WorldWideScience

Sample records for subgrid simulation models

  1. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    CERN Document Server

    Silvis, Maurits H; Verstappen, Roel

    2016-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is p...

  2. Exploring nonlinear subgrid-scale models and new characteristic length scales for large-eddy simulation

    NARCIS (Netherlands)

    Silvis, Maurits H.; Trias, F. Xavier; Abkar, M.; Bae, H.J.; Lozano-Duran, A.; Verstappen, R.W.C.P.; Moin, Parviz; Urzay, Javier

    2016-01-01

    We study subgrid-scale modeling for large-eddy simulation of anisotropic turbulent flows on anisotropic grids. In particular, we show how the addition of a velocity-gradient-based nonlinear model term to an eddy viscosity model provides a better representation of energy transfer. This is shown to

  3. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  4. Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow

    Science.gov (United States)

    Rasthofer, U.; Gravemeier, V.

    2013-02-01

    Multifractal subgrid-scale modeling within a variational multiscale method is proposed for large-eddy simulation of turbulent flow. In the multifractal subgrid-scale modeling approach, the subgrid-scale velocity is evaluated from a multifractal description of the subgrid-scale vorticity, which is based on the multifractal scale similarity of gradient fields in turbulent flow. The multifractal subgrid-scale modeling approach is integrated into a variational multiscale formulation, which constitutes a new application of the variational multiscale concept. A focus of this study is on the application of the multifractal subgrid-scale modeling approach to wall-bounded turbulent flow. Therefore, a near-wall limit of the multifractal subgrid-scale modeling approach is derived in this work. The novel computational approach of multifractal subgrid-scale modeling within a variational multiscale formulation is applied to turbulent channel flow at various Reynolds numbers, turbulent flow over a backward-facing step and turbulent flow past a square-section cylinder, which are three of the most important and widely-used benchmark examples for wall-bounded turbulent flow. All results presented in this study confirm a very good performance of the proposed method. Compared to a dynamic Smagorinsky model and a residual-based variational multiscale method, improved results are obtained. Moreover, it is demonstrated that the subgrid-scale energy transfer incorporated by the proposed method very well approximates the expected energy transfer as obtained from appropriately filtered direct numerical simulation data. The computational cost is notably reduced compared to a dynamic Smagorinsky model and only marginally increased compared to a residual-based variational multiscale method.

  5. Large eddy simulation of flow over a wall-mounted cube: Comparison of different semi dynamic subgrid scale models

    Directory of Open Access Journals (Sweden)

    M Nooroullahi

    2016-09-01

    Full Text Available In this paper the ability of different semi dynamic subgrid scale models for large eddy simulation was studied in a challenging test case. The semi dynamic subgrid scale models were examined in this investigation is Selective Structure model, Coherent structure model, Wall Adaptive Large Eddy model. The test case is a simulation of flow over a wall-mounted cube in a channel. The results of these models were compared to structure function model, dynamic models and experimental data at Reynolds number 40000. Results show that these semi dynamic models could improve the ability of numerical simulation in comparison with other models which use a constant coefficient for simulation of subgrid scale viscosity. In addition, these models don't have the instability problems of dynamic models.

  6. Numerical dissipation vs. subgrid-scale modelling for large eddy simulation

    Science.gov (United States)

    Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos

    2017-05-01

    This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.

  7. A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric J.; Duraisamy, Karthik

    2017-11-01

    The development of reduced models for complex multiscale problems remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al. [1], which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a new M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the 'dynamic-MZ-τ' model, is that it is parameter-free and has a structural form imposed by the mathematics of the coarse-graining process (rather than the phenomenological assumptions made by the modeler, such as in classical subgrid scale models). To promote the applicability of M-Z models in general, two procedures are presented to compute the resulting model form, helping to bypass the tedious error-prone algebra that has proven to be a hindrance to the construction of M-Z-based models for complex dynamical systems. While the new formulation is applicable to the solution of general partial differential equations, demonstrations are presented in the context of Large Eddy Simulation closures for the Burgers equation, decaying homogeneous turbulence, and turbulent channel flow. The performance of the model and validity of the underlying assumptions are investigated in detail.

  8. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam

    2010-01-04

    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  9. Recursive renormalization group theory based subgrid modeling

    Science.gov (United States)

    Zhou, YE

    1991-01-01

    Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.

  10. One-equation sub-grid scale (SGS) modelling for Euler-Euler large eddy simulation (EELES) of dispersed bubbly flow

    NARCIS (Netherlands)

    Niceno, B.; Dhotre, M.T.; Deen, N.G.

    2008-01-01

    In this work, we have presented a one-equation model for sub-grid scale (SGS) kinetic energy and applied it for an Euler-Euler large eddy simulation (EELES) of a bubble column reactor. The one-equation model for SGS kinetic energy shows improved predictions over the state-of-the-art dynamic

  11. Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling

    Science.gov (United States)

    Sarlak, Hamid

    2017-05-01

    This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60,000 and simulations have been performed to primarily investigate the role of sub-grid scale (SGS) modeling on the dynamics of flow generated over the airfoil, which has not been dealt with in great detail in the past. It is seen that simulations are increasingly getting influenced by SGS modeling with increasing the Reynolds number, and the effect is visible even at a relatively low chord-Reynolds number of 60,000. Among the tested models, the dynamic Smagorinsky gives the poorest predictions of the flow, with overprediction of lift and a larger separation on airfoils suction side. Among various models, the implicit LES offers closest pressure distribution predictions compared with literature.

  12. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    Science.gov (United States)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  13. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    Science.gov (United States)

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  14. A Dynamic Subgrid Scale Model for Large Eddy Simulations Based on the Mori-Zwanzig Formalism

    CERN Document Server

    Parish, Eric J

    2016-01-01

    The development of reduced models for complex systems that lack scale separation remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al., which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a methodology for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a novel M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the `dynamic-$\\tau$' model, is that it is parameter-free and has a structural form imp...

  15. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    Science.gov (United States)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution

  16. Simple subgrid scale stresses models for homogeneous isotropic turbulence

    Science.gov (United States)

    Aupoix, B.; Cousteix, J.

    Large eddy simulations employing the filtering of Navier-Stokes equations highlight stresses, related to the interaction between large scales below the cut and small scales above it, which have been designated 'subgrid scale stresses'. Their effects include both the energy flux through the cut and a component of viscous diffusion. The eddy viscosity introduced in the subgrid scale models which give the correct energy flux through the cut by comparison with spectral closures is shown to depend only on the small scales. The Smagorinsky (1963) model can only be obtained if the cut lies in the middle of the inertial range. A novel model which takes the small scales into account statistically, and includes the effects of viscosity, is proposed and compared with classical models for the Comte-Bellot and Corrsin (1971) experiment.

  17. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    Science.gov (United States)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and

  18. Sub-Grid Scale Plume Modeling

    Directory of Open Access Journals (Sweden)

    Greg Yarwood

    2011-08-01

    Full Text Available Multi-pollutant chemical transport models (CTMs are being routinely used to predict the impacts of emission controls on the concentrations and deposition of primary and secondary pollutants. While these models have a fairly comprehensive treatment of the governing atmospheric processes, they are unable to correctly represent processes that occur at very fine scales, such as the near-source transport and chemistry of emissions from elevated point sources, because of their relatively coarse horizontal resolution. Several different approaches have been used to address this limitation, such as using fine grids, adaptive grids, hybrid modeling, or an embedded sub-grid scale plume model, i.e., plume-in-grid (PinG modeling. In this paper, we first discuss the relative merits of these various approaches used to resolve sub-grid scale effects in grid models, and then focus on PinG modeling which has been very effective in addressing the problems listed above. We start with a history and review of PinG modeling from its initial applications for ozone modeling in the Urban Airshed Model (UAM in the early 1980s using a relatively simple plume model, to more sophisticated and state-of-the-science plume models, that include a full treatment of gas-phase, aerosol, and cloud chemistry, embedded in contemporary models such as CMAQ, CAMx, and WRF-Chem. We present examples of some typical results from PinG modeling for a variety of applications, discuss the implications of PinG on model predictions of source attribution, and discuss possible future developments and applications for PinG modeling.

  19. Intercomparison of different subgrid-scale models for the Large Eddy Simulation of the diurnal evolution of the atmospheric boundary layer during the Wangara experiment

    Science.gov (United States)

    Dall'Ozzo, C.; Carissimo, B.; Musson-Genon, L.; Dupont, E.; Milliez, M.

    2012-04-01

    The study of a whole diurnal cycle of the atmospheric boundary layer evolving through unstable, neutral and stable states is essential to test a model applicable to the dispersion of pollutants. Consequently a LES of a diurnal cycle is performed and compared to observations from the Wangara experiment (Day 33-34). All simulations are done with Code_Saturne [1] an open source CFD code. The synthetic eddy method (SEM) [2] is implemented to initialize turbulence at the beginning of the simulation. Two different subgrid-scale (SGS) models are tested: the Smagorinsky model [3],[4] and the dynamical Wong and Lilly model [5]. The first one, the most classical, uses a Smagorinsky constant Cs to parameterize the dynamical turbulent viscosity while the second one relies on a variable C. Cs remains insensitive to the atmospheric stability level in contrary to the parameter C determined by the Wong and Lilly model. It is based on the error minimization of the difference between the tensors of the resolved turbulent stress (Lij) and the difference of the SGS stress tensors at two different filter scales (Mij). Furthermore, the thermal eddy diffusivity, as opposed to the Smagorinsky model, is calculated with a dynamical Prandtl number determination. The results are confronted to previous simulations from Basu et al. (2008) [6], using a locally averaged scale-dependent dynamic (LASDD) SGS model, and to previous RANS simulations. The accuracy in reproducing the experimental atmospheric conditions is discussed, especially regarding the night time low-level jet formation. In addition, the benefit of the utilization of a coupled radiative model is discussed.

  20. Large Eddy Simulations of a Premixed Jet Combustor Using Flamelet-Generated Manifolds: Effects of Heat Loss and Subgrid-Scale Models

    KAUST Repository

    Hernandez Perez, Francisco E.

    2017-01-05

    Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.

  1. Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid

    2017-01-01

    This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...

  2. A new downscaling method for sub-grid turbulence modeling

    Directory of Open Access Journals (Sweden)

    L. Rottner

    2017-06-01

    Full Text Available In this study we explore a new way to model sub-grid turbulence using particle systems. The ability of particle systems to model small-scale turbulence is evaluated using high-resolution numerical simulations. These high-resolution data are averaged to produce a coarse-grid velocity field, which is then used to drive a complete particle-system-based downscaling. Wind fluctuations and turbulent kinetic energy are compared between the particle simulations and the high-resolution simulation. Despite the simplicity of the physical model used to drive the particles, the results show that the particle system is able to represent the average field. It is shown that this system is able to reproduce much finer turbulent structures than the numerical high-resolution simulations. In addition, this study provides an estimate of the effective spatial and temporal resolution of the numerical models. This highlights the need for higher-resolution simulations in order to evaluate the very fine turbulent structures predicted by the particle systems. Finally, a study of the influence of the forcing scale on the particle system is presented.

  3. Evaluation of Subgrid-Scale Transport of Hydrometeors in a PDF-based Scheme using High-Resolution CRM Simulations

    Science.gov (United States)

    Wong, M.; Ovchinnikov, M.; Wang, M.; Larson, V. E.

    2014-12-01

    In current climate models, the model resolution is too coarse to explicitly resolve deep convective systems. Parameterization schemes are therefore needed to represent the physical processes at the sub-grid scale. Recently, an approach based on assumed probability density functions (PDFs) has been developed to help unify the various parameterization schemes used in current global models. In particular, a unified parameterization scheme called the Cloud Layers Unified By Binormals (CLUBB) scheme has been developed and tested successfully for shallow boundary-layer clouds. CLUBB's implementation in the Community Atmosphere Model, version 5 (CAM5) is also being extended to treat deep convection cases, but parameterizing subgrid-scale vertical transport of hydrometeors remains a challenge. To investigate the roots of the problem and possible solutions, we generate a high-resolution benchmark simulation of a deep convection case using a cloud-resolving model (CRM) called System for Atmospheric Modeling (SAM). We use the high-resolution 3D CRM results to assess the prognostic and diagnostic higher-order moments in CLUBB that are in relation to the subgrid-scale transport of hydrometeors. We also analyze the heat and moisture budgets in terms of CLUBB variables from the SAM benchmark simulation. The results from this study will be used to devise a better representation of vertical subgrid-scale transport of hydrometeors by utilizing the sub-grid variability information from CLUBB.

  4. Importance of subgrid-scale parameterization in numerical simulations of lake circulation

    Science.gov (United States)

    Wang, Yongqi

    Two subgrid-scale modeling techniques--Smagorinsky's postulation for the horizontal eddy viscosity and the Mellor-Yamada level-2 model for the vertical eddy viscosity--are applied as turbulence closure conditions to numerical simulations of resolved-scale baroclinic lake circulations. The use of the total variation diminishing (TVD) technique in the numerical treatment of the advection terms in the governing equations depresses numerical diffusion to an acceptably low level and makes stable numerical performances possible with small eddy viscosities resulting from the turbulence closure parameterizations. The results show that, with regard to the effect of an external wind stress, the vertical turbulent mixing is mainly restricted to the topmost epilimnion with the order of magnitude for the vertical eddy viscosity of 10 -3 m 2 s -1, whilst the horizontal turbulent mixing may reach a somewhat deeper zone with an order of magnitude for the horizontal eddy viscosity of 0.1-1 m 2 s -1. Their spatial and temporal variations and influences on numerical results are significant. A comparison with prescribed constant eddy viscosities clearly shows the importance of subgrid-scale closures on resolved-scale flows in the lake circulation simulation. A predetermination of the eddy viscosities is inappropriate and should be abandoned. Their values must be determined by suitable subgrid-scale closure techniques.

  5. Modeling Subgrid Scale Droplet Deposition in Multiphase-CFD

    Science.gov (United States)

    Agostinelli, Giulia; Baglietto, Emilio

    2017-11-01

    The development of first-principle-based constitutive equations for the Eulerian-Eulerian CFD modeling of annular flow is a major priority to extend the applicability of multiphase CFD (M-CFD) across all two-phase flow regimes. Two key mechanisms need to be incorporated in the M-CFD framework, the entrainment of droplets from the liquid film, and their deposition. Here we focus first on the aspect of deposition leveraging a separate effects approach. Current two-field methods in M-CFD do not include appropriate local closures to describe the deposition of droplets in annular flow conditions. As many integral correlations for deposition have been proposed for lumped parameters methods applications, few attempts exist in literature to extend their applicability to CFD simulations. The integral nature of the approach limits its applicability to fully developed flow conditions, without geometrical or flow variations, therefore negating the scope of CFD application. A new approach is proposed here that leverages local quantities to predict the subgrid-scale deposition rate. The methodology is first tested into a three-field approach CFD model.

