.; Shetty, Vikram K.; Rishal, Yousef

    2016-01-01

    Aims and Objectives: Satisfactory composite restoration depends upon its smooth finish, quality of polishing agents, type of composite material used, and its composition. The present study evaluated the effect of different polishing systems on the surface roughness of composite resin. Materials and Methods: Forty discs of composite were prepared and equally subjected to different finishing and polishing procedures; (i) unpolished control group, (ii) sof-lex discs, (iii) diamond tips, and (iv) Astrobrush groups. Later, the surface roughness for the entire specimen was evaluated using Profilomotor. Data were tabulated and statistically analyzed using analysis of variance and Tukey's test at significance level of 0.001. Results: Composite surface roughness after polishing was statistically significant between the groups. Sof-lex group produced lesser surface roughness compared to control, Astrobrush, and diamond group. Conclusion: The present study indicated that diamond tips can be used to remove rough surface whereas sof-lex can be used for final finish and polish of the composite restoration. PMID:27652251

  10. Surface roughness effects on plasma near a divertor plate and local impact angle

    Directory of Open Access Journals (Sweden)

    Wanpeng Hu

    2017-08-01

    Full Text Available The impact of rough surface topography on the electric potential and electric field is generally neglected due to the small scale of surface roughness compared to the width of the plasma sheath. However, the distributions of the electric potential and field on rough surfaces are expected to influence the characteristics of edge plasma and the local impact angle. The distributions of plasma sheath and local impact angle on rough surfaces are investigated by a two dimension-in-space and three dimension-in-velocity (2d3v Particle-In-Cell (PIC code. The influences of the plasma temperature andsurface morphology on the plasma sheath, local impact angle and resulting physical sputtering yield on rough surfaces are investigated.

  11. Surface roughness of glass ionomer cements indicated for atraumatic restorative treatment (ART).

    Science.gov (United States)

    da Silva, Renata Cristiane; Zuanon, Angela Cristina Cilense

    2006-01-01

    The purpose of this study was to evaluate the surface roughness of four conventional chemically cured glass ionomer cements (Fuji IX, Ketac Molar, Vidrion R and Vitromolar) commonly used in atraumatic restorative treatment (ART) immediately after material preparation. Twenty specimens of each glass ionomer cement were fabricated and surface roughness was measured after material setting. The specimens were further examined under scanning electron microscopy. Data were analyzed statistically by Kruskal-Wallis test and Mann-Whitney test at 5% significance level. Two-by-two comparisons showed statistically significant difference (pKetac Molar and Vidrion R, which had statically similar results (p>0.05). Regarding their results of surface roughness, the materials can be presented in a crescent order, as follows: Ketac Molar Ketac Molar and Vidrion R presented acceptable surface roughness after setting reaction while Vitromolar showed remarkably higher surface roughness.

  12. Surface Roughness Models and Their Experimental Validation in Micro Milling of 6061-T6 Al Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Jie Yi

    2015-01-01

    Full Text Available Due to the widespread use of high-accuracy miniature and micro features or components, it is required to predict the machined surface performance of the micro milling processes. In this paper, a new predictive model of the surface roughness is established by response surface method (RSM according to the micro milling experiment of 6061-T6 aluminum alloy which is carried out based on the central composite circumscribed (CCC design. Then the model is used to analyze the effects of parameters on the surface roughness, and it can be concluded that the surface roughness increases with the increasing of the feed rate and the decreasing of the spindle speed. At last, based on the model the contour map of the surface roughness and material removal rate is established for optimizing the process parameters to improve the cutting efficiency with good surface roughness. The prediction results from the model have good agreement with the experimental results.

  13. Numerical and Experimental Investigation of Microchannel Flows with Rough Surfaces (Preprint)

    National Research Council Canada - National Science Library

    Lilly, T. C; Duncan, J. A; Nothnagel, S. L; Gimelshein, S. F; Gimelshein, N. E; Ketsdever, A. D; Wysong, I. J

    2007-01-01

    .... This model requires only one surface parameter, average surface roughness angle. This model has also been linked to the Cercignani-Lampis scattering kernel as a required reference for use in deterministic kinetic solvers...

  14. On the Concept of Electrode to Discharge Phenomena in Surface Roughness With Reference Strongly Electronegative Gases

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1986-01-01

    The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions of artif......The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions...

  15. Hydration dynamics promote bacterial coexistence on rough surfaces

    Science.gov (United States)

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  16. THE EFFECT OF THE ALUMINIUM ALLOY SURFACE ROUGHNESS ON THE RESTITUTION COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Stanisław Bławucki

    2015-08-01

    Full Text Available The paper presents the results of research on the effect of the surface roughness of aluminum alloy on its coefficient of restitution. It describes the current method of finishing the workpiece surface layer after cutting and innovative measuring device which was used in the research. The material used in the research was aluminium alloy EN AW 7075. The paper also presents a relationship between the coefficient of restitution and surface roughness of the milled samples as well as impressions left by bead in function of velocity and a sample surface roughness.

  17. Electromagnetic scattering by a circular cylinder buried below a slightly rough Gaussian surface.

    Science.gov (United States)

    Fiaz, Muhammad Arshad; Frezza, Fabrizio; Ponti, Cristina; Schettini, Giuseppe

    2014-01-01

    A two-dimensional beam is scattered by a cylinder buried below a slightly rough surface. The cylindrical wave approach is applied, i.e., cylindrical waves are employed as basis functions of the fields scattered by the cylinder. Moreover, a spectral representation of both the incident field and the cylindrical waves is used. Rough surface deviation is coped with by the first-order small perturbation method. Therefore, to a zeroth-order solution relevant to scattering in the case of a flat surface, a first-order approximation is superimposed. The theoretical approach has been implemented for a periodic surface with Gaussian roughness spectrum.

  18. Giant Drag Reduction in Complex Fluid Drops on Rough Hydrophobic Surfaces

    Science.gov (United States)

    Luu, Li-Hua; Forterre, Yoël

    2013-05-01

    We describe a new spreading regime during the drop impact of model yield-stress fluids (Carbopol microgel solutions) on rough hydrophobic surfaces, in a range of parameters where classical Newtonian drops usually splash. For large surface roughness and high impact velocity, we observe that the maximal inertial spreading diameter of the drops can be as much as twice larger than on smooth surfaces in the same conditions, corresponding to apparent basal friction reductions of more than 80%. We interpret this large drag reduction using a simple energy balance model and a dynamic slip length that depends on both the surface roughness and the drop’s dynamics.

  19. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  20. Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid State Recycled Aluminum Alloy 6061 Chips

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2017-01-01

    Full Text Available Solid state recycling through hot extrusion is a promising technique to recycle machining chips without remelting. Furthermore, equal channel angular pressing (ECAP technique coupled with the extruded recycled billet is introduced to enhance the mechanical properties of recycled samples. In this paper, the surface roughness of solid state recycled aluminum alloy 6061 turning chips was investigated. Aluminum chips were cold compacted and hot extruded under an extrusion ratio (ER of 5.2 at an extrusion temperature (ET of 425°C. In order to improve the properties of the extruded samples, they were subjected to ECAP up to three passes at room temperature using an ECAP die with a channel die angle (Φ of 90°. Surface roughness (Ra and Rz of the processed recycled billets machined by turning was investigated. Box-Behnken experimental design was used to investigate the effect of three machining parameters (cutting speed, feed rate, and depth of cut on the surface roughness of the machined specimens for four materials conditions, namely, extruded billet and postextrusion ECAP processed billets to one, two, and three passes. Quadratic models were developed to relate the machining parameters to surface roughness, and a multiobjective optimization scheme was conducted to maximize material removal rate while maintaining the roughness below a preset practical value.

  1. Investigation of the influence of a step change in surface roughness on turbulent heat transfer

    Science.gov (United States)

    Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.

    1991-01-01

    The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.

  2. Surface roughness of rock faces through the curvature of triangulated meshes

    Science.gov (United States)

    Lai, P.; Samson, C.; Bose, P.

    2014-09-01

    In this paper, we examine three different measures of roughness based on a geometric property of surfaces known as curvature. These methods were demonstrated using an image of a large rock face made up of a smooth blocky limestone in contact with a rough friable dolostone. The point cloud analysed contained 10,334,288 points and was acquired at a distance of 3 m from the rock face. The point cloud was first decimated using an epsilon-net and then meshed using the Poisson surface reconstruction method before the proposed measures of roughness were applied. The first measure of roughness is defined as the difference in curvature between a mesh and a smoothed version of the same mesh. The second measure of roughness is a voting system applied to each vertex which identifies the subset of vertices which represent rough regions within the mesh. The third measure of roughness uses a combination of spatial partitioning data structures and data clustering in order to define roughness for a region in the mesh. The spatial partitioning data structure allows for a hierarchy of roughness values which is related to the size of the region being considered. All of the proposed measures of roughness are visualised using colour-coded displays which allows for an intuitive interpretation.

  3. ICESat/GLAS measurement of Ice sheet surface slope and roughness

    Science.gov (United States)

    Yi, D.; Zwally, H. J.

    2003-12-01

    Surface slope and roughness are important features of ice sheets that are affected by bedrock topography, ice flow, ice thickness, and wind. Return-pulse waveforms from ICESat/GLAS provide surface elevations and information on surface slope and roughness. Surface slope and roughness within the laser footprint both affect the spread of return waveform, so information on surface slope and roughness can be derived by comparing the transmitted and return pulse waveforms. The shape of the transmitted waveform is nearly Gaussian. For typical ice sheet surfaces, the return pulse shape is also very close to Gaussian. By fitting Gaussian functions to the transmitted and return pulse waveforms and calculating the increase in width of the return pulse, surface roughness can be calculated if the surface slope is known, or vice versa. The ICESat/GLAS 1064 nm laser footprint diameter is about 70 meters and the footprint separation is about 170 meters. The small-scale surface roughness derived from the pulse shape is mostly due to wind-driven surface sastrugi. Over the larger ice sheet slopes, the pulse shape is dominated mainly by the surface slope. Information on the larger-scale (larger than 170 m) surface slope and surface undulations is also derived from successive along-track ICESat/GLAS elevations. The ICESat orbit covers Antarctica to 86° S and all of the Greenland ice sheet. Spatial distributions of surface roughness and slopes over the ice sheets for the period of ICESat operation are described. Effects of partial detector/amplifier saturation on the return pulse shape and the calculated roughness and slopes are also discussed.

  4. Nonuniversality of roughness exponent of quasistatic fracture surfaces.

    Science.gov (United States)

    Ansari-Rad, Mehdi; Allaei, S Mehdi Vaez; Sahimi, Muhammad

    2012-02-01

    Numerous experiments have indicated that the fracture front (in three dimensions) and crack lines (in two dimensions) in disordered solids and rocklike materials is rough. It has been argued that the roughness exponent ζ is universal. Using extensive simulations of a two-dimensional model, we provide strong evidence that if extended correlations and anisotropy-two features that are prevalent in many materials-are incorporated in the models that are used in the numerical simulation of crack propagation, then ζ will vary considerably with the extent of the correlations and anisotropy. The results are consistent with recent experiments that also indicate deviations of ζ from its supposedly universal value, as well as with the data from rock samples. © 2012 American Physical Society

  5. Effect of denture cleansers on color stability, surface roughness, and hardness of different denture base resins.

    Science.gov (United States)

    Porwal, Anand; Khandelwal, Meenakshi; Punia, Vikas; Sharma, Vivek

    2017-01-01

    The purpose of this study was to evaluate the effect of different denture cleansers on the color stability, surface hardness, and roughness of different denture base resins. Three denture base resin materials (conventional heat cure resin, high impact resin, and polyamide denture base resin) were immersed for 180 days in commercially available two denture cleansers (sodium perborate and sodium hypochlorite). Color, surface roughness, and hardness were measured for each sample before and after immersion procedure. One-way analysis of variance and Tukey's post hoc honestly significant difference test were used to evaluate color, surface roughness, and hardness data before and after immersion in denture cleanser (α =0.05). All denture base resins tested exhibited a change in color, surface roughness, and hardness to some degree in both denture cleansers. Polyamides resin immersed in sodium perborate showed a maximum change in color after immersion for 180 days. Conventional heat cure resin immersed in sodium hypochlorite showed a maximum change in surface roughness and conventional heat cure immersed in sodium perborate showed a maximum change in hardness. Color changes of all denture base resins were within the clinically accepted range for color difference. Surface roughness change of conventional heat cure resin was not within the clinically accepted range of surface roughness. The choice of denture cleanser for different denture base resins should be based on the chemistry of resin and cleanser, denture cleanser concentration, and duration of immersion.

  6. Assessing soil surface roughness decay during simulated rainfall by multifractal analysis

    Directory of Open Access Journals (Sweden)

    E. Vidal Vázquez

    2008-06-01

    Full Text Available Understanding and describing the spatial characteristics of soil surface microrelief are required for modelling overland flow and erosion. We employed the multifractal approach to characterize topographical point elevation data sets acquired by high resolution laser scanning for assessing the effect of simulated rainfall on microrelief decay. Three soil surfaces with different initial states or composition and rather smooth were prepared on microplots and subjected to successive events of simulated rainfall. Soil roughness was measured on a 2×2 mm2 grid, initially, i.e. before rain, and after each simulated storm, yielding a total of thirteen data sets for three rainfall sequences. The vertical microrelief component as described by the statistical index random roughness (RR exhibited minor changes under rainfall in two out of three study cases, which was due to the imposed wet initial state constraining aggregate breakdown. The effect of cumulative rainfall on microrelief decay was also assessed by multifractal analysis performed with the box-count algorithm. Generalized dimension, Dq, spectra allowed characterization of the spatial variation of soil surface microrelief measured at the microplot scale. These Dq spectra were also sensitive to temporal changes in soil surface microrelief, so that in all the three study rain sequences, the initial soil surface and the surfaces disturbed by successive storms displayed great differences in their degree of multifractality. Therefore, Multifractal parameters best discriminate between successive soil stages under a given rain sequence. Decline of RR and multifractal parameters showed little or no association.

  7. Response surface and artificial neural network prediction model and optimization for surface roughness in machining

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2015-04-01

    Full Text Available The present paper deals with the development of prediction model using response surface methodology and artificial neural network and optimizes the process parameter using 3D surface plot. The experiment has been conducted using coated carbide insert in machining AISI 1040 steel under dry environment. The coefficient of determination value for RSM model is found to be high (R2 = 0.99 close to unity. It indicates the goodness of fit for the model and high significance of the model. The percentage of error for RSM model is found to be only from -2.63 to 2.47. The maximum error between ANN model and experimental lies between -1.27 and 0.02 %, which is significantly less than the RSM model. Hence, both the proposed RSM and ANN prediction model sufficiently predict the surface roughness, accurately. However, ANN prediction model seems to be better compared with RSM model. From the 3D surface plots, the optimal parametric combination for the lowest surface roughness is d1-f1-v3 i.e. depth of cut of 0.1 mm, feed of 0.04 mm/rev and cutting speed of 260 m/min respectively.

  8. Comparison of calculation methods of fractal dimension on agricultural soil surface roughness

    NARCIS (Netherlands)

    Chunxia, J.; Zhixiong, L.; Hao, X.; Jing, Z.; Hoogmoed, W.B.

    2014-01-01

    [Objectives]How the fractal theory as an efficient tool to describe rough and irregular geometrical feature in nonlinear system and nature is applied into agricultural soil research is hot issue at present. [Methods]The roughness data of agricultural soil surface after sowed(perpendicular to the

  9. Surface roughness and grain boundary scattering effects on the electrical conductivity of thin films

    NARCIS (Netherlands)

    Palasantzas, George

    1998-01-01

    In this work, we investigate surface/interface roughness and grain boundary scattering effects on the electrical conductivity of polycrystalline thin films in the Born approximation. We assume for simplicity a random Gaussian roughness convoluted with a domain size distribution ~e^-πr^2/ζ^2 to

  10. Test Operation Procedure (TOP) 01-1-010A Vehicle Test Course Severity (Surface Roughness)

    Science.gov (United States)

    2017-12-12

    Paragraph 1. SCOPE ................................................................................... 2 2. FACILITIES...ATEC) Test Center facilities are provided in Section 5, in the following paragraphs : a. ATC courses, paragraph 5.1. b. YTC courses, paragraph ...5.2. c. TRTC courses, paragraph 5.3. 3. MONITORING TEST COURSE SURFACE ROUGHNESS. Test course roughness is monitored using several techniques

  11. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. ANALYTICAL DETERMINATION OF CONDITIONS FOR SURFACE ROUGHNESS REDUCTION IN DIAMOND GRINDING

    Directory of Open Access Journals (Sweden)

    Igor RYABENKOV

    2017-05-01

    Full Text Available The article contains analytical dependences for determination of main parameters of surface roughness in diamond grinding. It is shown that the accounting values of linear wear of grains range matches the theory and practice of grinding. This indicates the effectiveness of reducing surface roughness by adjusting the values of linear wear of grains range. Lack of dependency of surface roughness parameters calculated depth of sanding attests to the effectiveness of deep grinding, which allows you to combine the operations of the preliminary and final grinding in one operation, while providing increased in 10 ... 100 times the processing performance and execution of technological requirements on quality of processing.

  13. Surface roughness prediction model and experimental results based on multi-wavelength fiber optic sensors.

    Science.gov (United States)

    Zhu, Nan-Nan; Zhang, Jun

    2016-10-31

    The surface roughness prediction model based on a support vector machine was proposed and the multi-wavelength fiber optic sensor was established. The specimens with different surface roughness selected as the test samples were analyzed by using the prediction model when the incident wavelengths were 650 nm and 1310 nm, respectively. The working distance of 2.5 mm ~3.5 mm was chosen as the optimum measurement distance. The experimental results indicate that the error range of surface roughness is 0.74% ~7.56% at 650 nm, and the error range of surface roughness is 1.03% ~5.92% at 1310 nm. The average relative error is about 2.669% at 650 nm, while it is about 2.431% at 1310 nm. The error of roughness measurement is less than 3% by using the model, which is acceptable. The error of surface roughness based on the prediction model is smaller than that by using the characteristic curves between surface roughness and the scattering intensity ratio.

  14. Original Research. Surface Roughness Changes of Different Restoration Materials after Tooth Brushing Simulation Using Different Toothpastes

    Directory of Open Access Journals (Sweden)

    Dudás Csaba

    2017-03-01

    Full Text Available Background: The need for the whitening effects of toothpastes became primary for most users. Changes in the surface roughness of restoration materials after tooth brushing are inevitable, and the abrasion is known to increase the possibility of dental plaque accumulation. Aim of the study: To evaluate in vitro surface roughness changes of different dental restorative materials after tooth brushing simulation. Material and methods: Fifty specimens of two composite materials (Evicrol, Super-Cor, two glass ionomer materials (Glassfill, Kavitan Cem and a silicate cement (Fritex were prepared according to the manufacturer’s instructions. Each group of specimens was divided in three subgroups for tooth brushing simulation: using two different types of toothpaste and without toothpaste. Before and after 153 hours of tooth brushing simulation with a custom-made device, the surface roughness was measured with a surface roughness tester. Statistical analysis was performed after collecting the data. Results: All materials exhibited changes in surface roughness after the use of both toothpastes. The self-curing composite showed the less change and glass ionomer materials showed the greatest changes in surface roughness. Conclusions: The surface changes of dental materials depended on their composition and the cleaning procedure. Although self-curing composite was the most resistant to surface changes, its surface roughness values were high. Light-curing composite presented the lowest surface roughness values, even after brushing with toothpastes. The “medium” labeled toothbrush caused significant changes without toothpaste on the surface of light-curing composite, glass ionomer and silicate cement materials.

  15. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  16. FEM/SPH simulation research and experiment of surface roughness based on traditional polishing process

    Science.gov (United States)

    Li-Jun, Shen; Yong-Jian, Wan; Kai, Meng; Chuan-Ke, Huang

    2015-06-01

    Surface roughness is one of the most important parameters of surface quality and a difficult technical issue in glass polishing, especially for traditional polishing. In this paper, the coupled algorithm of FEM/SPH has been used to simulate the deformation of brittle K9 glass in traditional polishing. The influences of polishing particle size and insert depth on surface roughness are analyzed in detail. Then, experiment is carried out on a ∅100 mm flat K9 mirror with three sorts of particle, ceria abrasive particle with 1.2, 1.6 and 2 μm. Simulation and experiment results show that surface roughness of brittle glass has direct relationship with particle size during traditional polishing process. The surface roughness is better as the particle size is smaller.

  17. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  18. The effect of brushing with toothpaste containing nano calcium carbonate upon nanofill composite resin surface roughness

    Science.gov (United States)

    Ramadhani, A. M.; Herda, E.; Triaminingsih, S.

    2017-08-01

    This study aims to determine the effect of brushing with toothpaste containing nanocalcium carbonate on the roughness of nanofill composite resin surface. Brushing was conducted with 3 types of materials for 3 consecutive brushing periods of 10 minutes each. Surface roughness was measured using a surface-roughness tester and the results were analyzed using the repeated ANOVA and the one-way ANOVA test. The surface morphology was observed using SEM after 3 months’ worth of brushing with the 3 materials. It was found that the nanofill composite resin surface-roughness value increased significantly (pcalcium carbonate for 3 months, but the value was not as high as that obtained when brushing with other types of toothpaste.

  19. Grasping Claws of Bionic Climbing Robot for Rough Wall Surface: Modeling and Analysis

    Directory of Open Access Journals (Sweden)

    Quansheng Jiang

    2017-12-01

    Full Text Available Aiming at the inspection of rough stone and concrete wall surfaces, a grasping module of cross-arranged claw is designed. It can attach onto rough wall surfaces by hooking or grasping walls. First, based on the interaction mechanism of hooks and rough wall surfaces, the hook structures in claw tips are developed. Then, the size of the hook tip is calculated and the failure mode is analyzed. The effectiveness and reliability of the mechanism are verified through simulation and finite element analysis. Afterwards, the prototype of the grasping module of claw is established to carry out grasping experiment on vibrating walls. Finally, the experimental results demonstrate that the proposed cross-arranged claw is able to stably grasp static wall surfaces and perform well in grasping vibrating walls, with certain anti-rollover capability. This research lays a foundation for future researches on wall climbing robots with vibrating rough wall surfaces.

  20. Blister formation on rough and technical tungsten surfaces exposed to deuterium plasma

    Science.gov (United States)

    Manhard, Armin; Balden, Martin; von Toussaint, Udo

    2017-12-01

    Up to now, blister formation on rough or technical tungsten surfaces exposed to hydrogen isotope plasma was believed to be completely suppressed. The few dedicated experiments on this issue that can be found in literature appear to support that claim. Using a novel technique of 3D difference imaging of tungsten surfaces, we now demonstrate that roughness introduced by chemical etching, i.e. without the associated mechanical deformation layer introduced by grinding, only moderately reduces blistering. A technical surface with comparable roughness produced by precision grinding (R a  ⩽  1.6 µm) led to a strong reduction in blister size and density, but blisters were found nevertheless. In this article we give a detailed description of the investigated rough W surfaces and present a statistical evaluation of blistering on these surfaces after exposure to a low-temperature deuterium plasma.

  1. Spatial characteristics of secondary flow in a turbulent boundary layer over longitudinal surface roughness

    Science.gov (United States)

    Hwang, Hyeon Gyu; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulations of turbulent boundary layers (TBLs) over spanwise heterogeneous surface roughness are performed to investigate the characteristics of secondary flow. The longitudinal surface roughness, which features lateral change in bed elevation, is described by immersed boundary method. The Reynolds number based on the momentum thickness is varied in the range of Reθ = 300-900. As the TBLs over the roughness elements spatially develop in the streamwise direction, a secondary flow emerges in a form of counter-rotating vortex pair. As the spanwise spacing between the roughness elements and roughness width vary, it is shown that the size of the secondary flow is determined by the valley width between the roughness elements. In addition, the strength of the secondary flow is mostly affected by the spanwise distance between the cores of the secondary flow. Analysis of the Reynolds-averaged turbulent kinetic energy transport equation reveals that the energy redistribution terms in the TBLs over-the ridge type roughness play an important role to derive low-momentum pathways with upward motion over the roughness crest, contrary to the previous observation with the strip-type roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  2. Effects of different polishing techniques on the surface roughness of dental porcelains

    Science.gov (United States)

    SARIKAYA, Işil; GÜLER, Ahmet Umut

    2010-01-01

    Objective The purpose of this study was to evaluate the effects of different polishing techniques on the surface roughness of dental porcelains. Material and Methods Fifty-five cylindirical specimens (15x2 mm) were prepared for each feldspathic (Vita VMK 95, Ceramco III) and low-fusing dental porcelain (Matchmaker). Fifty-five specimens of machinable feldspathic porcelain blocks (Vitablocs Mark II), (12x14x18 mm) were cut into 2-mm-thick slices (12x14 mm) with low speed saw. The prepared specimens were divided into 11 groups (n=5) representing different polishing techniques including control ((C) no surface treatment), glaze (G) and other 9 groups that were finished and polished with polishing discs (Sof-Lex) (Sl), two porcelain polishing kits (NTI (Pk), Dialite II (Di)), a diamond polishing paste (Sparkle) (Sp), a zirconium silicate based cleaning and polishing prophy paste (Zircate) (Zr), an aluminum oxide polishing paste (Prisma Gloss) (Pg), and combinations of them. The surface roughness of all groups was measured with a profilometer. The data were analyzed with a 2-way analysis of variance, and the mean values were compared by the Tukey Honestly Significant Difference test (α=0.05). Results For all porcelain material groups, the lowest Ra values were observed in Group Gl, Group Sl, Group Pk, and Group Di, which were not significantly different from each other (p>0.05).When comparing the 4 different porcelain materials, the machinable feldspathic porcelain block group (Mark II) demonstrated statistically significantly less Ra values than the other porcelain materials tested (pporcelain groups (p=0.919), also these groups demonstrated the highest Ra values. Conclusion Subjected to surface roughness, the surfaces obtained with polishing and/or cleaning-prophy paste materials used alone were rougher compared to the surfaces finished using Sof-lex, Dialite, and NTI polishing kit. Polishing kits and discs were found more effective than the polishing pastes used

  3. Effects of different polishing techniques on the surface roughness of dental porcelains

    Directory of Open Access Journals (Sweden)

    Işil Sarikaya

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the effects of different polishing techniques on the surface roughness of dental porcelains. MATERIAL AND METHODS: Fifty-five cylindirical specimens (15x2 mm were prepared for each feldspathic (Vita VMK 95, Ceramco III and low-fusing dental porcelain (Matchmaker. Fifty-five specimens of machinable feldspathic porcelain blocks (Vitablocs Mark II, (12x14x18 mm were cut into 2-mm-thick slices (12x14 mm with low speed saw. The prepared specimens were divided into 11 groups (n=5 representing different polishing techniques including control ((C no surface treatment, glaze (G and other 9 groups that were finished and polished with polishing discs (Sof-Lex (Sl, two porcelain polishing kits (NTI (Pk, Dialite II (Di, a diamond polishing paste (Sparkle (Sp, a zirconium silicate based cleaning and polishing prophy paste (Zircate (Zr, an aluminum oxide polishing paste (Prisma Gloss (Pg, and combinations of them. The surface roughness of all groups was measured with a profilometer. The data were analyzed with a 2-way analysis of variance, and the mean values were compared by the Tukey Honestly Significant Difference test (a=0.05. RESULTS: For all porcelain material groups, the lowest Ra values were observed in Group Gl, Group Sl, Group Pk, and Group Di, which were not significantly different from each other (p>0.05.When comparing the 4 different porcelain materials, the machinable feldspathic porcelain block group (Mark II demonstrated statistically significantly less Ra values than the other porcelain materials tested (p<0.05. No significant difference was observed between the VMK 95 and Ceramco III porcelain groups (p=0.919, also these groups demonstrated the highest Ra values. CONCLUSION: Subjected to surface roughness, the surfaces obtained with polishing and/or cleaning-prophy paste materials used alone were rougher compared to the surfaces finished using Sof-lex, Dialite, and NTI polishing kit

  4. Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants.

    Science.gov (United States)

    Costa-Berenguer, Xavier; García-García, Marta; Sánchez-Torres, Alba; Sanz-Alonso, Mariano; Figueiredo, Rui; Valmaseda-Castellón, Eduard

    2018-01-01

    To assess the effect of implantoplasty on the fracture resistance, surface roughness, and macroscopic morphology of standard diameter (4.1 mm) external connection dental implants. An in vitro study was conducted in 20 screw-shaped titanium dental implants with an external connection. In 10 implants, the threads and surface were removed and polished with high-speed burs (implantoplasty), while the remaining 10 implants were used as controls. The final implant dimensions were recorded. The newly polished surface quality was assessed by scanning electron microscopy (SEM) and by 3D surface roughness analysis using a confocal laser microscope. Finally, all the implants were subjected to a mechanical pressure resistance test. A descriptive analysis of the data was made. Also, Student's t tests were employed to detect differences regarding the compression tests. Implantoplasty was carried out for a mean time of 10 min and 48 s (standard deviation (SD) of 1 min 22 s). Macroscopically, the resulting surface had a smooth appearance, although small titanium shavings and silicon debris were present. The final surface roughness (S a values 0.1 ± 0.02 μm) was significantly lower than that of the original (0.75 ± 0.08 μm S a ) (p = .005). There was minimal reduction in the implant's inner body diameter (0.19 ± 0.03 mm), and no statistically significant differences were found between the test and control implants regarding the maximum resistance force (896 vs 880 N, respectively). Implantoplasty, although technically demanding and time-consuming, does not seem to significantly alter fracture resistance of standard diameter external connection implants. A smooth surface with S a values below 0.1 μm can be obtained through the use of silicon polishers. A larger sample is required to confirm that implantoplasty does not significantly affect the maximum resistance force of standard diameter external connection implants. © 2017 John Wiley & Sons A/S. Published

  5. Correlation between surface roughness and microhardness of experimental composites with varying filler concentration.

    Science.gov (United States)

    Munchow, Eliseu Aldrighi; Correa, Marcos Brito; Ogliari, Fabricio Aulo; Piva, Evandro; Zanchi, Cesar Henrique

    2012-05-01

    The purpose of this study was to investigate the influence of the surface roughness on the surface microhardness of experimental composites with varying filler concentration. Experimental resin composites were formulated by mixing Bis-GMA and TEGDMA in a 50/50% weight ratio and CQ/EDAB were added to make the material photosensitive. Silanized glass particles were incorporated in the resin blend in two concentrations: C50 with 50% and C75 with 75% in weight ratio. The surface roughness and the surface microhardness measurements were determined after every three finishing procedures with #280-, #600- and #1200-grit wet sandpapers, respectively. The data were analyzed statistically by Two Way ANOVA and Tukey's test, and comparisons were conducted using the Spearman's correlation test (p > 0.05). The surface roughness and surface microhardness were negatively associated (r = - 0.68) and the finishing procedures of both composites resulted in harder and smoother surfaces than the initial ones. Additionally, in a smooth circumstance, the higher content of fillers has not resulted in a composite with better microhardness and smoothness. Finishing procedures decreased the surface roughness and consequently improved the surface microhardness of the composites evaluated. Finishing and polishing procedures are effectives in reducing the surface roughness amplitude of composite materials and in improving their surface microhardness. Thus a microhardness test and any hardness evaluation must be conducted only after a properly finished and polished surface is achieved.

  6. Surface Roughness Impacts on Granular Media Filtration at Favorable Deposition Conditions: Experiments and Modeling.

    Science.gov (United States)

    Jin, Chao; Normani, Stefano D; Emelko, Monica B

    2015-07-07

    Column tests were conducted to investigate media roughness impacts on particle deposition in absence of an energy barrier (i.e., high ionic strength). Media/collector surface roughness consistently influenced colloid deposition in a nonlinear, nonmonotonic manner such that a critical roughness size associated with minimum particle deposition could be identified; this was confirmed using a convection-diffusion model. The results demonstrate that media surface roughness size alone is inadequate for predicting media roughness impacts on particle deposition; rather, the relative size relationship between the particles and media/collectors must also be considered. A model that quantitatively considers media surface roughness was developed that described experimental outcomes well and consistently with classic colloid filtration theory (CFT) for smooth surfaces. Dimensionless-scaling factors froughness and fPCIF were introduced and used to develop a model describing particle deposition rate (kd) and colloid attachment efficiency (α). The model includes fitting parameters that reflect the impact of critical system characteristics such as ionic strength, loading rate, hydrophobicity. Excellent agreement was found not only between the modeled outcomes for colloid attachment efficiency (α) and experimental results from the column tests, but also with experimental outcomes reported elsewhere. The model developed herein provides a framework for describing media surface roughness impacts on colloid deposition.

  7. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.

    Science.gov (United States)

    Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas

    2007-02-01

    An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing.

  8. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    Science.gov (United States)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  9. Fast, Statistical Model of Surface Roughness for Ion-Solid Interaction Simulations and Efficient Code Coupling

    Science.gov (United States)

    Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian

    2017-10-01

    Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.

  10. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    Science.gov (United States)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  11. Comparison of the surface roughness of gypsum models constructed using various impression materials and gypsum products

    Directory of Open Access Journals (Sweden)

    Yi-Chih Chang

    2016-03-01

    Conclusion: The surface roughness of stone models was mainly determined by the type of alginate impression material, and was less affected by the type of silicone rubber impression material or gypsum product, or the storage time before repouring.

  12. A fatigue crack initiation model incorporating discrete dislocation plasticity and surface roughness

    NARCIS (Netherlands)

    Brinckmann, Steffen; Van der Giessen, Erik

    2007-01-01

    Although a thorough understanding of fatigue crack initiation is lacking, experiments have shown that the evolution of distinct dislocation distributions and surface roughness are key ingredients. In the present study we introduce a computational framework that ties together dislocation dynamics,

  13. Surface roughness and cutting force estimation in the CNC turning using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2015-04-01

    Full Text Available Surface roughness and cutting forces are considered as important factors to determine machinability rate and the quality of product. A number of factors like cutting speed, feed rate, depth of cutting and tool noise radius influence the surface roughness and cutting forces in turning process. In this paper, an Artificial Neural Network (ANN model was used to forecast surface roughness and cutting forces with related inputs, including cutting speed, feed rate, depth of cut and tool noise radius. The machined surface roughness and cutting force parameters related to input parameters are the outputs of the ANN model. In this work, 24 samples of experimental data were used to train the network. Moreover, eight other experimental tests were implemented to test the network. The study concludes that ANN was a reliable and accurate method for predicting machining parameters in CNC turning operation.