  6. Stochastic fields method for sub-grid scale emission heterogeneity in mesoscale atmospheric dispersion models

    OpenAIRE

    M. Cassiani; Vinuesa, J.F.; Galmarini, S.; Denby, B

    2010-01-01

    The stochastic fields method for turbulent reacting flows has been applied to the issue of sub-grid scale emission heterogeneity in a mesoscale model. This method is a solution technique for the probability density function (PDF) transport equation and can be seen as a straightforward extension of currently used mesoscale dispersion models. It has been implemented in an existing mesoscale model and the results are compared with Large-Eddy Simulation (LES) data devised to test specifically the...

  7. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guangxing; Qian, Yun; Yan, Huiping; Zhao, Chun; Ghan, Steven J.; Easter, Richard C.; Zhang, Kai

    2017-06-16

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis. The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).

  8. Parameterization of subgrid plume dilution for use in large-scale atmospheric simulations

    Directory of Open Access Journals (Sweden)

    A. D. Naiman

    2010-03-01

    Full Text Available A new model of plume dynamics has been developed for use as a subgrid model of plume dilution in a large-scale atmospheric simulation. The model uses mean wind, shear, and diffusion parameters derived from the local large-scale variables to advance the plume cross-sectional shape and area in time. Comparisons with a large eddy simulation of aircraft emission plume dynamics, with an analytical solution to the dynamics of a sheared Gaussian plume, and with measurements of aircraft exhaust plume dilution at cruise altitude show good agreement with these previous studies. We argue that the model also provides a reasonable approximation of line-shaped contrail dilution and give an example of how it can be applied in a global climate model.

  9. Stochastic fields method for sub-grid scale emission heterogeneity in mesoscale atmospheric dispersion models

    Directory of Open Access Journals (Sweden)

    M. Cassiani

    2010-01-01

    Full Text Available The stochastic fields method for turbulent reacting flows has been applied to the issue of sub-grid scale emission heterogeneity in a mesoscale model. This method is a solution technique for the probability density function (PDF transport equation and can be seen as a straightforward extension of currently used mesoscale dispersion models. It has been implemented in an existing mesoscale model and the results are compared with Large-Eddy Simulation (LES data devised to test specifically the effect of sub-grid scale emission heterogeneity on boundary layer concentration fluctuations. The sub-grid scale emission variability is assimilated in the model as a PDF of the emissions. The stochastic fields method shows excellent agreement with the LES data without adjustment of the constants used in the mesoscale model. The stochastic fields method is a stochastic solution of the transport equations for the concentration PDF of dispersing scalars, therefore it possesses the ability to handle chemistry of any complexity without the need to introduce additional closures for the high order statistics of chemical species. This study shows for the first time the feasibility of applying this method to mesoscale chemical transport models.

  10. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    Science.gov (United States)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a

  11. Sub-Grid Modeling of Electrokinetic Effects in Micro Flows

    Science.gov (United States)

    Chen, C. P.

    2005-01-01

    Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this

  12. The Sensitivity of Simulated Competition Between Different Plant Functional Types to Subgrid Scale Representation of Vegetation in a Land Surface Model

    Science.gov (United States)

    Shrestha, R. K.; Arora, V.; Melton, J. R.

    2014-12-01

    Vegetation is a dynamic component of the earth system that affects weather and climate at hourly to centennial time scales. However, most current dynamic vegetation models do not explicitly simulate competition among Plant Functional Types (PFTs). Here we use the coupled CLASS-CTEM model (Canadian Land Surface Scheme coupled to Canadian Terrestrial Ecosystem Model) to explicitly simulate competition between nine PFTs for available space using a modified version of Lotka - Volterra (LV) predator-prey equations. The nine PFTs include evergreen and deciduous needleleaf trees, evergreen and cold and drought deciduous broadleaf trees and C3 and C4 crops and grasses. The CLASS-CTEM model can be configured either in the composite (single tile) or the mosaic (multiple tiles) mode. Our results show that the model is sensitive to the chosen mode. The simulated fractional coverage of PFTs are similar between two approaches at some locations whereas at the other locations the two approaches yield different results. The simulated fractional coverage of PFTs are also compared with the available observations-based estimates. Simulated results at selected locations across the globe show that the model is able to realistically simulate the fractional coverage of tree and grass PFTs and the bare fraction, as well as the fractional coverage of individual tree and grass PFTs. Along with the observed patterns of vegetation distribution the CLASS-CTEM modelling framework is also able to simulate realistic succession patterns. Some differences remain and these are attributed to the coarse spatial resolution of the model (~3.75°) and the limited number of PFTs represented in the model.

  13. Lagrangian scheme to model subgrid-scale mixing and spreading in heterogeneous porous media

    Science.gov (United States)

    Herrera, P. A.; Cortínez, J. M.; Valocchi, A. J.

    2017-04-01

    Small-scale heterogeneity of permeability controls spreading, dilution, and mixing of solute plumes at large scale. However, conventional numerical simulations of solute transport are unable to resolve scales of heterogeneity below the grid scale. We propose a Lagrangian numerical approach to implement closure models to account for subgrid-scale spreading and mixing in Darcy-scale numerical simulations of solute transport in mildly heterogeneous porous media. The novelty of the proposed approach is that it considers two different dispersion coefficients to account for advective spreading mechanisms and local-scale dispersion. Using results of benchmark numerical simulations, we demonstrate that the proposed approach is able to model subgrid-scale spreading and mixing provided there is a correct choice of block-scale dispersion coefficient. We also demonstrate that for short travel times it is only possible to account for spreading or mixing using a single block-scale dispersion coefficient. Moreover, we show that it is necessary to use time-dependent dispersion coefficients to obtain correct mixing rates. On the contrary, for travel times that are large in comparison to the typical dispersive time scale, it is possible to use a single expression to compute the block-dispersion coefficient, which is equal to the asymptotic limit of the block-scale macrodispersion coefficient proposed by Rubin et al. (1999). Our approach provides a flexible and efficient way to model subgrid-scale mixing in numerical models of large-scale solute transport in heterogeneous aquifers. We expect that these findings will help to better understand the applicability of the advection-dispersion-equation (ADE) to simulate solute transport at the Darcy scale in heterogeneous porous media.

  14. A distributed Grid-Xinanjiang model with integration of subgrid variability of soil storage capacity

    Directory of Open Access Journals (Sweden)

    Wei-jian Guo

    2016-04-01

    Full Text Available Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information within a grid cell will be gradually lost as the resolution of the digital elevation model (DEM grows coarser. Therefore, the performance of a hydrological model is usually scale-dependent. This study used the Grid-Xinanjiang (GXAJ model as an example to investigate the effects of subgrid variability on hydrological response at different scales. With the aim of producing a more reasonable hydrological response and spatial description of the landscape properties, a new distributed rainfall-runoff model integrating the subgrid variability (the GXAJSV model was developed. In this model, the topographic index is used as an auxiliary variable correlated with the soil storage capacity. The incomplete beta distribution is suggested for simulating the probability distribution of the soil storage capacity within the raster grid. The Yaogu Basin in China was selected for model calibration and validation at different spatial scales. Results demonstrated that the proposed model can effectively eliminate the scale dependence of the GXAJ model and produce a more reasonable hydrological response.

  15. Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model

    Science.gov (United States)

    Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.

    2012-12-01

    Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect

  16. A nonlinear structural subgrid-scale closure for compressible MHD Part II: a priori comparison on turbulence simulation data

    CERN Document Server

    Grete, P; Schmidt, W; Schleicher, D R G

    2016-01-01

    Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics (MHD). We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number $\\mathrm{M_s} = 0.2$ to $20$ as reference data for the most extensive \\textit{a priori} tests performed so far in literature. In these tests we explicitly filter the reference data and compare the performance of the new closures against th...

  17. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model

    Directory of Open Access Journals (Sweden)

    Weijian Guo

    2015-05-01

    Full Text Available Spatial variability plays an important role in nonlinear hydrologic processes. Due to the limitation of computational efficiency and data resolution, subgrid variability is usually assumed to be uniform for most grid-based rainfall-runoff models, which leads to the scale-dependence of model performances. In this paper, the scale effect on the Grid-Xinanjiang model was examined. The bias of the estimation of precipitation, runoff, evapotranspiration and soil moisture at the different grid scales, along with the scale-dependence of the effective parameters, highlights the importance of well representing the subgrid variability. This paper presents a subgrid parameterization method to incorporate the subgrid variability of the soil storage capacity, which is a key variable that controls runoff generation and partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern and physical basis, the soil storage capacity is correlated with the topographic index, whose spatial distribution can more readily be measured. A beta distribution is introduced to represent the spatial distribution of the soil storage capacity within the grid. The results derived from the Yanduhe Basin show that the proposed subgrid parameterization method can effectively correct the watershed soil storage capacity curve. Compared to the original Grid-Xinanjiang model, the model performances are quite consistent at the different grid scales when the subgrid variability is incorporated. This subgrid parameterization method reduces the recalibration necessity when the Digital Elevation Model (DEM resolution is changed. Moreover, it improves the potential for the application of the distributed model in the ungauged basin.

  18. Resolving terrestrial ecosystem processes along a subgrid topographic gradient for an earth-system model

    Science.gov (United States)

    Subin, Z M; Milly, Paul C.D.; Sulman, B N; Malyshev, Sergey; Shevliakova, E

    2014-01-01

    Soil moisture is a crucial control on surface water and energy fluxes, vegetation, and soil carbon cycling. Earth-system models (ESMs) generally represent an areal-average soil-moisture state in gridcells at scales of 50–200 km and as a result are not able to capture the nonlinear effects of topographically-controlled subgrid heterogeneity in soil moisture, in particular where wetlands are present. We addressed this deficiency by building a subgrid representation of hillslope-scale topographic gradients, TiHy (Tiled-hillslope Hydrology), into the Geophysical Fluid Dynamics Laboratory (GFDL) land model (LM3). LM3-TiHy models one or more representative hillslope geometries for each gridcell by discretizing them into land model tiles hydrologically coupled along an upland-to-lowland gradient. Each tile has its own surface fluxes, vegetation, and vertically-resolved state variables for soil physics and biogeochemistry. LM3-TiHy simulates a gradient in soil moisture and water-table depth between uplands and lowlands in each gridcell. Three hillslope hydrological regimes appear in non-permafrost regions in the model: wet and poorly-drained, wet and well-drained, and dry; with large, small, and zero wetland area predicted, respectively. Compared to the untiled LM3 in stand-alone experiments, LM3-TiHy simulates similar surface energy and water fluxes in the gridcell-mean. However, in marginally wet regions around the globe, LM3-TiHy simulates shallow groundwater in lowlands, leading to higher evapotranspiration, lower surface temperature, and higher leaf area compared to uplands in the same gridcells. Moreover, more than four-fold larger soil carbon concentrations are simulated globally in lowlands as compared with uplands. We compared water-table depths to those simulated by a recent global model-observational synthesis, and we compared wetland and inundated areas diagnosed from the model to observational datasets. The comparisons demonstrate that LM3-TiHy has the

  19. Acceleration of inertial particles in wall bounded flows: DNS and LES with stochastic modelling of the subgrid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zamansky, Remi; Vinkovic, Ivana; Gorokhovski, Mikhael, E-mail: ivana.vinkovic@univ-lyonl.fr [Laboratoire de Mecanique des Fluides et d' Acoustique CNRS UMR 5509 Ecole Centrale de Lyon, 36, av. Guy de Collongue, 69134 Ecully Cedex (France)

    2011-12-22

    Inertial particle acceleration statistics are analyzed using DNS for turbulent channel flow. Along with effects recognized in homogeneous isotropic turbulence, an additional effect is observed due to high and low speed vortical structures aligned with the channel wall. In response to those structures, particles with moderate inertia experience strong longitudinal acceleration variations. DNS is also used in order to assess LES-SSAM (Subgrid Stochastic Acceleration Model), in which an approximation to the instantaneous non-filtered velocity field is given by simulation of both, filtered and residual, accelerations. This approach allow to have access to the intermittency of the flow at subgrid scale. Advantages of LES-SSAM in predicting particle dynamics in the channel flow at a high Reynolds number are shown.

  20. Enhancing Representation of Subgrid Land Surface Characteristics in the Community Land Model

    Science.gov (United States)

    Ke, Y.; Coleman, A.; Leung, L.; Huang, M.; Li, H.; Wigmosta, M. S.

    2011-12-01

    The Community Land Model (CLM) is the land surface model used in the Community Earth System Model (CESM). In CLM each grid cell is composed of subgrid land units, snow/soil columns and plant functional types (PFTs). In the current version of CLM (CLM4.0), land surface parameters such as vegetated/non-vegetated land cover and surface characteristics including fractional glacier, lake, wetland, urban area, and PFT, and its associated leaf area index (LAI), stem area index (SAI), and canopy top and bottom heights are provided at 0.5° or coarser resolution. This study aims to enhance the representation of the land surface data by (1) creating higher resolution (0.05° or higher) global land surface parameters, and (2) developing an effective and accurate subgrid classification scheme for elevation and PFTs so that variations of land surface processes due to the subgrid distribution of PFTs and elevation can be represented in CLM. To achieve higher-resolution global land surface parameters, MODIS 500m land cover product (MCD12Q1) collected in 2005 was used to generate percentage of glacier, lake, wetland, and urban area and fractional PFTs at 0.05° resolution. Spatially and temporally continuous and consistent global LAI data re-processed and improved from MOD15A2 (http://globalchange.bnu.edu.cn/research/lai), combined with the PFT data, was used to create LAI, SAI, and, canopy top and bottom height data. 30-second soil texture data was obtained from a hybrid 30-second State Soil Geographic Database (STATSGO) and the 5-minute Food and Agriculture Organization two-layer 16-category soil texture dataset. The relationship between global distribution of PFTs and 1-km resolution elevation data is being analyzed to develop a subgrid classification of PFT and elevation. Statistical analysis is being conducted to compare different subgrid classification methods to select a method that explains the highest percentage of subgrid variance in both PFT and elevation distribution

  1. Sub-grid combustion modeling for compressible two-phase reacting flows

    Science.gov (United States)

    Sankaran, Vaidyanathan

    2003-06-01

    A generic formulation for modeling the turbulent combustion in compressible, high Reynolds number, two-phase; reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of complex flow-fields such as those encountered in many combustion systems. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. The gas phase LES velocity fields are used to estimate the instantaneous gas velocity at the droplet location. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Aircraft Engines combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Quantitative and qualitative comparison with the results of spectral DNS exhibits good agreement. Simulations using the current LES-LEM for freely propagating partially premixed flame in a droplet-laden isotropic turbulent field correctly captures the flame structure in the partially premixed flames. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. The current

  2. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  3. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    condensation heat transfer model. In the current work, mass and energy balance equations are solved in a marching scheme in each sub-grid node along the path of the jet trajectory. Jet specific condensation heat transfer closure relations are used. The jet sub-grid method has been implemented as a boundary condition in an in-house version of the sub-channel analysis code COBRA-TF (COBRA-IE). COBRA-IE fluid nodes provide the required vapor and noncondensable gas conditions for the heat transfer solution. The sub-grid model solves the liquid side heat transfer and the condensation rates for each volume in the sub-grid solution. These terms are summed along all of the sub-grid cells that pass through each COBRA-IE control volume to provide mass and energy transfer rates for the COBRA-IE solution. Results using the new jet injection boundary condition show an improved ability to simulate jet condensation experimental data.