  14. Scanning near-field optical microscopy on rough surfaces: Applications in chemistry, biology, and medicine

    OpenAIRE

    Kaupp, Gerd

    2006-01-01

    Shear-force apertureless scanning near-field optical microscopy (SNOM) with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials) contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The ex...

  15. Second-order perturbation theory for scattering from heterogeneous rough surfaces.

    OpenAIRE

    Guérin, Charles-Antoine; Sentenac, Anne

    2004-01-01

    International audience; We propose a model to calculate scattering from inhomogeneous three-dimensional, rough surfaces on top of a stratified medium. The roughness is made up of an ensemble of deposits with various shapes and permittivities whose heights remain small with respect to the wavelength of the incident light. This geometry is encountered in the remote sensing of soil surfaces, or in optics wherever there are contaminated planar components. Starting from a volume-integral equation ...

  16. Influence of anisotropic surface roughness on lubricated rubber friction with application to hydraulic seals

    OpenAIRE

    Scaraggi, M.; Angerhausen, J.; Dorogin, L.; Murrenhoff, H.; Persson, B. N. J.

    2017-01-01

    Machine elements and mechanical components have often surfaces with anisotropic roughness, which may result from the machining processes, e.g. grinding, or from wear. Hence, it is important to understand how surface roughness anisotropy affects contact mechanics properties, such as friction and the interface separation, which is important for lubricated contacts. Here we extend and apply a multiscale mean-field model to the lubricated contact between a soft (e.g. rubber) elastic solid and a r...

  17. Predicting the surface roughness in the dry machining of duplex stainless steel (DSS

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2013-04-01

    Full Text Available This paper examines the influence of cutting parameters, namely cutting speed, feed and depth of cut onto surface roughness after DSS turning process. The study included developing a mathematical model to determine the surface roughness. Verification research has been carried out on CNC lathe; hence the test plan has been adjusted to the possibility of programmable machines controlling GE Fanuc Series 0-T. The comparison of results obtained by given experimental plan was performed in industrial company.

  18. Surface roughness of glass ionomer cements indicated for atraumatic restorative treatment (ART)

    OpenAIRE

    Da Silva, Renata Cristiane [UNESP; Zuanon, Angela Cristina Cilense [UNESP

    2006-01-01

    The purpose of this study was to evaluate the surface roughness of four conventional chemically cured glass ionomer cements (Fuji IX, Ketac Molar, Vidrion R and Vitromolar) commonly used in atraumatic restorative treatment (ART) immediately after material preparation. Twenty specimens of each glass ionomer cement were fabricated and surface roughness was measured after material setting. The specimens were further examined under scanning electron microscopy. Data were analyzed statistically by...

  19. The effect of remin pro and MI paste plus on bleached enamel surface roughness.

    Directory of Open Access Journals (Sweden)

    Haleh Heshmat

    2014-04-01

    Full Text Available The growing demand for enhanced esthetic appearance has led to great developments in bleaching products. The exposure of hard tissues of the tooth to bleaching agents can affect the roughness of the enamel surface. The freshly bleached enamel surface exposed to various surface treatments such as fluoride and other remineralizing agents have been assessed in this study. The aim of this experimental study was to compare the effect of Casein Phosphopeptide-Amorphous Calcium Phosphate with Fluoride (MI Paste Plus and Remin Pro on the enamel surface roughness after bleaching.Thirty enamel samples of sound human permanent molars were prepared for this study. After initial roughness measurement with profilometer, the samples were exposed to 37% carbamide peroxide bleaching agent 20 minutes twice, and randomly divided into three groups of ten. In group 1, a CPP-ACPF containing paste (MI Paste Plus and in group 2, Remin Pro were applied to the teeth during a 15 day period for 5 minutes, twice a day. Samples of group 3 (control were immersed in artificial saliva for 15 days. The roughness of all samples were measured at the beginning, after bleaching and after the study intervention and statistically analyzed.The surface roughness significantly increased in all groups following bleaching, and then it showed a decrease after application of both Remin Pro and CPP-ACPF in comparison to using bleaching agent (P0.05.There was no difference between surface roughness of MI Paste Plus and Remin Pro groups. Also the surface roughness was decreased compared to the initial enamel surface roughness.

  20. The effect of remin pro and MI paste plus on bleached enamel surface roughness.

    Science.gov (United States)

    Heshmat, Haleh; Ganjkar, Maryam Hoorizad; Jaberi, Solmaz; Fard, Mohammad Javad Kharrazi

    2014-03-01

    The growing demand for enhanced esthetic appearance has led to great developments in bleaching products. The exposure of hard tissues of the tooth to bleaching agents can affect the roughness of the enamel surface. The freshly bleached enamel surface exposed to various surface treatments such as fluoride and other remineralizing agents have been assessed in this study. The aim of this experimental study was to compare the effect of Casein Phosphopeptide-Amorphous Calcium Phosphate with Fluoride (MI Paste Plus) and Remin Pro on the enamel surface roughness after bleaching. Thirty enamel samples of sound human permanent molars were prepared for this study. After initial roughness measurement with profilometer, the samples were exposed to 37% carbamide peroxide bleaching agent 20 minutes twice, and randomly divided into three groups of ten. In group 1, a CPP-ACPF containing paste (MI Paste Plus) and in group 2, Remin Pro were applied to the teeth during a 15 day period for 5 minutes, twice a day. Samples of group 3 (control) were immersed in artificial saliva for 15 days. The roughness of all samples were measured at the beginning, after bleaching and after the study intervention and statistically analyzed. The surface roughness significantly increased in all groups following bleaching, and then it showed a decrease after application of both Remin Pro and CPP-ACPF in comparison to using bleaching agent (P0.05). There was no difference between surface roughness of MI Paste Plus and Remin Pro groups. Also the surface roughness was decreased compared to the initial enamel surface roughness.

  1. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Padma; Hancock, Bruno C

    2003-08-25

    Several common pharmaceutical excipient powders were compacted at a constant solid fraction (SF) in order to study the relationship between powder properties, compact surface roughness, and compact mechanical properties such as hardness, elasticity, and brittleness. The materials used in this study included microcrystalline cellulose (MCC), fumaric acid, mannitol, lactose monohydrate, spray dried lactose, sucrose, and dibasic calcium phosphate dihydrate. A slow consolidation process was used to make compacts at a SF of 0.85 (typical for most pharmaceutical tablets) from single excipient components. A model was proposed to describe the surface roughness of compacts based on the brittle or ductile deformation tendencies of the powder materials. The roughness profile would also be dependent upon the magnitude of the compression stress in relation to the yield stress (onset of irreversible deformation) values of the excipients. It was hypothesized that brittle materials would produce smooth compacts with high surface variability due to particle fracture, and the converse would apply for ductile materials. Compact surfaces should be smoother if the materials were compressed above their yield pressure values. Non-contact optical profilometry was used along with scanning electron microscopy to quantify and characterize the surface morphology of the excipient compacts. The roughness parameters R{sub a} (average roughness), R{sub q} (RMS roughness), R{sub q}/R{sub a} (ratio describing surface variability), and R{sub sk} (skewness) were found to correlate with the deformation properties of the excipients. Brittle materials such as lactose, sucrose, and calcium phosphate produced compacts with low values of R{sub a} and R{sub q}, high variability, and negative R{sub sk}. The opposite was found with plastic materials such as MCC, mannitol, and fumaric acid. The highly negative skewness values for brittle material compacts may indicate their propensity to be vulnerable to

  2. Influence of the surface roughness on the fatigue properties in ausferritic ductile irons (ADI

    Directory of Open Access Journals (Sweden)

    Svenningsson Roger

    2014-06-01

    Full Text Available Heat treatment of cast ductile iron (DI to ausferritic ductile iron (ADI is known to increase fatigue properties. However, the surface roughness of the cast material is also of significant importance. In this investigation, test rods with seven different surface qualities were cast from the same melt i.e. with same chemical composition. The surfaces of the test rods were varied by a number of parameters; grain size of the moulding sand, coated or non-coated mould surfaces, as-cast or machined and polished, shot peened or not. In addition, a reference material in conventional DI was cast and tested. All eight series were subjected to high-cycle fatigue bending tests. The results show that surface defects, such as micro porosity and minor inclusions drastically decrease the fatigue properties. For some ADI materials the stress amplitude limit was actually lower compared to the non-heat treated DI. The machined, polished and shot-peened material demonstrated the best fatigue properties, which is as expected.

  3. Surface Roughness and Material Optical Properties Influence on Casimir/van der Waals and Capillary Surface Forces

    NARCIS (Netherlands)

    Zwol, P.J. van; Palasantzas, G.

    2010-01-01

    Theory calculations using the Lifshitz theory and atomic force microscopy force measurements show that Casimir/van der Weals dispersive forces have a strong dependence on material optical properties and surface roughness. At separations below 100 nm the roughness effect is manifested through a

  4. Modeling and optimization of surface roughness in single point incremental forming process

    Directory of Open Access Journals (Sweden)

    Suresh Kurra

    2015-07-01

    Full Text Available Single point incremental forming (SPIF is a novel and potential process for sheet metal prototyping and low volume production applications. This article is focuses on the development of predictive models for surface roughness estimation in SPIF process. Surface roughness in SPIF has been modeled using three different techniques namely, Artificial Neural Networks (ANN, Support Vector Regression (SVR and Genetic Programming (GP. In the development of these predictive models, tool diameter, step depth, wall angle, feed rate and lubricant type have been considered as model variables. Arithmetic mean surface roughness (Ra and maximum peak to valley height (Rz are used as response variables to assess the surface roughness of incrementally formed parts. The data required to generate, compare and evaluate the proposed models have been obtained from SPIF experiments performed on Computer Numerical Control (CNC milling machine using Box–Behnken design. The developed models are having satisfactory goodness of fit in predicting the surface roughness. Further, the GP model has been used for optimization of Ra and Rz using genetic algorithm. The optimum process parameters for minimum surface roughness in SPIF have been obtained and validated with the experiments and found highly satisfactory results within 10% error.

  5. Effect finishing and polishing procedures on the surface roughness of IPS Empress 2 ceramic.

    Science.gov (United States)

    Boaventura, Juliana Maria Capelozza; Nishida, Rodrigo; Elossais, André Afif; Lima, Darlon Martins; Reis, José Mauricio Santos Nunes; Campos, Edson Alves; de Andrade, Marcelo Ferrarezi

    2013-01-01

    To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0-S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) RESULTS: All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic.

  6. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethylmethacrylate and polyamide denture base resins.

    Science.gov (United States)

    Ayaz, Elif Aydoğan; Bağış, Bora; Turgut, Sedanur

    2015-10-16

    The purpose of this study was to evaluate the effects of thermal cycling on the surface roughness, hardness and flexural strength of denture resins. Polyamide (PA; Deflex and Valplast) and polymethylmethacrylate (PMMA; QC-20 and Acron MC) denture materials were selected. A total of 180 specimens were fabricated and then divided into 3 groups. The first group (group 1) acted as a control and was not thermocycled. The second group (group 2) was subjected to thermocycling for 10,000 cycles in artificial saliva and 5,000 cycles in distilled water. The last group (group 3) was thermocycled for 20,000 cycles in artificial saliva and 10,000 cycles in distilled water. The surface roughness were measured with a profilometer. The hardness of the resins were measured with a Vickers Hardness Tester using a 100-gf load. The flexural strength test was performed using the universal test machine with a crosshead speed of 5 mm/min. Data were analyzed using statistical software. The results of the measurements in the 3 different tests were analyzed by Kruskal-Wallis test with Bonferroni correction. Multiple comparisons were made by Conover and Wilcoxon tests. There was a significant difference between the PMMA and PA groups in terms of surface roughness, hardness and transverse strength before and after thermal cycling (p<0.001). Thermal cycling did not change the surface roughness, hardness and flexural strength values of either the PMMA or PA group (p>0.001).

  7. Synergies of media surface roughness and ionic strength on particle deposition during filtration.

    Science.gov (United States)

    Jin, Chao; Zhao, Weigao; Normani, Stefano D; Zhao, Peng; Emelko, Monica B

    2017-05-01

    Although it is widely believed that media/collector roughness can enhance particle deposition on surfaces, this effect has not been consistently observed nor systematically described. Here, column tests were conducted to: 1) evaluate media roughness impacts on particle deposition in the presence of an energy barrier (i.e., at low ionic strength conditions), and 2) describe the concurrent impacts of collector surface roughness and suspension fluid ionic strength on particle deposition in packed beds. This work presents a first, systematic demonstration that media/collector surface roughness consistently influences particle deposition in a non-linear, non-monotonic manner, irrespective of the presence of an energy barrier. Notably, ionic strength-associated changes in DLVO interaction energy could not solely explain observed differences in particle deposition associated with collector surface roughness. Particle-to-roughness element and particle-to-smooth/bottom surface interactions contributed to a critical roughness size associated with a minimum DLVO interaction energy; however, that critical size is not necessarily the same as the critical size associated with minimal particle deposition rates. Surface roughness and ionic strength concurrently affected particle deposition in a manner that is not simply additive; rather, particle deposition rates were highly correlated with inverse Debye-Hückel length (i.e., ln [κ-1]) using second-order polynomial functions. Notably, the secondary energy minimum alone appears inadequate for explaining the observed particle deposition behavior. These relationships may provide insight for further development of physico-chemical filtration models for describing particle deposition on surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The relationship of surface roughness and cell response of chemical surface modification of titanium

    Science.gov (United States)

    Zareidoost, Amir; Ghaseme, Behrooz

    2012-01-01

    Implant surface topography influences osteoblastic proliferation, differentiation and extracellular matrix protein expressions. Previous researches proved that chemical surface modification of titanium implants could be used to improve Bone-to-implant contact. In this study, the surface topography, chemistry and biocompatibility of polished titanium surfaces treated with mixed solution of three acids containing HCl, HF and H3PO4 with different etched conditions for example concentration, time and addition of calcium chloride were studied. Osteoblast cells (MG-63) were cultured on different groups of titanium surfaces. In order to investigate titanium surfaces, SEM, AFM and EDS analyses were carried out. The results showed that surfaces treated with HCl–HF–H3PO4 had higher roughness, lower cytotoxicity level and better biocompatibility than controls. Moreover, addition of calcium chloride into mixed solution of three acids containing HCl, HF and H3PO4 is an important, predominant and new technique for obtaining biofunction in metals for biomedical use including dentistry. PMID:22460230

  9. Mapping lava flow textures using three-dimensional measures of surface roughness

    Science.gov (United States)

    Mallonee, H. C.; Kobs-Nawotniak, S. E.; McGregor, M.; Hughes, S. S.; Neish, C.; Downs, M.; Delparte, D.; Lim, D. S. S.; Heldmann, J. L.

    2016-12-01

    Lava flow emplacement conditions are reflected in the surface textures of a lava flow; unravelling these conditions is crucial to understanding the eruptive history and characteristics of basaltic volcanoes. Mapping lava flow textures using visual imagery alone is an inherently subjective process, as these images generally lack the resolution needed to make these determinations. Our team has begun mapping lava flow textures using visual spectrum imagery, which is an inherently subjective process involving the challenge of identifying transitional textures such as rubbly and slabby pāhoehoe, as these textures are similar in appearance and defined qualitatively. This is particularly problematic for interpreting planetary lava flow textures, where we have more limited data. We present a tool to objectively classify lava flow textures based on quantitative measures of roughness, including the 2D Hurst exponent, RMS height, and 2D:3D surface area ratio. We collected aerial images at Craters of the Moon National Monument (COTM) using Unmanned Aerial Vehicles (UAVs) in 2015 and 2016 as part of the FINESSE (Field Investigations to Enable Solar System Science and Exploration) and BASALT (Biologic Analog Science Associated with Lava Terrains) research projects. The aerial images were stitched together to create Digital Terrain Models (DTMs) with resolutions on the order of centimeters. The DTMs were evaluated by the classification tool described above, with output compared against field assessment of the texture. Further, the DTMs were downsampled and reevaluated to assess the efficacy of the classification tool at data resolutions similar to current datasets from other planetary bodies. This tool allows objective classification of lava flow texture, which enables more accurate interpretations of flow characteristics. This work also gives context for interpretations of flows with comparatively low data resolutions, such as those on the Moon and Mars. Textural maps based on

  10. Effect of surface roughness on the viscous force

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    account the deformation of the interface. In 1990, a mathematical model was developed by O'Brien and Van Den Brule [7] for the cleansing of the silicon substrates in which a dirt particle taken as a sphere, was made to move away from the plane substrate through the action of surface tension. All solid surfaces considered ...

  11. Over rough and smooth : Amputee gait on an irregular surface

    NARCIS (Netherlands)

    Curtze, Carolin; Hof, At L.; Postema, Klaas; Otten, Bert

    When negotiating irregular surfaces, the control of dynamic stability is challenged. In this study, we compared the adjustments in stepping behaviour and arm-swing of 18 unilateral transtibial amputees and 17 able-bodied participants when walking on flat and irregular surfaces. Experimental findings

  12. Reduction of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  13. Enhancement of vortex induced forces and motion through surface roughness control

    Science.gov (United States)

    Bernitsas, Michael M [Saline, MI; Raghavan, Kamaldev [Houston, TX

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  14. Evaluating grain size in polycrystals with rough surfaces by corrected ultrasonic attenuation.

    Science.gov (United States)

    Li, Xiongbing; Han, Xiaoqin; Arguelles, Andrea P; Song, Yongfeng; Hu, Hongwei

    2017-07-01

    Surface roughness of a sample has a great effect on the calculated grain size when measurements are based on ultrasonic attenuation. Combining modified transmission and reflection coefficients at the rough interface with a Multi-Gaussian beam model of the transducer, a comprehensive correction scheme for the attenuation coefficient is developed. An approximate inverse model of the calculated attenuation, based on Weaver's diffuse scattering theory, is established to evaluate grain size in polycrystals. The experimental results showed that for samples with varying surface roughness and matching microstructures, the fluctuation of evaluated average grain size was ±1.17μm. For polished samples with different microstructures, the relative errors to optical microscopy were no more than ±3.61%. The presented method provides an effective nondestructive tool for evaluating the grain size in metals with rough surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Statistical Analysis of Surface Roughness and Dynamic Friction Profiles During Metalforming

    Science.gov (United States)

    Mates, Steven

    2005-03-01

    Laser confocal microscopy is used to image the surface roughness features of sheet metal before and after forming. This technique combines a statistically robust sampling protocol with fine-grained spatial resolution (approximately 100 nm) so that higher moments of the dynamic friction profiles and surface roughness profiles can be compared. These higher moments, including skew and kurtosis, are of interest because they characterize the extremes of the roughness distributions, which are thought to have a significant correlation with the overall friction behavior. Ultimately we seek an improved understanding of the relationship between surface roughness profiles, dynamic friction profiles, and metallurgical conditions in order to reliably predict the detailed friction behavior during actual metalforming operations.

  16. Numerical Calculation Method of Apparent Contact Angles on Heterogeneous Double-Roughness Surfaces.

    Science.gov (United States)

    Dong, Jian; Jin, Yanli; Dong, He; Sun, Li

    2017-10-03

    Double-roughness surfaces can be used to mimic lotus surfaces. The apparent contact angles (ACAs) of droplets on these surfaces were first calculated by Herminghaus. Then Patankar utilized the pillar model to improve the Herminghaus approach and put forward the formulas for ACAs calculation of the homogeneous double-roughness surfaces where the dual-scale structures and the bases were the same wettable materials. In this paper, we propose a numerical calculation method of ACAs on the heterogeneous double-roughness surfaces where the dual-scale structures and the bases are made of different wettable materials. This numerical calculation method has successfully enhanced the Herminghaus approach. It is promising to become a novel design approach of heterogeneous superhydrophobic surfaces, which are frequently applied in technical fields of self-cleaning, anti-icing, antifogging, and enhancing condensation heat transfer.

  17. Surface roughness of impression materials and dental stones scanned by non-contacting laser profilometry.

    Science.gov (United States)

    Rodriguez, Jose M; Curtis, Richard V; Bartlett, David W

    2009-04-01

    To analyze differences in the way dental materials digitize on a non-contacting laser profilometer (NCLP). Three Type IV dental stones and 15 impression materials were mixed according to the manufacturer's instructions and expressed against a glass block to record its surface characteristics. From each material an area of 6 x 40 mm was scanned on the NCLP and the Ra, Rq and Rt roughness values measured from 20 randomly selected transverse profiles. The surface of the impression materials was subsequently poured in Moonstone (Bracon Ltd., Etchingham, England) dental stone and the same roughness values obtained from these casts. Differences in roughness values from the dental materials were compared using ANOVA and differences in roughness between impression materials and the Moonstone casts compared using paired t-tests. There were significant differences in roughness values between individual materials within each type (impression material or dental stone) (pdental stones varied between Ra=0.87 and 0.99 microm, Rq=1.09 and 1.23 microm, and Rt=5.70 and 6.51 microm. The roughness values of the impression materials varied between Ra=0.75 and 4.56 microm; Rq=0.95 and 6.27 microm and Rt=4.70 and 39.31 microm. Darker materials showed higher roughness values compared to lighter materials (pimpression materials were statistically significantly lower when the surface was reproduced in Moonstone (pdental materials on optical profilometers was affected by color and transparency.

  18. Effect of filler particles on surface roughness of experimental composite series

    Directory of Open Access Journals (Sweden)

    Hanadi Yousif Marghalani

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the effect of different filler sizes and shapes on the surface roughness of experimental resin-composite series. MATERIAL AND METHODS: Thirty-three disc-shaped specimens of the series (Spherical-RZD 102, 105, 106, 107, 114 and Irregular-RZD 103, 108, 109, 110, 111, 112 were prepared in a split Teflon mold and irradiated with an halogen light-curing unit (450 mW/cm² for 40 s at both top and bottom surfaces. The specimens were stored for 3 months in distilled water. The surface roughness values in form of surface finish-vertical parameter (Ra, maximum roughness depth (Rmax and horizontal roughness parameter (Sm were recorded using a contact profilometer. The data were analyzed by one-way ANOVA and the means were compared by Scheffé post-hoc test (a=0.05. RESULTS: The lowest surface roughness (Ra was observed in S-100 (0.079±0.013, while the roughest surface was noted in I-450/700/1000 (0.125±0.011 and I-450/1000 (0.124±0.004. The spherical-shape series showed the smoothest surface finish compared to the irregular-shape ones with higher significant difference (p>0.05. The vertical surface roughness parameter (Ra values increased as the filler size increased yielding a linear relation (r²=0.82. On the contrary, the horizontal parameter (Sm was not significantly affected by the filler size (r²=0.24 as well as the filler shape. CONCLUSIONS: Filler particle's size and shape have a great effect on the surface roughness parameters of these composite series.

  19. Effect of ethylenediamine tetraacetic acid and etidronic acid on the surface roughness of Biodentine: in vitro

    Directory of Open Access Journals (Sweden)

    Özgür İlke Atasoy Ulusoy

    2017-01-01

    Full Text Available Objective: The aim of this study was to evaluate the effect of 9% etidronic acid (HEBP and 17% ethylenediamine tetraacetic acid (EDTA on the surface roughness of Biodentine. Materials and Method: Biodentine (Septodont was mixed according to the manufacturer’s instructions. Briefly, five drops of liquid were added into the capsule containing the powder. Then the capsule was placed in a triturator for 30 sec. The prepared mixture was placed into a mold (diameter: 5 mm, depth: 3 mm. The Biodentine surfaces were polished with silicon carbide abrasive papers. The surface roughness of 30 samples was measured at baseline using a portable surface roughness tester. For this purpose, a 5 mN force was applied onto three different locations of the samples with a speed of 0.8 mm/sec. The samples were divided into two groups according to the irrigation solution (n=15; first group was treated with 9% HEBP, and the second group was treated with 17% EDTA. The surface roughness of the samples was measured again after 1 and 2 min of irrigant application. Data were statistically analyzed using one-way ANOVA and independent sample t-test. Results: For HEBP, no significant difference was found between the surface roughness values at 0., 1., and 2 min (p=0.107; ANOVA. For EDTA, the surface roughness value at 1 min was significantly greater than the baseline value (p<0.001; t-test. The surface roughness changes at the two time periods were significantly different between the EDTA and HEBP groups (p=0.003 for 0-1 min passage, p=0.021 for 1-2 min passage. Conclusion: The use of 17% EDTA may result in deterioration of Biodentine’s surface during perforation repair and root canal treatment.

  20. Comparative analysis of different measurement techniques for characterizing soil surface roughness in agricultural soils

    Science.gov (United States)

    Martinez-Agirre, Alex; Álvarez-Mozos, Jesús; Valle, José Manuel; Rodríguez, Álvaro; Giménez, Rafael

    2016-04-01

    Soil surface roughness can be defined as the variation in soil surface elevations, and as such, it is a key element in hydrology and soil erosion processes. In agricultural soils, roughness is mainly an anthropic factor determined by the type of tillage and management. Roughness is also a property with a high spatial variability, since the same type of tillage can result in surfaces with different roughness depending on the physical characteristics of the soil and atmospheric conditions. In order to quantify roughness and to parameterize its role in different processes, different measurement techniques have been used and several parameters have been proposed in the literature. The objective of this work is to evaluate different measurement techniques and assess their accuracy and suitability for quantifying surface roughness in agricultural soils. With this aim, a comparative analysis of three roughness measurement techniques has been carried out; (1) laser profilometer, (2) convergent photogrammetry and (3) terrestrial laser scanner. Roughness measurements were done in 3 experimental plots (5x5 meters) with different tillage treatments (representing different roughness conditions) obtained with typical agricultural tools. The laser profilometer registered vertically the distance from a reference bar down to the surface. It had a vertical accuracy of 1.25 mm, a sampling interval of 5 mm and a total length profile of 5 m. Eight profiles were taken per plot, four in parallel to tillage direction and four in perpendicular. Convergent photogrammetry consisted of 20-30 images taken per plot from a height of 5-10 m above ground (using an elevation platform), leading to point clouds of ~25 million points per plot. Terrestrial laser scanner measurements were taken from the four sides of each plot at a measurement height of ~1.75 m above ground. After orientating and corregistering the four scans, point clouds of ~60 million points were obtained per plot. The comparative

  1. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface

    Science.gov (United States)

    Doronin, Alexander; Tchvialeva, Lioudmila; Markhvida, Igor; Lee, Tim K.; Meglinski, Igor

    2016-07-01

    In the framework of further development of a unified computational tool for the needs of biomedical optics, we introduce an electric field Monte Carlo (MC) model for simulation of backscattering of coherent linearly polarized light from a turbid tissue-like scattering medium with a rough surface. We consider the laser speckle patterns formation and the role of surface roughness in the depolarization of linearly polarized light backscattered from the medium. The mutual phase shifts due to the photons' pathlength difference within the medium and due to reflection/refraction on the rough surface of the medium are taken into account. The validation of the model includes the creation of the phantoms of various roughness and optical properties, measurements of co- and cross-polarized components of the backscattered/reflected light, its analysis and extensive computer modeling accelerated by parallel computing on the NVIDIA graphics processing units using compute unified device architecture (CUDA). The analysis of the spatial intensity distribution is based on second-order statistics that shows a strong correlation with the surface roughness, both with the results of modeling and experiment. The results of modeling show a good agreement with the results of experimental measurements on phantoms mimicking human skin. The developed MC approach can be used for the direct simulation of light scattered by the turbid scattering medium with various roughness of the surface.

  2. Parametric optical surface roughness measurement by means of polychromatic speckle autocorrelation

    Science.gov (United States)

    Patzelt, Stefan; Ciossek, Andreas; Lehmann, Peter; Schoene, Armin

    1998-10-01

    A method for determining surface roughness of engineering surfaces that is applicable to in-process measurements under harsh circumstances of industrial production plants (e.g. vibrations, humidity) is introduced. The rough surface is illuminated with polychromatic laser light. The angular distribution of scattered light intensities, i.e. a polychromatic speckle pattern, is the result of an incoherent superposition of monochromatic speckle intensities. The angular dispersion leads to increasing speckle widths with an increasing distance to the optical axis an effect called speckle elongation. This gives rise to a radial structure of the speckle pattern. However, with increasing surface roughness the radial structure vanishes because of a decreasing similarity of the monochromatic speckle patterns of the different wavelengths. The markedness of this effect is analyzed by digital image processing algorithms, e.g. the procedure of polychromatic speckle autocorrelation. The latest approach to an in-process roughness measurement device was made by the use of singlemode fiber-pigtailed laser diodes in order to supply a trichromatic, temporally partially coherent laser beam. A brief introduction to the theoretical background is followed by the presentation of the experimental setup. The image processing algorithms for calculating an optical roughness measure from digitalized speckle patterns are explained, and first results of surface roughness determination are presented.

  3. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...... characterization parameters were tested. None of the height, spacing, material volume, void or segmentation parameters showed good correlations. Developed area, rms surface gradient, relative area and complexity showed strong correlations (R2 > 0.7). For area-scale fractal complexity the correlation increases...

  4. Effect of acidic agents on surface roughness of dental ceramics

    Directory of Open Access Journals (Sweden)

    Boonlert Kukiattrakoon

    2011-01-01

    Conclusion: Acidic agents used in this study negatively affected the surface of ceramic materials. This should be considered when restoring the eroded tooth with ceramic restorations in patients who have a high risk of erosive conditions.

  5. Stoichiometry-Induced Roughness on Antimonide Growth Surfaces

    National Research Council Canada - National Science Library

    Bracker, A. S; Nosho, B. Z; Barvosa-Carter, W; Whitman, L. J; Bennett, B. R; Shanabrook, B. V; Culbertson, J. C

    2001-01-01

    Phase shifts in the intensity oscillation of reflection high-energy electron diffraction spots provide evidence for monolayer island formation on AlSb that is caused by sudden changes in surface stoichiometry...

  6. Contact mechanics for layered materials with randomly rough surfaces.

    Science.gov (United States)

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  7. Semiconductor surface roughness: Dependence on sign and magnitude of bulk strain

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y.H.; Gilmer, G.H.; Roland, C.; Silverman, P.J.; Buratto, S.K.; Cheng, J.Y.; Fitzgerald, E.A.; Kortan, A.R.; Schuppler, S.; Marcus, M.A.; Citrin, P.H. (AT T Bell Laboratories, Murray Hill, New Jersey 07974 (United States) Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States))

    1994-11-28

    Changes in surface roughness have been studied as a function of bulk compressive and tensile strains (biaxial in the plane of the sample surface) in thin films of compositionally uniform and dislocation-free Ge[sub 0.5]Si[sub 0.5]. A pronounced surface roughness is observed only for films under compressive strains exceeding 1.4%. Molecular dynamics simulations show that this striking result has its origin in the strain-induced lowering of surface step free energies.

  8. Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer

    Science.gov (United States)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.

    2000-01-01

    The proposed paper compares predicted turbine vane heat transfer for a rough surface over a wide range of test conditions with experimental data. Predictions were made for the entire vane surface. However, measurements were made only over the suction surface of the vane, and the leading edge region of the pressure surface. Comparisons are shown for a wide range of test conditions. Inlet pressures varied between 3 and 15 psia, and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single roughened vane was used for the tests, the effective rougness,(k(sup +)), varied by more than a factor of ten. Results were obtained for freestream turbulence levels of 1 and 10%. Heat transfer predictions were obtained using the Navier-Stokes computer code RVCQ3D. Two turbulence models, suitable for rough surface analysis, are incorporated in this code. The Cebeci-Chang roughness model is part of the algebraic turbulence model. The k-omega turbulence model accounts for the effect of roughness in the application of the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k-omega results agreed better with the data than the Cebeci-Chang model. However, the low Reynolds number k-omega model did not accurately account for roughness when the freestream turbulence level was low. The high Reynolds number version of this model was more suitable when the freestream turbulence was low.

  9. Effect of surface roughness on van der Waals and Casimir-Polder/Casimir attraction energies

    Science.gov (United States)

    Makeev, Maxim A.

    2017-09-01

    A theoretical model is devised to assess effects of surface roughness on dispersion interactions between macroscopic bodies, bounded by self-affine fractal surfaces and separated by a vacuum gap. The rough-surface profiles are described statistically by the saturation values of surface width and the correlation lengths; i.e., in terms of experimentally measurable quantities. The model devised takes into account the separation distance-dependent nature of dispersive interactions. The case of non-retarded van der Waals interactions, known to operate at smaller separation distances between the bodies, and that of retarded attractions, operative at larger separation length-scales, are treated separately in this work. Analytical formulae for the roughness corrections are deduced for the two aforementioned types of attractions. The model is employed to compute roughness corrections to interactions between an extended body, bounded by a self-affine surface, and: a) a point-like adherent; and b) a planar half-space. Furthermore, the roughness-induced corrections to dispersive interaction energies between half-spaces, both bounded by self-affine surfaces, are obtained under assumption that the corresponding surface profiles are not correlated. The predictions of the model are compared with some previously reported theoretical studies and available experimental data on the theme of dispersive adhesion between macroscopic bodies.

  10. Optimization of Machining Process Parameters for Surface Roughness of Al-Composites

    Science.gov (United States)

    Sharma, S.

    2013-10-01

    Metal matrix composites (MMCs) have become a leading material among the various types of composite materials for different applications due to their excellent engineering properties. Among the various types of composites materials, aluminum MMCs have received considerable attention in automobile and aerospace applications. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcement element-like silicon carbide particles. In the present investigation Al-SiC composite was produced by stir casting process. The Brinell hardness of the alloy after SiC addition had increased from 74 ± 2 to 95 ± 5 respectively. The composite was machined using CNC turning center under different machining parameters such as cutting speed (S), feed rate (F), depth of cut (D) and nose radius (R). The effect of machining parameters on surface roughness (Ra) was studied using response surface methodology. Face centered composite design with three levels of each factor was used for surface roughness study of the developed composite. A response surface model for surface roughness was developed in terms of main factors (S, F, D and R) and their significant interactions (SD, SR, FD and FR). The developed model was validated by conducting experiments under different conditions. Further the model was optimized for minimum surface roughness. An error of 3-7 % was observed in the modeled and experimental results. Further, it was fond that the surface roughness of Al-alloy at optimum conditions is lower than that of Al-SiC composite.

  11. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Voltarelli

    2010-12-01

    Full Text Available OBJECTIVES: The aim of the present study was to assess the effect of the exposure to food-simulating liquids prior to brushing simulation on the surface roughness of five composite materials (Quixfil, Filtek Supreme, Esthet-X, Filtek Z250, Tetric Ceram. Material and METHODS: Twenty cylinders (5 mm diameter and 4 mm height of each composite were randomly allocated to 4 groups (n=5, according to the food-simulating liquid in which they were immersed for 7 days at 37°C: artificial saliva, heptane, citric acid, and ethanol. After this period, the top surface of composite cylinders was submitted to 7,500 brushing cycles (200 g load. Measurements of the surface roughness (Ra, ¼m were carried out before and after the exposure to the chemicals/brushing simulation. Changes on the morphology of composite surfaces were observed through scanning electron microscopy (SEM. RESULTS: The statistical analysis (ANOVA with cofactor / Tukey's test, α=5% detected a significant interaction between solutions and composite resins. Esthet-X, Filtek Z250 and Tetric Ceram were not affected by the food-simulating liquids/toothbrushing. Citric acid and ethanol increased the surface roughness of Quixfil and Filtek Supreme, respectively. SEM images corroborate the surface roughness findings, demonstrating the negative effect from chemical solutions and mechanical abrasion. CONCLUSIONS: The surface roughness of composite resin materials are differently affected by the food-simulating solutions, depending on the immersion media.

  12. Aspects regarding the surface roughness on a steel part cutted using AWJ technology

    Directory of Open Access Journals (Sweden)

    Basarman Adrian-Paul

    2017-01-01

    Full Text Available The abrasive water jet cutting technology is a new and modern technology which uses an abrasive material carried by water at high pressure to pierce and cut a desired material. It is a technology used to cut a high variety of materials, from rocks to glass, metal or even human tissue. Regarding the metal cutting using AWJ technology, the surface roughness is a very important aspect when it comes to surface quality and precision. This paper presents a series of aspects regarding the surface roughness on a C45 steel part cutted using AWJ technology, presenting the variation of the surface roughness and the aspect resulted after cutting, on the surface of the cut.

  13. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders

    adhesion. Sol-gel technology and the recent availability of organic modified silicas have lead to development of hybrid organic/inorganic glass ceramic coatings with specialised surface properties. In this study we investigate bacterial adhesion and the subsequent biofilm formation on stainless steel (SS......) and compare it to two nanostructured sol-gel coatings with variable hydrophobicity. Test surfaces were characterised with respect to surface roughness by atomic force microscopy, surface hydrophobicity by contact angle (CA) measurements, protein adsorption by quartz crystal microbalance analyses....... The bacterial communities were identified by clone libraries and fluorescence in situ hybridization. We initially compared surfaces of relatively similar hydrophobicity (CA=60-79º) but different roughness. The roughness (Ra) was 300nm for SS type 2B, 6nm for electro polished SS, and 0.2 nm for sol-gel...

  14. Rarefaction cloaking: Influence of the fractal rough surface in gas slider bearings

    Science.gov (United States)

    Su, Wei; Liu, Haihu; Zhang, Yonghao; Wu, Lei

    2017-10-01

    For ultra-thin gas lubrication, the surface-to-volume ratio increases dramatically when the flow geometry is scaled down to the micro/nano-meter scale, where surface roughness, albeit small, may play an important role in gas slider bearings. However, the effect of surface roughness on the pressure and load capacity (force) in gas slider bearings has been overlooked. In this paper, on the basis of the generalized Reynolds equation, we investigate the behavior of a gas slider bearing, where the roughness of the slider surface is characterized by the Weierstrass-Mandelbrot fractal function, and the mass flow rates of Couette and Poiseuille flows are obtained by deterministic solutions to the linearized Bhatnager-Gross-Krook equation. Our results show that the surface roughness reduces the local mass flow rate as compared to the smooth channel, but the amount of reduction varies for Couette and Poiseuille flows of different Knudsen numbers. As a consequence, the pressure rise and load capacity in the rough bearing become larger than the ones in the smooth bearing in the slip and early transition flow regimes, e.g., a 6% roughness could lead to an increase of 20% more bearing load capacity. However, this situation is reversed in the free-molecular flow regime, as the ratio of the mass flow rates between Couette and Poiseuille flows is smaller than that in the smooth channel. Interestingly, between the two extremes, we have found a novel "rarefaction cloaking" effect, where the load capacity of a rough bearing equals to that of a smooth bearing at a certain range of Knudsen numbers, as if the roughness does not exist.

  15. Effects of polishing on surface roughness, gloss, and color of resin composites.

    Science.gov (United States)

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Nagafuji, Junichi; Kotaku, Mayumi; Miyazaki, Masashi; Powers, John M

    2011-09-01

    This study evaluated the effects of polishing on surface roughness, gloss, and color of regular, opaque, and enamel shades for each of three resin composites. Two-mm-thick resin disks made with Estelite Σ Quick, Clearfil Majesty, and Beautifil II were final polished with 180-, 1000-, and 3000-grit silicon carbide paper. Surface roughness, gloss, and color were measured one week after curing. Estelite Σ Quick had significantly lower roughness values and significantly higher gloss values as compared with Clearfil Majesty and Beautifil II. The effects of surface roughness and gloss on color (L*a*b*) differed among resin composites and by shade. Correlation coefficients between surface roughness and L*a*b* color factors were generally high for Clearfil Majesty, partially high (i.e., between roughness and L*) for Beautifil II, and low for Estelite Σ Quick. Correlation coefficients between gloss and L*a*b* color parameters were generally high for Beautifil II and low for Estelite Σ Quick and Clearfil Majesty. However, for all resin composites, the values of the color differences between 3000-grit and 180-grit polishing groups for all shades were imperceptible by the naked eye.

  16. Surface Features Parameterization and Equivalent Roughness Height Estimation of a Real Subglacial Conduit in the Arctic

    Science.gov (United States)

    Chen, Y.; Liu, X.; Manko ff, K. D.; Gulley, J. D.

    2016-12-01

    The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the

  17. Photodesorption of Na atoms from rough Na surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Gerlach, R.; Manson, J.R.

    1997-01-01

    We investigate the desorption of Na atoms from large Na clusters deposited on dielectric surfaces. High-resolution translational energy distributions of the desorbing atoms are determined by three independent methods, two-photon laser-induced fluorescence, as well as single-photon and resonance......-enhanced two-photon ionization techniques. Upon variation of surface temperature and for different substrates (mica vs lithium fluoride) clear non-Maxwellian time-of-flight distributions are observed with a cos θ angular dependence and most probable kinetic energies below that expected of atoms desorbing from...... atoms are scattered by surface vibrations. Recent experiments providing time constants for the decay of the optical excitations in the clusters support this model. The excellent agreement between experiment and theory indicates the importance of both absorption of the laser photons via direct excitation...

  18. Tribological influence of tool surface roughness within microforming

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Weidel, S.; Hansen, Hans Nørgaard

    2010-01-01

    A comparative friction study of tooling dies with a simple internal cylindrical geometry has been performed. The purpose of the experiment consist of studying the influence of the surface characteristics of tooling dies on the frictional behaviour in a micro bulk forming operation. This research...... will seek to contribute with knowledge in the field of the category of structural size effects. By evaluating and benchmarking three different surface topographies, in an Ø1 and an Ø2 millimetre cylindrical forming-die, it is expected that frictional performance and forming limits can be evaluated......, with the option of extracting general guidelines for evaluation of surface characteristics for dies utilized for micro-forming. The DCE test will be supported by numerical analysis in order to determine the friction factor. © 2010 Springer-Verlag France....

  19. Computer Simulations of Hydrogen Ion Interactions with Rough Surface

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaev, V.A.; Trifonov, N.N. [Moscow Engineering and Physics Inst. (Russian Federation)

    2003-04-01

    A computer code incorporating real surface reliefs for calculations of integral and differential parameters of particle reflections from solids is briefly described and validated by comparing with experiments and known analytical solutions for ideally smooth surfaces. Calculations of the angular distributions of deuterons reflected from rolled SS surfaces and grinded W samples show differences depending on the angle of irradiation relative to the direction of the relief structure. A comparison of calculations with experimental data on 100 eV deuteron reflection from grinded W shows reasonable agreement for the experimentally investigated interval of angles. Some new features of angular distributions in the plane of incidence and in the perpendicular plane are found. So, the possibility of more accurate account of reflected particles contributing to hydrogen recycling near real PFC of fusion devices is demonstrated.

  20. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures

    Directory of Open Access Journals (Sweden)

    Martine Wevers

    2013-10-01

    Full Text Available Additive manufacturing (AM is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

  1. A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2017-10-01

    Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.

  2. Numerical Investigation Of Surface Roughness Effects On The Flow Field In A Swirl Flow

    Directory of Open Access Journals (Sweden)

    Ali SAKİN

    2014-12-01

    Full Text Available The aim of this study is to investigate axial and tangential velocity profiles, turbulent dissipation rate, turbulent kinetic energy and pressure losses under the influence of surface roughness for the swirling flow in a cyclone separator. The governing equations for this flow were solved by using Fluent CFD code. First, numerical analyses were run to verify numerical solution and domain with experimental results. Velocity profiles, turbulent parameters and pressure drops were calculated by increasing inlet velocity from 10 to 20 m/s and roughness height from 0 to 4 mm. Analyses of results showed that pressure losses are decreased and velocity field is considerably affected by increasing roughness height.

  3. Modification of polyethylene terephthalate (PET) films surface with gradient roughness and homogenous surface chemistry by dielectric barrier discharge plasma

    Science.gov (United States)

    Gao, Ming; Sun, Liqun; Guo, Ying; Shi, Jianjun; Zhang, Jing

    2017-12-01

    Dielectric barrier discharge (DBD) plasma was used to modify polyethylene terephthalate (PET) films with gradient roughness and homogenous surface chemistry. Based on asymmetric electrode arrangement, the spatial distribution of the plasma on the films surface was non-uniform, leading to the formation of typical three discharge regions (central zone, boundary zone and diffuse zone). The experimental results showed that the plasma induced significant morphological and chemical changes onto the surfaces. Furthermore, a gradient surface roughness from central zone to diffuse zone was formed, while surface chemistry was relatively homogenous in these regions, which can be explained by theoretical plasma-etching mechanism.

  4. Efficacy of Polishing Kits on the Surface Roughness and Color ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... diameter and 2 mm height]), with the different monomer composition and particle size from a total of 120 specimens. Each composite group was divided into three ... burs, hard-bonded/surface-coated ceramic diamond rotary instruments, aluminum oxide-impregnated rubber or silicon discs, and wheels.[16].

  5. Industrial characterization of nano-scale roughness on polished surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik; Pilny, Lukas

    2015-01-01

    with a thin liquid film. It is shown that the changes in the angular scattering intensities can be compensated for the liquid film, using empirically determined relations. This allows a restoration of the “true” scattering intensities which would be measured from a corresponding clean surface. The compensated...

  6. Surface roughness and morphologic changes of zirconia: Effect of ...

    African Journals Online (AJOL)

    that Er, Cr: YSGG laser irradiation with different energy intensities except 1 W, and air abrasion at 120 μm Al2O3 represented effective methods for conditioning the ZrO2 surface. References. 1. Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic.

  7. Temperature stabilizes rough Au/Ge(001) surface reconstructions

    Science.gov (United States)

    Seino, Kaori; Sanna, Simone; Schmidt, Wolf Gero

    2018-01-01

    The temperature-dependent energetics of self-assembled Au nanowires on Ge(001) surfaces is studied with the help of density-functional theory (DFT) calculations: By calculating the surface phonon modes within harmonic approximation the surface vibrational free energy is obtained to complement the zero-temperature DFT total energies. We consider several previously suggested structural models for a Au coverage between 0.75 and 1.75 monolayer and investigate a temperature range between 0 and 900 K. The stability of the investigated surface models is found to depend clearly on temperature. We find that the extended Ge bridge dimer model previously predicted to be most stable for a large range of preparation conditions is less prominent in the phase diagrams for finite temperatures. On the other hand, a model derived previously from the giant missing row structure with a higher Au coverage gets stabilized by temperature. These findings explain, at least partially, the discrepancies between experimental data and previous theoretical investigations neglecting temperature effects.

  8. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    The increasing importance of turning operations is gaining new dimensions in the present industrial age, in which the growing competition calls for all the efforts to be directed towards the economical manufacture of machined parts as well as surface finish is one of the most critical quality measure in mechanical products.

  9. Modeling and analysis for surface roughness and material removal ...

    African Journals Online (AJOL)

    user

    associated with plastic deformation and shearing, the machining of FRP composites is associated with plowing, cutting and cracking (Wang et al., 1995 ... GFRP pipes using response surface methodology by using carbide tool (K20). ... for turning of a glass fiber reinforced plastic composites using cemented carbide tool.

  10. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    Science.gov (United States)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; Ben-Zvi, I.; Feng, J.; Karkare, S.; Padmore, H. A.

    2017-10-01

    Detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on the properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.

  11. Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process

    Directory of Open Access Journals (Sweden)

    M. H. El-Axir

    2017-10-01

    Full Text Available The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.

  12. Development of empirical correlation of peak friction angle with surface roughness of discontinuities using tilt test

    Science.gov (United States)

    Serasa, Ailie Sofyiana; Lai, Goh Thian; Rafek, Abdul Ghani; Simon, Norbert; Hussein, Azimah; Ern, Lee Khai; Surip, Noraini; Mohamed, Tuan Rusli

    2016-11-01

    The significant influence of surface roughness of discontinuity surfaces is a quantity that is fundamental to the understanding of shear strength of geological discontinuities. This is due to reason that the shear strength of geological discontinuities greatly influenced the mechanical behavior of a rock mass especially in stability evaluation of tunnel, foundation, and natural slopes. In evaluating the stability of these structures, the study of peak friction angle (Φpeak) of rough discontinuity surfaces has become more prominent seeing that the shear strength is a pivotal factor causing failures. The measurement of peak friction angle however, requires an extensive series of laboratory tests which are both time and cost demanding. With that in mind, this publication presents an approach in the form of an experimentally determined polynomial equation to estimate peak friction angle of limestone discontinuity surfaces by measuring the Joint Roughness Coefficient (JRC) values from tilt tests, and applying the fore mentioned empirical correlation. A total of 1967 tilt tests and JRC measurements were conducted in the laboratory to determine the peak friction angles of rough limestone discontinuity surfaces. A polynomial equation of ɸpeak = -0.0635JRC2 + 3.95JRC + 25.2 that exhibited 0.99 coefficient of determination (R2) were obtained from the correlation of JRC and peak friction angles. The proposed correlation offers a practical method for estimation of peak friction angles of rough discontinuity surfaces of limestone from measurement of JRC in the field.

  13. Scattering on rough surfaces with alpha-stable non-Gaussian height distribution

    OpenAIRE

    Guérin, Charles-Antoine

    2002-01-01

    We study the electromagnetic scattering problem on a random rough surface when the height distribution of the profile belongs to the family of alpha-stable laws. This allows us to model peaks of very large amplitude that are not accounted for by the classical Gaussian scheme. For such probability distributions with infinite variance the usual roughness parameters such as the RMS height, the correlation length or the correlation function are irrelevant. We show, however, that these notions can...

  14. Solid-solid contacts due to surface roughness and their effects on suspension behaviour.

    Science.gov (United States)

    Davis, Robert H; Zhao, Yu; Galvin, Kevin P; Wilson, Helen J

    2003-05-15

    Solid-solid contacts due to microscopic surface roughness in viscous fluids were examined by observing the translational and rotational behaviours of a suspended sphere falling past a lighter sphere or down an inclined surface. In both cases, a roll-slip behaviour was observed, with the gravitational forces balanced by not only hydrodynamic forces but also normal and tangential solid-solid contact forces. Moreover, the nominal separation between the surfaces due to microscopic surface roughness elements is not constant but instead varies due to multiple roughness scales. By inverting the system, so that the heavy sphere fell away from the lighter sphere or the plane, it was found that the average nominal separation increases with increasing angle of inclination of the plane or the surface of the lighter sphere from horizontal; the larger asperities lift the sphere up from the opposing surface and then gravity at large angles of inclination is too weak to pull the sphere back down to the opposing surface before another large asperity is encountered. The existence of microscopic surface roughness and solid-solid contacts is shown to modify the rheological properties of suspensions. For example, the presence of compressive, but not tensile, contact forces removes the reversibility of sphere-sphere interactions and breaks the symmetry of the particle trajectories. As a result, suspensions of rough spheres exhibit normal stress differences that are absent for smooth spheres. For the conditions studied, surface roughness reduces the effective viscosity of a suspension by limiting the lubrication resistance during near-contact motion, and it also modifies the suspension microstructure and hydrodynamic diffusivity.

  15. EFFECT OF SOIL TILLAGE AND PLANT RESIDUE ON SURFACE ROUGHNESS OF AN OXISOL UNDER SIMULATED RAIN

    Directory of Open Access Journals (Sweden)

    Elói Panachuki

    2015-02-01

    Full Text Available Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols. In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT, conventional tillage (CT, and minimum tillage (MT with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.. Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.

  16. Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements

    Science.gov (United States)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.

    2000-01-01

    Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.

  17. Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements

    Science.gov (United States)

    2013-12-16

    waves, breaking waves as well as the foam, subsurface bubbles and spray they produce, contribute substantially to the distortion of the optical...representation of nonlinearity and breaking surface wave effects including bubbles , passive foam, active whitecap cover and spray, as well as micro...for slick conditions which are consistent with the surfactant levels in the region during the experiment. Publication of the first manuscript

  18. [The surface roughness analysis of the titanium casting founding by a new titanium casting investment material].

    Science.gov (United States)

    Liang, Qin-ye; Wu, Xia-yi; Lin, Xue-feng

    2012-04-01

    To investigate the surface roughness property of the titanium castings cast in a new investment for titanium casting. Six wax patterns (20 mm × 20 mm × 0.5 mm) were invested using two investments: three in a new titanium investment material and three in the control material (Rematitan Plus). Six titanium specimens were obtained by conventional casting. After casting, surface roughness of the specimens were evaluated with a surface profilometer. The surface roughness of the specimens cast in new titanium investment material was (1.72 ± 0.08) µm, which was much smaller than that from Rematitan Plus [(1.91 ± 0.15) µm, P cast using these two investment materials are both smooth enough to fulfill the demand of the titanium precision-casting for prosthodontic clinical use.

  19. Use of THz Reflectometry for Roughness Estimations of Archeological Metal Surfaces

    Science.gov (United States)

    Cacciari, Ilaria; Siano, Salvatore

    2017-04-01

    In this work, using a time domain spectrometer, we have investigated the reflection of terahertz (THz) pulses from surfaces that exhibit a variable degree of roughness. The study was mainly aimed at assessing the influence of the surface texture on the amplitude and the shape of the pulses reflected by stratified materials and at exploring the potential of this technique for achieving quantitative information on the roughness of the material interfaces hit by the THz beam. The behavior of the reflected THz pulses was investigated by considering angular measurements on a set of suitable mock-ups. Measurements were carried out on an authentic archeological Roman coin that exhibited different corrosion situations. An electromagnetic model was used for estimating the roughness of outer and inner surfaces. The comparison of the results with those provided by other techniques made it possible to parameterize the surface texture such as the traditional contact micro-profilometry and the more recently used 3D digital microscopy.

  20. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  1. A novel approach to predict surface roughness in machining operations using fuzzy set theory

    Directory of Open Access Journals (Sweden)

    Tzu-Liang (Bill Tseng

    2016-01-01

    Full Text Available The increase of consumer needs for quality metal cutting related products with more precise tolerances and better product surface roughness has driven the metal cutting industry to continuously improve quality control of metal cutting processes. In this paper, two different approaches are discussed. First, design of experiments (DOE is used to determine the significant factors and then fuzzy logic approach is presented for the prediction of surface roughness. The data used for the training and checking the fuzzy logic performance is derived from the experiments conducted on a CNC milling machine. In order to obtain better surface roughness, the proper sets of cutting parameters are determined before the process takes place. The factors considered for DOE in the experiment were the depth of cut, feed rate per tooth, cutting speed, tool nose radius, the use of cutting fluid and the three components of the cutting force. Finally the significant factors were used as input factors for fuzzy logic mechanism and surface roughness is predicted with empirical formula developed. Test results show good agreement between the actual process output and the predicted surface roughness.

  2. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator

    Science.gov (United States)

    Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.

    2017-01-01

    The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990

  3. Surface roughness of denture bases after immersion in fishcake vinegar solution

    Science.gov (United States)

    Kodir, K.; Tanti, I.; Odang, R. W.

    2017-08-01

    Fishcake is a common food in Palembang city and is usually eaten with fishcake vinegar sauce. Fishcake vinegar solution contains acetic acid and chloride and fluoride ions, all of which cause surface roughness on the denture base material. The objective of this study was to analyze the effect of fishcake vinegar solution on the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy denture bases. This laboratory-based experimental study was performed on heat-cured acrylic resins, thermoplastic nylon specimen plates formed in 15 × 10 × 1 mm shapes, and cobalt-chromium alloy specimens in cylinder forms with a 7.7 mm diameter and 17.5-mm height. Each group consisted of 10 pieces. Each specimen was immersed in a fishcake vinegar solution at 37 °C for 4 days. The surface roughness was measured using a profilometer before and after immersion. Statistical analyses showed significant (p cobalt chromium alloy plates after immersion in a fishcake vinegar solution for 4 days. Fishcake vinegar solution affects the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy plates after a 4-day immersion period. The greatest surface roughness change occurred in the thermoplastic nylon plate, while the lowest change occurred in the cobalt-chromium alloy.

  4. Effective aerodynamic roughness estimated from airborne laser altimeter measurements of surface features

    NARCIS (Netherlands)

    De Vries, AC; Kustas, WP; Ritchie, JC; Klaassen, W; Menenti, M; Rango, A; Prueger, JH

    2003-01-01

    Aerodynamic roughness length (z(0)) and displacement height (d(0)) are important surface parameters for estimating surface fluxes in numerical models. These parameters are generally determined from wind flow characteristics using logarithmic wind profiles measured at a meteorological tower or by

  5. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    Science.gov (United States)

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  6. Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy

    Science.gov (United States)

    Rebecca Snell; Leslie H. Groom; Timothy G. Rials

    2001-01-01

    Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...

  7. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar

    NARCIS (Netherlands)

    Hwang, P.A.; Fois, F.

    2015-01-01

    Ocean surface roughness and wave breaking are the two main contributors of radar backscattering from the ocean surface. The relative weightings of the two contributions vary with the microwave polarization: the VV (vertical transmit vertical receive) is dominated by the Bragg resonance scattering

  8. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  9. Parameterization of rain induced surface roughness and its validation study using a third generation wave model

    Science.gov (United States)

    Rajesh Kumar, R.; Prasad Kumar, B.; Bala Subrahamanyam, D.

    2009-09-01

    The effect of raindrops striking water surface and their role in modifying the prevailing sea-surface roughness is investigated. The work presents a new theoretical formulation developed to study rain-induced stress on sea-surface based on dimensional analysis. Rain parameters include drop size, rain intensity and rain duration. The influences of these rain parameters on young and mature waves were studied separately under varying wind speeds, rain intensity and rain duration. Contrary to popular belief that rain only attenuates surface waves, this study also points out rain duration under certain condition can contribute to wave growth at high wind speeds. Strong winds in conjunction with high rain intensity enhance the horizontal stress component on the sea-surface, leading to wave growth. Previous studies based on laboratory experiments and dimensional analysis do not account for rain duration when attempting to parameterize sea-surface roughness. This study signifies the importance of rain duration as an important parameter modifying sea-surface roughness. Qualitative as well quantitative support for the developed formulation is established through critical validation with reports of several researchers and satellite measurements for an extreme cyclonic event in the Indian Ocean. Based on skill assessment, it is suggested that the present formulation is superior to prior studies. Numerical experiments and validation performed by incorporating in state-of-art WAM wave model show the importance of treating rain-induced surface roughness as an essential pre-requisite for ocean wave modeling studies.

  10. Nanoscale roughness and morphology affect the IsoElectric Point of titania surfaces.

    Directory of Open Access Journals (Sweden)

    Francesca Borghi

    Full Text Available We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2 surfaces in aqueous solutions. IsoElectric Points (IEPs of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces.

  11. DETERMINATION OF OPTIMAL BALL BURNISHING PARAMETERS FOR SURFACE ROUGHNESS OF ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    D.B. Patel

    2013-06-01

    Full Text Available Burnishing is a cold-working process, which easily produces a smooth and work-hardened surface through the plastic deformation of surface irregularities. In the present work, the influences of the main burnishing parameters (speed, feed, force, number of tool passes, and ball diameter on the surface roughness are studied. It is found that the burnishing forces and the number of tool passes are the parameters that have the greatest effect on the workpiece surface during the burnishing process.

  12. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Bagge-Ravn, Dorthe; Kold, John

    2003-01-01

    was not affected by surface roughness (Ra) ranging from grit 4000 polished stainless steel (Ra resistance...... was evaluated in a commercial disinfectant and in 1 M NaCl. Electropolished and grit 4000 polished steel proved more corrosion resistant as opposed to grit 80 and 120 polished surfaces. In conclusion, the surface finish did not influence bacterial attachment, colonisation, or removal, but is an important...... parameter for the corrosion resistance of the surface....

  13. On the dependence of sea surface roughness on wind waves

    DEFF Research Database (Denmark)

    Johnson, H.K.; Højstrup, J.; Vested, H.J.

    1998-01-01

    The influence of wind waves on the momentum transfer (wind stress) between the atmosphere and sea surface was studied using new measured data from the RASEX experiment and other datasets compiled by Donelan et al. Results of the data analysis indicate that errors in wind friction velocity u...... that calculations of the wind friction velocities using the wave-spectra-dependent expression of Hansen and Larsen agrees quite well with measured values during RASEX. It also gives a trend in Charnock parameter consistent with that found by combining the field data. Last, calculations using a constant Charnock...... parameter (0.018) also give very good results for the wind friction velocities at the RASEX site....

  14. Analysis of Snow and Ice Surface Roughness Utilizing Higher-order Vario Functions and Geostatistical Classification

    Science.gov (United States)

    Herzfeld, Ute C.

    Study of the surface roughness of snow fields, glaciers, and ice sheets requires mea- surement and analysis of the surface's three-dimensional features, anisotropies, and complex microtopography. Observing that the notions of relief and surface roughness differ only with respect to scale, we consider surface roughness a spatial variable de- fined as the derivative of (micro)topography. In a project aimed at collecting subscale information for satellite data, we designed and built the Glacier Roughness Sensor, a multichannel instrument to measure snow and ice surface roughness at 0.2 m across- track, 0.1 m along-track resolution and subcentimeter vertical accuracy, with differen- tial kinematic GPS data for positioning. Geostatistical surface classification is aimed at distinguishing objects - surface provinces or surface types - objectively and automatically. The basic idea is to cal- culate spatial structure functions from surface data and extract parameters from those functions that constitute a feature vector. If feature vectors can be designed to capture characteristic properties of surface types, then a classification of surface provinces is possible. Application in a moving-window operation facilitates segmentation of a given study area into surface provinces. Application to time series of surface data provides a means to study morphogenetic processes and changes in environmental conditions. The geostatistical surface classification has been applied success- fully to ice-surface roughness data collected on the Greenland Inland Ice, in the drainage basin of Jakob- shavns Isbrae , the world's fastest moving glacier. Surface structures on the glacier are huge crevasses, visible in SAR data, and surface structures in the slow-moving ice of the drainage basin are still 1-2 meters in relief, so the mathematical problem of ex- tracting characteristic parameters from variograms of roughness data is well- posed. In a study of snow-surface roughness data from Niwot

  15. Model for estimating the effects of surface roughness on mass ejection from shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J R; Bertholf, L D

    1978-10-01

    A statistical model is presented for estimating the effects of surface roughness on mass ejection from shocked surfaces. In the model, roughness is characterized by the total volume of defects, such as pits, scratches and machine marks, on a surface. The amount of material ejected from these defects during shock loading can be estimated by assuming that jetting from surface depressions is the primary mode of ejection and by making simplifying assumptions about jetting processes. Techniques are discussed for estimating the effects of distribution in defect size and shape, and results are presented for several different geometries of defects. The model is used to compare predicted and measured ejecta masses from six different materials. Surface defects in these materials range from pits and scratches on polished surfaces to prepared defects such as machined or porous surfaces. Good agreement is achieved between predicted and measured results which suggests general applicability of the model.

  16. Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor.

    Science.gov (United States)

    Feng, Shushu; Yu, Genying; Cai, Xiang; Eulade, Mahoro; Lin, Hongjun; Chen, Jianrong; Liu, Yong; Liao, Bao-Qiang

    2017-11-01

    Fractal roughness is one of the most important properties of a fractal surface. In this study, it was found that, randomly rough membrane surface was a fractal surface, which could be digitally modeled by a modified two-variable Weierstrass-Mandelbrot (WM) function. Fractal roughness of membrane surfaces has a typical power function relation with the statistical roughness of the modeled surface. Assessment of interfacial interactions showed that an increase in fractal roughness of membrane surfaces will strengthen and prolong the interfacial interactions between membranes and foulants, and under conditions in this study, will significantly increase the adhesion propensity of a foulant particle on membrane surface. This interesting result can be attributed to that increase in fractal roughness simultaneously improves separation distance and interaction surface area for adhesion of a foulant particle. This study gives deep insights into interfacial interactions and membrane fouling in MBRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Changes in the spectrum of light scattered from a rough dielectric film on a metal surface

    Science.gov (United States)

    Gu, Zu-Han

    2003-10-01

    Theoretical calculations have shown that in order to obtain changes in the spectrum of light scattered from a randomly rough surface that are large enough to be observed experimentally, this spectrum should be measured at angles of scattering in the near vicinity of features in the scattering pattern whose angular positions depend strongly on the frequency of the incident light. A scattering system that possessses such features is a dielectric film deposited on the planar surface of a reflecting substrate whose illuminated surface is a 2D randomly rough surface. When the dielectric surface is weakly rough, coherent light scattered from this system consists of speckle spots that arrange themselves into concentric interference rings, called Selenyi rings, centered at the normal to the mean surfaces. The angular positions of these rings (intensity maxima) are independent of the angle of incidence of the incident light. When the dielectric surface is strongly rough the angular positions of these rings now depend on the angle of incidence, and they are called Quetelet rings. The angular positions of both types of rings depend strongly on the wavelength of the incident light. Therefore, the spectrum of the scattered light, measured at a scattering angle close to the position of one of these rings, can differ significantly from that of the incident light. In this paper we study experimentally the scattering of light from the system just described, namely a dielectric film deposited on the planar surface of a metallic substrate, when the illuminated surface of the film is a 2D randomly rough surface. We find large changes in the spectrum of the scattered light at scattering angles in the neighborhood of the fringes in the scattering pattern to which this system gives rise.

  18. Role of roughness parameters on the tribology of randomly nano-textured silicon surface.

    Science.gov (United States)

    Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S

    2011-10-01

    This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.

  19. Evaluation of surface roughness and hardness of different glass ionomer cements

    Science.gov (United States)

    Bala, Oya; Arisu, Hacer Deniz; Yikilgan, Ihsan; Arslan, Seda; Gullu, Abdulkadir

    2012-01-01

    Objectives: The aim of this study was to evaluate surface roughness and hardness of a nanofiller GIC, a resin-modified GIC, three conventional GICs, and a silver-reinforced GIC. Methods: For each material, 11 spcecimens were prepared and then stored in distilled water at 37 °C for 24 h. The surface roughness of 5 specimens was measured using a surface profilometer before polishing and after polishing with coarse, medium, fine, superfine aluminum oxide abrasive Sof-Lex discs respectively. The hardness of the upper surfaces of the remaining 6 specimens was measured with a Vickers microhardness measuring instrument. Results: All tested GICs showed lower surface roughness values after the polishing procedure. Surface finish of nanofiller GIC was smoother than the other tested GICs after polishing. This was followed by resin-modified GIC, Fuji II LC; then silver-reinforced GIC, Argion Molar, conventional GICs, Aqua Ionofil Plus, Fuji IX, and Ionofil Molar, respectively. The result of the hardness test indicated that the microhardness value of silver-reinforced GIC was greater than that of the other GICs. When the hardness values of all tested GICs were compared, the differences between materials (except Aqua Ionofil Plus with Ionofil Molar and Ketac N100 with Fuji II LC (P>.05)) were found statistically significant (P<.05). Conclusions: According to the results of this study, it can be concluded that the differences in the composition of GICs may affect their surface roughness and hardness. PMID:22229011

  20. Early osteoblast responses to orthopedic implants: Synergy of surface roughness and chemistry of bioactive ceramic coating.

    Science.gov (United States)

    Aniket; Reid, Robert; Hall, Benika; Marriott, Ian; El-Ghannam, Ahmed

    2015-06-01

    Pro-osteogenic stimulation of bone cells by bioactive ceramic-coated orthopedic implants is influenced by both surface roughness and material chemistry; however, their concomitant impact on osteoblast behavior is not well understood. The aim of this study is to investigate the effects of nano-scale roughness and chemistry of bioactive silica-calcium phosphate nanocomposite (SCPC50) coated Ti-6Al-4V on modulating early bone cell responses. Cell attachment was higher on SCPC50-coated substrates compared to the uncoated controls; however, cells on the uncoated substrate exhibited greater spreading and superior quality of F-actin filaments than cells on the SCPC50-coated substrates. The poor F-actin filament organization on SCPC50-coated substrates is thought to be due to the enhanced calcium uptake by the ceramic surface. Dissolution analyses showed that an increase in surface roughness was accompanied by increased calcium uptake, and increased phosphorous and silicon release, all of which appear to interfere with F-actin assembly and osteoblast morphology. Moreover, cell attachment onto the SCPC50-coated substrates correlated with the known adsorption of fibronectin, and was independent of surface roughness. High-throughput genome sequencing showed enhanced expression of extracellular matrix and cell differentiation related genes. These results demonstrate a synergistic relationship between bioactive ceramic coating roughness and material chemistry resulting in a phenotype that leads to early osteoblast differentiation. © 2014 Wiley Periodicals, Inc.

  1. Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces.