  4. Analysis of subgrid models of heat convection by symmetry group theory

    Science.gov (United States)

    Razafindralandy, Dina; Hamdouni, Aziz

    2007-04-01

    Symmetries, i.e. transformations which leave the set of the solutions of the Navier-Stokes equations unchanged, play an important role in turbulence (conservation laws, wall laws, …). They should not be destroyed by turbulence models. The symmetries of the heat convection equations are then presented, for a non-isothermal fluid. Next, common subgrid stress tensor and flux models are analyzed, using the symmetry approach. To cite this article: D. Razafindralandy, A. Hamdouni, C. R. Mecanique 335 (2007).

  5. On the development of a subgrid CFD model for fire extinguishment

    Energy Technology Data Exchange (ETDEWEB)

    TIESZEN,SHELDON R.; LOPEZ,AMALIA R.

    2000-02-02

    A subgrid model is presented for use in CFD fire simulations to account for thermal suppressants and strain. The extinguishment criteria is based on the ratio of a local fluid-mechanics time-scale to a local chemical time-scale compared to an empirically-determined critical Damkohler number. Local extinction occurs if this time scale is exceeded, global fire extinguishment occurs when local extinction has occurred for all combusting cells. The fluid mechanics time scale is based on the Kolmogorov time scale and the chemical time scale is based on blowout of a perfectly stirred reactor. The input to the reactor is based on cell averaged temperatures, assumed stoichiometric fuel/air composition, and cell averaged suppressant concentrations including combustion products. A detailed chemical mechanism is employed. The chemical time-scale is precalculated and mixing rules are used to reduce the composition space that must be parameterized. Comparisons with experimental data for fire extinguishment in a flame-stabilizing, backward-facing step geometry indicates that the model is conservative for this condition.

  6. A scale-aware subgrid model for quasi-geostrophic turbulence

    Science.gov (United States)

    Bachman, Scott D.; Fox-Kemper, Baylor; Pearson, Brodie

    2017-02-01

    This paper introduces two methods for dynamically prescribing eddy-induced diffusivity, advection, and viscosity appropriate for primitive equation models with resolutions permitting the forward potential enstrophy cascade of quasi-geostrophic dynamics, such as operational ocean models and high-resolution climate models with O>(25>) km horizontal resolution and finer. Where quasi-geostrophic dynamics fail (e.g., the equator, boundary layers, and deep convection), the method reverts to scalings based on a matched two-dimensional enstrophy cascade. A principle advantage is that these subgrid models are scale-aware, meaning that the model is suitable over a range of grid resolutions: from mesoscale grids that just permit baroclinic instabilities to grids below the submesoscale where ageostrophic effects dominate. Two approaches are presented here using Large Eddy Simulation (LES) techniques adapted for three-dimensional rotating, stratified turbulence. The simpler approach has one nondimensional parameter, Λ, which has an optimal value near 1. The second approach dynamically optimizes Λ during simulation using a test filter. The new methods are tested in an idealized scenario by varying the grid resolution, and their use improves the spectra of potential enstrophy and energy in comparison to extant schemes. The new methods keep the gridscale Reynolds and Péclet numbers near 1 throughout the domain, which confers robust numerical stability and minimal spurious diapycnal mixing. Although there are no explicit parameters in the dynamic approach, there is strong sensitivity to the choice of test filter. Designing test filters for heterogeneous ocean turbulence adds cost and uncertainty, and we find the dynamic method does not noticeably improve over setting Λ = 1.

  7. Aerosol indirect effects in the ECHAM5-HAM2 climate model with subgrid cloud microphysics in a stochastic framework

    Science.gov (United States)

    Tonttila, Juha; Räisänen, Petri; Järvinen, Heikki

    2015-04-01

    Representing cloud properties in global climate models remains a challenging topic, which to a large extent is due to cloud processes acting on spatial scales much smaller than the typical model grid resolution. Several attempts have been made to alleviate this problem. One such method was introduced in the ECHAM5-HAM2 climate model by Tonttila et al. (2013), where cloud microphysical properties, along with the processes of cloud droplet activation and autoconversion, were computed using an ensemble of stochastic subcolumns within the climate model grid columns. Moreover, the subcolumns were sampled for radiative transfer using the Monte Carlo Independent Column Approximation approach. The same model version is used in this work (Tonttila et al. 2014), where 5-year nudged integrations are performed with a series of different model configurations. Each run is performed twice, once with pre-industrial (PI, year 1750) aerosol emission conditions and once with present-day (PD, year 2000) conditions, based on the AEROCOM emission inventories. The differences between PI and PD simulations are used to estimate the impact of anthropogenic aerosols on clouds and the aerosol indirect effect (AIE). One of the key results is that when both cloud activation and autoconversion are computed in the subcolumn space, the aerosol-induced PI-to-PD change in the global-mean liquid water path is up to 19 % smaller than in the reference with grid-scale computations. Together with similar changes in the cloud droplet number concentration, this influences the cloud radiative effects and thus the AIE, which is estimated as the difference in the net cloud radiative effect between PI and PD conditions. Accordingly, the AIE is reduced by 14 %, from 1.59 W m-2 in the reference model version to 1.37 W m-2 in the experimental model configuration. The results of this work explicitly show that careful consideration of the subgrid variability in cloud microphysical properties and consistent

  8. A Fast and Accurate Scheme for Sea Ice Dynamics with a Stochastic Subgrid Model

    Science.gov (United States)

    Seinen, C.; Khouider, B.

    2016-12-01

    Sea ice physics is a very complex process occurring over a wide range of scales; such as local melting or large scale drift. At the current grid resolution of Global Climate Models (GCMs), we are able to resolve large scale sea ice dynamics but uncertainty remains due to subgrid physics and potential dynamic feedback, especially due to the formation of melt ponds. Recent work in atmospheric science has shown success of Markov Jump stochastic subgrid models in the representation of clouds and convection and their feedback into the large scales. There has been a push to implement these methods in other parts of the Earth System and for the cryosphere in particular but in order to test these methods, efficient and accurate solvers are required for the resolved large scale sea-ice dynamics. We present a second order accurate scheme, in both time and space, for the sea ice momentum equation (SIME) with a Jacobian Free Newton Krylov (JFNK) solver. SIME is a highly nonlinear equation due to sea ice rheology terms appearing in the stress tensor. The most commonly accepted formulation, introduced by Hibler, allows sea-ice to resist significant stresses in compression but significantly less in tension. The relationship also leads to large changes in internal stresses from small changes in velocity fields. These non-linearities have resulted in the use of implicit methods for SIME and a JFNK solver was recently introduced and used to gain efficiency. However, the method used so far is only first order accurate in time. Here we expand the JFNK approach to a Crank-Nicholson discretization of SIME. This fully second order scheme is achieved with no increase in computational cost and will allow efficient testing and development of subgrid stochastic models of sea ice in the near future.

  9. A Subgrid Parameterization for Wind Turbines in Weather Prediction Models with an Application to Wind Resource Limits

    Directory of Open Access Journals (Sweden)

    B. H. Fiedler

    2014-01-01

    Full Text Available A subgrid parameterization is offered for representing wind turbines in weather prediction models. The parameterization models the drag and mixing the turbines cause in the atmosphere, as well as the electrical power production the wind causes in the wind turbines. The documentation of the parameterization is complete; it does not require knowledge of proprietary data of wind turbine characteristics. The parameterization is applied to a study of wind resource limits in a hypothetical giant wind farm. The simulated production density was found not to exceed 1 W m−2, peaking at a deployed capacity density of 5 W m−2 and decreasing slightly as capacity density increased to 20 W m−2.

  10. Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame

    Science.gov (United States)

    Wey, Thomas

    2017-01-01

    With advances in computational power and availability of distributed computers, the use of even the most complex of turbulent chemical interaction models in combustors and coupled analysis of combustors and turbines is now possible and more and more affordable for realistic geometries. Recent more stringent emission standards have enticed the development of more fuel-efficient and low-emission combustion system for aircraft gas turbine applications. It is known that the NOx emissions tend to increase dramatically with increasing flame temperature. It is well known that the major difficulty, when modeling the turbulence-chemistry interaction, lies in the high non-linearity of the reaction rate expressed in terms of the temperature and species mass fractions. The transport filtered density function (FDF) model and the linear eddy model (LEM), which both use local instantaneous values of the temperature and mass fractions, have been shown to often provide more accurate results of turbulent combustion. In the present, the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models, LEM-like and EUPDF-like, capable of emulating the major processes occurring in the turbulence-chemistry interaction will be used to perform reacting flow simulations of a selected test case. The selected test case from the Volvo Validation Rig was documented by Sjunnesson.

  11. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    Science.gov (United States)

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  12. Exploring the Limits of the Dynamic Procedure for Modeling Subgrid-Scale Stresses in LES of Inhomogeneous Flows.

    Science.gov (United States)

    Le, A.-T.; Kim, J.; Coleman, G.

    1996-11-01

    One of the primary reasons dynamic subgrid-scale (SGS) models are more successful than those that are `hand-tuned' is thought to be their insensitivity to numerical and modeling parameters. Jiménez has recently demonstrated that large-eddy simulations (LES) of decaying isotropic turbulence using a dynamic Smagorinsky model yield correct decay rates -- even when the model is subjected to a range of artificial perturbations. The objective of the present study is to determine to what extent this `self-adjusting' feature of dynamic SGS models is found in LES of inhomogeneous flows. The effects of numerical and modeling parameters on the accuracy of LES solutions of fully developed and developing turbulent channel flow are studied, using a spectral code and various dynamic models (including those of Lilly et al. and Meneveau et al.); other modeling parameters tested include the filter-width ratio and the effective magnitude of the Smagorinsky coefficient. Numerical parameters include the form of the convective term and the type of test filter (sharp-cutoff versus tophat). The resulting LES statistics are found to be surprisingly sensitive to the various parameter choices, which implies that more care than is needed for homogeneous-flow simulations must be exercised when performing LES of inhomogeneous flows.

  13. Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data

    Directory of Open Access Journals (Sweden)

    B. Ringeval

    2012-07-01

    Full Text Available The quality of the global hydrological simulations performed by land surface models (LSMs strongly depends on processes that occur at unresolved spatial scales. Approaches such as TOPMODEL have been developed, which allow soil moisture redistribution within each grid-cell, based upon sub-grid scale topography. Moreover, the coupling between TOPMODEL and a LSM appears as a potential way to simulate wetland extent dynamic and its sensitivity to climate, a recently identified research problem for biogeochemical modelling, including methane emissions. Global evaluation of the coupling between TOPMODEL and an LSM is difficult, and prior attempts have been indirect, based on the evaluation of the simulated river flow. This study presents a new way to evaluate this coupling, within the ORCHIDEE LSM, using remote sensing data of inundated areas. Because of differences in nature between the satellite derived information – inundation extent – and the variable diagnosed by TOPMODEL/ORCHIDEE – area at maximum soil water content, the evaluation focuses on the spatial distribution of these two quantities as well as on their temporal variation. Despite some difficulties in exactly matching observed localized inundated events, we obtain a rather good agreement in the distribution of these two quantities at a global scale. Floodplains are not accounted for in the model, and this is a major limitation. The difficulty of reproducing the year-to-year variability of the observed inundated area (for instance, the decreasing trend by the end of 90s is also underlined. Classical indirect evaluation based on comparison between simulated and observed river flow is also performed and underlines difficulties to simulate river flow after coupling with TOPMODEL. The relationship between inundation and river flow at the basin scale in the model is analyzed, using both methods (evaluation against remote sensing data and river flow. Finally, we discuss the potential of

  14. Simple lattice Boltzmann subgrid-scale model for convectional flows with high Rayleigh numbers within an enclosed circular annular cavity

    Science.gov (United States)

    Chen, Sheng; Tölke, Jonas; Krafczyk, Manfred

    2009-08-01

    Natural convection within an enclosed circular annular cavity formed by two concentric vertical cylinders is of fundamental interest and practical importance. Generally, the assumption of axisymmetric thermal flow is adopted for simulating such natural convections and the validity of the assumption of axisymmetric thermal flow is still held even for some turbulent convection. Usually the Rayleigh numbers (Ra) of realistic flows are very high. However, the work to design suitable and efficient lattice Boltzmann (LB) models on such flows is quite rare. To bridge the gap, in this paper a simple LB subgrid-scale (SGS) model, which is based on our recent work [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)], is proposed for simulating convectional flow with high Ra within an enclosed circular annular cavity. The key parameter for the SGS model can be quite easily and efficiently evaluated by the present model. The numerical experiments demonstrate that the present model works well for a large range of Ra and Prandtl number (Pr). Though in the present study a popularly used static Smagorinsky turbulence model is adopted to demonstrate how to develop a LB SGS model for simulating axisymmetric thermal flows with high Ra, other state-of-the-art turbulence models can be incorporated into the present model in the same way. In addition, the present model can be extended straightforwardly to simulate other axisymmetric convectional flows with high Ra, for example, turbulent convection with internal volumetric heat generation in a vertical cylinder, which is an important simplified representation of a nuclear reactor.

  15. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  16. A Physically Based Horizontal Subgrid-scale Turbulent Mixing Parameterization for the Convective Boundary Layer in Mesoscale Models

    Science.gov (United States)

    Zhou, Bowen; Xue, Ming; Zhu, Kefeng

    2017-04-01

    Compared to the representation of vertical turbulent mixing through various PBL schemes, the treatment of horizontal turbulence mixing in the boundary layer within mesoscale models, with O(10) km horizontal grid spacing, has received much less attention. In mesoscale models, subgrid-scale horizontal fluxes most often adopt the gradient-diffusion assumption. The horizontal mixing coefficients are usually set to a constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. In this work, horizontal turbulent mixing parameterizations using physically based characteristic velocity and length scales are proposed for the convective boundary layer based on analysis of a well-resolved, wide-domain large-eddy simulation (LES). The proposed schemes involve different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The current horizontal mixing formulations are also assessed a priori through the filtered LES results to illustrate their limitations. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes, and further demonstrate the weakness of the current schemes.

  17. The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Harry V. Wang

    2014-03-01

    Full Text Available Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE, was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model’s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15–20 cm and 5%–7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS’ Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.

  18. An explicit relaxation filtering framework based upon Perona-Malik anisotropic diffusion for shock capturing and subgrid scale modeling of Burgers turbulence

    CERN Document Server

    Maulik, Romit

    2016-01-01

    In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...

  19. From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD

    Directory of Open Access Journals (Sweden)

    Schulze S.

    2013-04-01

    Full Text Available This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2. Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003 Combust. Flame 132, 743-753. Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10% between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient

  20. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Sergei [Los Alamos National Laboratory

    2008-01-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  1. Combination of Lidar Elevations, Bathymetric Data, and Urban Infrastructure in a Sub-Grid Model for Predicting Inundation in New York City during Hurricane Sandy

    CERN Document Server

    Loftis, Jon Derek; Hamilton, Stuart E; Forrest, David R

    2014-01-01

    We present the geospatial methods in conjunction with results of a newly developed storm surge and sub-grid inundation model which was applied in New York City during Hurricane Sandy in 2012. Sub-grid modeling takes a novel approach for partial wetting and drying within grid cells, eschewing the conventional hydrodynamic modeling method by nesting a sub-grid containing high-resolution lidar topography and fine scale bathymetry within each computational grid cell. In doing so, the sub-grid modeling method is heavily dependent on building and street configuration provided by the DEM. The results of spatial comparisons between the sub-grid model and FEMA's maximum inundation extents in New York City yielded an unparalleled absolute mean distance difference of 38m and an average of 75% areal spatial match. An in-depth error analysis reveals that the modeled extent contour is well correlated with the FEMA extent contour in most areas, except in several distinct areas where differences in special features cause sig...

  2. Final Report: Systematic Development of a Subgrid Scaling Framework to Improve Land Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Robert Earl [Univ. of Texas, Austin, TX (United States)

    2016-07-11

    We carried out research to development improvements of the land component of climate models and to understand the role of land in climate variability and change. A highlight was the development of a 3D canopy radiation model. More than a dozen publications resulted.

  3. Statistical dynamical subgrid-scale parameterizations for geophysical flows

    Energy Technology Data Exchange (ETDEWEB)

    O' Kane, T J; Frederiksen, J S [Centre for Australian Weather and Climate Research, Bureau of Meteorology, 700 Collins St, Docklands, Melbourne, VIC (Australia) and CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)], E-mail: t.okane@bom.gov.au

    2008-12-15

    Simulations of both atmospheric and oceanic circulations at given finite resolutions are strongly dependent on the form and strengths of the dynamical subgrid-scale parameterizations (SSPs) and in particular are sensitive to subgrid-scale transient eddies interacting with the retained scale topography and the mean flow. In this paper, we present numerical results for SSPs of the eddy-topographic force, stochastic backscatter, eddy viscosity and eddy-mean field interaction using an inhomogeneous statistical turbulence model based on a quasi-diagonal direct interaction approximation (QDIA). Although the theoretical description on which our model is based is for general barotropic flows, we specifically focus on global atmospheric flows where large-scale Rossby waves are present. We compare and contrast the closure-based results with an important earlier heuristic SSP of the eddy-topographic force, based on maximum entropy or statistical canonical equilibrium arguments, developed specifically for general ocean circulation models (Holloway 1992 J. Phys. Oceanogr. 22 1033-46). Our results demonstrate that where strong zonal flows and Rossby waves are present, such as in the atmosphere, maximum entropy arguments are insufficient to accurately parameterize the subgrid contributions due to eddy-eddy, eddy-topographic and eddy-mean field interactions. We contrast our atmospheric results with findings for the oceans. Our study identifies subgrid-scale interactions that are currently not parameterized in numerical atmospheric climate models, which may lead to systematic defects in the simulated circulations.

  4. A subgrid parameterization scheme for precipitation

    Directory of Open Access Journals (Sweden)

    S. Turner

    2012-04-01

    Full Text Available With increasing computing power, the horizontal resolution of numerical weather prediction (NWP models is improving and today reaches 1 to 5 km. Nevertheless, clouds and precipitation formation are still subgrid scale processes for most cloud types, such as cumulus and stratocumulus. Subgrid scale parameterizations for water vapor condensation have been in use for many years and are based on a prescribed probability density function (PDF of relative humidity spatial variability within the model grid box, thus providing a diagnosis of the cloud fraction. A similar scheme is developed and tested here. It is based on a prescribed PDF of cloud water variability and a threshold value of liquid water content for droplet collection to derive a rain fraction within the model grid. Precipitation of rainwater raises additional concerns relative to the overlap of cloud and rain fractions, however. The scheme is developed following an analysis of data collected during field campaigns in stratocumulus (DYCOMS-II and fair weather cumulus (RICO and tested in a 1-D framework against large eddy simulations of these observed cases. The new parameterization is then implemented in a 3-D NWP model with a horizontal resolution of 2.5 km to simulate real cases of precipitating cloud systems over France.

  5. Numerical Dissipation and Subgrid Scale Modeling for Separated Flows at Moderate Reynolds Numbers

    Science.gov (United States)

    Cadieux, Francois; Domaradzki, Julian Andrzej

    2014-11-01

    Flows in rotating machinery, for unmanned and micro aerial vehicles, wind turbines, and propellers consist of different flow regimes. First, a laminar boundary layer is followed by a laminar separation bubble with a shear layer on top of it that experiences transition to turbulence. The separated turbulent flow then reattaches and evolves downstream from a nonequilibrium turbulent boundary layer to an equilibrium one. In previous work, the capability of LES to reduce the resolution requirements down to 1 % of DNS resolution for such flows was demonstrated (Cadieux et al., JFE 136-6). However, under-resolved DNS agreed better with the benchmark DNS than simulations with explicit SGS modeling because numerical dissipation and filtering alone acted as a surrogate SGS dissipation. In the present work numerical viscosity is quantified using a new method proposed recently by Schranner et al. and its effects are analyzed and compared to turbulent eddy viscosities of explicit SGS models. The effect of different SGS models on a simulation of the same flow using a non-dissipative code is also explored. Supported by NSF.

  6. Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles

    Science.gov (United States)

    Weiner, Andre; Bothe, Dieter

    2017-10-01

    This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.

  7. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  8. Modeling and Simulation of Fluid Mixing Laser Experiments and Supernova

    Energy Technology Data Exchange (ETDEWEB)

    James Glimm

    2009-06-04

    The three year plan for this project was to develop novel theories and advanced simulation methods leading to a systematic understanding of turbulent mixing. A primary focus is the comparison of simulation models (Direct Numerical Simulation (DNS), Large Eddy Simulations (LES), full two fluid simulations and subgrid averaged models) to experiments. The comprehension and reduction of experimental and simulation data are central goals of this proposal. We model 2D and 3D perturbations of planar or circular interfaces. We compare these tests with models derived from averaged equations (our own and those of others). As a second focus, we develop physics based subgrid simulation models of diffusion across an interface, with physical but no numerical mass diffusion. Multiple layers and reshock are considered here.

  9. Accounting for subgrid scale topographic variations in flood propagation modeling using MODFLOW

    DEFF Research Database (Denmark)

    Milzow, Christian; Kinzelbach, W.

    2010-01-01

    To be computationally viable, grid-based spatially distributed hydrological models of large wetlands or floodplains must be set up using relatively large cells (order of hundreds of meters to kilometers). Computational costs are especially high when considering the numerous model runs or model time...

  10. Operational forecasting with the subgrid technique on the Elbe Estuary

    Science.gov (United States)

    Sehili, Aissa

    2017-04-01

    Modern remote sensing technologies can deliver very detailed land surface height data that should be considered for more accurate simulations. In that case, and even if some compromise is made with regard to grid resolution of an unstructured grid, simulations still will require large grids which can be computationally very demanding. The subgrid technique, first published by Casulli (2009), is based on the idea of making use of the available detailed subgrid bathymetric information while performing computations on relatively coarse grids permitting large time steps. Consequently, accuracy and efficiency are drastically enhanced if compared to the classical linear method, where the underlying bathymetry is solely discretized by the computational grid. The algorithm guarantees rigorous mass conservation and nonnegative water depths for any time step size. Computational grid-cells are permitted to be wet, partially wet or dry and no drying threshold is needed. The subgrid technique is used in an operational forecast model for water level, current velocity, salinity and temperature of the Elbe estuary in Germany. Comparison is performed with the comparatively highly resolved classical unstructured grid model UnTRIM. The daily meteorological forcing data are delivered by the German Weather Service (DWD) using the ICON-EU model. Open boundary data are delivered by the coastal model BSHcmod of the German Federal Maritime and Hydrographic Agency (BSH). Comparison of predicted water levels between classical and subgrid model shows a very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out within less than 10 minutes on standard PC-like hardware. The model is capable of permanently delivering highly resolved temporal and spatial information on water level, current velocity, salinity and temperature for the whole estuary. The model offers also the possibility to

  11. Sub-grid scale models for discontinuous Galerkin methods based on the Mori-Zwanzig formalism

    Science.gov (United States)

    Parish, Eric; Duraisamy, Karthk

    2017-11-01

    The optimal prediction framework of Chorin et al., which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived closure models. The M-Z formalism provides a methodology to reformulate a high-dimensional Markovian dynamical system as a lower-dimensional, non-Markovian (non-local) system. In this lower-dimensional system, the effects of the unresolved scales on the resolved scales are non-local and appear as a convolution integral. The non-Markovian system is an exact statement of the original dynamics and is used as a starting point for model development. In this work, we investigate the development of M-Z-based closures model within the context of the Variational Multiscale Method (VMS). The method relies on a decomposition of the solution space into two orthogonal subspaces. The impact of the unresolved subspace on the resolved subspace is shown to be non-local in time and is modeled through the M-Z-formalism. The models are applied to hierarchical discontinuous Galerkin discretizations. Commonalities between the M-Z closures and conventional flux schemes are explored. This work was supported in part by AFOSR under the project ''LES Modeling of Non-local effects using Statistical Coarse-graining'' with Dr. Jean-Luc Cambier as the technical monitor.

  12. USING CMAQ FOR EXPOSURE MODELING AND CHARACTERIZING THE SUB-GRID VARIABILITY FOR EXPOSURE ESTIMATES

    Science.gov (United States)

    Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known to be highly variable in time and space. Current air quality models that characterize atmospheric chemistry effects, e.g. the Community Multi-scale Air Quality (CMAQ), provide vo...

  13. A New Approach to Validate Subgrid Models in Complex High Reynolds Number Flows

    Science.gov (United States)

    1994-05-01

    data are also shown. These figures show the characteristic decrease in correla- tion when the grid is coarsened with the scale similarity model showing...passmms sogbe .iului by a Pus* dll- apWaishmalm ass" immp to bpssm do af sepia abdas h bell pufai aftg a pmiuayomd NO P) emd a smA amedidg of do @*M

  14. On the Effect of an Anisotropy-Resolving Subgrid-Scale Model on Turbulent Vortex Motions

    Science.gov (United States)

    2014-09-19

    expression coincides with the modified Leonard stress proposed by Ger- mano et al. (1991). In this model, the SGS turbulence energy kSGS may be evaluated as... mano subgridscale closure method. Phys. Fluids A, Vol. 4, pp. 633-635. Morinishi, Y. and Vasilyev, O.V. (2001), A recommended modification to the

  15. Monte Carlo-based subgrid parameterization of vertical velocity and stratiform cloud microphysics in ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    J. Tonttila

    2013-08-01

    Full Text Available A new method for parameterizing the subgrid variations of vertical velocity and cloud droplet number concentration (CDNC is presented for general circulation models (GCMs. These parameterizations build on top of existing parameterizations that create stochastic subgrid cloud columns inside the GCM grid cells, which can be employed by the Monte Carlo independent column approximation approach for radiative transfer. The new model version adds a description for vertical velocity in individual subgrid columns, which can be used to compute cloud activation and the subgrid distribution of the number of cloud droplets explicitly. Autoconversion is also treated explicitly in the subcolumn space. This provides a consistent way of simulating the cloud radiative effects with two-moment cloud microphysical properties defined at subgrid scale. The primary impact of the new parameterizations is to decrease the CDNC over polluted continents, while over the oceans the impact is smaller. Moreover, the lower CDNC induces a stronger autoconversion of cloud water to rain. The strongest reduction in CDNC and cloud water content over the continental areas promotes weaker shortwave cloud radiative effects (SW CREs even after retuning the model. However, compared to the reference simulation, a slightly stronger SW CRE is seen e.g. over mid-latitude oceans, where CDNC remains similar to the reference simulation, and the in-cloud liquid water content is slightly increased after retuning the model.

  16. Renormalization-group theory for the eddy viscosity in subgrid modeling

    Science.gov (United States)

    Zhou, YE; Vahala, George; Hossain, Murshed

    1988-01-01

    Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.