    Science.gov (United States)

    Madadi, Mahyar; Sahimi, Muhammad

    2003-02-01

    Using the lattice Boltzmann method, we study fluid flow in a two-dimensional (2D) model of fracture network of rock. Each fracture in a square network is represented by a 2D channel with rough, self-affine internal surfaces. Various parameters of the model, such as the connectivity and the apertures of the fractures, the roughness profile of their surface, as well as the Reynolds number for flow of the fluid, are systematically varied in order to assess their effect on the effective permeability of the fracture network. The distribution of the fractures' apertures is approximated well by a log-normal distribution, which is consistent with experimental data. Due to the roughness of the fractures' surfaces, and the finite size of the networks that can be used in the simulations, the fracture network is anisotropic. The anisotropy increases as the connectivity of the network decreases and approaches the percolation threshold. The effective permeability K of the network follows the power law K approximately (beta), where is the average aperture of the fractures in the network and the exponent beta may depend on the roughness exponent. A crossover from linear to nonlinear flow regime is obtained at a Reynolds number Re approximately O(1), but the precise numerical value of the crossover Re depends on the roughness of the fractures' surfaces.

  2. Functionalized PDMS with versatile and scalable surface roughness gradients for cell culture

    KAUST Repository

    Zhou, Bingpu

    2015-07-21

    This manuscript describes a simple and versatile approach to engineering surface roughness gradients via combination of microfluidics and photo-polymerization. Through UV-mediated polymerization, N-isopropylacrylamide with concentration gradients are successfully grafted onto PDMS surface, leading to diverse roughness degrees on the obtained PDMS substrate. Furthermore, the extent of surface roughness can be controllably regulated via tuning the flow rate ratio between the monomer solution and deionized water. Average roughness ranging from 8.050 nm to 151.68 nm has well been achieved in this work. Such PDMS samples are also demonstrated to be capable of working as supporting substrates for controlling cell adhesion or detachment. Due to the different degrees of surface roughness on a single substrate, our method provides an effective approach for designing advanced surafecs for cell culture. Finally, the thermosensitive property of N-isopropylacrylamide makes our sample furnish as another means for controlling the cell detachment from the substrates with correspondence to the surrounding temperature.

  3. Influence of surface roughness on consecutively hydrogen absorption cycles in Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Suarez, Alejandra [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, Mexico D.F. 01000 (Mexico)

    2010-10-15

    In the present work the influence of roughness of the material surface with hydrogen absorption in Ti-6Al-4V alloy during four hydrogenated cycles is studied. The Ti-6Al-4V alloy samples were hydrogenated during several cycles at 650 C for two hours, in 50% hydrogen and 50% argon atmospheres, 1 atm pressure and a flux of 50 cm{sup 3}/min each one. The hydrogen concentrations are measured using Elastic Recoil Detection Analysis technique; meanwhile the roughness is measured using an Atomic Force Microscope. X-ray Diffraction analysis shows changes in crystal orientation due to hydrogen absorption. The hydrogen capacity of the Ti-6Al-4V alloy is observed to be directly correlated to the surface quality of the sample during the first hydrogenation cycles, but in the fourth cycle, the hydrogen absorption is almost equal for all the samples independently of their surface roughness. (author)

  4. Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion.

    Science.gov (United States)

    Koizumi, Hiroyasu; Saiki, Osamu; Nogawa, Hiroshi; Hiraba, Haruto; Okazaki, Tomoyo; Matsumura, Hideo

    2015-01-01

    The purpose of this study was to evaluate the gloss and surface roughness behaviors of newly developed CAD/CAM composite blocks with different filler contents and characteristics. The gloss and surface roughness were quantified before and after a toothbrush dentifrice abrasion test; the results were compared to the gloss and surface roughness of a ceramic CAD/CAM block. Knoop hardness was determined before abrasion test. The results were analyzed by ANOVA, Tukey HSD, and Dunnett t test (pVita Enamic>Gradia block>Shofu Block HC, Lava Ultimate≥Katana Avencia block≥Cerasmart. After toothbrush abrasion, a significant difference in the gloss unit was detected between the Shofu Block HC material and the ceramic block. The Ra and Rz of the Cerasmart and Shofu Block HC materials were significantly larger than those of the ceramic block after toothbrush abrasion.

  5. Effect of alcoholic beverages on surface roughness and microhardness of dental composites.

    Science.gov (United States)

    DA Silva, Marcos Aurélio Bomfim; Vitti, Rafael Pino; Sinhoreti, Mário Alexandre Coelho; Consani, Rafael Leonardo Xediek; Silva-Júnior, José Ginaldo da; Tonholo, Josealdo

    2016-01-01

    The aim of this study was to evaluate the microhardness and surface roughness of composite resins immersed in alcoholic beverages. Three composite resins were used: Durafill (Heraeus Kulzer), Z250 (3M-ESPE) and Z350 XT (3M-ESPE). The inital surface roughness and microhardness were measured. The samples were divided into four groups (n=30): G1-artificial saliva; G2-beer; G3-vodka; G4-whisky. The samples were immersed in the beverages 3× a day for 15 min and 30 days. The surface roughness and microhardness assays were repeated after immersion period. The data were statistically analyzed by two-way ANOVA and Tukey-HSD test (palcoholic beverages. The effect of these beverages on dental composites is depended upon the chemical composition, immersion time, alcohol content and pH of solutions.

  6. Surface roughness of composite resin veneer after application of herbal and non-herbal toothpaste

    Science.gov (United States)

    Nuraini, S.; Herda, E.; Irawan, B.

    2017-08-01

    The aim of this study was to find out the surface roughness of composite resin veneer after brushing. In this study, 24 specimens of composite resin veneer are divided into three subgroups: brushed without toothpaste, brushed with non-herbal toothpaste, and brushed with herbal toothpaste. Brushing was performed for one set of 5,000 strokes and continued for a second set of 5,000 strokes. Roughness of composite resin veneer was determined using a Surface Roughness Tester. The results were statistically analyzed using Kruskal-Wallis nonparametric test and Post Hoc Mann-Whitney. The results indicate that the highest difference among the Ra values occurred within the subgroup that was brushed with the herbal toothpaste. In conclusion, the herbal toothpaste produced a rougher surface on composite resin veneer compared to non-herbal toothpaste.

  7. An Evaluation of the use of Laser-Vibration Melting to Increase the Surface Roughness of Metal Objects

    Directory of Open Access Journals (Sweden)

    Grabas B.

    2015-04-01

    Full Text Available This paper presents preliminary, experimental results of a new, hybrid method of increasing the surface roughness of metal objects. In this new approach, metal objects are melted with a mobile laser beam while they are being rotated. A vibration generator provides circular vibrations with an amplitude of 3 mm, and the vibration plane is perpendicular to the moving laser beam. The melting tests were performed using flat carbon steel samples at a predetermined frequency of circular vibrations. The effects of laser power and laser beam scanning velocity on the melted shapes were studied. All laser melting procedures were performed at a vibration frequency of 105 Hz. The melted samples were subjected to microscopic evaluation and the Ra parameter, which characterises mean roughness, was measured using a profilometer. Melting metal samples with physically smooth surfaces (Ra = 0.21 µm resulted in surface structures of varied roughness values, with Ra ranging from 5 µm to approximately 58 µm. The studies were undertaken to employ this technology for the purpose of passive heat exchange intensification of heating surfaces in practical applications.

  8. Machining process influence on the chip form and surface roughness by neuro-fuzzy technique

    Science.gov (United States)

    Anicic, Obrad; Jović, Srđan; Aksić, Danilo; Skulić, Aleksandar; Nedić, Bogdan

    2017-04-01

    The main aim of the study was to analyze the influence of six machining parameters on the chip shape formation and surface roughness as well during turning of Steel 30CrNiMo8. Three components of cutting forces were used as inputs together with cutting speed, feed rate, and depth of cut. It is crucial for the engineers to use optimal machining parameters to get the best results or to high control of the machining process. Therefore, there is need to find the machining parameters for the optimal procedure of the machining process. Adaptive neuro-fuzzy inference system (ANFIS) was used to estimate the inputs influence on the chip shape formation and surface roughness. According to the results, the cutting force in direction of the depth of cut has the highest influence on the chip form. The testing error for the cutting force in direction of the depth of cut has testing error 0.2562. This cutting force determines the depth of cut. According to the results, the depth of cut has the highest influence on the surface roughness. Also the depth of cut has the highest influence on the surface roughness. The testing error for the cutting force in direction of the depth of cut has testing error 5.2753. Generally the depth of cut and the cutting force which provides the depth of cut are the most dominant factors for chip forms and surface roughness. Any small changes in depth of cut or in cutting force which provide the depth of cut could drastically affect the chip form or surface roughness of the working material.

  9. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  10. Surface roughness classification using polarimetric radar data and ensemble learning techniques

    Science.gov (United States)

    Alvarez-Mozos, Jesus; Peters, Jan; Larrañaga, Arantzazu; Gonzalez-Audicana, Maria; Verhoest, Niko E. C.; Casali, Javier

    2010-05-01

    The availability of space-borne radar sensors with polarimetric capabilities, such as RADARSAT-2, brings new expectations for the retrieval of soil moisture and roughness from remote sensing. The additional information provided by those sensors is expected to enable a separation of the confounding effects of soil moisture and roughness on the radar signal, resulting in more robust surface parameter retrievals. In this study we analyze two RADARSAT-2 Fine Quad-Pol scenes acquired during October 2008 over an agricultural area surrounding Pamplona (Spain). At that time of the year agricultural fields were bare and showed a variety of roughness conditions due to the different tillage operations performed. Approximately 50 agricultural fields were visited and their roughness condition was qualitatively evaluated. Fields were classified as rough, medium or smooth and their tillage direction was measured. The objective of this study is to evaluate the ability of different polarimetric variables to classify agricultural fields according to their roughness condition. With this aim a recently developed machine learning technique called ‘Random Forests' (RF) is used. RF is an ensemble learning technique that generates many classification trees and aggregates the individual results through majority vote. RF have been applied to a wide variety of phenomena, and in the recent years they have been used with success in several geoscience and remote sensing applications. In addition, RF can be used to estimate the importance of each predictive variable and to detect variable interactions. RF classification was applied at the pixel and at the field scale. Preliminary analyses showed better classification results for smooth and medium roughness fields than for rough ones. The research is ongoing and the influence of tillage direction and surface slope needs to be studied in detail.

  11. Surface Roughness Optimization Using Taguchi Method of High Speed End Milling For Hardened Steel D2

    Science.gov (United States)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    The main challenge for any manufacturer is to achieve higher quality of their final products with maintains minimum machining time. In this research final surface roughness analysed and optimized with maximum 0.3 mm flank wear length. The experiment was investigated the effect of cutting speed, feed rate and depth of cut on the final surface roughness using D2 as a work piece hardened to 52-56 HRC, and coated carbide as cutting tool with higher cutting speed 120-240 mm/min. The experiment has been conducted using L9 design of Taguchi collection. The results have been analysed using JMP software.

  12. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry.

    Science.gov (United States)

    Jin, X; Kasal, B

    2016-10-01

    This study attempts to address the interpretation of atomic force microscopy (AFM) adhesion force measurements conducted on the heterogeneous rough surface of wood and natural fibre materials. The influences of wood surface roughness, tip geometry and wear on the adhesion force distribution are examined by cyclic measurements conducted on wood surface under dry inert conditions. It was found that both the variation of tip and surface roughness of wood can widen the distribution of adhesion forces, which are essential for data interpretation. When a common Si AFM tip with nanometre size is used, the influence of tip wear can be significant. Therefore, control experiments should take the sequence of measurements into consideration, e.g. repeated experiments with used tip. In comparison, colloidal tips provide highly reproducible results. Similar average values but different distributions are shown for the adhesion measured on two major components of wood surface (cell wall and lumen). Evidence supports the hypothesis that the difference of the adhesion force distribution on these two locations was mainly induced by their surface roughness.

  13. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  14. Roughness modification of surfaces treated by a pulsed dielectric barrier discharge

    CERN Document Server

    Dumitrascu, N; Apetroaei, N; Popa, G

    2002-01-01

    Local modifications of surface roughness are very important in many applications, as this surface property is able to generate new mechano-physical characteristics of a large category of materials. Roughness is one of the most important parameters used to characterize and control the surface morphology, and techniques that allow modifying and controlling the surface roughness present increasing interest. In this respect we propose the dielectric barrier discharge (DBD) as a simple and low cost method that can be used to induce controlled roughness on various surfaces in the nanoscale range. DBD is produced in helium, at atmospheric pressure, by a pulsed high voltage, 28 kV peak to peak, 13.5 kHz frequency and 40 W power. This type of discharge is a source of energy capable of modifying the physico-chemical properties of the surfaces without affecting their bulk properties. The discharge is characterized by means of electrical probes and, in order to analyse the heat transfer rate from the discharge to the tre...

  15. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    Science.gov (United States)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  16. Brushing-induced surface roughness of nickel-, palladium-, and gold-based dental casting alloys.

    Science.gov (United States)

    Wataha, John C; Lockwood, Petra E; Messer, Regina L W; Lewis, Jill B; Mettenburg, Donald J

    2008-06-01

    Alloys with high nickel content have been increasingly used for dental prostheses. These alloys have excellent hardness, elastic modulus, and strength, yet have high corrosion rates when exposed to chemical or physical forces that are common intraorally. The purpose of the current study was to measure the susceptibility of several types of nickel-based alloys to brushing abrasion relative to gold- and palladium-based alloys. Au-Pt, Au-Pd, Pd-Ag, Ni-Cr, and Ni-Cr-Be dental alloys were brushed with a toothbrush (Oral-B Soft) and toothpaste (Ultrabrite) in a linear brushing machine, then the surface roughness was measured by profilometry (R(a), R(v), R(p)). Specimens (n=4) were brushed for 48 hours in a saline solution (pH 7). The effect of brushing was determined using 2-sided t tests (alpha=.05), and roughness among alloys postbrushing was compared using 1-way ANOVA with Tukey post hoc analyses (alpha=.05). All polished alloy surfaces (before brushing) had roughnesses of 1 microm (R(a)). Ni-Cr alloys without Be had a postbrushing surface roughness of 0.25 microm (R(a)). Postbrushing roughness of all other alloys ranged from 0.1-0.25 microm (R(a)). R(v) and R(p) values behaved similarly to R(a) values for all alloys. Although they have many excellent mechanical properties, Ni-Cr-Be alloys may be prone to degradation from brushing.

  17. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    Science.gov (United States)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  18. Employing terrestrial photogrammetry to determine surface roughness on a debris covered glacier

    Science.gov (United States)

    Steiner, J. F.; Miles, E. S.; Brun, F.; Detert, M.

    2015-12-01

    Aerodynamic surface roughness is an essential parameter in energy balance studies on glaciers. While actual measurements on bare ice glaciers are rare, a number of literature values exist for different types of ice and snow covers. There are only very few constant values suggested in the literature for debris covered glaciers and actual measurements are even scarcer. This is a significant shortcoming as the debris surface is often very heterogeneous, which results in variable turbulent fluxes. These fluxes, which use surface roughness as an input parameter, are also employed to derive debris thickness from surface temperature. The increased use of aerial and terrestrial photogrammetry on glaciers provides an opportunity to better account for this present shortcoming. On a number of locations of Lirung Glacier in the Nepalese Himalayas we produced high resolution DEMs from terrestrial photogrammetry, from 1 x 1 m plots to a wider basin spanning more than 100 m. These images were then downsampled to different resolutions, ranging from one millimeter to a few centimeters. Employing different equations from the literature we determine surface roughness at different scales. This way we can discuss (1) the variability of results between different commonly used approaches, (2) the variability of surface roughness in space and (3) the impact of image resolution. From a tower with wind and temperature sensors at different heights we additionally infer surface roughness locally. We can then compare these values as well as see the effect of different wind speeds on the derivation of the value. Employing a software originally developed to determine grain size distributions in river beds from optical imagery, we additionally determine rock shapes and size as well as provide an estimate for the grain size distribution of the debris cover. This could provide an initial step to a better estimation of the porous space of the debris cover, which is essential to determine energy flux

  19. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment.

    Science.gov (United States)

    Strasser, Thomas; Preis, Verena; Behr, Michael; Rosentritt, Martin

    2018-02-05

    The aim of this study was to examine the effects of surface pre-treatment on CAD/CAM materials including ceramics, zirconia, resin-infiltrated ceramic, and resin-based composite. Specimens were made of ten CAD/CAM materials (Celtra Duo, Degudent, D; Vita Suprinity, Vita, D; E.max CAD, Ivoclar-Vivadent, FL; E.max ZirCAD, Ivoclar-Vivadent, FL; Vita Enamic, Vita, D; Cerasmart, GC, B; LAVA Ultimate, 3M, D; SHOFU Block HC, SHOFU, US; Grandio Blocs, VOCO, D; BRILLIANT Crios, Coltene, CH) and pretreated to represent clinical procedures (Hf 20 s/5%; phosphoric acid 20 s/37%; Monobond etch and prime (Ivoclar-Vivadent, FL); water-cooled diamond bur (80 μm; 4 μm); Al 2 O 3 -blasting (50 μm/1 bar, 50 μm/2 bar, 120 μm/1 bar, 120 μm/2 bar); untreated; manufacturer's instructions). SEM-analysis (Phenom, FEI, NL) of the surfaces was performed (magnifications ≤ 10,000×). Roughness values R a , R z (KJ 3D, Keyence, J), and surface energy SE (OCA15 plus, SCA20, DataPhysics, D) were determined (statistics: non-parametric Mann-Whitney U test/Kruskal-Wallis test for independent specimen, α = 0.05). Kruskal-Wallis revealed significant (p CAD/CAM materials require individual pre-treatment for optimized and protective surface activation. Cementation is a key factor for clinical success. Given the variety of available CAD/CAM materials, specific procedures are needed.

  20. Effect of Cigarette Smoke on Surface Roughness of Different Denture Base Materials

    Science.gov (United States)

    Mahross, Hamada Zaki; Mohamed, Mahmoud Darwish; Hassan, Ahmed Mohammed

    2015-01-01

    Background Surface roughness is an important property of denture bases since denture bases are in contact with oral tissues and a rough surface may affect tissues health due to microorganism accumulation. Therefore, the effect of cigarette smoke on the surface roughness of two commercially available denture base materials was evaluated to emphasize which type has superior properties for clinical use. Materials and Methods A total numbers of 40 specimens were constructed from two commercially available denture base materials; heat-cured PMMA and visible light cured UDMA resins (20 for each). The specimens for each type were randomly divided into: Group I: Heat cured resin control group; Group II: Heat cured acrylic resin specimens exposed to cigarette smoking; Group III: Light cured resin control group; Group IV: Light cured resin specimens exposed to cigarette smoking. The control groups used for immersion in distilled water and the smoke test groups used for exposure to cigarette smoking. The smoke test groups specimens were exposed to smoking in a custom made smoking chamber by using 20 cigarettes for each specimen. The surface roughness was measured by using Pocket SurfPS1 profilometer and the measurements considered as the difference between the initial and final roughness measured before and after smoking. Results The t-test for paired observation of test specimens after exposure to smoking was indicated significant change in surface roughness for Group II (presin had been increased after exposure to cigarette smoke but had no impact on the dentures constructed from visible light cured resin. PMID:26501010

  1. Effect of denture cleansers on metal ion release and surface roughness of denture base materials.

    Science.gov (United States)

    Davi, Letícia Resende; Felipucci, Daniela Nair Borges; de Souza, Raphael Freitas; Bezzon, Osvaldo Luiz; Lovato-Silva, Cláudia Helena; Pagnano, Valéria Oliveira; Paranhos, Helena de Freitas Oliveira

    2012-01-01

    Chemical disinfectants are usually associated with mechanical methods to remove stains and reduce biofilm formation. This study evaluated the effect of disinfectants on release of metal ions and surface roughness of commercially pure titanium, metal alloys, and heat-polymerized acrylic resin, simulating 180 immersion trials. Disk-shaped specimens were fabricated with commercially pure titanium (Tritan), nickel-chromium-molybdenum-titanium (Vi-Star), nickel-chromium (Fit Cast-SB Plus), and nickel-chromium-beryllium (Fit Cast-V) alloys. Each cast disk was invested in the flasks, incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n=5) were immersed in these solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous, and Polident. Deionized water was used as a control. The quantitative analysis of metal ion release was performed using inductively coupled plasma mass spectrometry (ELAN DRC II). A surface analyzer (Surftest SJ-201P) was used to measure the surface roughness (µm). Data were recorded before and after the immersions and evaluated by two-way ANOVA and Tukey's test (α=0.05). The nickel release proved most significant with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. There was a significant difference in surface roughness of the resin (p=0.011) after immersion. Cepacol caused significantly higher resin roughness. The immersion products had no influence on metal roughness (p=0.388). It could be concluded that the tested alloys can be considered safe for removable denture fabrication, but disinfectant solutions as Cepacol and Medical Interporous tablet for daily denture immersion should be used with caution because it caused greater resin surface roughness and greater ion release, respectively.

  2. Surface roughness of Saturn's rings and ring particles inferred from thermal phase curves

    Science.gov (United States)

    Morishima, Ryuji; Turner, Neal; Spilker, Linda

    2017-10-01

    We analyze thermal phase curves of all the main rings of Saturn (the A, B, C rings, and the Cassini division) measured by both the far-IR and mid-IR detectors of the Cassini Composite InfraRed Spectrometer (CIRS). All the rings show temperature increases toward zero phase angle, known as an opposition effect or thermal beaming. For the C ring and Cassini division, which have low optical depths, intra-particle shadowing is considered the dominant mechanism causing the effect. On the other hand, the phase curves of the optically thick B and A rings steepen significantly with decreasing absolute solar elevation angle from 21° to 14°, suggesting inter-particle shadowing plays an important role in these rings. We employ an analytic roughness model to estimate the degrees of surface roughness of the rings or ring particles. For optically thin rings, an isolated particle covered by spherical segment craters is employed while for the thick rings we approximate a packed particle layer as a slab covered by craters. The particles in the thin rings are found to have generally rough surfaces, except in the middle C ring. Across the C ring, the optical depth correlates with the degree of surface roughness. This may indicate that surface roughness comes mainly from particle clumping, while individual particles have rather smooth surfaces. For the optically thick rings, the surface roughness of the particle layer is found to be moderate. The modeled phase curves of optically thick rings are shallow if the phase angle change is primarily due to change of observer azimuthal angle. On the other hand, the phase curves are steep if the phase angle change is due to change of observer elevation angle, as inter-particle shadows become visible at higher observer elevation. In addition, the area of shadowed facets increases with decreasing solar elevation angle. These combined effects explain the large seasonal change of the phase curve steepness observed for the thick rings. The degrees

  3. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  4. Reducing the surface roughness of dental acrylic resins by using an eggshell abrasive material.

    Science.gov (United States)

    Onwubu, Stanley C; Vahed, Anisa; Singh, Shalini; Kanny, Krishnan M

    2017-02-01

    Excessive surface roughness of denture base resins adversely impacts oral health. The purpose of this in vitro study was to examine the abrasive potential of eggshell powder in reducing the surface roughness of denture base resins. Thirty poly(methyl methacrylate) specimens were fabricated and polished with eggshell powders of different particle sizes and with pumice. The average surface roughness (Ra) after polishing was measured with a profilometer. Scanning electron microscope and optical electron microscope techniques were used to assess the surface roughness morphology of the specimens. ANOVA was used to analyze the Ra values. The Tukey honest significant differences and Bonferroni tests were used to identify differences between the 2 abrasive materials (α=.05). Significant differences in the Ra values were observed between the fine and medium eggshell powder abrasives (P.05). Specimens polished with pumice had the highest Ra values, whereas specimens polished with the fine eggshell powder abrasive had the lowest Ra values. By connecting the Ra values to the threshold limit value of 0.2 μm, eggshell powder abrasive finished denture acrylic resin surfaces better than pumice. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors.

    Science.gov (United States)

    Zhong, Nianbing; Zhu, Xun; Liao, Qiang; Wang, Yongzhong; Chen, Rong; Sun, Yahui

    2013-06-10

    The effects of surface roughness on the light transmission properties and sensitivity of fiber-optic evanescent wave sensors are investigated. A simple method of increasing the sensitivity based on the surface roughness (pit depth δ and diameter Δ) and incident angle U(i) of light rays on the fiber input end is proposed. We discovered that as 2δ/Δ increases, the transmitted light intensity decreases, but the sensitivity initially increases and then decreases. In sensors containing fibers of various roughnesses, the sensitivity to glucose solutions reached -11.7 mW/riu at 2δ/Δ=0.32 and increased further to -15.3 mW/riu with proper adjustment of U(i).

  6. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Science.gov (United States)

    Peijian, Chen; Juan, Peng; Yucheng, Zhao; Feng, Gao

    2014-06-01

    Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  7. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    Directory of Open Access Journals (Sweden)

    Chen Peijian

    2014-06-01

    Full Text Available Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  8. Minimization of Surface Roughness and Tool Vibration in CNC Milling Operation

    Directory of Open Access Journals (Sweden)

    Sukhdev S. Bhogal

    2015-01-01

    Full Text Available Tool vibration and surface roughness are two important parameters which affect the quality of the component and tool life which indirectly affect the component cost. In this paper, the effect of cutting parameters on tool vibration, and surface roughness has been investigated during end milling of EN-31 tool steel. Response surface methodology (RSM has been used to develop mathematical model for predicting surface finish, tool vibration and tool wear with different combinations of cutting parameters. The experimental results show that feed rate is the most dominating parameter affecting surface finish, whereas cutting speed is the major factor effecting tool vibration. The results of mathematical model are in agreement with experimental investigations done to validate the mathematical model.

  9. Evaluation of the Effect of Surface Polishing, Oral Beverages and Food Colorants on Color Stability and Surface Roughness of Nanocomposite Resins

    Science.gov (United States)

    Kumari, R Veena; Nagaraj, Hema; Siddaraju, Kishore; Poluri, Ramya Krishna

    2015-01-01

    Background: It is beyond doubt that finishing and polishing of a composite restoration enhance its esthetics and, is also essential for the health of the periodontium. A variety of instruments are commonly used for finishing and polishing tooth-colored restorative materials Thus, it is important to understand which type of surface finishing treatments would significantly affect the staining and surface irregularities of the composite resin restoration. Still one of the properties of the composite resins that have to pass the test of time is its color stability. In modern day dentistry, a large emphasis is laid over esthetics. Hence, it is important to understand the various agents capable of adversely affecting the esthetics of a restoration due to its staining capacity. Thus, the aim of this in vitro study was to evaluate the effect of surface polishing, oral beverages and food colorants on the color stability and surface roughness of nanocomposite resins. Materials and Methods: 90 Disks of nanocomposites resin (Filtek Z350 XT) measuring 8 mm in diameter and 2 mm in thickness were fabricated using a custom made silicon mold. Pre-polishing surface roughness (Ra1) of all the 90 samples were measured using a Surface Profilometer. The nano-composite disks were then randomly divided into 3 groups with 30 samples in each group. Group I: Control group: The samples were not subjected to any polishing procedures. Group II: Sof-Lex group: Samples subjected to polishing using different grits of Sof-Lex disks. Group III: Diamond polishing paste group: Samples were subjected with a polishing paste consisting of diamond particles. Following polishing procedures, the surface roughness of all samples were measured again to obtain change in surface roughness due to polishing procedures (Ra2), pre immersion spectrophotometric value (ΔE1) was also recorded for baseline color of the samples. The samples were then divided into subgroups (A, B, C, D, E), by including every first

  10. Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials

    OpenAIRE

    Yoshikazu Fujii

    2013-01-01

    X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface ro...

  11. Effects of Spatial Sampling Interval on Roughness Parameters and Microwave Backscatter over Agricultural Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Matías Ernesto Barber

    2016-06-01

    Full Text Available The spatial sampling interval, as related to the ability to digitize a soil profile with a certain number of features per unit length, depends on the profiling technique itself. From a variety of profiling techniques, roughness parameters are estimated at different sampling intervals. Since soil profiles have continuous spectral components, it is clear that roughness parameters are influenced by the sampling interval of the measurement device employed. In this work, we contributed to answer which sampling interval the profiles needed to be measured at to accurately account for the microwave response of agricultural surfaces. For this purpose, a 2-D laser profiler was built and used to measure surface soil roughness at field scale over agricultural sites in Argentina. Sampling intervals ranged from large (50 mm to small ones (1 mm, with several intermediate values. Large- and intermediate-sampling-interval profiles were synthetically derived from nominal, 1 mm ones. With these data, the effect of sampling-interval-dependent roughness parameters on backscatter response was assessed using the theoretical backscatter model IEM2M. Simulations demonstrated that variations of roughness parameters depended on the working wavelength and was less important at L-band than at C- or X-band. In any case, an underestimation of the backscattering coefficient of about 1-4 dB was observed at larger sampling intervals. As a general rule a sampling interval of 15 mm can be recommended for L-band and 5 mm for C-band.

  12. Changes in roughness of denture base and reline materials by chemical disinfection or microwave irradiation: surface roughness of denture base and reline materials.

    Science.gov (United States)

    Machado, Ana Lucia; Giampaolo, Eunice Teresinha; Vergani, Carlos Eduardo; Souza, Juliana Feltrin de; Jorge, Janaina Habib

    2011-10-01

    The effect of disinfection by immersion in sodium perborate solution and microwave irradiation on surface roughness of one denture base resin (Lucitone 550 -L), 3 hard chairside reline resins (Tokuyama Rebase II-TR, New Truliner-NT, Ufi Gel hard-UH) and 3 resilient reline materials (Trusoft-T; Sofreliner-S, Dentusil-D) was evaluated. Thirty specimens of each material were made and divided into 3 groups: Control - not disinfected; P - daily disinfection by immersing in sodium perborate solution (3.8%); MW - microwave disinfection (6 min/650 W). Roughness measurements were made after polymerization (baseline) and after 1, 3 and 28 days. Roughness differences relative to the baseline readings were analyzed by Student's t-test (P=0.05). At baseline, Trusoft showed the highest (Psodium perborate (P=0.013). Roughness measurements of material Trusoft were not performed after microwave disinfection due to the severe alterations on the surface. In the 3 groups evaluated, changes in roughness were significant for materials Ufi Gel hard (from 0.11 to 0.26 µm; P0.05). The roughness of the hard reline materials Ufi Gel hard and New Truliner was adversely affected by microwave disinfection, immersion in water or in sodium perborate. Microwave disinfection caused severe alterations on the surface of the resilient liner Trusoft.

  13. A non-contact 3D method to characterize the surface roughness of castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Hansen, Hans Nørgaard

    2013-01-01

    that the surface quality of the standard comparators was successfully evaluated and it was established that the areal parameters are the most informative for cast components. The results from the surface comparators were compared with the results from a stylus instrument. Sand cast components were also evaluated...... and the surface roughness parameter (Sa) values were compared with those of the standards. Sa parameter suffices for the evaluation of casting surface texture. The S series comparators showed a better description of the surface of castings after shot blasting than the A series....

  14. Deformation due to contact between a rough surface and a smooth ball

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    Theoretical and experimental results are presented to evaluate the deformation behavior of the contact between a real rough flat surface and a smooth ball. There are three deformation responses: plastic deformation of the asperities only, plastic deformation of the bulk only and combined plastic

  15. Effect of surface roughness on drying speed of drying lamellas in ...

    African Journals Online (AJOL)

    Lamellas, which are defined as top layers of multilayer parquet and favourable to wood veneer can be dried in jet ventilated automatic veneer roller dryer due to short drying period. The objective of this study is to determine the effect of surface roughness on the drying speed of the veneer roller dryer. Quercus spp.

  16. Electrowetting-based control of static droplet states on rough surfaces.

    Science.gov (United States)

    Bahadur, Vaibhav; Garimella, Suresh V

    2007-04-24

    Electrowetting (EW) is a powerful tool to control fluid motion at the microscale and has promising applications in the field of microfluidics. The present work analyzes the influence of an electrowetting voltage in determining and altering the state of a static droplet resting on a rough surface. An energy-minimization-based modeling approach is used to analyze the influence of interfacial energies, surface roughness parameters, and electric fields in determining the apparent contact angle of a droplet in the Cassie and Wenzel states under the influence of an EW voltage. The energy-minimization-based approach is also used to analyze the Cassie-Wenzel transition under the influence of an EW voltage and estimate the energy barrier to transition. The results obtained show that EW is a powerful tool to alter the relative stabilities of the Cassie and Wenzel states and enable dynamic control of droplet morphology on rough surfaces. The versatility and generalized nature of the present modeling approach is highlighted by application to the prediction of the contact angle of a droplet on an electrowetted rough surface consisting of a dielectric layer of nonuniform thickness.

  17. Synthesis of surface roughed Pt nanowires and their application as electrochemical sensors for hydrogen peroxide detection.

    Science.gov (United States)

    Gao, Fan; Li, Zhiyang; Ruan, Dajiang; Gu, Zhiyong

    2014-09-01

    In this paper, platinum nanowires with roughed surface textures were fabricated by a galvanostatic electrodeposition method for electrochemical sensors toward hydrogen peroxide detection. The electrochemical behavior of the glassy carbon electrode modified with these nanowires has been studied for oxidation of hydrogen peroxide by using cyclic voltammetry and amperometry in phosphate buffer solution. Surface roughness was found to enhance the sensitivity of the Pt nanowire based electrochemical sensor towards H2O2. The Pt nanowires with rough surfaces displayed higher electrocatalytic response compared to nanowires with smooth surfaces, with a sensitivity of 171 μA mM(-1) cm(-2), and linear dynamic range up to 35 mM. The nanowire concentration effect on the sensing behavior was investigated with the best sensitivity output found at a nanowire concentration of roughly 8.6 x 10(7) number of nanowires/cm2. The new sensor also showed good anti-interference property and exhibited high accuracy when a real water sample containing H2O2 was measured.