  17. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2016-05-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes

  18. Numerical Simulation of Atmospheric Boundary Layer Flow Over Battlefield-scale Complex Terrain: Surface Fluxes From Resolved and Subgrid Scales

    Science.gov (United States)

    2015-07-06

    Grimmond, 2015: Proc. 9th International Conference on Urban Climate , Paris, France. Anderson W, Li Q, Bou-Zeid E, 2014: Proc. of American...represen- tative information is known about the macroscale attributes of these coher- ent motions, we have developed a sim- ple, semi -empirical model to...dust from arid landscapes on the Llano Estacado in west Texas and eastern New Mexico. • Under Review: National Science Foundation, Fluid Dynamics Program

  19. Evaluation of a Sub-Grid Topographic Drag Parameterizations for Modeling Surface Wind Speed During Storms Over Complex Terrain in the Northeast U.S.

    Science.gov (United States)

    Frediani, M. E.; Hacker, J.; Anagnostou, E. N.; Hopson, T. M.

    2015-12-01

    This study aims at improving regional simulation of 10-meter wind speed by verifying PBL schemes for storms at different scales, including convective storms, blizzards, tropical storms and nor'easters over complex terrain in the northeast U.S. We verify a recently proposed sub-grid topographic drag scheme in stormy conditions and compare it with two PBL schemes (Mellor-Yamada and Yonsei University) from WRF-ARW over a region in the Northeast U.S. The scheme was designed to adjust the surface drag over regions with high subgrid-scale topographic variability. The schemes are compared using spatial, temporal, and pattern criteria against surface observations. The spatial and temporal criteria are defined by season, diurnal cycle, and topography; the pattern, is based on clusters derived using clustering analysis. Results show that the drag scheme reduces the positive bias of low wind speeds, but over-corrects the high wind speeds producing a magnitude-increasing negative bias with increasing speed. Both other schemes underestimate the most frequent low-speed mode and overestimate the high-speeds. Error characteristics of all schemes respond to seasonal and diurnal cycle changes. The Topo-wind experiment shows the best agreement with the observation quantiles in summer and fall, the best representation of the diurnal cycle in these seasons, and reduces the bias of all surface stations near the coast. In more stable conditions the Topo-wind scheme shows a larger negative bias. The cluster analysis reveals a correlation between bias and mean speed from the Mellor-Yamada and Yonsei University schemes that is not present when the drag scheme is used. When the drag scheme is used the bias correlates with wind direction; the bias increases when the meridional wind component is negative. This pattern corresponds to trajectories with more land interaction with the highest biases found in northwest circulation clusters.

  20. Effect of reactions in small eddies on biomass gasification with eddy dissipation concept - Sub-grid scale reaction model.

    Science.gov (United States)

    Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin

    2016-07-01

    Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of aerosol subgrid variability on aerosol optical depth and cloud condensation nuclei: Implications for global aerosol modelling

    NARCIS (Netherlands)

    Weigum, Natalie; Schutgens, Nick; Stier, Philip

    2016-01-01

    A fundamental limitation of grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies in simulated aerosol climate effects

  2. Birefringent dispersive FDTD subgridding scheme

    OpenAIRE

    De Deckere, B; Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries

    2016-01-01

    A novel 2D finite difference time domain (FDTD) subgridding method is proposed, only subject to the Courant limit of the coarse grid. By making mu or epsilon inside the subgrid dispersive, unconditional stability is induced at the cost of a sparse, implicit set of update equations. By only adding dispersion along preferential directions, it is possible to dramatically reduce the rank of the matrix equation that needs to be solved.

  3. Assessment of a flame surface density-based subgrid turbulent combustion model for nonpremixed flames of wood pyrolysis gas

    Science.gov (United States)

    Zhou, Xiangyang; Pakdee, Watit; Mahalingam, Shankar

    2004-10-01

    A flame surface density (FSD) model for closing the unresolved reaction source terms is developed and implemented in a large eddy simulation (LES) of turbulent nonpremixed flame of wood pyrolysis gas and air. In this model, the filtered reaction rate ω¯α of species α is estimated as the product of the consumption rate per unit surface area mα and the filtered FSD Σ¯. This approach is attractive since it decouples the complex chemical problem (mα) from the description of the turbulence combustion interaction (Σ¯). A simplified computational methodology is derived for filtered FSD Σ¯, which is approximated as the product of the conditional filtered gradient of mixture fraction and the filtered probability density function. Two models for flamelet consumption rate mα are proposed to consider the effect of filtered scalar dissipation rate. The performance of these models is assessed by direct numerical simulation (DNS) database where a laminar diffusion flame interacts with a decaying homogeneous and isotropic turbulent flow field. The chemistry is modeled by a four-step reduced mechanism that describes the oxidization process of gaseous fuel released from high temperature pyrolysis of wood occurring in a wildland fire. Two-dimensional (2D) and 3D LES computations based on the FSD models are conducted for the same conditions as the DNS. The comparative assessments confirm the applicability of the proposed FSD model to describe the filtered reaction rate and the time evolution of temperature and species concentration in the turbulent nonpremixed flame.

  4. Subgrid-scale turbulence in shock-boundary layer flows

    Science.gov (United States)

    Jammalamadaka, Avinash; Jaberi, Farhad

    2015-04-01

    Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.

  5. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  6. Improving the simulation of convective dust storms in regional-to-global models

    Science.gov (United States)

    Foroutan, Hosein; Pleim, Jonathan E.

    2017-09-01

    Convective dust storms have significant impacts on atmospheric conditions and air quality and are a major source of dust uplift in summertime. However, regional-to-global models generally do not accurately simulate these storms, a limitation that can be attributed to (1) using a single mean value for wind speed per grid box, i.e., not accounting for subgrid wind variability and (2) using convective parametrizations that poorly simulate cold pool outflows. This study aims to improve the simulation of convective dust storms by tackling these two issues. Specifically, we incorporate a probability distribution function for surface wind in each grid box to account for subgrid wind variability due to dry and moist convection. Furthermore, we use lightning assimilation to increase the accuracy of the convective parameterization and simulated cold pool outflows. This updated model framework is used to simulate a massive convective dust storm that hit Phoenix, AZ, on 6 July 2011. The results show that lightning assimilation provides a more realistic simulation of precipitation features, including timing and location, and the resulting cold pool outflows that generated the dust storm. When those results are combined with a dust model that accounts for subgrid wind variability, the prediction of dust uplift and concentrations are considerably improved compared to the default model results. This modeling framework could potentially improve the simulation of convective dust storms in global models, regional climate simulations, and retrospective air quality studies.

  7. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results

    Science.gov (United States)

    M. M. Clark; T. H. Fletcher; R. R. Linn

    2010-01-01

    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic...

  8. High-Resolution Global Modeling of the Effects of Subgrid-Scale Clouds and Turbulence on Precipitating Cloud Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bogenschutz, Peter [National Center for Atmospheric Research, Boulder, CO (United States); Moeng, Chin-Hoh [National Center for Atmospheric Research, Boulder, CO (United States)

    2015-10-13

    The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.

  9. Predicting the impacts of fishing canals on Floodplain Dynamics in Northern Cameroon using a small-scale sub-grid hydraulic model

    Science.gov (United States)

    Shastry, A. R.; Durand, M. T.; Fernandez, A.; Hamilton, I.; Kari, S.; Labara, B.; Laborde, S.; Mark, B. G.; Moritz, M.; Neal, J. C.; Phang, S. C.

    2015-12-01

    Modeling Regime Shifts in the Logone floodplain (MORSL) is an ongoing interdisciplinary project at The Ohio State University studying the ecological, social and hydrological system of the region. This floodplain, located in Northern Cameroon, is part of the Lake Chad basin. Between September and October the floodplain is inundated by the overbank flow from the Logone River, which is important for agriculture and fishing. Fishermen build canals to catch fish during the flood's recession to the river by installing fishnets at the intersection of the canals and the river. Fishing canals thus connect the river to natural depressions of the terrain, which act as seasonal ponds during this part of the year. Annual increase in the number of canals affect hydraulics and hence fishing in the region. In this study, the Bara region (1 km2) of the Logone floodplain, through which Lorome Mazra flows, is modeled using LISFLOOD-FP, a raster-based model with sub-grid parameterizations of canals. The aim of the study is to find out how the small-scale, local features like canals and fishnets govern the flow, so that it can be incorporated in a large-scale model of the floodplain at a coarser spatial resolution. We will also study the effect of increasing number of canals on the flooding pattern. We use a simplified version of the hydraulic system at a grid-cell size of 30-m, using synthetic topography, parameterized fishing canals, and representing fishnets as trash screens. The inflow at Bara is obtained from a separate, lower resolution (1-km grid-cell) model run, which is forced by daily discharge records obtained from Katoa, located about 25-km to the south of Bara. The model appropriately captures the rise and recession of the annual flood, supporting use of the LISFLOOD-FP approach. Predicted water levels at specific points in the river, the canals, the depression and the floodplain will be compared to field measured heights of flood recession in Bara, November 2014.

  10. A Priori Direct Numerical Simulation Modelling of the Curvature Term of the Flame Surface Density Transport Equation for Nonunity Lewis Number Flames in the Context of Large Eddy Simulations

    Directory of Open Access Journals (Sweden)

    Mohit Katragadda

    2012-01-01

    Full Text Available A Direct Numerical Simulation (DNS database of freely propagating statistically planar turbulent premixed flames with Lewis numbers Le ranging from 0.34 to 1.2 has been used to analyse the statistical behaviours of the curvature term of the generalised Flame surface Density (FSD transport equation, in the context of the Large Eddy Simulation (LES. Lewis number is shown to have significant influences on the statistical behaviours of the resolved and sub-grid parts of the FSD curvature term. It has been found that the existing models for the sub-grid curvature term Csg do not capture the qualitative behaviour of this term extracted from the DNS database for flames with Le<<1. The existing models of Csg only predict negative values, whereas the sub-grid curvature term is shown to assume positive values within the flame brush for the Le=0.34 and 0.6 flames. Here the sub-grid curvature terms arising from combined reaction and normal diffusion and tangential diffusion components of displacement speed are individually modelled, and the new model of the sub-grid curvature term has been found to capture Csg extracted from DNS data satisfactorily for all the different Lewis number flames considered here for a wide range of filter widths.

  11. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  12. DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands

    Directory of Open Access Journals (Sweden)

    B. D. Stocker

    2014-12-01

    TOPMODEL (DYPTOP, which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.

  13. Autonomous Operation of Hybrid Microgrid With AC and DC Subgrids

    DEFF Research Database (Denmark)

    Chiang Loh, Poh; Li, Ding; Kang Chai, Yi

    2013-01-01

    This paper investigates on power-sharing issues of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac subgrids interconnected by power electronic interfaces. The main challenge here is to manage power flows among all...... converters. Suitable control and normalization schemes are now developed for controlling them with the overall hybrid microgrid performance already verified in simulation and experiment....

  14. The subgrid-scale scalar variance under supercritical pressure conditions

    Science.gov (United States)

    Masi, Enrica; Bellan, Josette

    2011-08-01

    To model the subgrid-scale (SGS) scalar variance under supercritical-pressure conditions, an equation is first derived for it. This equation is considerably more complex than its equivalent for atmospheric-pressure conditions. Using a previously created direct numerical simulation (DNS) database of transitional states obtained for binary-species systems in the context of temporal mixing layers, the activity of terms in this equation is evaluated, and it is found that some of these new terms have magnitude comparable to that of governing terms in the classical equation. Most prominent among these new terms are those expressing the variation of diffusivity with thermodynamic variables and Soret terms having dissipative effects. Since models are not available for these new terms that would enable solving the SGS scalar variance equation, the adopted strategy is to directly model the SGS scalar variance. Two models are investigated for this quantity, both developed in the context of compressible flows. The first one is based on an approximate deconvolution approach and the second one is a gradient-like model which relies on a dynamic procedure using the Leonard term expansion. Both models are successful in reproducing the SGS scalar variance extracted from the filtered DNS database, and moreover, when used in the framework of a probability density function (PDF) approach in conjunction with the β-PDF, they excellently reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the proportionality coefficient spans a small range of values through the layer cross-stream coordinate, boding well for the stability of large eddy simulations using this model.

  15. Final Technical Report for "High-resolution global modeling of the effects of subgrid-scale clouds and turbulence on precipitating cloud systems"

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent [Univ. of Wisconsin, Milwaukee, WI (United States)

    2016-11-25

    The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. The chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.

  16. Global dust simulations in the multiscale modeling framework

    Science.gov (United States)

    Hsieh, W. C.; Rosa, D.; Collins, W. D.

    2013-03-01

    This study investigates the role of subgrid vertical transport in global simulations of soil-dust aerosols. The evolution and long-range transport of aerosols are strongly affected by vertical transport. In conventional global models, convective and turbulent transport is highly parameterized. This study applies the superparameterization (SP) framework in which a cloud-resolving model (CRM) is embedded in each grid cell of a global model to replace these parametric treatments with explicit simulation of subgrid processes at the cloud-system scale. We apply the implementation of the SP framework in the National Center for Atmospheric Research community atmospheric model (CAM) denoted by SPCAM for dust simulations. We focus on the effects of subgrid transport on dust simulations; thus, the sources and sinks of dust are calculated in the large-scale CAM grids, and the vertical transport of dust is computed in the CRM. We simulate present-day distributions of soil-dust aerosols using CAM and SPCAM operated in chemical transport mode with large-scale meteorological fields prescribed using the same meteorological reanalysis. Therefore, the differences of dust fields between two models caused by explicit versus parameterized treatments of convective transport are examined. Comparison of dust profiles shows that SPCAM predicts less dust in the low to mid troposphere but relatively higher concentration in the upper troposphere. The larger dust mass in upper troposphere in SPCAM may be related to the dust implementation approach in this study, in which the larger resolved updrafts in CRM for deep convection transport more dust aloft but are not accounted by the removal processes in the CRM grid scale. A slightly higher mobilization flux of less than 5% on an average is shown in SPCAM when compared with CAM. Similar patterns of elevated dry deposition are also produced with increases larger than 100% in some areas. For wet deposition, on average CAM is ˜31% higher than SPCAM

  17. Simulation of Boundary-Layer Cumulus and Stratocumulus Clouds using a Cloud-Resolving Model With Low- and Third-Order Turbulence Closures

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2007-01-01

    The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.

  18. EMC Simulation and Modeling

    Science.gov (United States)

    Takahashi, Takehiro; Schibuya, Noboru

    The EMC simulation is now widely used in design stage of electronic equipment to reduce electromagnetic noise. As the calculated electromagnetic behaviors of the EMC simulator depends on the inputted EMC model of the equipment, the modeling technique is important to obtain effective results. In this paper, simple outline of the EMC simulator and EMC model are described. Some modeling techniques of EMC simulation are also described with an example of the EMC model which is shield box with aperture.