  18. Effect of Soft Drinks and Fresh Fruit Juice on Surface Roughness of Commonly used Restorative Materials.

    Science.gov (United States)

    Maganur, Prabhadevi; Satish, V; Prabhakar, A R; Namineni, Srinivas

    2015-01-01

    In this in vitro study, the effects of a Cola drink, and fresh fruit juice (citrus) on the surface roughness on flowable composite and resin-modified glass ionomer cement (RMGIC) each was evaluated and compared. Using a brass mold 70 pellets each of flowable composite (Filtek™ Flow) and RMGIC tricure restorative material were prepared according to the manufacturer's instructions. Two groups (groups I and II) were formed containing 30 pellets of each material. Remaining 10 pellets of each restorative material did form the control group [water (group III)]. Experimental group pellets were again divided into three subgroups (mild, moderate and severe) containing 10 pellets each and were kept in plastic containers with 30 ml Cola drink (group I) and fresh fruit juice (group II) respectively. Immersion regime was followed according to M aupome G et al. Baseline and final surface roughness (Ra) value for each pellet was evaluated using a profilometer. Statistical analysis was done with Wilcoxon's signed rank test and analysis of variance (ANOVA) followed by Mann-Whitney test. Results showed that the erosive effect of both Cola drink and fresh fruit juice caused significant surface roughness on both flowable composite and RMGIC restorative materials in the mild, moderate and severe immersion regimes. How to cite this article: Maganur P, Satish V, Prabhakar AR, Namineni S. Effect of Soft Drinks and Fresh Fruit Juice on Surface Roughness of Commonly used Restorative Materials. Int J Clin Pediatr Dent 2015;8(1):1-5.

  19. Surface Roughness Optimization of Polyamide-6/Nanoclay Nanocomposites Using Artificial Neural Network: Genetic Algorithm Approach

    Science.gov (United States)

    Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud

    2014-01-01

    During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636

  20. Facile synthesis and characterization of rough surface V2O5 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 6. Facile synthesis and characterization of rough surface V 2 O 5 nanomaterials for pseudo-supercapacitor electrode material with high capacitance. YIFU ZHANG YUTING HUANG. Volume 40 Issue 6 October 2017 pp 1137-1149 ...

  1. Effect of surface roughness on grain growth and sintering of alumina

    Indian Academy of Sciences (India)

    Administrator

    Indian Academy of Sciences. 799. Effect of surface roughness on grain growth and sintering of ... Advanced Sintering Technology Group, Advanced Manufacturing Research Institute, National Institute of. Advanced Industrial Science .... defined as the summation of negative and positive devia- tions from a 'mean plane' fit ...

  2. Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope

    Directory of Open Access Journals (Sweden)

    M. A. Nearing

    2017-06-01

    Full Text Available Slope–velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope–velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  3. Efficacy of polishing kits on the surface roughness and color stability ...

    African Journals Online (AJOL)

    The third subgroup of the each composite resin was polished with polishing wheel (Enhance and PoGo, Dentsply, Konstanz, Germany). The surface roughness and the color differences measurement of the specimens were made and recorded. The data were compared using Kruskal–Wallis test, and regression analysis ...

  4. The effect of loading rate on ductile fracture toughness and fracture surface roughness

    DEFF Research Database (Denmark)

    Osovski, S.; Srivastava, Akhilesh Kumar; Ponson, L.

    2015-01-01

    The variation of ductile crack growth resistance and fracture surface roughness with loading rate is modeled under mode I plane strain, small scale yielding conditions. Three-dimensional calculations are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitatin...

  5. Surface roughness prediction model in end milling of Al/SiCp MMC ...

    African Journals Online (AJOL)

    user

    These materials are selected as they are most widely used in automobile and aerospace industry. This research paper develops an improved mathematical model for surface roughness (Ra) prediction in end milling of. Al/SiCp MMC. The impacts of spindle speed, feed rate, depth of cut and various percentage weight of ...

  6. Surface roughness prediction model in end milling of Al/SiC p MMC ...

    African Journals Online (AJOL)

    These materials are selected as they are most widely used in automobile and aerospace industry. This research paper develops an improved mathematical model for surface roughness (Ra) prediction in end milling of Al/SiCp MMC. The impacts of spindle speed, feed rate, depth of cut and various percentage weight of ...

  7. Physicochernical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and Wettability

    NARCIS (Netherlands)

    Vermeltfoort, PBJ; van der Mei, HC; Busscher, HJ; Hooymans, JMM; Bruinsma, GM

    2004-01-01

    The aim of this study was to determine the transfer of Pseudomonas aeruginosa No. 3 and Staphylococcus aureus 835 from contact lenses to surfaces with different hydrophobicity and roughness. Bacteria were allowed to adhere to contact lenses (Surevue, PureVision, or Focus Night & Day) by incubating

  8. Surface roughness prediction model in end milling of Al/SiCp MMC ...

    African Journals Online (AJOL)

    user

    of Al/SiCp metal matrix composite. These materials are selected as they are most widely used in automobile and aerospace industry. This research paper develops an improved mathematical model for surface roughness (Ra) prediction in end milling of. Al/SiCp MMC. The impacts of spindle speed, feed rate, depth of cut ...

  9. Surface roughness optimization of polyamide-6/nanoclay nanocomposites using artificial neural network: genetic algorithm approach.

    Science.gov (United States)

    Moghri, Mehdi; Madic, Milos; Omidi, Mostafa; Farahnakian, Masoud

    2014-01-01

    During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite.

  10. Elastic–plastic adhesive contact of non-Gaussian rough surfaces

    Indian Academy of Sciences (India)

    Abstract. The paper describes an analysis of adhesion at the contact between non-. Gaussian rough surfaces using the Weibull distribution with skewness as the key parameter to characterize asymmetry. The analysis uses an improved elastic–plastic model of contact deformation that is based on accurate Finite Element ...

  11. Impact of Polishing Systems on the Surface Roughness and Microhardness of Nanocomposites.

    Science.gov (United States)

    Alfawaz, Yasser

    2017-08-01

    The aim of this article is to evaluate the influence of finishing and polishing techniques on the surface roughness and microhardness of two composite resins with two different types of polishing systems. A total of 30 disk-shaped specimens of nanocomposite Filtek™ Z350 and Ceram-X® were prepared. They were divided into three groups. The control group (n = 10) received no finishing and polishing. The remaining specimens were divided into two groups, and they received polishing and finishing either with PoGo or Sof-Lex system. After the polishing procedures, average surface roughness (Ra) was assessed with a surface profilometer. The microhardness was determined using a Vickers hardness test. The data were tabulated and analyzed. The smoothest surfaces were noticed with the control group (Mylar strips) in both composite materials tested. The PoGo one-step polishing system showed significantly better surface roughness compared with the Sof-Lex polishing system. The microhardness did not show any significant variations after finishing and polishing. It can be concluded that the use of PoGo® one-step polishing system resulted in smoother surface with both composite materials studied compared with the Sof-Lex system. The finishing and polishing system had little influence on the surface microhardness. The finishing procedure and polishing system can affect the physical properties and performance of resin composites.

  12. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Science.gov (United States)

    Godin, O. A.; Irisov, V. G.; Leben, R. R.; Hamlington, B. D.; Wick, G. A.

    2009-07-01

    Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  13. On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study

    Science.gov (United States)

    Alrbaey, K.; Wimpenny, D.; Tosi, R.; Manning, W.; Moroz, A.

    2014-06-01

    In this work, the effects of re-melting parameters for postprocessing the surface texture of Additively Manufactured parts using a statistical approach are investigated. This paper focuses on improving the final surface texture of stainless steel (316L) parts, built using a Renishaw SLM 125 machine. This machine employs a fiber laser to fuse fine powder on a layer-by-layer basis to generate three-dimensional parts. The samples were produced using varying angles of inclination in order to generate range of surface roughness between 8 and 20 µm. Laser re-melting (LR) as post-processing was performed in order to investigate surface roughness through optimization of parameters. The re-melting process was carried out using a custom-made hybrid laser re-cladding machine, which uses a 200 W fiber laser. Optimized processing parameters were based on statistical analysis within a Design of Experiment framework, from which a model was then constructed. The results indicate that the best obtainable final surface roughness is about 1.4 µm ± 10%. This figure was obtained when laser power of about 180 W was used, to give energy density between 2200 and 2700 J/cm2 for the re-melting process. Overall, the obtained results indicate LR as a post-build process has the capacity to improve surface finishing of SLM components up to 80%, compared with the initial manufactured surface.

  14. Surface roughness analysis after laser assisted machining of hard to cut materials

    Science.gov (United States)

    Przestacki, D.; Jankowiak, M.

    2014-03-01

    Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.

  15. An efficient finite element method for simulation of droplet spreading on a topologically rough surface

    Science.gov (United States)

    Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan

    2017-11-01

    We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.

  16. Variations in sea surface roughness induced by the 2004 Sumatra-Andaman tsunami

    Directory of Open Access Journals (Sweden)

    O. A. Godin

    2009-07-01

    Full Text Available Observations of tsunamis away from shore are critically important for improving early warning systems and understanding of tsunami generation and propagation. Tsunamis are difficult to detect and measure in the open ocean because the wave amplitude there is much smaller than it is close to shore. Currently, tsunami observations in deep water rely on measurements of variations in the sea surface height or bottom pressure. Here we demonstrate that there exists a different observable, specifically, ocean surface roughness, which can be used to reveal tsunamis away from shore. The first detailed measurements of the tsunami effect on sea surface height and radar backscattering strength in the open ocean were obtained from satellite altimeters during passage of the 2004 Sumatra-Andaman tsunami. Through statistical analyses of satellite altimeter observations, we show that the Sumatra-Andaman tsunami effected distinct, detectable changes in sea surface roughness. The magnitude and spatial structure of the observed variations in radar backscattering strength are consistent with hydrodynamic models predicting variations in the near-surface wind across the tsunami wave front. Tsunami-induced changes in sea surface roughness can be potentially used for early tsunami detection by orbiting microwave radars and radiometers, which have broad surface coverage across the satellite ground track.

  17. Application of the extended boundary condition method to Monte Carlo simulations of scattering of waves by two-dimensional random rough surfaces

    Science.gov (United States)

    Tsang, L.; Lou, S. H.; Chan, C. H.

    1991-01-01

    The extended boundary condition method is applied to Monte Carlo simulations of two-dimensional random rough surface scattering. The numerical results are compared with one-dimensional random rough surfaces obtained from the finite-element method. It is found that the mean scattered intensity from two-dimensional rough surfaces differs from that of one dimension for rough surfaces with large slopes.

  18. The effect of repeated firings on the color change and surface roughness of dental ceramics

    Science.gov (United States)

    Yılmaz, Kerem; Ozturk, Caner

    2014-01-01

    PURPOSE The color of the ceramic restorations is affected by various factors such as brand, thickness of the layered the ceramic, condensation techniques, smoothness of surface, number of firings, firing temperature and thickness of dentin. The aim of this study was to evaluate the color change and surface roughness in dental porcelain with different thicknesses during repeated firings. MATERIALS AND METHODS Disc-shaped (N=21) metal-ceramic samples (IPS Classic; Ivoclar Vivadent; Shaar, Liechtenstein) with different thickness were exposed to repeated firings. Color measurement of the samples was made using a colorimeter and profilometer was used to determine surface roughness. ANOVA and Tukey tests with repeated measurements were used for statistical analysis. RESULTS The total thickness of the ceramics which is less than 2 mm significantly have detrimental effect on the surface properties and color of porcelains during firings (Pdental ceramics and should be avoided. PMID:25177475

  19. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.

    Science.gov (United States)

    Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J

    2017-06-01

    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Visual and digital comparative tooth colour assessment methods and atomic force microscopy surface roughness.

    Science.gov (United States)

    Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J

    2013-10-01

    This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies.

  1. Simulation of Rubber Friction Using Viscoelastic Behavior of Rubber and Roughness Parameters of Surfaces

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Arab Bafrani

    2013-06-01

    Full Text Available One of the most important factors that affect tire friction is surface roughness, which determines the size of the real contact area, real pressure distribution on the contact interface, and scales of mechanical engagement between viscoelastic rubber and a rough substrate. The need to predict coefficient of friction (COF for rubber on rough surfaces for applications such as traction of tires on the road surfaces led to some physical models such as Heinrich-Kluppel’s model. The current study examines the applicability of the Heinrich-Kluppel model, using different viscoelastic representations, in numerical simulations of COF for rubber, and its agreement with the experimental results. For this purpose, roughness characteristics of the surfaces and viscoelastic properties of rubber were measured by fractal analysis and dynamic-mechanical-thermal analysis (DMTA, respectively. These data were employed in the numerical code to simulate COF for a rubber sample. The model was also modified by replacing the Zener viscoelastic representation in the original model with the generalized Maxwell viscoelastic representation. On the other hand, COF for rubber was measured on the same rough surface (different sand-papers by an in-house friction tester, and results were compared with the numerical results. It was shown that computer simulation could predict the load and speed dependence of rubber friction very well. The application of the generalized Maxwell model improved agreement between the numerical and experimental results for high sliding speeds where the Zener viscoelastic model failed to predict the right trend in variation of COF with speed. This speed range was matched with the sliding velocities in the footprint of tire under rolling conditions.

  2. Hardness and surface roughness of reline and denture base acrylic resins after repeated disinfection procedures.

    Science.gov (United States)

    Machado, Ana Lucia; Breeding, Larry C; Vergani, Carlos Eduardo; da Cruz Perez, Luciano Elias

    2009-08-01

    Microwave irradiation and immersion in chemical solutions have been recommended for denture disinfection. However, the effect of these procedures on the surface characteristics of denture base and reline resins has not been completely evaluated. The purpose of this study was to evaluate the effect of microwave and chemical disinfection on the Vickers hardness (VHN) and surface roughness (Ra, microm) of 2 hard chairside reline resins (Kooliner, DuraLiner II), and 1 heat-polymerizing denture base resin (Lucitone 550). Specimens (12 x 12 x 3 mm) were divided into 2 control and 4 test groups (n=8). Hardness and roughness measurements were performed after: polymerization and immersion in water (37 degrees C) for 7 days (controls), or repeated exposure to disinfection by immersion in sodium perborate (50 degrees C/10 min) or microwave irradiation (650 W/6 min). Measurements of surface roughness (Ra, microm) and hardness (kg/mm(2)) were analyzed using 3-way ANOVA and Tukey's Honestly Significant Difference (HSD) test (alpha=.05). Microwave and chemical disinfection increased the mean (SD) hardness of Kooliner (from 4.1 to 7.5 kg/mm(2)) and DuraLiner II (from 2.6 to 5.6 kg/mm(2)), whereas Lucitone 550 (14.4 kg/mm(2)) remained unaffected. Disinfection by immersion in sodium perborate increased the surface roughness of DuraLiner II (from 0.13 to 0.26 microm) and Kooliner (from 0.16 to 0.26 microm), regardless of the number of cycles. For Lucitone 550, an increase in roughness was observed after 2 cycles of chemical disinfection (from 0.12 to 0.26 microm). Two cycles of microwave disinfection increased the roughness of both reline resins (DuraLiner II: from 0.13 to 0.22 microm; Kooliner: from 0.16 to 0.24 microm), whereas repeated microwave disinfection increased the roughness of DuraLiner II (from 0.11 to 0.25 microm). Disinfection by immersion in sodium perborate or microwave irradiation did not adversely affect the hardness of all materials evaluated. The effect of both

  3. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    DEFF Research Database (Denmark)

    Lange, B.; Larsen, Søren Ejling; Højstrup, Jørgen

    2004-01-01

    The economic feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow......-Obukhov theory, a simple correction method to account for this effect has been developed and is tested in the same way. The models for the estimation of the sea surface roughness were found to lead only to small differences. For the purpose of wind resource assessment, even the assumption of a constant roughness...

  4. Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake

    Science.gov (United States)

    Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Meng, Xianhong; Ao, Yinhuan

    2017-08-01

    The special climate environment creates a distinctive air-lake interaction characteristic in the Tibetan Plateau (TP) lakes, where the variations of surface roughness lengths also differ somewhat from those of other regions. However, how different categories of roughness lengths affect the lake surface energy exchange and the planetary boundary layer height (PBLH) remains unclear in the TP lakes. In this study, we used a tuned Weather Research and Forecasting (WRF) model version 3.6.1 to investigate the responses of the freeze-up date, turbulent fluxes, meteorological variables, and PBLH to surface roughness length variations in Ngoring Lake. Of all meteorological variables, the lake surface temperature responded to roughness length variations most sensitively; increasing roughness lengths can put the lake freeze-up date forward. The effect of momentum roughness length on wind speed was significantly affected by the fetch length. The increase in the roughness length for heat can induce the increment of the nightly PBLH in most months, especially for the central lake area in autumn. The primary factors that contribute to sensible heat flux (H) and latent heat flux (LE) were the roughness lengths for heat and momentum during the ice-free period, respectively. Increasing roughness length for heat can increase the nightly PBLH, and decreasing roughness length for moisture can also promote growth of the PBLH, but there was no obvious correlation between the momentum roughness length and the PBLH.

  5. Feasibility for Ultrasonic Characterization of the Surface Roughness of Atherosclerotic Plaque

    Science.gov (United States)

    1994-02-01

    The surface is divided into nine areas with specified roughness in microinches. Table 3.3 shows the conversion to units of micrometers . The table also...angular measurement vernier . The 55 sanded plexiglas surfaces are oriented so that their parallel sanded directions are perpendicular to the incident...The vernier is the squat round object the shaft runs through. The sample is submerged below the vernier . The second vertical shaft has the transducer

  6. The effect of milling and postmilling procedures on the surface roughness of CAD/CAM materials.

    Science.gov (United States)

    Mota, Eduardo Gonçalves; Smidt, Laura Nunes; Fracasso, Lisiane Martins; Burnett, Luiz Henrique; Spohr, Ana Maria

    2017-11-12

    The aim of this study was to evaluate the surface roughness and analyze the surface topography of five different CAD/CAM ceramics and one CAD/CAM composite resin for CEREC after milling and postmilling procedures. Blocks of the ceramics Mark II, IPS Empress CAD, IPS e.max CAD, Suprinity and Enamic, and blocks of the composite resin Lava Ultimate were milled at CEREC MCXL. Ten flat samples of each material were obtained. The surface roughness (Ra) test was performed before and after milling, crystallization, polishing, and glaze when indicated, followed by SEM and AFM analysis. Data were submitted to one-way ANOVA with repeated measures and the Tukey HSD test (α = 0.05). The milling step significantly increased the roughness of all the tested materials (P CAD and Suprinity) were more suitable to roughness than the other tested materials (P CAD/CAM materials, that is, fully sintered, should be only hand polished. The glaze step can be suppressed resulting in time saving. However, the glaze step in soft-milling lithium disilicate is imperative. © 2017 Wiley Periodicals, Inc.

  7. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates

    Science.gov (United States)

    Afferrante, L.; Carbone, G.

    2018-01-01

    In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid–solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid–solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie–Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.

  8. ANALYSIS OF SURFACE ROUGHNESS OF BLACK ALDER AS FUNCTION OF VARIOUS PROCESSING PARAMETERS

    Directory of Open Access Journals (Sweden)

    Salim HIZIROGLU

    2012-06-01

    Full Text Available The objective of this study was to analyse thesurface quality of black alder (Alnus glutinosasamples as function of sanding processes based onfour grits sizes, namely 60, 80, 100 and 120. Thesanding process was performed parallel,perpendicular and at 45 degrees angle to the grainorientation of the specimens. The experiments werecarried out on a wide belt sanding machine atNIKMOB Nehoiu Company. Two machiningvariables, feed speed and cutting depth were usedfor the tests. Two roughness parameters, Rk(processing roughness parameter and Rpk (fuzzygrain roughness parameter were determined byemploying the optical profilometer type MicroProfFRT, on dry and wett areas of the samples. All datawere processed by using a nonlinear regressionmethod respecting an equation of 2nd degree typewith two variables. The ANOVA analysis was alsoused to evaluate the data by applying fiveindependent variables, namely: sanding program,sanding direction, feed speed and cutting depth forthe two statement of surface, with and withoutwetting. The results of the study revealed that thewetting of samples did not show a better quality ofsanded surfaces. However when the samples weresanded at 45 degrees angle and parallel to the grainorientation, overall surface quality of the samplesimproved compared to perpendicular direction. It wasalso found that the cumulative effect of factors wasmore representative on the roughness parametersthan the situation when taken individually. It appearsthat based on the findings in this work suchapproach can be successfully applied in woodproducts industry including furniture manufacturing tohave a more efficient use of the raw material infurther processing steps such as finishing.

  9. Evaluating roughness scaling properties of natural active fault surfaces by means of multi-view photogrammetry

    Science.gov (United States)

    Corradetti, Amerigo; McCaffrey, Ken; De Paola, Nicola; Tavani, Stefano

    2017-10-01

    Fault roughness is a measure of the dimensions and distribution of fault asperities, which can act as stress concentrators affecting fault frictional behaviour and the dynamics of rupture propagation. Studies aimed at describing fault roughness require the acquisition of extremely detailed and accurate datasets of fault surface topography. Fault surface data have been acquired by methods such as LiDAR, laser profilometers and white light interferometers, each covering different length scales and with only LiDAR available in the field. Here we explore the potential use of multi-view photogrammetric methods in fault roughness studies, which are presently underexplored and offer the advantage of detailed data acquisition directly in the field. We applied the photogrammetric method to reproduce fault topography, by using seven dm-sized fault rock samples photographed in the lab, three fault surfaces photographed in the field, and one control object used to estimate the model error. We studied these topographies estimating their roughness scaling coefficients through a Fourier power spectrum method. Our results show scaling coefficients of 0.84 ± 0.17 along the slip direction and 0.91 ± 0.17 perpendicularly to it, and are thus comparable to those results obtained by previous authors. This provides encouragement for the use of photogrammetric methods for future studies, particularly those involving field-based acquisition, where other techniques have limitations.

  10. Tailoring of Seebeck coefficient with surface roughness effects in silicon sub-50-nm films.

    Science.gov (United States)

    Kumar, Manoj; Bagga, Anjana; Neeleshwar, S

    2012-01-01

    The effect of surface roughness on the Seebeck coefficient in the sub-50-nm scale silicon ultra thin films is investigated theoretically using nonequilibrium Green's function formalism. For systematic studies, the surface roughness is modelled by varying thickness periodically with square wave profile characterized by two parameters: amplitude (A 0) and wavelength (λ). Since high Seebeck coefficient is obtained if the temperature difference between the ends of device produces higher currents and higher induced voltages, we investigate how the generated current and induced voltage is affected with increasing A 0 and λ. The theoretical investigations show that pseudoperiodicity of the device structure gives rise to two effects: firstly the threshold energy at which the transmission of current starts is shifted towards higher energy sides and secondly transmission spectra of current possess pseudobands and pseudogaps. The width of the pseudobands and their occupancies determine the total generated current. It is found that current decreases with increasing A 0 but shows a complicated trend with λ. The trends of threshold energy determine the trends of Seebeck voltage with roughness parameters. The increase in threshold energy makes the current flow in higher energy levels. Thus, the Seebeck voltage, i.e. voltage required to nullify this current, increases. Increase in Seebeck voltage results in increase in Seebeck coefficient. We find that threshold energy increases with increasing A 0 and frequency (1/λ). Hence, Seebeck voltage and Seebeck coefficient increase vice versa. It is observed that Seebeck coefficient is tuneable with surface roughness parameters.

  11. Optimal Machining Parameters for Achieving the Desired Surface Roughness in Turning of Steel

    Directory of Open Access Journals (Sweden)

    LB Abhang

    2012-06-01

    Full Text Available Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius and metal cutting conditions (cutting speed, feed rate and depth of cut on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions.

  12. Adhesion of smooth and rough phenotypes of Flavobacterium psychrophilum to polystyrene surfaces.

    Science.gov (United States)

    Högfors-Rönnholm, E; Norrgård, J; Wiklund, T

    2015-05-01

    Phenotypic smooth cells of the fish pathogenic bacterium Flavobacterium psychrophilum have previously been reported to be more adhesive to polystyrene surfaces than corresponding rough cells. In this study, the adhesion ability of smooth and rough cells of F. psychrophilum to polystyrene surfaces was investigated in detail with a crystal violet staining method. By treating both polystyrene surfaces with fish mucus and carbohydrates and the bacterial cells with carbohydrates, the involvement of lectins in the adhesion process was investigated. Smooth cells showed significantly higher adhesion ability to untreated polystyrene surfaces compared with corresponding rough cells and increasing water hardness had an inhibitory effect on the adhesion. Treatment of polystyrene surfaces with D-glucose, D-galactose and fish mucus increased the adhesion ability of smooth cells to polystyrene. Furthermore, treatment of the smooth cells with D-glucose, D-galactose and sialic acid decreased the adhesion ability of the cells, indicating that the adhesion is likely mediated by complementary lectins on the surface of the cells. Sodium (meta)periodate treatment of smooth cells also decreased the adhesion ability to polystyrene, suggesting that the lectins, such as the dominating sialic acid-binding lectin, are probably localized in the extracellular polysaccharides surrounding the cells. © 2014 John Wiley & Sons Ltd.

  13. Stick–slip friction of gecko-mimetic flaps on smooth and rough surfaces

    Science.gov (United States)

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L.; Israelachvili, Jacob N.

    2015-01-01

    The discovery and understanding of gecko ‘frictional-adhesion’ adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick–slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick–slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick–slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. PMID:25589569

  14. Stick-slip friction of gecko-mimetic flaps on smooth and rough surfaces.

    Science.gov (United States)

    Das, Saurabh; Cadirov, Nicholas; Chary, Sathya; Kaufman, Yair; Hogan, Jack; Turner, Kimberly L; Israelachvili, Jacob N

    2015-03-06

    The discovery and understanding of gecko 'frictional-adhesion' adhering and climbing mechanism has allowed researchers to mimic and create gecko-inspired adhesives. A few experimental and theoretical approaches have been taken to understand the effect of surface roughness on synthetic adhesive performance, and the implications of stick-slip friction during shearing. This work extends previous studies by using a modified surface forces apparatus to quantitatively measure and model frictional forces between arrays of polydimethylsiloxane gecko footpad-mimetic tilted microflaps against smooth and rough glass surfaces. Constant attachments and detachments occur between the surfaces during shearing, as described by an avalanche model. These detachments ultimately result in failure of the adhesion interface and have been characterized in this study. Stick-slip friction disappears with increasing velocity when the flaps are sheared against a smooth silica surface; however, stick-slip was always present at all velocities and loads tested when shearing the flaps against rough glass surfaces. These results demonstrate the significance of pre-load, shearing velocity, shearing distances, commensurability and shearing direction of gecko-mimetic adhesives and provide us a simple model for analysing and/or designing such systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Anomalous scaling in surface roughness evaluation of electrodeposited nanocrystalline Pt thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nabiyouni, G., E-mail: g-nabiyouni@araku.ac.ir [Department of Physics, University of Arak, Beheshti Avenue, Arak 38156 (Iran, Islamic Republic of); Farahani, B. Jalali [Electrical Engineering Department, Arizona State University, Goldwater Building 340, Tempe, AZ (United States)

    2009-11-15

    Atomic force microscopy (AFM) is used to measure the surface roughness of crystalline Pt thin films as a function of film thickness and growth rate. Our films were electrodeposited on Au/Cr/glass substrates, under galvanostatic control (constant current density), from a single electrolyte containing Pt{sup 4+} ions. Crystalline structure of the films was confirmed by X-ray diffraction (XRD) technique. The effect of growth rate (deposition current density) and film thickness (deposition time) on the kinetic roughening of the films were studied using AFM and roughness calculation. The data is consistent with a rather complex behaviour known as 'anomalous scaling' where both local and large scale roughnesses show power law dependence on the film thickness.

  16. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    polypropylene parts manufactured by injection moulding. The mould was equipped with inserts with EDM machined surfaces (Sa  3.5 µm) in order to represent a typical tool surface for injection moulding. A focus detection laser scanning profiler, a confocal scanning laser microscope, a white light interferometer...... and, in addition, a scanning electron microscope, have been used in the analysis of plastic surfaces. This investigation has shown that topography assessment of rough plastic surfaces is critical to both white light interference microscope and confocal microscope while the focus detection laser...

  17. Statistical analysis of surface roughness of machined graphite by means of CNC milling

    Directory of Open Access Journals (Sweden)

    Orquídea Sánchez López

    2016-09-01

    Full Text Available The aim of this research is to analyze the influence of cutting speed, feed rate and cutting depth on the surface finish of grade GSP-70 graphite specimens for use in electrical discharge machining (EDM for material removal by means of Computer Numerical Control (CNC milling with low-speed machining (LSM. A two-level factorial design for each of the three established factors was used for the statistical analysis. The analysis of variance (ANOVA indicates that cutting speed and feed rate are the two most significant factors with regard to the roughness obtained with grade GSP-70 graphite by means of CNC milling. A second order regression analysis was also conducted to estimate the roughness average (Ra in terms of the cutting speed, feed rate and cutting depth. Finally, the comparison between predicted roughness by means of a second order regression model and the roughness obtained by machined specimens considering the combinations of low and high levels of roughness is also presented.

  18. The effect of various polishing systems on the surface roughness of composite resins

    Directory of Open Access Journals (Sweden)

    Didem Atabek

    2016-05-01

    Full Text Available OBJECTIVE: The aim of this in vitro study was to evaluate the effect of three finishing and polishing systems on the surface roughness of nano-manufactured composite resins. MATERIALS AND METHOD: Nano-ceramic Ceram-X (Dentsply DeTrey, Konstanz, Germany, nano-filled Premise (Kerr Corporation, Orange, NJ, USA and nano-filled Clearfil Majestic (Kuraray Medical Inc., Tokyo, Japan composite resins were tested. Forty samples of each material were cured under matrix strips. The samples were then randomly assigned into four test groups: 1 unpolished; 2 polished with burs out of resin reinforced by zircon-rich glass fiber (Stainbuster, Abrasive Technology, Inc., Lewis Center, OH, USA; 3 polished with aluminum oxide impregnated polymer points (Enhance Finishing System, Dentsply Caulk, Milford, DE, USA followed by diamond impregnated micro-polishing points (PoGo, Dentsply Caulk; and 4 polished with aluminum oxide disks (Sof-Lex, Dentsply Caulk. The sample surface roughness values (Ra were determined using a profilometer, and the surfaces were observed under a scanning electron microscope. Data were analyzed using the Kruskal-Wallis test. RESULTS: No statistically significant differences in surface roughness were detected among the finishing and polishing systems (p>0.05. However, all finishing and polishing techniques created statistically rougher surfaces than the control group (p<0.05. The mean Ra values of the finishing and polishing systems were ranked as follows: Mylar strip < Enhance Finishing System+PoGo < Stainbuster < Sof-Lex. These findings were confirmed by scanning electron microscope photomicrographs. CONCLUSION: All polishing systems produced clinically acceptable surface roughness on the tested composite materials. The smoothest surfaces were achieved using the nano-ceramic composites with the Enhance Finishing System and PoGo.

  19. Analysis of the influence of chemical treatment to the strength and surface roughness of FDM

    Science.gov (United States)

    Hambali, R. H.; Cheong, K. M.; Azizan, N.

    2017-06-01

    The applications of Additive Manufacturing (AM) technology have a greater functionality and wider range of application beyond an intention of prototyping. AM is the process of joining materials to form objects from Computer-Aided Design (CAD) models via layer upon layer process. One of AM technologies is the Fused Deposition Modelling (FDM), which use an extrusion method to create a part. FDM has been applied in many manufacturing applications includes an end-used parts. However, FDM tends to have bad surface quality due to staircase effect and post treatment is required. This chemical treatment is one of a way to improve the surface roughness of FDM fabricated parts. This method is one of economical and faster method. In order to enhance the surface finish of Acrylonitrile-Butadiene-Styrene (ABS) FDM parts by performing chemical treatment in an acetone solution as acetone has very low toxicity, high diffusion and low cost chemical solution. Therefore, the aim of this research is to investigate the influence of chemical treatment to the FDM used part in terms of surface roughness as well as the strength. In this project, ten specimens of standard ASTM D638 dogbone specimens have been fabricated using MOJO 3D printer. Five specimens from the dogbone were tested for surface roughness and tensile testing while another five were immersed in the chemical solution before the same testing. Based on results, the surface roughness of chemically treated dogbone has dramatically improved, compared to untreated dogbone with 97.2% of improvement. However, in term of strength, the tensile strength of dogbone is reduced 42.58% due to the rearrange of material properties and chemical effects to the joining of the filaments. In conclusion, chemical treatment is an economical and sustainable approach to enhance the surface quality of AM parts.

  20. Effect of different denture cleansers on surface roughness and microhardness of artificial denture teeth.

    Science.gov (United States)

    Yuzugullu, Bulem; Acar, Ozlem; Cetinsahin, Cem; Celik, Cigdem

    2016-10-01

    The aim of this study was to compare the effects of different denture cleansers on the surface roughness and microhardness of various types of posterior denture teeth. 168 artificial tooth specimens were divided into the following four subgroups (n=42): SR Orthotyp PE (polymethylmethacrylate); SR Orthosit PE (Isosit); SR Postaris DCL (double cross-linked); and SR Phonares II (nanohybrid composite). The specimens were further divided according to the type of the denture cleanser (Corega Tabs (sodium perborate), sodium hypochlorite (NaOCl), and distilled water (control) (n=14)) and immersed in the cleanser to simulate a 180-day immersion period, after which the surface roughness and microhardness were tested. The data were analyzed using the Kruskal-Wallis test, Conover's nonparametric multiple comparison test, and Spearman's rank correlation analysis (P<.05). A comparison among the denture cleanser groups showed that NaOCl caused significantly higher roughness values on SR Orthotyp PE specimens when compared with the other artificial teeth (P<.001). Furthermore, Corega Tabs resulted in higher microhardness values in SR Orthotyp PE specimens than distilled water and NaOCl (P<.005). The microhardness values decreased significantly from distilled water, NaOCl, to Corega Tabs for SR Orthosit PE specimens (P<.001). SR Postaris DLC specimens showed increased microhardness when immersed in distilled water or NaOCl when compared with immersion in Corega Tabs (P<.003). No correlation was found between surface roughness and microhardness (r=0.104, P=.178). NaOCl and Corega Tabs affected the surface roughness and microhardness of all artificial denture teeth except for the new generation nanohybrid composite teeth.

  1. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-Band SAR Image Data

    Science.gov (United States)

    Shi, Jian-Cheng; Wang, James; Hsu, Ann Y.; ONeill, Peggy E.; Engman, Edwin T.