  19. A dynamic similarity model for large eddy simulation of turbulent combustion

    Science.gov (United States)

    Jaberi, F. A.; James, S.

    1998-07-01

    A dynamic similarity subgrid-scale (SGS) unmixedness model is presented for large eddy simulation (LES) of turbulent reacting flows. The model is assessed both a priori and a posteriori via data obtained by direct numerical simulations (DNS) of homogeneous compressible turbulent flows involving a single step Arrhenius reaction. The results of a priori analysis indicate that the local values of the SGS unmixedness are accurately predicted by the model. A posteriori results also indicate that the statistics of the resolved temperature and scalars as obtained by LES compare favorably with DNS values.

  20. Collaborative Project: High-resolution Global Modeling of the Effects of Subgrid-Scale Clouds and Turbulence on Precipitating Cloud Systems

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David A. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science

    2015-11-01

    We proposed to implement, test, and evaluate recently developed turbulence parameterizations, using a wide variety of methods and modeling frameworks together with observations including ARM data. We have successfully tested three different turbulence parameterizations in versions of the Community Atmosphere Model: CLUBB, SHOC, and IPHOC. All three produce significant improvements in the simulated climate. CLUBB will be used in CAM6, and also in ACME. SHOC is being tested in the NCEP forecast model. In addition, we have achieved a better understanding of the strengths and limitations of the PDF-based parameterizations of turbulence and convection.

  1. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  2. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...... of models has been somewhat narrow-minded reducing the notion of validation to establishment of truth. This article puts forward the diversity in applications of simulation models that demands a corresponding diversity in the notion of validation....

  3. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  4. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  5. The effects of the sub-grid variability of soil and land cover data on agricultural droughts in Germany

    Science.gov (United States)

    Kumar, Rohini; Samaniego, Luis; Zink, Matthias

    2013-04-01

    Simulated soil moisture from land surface or water balance models is increasingly used to characterize and/or monitor the development of agricultural droughts at regional and global scales (e.g. NLADS, EDO, GLDAS). The skill of these models to accurately replicate hydrologic fluxes and state variables is strongly dependent on the quality meteorological forcings, the conceptualization of dominant processes, and the parameterization scheme used to incorporate the variability of land surface properties (e.g. soil, topography, and vegetation) at a coarser spatial resolutions (e.g. at least 4 km). The goal of this study is to analyze the effects of the sub-grid variability of soil texture and land cover properties on agricultural drought statistics such as duration, severity, and areal extent. For this purpose, a process based mesoscale hydrologic model (mHM) is used to create two sets of daily soil moisture fields over Germany at the spatial resolution of (4 × 4) km2 from 1950 to 2011. These simulations differ from each other only on the manner in which the land surface properties are accounted within the model. In the first set, soil moisture fields are obtained with the multiscale parameter regionalization (MPR) scheme (Samaniego, et. al. 2010, Kumar et. al. 2012), which explicitly takes the sub-grid variability of soil texture and land cover properties into account. In the second set, on the contrary, a single dominant soil and land cover class is used for ever grid cell at 4 km. Within each set, the propagation of the parameter uncertainty into the soil moisture simulations is also evaluated using an ensemble of 100 best global parameter sets of mHM (Samaniego, et. al. 2012). To ensure comparability, both sets of this ensemble simulations are forced with the same fields of meteorological variables (e.g., precipitation, temperature, and potential evapotranspiration). Results indicate that both sets of model simulations, with and without the sub-grid variability of

  6. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  7. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  8. Evapotranspiration and cloud variability at regional sub-grid scales

    Science.gov (United States)

    Vila-Guerau de Arellano, Jordi; Sikma, Martin; Pedruzo-Bagazgoitia, Xabier; van Heerwaarden, Chiel; Hartogensis, Oscar; Ouwersloot, Huug

    2017-04-01

    In regional and global models uncertainties arise due to our incomplete understanding of the coupling between biochemical and physical processes. Representing their impact depends on our ability to calculate these processes using physically sound parameterizations, since they are unresolved at scales smaller than the grid size. More specifically over land, the coupling between evapotranspiration, turbulent transport of heat and moisture, and clouds lacks a combined representation to take these sub-grid scales interactions into account. Our approach is based on understanding how radiation, surface exchange, turbulent transport and moist convection are interacting from the leaf- to the cloud scale. We therefore place special emphasis on plant stomatal aperture as the main regulator of CO2-assimilation and water transpiration, a key source of moisture source to the atmosphere. Plant functionality is critically modulated by interactions with atmospheric conditions occurring at very short spatiotemporal scales such as cloud radiation perturbations or water vapour turbulent fluctuations. By explicitly resolving these processes, the LES (large-eddy simulation) technique is enabling us to characterize and better understand the interactions between canopies and the local atmosphere. This includes the adaption time of vegetation to rapid changes in atmospheric conditions driven by turbulence or the presence of cumulus clouds. Our LES experiments are based on explicitly coupling the diurnal atmospheric dynamics to a plant physiology model. Our general hypothesis is that different partitioning of direct and diffuse radiation leads to different responses of the vegetation. As a result there are changes in the water use efficiencies and shifts in the partitioning of sensible and latent heat fluxes under the presence of clouds. Our presentation is as follows. First, we discuss the ability of LES to reproduce the surface energy balance including photosynthesis and CO2 soil

  9. Large-eddy simulation of charged particle flows to model sandstorms

    Science.gov (United States)

    Rahman, Mustafa; Cheng, Wan; Samtaney, Ravi

    2016-11-01

    Intense electric fields and lightning have been observed in sandstorms. It is proposed to investigate the physical mechanisms essential for production and sustenance of large-scale electric fields in sandstorms. Our central hypothesis is that the turbulent transport of charged sand particles is a necessary condition to attain sustained large-scale electric fields in sandstorms. Our investigation relies on simulating turbulent two-phase (air and suspended sand particles) flows in which the flow of air is governed by the filtered Navier-Stokes equations with a subgrid-scale model in a Large-Eddy-Simulation setting, while dust particles are modeled using the Eulerian approach using a version of the Direct Quadrature Method of Moments. For the fluid phase, the LES of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney. We will quantify the effects of different sand particle distributions, and turbulent intensities on the root-mean-square of the generated electric fields. Supported by KAUST OCRF under Award Number URF/1/1704-01-01. The supercomputer Shaheen at KAUST is used for all simulations.

  10. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  11. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  12. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Bjoern Johan

    1998-12-31

    This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139

  13. Physical modelling of interactions between interfaces and turbulence; Modelisation physique des interactions entre interfaces et turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Toutant, A

    2006-12-15

    The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)

  14. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    Science.gov (United States)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by

  15. Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations

    KAUST Repository

    Iliev, Oleg P.

    2010-01-01

    We present a two-scale finite element method for solving Brinkman\\'s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation developed for Darcy\\'s equations by Arbogast in [4]. In order to reduce the error along the coarse-grid interfaces we have added a alternating Schwarz iteration using patches around the coarse-grid boundaries. We have implemented the subgrid method using Deal.II FEM library, [7], and we present the computational results for a number of model problems. © 2010 Springer-Verlag Berlin Heidelberg.

  16. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  17. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  18. Space-time multiscale methods for Large Eddy Simulation

    NARCIS (Netherlands)

    Munts, E.A.

    2006-01-01

    The Variational Multiscale (VMS) method has appeared as a promising new approach to the Large Eddy Simulation (LES) of turbulent flows. The key advantage of the VMS approach is that it allows different subgrid-scale (SGS) modeling assumptions to be made at different ranges of the resolved scales.

  19. ASPECTS ABOUT SIMULATED MODEL TRUSTINESS

    Directory of Open Access Journals (Sweden)

    CRISAN DANIELA ALEXANDRA

    2009-05-01

    Full Text Available Nowadays, grace of computing possibilities that electronic computers offer and namely, big memory volume and computing speed, there is the improving of modeling methods, an important role having complex system modeling using simulation techniques. These o

  20. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...... in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed....

  1. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    Science.gov (United States)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while

  2. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources...

  3. Defense Modeling and Simulation Initiative

    Science.gov (United States)

    1992-05-01

    an artificial battlefield created by computer-based simulation software. The most important constraint associated with this type of simulators is the...techniques for improving on this situation, which draw on artificial intelligence, mathematical programming, and simpler operations research methods...algoriims, data structwres for real-time represenmion and modeling • Develop a global hierarchy ofinn erable environmental models - Develop inteligent

  4. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools

    Science.gov (United States)

    Yang, X. I. A.; Meneveau, C.

    2017-03-01

    In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface `underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES. This article is part of the themed issue 'Wind energy in complex terrains'.

  5. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools.

    Science.gov (United States)

    Yang, X I A; Meneveau, C

    2017-04-13

    In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface 'underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).

  6. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  7. A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.

    2017-10-01

    At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold

  8. Dynamic simulation of a biomass domestic boiler under thermally thick considerations

    NARCIS (Netherlands)

    Gómez, M. A.; Porteiro, J.; De la Cuesta de Cal, Daniel; Patiño, D.; Míguez, J. L.

    2017-01-01

    A biomass combustion model with a thermally thick approach is presented and applied to the simulation of a commercial biomass domestic boiler. A subgrid scale model is used to divide the particles into several grid points, each representing one of the different combustion stages. These grid points

  9. New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations

    Science.gov (United States)

    Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.

    2012-01-01

    In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.

  10. Model Calibration for Ship Simulations

    NARCIS (Netherlands)

    E.F.G. van Daalen (Ed); J. Fehribach; T. van Leeuwen (Tristan); C. Reinhardt; N. Schenkels; R. Sheombarsing

    2014-01-01

    htmlabstractModel calibration is an important aspect in ship simulation. Here, ship motion is described by an ODE which includes tuning parameters that capture complex physical processes such as friction of the hull. In order for the simulations to be realistic for a wide range of

  11. Model Calibration for Ship Simulations

    NARCIS (Netherlands)

    van Daalen, Ed; Fehribach, Joseph; van Leeuwen, Tristan; Reinhardt, Christian; Schenkels, Nick; Sheombarsing, Ray

    2014-01-01

    Model calibration is an important aspect in ship simulation. Here, ship motion is described by an ODE which includes tuning parameters that capture complex physical processes such as friction of the hull. In order for the simulations to be realistic for a wide range of scenarios these tuning

  12. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  13. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    Science.gov (United States)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  14. TREAT Modeling and Simulation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  15. Modeling and Simulation at NASA

    Science.gov (United States)

    Steele, Martin J.

    2009-01-01

    This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.

  16. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  17. Corrélations de vitesse lagrangienne et échelle intégrale temporelle en simulation des grandes échelles

    Science.gov (United States)

    Wei, Guoxin; Vinkovic, Ivana; Shao, Liang; Simoëns, Serge

    2006-05-01

    Velocity correlations and Lagrangian timescales are studied numerically by means of a direct numerical simulation (DNS) and a large-eddy simulation (LES) coupled with a subgrid Lagrangian stochastic model, in the case of a homogeneous and isotropic turbulence. A Langevin model is used to determine the subgrid component of the velocity of fluid particles. Numerical results of Lagrangian velocity correlations and timescales are presented. These quantities play an important role in turbulent mixing and scalar dispersion. To cite this article: G. Wei et al., C. R. Mecanique 334 (2006).

  18. Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition

    Science.gov (United States)

    Calo, Victor Manuel

    Variational multiscale concepts are used to construct subgrid-scale models for Large-Eddy Simulation (LES) of turbulence. The basic idea of this framework is to introduce, a priori, a decomposition of the solution into coarse and fine scales. The coarse scales are identified with the numerical approximation, while the fine scales are identified with the subgrid scales and need to be modeled. A residual-based fine-scale approximation is proposed by extending to the nonlinear realm algebraic approximations of the local Green's function. These approximations, based on the Stabilized Methods theory, may be thought of as the modeling component of the proposed approach. This new modeling concept is very different from the classical LES modeling ideas, which are dominated by the addition of ad hoc eddy viscosities. These newer variational multiscale ideas, and the older variants, have been implemented in a finite volume program that has enjoyed widespread use in turbulence simulations. The difficult problem of simulating the bypass transition of a boundary layer is examined from the point of view of the variational multiscale method and classical LES. The aim was to solve this problem as an LES and demonstrate the efficacy of the new residual-based modeling ideas in the process. Independent of the LES method, it was found that in order to accurately simulate bypass transition, the decay of input homogeneous, isotropic, free-stream turbulence must be the same for all meshes. A procedure was developed that enabled simulation of consistent energy decay with the range of meshes considered. The formulation is outlined and numerical results are presented and compared to a conventional LES approach, DNS results and experimental data. The new method performs as well as the state-of-the-art LES models and offers a promising new path for turbulence research in LES. However, it obviously needs further testing on a wider variety of flows and implementation in a variety of numerical

  19. Wall-Modeled Large-Eddy Simulation of Turbulent Flow Past an Airfoil

    Science.gov (United States)

    Gao, Wei; Zhang, Wei; Samtaney, Ravi

    2015-11-01

    We present wall-modeled large-eddy simulations (WMLES) for turbulent flows incompressible past an airfoil. The virtual wall model, originally developed by Chung & Pullin (J. of Fluid Mech., 2009), is extended to generalized curvilinear coordinates and implemented using a body-fitted structured C-grid for airfoils. This model dynamically couples the outer resolved region with the wall region, and imposes a slip velocity boundary condition for the filtered velocity field on the ``virtual'' wall. The virtual wall model is combined with the stretched spiral vortex sub-grid scale model in a self-consistent framework, which is tested in WMLES of flow past a NACA0012 airfoil at different Reynolds number (Re) and angle of attack. The numerical results show that the wall model is able to accurately predict mean flow characteristics, including the formation of the separation bubble. Some high-order turbulence quantities are also compared with the direct numerical simulation results (Re =104) of flow past the same airfoil. We will present verification test cases to quantify the effectiveness of the wall model in both attached and separated flow regimes. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The IBM Blue Gene/P Shaheen at KAUST was utilized for the simulations.

  20. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......) and the North American Animal Disease Spread Model (NAADSM). The models are rather data intensive, but in varying degrees. They generally demand data on the farm level, including farm location, type, number of animals, and movement and contact frequency to other farms. To be able to generate a useful model...... of FMD spread that can provide useful and trustworthy advises, there are four important issues, which the model should represent: 1) The herd structure of the country in question, 2) the dynamics of animal movements and contacts between herds, 3) the biology of the disease, and 4) the regulations...