    1997-01-01

    An algorithm based on a fit of the single-scattering Integral Equation Method (IEM) was developed to provide estimation of soil moisture and surface roughness parameter (a combination of rms roughness height and surface power spectrum) from quad-polarized synthetic aperture radar (SAR) measurements. This algorithm was applied to a series of measurements acquired at L-band (1.25 GHz) from both AIRSAR (Airborne Synthetic Aperture Radar operated by the Jet Propulsion Laboratory) and SIR-C (Spaceborne Imaging Radar-C) over a well- managed watershed in southwest Oklahoma. Prior to its application for soil moisture inversion, a good agreement was found between the single-scattering IEM simulations and the L band measurements of SIR-C and AIRSAR over a wide range of soil moisture and surface roughness conditions. The sensitivity of soil moisture variation to the co-polarized signals were then examined under the consideration of the calibration accuracy of various components of SAR measurements. It was found that the two co-polarized backscattering coefficients and their combinations would provide the best input to the algorithm for estimation of soil moisture and roughness parameter. Application of the inversion algorithm to the co-polarized measurements of both AIRSAR and SIR-C resulted in estimated values of soil moisture and roughness parameter for bare and short-vegetated fields that compared favorably with those sampled on the ground. The root-mean-square (rms) errors of the comparison were found to be 3.4% and 1.9 dB for soil moisture and surface roughness parameter, respectively.

  2. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts

    Directory of Open Access Journals (Sweden)

    Vittorio Alfieri

    2016-12-01

    Full Text Available Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.

  3. Optical discrimination of surface reflection from volume backscattering in speckle contrast for skin roughness measurements

    Science.gov (United States)

    Tchvialeva, Lioudmila; Zeng, Haishan; Markhvida, Igor; Dhadwal, Gurbir; McLean, Lianne; McLean, David I.; Lui, Harvey; Lee, Tim K.

    2009-02-01

    Background: The intermixing of light reflected from tissue surface and scattered from tissue volume complicates skin surface roughness assessment by laser speckle technique, a non-invasive optical method based on the analysis of the contrast of a speckle pattern. Objective: In this study we investigated optical discrimination methods to separate the two contributions in a speckle pattern. Methods: Three discrimination methods, spatial, polarization and spectral filtering, were implemented to suppress light from skin internal volume in a laser speckle device. In order to determine the effectiveness of the discrimination methods, speckle patterns were obtained from healthy volunteers, and polychromatic speckle contrast was computed before and after each filtering procedure. Results: Speckle contrast increased after discrimination filtering. A simple formula was derived to calculate the speckle contrast associated with light scattered from the skin surface. This corrected speckle contrast was proposed to be used for skin roughness assessment.

  4. Ultrasound pulse-echo measurements on rough surfaces with linear array transducers

    DEFF Research Database (Denmark)

    Sjøj, Sidsel M. N.; Blanco, Esther N.; Wilhjelm, Jens E.

    2012-01-01

    -dependence decreases, as the echo process gradually changes from pure reflection to being predominantly governed by backscattering. The power of the echoes from the two roughest surfaces (Rq = 115 μm and 155 μm) are largely independent of angle at both 6 MHz and 12 MHz with a variation of 2 dB in the angular range......-pulse was calculated. The power of the echo from the smooth surface (Rq = 0) is highly angle-dependent due to a high degree of specular reflection. Within the angular range considered here, -10° to 10°, the variation spans a range of 18 dB at both 6 MHz and 12 MHz. When roughness increases, the angle...... from -10° to 10°. The least rough surfaces (Rq = 32 μm and 89 μm) have responses in between with a higher degree of angle-dependence at 6 MHz than at 12 MHz....

  5. Coherence and polarization speckle generated by a rough-surfaced retardation plate depolarizer

    DEFF Research Database (Denmark)

    Ma, Ning; Hanson, Steen Grüner; Takeda, Mitsuo

    2015-01-01

    The coherence and polarization of polarization speckle, arising from a stochastic electromagnetic field with random change of polarization, modulated by a depolarizer are examined on the basis of the coherence matrix. The depolarizer is a rough-surfaced retardation plate with a random function...... of position introducing random phase differences between the two orthogonal components of the electric vector. Under the assumption of Gaussian statistics with zero mean, the surface model for the depolarizer of the rough-surfaced retardation plate is obtained. The propagation of the modulated fields through...... any quadratic optical system is examined within the framework of the complex ABCD matrix theory to show how the degree of coherence and polarization of the beam changes on propagation, including propagation in free space...

  6. Surface roughness of a novel dental porcelain following different polishing procedures.

    Science.gov (United States)

    Wang, Fu; Chen, Ji-Hua; Wang, Hui

    2009-01-01

    This study aimed to compare the surface roughness of a novel dental porcelain following different polishing procedures. One hundred twenty Imagine Reflex porcelain disks were prepared and randomly assigned into six groups according to different treatments: Group 1: CeraMaster polishing system (CP); Group 2: CP + diamond polishing paste (DP); Group 3: Sof-Lex polishing system (SS); Group 4: SS + DP; Group 5: SiC paper polishing; Group 6: reglazing (control). After the respective treatments, surface roughness values were measured using a profilometer. Qualitative analysis was performed using scanning electron microscopy. Results demonstrated that a combination of the CeraMaster polishing system and a diamond polishing paste could produce similar superficial smoothness to that of the reglazed surface of the tested porcelain.

  7. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  8. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  9. Surface roughness dependence of the electrical resistivity of W(001) layers

    Science.gov (United States)

    Zheng, P. Y.; Zhou, T.; Engler, B. J.; Chawla, J. S.; Hull, R.; Gall, D.

    2017-09-01

    The resistivity ρ of epitaxial W(001) layers grown on MgO(001) at 900 °C increases from 5.63 ± 0.05 to 27.6 ± 0.6 μΩ-cm with decreasing thickness d = 390 to 4.5 nm. This increase is due to electron-surface scattering but is less pronounced after in situ annealing at 1050 °C, leading to a 7%-13% lower ρ for d contrast, introducing an additive resistivity term ρmound which accounts for surface roughness resolves both shortcomings. The new term is due to electron reflection at surface mounds and is, therefore, proportional to the ballistic resistance times the average surface roughness slope, divided by the layer thickness. This is confirmed by a measured linear relationship between ρmound and σ/(Ld), where the root-mean-square roughness σ and the lateral correlation length L of the surfaces are directly measured using atomic force microscopy and X-ray reflectivity.

  10. Effects of Surface Wettability and Roughness on the Heat Transfer Performance of Fluid Flowing through Microchannels

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-06-01

    Full Text Available The surface characteristics, such as wettability and roughness, play an important role in heat transfer performance in the field of microfluidic flow. In this paper, the process of a hot liquid flowing through a microchannel with cold walls, which possesses different surface wettabilities and microstructures, is simulated by a transient double-distribution function (DDF two-phase thermal lattice Boltzmann BGK (LBGK model. The Shan-Chen multiphase LBGK model is used to describe the flow field and the independent distribution function is introduced to solve the temperature field. The simulation results show that the roughness of the channel wall improves the heat transfer, no matter what the surface wettability is. These simulations reveal that the heat exchange characteristics are directly related to the flow behavior. For the smooth-superhydrophobic-surface flow, a gas film forms that acts as an insulating layer since the thermal conductivity of the gas is relatively small in comparison to that of a liquid. In case of the rough-superhydrophobic-surface flow, the vortex motion of the gas within the grooves significantly enhances the heat exchange between the fluid and wall.

  11. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry

    Energy Technology Data Exchange (ETDEWEB)

    Gontard, L.C., E-mail: lionelcg@gmail.com [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Puerto Real 11510 (Spain); López-Castro, J.D.; González-Rovira, L. [Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Escuela Superior de Ingeniería, Laboratorio de Corrosión, Universidad de Cádiz, Puerto Real 11519 (Spain); Vázquez-Martínez, J.M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); Varela-Feria, F.M. [Servicio de Microscopía Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Av. Reina Mercedes 4b, 41012 Sevilla (Spain); Marcos, M. [Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519 (Spain); and others

    2017-06-15

    Highlights: • We describe a method to acquire a high-angle tilt series of SEM images that is symmetrical respect to the zero tilt of the sample stage. The method can be applied in any SEM microscope. • Using the method, high-resolution 3D SEM photogrammetry can be applied on planar surfaces. • 3D models of three surfaces patterned with grooves are reconstructed with high resolution using multi-view freeware photogrammetry software as described in LC Gontard et al. Ultramicroscopy, 2016. • From the 3D models roughness parameters are measured • 3D SEM high-resolution photogrammetry is compared with two conventional methods used for roughness characetrization: stereophotogrammetry and contact profilometry. • It provides three-dimensional information with high-resolution that is out of reach for any other metrological technique. - Abstract: We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  12. The influence of surface roughness on volatile transport on the Moon

    Science.gov (United States)

    Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2018-01-01

    The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.

  13. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  14. Changes in roughness of denture base and reline materials by chemical disinfection or microwave irradiation. Surface roughness of denture base and reline materials

    Science.gov (United States)

    MACHADO, Ana Lucia; GIAMPAOLO, Eunice Teresinha; VERGANI, Carlos Eduardo; de SOUZA, Juliana Feltrin; JORGE, Janaina Habib

    2011-01-01

    Objective The effect of disinfection by immersion in sodium perborate solution and microwave irradiation on surface roughness of one denture base resin (Lucitone 550 -L), 3 hard chairside reline resins (Tokuyama Rebase II-TR, New Truliner-NT, Ufi Gel hard-UH) and 3 resilient reline materials (Trusoft-T; Sofreliner-S, Dentusil-D) was evaluated. Material and methods Thirty specimens of each material were made and divided into 3 groups: Control - not disinfected; P - daily disinfection by immersing in sodium perborate solution (3.8%); MW - microwave disinfection (6 min/650 W). Roughness measurements were made after polymerization (baseline) and after 1, 3 and 28 days. Roughness differences relative to the baseline readings were analyzed by Student's t-test (P=0.05). Results At baseline, Trusoft showed the highest (Psodium perborate (P=0.013). Roughness measurements of material Trusoft were not performed after microwave disinfection due to the severe alterations on the surface. In the 3 groups evaluated, changes in roughness were significant for materials Ufi Gel hard (from 0.11 to 0.26 µm; P≤0.041) and New Truliner (0.19 to 0.76 µm; P≤0.019). The roughness of materials Lucitone 550 (0.37 µm), Tokuyama Rebase II (0.37 µm), Sofreliner (0.49 µm) and Dentusil (0.38 µm) remained unaffected (P>0.05). Conclusions The roughness of the hard reline materials Ufi Gel hard and New Truliner was adversely affected by microwave disinfection, immersion in water or in sodium perborate. Microwave disinfection caused severe alterations on the surface of the resilient liner Trusoft. PMID:21986658

  15. Improved Sea Surface Salinity Retrievals using Ancillary data for Aquarius Ocean Roughness Correction

    Science.gov (United States)

    Jones, L.; Hejazin, Y.; Rabollii, M.

    2012-12-01

    The Aquarius/SAC-D sea surface salinity (SSS) measurement mission was launched into polar orbit during the summer of 2011. The prime sensor is a combined L-band radiometer/scatterometer developed jointly by NASA Goddard Space Flight Center and the Jet Propulsion Laboratory, which derives SSS from ocean surface brightness temperature (Tb) measurements. This paper deals with a method of improving AQ SSS by making a making an ocean roughness brightness temperature correction (ΔTbr). The ΔTbr is derived using several ancillary data sources of surface wind measurements, namely; NOAA numerical weather model - Global Data Assimilation System (GDAS), WindSat ocean vector wind, and the CONAE Microwave Radiometer (MWR). The basis of the correction is the excess (warming) brightness temperature that is produced when the ocean is roughened by the surface wind. We model the increase in L-band Tb as a function of wind speed and direction relative to the antenna azimuth look direction. Our radiative transfer model by El-Nimri [2010] has been tuned to actual AQ ocean surface Tb's with corresponding surface wind vector. Using this ocean emissivity model and the ancillary wind vector, we derive the roughness correction, ΔTbr, which is applied to the AQ measured ocean surface Tb before retrieving SSS. Finally the effect of ΔTbr is evaluated by computing the difference between the HYCOM ocean salinity model and the AQ retrievals. These differences are cross correlated with the ancillary surface wind vector to assess the effectiveness of the roughness correction. Finally, we compare our ΔTbr with the AQ scatterometer derived ΔTbr. We compare the similarities and differenced versus the ancillary surface wind speed. S. El-Nimri et al., 2010, "An improved C-band ocean surface emissivity model at hurricane force wind speeds over a wide range of earth incidence angles," IEEE Geosci. Rem. Sens. Letters, vol. 7, NO. 4, October.

  16. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood.

    Science.gov (United States)

    Gündüz, Gökhan; Korkut, Süleyman; Korkut, Derya Sevim

    2008-05-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on physical properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood were examined. Samples obtained from Yenice-Zonguldak Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for varying durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. The mechanical properties of heat-treated and control samples were tested, and compression strength, and Janka-hardness were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p=0.05) between physical and technological properties, and surface roughness parameters (Ra, Rz, Ry, Rq) for three temperatures and three durations of heat treatment. Based on the findings in this study, the results showed that density, swelling, compression strength, Janka-hardness and surface roughness values decreased with increasing treatment temperature and treatment times. Increase in temperature and duration further diminished technological strength values of the wood specimens. Camiyani Black Pine wood could be utilized by using proper heat treatment techniques without any losses in strength values in areas where working, stability, and surface smoothness, such as in window frames, are important factors.

  17. Evaluation of hardness and surface roughness of two maxillofacial silicones following disinfection

    Directory of Open Access Journals (Sweden)

    Marcelo Coelho Goiato

    2009-03-01

    Full Text Available The purpose of this study was to evaluate the Shore A hardness and surface roughness of two silicones for maxillofacial prosthetic treatment, under the influence of chemical disinfection and storage. Twenty-eight specimens were obtained, half of which were made of Silastic MDX 4-4210 silicone and, the other half were made of Silastic 732 RTV silicone. The specimens were divided into four groups: Silastic 732 RTV and MDX 4-4210 with disinfection 3 times a week with Efferdent tablets and the same materials without disinfection. The hardness of the materials was analyzed with a Shore A Durometer. The surface roughness was established by a digital portable roughness tester, initially and 2 months after the confection of the specimens. A variance test was applied (2-way ANOVA, followed by Tukey test (the level of significance was set at 1%. The storage time factor statistically influenced (p < 0.01 the materials' properties of hardness and roughness. MDX 4-4210 (28.59 Shore A, 0.789 Ra presented higher values than Silastic 732 RTV (18.08 Shore A, 0.656 Ra for both properties. Regarding the disinfection period, there was no significant difference in any of the materials tested.

  18. Optimization of the straightness measurements on rough surfaces by Monte Carlo simulation.

    Science.gov (United States)

    Hennebelle, F; Coorevits, T; Bigerelle, M

    2014-01-01

    The straightness error of a coordinate measuring machine (CMM) is determined by measuring a rule standard. Thanks to a reversal technique, the straightness uncertainty of the CMM is theoretically dissociated from the straightness uncertainty of the rule. However, stochastic variations of the whole measurement system involve uncertainties of the CMM straightness error. To quantify these uncertainties, different sources of stochastic variations are listed with their associated probability density functions. Then Monte Carlo methods are performed first to quantify error and secondly to optimize measurement protocol. It is shown that a 5-measurement distance from 0.1 mm to each measurement coordinate allows a double reduction of uncertainties, principally due to the rule roughness amplitude (R(a) = 0.35 µm) and because this optimal distance of 0.1 mm is equal to the autocorrelation length of the rule roughness. With this optimal configuration, the final uncertainly on the straightness error of the CMM studied is less than 1 µm on the whole evaluated length of the rule (1 m). An algorithm, including Probe Tip Radius of the CMM and surface roughness of the piece, is finally proposed to increase CMM reliability by minimizing error measurements due to surface roughness of the measured piece. © Wiley Periodicals, Inc.

  19. The Influence of Surface Polish and Beverages on the Roughness of Nanohybrid and Microhybri Resin Composites

    Directory of Open Access Journals (Sweden)

    Sadeghi M

    2016-03-01

    Full Text Available Statement of the Problem: Surface roughness is a key factor in the aesthetics of restorative dentistry as it can determine the clinical quality and success of restorative materials. The chemical process of dissolution in the presence of mechanical forces can accelerate the surface roughness of tooth-coloured restorative materials. Objectives: To determine the degree of surface roughness of a microhybrid and a nanohybrid resin composite after polishing and immersion in various solutions. Materials and Methods: Two resin composites were used : a microhybrid (Gradia direct, GC, and a nanohybrid (Ice, SDI. A total of 54 disc-shaped specimens were prepared for each composite and immersed in distilled water incubated at 37 °C for 24 hours. After 24 h, the baseline measurement for surface roughness (Ra was performed and the specimens were divided into 3 groups of 18 and tested with unpolished or after polishing with Sof-Lex disc and Enhance point systems. Specimens in each group were subdivided into 3 subgroups (n = 6 and immersed in 3 solutions (distilled water, coffee, and cola for 7 days incubated at 37 °C. After 7 days, the specimens were rinsed with tap water for 10 seconds, dried with paper towel and Ra was measured again. Two randomly selected specimens of each group were sputter coated with gold and examined using a Field-Emission Scanning Electron Microscope (SEM. Results: Gradia direct showed a greater Ra than ice in all solutions for all polishing systems (p < 0.001. Specimens polished with Enhance point revealed a significantly greater roughness than Sof-Lex discs and both showed greater Ra than unpolished specimens. Specimens immersed in coffee exhibited significantly greater surface roughness than that of distilled water (p < 0.05 and cola (p < 0.001. Conclusions: Nano-hybrid composite showed a significantly smoother surface than microhybrid. Coffee exhibited the highest Ra compared to distilled water and cola. Enhance point revealed

  20. Geostatistical Classification of Snow Surface Roughness and Results on Morphogenesis of Snow Surfaces in a Continental Alpine Environment

    Science.gov (United States)

    Mayer, H.; Herzfeld, U. C.; Caine, N.; Losleben, M. V.

    2002-12-01

    Snow surface roughness is an important variable in the study of surface-atmosphere exchanges, including the investigation of snowmelt at several scales, meltwater production and meltwater flux, wind transport and erosion in winter. Snow surface roughness and microtopography is measured spatially, using the Glacier Roughness Sensor (GRS), an instrument developed especially for this purpose. Data are analyzed by application of geostatistical characterization and classification methods, which proceed as follows: Vario functions of first and second order are calculated from GRS data, then parameters that are useful as snow surface descriptors are defined, extracted from the vario function, and combined into feature vectors, on which the classification is based. As a result of the geostatistical analysis, characteristics of morphogenetic processes of the winter and summer snow surfaces are derived. Thus the snow surface can be investigated both phenomenologically and quantitatively. Characteristic feature vectors are given for typical summer (sun cups) and winter forms (sastrugi) and their development stages, as well as quantitative discriminators between these forms, which may facilitate automatization of snow surface classification. As an application, the interaction of environmentally induced processes and self-organizational processes is analyzed.

  1. Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning

    Directory of Open Access Journals (Sweden)

    Kowalska Maria E.

    2017-03-01

    Full Text Available Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning. Roughness is the attribute of a surface that can be defined as a collection of small surface unevennesses that can be identified optically or detected mechanically which do not result from the surface’s shape and their size depends on a material type as well as on undergone processing. The most often utilised roughness parameters are: Ra - mean distance value of the points on the observed profile from the average line on the sampling length, and Rz - difference between arithmetic mean height of the five highest peaks and arithmetic mean depth of the five deepest valleys regarding to the average line on the length of the measured fragment. In practice, roughness parameters are most often defined for surface elements that require relevant manufacturing or processing through grinding, founding or polishing in order to provide the expected surface roughness. To measure those parameters for the produced elements profilometers are used. In this paper the authors present an alternative approach of determining and utilising such parameters. Instead of the utilising methods based on sampling length measurement, roughness parameters are determined on the basis of point clouds, that represent a surface of rough concrete, obtained through terrestrial laser scanning. The authors suggest using the surface roughness parameter data acquired in this way as a supplementary data in the condition assessment (erosion rate of surfaces being a part of engineering constructions made of concrete.

  2. Mechanism analysis of the affect the copper line surface roughness after FA/O alkaline barrier CMP

    Science.gov (United States)

    Jiaojiao, Gao; Yuling, Liu; Chenwei, Wang; Jin, Cui

    2014-12-01

    The surface roughness seriously affects the performance of devices after barrier CMP. Due to the high surface roughness of copper line, the local resistance of a device will be high when working, then the copper line will overheat prompting the generation of electro-migration and the circuit will lose efficacy. Reducing the surface roughness of the copper line in barrier CMP is still an important research topic. The main factors influencing the surface roughness of copper line in alkaline barrier slurry are analyzed in the paper. Aimed at influencing the law on the surface roughness of copper line, using a new type of alkaline barrier slurry with a different pH of the chelating agent and changing the content of non-ionic surfactant, we then analyze the influencing law both on the surface roughness of copper line, and the influence mechanism. The experimental results show that with a chelating agent with a low pH value in the barrier slurry, the surface roughness of the copper line is 1.03 nm and it is the lowest in all of the barrier slurries, and with the increase of non-ionic surfactant concentration, the surface roughness of copper line is reduced to 0.43 nm, meeting the demand of further development of integrated circuits.

  3. The effect of standardised implantoplasty protocol on titanium surface roughness: an in-vitro study.

    Science.gov (United States)

    Tawse-Smith, Andrew; Kota, Akash; Jayaweera, Yathen; Vuuren, Wendy Jansen van; Ma, Sunyoung

    2016-12-22

    To analyse the changes of surface characteristics of machined and moderately roughened titanium disks following a standardised implantoplasty protocol. Forty titanium discs (machined: n = 20; moderately roughened: n = 20) were instrumented with one half of each disc maintained as the control (non-instrumented). The standardised implantoplasty protocol was carried out using a custom jig with the sequential change of burs: 1) Regular grit diamond [10s], 2) Super-fine grit diamond [10s], 3) Brownie(tm) silicone polisher [15s], 4) Greenie(tm) silicone polisher [15s]. Surface topography was analysed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Energy dispersive x-ray spectroscopy (EDS) was used to measure the elemental profiles of each disc. Quantitative analysis showed similar changes in level of roughness between the machined and moderately roughened titanium discs. CLSM demonstrated an increased roughness (Ra and Sa values) after polishing with a regular grit diamond bur when compared to the uninstrumented surfaces. Although the roughness decreased after the further polishing with the super-fine grit diamond bur, subsequent instrumentation using silicon burs tended to increase the roughness, albeit being statistically insignificant. There was a residue of silicon particles despite the irrigation after each polishing stage. The proposed implantoplasty protocol did not achieve a sufficient level of smoothness on the machined or moderately roughened titanium surfaces when compared to the Ra threshold. Further research is recommended to test the efficacy of each bur on titanium surfaces with longer duration using actual oral implants to allow better comparison.

  4. Thermal inertia and surface roughness of Comet 9P/Tempel 1

    Science.gov (United States)

    Davidsson, Björn J. R.; Gutiérrez, Pedro J.; Groussin, Olivier; A'Hearn, Michael F.; Farnham, Tony; Feaga, Lori M.; Kelley, Michael S.; Klaasen, Kenneth P.; Merlin, Frédéric; Protopapa, Silvia; Rickman, Hans; Sunshine, Jessica M.; Thomas, Peter C.

    2013-05-01

    Re-calibrated near-infrared spectroscopy of the resolved nucleus of Comet 9P/Tempel 1 acquired by the Deep Impact spacecraft has been analyzed by utilizing the post-Stardust-NExT nucleus shape model and spin pole solution, as well as a novel thermophysical model that explicitly accounts for small-scale surface roughness and thermal inertia. We find that the thermal inertia varies measurably across the surface, and that thermal emission from certain regions only can be reproduced satisfactory if surface roughness is accounted for. Particularly, a scarped/pitted terrain that experienced morning sunrise during the flyby is measurably rough (Hapke mean slope angle ˜45°) and has a thermal inertia of at most 50 J m-2 K-1 s-1/2, but probably much lower. However, thick layered terrain and thin layered terrain experiencing local noon during the flyby have a substantially larger thermal inertia, reaching 150 J m-2 K-1 s-1/2 if the surface is as rough as the scarped/pitted terrain, but 200 J m-2 K-1 s-1/2 if the terrain is considered locally flat. Furthermore, the reddening of the nucleus near-infrared 1.5-2.2 μm spectrum varies between morphological units, being reddest for thick layered terrain (median value 3.4% kÅ-1) and most neutral for the smooth terrain known to contain surface water ice (median value 3.1% kÅ-1). Thus, Comet 9P/Tempel 1 is heterogeneous in terms of both thermophysical and optical properties, due to formation conditions and/or post-formation processing.

  5. The effect of standardised implantoplasty protocol on titanium surface roughness: an in-vitro study

    Directory of Open Access Journals (Sweden)

    Andrew TAWSE-SMITH

    Full Text Available Abstract: To analyse the changes of surface characteristics of machined and moderately roughened titanium disks following a standardised implantoplasty protocol. Forty titanium discs (machined: n = 20; moderately roughened: n = 20 were instrumented with one half of each disc maintained as the control (non-instrumented. The standardised implantoplasty protocol was carried out using a custom jig with the sequential change of burs: 1 Regular grit diamond [10s], 2 Super-fine grit diamond [10s], 3 Brownie(tm silicone polisher [15s], 4 Greenie(tm silicone polisher [15s]. Surface topography was analysed using confocal laser scanning microscopy (CLSM and scanning electron microscopy (SEM. Energy dispersive x-ray spectroscopy (EDS was used to measure the elemental profiles of each disc. Quantitative analysis showed similar changes in level of roughness between the machined and moderately roughened titanium discs. CLSM demonstrated an increased roughness (Ra and Sa values after polishing with a regular grit diamond bur when compared to the uninstrumented surfaces. Although the roughness decreased after the further polishing with the super-fine grit diamond bur, subsequent instrumentation using silicon burs tended to increase the roughness, albeit being statistically insignificant. There was a residue of silicon particles despite the irrigation after each polishing stage. The proposed implantoplasty protocol did not achieve a sufficient level of smoothness on the machined or moderately roughened titanium surfaces when compared to the Ra threshold. Further research is recommended to test the efficacy of each bur on titanium surfaces with longer duration using actual oral implants to allow better comparison.

  6. FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

    Directory of Open Access Journals (Sweden)

    GYUN-HO GIM

    2014-10-01

    Full Text Available In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI. The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency of pump, and fluid-structure interaction.

  7. The influence of surface roughness on cloud cavitation flow around hydrofoils

    Science.gov (United States)

    Hao, Jiafeng; Zhang, Mindi; Huang, Xu

    2017-08-01

    The aim of this study is to investigate experimentally the effect of surface roughness on cloud cavitation around Clark-Y hydrofoils. High-speed video and particle image velocimetry (PIV) were used to obtain cavitation patterns images (Prog. Aerosp. Sci. 37: 551-581, 2001), as well as velocity and vorticity fields. Results are presented for cloud cavitating conditions around a Clark-Y hydrofoil fixed at angle of attack of α =8{°} for moderate Reynolds number of Re=5.6 × 105 . The results show that roughness had a great influence on the pattern, velocity and vorticity distribution of cloud cavitation. For cavitating flow around a smooth hydrofoil (A) and a rough hydrofoil (B), cloud cavitation occurred in the form of finger-like cavities and attached subulate cavities, respectively. The period of cloud cavitation around hydrofoil A was shorter than for hydrofoil B. Surface roughness had a great influence on the process of cloud cavitation. The development of cloud cavitation around hydrofoil A consisted of two stages: (1) Attached cavities developed along the surface to the trailing edge; (2) A reentrant jet developed, resulting in shedding and collapse of cluster bubbles or vortex structure. Meanwhile, its development for hydrofoil B included three stages: (1) Attached cavities developed along the surface to the trailing edge, with accumulation and rotation of bubbles at the trailing edge of the hydrofoil affecting the flow field; (2) Development of a reentrant jet resulted in the first shedding of cavities. Interaction and movement of flows from the pressure side and suction side brought liquid water from the pressure side to the suction side of the hydrofoil, finally forming a reentrant jet. The jet kept moving along the surface to the leading edge of the hydrofoil, resulting in large-scale shedding of cloud bubbles. Several vortices appeared and dissipated during the process; (3) Cavities grew and shed again.

  8. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Francesco Mattia

    2008-07-01

    Full Text Available Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale.

  9. Implementation of a fringe visibility based algorithm in coherence scanning interferometry for surface roughness measurement

    Science.gov (United States)

    Montgomery, P. C.; Salzenstein, F.; Montaner, D.; Serio, B.; Pfeiffer, P.

    2013-04-01

    Coherence scanning interferometry (CSI) is an optical profilometry technique that uses the scanning of white light interference fringes over the depth of the surface of a sample to measure the surface roughness. Many different types of algorithms have been proposed to determine the fringe envelope, such as peak fringe intensity detection, demodulation, centroid detection, FFT, wavelets and signal correlation. In this paper we present a very compact and efficient algorithm based on the measurement of the signal modulation using a second-order nonlinear filter derived from Teager-Kaiser methods and known as the five-sample adaptive (FSA) algorithm. We describe its implementation in a measuring system for static surface roughness measurement. Two envelope peak detection techniques are demonstrated. The first one, using second order spline fitting results in an axial sensitivity of 25 nm and is better adapted to rough samples. The second one, using local phase correction, gives nanometric axial sensitivity and is more appropriate for smooth samples. The choice of technique is important to minimize artifacts. Surface measurement results are given on a silicon wafer and a metallic contact on poly-Si and the results are compared with those from a commercial interferometer and AFM, demonstrating the robustness of the FSA algorithm.

  10. Evaluation of surface roughness and bond strength of quartz fiber posts after various pre-treatments.

    Science.gov (United States)

    Akin, Gulsah E; Akin, Hakan; Sipahi, Cumhur; Piskin, Bulent; Kirmali, Omer

    2014-11-01

    Debonding at the post-adhesive interface is a major problem for quartz fiber posts. The objective of this study was to evaluate surface roughness and bond strength of quartz fiber posts after various surface treatments. Sixty-six quartz fiber posts were randomly divided into six experimental groups (n = 11) including group C, untreated (control); group SB, sandblasted; group SC, silica coated; group HF, hydrofluoric acid-etched; group N, Nd:YAG laser irradiated; group E, Er:YAG laser irradiated. Surface roughness of the posts was measured before and after pre-treatment. They were then bonded to resin cement and tensile bond strength was determined in a universal testing machine. Furthermore, two-way ANOVA and post hoc comparison tests (α = 0.05) were performed on all data. The highest mean force value was observed in group SB and followed by group E. Tukey's HSD test showed that there was no statistical difference between group SB and group E (p = 0.673). The highest mean roughness value was observed in group SB and a significant difference was found between group SB and all other groups (p quartz fiber posts and resin cement. Sandblasting or Er:YAG laser-irradiation of the surface of the quartz fiber post before cementation is recommended for increasing retention.

  11. Impact of Urban Surface Roughness Length Parameterization Scheme on Urban Atmospheric Environment Simulation

    Directory of Open Access Journals (Sweden)

    Meichun Cao

    2014-01-01

    Full Text Available In this paper, the impact of urban surface roughness length z0 parameterization scheme on the atmospheric environment simulation over Beijing has been investigated through two sets of numerical experiments using the Weather Research and Forecasting model coupled with the Urban Canopy Model. For the control experiment (CTL, the urban surface z0 parameterization scheme used in UCM is the model default one. For another experiment (EXP, a newly developed urban surface z0 parameterization scheme is adopted, which takes into account the comprehensive effects of urban morphology. The comparison of the two sets of simulation results shows that all the roughness parameters computed from the EXP run are larger than those in the CTL run. The increased roughness parameters in the EXP run result in strengthened drag and blocking effects exerted by buildings, which lead to enhanced friction velocity, weakened wind speed in daytime, and boosted turbulent kinetic energy after sunset. Thermal variables (sensible heat flux and temperature are much less sensitive to z0 variations. In contrast with the CTL run, the EXP run reasonably simulates the observed nocturnal low-level jet. Besides, the EXP run-simulated land surface-atmosphere momentum and heat exchanges are also in better agreement with the observation.

  12. Scattering of electromagnetic waves from a periodic surface with random roughness

    Science.gov (United States)

    Yueh, H. A.; Shin, R. T.; Kong, J. A.

    1988-01-01

    Equations for the scattering of electromagnetic waves from a randomly perturbed periodic surface have been formulated using the extended boundary condition method and solved using the small perturbation method. Surface currents and scattered fields are solved for up to the second order. The results indicate that as the correlation length of the random roughness increases, the bistatic scattering patterns of the scattered fields show several beams associated with each Bragg diffraction direction of the periodic surface. The beam shape becomes broader with smaller correlation length. Results obtained using the Kirchhoff approximation are found to agree well with the present results for the hh and vv polarized backscattering coefficients for small angles of incidence.

  13. The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant

    DEFF Research Database (Denmark)

    Samoilov, V. N.; Sivebæk, Ion Marius; Persson, B. N. J.

    2004-01-01

    around the substrate nanoasperities, thus increasing the adhesion between two surfaces. For greater lubricant coverages a single capillary bridge is formed. The adhesion force saturates for lubricant coverages greater than 3 ML. For the flat substrate, during pull-off we observe discontinuous, thermally...... activated changes in the number n of lubricant layers (n-1-->n layering transitions), whereas for the corrugated substrate these transitions are "averaged" by the substrate surface roughness....

  14. Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Possan, A.L. [Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Menti, C. [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Beltrami, M. [Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Santos, A.D. [Instituto de Física, Universidade de São Paulo, São Paulo, SP (Brazil); Roesch-Ely, M. [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Missell, F.P., E-mail: fmissell@yahoo.com [Centro de Ciências Exatas e Tecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil)

    2016-01-01

    Escherichia coli are bacteria that must be controlled in the food industry and the hospital sector. Magnetoelastic biosensors offer the promise of rapid identification of these and other harmful antigens. In this work, strips of amorphous Metglas 2826MB3 were cut to size (5 mm × 1 mm) with a microdicing saw and were then coated with thin layers of Cr and Au, as verified by Rutherford backscattering spectroscopy (RBS). Several sensor surfaces were studied: 1) as-cast strip, wheel side; 2) as-cast strip, free surface; and 3) thinned and polished surface. A layer of cystamine was applied to the Au-covered magnetoelastic substrate, forming a self-assembled monolayer (SAM), followed by antibodies, using a modified Hermanson protocol. The cystamine layer growth was verified by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The biosensors were exposed to solutions of bacteria and the resonant frequency of the sensors was measured with an impedance analyzer for times up to 100 min. Reductions in the resonant frequency, corresponding to bacteria capture, were measured after optimizing the signal amplitude. For times up to 40 min, high capture rates were observed and thereafter saturation occurred. Saturation values of the frequency shifts were compared with the number of bacteria observed on the sensor using fluorescence microscopy. Parameters associated with capture kinetics were studied for different sensor surfaces. The rough surfaces were found to show a faster response, while the thinned and polished sensors showed the largest frequency shift. - Highlights: • Magnetoelastic biosensors to capture Escherichia coli were produced. • Surface roughness of biosensors was varied in the range R{sub a} = 0.3–0.52 μm. • Rough surfaces show faster response, polished surfaces have larger frequency shift.