  1. Greenhouse simulation models.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    A model is a representation of a real system to describe some properties i.e. internal factors of that system (out-puts) as function of some external factors (inputs). It is impossible to describe the relation between all internal factors (if even all internal factors could be defined) and all

  2. Complex systems models: engineering simulations

    OpenAIRE

    Polack, Fiona A. C.; Hoverd, Tim; Sampson, Adam T.; Stepney, Susan; Timmis, Jon,

    2008-01-01

    As part of research towards the CoSMoS unified infrastructure for modelling and simulating complex systems, we review uses of definitional and descriptive models in natural science and computing, and existing integrated platforms. From these, we identify requirements for engineering models of complex systems, and consider how some of the requirements could be met, using state-of-the-art model management and a mobile, process-oriented computing paradigm.

  3. Numerical simulation of the dynamic flow behavior in a bubble column: a study of closures for turbulence and interface forces

    NARCIS (Netherlands)

    Zhang, D.; Deen, N.G.; Kuipers, J.A.M.

    2006-01-01

    Numerical simulations of the bubbly flow in two square cross-sectioned bubble columns were conducted with the commercial CFD package CFX-4.4. The effect of the model constant used in the sub-grid scale (SGS) model, CS, as well as the interfacial closures for the drag, lift and virtual mass forces

  4. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Towards filtered drag force model for non-cohesive and cohesive particle-gas flows

    Science.gov (United States)

    Ozel, Ali; Gu, Yile; Milioli, Christian C.; Kolehmainen, Jari; Sundaresan, Sankaran

    2017-10-01

    Euler-Lagrange simulations of gas-solid flows in unbounded domains have been performed to study sub-grid modeling of the filtered drag force for non-cohesive and cohesive particles. The filtered drag forces under various microstructures and flow conditions were analyzed in terms of various sub-grid quantities: the sub-grid drift velocity, which stems from the sub-grid correlation between the local fluid velocity and the local particle volume fraction, and the scalar variance of solid volume fraction, which is a measure to identify the degree of local inhomogeneity of volume fraction within a filter volume. The results show that the drift velocity and the scalar variance exert systematic effects on the filtered drag force. Effects of particle and domain sizes, gravitational accelerations, and mass loadings on the filtered drag are also studied, and it is shown that these effects can be captured by both sub-grid quantities. Additionally, the effect of cohesion force through the van der Waals interaction on the filtered drag force is investigated, and it is found that there is no significant difference on the dependence of the filtered drag coefficient of cohesive and non-cohesive particles on the sub-grid drift velocity or the scalar variance of solid volume fraction. The assessment of predictabilities of sub-grid quantities was performed by correlation coefficient analyses in a priori manner, and it is found that the drift velocity is superior. However, the drift velocity is not available in "coarse-grid" simulations and a specific closure is needed. A dynamic scale-similarity approach was used to model drift velocity but the predictability of that model is not entirely satisfactory. It is concluded that one must develop a more elaborate model for estimating the drift velocity in "coarse-grid" simulations.

  6. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    NARCIS (Netherlands)

    Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike

  7. Interacting errors in large-eddy simulation: a review of recent developments

    NARCIS (Netherlands)

    Geurts, Bernardus J.

    2006-01-01

    The accuracy of large-eddy simulations is limited, among others, by the quality of the subgrid parameterisation and the numerical contamination of the smaller retained flow structures. We review the effects of discretisation and modelling errors from two different perspectives. We first show that

  8. Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows

    KAUST Repository

    Rahman, Mustafa M.

    2017-01-05

    We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.

  9. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  10. Convective kinetic energy equation under the mass-flux subgrid-scale parameterization

    Science.gov (United States)

    Yano, Jun-Ichi

    2015-03-01

    The present paper originally derives the convective kinetic energy equation under mass-flux subgrid-scale parameterization in a formal manner based on the segmentally-constant approximation (SCA). Though this equation is long since presented by Arakawa and Schubert (1974), a formal derivation is not known in the literature. The derivation of this formulation is of increasing interests in recent years due to the fact that it can explain basic aspects of the convective dynamics such as discharge-recharge and transition from shallow to deep convection. The derivation is presented in two manners: (i) for the case that only the vertical component of the velocity is considered and (ii) the case that both the horizontal and vertical components are considered. The equation reduces to the same form as originally presented by Arakwa and Schubert in both cases, but with the energy dissipation term defined differently. In both cases, nevertheless, the energy "dissipation" (loss) term consists of the three principal contributions: (i) entrainment-detrainment, (ii) outflow from top of convection, and (iii) pressure effects. Additionally, inflow from the bottom of convection contributing to a growth of convection is also formally counted as a part of the dissipation term. The eddy dissipation is also included for a completeness. The order-of-magnitude analysis shows that the convective kinetic energy "dissipation" is dominated by the pressure effects, and it may be approximately described by Rayleigh damping with a constant time scale of the order of 102-103 s. The conclusion is also supported by a supplementary analysis of a cloud-resolving model (CRM) simulation. The Appendix discusses how the loss term ("dissipation") of the convective kinetic energy is qualitatively different from the conventional eddy-dissipation process found in turbulent flows.

  11. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  12. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantication of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to dene parts...

  13. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  14. Assessment of zero-equation SGS models for simulating indoor environment

    Science.gov (United States)

    Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.

    2016-12-01

    The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.

  15. Sensitivity simulations of superparameterised convection in a general circulation model

    Science.gov (United States)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid

  16. Modeling control in manufacturing simulation

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, S.; Sánchez, P.J.; Ferrin, D.; Morrice, D.J.

    2003-01-01

    A significant shortcoming of traditional simulation languages is the lack of attention paid to the modeling of control structures, i.e., the humans or systems responsible for manufacturing planning and control, their activities and the mutual tuning of their activities. Mostly they are hard coded

  17. A model for cosmological simulations of galaxy formation physics

    Science.gov (United States)

    Vogelsberger, Mark; Genel, Shy; Sijacki, Debora; Torrey, Paul; Springel, Volker; Hernquist, Lars

    2013-12-01

    We present a new comprehensive model of the physics of galaxy formation designed for large-scale hydrodynamical simulations of structure formation using the moving-mesh code AREPO. Our model includes primordial and metal-line cooling with self-shielding corrections, stellar evolution and feedback processes, gas recycling, chemical enrichment, a novel subgrid model for the metal loading of outflows, black hole (BH) seeding, BH growth and merging procedures, quasar- and radio-mode feedback, and a prescription for radiative electromagnetic (EM) feedback from active galactic nuclei (AGN). Our stellar evolution and chemical enrichment scheme follows nine elements (H, He, C, N, O, Ne, Mg, Si, Fe) independently. Stellar feedback is realized through kinetic outflows. The metal mass loading of outflows can be adjusted independently of the wind mass loading. This is required to simultaneously reproduce the stellar mass content of low-mass haloes and their gas oxygen abundances. Radiative EM AGN feedback is implemented assuming an average spectral energy distribution and a luminosity-dependent scaling of obscuration effects. This form of feedback suppresses star formation more efficiently than continuous thermal quasar-mode feedback alone, but is less efficient than mechanical radio-mode feedback in regulating star formation in massive haloes. We contrast simulation predictions for different variants of our galaxy formation model with key observations, allowing us to constrain the importance of different modes of feedback and their uncertain efficiency parameters. We identify a fiducial best match model and show that it reproduces, among other things, the cosmic star formation history, the stellar mass function, the stellar mass-halo mass relation, g-, r-, i- and z-band SDSS galaxy luminosity functions, and the Tully-Fisher relation. We can achieve this success only if we invoke very strong forms of stellar and AGN feedback such that star formation is adequately reduced in

  18. Modeling and Simulation of Nanoindentation

    Science.gov (United States)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  19. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  20. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  1. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  2. Simulation Framework for Teaching in Modeling and Simulation Areas

    Science.gov (United States)

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  3. A Unified Detail-Preserving Liquid Simulation by Two-Phase Lattice Boltzmann Modeling.

    Science.gov (United States)

    Guo, Yulong; Liu, Xiaopei; Xu, Xuemiao

    2017-05-01

    Traditional methods in graphics to simulate liquid-air dynamics under different scenarios usually employ separate approaches with sophisticated interface tracking/reconstruction techniques. In this paper, we propose a novel unified approach which is easy and effective to produce a variety of liquid-air interface phenomena. These phenomena, such as complex surface splashes, bubble interactions, as well as surface tension effects, can co-exist in one single simulation, and are created within the same computational framework. Such a framework is unique in that it is free from any complicated interface tracking/reconstruction procedures. Our approach is developed from the two-phase lattice Boltzmann method with the mean field model, which provides a unified framework for interface dynamics but is numerically unstable under turbulent conditions. Considering the drawbacks of the existing approaches, we propose techniques to suppress oscillations for significant stability enhancement, as well as derive a new subgrid-scale model to further improve stability, faithfully preserving liquid-air interface details without excessive diffusion by taking into account the density variation. The whole framework is highly parallel, enabling very efficient implementation. Comparisons with the related approaches show superiority on stable simulations with detail preservation and multiphase phenomena simultaneously involved. A set of animation results demonstrate the effectiveness of our method.

  4. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  5. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    Science.gov (United States)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  6. Telco Clouds: Modelling and Simulation

    OpenAIRE

    Krzywda, Jakub; Tärneberg, William; Östberg, Per-Olov; Kihl, Maria; Elmroth, Erik

    2015-01-01

    In this paper, we propose a telco cloud meta-model that can be used to simulate different infrastructure con- figurations and explore their consequences on the system performance and costs. To achieve this, we analyse current telecommunication and data centre infrastructure paradigms, describe the architecture of the telco cloud and detail the benefits of merging both infrastructures in a unified system. Next, we detail the dynamics of the telco cloud and identify the components that are the ...

  7. Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling

    CERN Document Server

    Harouna, S Kadri

    2016-01-01

    We explore the potential of a formulation of the Navier-Stokes equations incorporating a random description of the small-scale velocity component. This model, established from a version of the Reynolds transport theorem adapted to a stochastic representation of the flow, gives rise to a large-scale description of the flow dynamics in which emerges an anisotropic subgrid tensor, reminiscent to the Reynolds stress tensor, together with a drift correction due to an inhomogeneous turbulence. The corresponding subgrid model, which depends on the small scales velocity variance, generalizes the Boussinesq eddy viscosity assumption. However, it is not anymore obtained from an analogy with molecular dissipation but ensues rigorously from the random modeling of the flow. This principle allows us to propose several subgrid models defined directly on the resolved flow component. We assess and compare numerically those models on a standard Green-Taylor vortex flow at Reynolds 1600. The numerical simulations, carried out w...

  8. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  9. Special Issue: Very large eddy simulation. Issue Edited by Dimitris Drikakis.Copyright © 2002 John Wiley & Sons, Ltd.Save Title to My ProfileSet E-Mail Alert javascript:mailTool(96015556, '', '');" id="email" alt="E-Mail" title="E-Mail This Page" />javascript:print();" id="print" alt="Print" title="Print This Page" /> Previous Issue | Next Issue > Full Issue Listing-->Volume 39, Issue 9, Pages 763-864(30 July 2002)Research ArticleEmbedded turbulence model in numerical methods for hyperbolic conservation laws

    Science.gov (United States)

    Drikakis, D.

    2002-07-01

    The paper describes the use of numerical methods for hyperbolic conservation laws as an embedded turbulence modelling approach. Different Godunov-type schemes are utilized in computations of Burgers' turbulence and a two-dimensional mixing layer. The schemes include a total variation diminishing, characteristic-based scheme which is developed in this paper using the flux limiter approach. The embedded turbulence modelling property of the above methods is demonstrated through coarsely resolved large eddy simulations with and without subgrid scale models. Copyright

  10. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  11. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  12. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  13. On the influence of model physics on simulations of Arctic and Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    F. Massonnet

    2011-09-01

    Full Text Available Two hindcast (1983–2007 simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1°.

  14. Large eddy simulations of laminar separation bubble

    Science.gov (United States)

    Cadieux, Francois

    The flow over blades and airfoils at moderate angles of attack and Reynolds numbers ranging from ten thousand to a few hundred thousands undergoes separation due to the adverse pressure gradient generated by surface curvature. In many cases, the separated shear layer then transitions to turbulence and reattaches, closing off a recirculation region -- the laminar separation bubble. To avoid body-fitted mesh generation problems and numerical issues, an equivalent problem for flow over a flat plate is formulated by imposing boundary conditions that lead to a pressure distribution and Reynolds number that are similar to those on airfoils. Spalart & Strelet (2000) tested a number of Reynolds-averaged Navier-Stokes (RANS) turbulence models for a laminar separation bubble flow over a flat plate. Although results with the Spalart-Allmaras turbulence model were encouraging, none of the turbulence models tested reliably recovered time-averaged direct numerical simulation (DNS) results. The purpose of this work is to assess whether large eddy simulation (LES) can more accurately and reliably recover DNS results using drastically reduced resolution -- on the order of 1% of DNS resolution which is commonly achievable for LES of turbulent channel flows. LES of a laminar separation bubble flow over a flat plate are performed using a compressible sixth-order finite-difference code and two incompressible pseudo-spectral Navier-Stokes solvers at resolutions corresponding to approximately 3% and 1% of the chosen DNS benchmark by Spalart & Strelet (2000). The finite-difference solver is found to be dissipative due to the use of a stability-enhancing filter. Its numerical dissipation is quantified and found to be comparable to the average eddy viscosity of the dynamic Smagorinsky model, making it difficult to separate the effects of filtering versus those of explicit subgrid-scale modeling. The negligible numerical dissipation of the pseudo-spectral solvers allows an unambiguous

  15. Uterine Contraction Modeling and Simulation

    Science.gov (United States)

    Liu, Miao; Belfore, Lee A.; Shen, Yuzhong; Scerbo, Mark W.