  15. Impact of surface roughness on L-band emissivity of the sea ice

    Science.gov (United States)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  16. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    Skin friction drag coefficients are determined for marine antifouling coatings in pristine condition by use of Constant Temperature Anemometry (CTA) with uni-directionalhot-wires. Mean flow behaviour for varying surface roughness is analysed in zero pressure gradient, flat plate, turbulentboundary...... drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... layers for Reynolds numbers from Rex =1:91x105 to Rex = 9:54x105. The measurements were conducted at the Technical University of Denmark in a closed-loop wind tunnel redesigned for investigations as this. Ensemble averages of the boundary layer velocity profiles allowed for determination of skin friction...

  17. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  18. The Establishment of Surface Roughness as Failure Criterion of Al–Li Alloy Stretch-Forming Process

    National Research Council Canada - National Science Library

    Feng, Jing-Wen; Zhan, Li-Hua; Yang, Ying-Ge

    2016-01-01

    ... characterizations on the basis of the precise measurement of stretch-forming surface roughness and establishes the critical criterion for the occurrence of orange peel surface defects in the stretch-forming...

  19. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling

    Science.gov (United States)

    Menut, Laurent; Pérez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, Stéphane

    2013-06-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  20. Potential impacts of robust surface roughness indexes on DTM-based segmentation

    Science.gov (United States)

    Trevisani, Sebastiano; Rocca, Michele

    2017-04-01

    In this study, we explore the impact of robust surface texture indexes based on MAD (median absolute differences), implemented by Trevisani and Rocca (2015), in the unsupervised morphological segmentation of an alpine basin. The area was already object of a geomorphometric analysis, consisting in the roughness-based segmentation of the landscape (Trevisani et al. 2012); the roughness indexes were calculated on a high resolution DTM derived by means of airborne Lidar using the variogram as estimator. The calculated roughness indexes have been then used for the fuzzy clustering (Odeh et al., 1992; Burrough et al., 2000) of the basin, revealing the high informative geomorphometric content of the roughness-based indexes. However, the fuzzy clustering revealed a high fuzziness and a high degree of mixing between textural classes; this was ascribed both to the morphological complexity of the basin and to the high sensitivity of variogram to non-stationarity and signal-noise. Accordingly, we explore how the new implemented roughness indexes based on MAD affect the morphological segmentation of the studied basin. References Burrough, P.A., Van Gaans, P.F.M., MacMillan, R.A., 2000. High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems 113, 37-52. Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J., 1992. Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships. Soil Sciences Society of America Journal 56, 505-516. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani, S. & Rocca, M. 2015, "MAD: Robust image texture analysis for applications in high resolution geomorphometry", Computers and Geosciences, vol. 81, pp. 78-92.

  1. Variations in surface roughness of seven orthodontic archwires: an SEM-profilometry study

    OpenAIRE

    Amini, Fariborz; Rakhshan, Vahid; Pousti, Maryam; Rahimi, Hajir; Shariati, Mahsa; Aghamohamadi, Bahareh

    2012-01-01

    Objective The purpose of this study was to evaluate the surface roughness (SR) of 2 types of orthodontic archwires made by 4 different manufacturers. Methods This in vitro experimental study was conducted on 35 specimens of 7 different orthodontic archwires, namely, 1 nickel-titanium (NiTi) archwire each from the manufacturers American Orthodontics, OrthoTechnology, All-Star Orthodontics, and Smart Technology, and 1 stainless steel (SS) archwire each from the manufacturers American Orthodonti...

  2. Effects of microabrasion on substance loss, surface roughness, and colorimetric changes on enamel in vitro

    OpenAIRE

    Paic, M; Sener, B; Schug, J; Schmidlin, P R

    2008-01-01

    OBJECTIVES: To determine in vitro the effects of 2 commercially available microabrasion compounds (Prema [Premiere Dental Products] and Opalustre [Ultradent]) on human enamel under standardized conditions after treatment periods of 10, 20, 30, and 40 seconds. Nonacidified pumice served as an abrasive control compound. METHOD AND MATERIALS: Mean substance loss was determined by measuring dissolved Ca2+ using atomic absorption spectrophotometry. Differences in the mean surface roughness were pr...

  3. Effect of Soft Drinks and Fresh Fruit Juice on Surface Roughness of Commonly used Restorative Materials

    OpenAIRE

    Maganur, Prabhadevi; Satish, V; Prabhakar, AR; Namineni, Srinivas

    2015-01-01

    ABSTRACT In this in vitro study, the effects of a Cola drink, and fresh fruit juice (citrus) on the surface roughness on flowable composite and resin-modified glass ionomer cement (RMGIC) each was evaluated and compared. Using a brass mold 70 pellets each of flowable composite (Filtek? Flow) and RMGIC tricure restorative material were prepared according to the manufacturer?s instructions. Two groups (groups I and II) were formed containing 30 pellets of each material. Remaining 10 pellets of ...

  4. Numerical and Experimental Investigation of Microchannel Flows with Rough Surfaces (Postprint)

    Science.gov (United States)

    2007-10-01

    parameter, average surface roughness angle. This model has also been linked to the Cercignani -Lampis scattering kernel as a required reference for use in...also been linked to the Cercignani -Lampis scattering kernel as a required reference for use in deterministic kinetic solvers. Experiments were conducted...number of models, different in their numerical complexity and physical accu- racy. Among the simplified models are the Cercignani - Lampis CL

  5. Fluoride release and surface roughness of a new glass ionomer cement: glass carbomer

    Directory of Open Access Journals (Sweden)

    Célia Maria Condeixa de França LOPES

    2018-02-01

    Full Text Available Abstract Objective This study analyzed the fluoride release/recharge and surface roughness of glass carbomer compared to other encapsulated glass ionomer cements (GICs. Material and method The GICs tested were Glass Fill® (GC-GCP Dental, Riva Self Cure® (RS-SDI, Riva Light Cure® (RL-SDI, Equia Fil® (EF-GC Europe. The composite resin Luna® (LU-SDI was used as control. Five samples of each material were prepared and kept in a humidifier for 24 hours (37 °C, 100% relative humidity. Fluoride release was measured in two times: before (T1: days 1, 2, 7, 14 and after topical application of fluoride (T2: days 15, 16, 21 and 28. The surface roughness was also measured in both times (T1: days 1 and 14; T2: days 15 and 28. All samples were submitted to a single topical application of acidulated fluoride phosphate (Fluor Care - FGM. Two-way ANOVA with repeated measures and Tukey's post-test (p <0.05 were used in the statistical analysis. Result Equia Fil presented the highest fluoride release in both evaluation periods, with a higher release in T1 (p <0.05. The other materials tested, including glass carbomer presented similar release in both periods (T1 and T2. Regarding surface roughness, no significant differences were observed in the interaction between the material × time factors (T1 and T2 (p=0.966. Conclusion The GICs tested presented fluoride release and recharge ability and showed no surface roughness increase by topical application of fluoride.

  6. Evaluation of weight loss and surface roughness of compomers after simulated toothbrushing abrasion test

    OpenAIRE

    Rafael Francisco Lia Mondelli; Linda Wang; Fernanda Cristina Pimentel Garcia; Anuradha Prakki; José Mondelli; Eduardo Batista Franco; Aquira Ishikiriama

    2005-01-01

    This study aimed at analyzing the compomers wear by an "in vitro" toothbrushing abrasion test. The null hypotheses tested were that there would be no differences in weight loss and no significant changes in surface roughness of the compomers after this test. The utilized commercial brands were Dyract (Dentsply), Dyract AP (Dentsply), Compoglass F (Vivadent), Freedom (SDI), F2000 (3M ESPE), which were compared to the two resin composites Z100 (3M ESPE) and Silux Plus (3M ESPE). Ten cylindrical...

  7. Thermal transport across a substrate-thin-film interface: effects of film thickness and surface roughness.

    Science.gov (United States)

    Liang, Zhi; Sasikumar, Kiran; Keblinski, Pawel

    2014-08-08

    Using molecular dynamics simulations and a model AlN-GaN interface, we demonstrate that the interfacial thermal resistance R(K) (Kapitza resistance) between a substrate and thin film depends on the thickness of the film and the film surface roughness when the phonon mean free path is larger than film thickness. In particular, when the film (external) surface is atomistically smooth, phonons transmitted from the substrate can travel ballistically in the thin film, be scattered specularly at the surface, and return to the substrate without energy transfer. If the external surface scatters phonons diffusely, which is characteristic of rough surfaces, R(K) is independent of film thickness and is the same as R(K) that characterizes smooth surfaces in the limit of large film thickness. At interfaces where phonon transmission coefficients are low, the thickness dependence is greatly diminished regardless of the nature of surface scattering. The film thickness dependence of R(K) is analogous to the well-known fact of lateral thermal conductivity thickness dependence in thin films. The difference is that phonon-boundary scattering lowers the in-plane thermal transport in thin films, but it facilitates thermal transport from the substrate to the thin film.

  8. Effect of artificial aging on the surface roughness and microhardness of resin-based materials.

    Science.gov (United States)

    Santos, M Jacinta M C; Rêgo, Heleine Maria Chagas; Mukhopadhyay, Anuradha; El Najjar, Mai; Santos, Gildo C

    2016-01-01

    This study sought to verify the effects of aging on the surface roughness (Ra) and microhardness (Knoop hardness number [KHN]) of resin-based restorative materials protected with a surface sealer. Disc specimens of 2 resin-modified glass ionomers (RMGIs) and 1 composite resin (CR) were fabricated in a metal mold. Specimens of each material were divided into 1 group that was covered with surface sealer and 1 group that was not. Both groups of each material were then subdivided according to whether they were stored (aged) in cola or distilled water. Surface roughness and KHN values were obtained from each specimen before and after storage. After aging of the specimens, significantly higher Ra values were observed in the 2 RMGIs when they were not covered with a surface sealer, while the CR was not affected. The KHN values varied by materials and storage conditions (with and without a surface sealer). All the groups with a surface sealer exhibited increased Ra values after aging.

  9. Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering

    Science.gov (United States)

    Jang, Heejun; Kang, Il-Suk; Lee, Youngbok; Cha, Yun Jeong; Yoon, Dong Ki; Ahn, Chi Won; Lee, Wonhee

    2016-09-01

    The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a ‘pick-and-place’ capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

  10. Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate

    Science.gov (United States)

    Ekinci, Şerafettin

    Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.

  11. Bone response to immediate loading through titanium implants with different surface roughness in rats.

    Science.gov (United States)

    Sato, Naoko; Kuwana, Toshie; Yamamoto, Miou; Suenaga, Hanako; Anada, Takahisa; Koyama, Shigeto; Suzuki, Osamu; Sasaki, Keiichi

    2014-07-01

    Because of its high predictability of success, implant therapy is a reliable treatment for replacement of missing teeth. The concept of immediate implant loading has been widely accepted in terms of early esthetic and functional recovery. However, there is little biological evidence to support this concept. The objective of this study was to examine the interactive effects of mechanical loading and surface roughness of immediately loaded titanium implants on bone formation in rats. Screw-shaped anodized titanium implants were either untreated (smooth) or acid-etched. Two implants were inserted parallel to each other in the tibiae of rats, and a closed coil spring (2.0 N) was immediately applied. Trabecular and cortical bone around both implants was analyzed using microtomographic images, and a removal torque test was performed at weeks 1, 2, and 4. Immediate loading of acid-etched implants resulted in significant decreases in bone mineral density, contact surface area, and cortical bone thickness. These effects were not observed after immediate loading of smooth implants. Conversely, loading did not influence acid-etched implant fixation; however, smooth implant fixation at week 1 was significantly reduced. These results imply that surface roughness regulates bone response to mechanical stress and that immediate loading might not inhibit osseointegration for smooth and rough implants in the late healing stages.

  12. Compressive strength, surface roughness, fluoride release and recharge of four new fluoride-releasing fissure sealants.

    Science.gov (United States)

    Kavaloglu Cildir, Sule; Sandalli, Nuket

    2007-05-01

    The aim of this study was to investigate the compressive strength and surface roughness of two glass ionomer cements and two resin-based fissure sealants before and after fluoride release and recharge. Twenty-one specimens were prepared and divided into three groups for each material. First group was loaded in compression until failure. Fluoride released was measured from the remaining specimens, and then the second group of seven specimens was loaded at 28th day. The remaining seven specimens were exposed to 0.05% NaF solution and 1.23% APF gel. Fluoride amount was measured, and the last group was loaded at 70th day. Surface roughness measurement of five more disk-shaped specimens from each material was also carried out. After exposure to APF gel, all materials were recharged. At the end of experimental period, it was found that surface roughness increased, whereas compressive strength decreased, over time. In conclusion, fluoride-releasing fissure sealants could act as show, rechargeable fluoride release systems. However, if a fissure sealant exhibited high fluoride release, it had inferior mechanical properties.

  13. Changes in the surface roughness and friction coefficient of orthodontic bracket slots before and after treatment.

    Science.gov (United States)

    Liu, Xiaomo; Lin, Jiuxiang; Ding, Peng

    2013-01-01

    In this study, we tested the surface roughness of bracket slots and the friction coefficient between the bracket and the stainless steel archwire before and after orthodontic treatment. There were four experimental groups: groups 1 and 2 were 3M new and retrieved brackets, respectively, and groups 3 and 4 were BioQuick new and retrieved brackets, respectively. All retrieved brackets were taken from patients with the first premolar extraction and using sliding mechanics to close the extraction space. The surface roughness of specimens was evaluated using an optical interferometry profilometer, which is faster and nondestructive compared with a stylus profilometer, and provided a larger field, needing no sample preparation, compared with atomic force microscopy. Orthodontic treatment resulted in significant increases in surface roughness and coefficient of friction for both brands of brackets. However, there was no significant difference by brand for new or retrieved brackets. These retrieval analysis results highlight the necessity of reevaluating the properties and clinical behavior of brackets during treatment to make appropriate treatment decisions. © Wiley Periodicals, Inc.

  14. On the Determination of Effective Aerodynamic Roughness of Surfaces with Vegetation Patches

    Science.gov (United States)

    Lopes, A. Silva; Palma, J. M. L. M.; Piomelli, U.

    2015-07-01

    Large-eddy simulations of the flow over surfaces with alternating forest patches and clearings of different horizontal scale were performed, modelling the forest canopies as a horizontally homogeneous drag field. The objective was to extend previous works that studied the flow over sudden changes in aerodynamic roughness length occurring typically in the transition between small vegetation and forest but neglected the variations of displacement height. It was found that the internal boundary layers that formed in the transition between surface patches initially grew similarly for both the sudden changes of roughness and the alternating forest patches and clearings, but the turbulence produced at the tops of trees could break the regular growth, increasing the vertical propagation of surface heterogeneity and, consequently, the blending height. Also, the forest patches enhanced the Reynolds shear stress at the tree height over the clearings: when the energy extraction by the forest canopy ceased, the turbulent fluctuations increased and the turbulent shear production was kept high over much of the following clearing. Consequently, the Reynolds shear stress over the clearings decayed slowly, or not at all in the case of short patches. This resulted in higher average shear stress and effective aerodynamic roughness length than was the case when variations of displacement height were neglected.

  15. Experimental investigation of Surface Roughness and Cutting force in CNC Turning - A Review

    Directory of Open Access Journals (Sweden)

    Dhiraj Patel

    2014-08-01

    Full Text Available The main purpose of this review paper is to check whether quality lies within desired tolerance level which can be accepted by the customers. So, experimental investigation surface roughness and cutting force using various CNC machining parameters including spindle speed (N, feed rate (f, and depth of cut (d,flow rate (Q and insert nose radius (r. As such, a solemn attempt is made in this paper to investigate the response parameters, viz., Cutting force and Surface Roughness (Ra a by experimentation on EN 19 turning process. The Design of experiments is carried-out considering Taguchi Technique with four input parameters, namely, spindle speed, feed rate, and depth of cut, flow rate and insert nose radius .The experiments are conducted considering the above materials for L16 and then the impact of each parameter is estimated by ANOAVA. Then the regression analysis is carried-out to find the trend of the response of each material. This experimental study aims at taguchi method has been applied for finding the effect on surface roughness and cutting force by various process parameters. And after that we can easily find out that which parameter will be more affect.

  16. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding

    Directory of Open Access Journals (Sweden)

    Zhang Dongkun

    2015-04-01

    Full Text Available Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication (MQL, and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%, respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%, and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube (CNT, and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore, the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used. Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased. Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.

  17. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  18. Impact of Surface Roughness on AMSR-E Sea Ice Products

    Science.gov (United States)

    Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew

    2006-01-01

    This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and

  19. In vitro evaluation of human dental enamel surface roughness bleached with 35% carbamide peroxide and submitted to abrasive dentifrice brushing

    Directory of Open Access Journals (Sweden)

    Worschech Claudia Cia

    2003-01-01

    Full Text Available The aim of this in vitro study was to evaluate the surface roughness of human enamel bleached with 35% carbamide peroxide at different times and submitted to different superficial cleaning treatments: G1 - not brushed; G2 - brushed with fluoride abrasive dentifrice; G3 - brushed with a non-fluoride abrasive dentifrice; G4 - brushed without dentifrice. Sixty fragments of human molar teeth with 4 x 4 mm were obtained using a diamond disc. The specimens were polished with sandpaper and abrasive pastes. A perfilometer was used to measure roughness average (Ra values of the initial surface roughness and at each 7-day-interval after the beginning of treatment. The bleaching was performed on the surface of the fragments for 1 hour a week, and the surface cleaning treatment for 3 minutes daily. The samples were stored in individual receptacles with artificial saliva. Analysis of variance and the Tukey test revealed significant differences in surface roughness values for G2 and G3, which showed an increase in roughness over time; G1 and G4 showed no significant roughness differences. The bleaching with 35% carbamide peroxide did not alter the enamel surface roughness, but when the bleaching treatment was performed combined with brushing with abrasive dentifrices, there was a significant increase in roughness values.

  20. Effect of surface treatments on the biaxial flexural strength, phase transformation, and surface roughness of bilayered porcelain/zirconia dental ceramics.

    Science.gov (United States)

    Bankoğlu Güngör, Merve; Yılmaz, Handan; Karakoca Nemli, Seçil; Turhan Bal, Bilge; Aydın, Cemal

    2015-06-01

    Veneered zirconia restorations are widely used in prosthetic applications. However, these restorations often fail because of chipping of the veneer porcelain. Surface treatments of zirconia core materials may affect the connection between the 2 layers. The purpose of this study was to evaluate the effect of surface treatments on the biaxial flexural strength, phase transformation, and mean surface roughness of different bilayered porcelain/zirconia ceramics. Forty disk-shaped specimens were obtained for each material (Kavo and Noritake) and divided into 4 (n=10) groups (control, airborne-particle abraded, ground, and ground and airborne-particle abraded). Airborne-particle abrasion was performed with 110-μm Al2O3 particles for 15 seconds and at 400 kPa. Diamond rotary instruments with 100-μm grain size were used for grinding. The monoclinic phase transformation and surface roughness of the specimens were measured. Then, the specimens were veneered and subjected to a biaxial flexural strength test to calculate the Weibull moduli (m values) and the stresses occurring at the layers, outer surfaces of the bilayer, and interfaces of the layers. The Kavo airborne-particle abraded group showed higher strength values in both layers (Pveneer layers. According to the phase analysis, significantly higher Xm values were found in the ground and airborne-particle abraded groups for both materials (Pzirconia ceramics differently. Surface treatments increased the relative monoclinic phase content and average surface roughness. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. APPLICABILITY OF SELECTED GROUPS OF ROUGHNESS PARAMETERS FOR DESCRIPTION OF SURFACE LAYER OF FLAT - TOP “PLATEAU” STRUCTURES

    Directory of Open Access Journals (Sweden)

    Maciej Kowalski

    2016-12-01

    Full Text Available The aim of this study is to determine the usefulness of selected 2D roughness parameters for detecting changes of geometric features and the rate the quality of the surface generated in the process of honing combustion engines sleeves. The paper presents the importance of mathematical modeling of virtual surface topography with different participation of determined and random factor. The possibilities of modeling the flat-top “plateau” surface roughness characteristic for honed surface was showed. Suitability of application of the roughness parameter for description of the selected variable characteristics of roughness profiles were determined using the correlation coefficient and the additional evaluation index designated as t. Indicator t was used for comparing the percentage change of the tested value of modeled profile characteristics with changes selected for evaluation of the roughness parameters 2D.

  2. Influence of roughness of machined surface on adhesion of anticorrosion system

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2013-01-01

    Full Text Available The goal of this experiment is to analyse dependence of roughness of machined surface on adhesion performance of various anticorrosion systems. In order to prepare samples for the experiment, samples were milled on a knee and column type of a horizontal milling machine. Depending on cutting conditions and machining tool, there were set intervals of roughness of machined surface which are commonly achievable on this type of machine. It is a roughness in the interval of 0.4–1.6 µm (finishing, 1.6–6.3 µm (standard milling a 6.3–12.5 µm (roughening. Removable cutting tips were used as a machining tool and for roughening, a shell end milling cutter NAREX 63x40 HSS 90 was used. Three types of anticorrosion systems were used in order to analyse the adhesion, that is a water-thinnable system Eternal, synthetic single layer coating Hostagrund and a duplex system, whose first layer is formed by dipped zinc and a top layer by a single-layer acrylate system Zinorex. Testing of the influence of surface roughness (anchoring system on adhesion of the individual anticorrosion systems were processed in compliance with the norm ČSN EN ISO 4624, a tearing test. The main criterion of adhesion of anticorrosion system is defined as a power which needed for tear-off testing object stuck to a tested sample. This analysis was processed also during the corrosion test in the salt spray environment according to the norm ČSN EN ISO 9227. In order to better identify the adhesion of the individual anticorrosion systems, the analysis of undercorrosion according to the norm ISO 4628-8 was processed.

  3. Quantitative assessment of friction perception for fingertip touching with different roughness surface

    Directory of Open Access Journals (Sweden)

    W. Li

    2015-12-01

    Full Text Available There are many mechanical stimulation receptors and sensory nerve endings in human skin, which are the important tools in tactile perception. It is a complex process for human to perceive objects and friction relative motion plays an important role during this process. When human’s fingertips friction against objects, they will produce compression and tensile mechanical deformation, which can stimulate the mechanical stimulation receptors in fingertip skin to produce corresponding action potentials and impulses signals. The signals which contain object’s physical properties are transmitted to cerebral cortex by nervous system, thus the shape and surface texture of objects are perceived. Thus the friction between the fingertip and object is an important factor to perceive objects. There exist positive connection between friction and tactile perception. However, limited quantitative parameters can be used to evaluate the perception, and they have rarely been studied scientifically. In this paper, the friction perceptions of fingertip skin rubbing against different roughness sandpapers were studied by biofeedback of frictional signals, physiological and psychological responses. An UMT-II tribometer was used to measure tribological parameters of the fingertip, and corresponding physiological response of electroencephalogram (EEG signals were monitored by using a Physiological Monitoring and Feedback Instrument (NeXus-10 with BioTrace+software. The psychological responses were scored according to the volunteer’s perception during friction tests. The correlation models among the perception of fingertip, friction coefficient and EEG signals were established by applying regression analysis method. Results showed that the friction coefficient, amplitudes of EEG signals and psychological responses increased with the roughness of sandpapers increasing. There existed a significant correlation among the friction perception of different surface

  4. The improvement of surface roughness by polishing method of arcylic door panel at Taishi Tech Sdn Bhd

    Science.gov (United States)

    Basirin, Hammadi bin Mohd; Nawi, Ismail bin Haji Mohd

    2017-04-01

    This research is an approach to improve the surface roughness for acrylic door panel by using polishing process. The polishing process involve is sanding process by 3 types of sand paper. The sanding process used to improve the surface roughness by using the different grit sizes of sand paper. The experiment was done by using two types of material s, that is plywood and medium density board (MDF). These two materials are the main materials in producing the arcrylic door panel. The surface roughness of these two materials affects the qualities and quantities of the acrylic door panel. The surface structure was measured by using Optical Microscope and Scanning Electron Microscope (SEM) and the surface roughness was measured by using Mitutoyo surfest SJ 400 Tester. Results indicates that using the different types of grit are influence the surface roughness of the material. When the higher types of grit sizes had been used, the average roughness of the surface are decrease. In summary, a good surface roughness condition produced when using the higher types of grit sizes sand paper.

  5. The assessment of surface roughness and microleakage of eroded tooth-colored dental restorative materials

    OpenAIRE

    Thulfiqar Ali Hussein; Wan Zaripah Wan Bakar; Zuryati Ab Ghani; Dasmawati Mohamad

    2014-01-01

    Objectives: To investigate the effect of acidic solution on surface roughness and microleakage of tooth-colored restorative materials. Materials and Methods: A 160 box-shaped cavities were prepared on the buccal surfaces of 160 human molars, and assigned to four groups: Group A restored with Ketac™ Molar Easymix, Group B with Fuji II™ LC, Group C with Ketac™ N100, and Group D with Filtek™ Z250, and subdivided into study and control groups (n = 20). Study groups were immersed in lemon juice (p...

  6. Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness

    Science.gov (United States)

    Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin

    Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.

  7. Evaluation of surface roughness of three different composite resins with three different polishing systems.

    Science.gov (United States)

    Abzal, Mohammed S; Rathakrishnan, Mensudar; Prakash, Venkatachalam; Vivekanandhan, Paramasivam; Subbiya, Arunajatesan; Sukumaran, Vridhachalam Ganapathy

    2016-01-01

    The aim of this study was to evaluate the surface roughness of three composites with three different polishing systems. Composite specimens were made from the Teflon mold with a standardized cavity size (6 mm diameter and 3 mm height). Group I - Filtek Z350XT (Nano clusters), group II - T-Econom plus (Microhybrid), group III - G-aenial Flo (True Nano). The samples were cured for 30 s from both sides with the matrices in place. The 60 samples were divided into 3 groups (N = 20), which accounted for 40 surfaces, (n = 20 × 2 = 40) in each groups. Each group were subdivided into four subgroups based on the type polishing material, subgroup A - Control, subgroup B - Astrobrush, subgroup C - Astropol, and subgroup D - Soflex spiral wheel. The samples of all groups except group A (control) were finished and polished according to the manufacture's instruction. After polishing, the roughness (Ra) of the resin composite of all the specimens were measured using a profilometer. Soflex spiral wheel (group D) significantly had the least roughness (Ra) value as compared to the other groups. Among the three resin composites tested, G-aenial Flo exhibited least Ra value due to its reduced filler size and its uniform distribution.

  8. Surface roughness effects on contact line motion with small capillary number

    Science.gov (United States)

    Yang, Feng-Chao; Chen, Xiao-Peng; Yue, Pengtao

    2018-01-01

    In this work, we investigate how surface roughness influences contact line dynamics by simulating forced wetting in a capillary tube. The tube wall is decorated with microgrooves and is intrinsically hydrophilic. A phase-field method is used to capture the fluid interface and the moving contact line. According to the numerical results, a criterion is proposed to judge whether the grooves are entirely wetted or not at vanishing capillary numbers. When the contact line moves over a train of grooves, the apparent contact angle exhibits a periodic nature, no matter whether the Cassie-Baxter or the Wenzel state is achieved. The oscillation amplitude of apparent contact angle is analyzed and found to be inversely proportional to the interface area. The contact line motion can be characterized as stick-jump-slip in the Cassie-Baxter state and stick-slip in the Wenzel state. By comparing to the contact line dynamics on smooth surfaces, equivalent microscopic contact angles and slip lengths are obtained. The equivalent slip length in the Cassie-Baxter state agrees well with the theoretical model in the literature. The equivalent contact angles are, however, much greater than the predictions of the Cassie-Baxter model and the Wenzel model for equilibrium stable states. Our results reveal that the pinning of the contact line at surface defects effectively enhances the hydrophobicity of rough surfaces, even when the surface material is intrinsically hydrophilic and the flow is under the Wenzel state.

  9. Critical role of surface roughness on colloid retention and release in porous media.

    Science.gov (United States)

    Torkzaban, Saeed; Bradford, Scott A

    2016-01-01

    This paper examines the critical role of surface roughness (both nano- and micro-scale) on the processes of colloid retention and release in porous media under steady-state and transient chemical conditions. Nanoscale surface roughness (NSR) in the order of a few nanometers, which is common on natural solid surfaces, was incorporated into extended-DLVO calculations to quantify the magnitudes of interaction energy parameters (e.g. the energy barrier to attachment, ΔΦa , and detachment, ΔΦd , from a primary minimum). This information was subsequently used to explain the behavior of colloid retention and release in column and batch experiments under different ionic strength (IS) and pH conditions. Results demonstrated that the density and height of NSR significantly influenced the interaction energy parameters and consequently the extent and kinetics of colloid retention and release. In particular, values of ΔΦa and ΔΦd significantly decreased in the presence of NSR. Therefore, consistent with findings of column experiments, colloid retention in the primary minimum was predicted to occur at some specific locations on the sand surface, even at low IS conditions. However, NSR yielded a much weaker primary minimum interaction compared with that of smooth surfaces. Colloid release from primary minima upon decreasing IS and increasing pH was attributed to the impact of NSR on the values of ΔΦd . Pronounced differences in the amount of colloid retention in batch and column experiments indicated that primary minimum interactions were weak even at high IS conditions. Negligible colloid retention in batch experiments was attributed to hydrodynamic torques overcoming adhesive torques, whereas significant colloid retention in column experiments was attributed to nano- and micro-scale roughness which would dramatically alter the lever arms associated with hydrodynamic and adhesive torques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  11. Mars Orbiter Laser Altimetry Pulse-Widths as an Indicator of Surface Roughness at Gale Crater

    Science.gov (United States)

    Poole, W.; Muller, J.-P.; Gupta, S.

    2012-09-01

    One of the secondary science goals of the Mars Orbiter Laser Altimeter (MOLA) was to investigate surface roughness within the laser footprint using the backscatter pulse-widths of individual pulses [1]. As a pulse is fired, it diverges so that by the time it reaches the Martian surface the footprint diameter is approximately 170 m [1]. The pulse is then reflected back, and the photons are collected by the telescope. The time spread of the returning photons is measured and recorded by the instrument, and, after correcting for instrument and along-track slope effects, what remains is believed to indicate surface roughness within the footprint. At present, the baseline at which this method is thought to respond is 100 m. However, a corrected version of this dataset suggested that the actual response baseline is nearer 35 m, after the footprint diameter had been redefined to 70 m, bad data had been removed, and better slope corrections performed [2]. This work explores at which baseline these pulsewidths actually respond, by comparing pulse-width values to surface roughness estimates from digital terrain models (DTMs) produced from High Resolution Imaging Science Experiment (HiRISE) stereo-images [3]. The MOLA instrument has nearglobal coverage, albeit with 300 m along-track spacing and ≈4 km inter-track average spacing at the equator, so the effective calibration of pulse-width data would provide us with a valuable resource for identifying potential landing and roving sites, as well as looking at geology at fine scales relating to different surface processes.

  12. Machining of bone: Analysis of cutting force and surface roughness by turning process.

    Science.gov (United States)

    Noordin, M Y; Jiawkok, N; Ndaruhadi, P Y M W; Kurniawan, D

    2015-11-01

    There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting. © IMechE 2015.

  13. Simulating the Effects of Surface Roughness on Reinforced Concrete T Beam Bridge under Single and Multiple Vehicles

    Directory of Open Access Journals (Sweden)

    Rahul Kalyankar

    2016-01-01

    Full Text Available This research focuses on the application of the spatial system of finite element modeling for the vehicle-bridge interaction on reinforced concrete US Girder Bridge in order to obtain the effect of surface roughness. Single vehicle and multiple vehicles on reinforced concrete T beam bridge were studied with variable surface roughness profiles. The effects of six different surface roughness profiles (very good, good, measured, average, poor, and very poor were investigated for vehicle-bridge interaction. The values of the Dynamic Amplification Factor (DAF were obtained for single and multiple vehicles on T Beam Bridge for different surface roughness profiles, along with the distances between the axles of heavy vehicle. It was observed that when the bridge has very good, good, measured, and average surface roughness, the DAF values for the single vehicle over the bridge were observed to be within acceptable limits specified by AASHTO. However, for the bridge with multiple vehicles only very good and measured surface roughness profiles showed a DAF and vehicle axle distances within the acceptable limits. From the current studies, it was observed that the spatial system showed reliable responses for predicting the behavior of the bridge under variable road surface roughness conditions and was reliable in vehicle axle detection, and therefore, it has a potential to be use for realistic simulations.

  14. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments

    Directory of Open Access Journals (Sweden)

    Marcela Charantola Rodrigues

    2013-04-01

    Full Text Available Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50 fragments of bovine enamel (15 mm × 5 mm were randomly assigned to five groups (n=10 according to the product utilized: G1 (control= silicone polisher (TDV, G2= 37% phosphoric acid (3M/ESPE + pumice stone (SS White, G3= Micropol (DMC Equipment, G4= Opalustre (Ultradent and G5= Whiteness RM (FGM Dental Products. Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05 which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05. Results: Means and standard deviations of roughness and wear (µm after all the promoted stages were: G1=7.26(1.81/13.16(2.67, G2=2.02(0.62/37.44(3.33, G3=1.81(0.91/34.93(6.92, G4=1.92(0.29/38.42(0.65 and G5=1.98(0.53/33.45(2.66. At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.

  15. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments.

    Science.gov (United States)

    Rodrigues, Marcela Charantola; Mondelli, Rafael Francisco Lia; Oliveira, Gabriela Ulian; Franco, Eduardo Batista; Baseggio, Wagner; Wang, Linda

    2013-01-01

    To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Fifty (50) fragments of bovine enamel (15 mm × 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05). Means and standard deviations of roughness and wear (µm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.

  16. Surface Roughness of Al-5Cu Alloy using a Taguchi-Fuzzy Based Approach

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2014-07-01

    Full Text Available The present paper investigates the application of traditional Taguchi method with fuzzy logic for multi objective optimization of the turning process of Al-5Cu alloy in CNC Lathe machine. The cutting parameters are optimized with considerations of the multiple surface roughness characteristics (Centre line average roughness Ra, Average maximum height of the profile Rz, Maximum height of the profile Rt, Mean spacing of local peaks of the profile Sa . Experimental results are demonstrated to present the effectiveness of this approach. The parameters used in the experiment were cutting speed, depth of cut, feed rate. Other parameters such as tool nose radius, tool material, workpiece length, workpiece diameter, and workpiece material were taken as constant.

  17. 3D Imaging of Dielectric Objects Buried under a Rough Surface by Using CSI

    Directory of Open Access Journals (Sweden)

    Evrim Tetik

    2015-01-01

    Full Text Available A 3D scalar electromagnetic imaging of dielectric objects buried under a rough surface is presented. The problem has been treated as a 3D scalar problem for computational simplicity as a first step to the 3D vector problem. The complexity of the background in which the object is buried is simplified by obtaining Green’s function of its background, which consists of two homogeneous half-spaces, and a rough interface between them, by using Buried Object Approach (BOA. Green’s function of the two-part space with planar interface is obtained to be used in the process. Reconstruction of the location, shape, and constitutive parameters of the objects is achieved by Contrast Source Inversion (CSI method with conjugate gradient. The scattered field data that is used in the inverse problem is obtained via both Method of Moments (MoM and Comsol Multiphysics pressure acoustics model.

  18. Changes in roughness of denture base and reline materials by chemical disinfection or microwave irradiation: Surface roughness of denture base and reline materials

    Directory of Open Access Journals (Sweden)

    Ana Lucia Machado

    2011-10-01

    Full Text Available OBJECTIVE: The effect of disinfection by immersion in sodium perborate solution and microwave irradiation on surface roughness of one denture base resin (Lucitone 550 -L, 3 hard chairside reline resins (Tokuyama Rebase II-TR, New Truliner-NT, Ufi Gel hard-UH and 3 resilient reline materials (Trusoft-T; Sofreliner-S, Dentusil-D was evaluated. MATERIAL AND METHODS: Thirty specimens of each material were made and divided into 3 groups: Control - not disinfected; P - daily disinfection by immersing in sodium perborate solution (3.8%; MW - microwave disinfection (6 min/650 W. Roughness measurements were made after polymerization (baseline and after 1, 3 and 28 days. Roughness differences relative to the baseline readings were analyzed by Student's t-test (P=0.05. RESULTS: At baseline, Trusoft showed the highest (P0.05. CONCLUSIONS: The roughness of the hard reline materials Ufi Gel hard and New Truliner was adversely affected by microwave disinfection, immersion in water or in sodium perborate. Microwave disinfection caused severe alterations on the surface of the resilient liner Trusoft.

  19. Initial colloid deposition on bare and zeolite-coated stainless steel and aluminum: influence of surface roughness.

    Science.gov (United States)

    Chen, Gexin; Bedi, Rajwant S; Yan, Yushan S; Walker, Sharon L

    2010-08-03

    The impact of surface roughness of bare and zeolite ZSM-5 coated stainless steel and aluminum alloy on colloid deposition has been investigated using a parallel plate flow chamber system in an aqueous environment. The metals were systematically polished to alter the surface roughness from nanoscale to microscale, with the subsequent surface roughness of both the bare and coated surfaces varying from 11.2 to 706 nm. The stainless steel and aluminum alloy surfaces are extensively characterized, both as bare and as coated surfaces. Experimental results suggest that ZSM-5 coating and surface roughness have a pronounced impact on the kinetics of the colloid deposition. The ZSM-5 coating reduced colloid adhesion compared to the corresponding bare metal surface. In general, the greater surface roughness of like samples resulted in higher colloid deposition. Primarily, this is due to greater surface roughness inducing less reduction in the attractive interactions occurring between colloids and collector surfaces. This effect was sensitive to ionic strength and was found to be more pronounced at lower ionic strength conditions. For the most electrostatically unfavorable scenario (ZSM-5 coatings in 1 mM KNO(3)), the enhanced deposition may also be attributed to inherent surface charge heterogeneity of ZSM-5 coatings due to aluminum in the crystalline structure. The two exceptions are ZSM-5 coated mirror-polished stainless steel and the unpolished aluminum surfaces, which are rougher than the other two samples of the same metal type but result in the least deposition. The reasons for these observations are discussed, as well as the effect of surface charge and hydrophobicity on the adhesion. The relative importance of surface roughness versus contributions of electrostatic interactions and hydrophobicity to the colloid deposition is also discussed.

  20. Monitoring surface roughness during film growth using modulated RHEED intensity oscillations

    Science.gov (United States)

    Braun, Wolfgang

    2017-11-01

    Separation of the high- and low-frequency components of Reflection High-Energy Electron Diffraction (RHEED) intensity oscillations during pulsed deposition allows the extraction of a signal that is in phase with the cyclic surface morphology evolution during layer-by-layer growth. Similar to a biased impedance measurement in electricity, the periodic modulation of surface roughness induced by the pulsed deposition probes the differential response of the growth front to changes in step density. This signal does not follow the complex variation of the RHEED oscillation phase with diffraction conditions and surface reconstruction and therefore allows a direct detection of monolayer completion. Off-Laue Circle oscillations show promise to probe the surface morphology evolution at sharply defined in-plane spatial frequencies.

  1. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    Science.gov (United States)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  2. FRACTURE BEHAVIOUR OF P/M Cr-V LEDEBURITIC STEEL WITH DIFFERENT SURFACE ROUGHNESS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2011-07-01

    Full Text Available The samples made from the Vanadis 6 PM ledeburitic tool steel were surface machined to different quality and heat treated by standard regime of the processing. Three point bending tests were carried out on processed samples. It was found that the flexural strength decreased with decreasing surface quality. The lowering of flexural strength has been accompanied with the decrease of the plastic component of plastic straining preceeding to fracture initiation (work of fracture of the material. It indicates that the surface roughness leads to the crack initiation before a larger plastic deformation of the material can be developed. Based on the results it can be suggested that to prevent the cracking of tools in the practice it is essential to make a surface machining (grinding, lapping, polishing to as high quality as possible.

  3. Comparative analysis of aluminium surface roughness in end-milling under dry and minimum quantity lubrication (MQL conditions

    Directory of Open Access Journals (Sweden)

    Okonkwo Ugochukwu C.

    2015-01-01

    Full Text Available In this study an experimental investigation of effects of cutting parameters on surface roughness during end milling of aluminium 6061 under dry condition and minimum quantity lubrication (MQL condition were carried out. Spindle speed (N, feed rate (f, axial depth of cut (a and radial depth of cut (r were cutting parameters chosen as input variables in the investigation of the surface roughness quality. The experimental design adopted for this study was the central composite design (CCD of response surface methodology. Thirty samples were run in a CNC milling machine for each condition and the surface roughness measured using Mitutoyo surface tester. A comparison showing the effects of cutting parameters on the surface roughness for dry and MQL conditions in end-milling of aluminium were evaluated. Surface roughness values for MQL condition were lower with up to 20% reduction when compared to dry conditions. MQL cutting condition was found to be better and more reliable because it is environmentally friendly and gives better surface finish. With the obtained optimum input parameters for surface roughness, production operations will be enhanced.

  4. Effect of surface roughness and sterilization on bacterial adherence to ultra-high molecular weight polyethylene.

    Science.gov (United States)

    Kinnari, T J; Esteban, J; Zamora, N; Fernandez, R; López-Santos, C; Yubero, F; Mariscal, D; Puertolas, J A; Gomez-Barrena, E

    2010-07-01

    Sterilization with ethylene oxide (EO) and gas plasma (GP) are well-known methods applied to ultra-high molecular weight polyethylene (UHMWPE) surfaces in the belief that they prevent major material changes caused by gamma irradiation. However, the influence of these surface sterilization methods on bacterial adherence to UHMWPE is unknown. UHMWPE samples with various degrees of roughness (0.3, 0.8 and 2.0 μm) were sterilized with either GP or EO. The variations in hydrophobicity, surface free energy and surface functional groups were investigated before and after sterilization. Sterilized samples were incubated with either Staphylococcus aureus or Staphylococcus epidermidis in order to study bacterial adherence to these materials. Fewer bacteria adhered to UHMWPE after sterilization with EO than after sterilization with GP, especially to the smoothest surfaces. No changes in chemical composition of the UHMWPE surface due to sterilization were observed using X-ray photoemission spectroscopy analysis. The decreased bacterial adherence to UHMWPE found at the smoothest surfaces after sterilization with EO was not directly related to changes in chemical composition. Increased bacterial adherence to rougher surfaces was associated with increased polar surface energy of EO-sterilized surfaces.

  5. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges.

    Science.gov (United States)

    Briso, A L F; Caruzo, L P; Guedes, A P A; Catelan, A; dos Santos, P H

    2011-01-01

    The aim of this study was to evaluate the effect of different acidic solutions on the microhardness and surface roughness of restorative materials. The 120 specimens of restorative materials (Fuji II LC, Vitremer, Supreme XT, and Supreme XT + Biscover LV) were randomly divided into three groups according to the immersion media: hydrochloric acid, soft drink, or distilled water. Over a period of five weeks, the groups were immersed in the solutions, which were changed weekly. Data were tested using analysis of variance and the Fisher protected least significant difference test (pmaterials showed the highest surface roughness values (Fuji II LC: 0.111 ± 0.014 μm before and 0.139 ± 0.016 μm after immersion; Vitremer: 0.177 ± 0.012 μm before and 0.084 ± 0.012 μm after immersion), whereas the lowest values were found for the resin sealed with Biscover LV before (0.047 ± 0.011 μm) and after exposure in distilled water (0.043 ± 0.007 μm), soft drink (0.040 ± 0.005 μm), and hydrochloric acid (0.045 ± 0.005 μm). The Supreme XT showed the highest microhardness values before (44.96 ± 2.51 KHN) and after the aging process (41.26 ± 1.22 KHN in water, 35.96 ± 0.81 KHN in soft drink, and 34.74 ± 0.97 KHN in HCl), with significant differences from the other materials (pmicrohardness values were found for glass ionomer materials. The solutions used in this study decreased the microhardness of all studied materials, whereas the sealed surface suffered minor changes in microhardness and surface roughness after exposure to acidic solutions.

  6. Ultrasonic reflection coefficient and surface roughness index of OA articular cartilage: relation to pathological assessment

    Directory of Open Access Journals (Sweden)

    Niu Hai-jun

    2012-03-01

    Full Text Available Abstract Background Early diagnosis of Osteoarthritis (OA is essential for preventing further cartilage destruction and decreasing severe complications. The aims of this study are to explore the relationship between OA pathological grades and quantitative acoustic parameters and to provide more objective criteria for ultrasonic microscopic evaluation of the OA cartilage. Methods Articular cartilage samples were prepared from rabbit knees and scanned using ultrasound biomicroscopy (UBM. Three quantitative parameters, including the roughness index of the cartilage surface (URI, the reflection coefficients from the cartilage surface (R and from the cartilage-bone interface (Rbone were extracted. The osteoarthritis grades of these cartilage samples were qualitatively assessed by histology according to the grading standards of International Osteoarthritis Institute (OARSI. The relationship between these quantitative parameters and the osteoarthritis grades was explored. Results The results showed that URI increased with the OA grade. URI of the normal cartilage samples was significantly lower than the one of the OA cartilage samples. There was no significant difference in URI between the grade 1 cartilage samples and the grade 2 cartilage samples. The reflection coefficient of the cartilage surface reduced significantly with the development of OA (p Conclusion High frequency ultrasound measurements can reflect the changes in the surface roughness index and the ultrasound reflection coefficients of the cartilage samples with different OA grades. This study may provide useful information for the quantitative ultrasonic diagnosis of early OA.

  7. Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity.

    Science.gov (United States)

    Stefaniuk, Tomasz; Wróbel, Piotr; Trautman, Paweł; Szoplik, Tomasz

    2014-04-01

    The future of plasmonic devices depends on effective reduction of losses of surface plasmon-polariton waves propagating along metal-dielectric interfaces. Energy dissipation is caused by resistive heating at the skin-deep-thick outer layer of metal and scattering of surface waves on rough metal-dielectric interfaces. Fabrication of noble metal nanolayers with a smooth surface still remains a challenge. In this paper, Ag layers of 10, 30, and 50 nm thickness deposited directly on fused-silica substrates and with a 1 nm wetting layer of Ge, Ti, and Ni are examined using an atomic-force microscope and four-probe resistivity measurements. In the case of all three wetting layers, the specific resistivity of silver film decreases as the thickness increases. The smallest, equal 0.4 nm root mean squared roughness of Ag surface of 10 nm thickness is achieved for Ge interlayer; however, due to Ge segregation the specific resistivity of silver film in Ag/Ge/SiO₂ structures is about twice higher than that in Ag/Ti/SiO₂ and Ag/Ni/SiO₂ sandwiches.

  8. Development of superhydrophobic fabrics by surface fluorination and formation of CNT-induced roughness

    Directory of Open Access Journals (Sweden)

    Myoung Hee Shim

    2015-03-01

    Full Text Available Superhydrophobictextile material having self-cleaning function was developed by employing carbon nanotubes (CNTs and water-repellent agents.Hydrophobic fabrics were prepared on 100% polyester woven fabrics withvarious yarn diameters and yarn types. The wetting behavior of fabrics withdifferent treatments was compared for: siloxanerepellent, fluorocarbon repellent, and CNT added fluorocarbon repellent. Drawn textured yarn (DTY fabrics exhibited higher contactangle (CA than filament yarn fabrics due to the larger surface roughness contributed by the textured yarn. Fabrics treated with fluorocarbon presentedlarger CA and lower shedding angle than those treated with siloxane,because of the lower surface energy of fluorocarbon repellent. Specimens madeof 50 denier DTY and treated with CNT-Teflon AF® showed the mostsuperhydrophobic characteristics in the study, producing the static contactangle>150° and the shedding angle<15°. CNT on fabric surface contributedto the nano-scale surface roughness to hold the air traps like papillae oflotus leaf, giving superhydrophobic characteristics.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5762

  9. The effect of surface roughness on ceramics used in dentistry: A review of literature.

    Science.gov (United States)

    Rashid, Haroon

    2014-10-01

    Long term clinical success of modern dental ceramics depends on a number of factors. These factors include the physical properties of the material, the laboratory fabrication process, the laboratory fabrication technique and clinical procedures that may damage these brittle materials. The surface structure and composition of a dental restorative material influences the initial bacterial adhesion, and a rough material surface will accumulate more plaque. Biomaterials for the restoration of oral function are prone to biofilm formation, affecting oral health. An up to date online database search was performed using the keywords "bacterial biofilm," "ceramic strength," "dental ceramics" and "surface roughness." The searches were performed on Medline/PubMed, and Scopus and the cross references were further searched in the databases to verify further studies. The relevant papers included original articles, systemic reviews, case reports and letters to the editor. All the papers were reviewed, and the most relevant studies were selected for referencing by the author. The aim of this paper is to highlight the influence of rougher surfaces on the ceramic strength and plaque accumulation leading to bacterial biofilm formation.

  10. Static frictional force and surface roughness of various bracket and wire combinations.

    Science.gov (United States)

    Doshi, Umal H; Bhad-Patil, Wasundhara A

    2011-01-01

    During sliding mechanics, frictional resistance is an important counterforce to orthodontic tooth movement, which must be controlled to allow application of light, continuous forces. We investigated the static frictional resistance between 3 modern orthodontic brackets-ceramic with gold-palladium slot, ceramic, and stainless steel-and 4 archwires (0.019 × 0.025-in)-stainless steel, nickel-titanium, titanium-molybdenum alloy (TMA), and low-friction colored TMA. All tests were carried out in a dry state on a universal testing machine. Surface topography of bracket slots and archwires was studied by using a scanning electron microscope and quantified by using a surface roughness testing machine (profilometer). In the scanning electron microscope measurements, the smoothest surface was the ceramic gold-palladium bracket and stainless steel wire. The profilometer quantified the surface roughness, which also was lowest for the ceramic gold-palladium bracket and stainless steel wire. The ceramic bracket with the gold-palladium slot showed the least frictional values in all combinations and could be a promising alternative to solve the problem of friction. Frictional values for colored TMA were comparable with stainless steel wires and might be a good alternative during space closure in sliding mechanics. Ceramic with gold-palladium slot bracket and colored TMA archwire seem to be a good alternative to stainless steel in space closure with sliding mechanics. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. [Wear and Roughness of Bearing Surface in Retrieved Polyethylene Bicon-Plus Cups].

    Science.gov (United States)

    Ranuša, M; Gallo, J; Hobza, M; Vrbka, M; Nečas, D; Hartl, M

    2017-01-01

    PURPOSE OF THE STUDY By 7th December 2016, 4,755 Bicon-Plus cups in total were implanted in the Czech Republic. Some of them have been continuously re-operated, while the most frequent reason of failure is polyethylene wear and aseptic loosening. The present study is focused on surface analysis of retrieved polyethylene Bicon-Plus cups and the determination of the roughness of their bearing surfaces. MATERIAL AND METHODS In this study, we had 13 high molecular weight polyethylene cups with the average time in situ of 8.11 years (3.6-13.7, SD 3.2) before the retrieval. The study population was composed of 3 men, 10 women, with the mean age of 53.31 years. An optical scanning method, based on the principle of active triangulation, was used to determine wear rate. The rate of wear was identified by means of an obtained scan subsequently processed with the use of the GOM Inspect software. The roughness of surfaces was analysed with the application of Contour GT-X8 profiler using the principle of phase shifting interferometry. Measurements of surface topography of the retrieved cups were performed on the entire bearing surfaces. For the individual surface changes, a typical range of surface roughness, describing the particular wear character, was determined. By means of morphology analysis of the tested implants, three areas were identified: unworn area; area representing the worn part of the cup; and the area roughened by parallel grooving. The total surface roughness was evaluated as an arithmetic mean of the measured values. Subsequently, the values were sorted based on frequency and were classified into categories defining the particular wear mechanisms. RESULTS Wear rate of the retrieved acetabular cups was evaluated based on the wear direction vector and the size of linear wear. The average linear wear was equal to 0.13 mm/year (ranging from 0.26 to 2.29 mm/year), and the mean value of total volumetric material loss was 44.37 mm3/year (the range being from 51

  12. The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva.

    Science.gov (United States)

    Park, J W; Song, C W; Jung, J H; Ahn, S J; Ferracane, J L

    2012-01-01

    The purpose of this study was to investigate the effects of surface roughness of resin composite on biofilm formation of Streptococcus mutans in the presence of saliva. To provide uniform surface roughness on composites, disks were prepared by curing composite against 400-grit silicon carbide paper (SR400), 800-grit silicon carbide paper (SR800), or a glass slide (SRGlass). The surface roughness was examined using confocal laser microscopy. For biofilm formation, S. mutans was grown for 24 hours with each disk in a biofilm medium with either glucose or sucrose in the presence of fluid-phase or surface-adsorbed saliva. The adherent bacteria were quantified via enumeration of the total viable counts of bacteria. Biofilms were examined using scanning electron microscopy. This study showed that SR400 had deeper and larger, but fewer depressions than SR800. Compared to SRGlass and SR800, biofilm formation was significantly increased on SR400. In addition, the differences in the effect of surface roughness on the amount of biofilm formation were not significantly influenced by either the presence of saliva or the carbohydrate source. Considering that similar differences in surface roughness were observed between SR400 and SR800 and between SR800 and SRGlass, this study suggests that surface topography (size and depth of depressions) may play a more important role than surface roughness in biofilm formation of S. mutans .

  13. Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning

    Directory of Open Access Journals (Sweden)

    Muammer Nalbant

    2007-06-01

    Full Text Available Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm, various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm, and different feedrates (100, 130, 160, 190, 220 mm/min on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN. Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG model with 9 neurons in hidden layer has produced absolute fraction of variance (R2 values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning.

  14. Effects of Surface Roughness, Oxidation, and Temperature on the Emissivity of Reactor Pressure Vessel Alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J. L. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Jo, H. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Tirawat, R. [National Renewable Energy Laboratory, Concentrating Solar Power Group, Golden, Colorado; Blomstrand, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin; Sridharan, K. [University of Wisconsin–Madison, Department of Engineering Physics, Madison, Wisconsin

    2017-08-31

    Thermal radiation will be an important mode of heat transfer in future high-temperature reactors and in off-normal high-temperature scenarios in present reactors. In this work, spectral directional emissivities of two reactor pressure vessel (RPV) candidate materials were measured at room temperature after exposure to high-temperature air. In the case of SA508 steel, significant increases in emissivity were observed due to oxidation. In the case of Grade 91 steel, only very small increases were observed under the tested conditions. Effects of roughness were also investigated. To study the effects of roughening, unexposed samples of SA508 and Grade 91 steel were roughened via one of either grinding or shot-peening before being measured. Significant increases were observed only in samples having roughness exceeding the roughness expected of RPV surfaces. While the emissivity increases for SA508 from oxidation were indeed significant, the measured emissivity coefficients were below that of values commonly used in heat transfer models. Based on the observed experimental data, recommendations for emissivity inputs for heat transfer simulations are provided.

  15. Combined Effect of Surface Roughness and Wake Splitter Plate on the Aerodynamic Characteristics of a Circular Cylinder

    Science.gov (United States)

    Saisanthosh, Iyer; Arunkumar, K.; Ajithkumar, R.; Srikrishnan, A. R.

    2017-09-01

    This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness ‘k’) in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of ‘G’ from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all ‘α’ values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.

  16. Influence of titanium surface roughness on attachment of Streptococcus sanguis: an in vitro study.

    Science.gov (United States)

    Pereira da Silva, Cristiano Henrique Figueiredo; Vidigal, Guaracilei Maciel; de Uzeda, Milton; de Almeida Soares, Gloria

    2005-03-01

    The purpose of the present study was to investigate the efficacy of the decontamination protocol for bacterial removal in titanium surfaces with three different levels of roughness using a high-pressure sodium bicarbonate device for 1 minute under aseptic conditions. Group 1 was composed of 10 as-machined titanium sheets and Groups 2 and 3 of titanium sheets blasted with aluminum oxide (Al2O3, alumina) particles with different diameters: Group 2 was blasted with 65-microm particles and Group 3 with 250-microm particles. The titanium specimens were sterilized and incubated in tubes containing a suspension of Streptococcus sanguis. The colony-forming units were counted before and after the application of the decontamination protocol. The arithmetic mean roughness (R(a)) per group was: Group 1, 0.17 microm +/- 0.01; Group 2, 1.14 microm +/- 0.15; and Group 3, 3.17 microm +/- 0.23. After the contamination period, Group 1 remained with 49 x 10(3) bacterial cells, and the bacterial concentrations of Groups 2 and 3 were 11 x 10(4) and 35 x 10(5), respectively. After the application of the decontamination protocol, no viable bacteria were detected. With the increase of the surface roughness, an exponential increase in bacterial cells was observed. The results showed that the decontamination protocol treatment with a high-pressure sodium bicarbonate device efficiently removed all bacterial cells in all surfaces tested. This indicates that high-pressure sodium bicarbonate spray should be used in the maintenance phase of implant treatment.

  17. Effects of clinical use and sterilization on surface topography and surface roughness of three commonly used types of orthodontic archwires

    OpenAIRE

    Joji Isac; B S Chandrashekar; Mahendra, S.; C. M. Mahesh; Bala Mohan Shetty; A V Arun

    2015-01-01

    Aim: To evaluate the changes in surface topography and roughness of stainless steel (SS), nickel-titanium and beta-titanium (β-Ti) archwires after clinical use and sterilization. Settings and Design: Thirty wires each of SS, nitinol, and β-Ti (3M Unitek) were tested in as received, as received and autoclaved, and clinically retrieved then autoclaved conditions. Materials and Methods: A sterilization protocol of 134°C for 18 min was performed using an autoclave. Surface topography of spe...

  18. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    Science.gov (United States)

    Legleiter, Carl J.; Mobley, Curtis D.; Overstreet, Brandon T.

    2017-09-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  19. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows

    Science.gov (United States)

    Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon

    2017-01-01

    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  20. A fast model for mean and turbulent wind characteristics over terrain with mixed surface roughness

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Jensen, N.O.

    1997-01-01

    The real-time near-range atmospheric model chain in RODOS already includes the fast spectral LINCOM code, which was originally developed by Rise for modelling the mean wind fields over hilly, but otherwise homogeneous, terrain. Its output is used as a wind field driver for the dispersion model...... RIMPUFF also included in the near-range model chain. An extension of the LINCOM wind model is described, which enables it also to respond to the effects of a heterogeneous or non-constant surface roughness distribution. This is of importance in the RODOS framework for: (1) prediction of the time...

  1. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-12

    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  2. Effect of different polishing systems on the surface roughness of nano-hybrid composites.

    Science.gov (United States)

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I - Filtek Z350 and Group II - Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a - OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c - Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P system than "OneGloss" and "Sof-Lex Spiral."

  3. Effects of microabrasion on substance loss, surface roughness, and colorimetric changes on enamel in vitro.

    Science.gov (United States)

    Paic, Maja; Sener, Beatrice; Schug, Jens; Schmidlin, Patrick R

    2008-06-01

    To determine in vitro the effects of 2 commercially available microabrasion compounds (Prema [Premiere Dental Products] and Opalustre [Ultradent]) on human enamel under standardized conditions after treatment periods of 10, 20, 30, and 40 seconds. Nonacidified pumice served as an abrasive control compound. Mean substance loss was determined by measuring dissolved Ca2+ using atomic absorption spectrophotometry. Differences in the mean surface roughness were profilometrically assessed. These findings were completed with micromorphologic observations using SEM. In addition, color changes after microabrasion were evaluated using the CIE L*a*b* system. Opalustre caused the highest tooth substance loss, followed by the Prema compound and pumice, which showed a lesser substance-removal capacity. These findings were in concordance with the mean surface roughness difference measurements and micromorphologic analyses. Microabrasion did not cause any significant colorimetric changes. Microabrasion should be considered a microinvasive method, and clinical application should be used with caution to avoid excessive substance removal. Subsequent polishing appears crucial to maintain optimal esthetics and avoid surface alterations.

  4. The Effect of Prophylactic Polishing Pastes on Surface Roughness of Indirect Restorative Materials

    Directory of Open Access Journals (Sweden)

    Esra Can Say

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the influence of prophylactic polishing pastes (PPP; Detartrine (DT, Topex (TP on surface roughness (Ra of indirect composites (IRC; Tescera (TES, Gradia (GRD, and Estenia C&B (EST, a glass ceramic (Empress 2 layering (E2, and a leucite reinforced glass ceramic (Empress Esthetic (EE with two different (glazed (G; polished (P surface preparations. A total of 90 IRC and 120 ceramic discs, 8 mm in diameter and 2 mm thick, were prepared. E2 and EE specimens were randomly divided into two groups (n=30. One group was glazed (GE2; GEE, while the other group was polished (PE2; PEE the same as the IRCs. The specimens in each group were subsequently divided into three subgroups: control (C, DT, and TP. Ra (μm was evaluated with a profilometer. Data were analyzed by Kruskal Wallis, followed by the Dunn's multiple comparison tests P0.05. PE2 and PEE were not affected by DT or TP P>0.05, while GE2 and GEE exhibited significant roughening after TP P<0.05. Surface roughness of IRCs and glazed ceramics can be affected by PPP applications.

  5. Wood surface roughness: an impact of wood species, grain direction and grit size

    Directory of Open Access Journals (Sweden)

    Justina Vitosytė

    2015-06-01

    Full Text Available For the research the samples of ash (Fraxinus excelsior L., birch (Betula L., black alder (Alnus glutinosa L., Scots pine (Pinus Sylvestris L. and spruce (Picea abies L. wood were used with dimensions of 270×215×15 mm. All wood samples were tangentially planed, defect free and kiln dried. Before the research, the average moisture content, wood density, number of annual rings per 1 cm, average width of annual ring and wood surface grain direction were evaluated. Different wood surface roughness of the samples was obtained sanding wood samples in the eccentric sanding stand, using standard open-type sandpaper with different grit size. The arithmetic mean value of the single roughness depths of consecutive sampling lengths parameter Rz of the sanded wood samples were measured in five sectors along the wood grain, across and in the angle of 45°, using a contact stylus profilometer. In total 1800 measurements were done during testing series. Obtained measurement results were processed by digital Gaussian filter according to DIN EN ISO 11562. In the research the dependence of wood surface on wood species, grain direction and grit size of abrasive material was evaluated.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5882

  6. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    Science.gov (United States)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  7. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Huu-That Nguyen

    2016-06-01

    Full Text Available Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra in the hard milling of JIS (Japanese Industrial Standard SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM. The cutting parameters are selected based on the structural dynamic analysis of the machine tool. A set of experiments is designed according to the Taguchi technique. The average Ra is measured by a Mitutoyo Surftest SJ-400, and then analysis of variance (ANOVA is performed to determine the influences of cutting parameters on the given Ra. Quadratic mathematical modeling is introduced for prediction of the Ra during the hard milling process. The predicted values are in reasonable agreement with the observation of experiments. In an effort to obtain the minimizing Ra, a single objective optimization is employed based on the desirability function. The result shows that the percentage error between measured and predicted values of Ra is 3.2%, which is found to be insignificant. Eventually, the milled surface roughness under the optimized machining conditions is 0.122 µm. This finding shows that grinding may be replaced by finish hard milling in the mold and die manufacturing field.

  8. Bacterial colonization of resin composite cements: influence of material composition and surface roughness.

    Science.gov (United States)

    Glauser, Stephanie; Astasov-Frauenhoffer, Monika; Müller, Johannes A; Fischer, Jens; Waltimo, Tuomas; Rohr, Nadja

    2017-08-01

    So-called secondary caries may develop in the cement gap between the tooth and the bonded restoration. Cement materials with a low susceptibility to biofilm formation are therefore desirable. In the present study, the adhesion of Strepococcus mutans onto three adhesive (Multilink Automix, RelyX Ultimate, and Panavia V5) and three self-adhesive (Multilink Speed Cem, RelyX Unicem 2 Automix, and Panavia SA plus) resin composite cements was evaluated. Previous studies have failed to evaluate concomitantly the effect of both the composition of the cements and their surface roughness on biofilm formation. The presence of S. mutans on cement surfaces with differing degrees of roughness was therefore recorded using fluorescence microscopy and crystal violet staining, and the composition of the cements was analyzed using energy-dispersive X-ray spectroscopy mapping. Biofilm formation on resin composite cements was found to be higher on rougher surfaces, implying that adequate polishing of the cement gap is essential. The use of copper-containing cements (Multilink Automix, Panavia V5, and Panavia SA plus) significantly reduced biofilm formation. © 2017 Eur J Oral Sci.

  9. Surface roughness effects on the solar reflectance of cool asphalt shingles

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem; Jacobs, Jeffry; Klink, Frank

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with small corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.

  10. The Influence of Surface Roughness on the Displacement of Osteogenic Bone Particles during Placement of Titanium Screw-Type Implants

    NARCIS (Netherlands)

    Tabassum, A.; Walboomers, F.; Wolke, J.G.C.; Meijer, G.J.; Jansen, J.A.

    2011-01-01

    Background: Previously, we demonstrated that bone debris, which is translocated during dental implant placement, has osteogenic potential. Therefore, it was hypothesized that implant surface roughness can influence the amount of translocated bone debris/particles and thereby the osteogenic response.

  11. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  12. Effects of aluminum oxide addition on the flexural strength, surface hardness, and roughness of heat-polymerized acrylic resin

    Directory of Open Access Journals (Sweden)

    Mahroo Vojdani

    2012-09-01

    Conclusion: Reinforcement of the conventional heat-cured acrylic resin with 2.5 wt% Al2O3 powder significantly increased its flexural strength and hardness with no adverse effects on the surface roughness.

  13. The effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood

    National Research Council Canada - National Science Library

    Korkut, Derya Sevim; Korkut, Süleyman; Bekar, Ilter; Budakçi, Mehmet; Dilik, Tuncer; Cakicier, Nevzat

    2008-01-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood were examined...

  14. Comparison of linear dimensional change, surface hardness and surface roughness of refractory model prepared from two different duplicating media.

    Science.gov (United States)

    Porwal, Amit; Chandrashekhar, Naveen H; Nadiger, Ramesh K; Meshramkar, Roseline D; Guttal, Satyabodh S

    2011-03-01

    The aim of this study was to evaluate and compare the linear dimensional change, surface hardness and surface roughness of the refractory casts poured against different duplicating media. Polyvinyl siloxane and Agar-agar were used for duplicating the stainless steel die. Sixty refractory models were prepared which were divided into two groups: I and II with 30 samples each respectively. Each group was subdivided into 3 subgroups with 10 samples each which were treated differently. All the specimens were measured for the linear dimensional change and surface hardness and the obtained data was statistically analyzed. Surface roughness was evaluated qualitatively taking SEM photomicrographs. Statistical analysis of linear dimensional change using one-way ANOVA showed statistically significant difference between subgroups of group I and non-significant difference between subgroups of group II. One-way ANOVA for Brinell hardness number showed statistically significant difference between the subgroups of group I & II. Student's 't' test results for linear dimensional change among different subgroups of group I & II showed significant difference between IA-IIA, IB-IIB, IC-IIC. Similarly 't'-test results for Brinell hardness number showed significant difference between subgroups IA-IIA, IB-IIB, and IC-IIC. Surface characteristics of the refractory casts poured against polyvinyl siloxane duplicating media were found to be better than the Agar media.

  15. Effects of 2 polishing techniques and reglazing on the surface roughness of dental porcelain.

    Science.gov (United States)

    Schneider, Jacqueline; Dias Frota, Bruna Marjorie; Passos, Vanara Florencio; Santiago, Sergio Lima; Freitas Pontes, Karina Matthes de

    2013-01-01

    The aim of this study was to compare the effect of 2 polishing systems and reglazing of dental porcelain through a quantitative and qualitative analysis of surface roughness using a stylu