    2010-01-01

    Building a training system for medical personnel to properly interpret fetal heart rate tracing requires developing accurate models that can relate various signal patterns to certain pathologies. In addition to modeling the fetal heart rate signal itself, the change of uterine pressure that bears strong relation to fetal heart rate and provides indications of maternal and fetal status should also be considered. In this work, we have developed a group of parametric models to simulate uterine contractions during labor and delivery. Through analysis of real patient records, we propose to model uterine contraction signals by three major components: regular contractions, impulsive noise caused by fetal movements, and low amplitude noise invoked by maternal breathing and measuring apparatus. The regular contractions are modeled by an asymmetric generalized Gaussian function and least squares estimation is used to compute the parameter values of the asymmetric generalized Gaussian function based on uterine contractions of real patients. Regular contractions are detected based on thresholding and derivative analysis of uterine contractions. Impulsive noise caused by fetal movements and low amplitude noise by maternal breathing and measuring apparatus are modeled by rational polynomial functions and Perlin noise, respectively. Experiment results show the synthesized uterine contractions can mimic the real uterine contractions realistically, demonstrating the effectiveness of the proposed algorithm.

  16. Brightest cluster galaxies in cosmological simulations: achievements and limitations of active galactic nuclei feedback models

    Science.gov (United States)

    Ragone-Figueroa, Cinthia; Granato, Gian Luigi; Murante, Giuseppe; Borgani, Stefano; Cui, Weiguang

    2013-12-01

    We analyse the basic properties of brightest cluster galaxies (BCGs) produced by state of the art cosmological zoom-in hydrodynamical simulations. These simulations have been run with different subgrid physics included. Here we focus on the results obtained with and without the inclusion of the prescriptions for supermassive black hole growth and of the ensuing active galactic nuclei (AGN) feedback. The latter process goes in the right direction of decreasing significantly the overall formation of stars. However, BCGs end up still containing too much stellar mass, a problem that increases with halo mass, and having an unsatisfactory structure. This is in the sense that their effective radii are too large, and that their density profiles feature a flattening on scales much larger than observed. We also find that our model of thermal AGN feedback has very little effect on the stellar velocity dispersions, which turn out to be very large. Taken together, these problems, which to some extent can be recognized also in other numerical studies typically dealing with smaller halo masses, indicate that on one hand present day subresolution models of AGN feedback are not effective enough in diminishing the global formation of stars in the most massive galaxies, but on the other hand they are relatively too effective in their centres. It is likely that a form of feedback generating large-scale gas outflows from BCGs precursors, and a more widespread effect over the galaxy volume, can alleviate these difficulties.

  17. Parameterization for subgrid-scale motion of ice-shelf calving fronts

    Directory of Open Access Journals (Sweden)

    T. Albrecht

    2011-01-01

    Full Text Available A parameterization for the motion of ice-shelf fronts on a Cartesian grid in finite-difference land-ice models is presented. The scheme prevents artificial thinning of the ice shelf at its edge, which occurs due to the finite resolution of the model. The intuitive numerical implementation diminishes numerical dispersion at the ice front and enables the application of physical boundary conditions to improve the calculation of stress and velocity fields throughout the ice-sheet-shelf system. Numerical properties of this subgrid modification are assessed in the Potsdam Parallel Ice Sheet Model (PISM-PIK for different geometries in one and two horizontal dimensions and are verified against an analytical solution in a flow-line setup.

  18. Knowledge Support of Simulation Model Reuse

    Directory of Open Access Journals (Sweden)

    M. Valášek

    2004-01-01

    Full Text Available This describes the knowledge support for engineering design based on virtual modelling and simulation. These are the results of the EC Clockwork project. A typical and important step in the development of a simulation model is the phase of reusing. Virtual modelling and simulation often use the components of previous models. The usual problem is that the only remaining part of the previous simulation models is the model itself. However, a large amount of knowledge and intermediate models have been used, developed and then lost. A special methodology and special tools have therefore been developed on support of storing, retrieving and reusing the knowledge from previous simulation models. The knowledge support includes informal knowledge, formal knowledge and intermediate engineering models. This paper describes the overall methodology and tools, using the example of developing a simulation model of Trijoint, a new machine tool.

  19. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    Science.gov (United States)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  20. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  1. Evaluation of the JULES land surface model in simulating catchment hydrology in Southern Africa

    Science.gov (United States)

    MacKellar, N. C.; Dadson, S. J.; New, M.; Wolski, P.

    2013-08-01

    Land surface models (LSMs) are advanced tools which can be used to estimate energy, water and biogeochemical exchanges at regional scales. The inclusion of a river flow routing module in an LSM allows for the simulation of river discharge from a catchment and offers an approach to evaluate the response of the system to variations in climate and land-use, which can provide useful information for regional water resource management. This study offers insight into some of the pragmatic considerations of applying an LSM over a regional domain in Southern Africa. The objectives are to identify key parameter sensitivities and investigate differences between two runoff production schemes in physically contrasted catchments. The Joint UK Land Environment Simulator (JULES) LSM was configured for a domain covering Southern Africa at a 0.5° resolution. The model was forced with meteorological input from the WATCH Forcing Data for the period 1981-2001 and sensitivity to various model configurations and parameter settings were tested. Both the PDM and TOPMODEL sub-grid scale runoff generation schemes were tested for parameter sensitivities, with the evaluation focussing on simulated river discharge in sub-catchments of the Orange, Okavango and Zambezi rivers. It was found that three catchments respond differently to the model configurations and there is no single runoff parameterization scheme or parameter values that yield optimal results across all catchments. The PDM scheme performs well in the upper Orange catchment, but poorly in the Okavango and Zambezi, whereas TOPMODEL grossly underestimates discharge in the upper Orange and shows marked improvement over PDM for the Okavango and Zambezi. A major shortcoming of PDM is that it does not realistically represent subsurface runoff in the deep, porous soils typical of the Okavango and Zambezi headwaters. The dry-season discharge in these catchments is therefore not replicated by PDM. TOPMODEL, however, simulates a more

  2. The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs

    Science.gov (United States)

    Tremmel, M.; Karcher, M.; Governato, F.; Volonteri, M.; Quinn, T. R.; Pontzen, A.; Anderson, L.; Bellovary, J.

    2017-09-01

    We present a novel implementation of supermassive black hole (SMBH) formation, dynamics and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modelling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multidimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization into a new set of high-resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses and global SF and SMBH accretion histories at high redshift that are consistent with observations. We discuss the importance of SMBH physics in shaping the evolution of massive galaxies and show how SMBH feedback is much more effective at regulating SF compared to SNe feedback in this regime. Further, we show how each aspect of our SMBH model impacts this evolution compared to more common approaches. Finally, we present a science application of this scheme studying the properties and time evolution of an example dual active galactic nucleus system, highlighting how our approach allows simulations to better study galaxy interactions and SMBH mergers in the context of galaxy-BH co-evolution.

  3. Large-Eddy Simulations of Atmospheric Flows Over Complex Terrain Using the Immersed-Boundary Method in the Weather Research and Forecasting Model

    Science.gov (United States)

    Ma, Yulong; Liu, Heping

    2017-12-01

    Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.

  4. Large-Eddy Simulations of Atmospheric Flows Over Complex Terrain Using the Immersed-Boundary Method in the Weather Research and Forecasting Model

    Science.gov (United States)

    Ma, Yulong; Liu, Heping

    2017-07-01

    Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.

  5. Resolution-dependent behavior of subgrid-scale vertical transport in the Zhang-McFarlane convection parameterization

    Science.gov (United States)

    Xiao, Heng; Gustafson, William I.; Hagos, Samson M.; Wu, Chien-Ming; Wan, Hui

    2015-06-01

    To better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km2. Then the ZM-based parameterization of vertical transport of moist static energy for scales smaller than the subdomain size (w'h'>¯ZM) are compared to those directly calculated from the CRM simulations (w'h'>¯CRM) for different subdomain sizes. The ensemble mean w'h'>¯CRM decreases by more than half as the subdomain size decreases from 128 to 8 km across while w'h'>¯ZM decreases with subdomain size only for strong convection cases and increases for weaker cases. The resolution dependence of w'h'>¯ZM is determined by the positive-definite grid-scale tendency of convective available potential energy (CAPE) in the convective quasi-equilibrium (QE) closure. Further analysis shows the actual grid-scale tendency of CAPE (before taking the positive definite value) and w'h'>¯CRM behave very similarly as the subdomain size changes because they are both tied to grid-scale advective tendencies. We can improve the resolution dependence of w'h'>¯ZM significantly by averaging the grid-scale tendency of CAPE over an appropriately large area surrounding each subdomain before taking its positive definite value. Even though the ensemble mean w'h'>¯CRM decreases with increasing resolution, its variability increases dramatically. w'h'>¯ZM cannot capture such increase in the variability, suggesting the need for stochastic treatment of convection at relatively high spatial resolution (8 or 16 km).

  6. Large scale finite element solvers for the large eddy simulation of incompressible turbulent flows

    OpenAIRE

    Colomés Gené, Oriol

    2016-01-01

    In this thesis we have developed a path towards large scale Finite Element simulations of turbulent incompressible flows. We have assessed the performance of residual-based variational multiscale (VMS) methods for the large eddy simulation (LES) of turbulent incompressible flows. We consider VMS models obtained by different subgrid scale approximations which include either static or dynamic subscales, linear or nonlinear multiscale splitting, and different choices of the subscale space. W...

  7. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    2016-06-01

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  8. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  9. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  10. Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow

    OpenAIRE

    Holmen, J; Hughes, T.J.R; Oberai, A.A.; Wells, G. N.

    2004-01-01

    The variational multiscale method has been shown to perform well for large-eddy simulation (LES) of turbulent flows. The method relies upon a partition of the resolved velocity field into large- and small-scale components. The subgrid model then acts only on the small scales of motion, unlike conventional LES models which act on all scales of motion. For homogeneous isotropic turbulence and turbulent channel flows, the multiscale model can outperform conventional LES formulations. An issue in...

  11. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  12. Structure and modeling of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.A. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-12-31

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).

  13. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  14. Modeling and simulation of spacecraft power systems

    Science.gov (United States)

    Lee, J. R.; Cho, B. H.; Kim, S. J.; Lee, F. C.

    1987-01-01

    EASY5 modeling of a complete spacecraft power processing system is presented. Component models are developed, and several system models including a solar array switching system, a partially-shunted solar array system and COBE system are simulated. The power system's modes of operation, such as shunt mode, battery-charge mode, and battery-discharge mode, are simulated for a complete orbit cycle.

  15. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  16. Modeling and Simulation of LDMOS Device

    OpenAIRE

    Sunitha HD; Keshaveni N

    2015-01-01

    Laterally Diffused MOSFET (LDMOS) are widely used in modern communication industry and other applications. LDMOS offers various advantages over conventional MOSFETs with little process change. In the present paper, an LDMOS device is modeled and simulated in SILVACO device simulator package using the ATHENA and ATLAS modules. The complete fabrication process is modeled and the device performance is simulated. The modeled device gives a 46 V breakdown voltage for a devi...

  17. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    release: distribution unlimited. PA#16490 Air Force Research Laboratory Collisionless Electrostatic Shock Modeling and Simulation Daniel W. Crews In-Space... ModelSimulation Results and Verification • Future Work 3Distribution A. Approved for public release: distribution unlimited. PA#16490 Background... model problem for simulation code validation. What’s the Point? 5Distribution A. Approved for public release: distribution unlimited. PA#16490 The

  18. Issues in Numerical Simulation of Fire Suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tieszen, S.R.; Lopez, A.R.

    1999-04-12

    This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

  19. Sub-grid scale representation of vegetation in global land surface schemes: implications for estimation of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    J. R. Melton

    2014-02-01

    Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same

  20. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  1. Representing glaciers in a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Kotlarski, Sven [Max Planck Institute for Meteorology, Hamburg (Germany); ETH Zurich, Institute for Atmospheric and Climate Science, Zurich (Switzerland); Jacob, Daniela; Podzun, Ralf [Max Planck Institute for Meteorology, Hamburg (Germany); Paul, Frank [University of Zurich, Department of Geography, Zurich (Switzerland)

    2010-01-15

    A glacier parameterization scheme has been developed and implemented into the regional climate model REMO. The new scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a subgrid scale. The temporal evolution and the general magnitude of the simulated glacier mass balance in the European Alps are in good accordance with observations for the period 1958-1980, but the strong mass loss towards the end of the twentieth century is systematically underestimated. The simulated decrease of glacier area in the Alps between 1958 and 2003 ranges from -17.1 to -23.6%. The results indicate that observed glacier mass balances can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. However, realistic results can only be achieved by explicitly accounting for the subgrid variability of atmospheric parameters within a climate model grid box. (orig.)

  2. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  3. A comprehensive approach for the simulation of the Urban Heat Island effect with the WRF/SLUCM modeling system: The case of Athens (Greece)

    Science.gov (United States)

    Giannaros, Christos; Nenes, Athanasios; Giannaros, Theodore M.; Kourtidis, Konstantinos; Melas, Dimitrios

    2018-03-01

    This study presents a comprehensive modeling approach for simulating the spatiotemporal distribution of urban air temperatures with a modeling system that includes the Weather Research and Forecasting (WRF) model and the Single-Layer Urban Canopy Model (SLUCM) with a modified treatment of the impervious surface temperature. The model was applied to simulate a 3-day summer heat wave event over the city of Athens, Greece. The simulation, using default SLUCM parameters, is capable of capturing the observed diurnal variation of urban temperatures and the Urban Heat Island (UHI) in the greater Athens Area (GAA), albeit with systematic biases that are prominent during nighttime hours. These biases are particularly evident over low-intensity residential areas, and they are associated with the surface and urban canopy properties representing the urban environment. A series of sensitivity simulations unravels the importance of the sub-grid urban fraction parameter, surface albedo, and street canyon geometry in the overall causation and development of the UHI effect. The sensitivities are then used to determine optimal values of the street canyon geometry, which reproduces the observed temperatures throughout the simulation domain. The optimal parameters, apart from considerably improving model performance (reductions in mean temperature bias from 0.30 °C to 1.58 °C), are also consistent with actual city building characteristics - which gives confidence that the model set-up is robust, and can be used to study the UHI in the GAA in the anticipated warmer conditions in the future.

  4. Large-scale simulation of karst processes - parameter estimation, model evaluation and quantification of uncertainty

    Science.gov (United States)

    Hartmann, A. J.

    2016-12-01

    Heterogeneity is an intrinsic property of karst systems. It results in complex hydrological behavior that is characterized by an interplay of diffuse and concentrated flow and transport. In large-scale hydrological models, these processes are usually not considered. Instead average or representative values are chosen for each of the simulated grid cells omitting many aspects of their sub-grid variability. In karst regions, this may lead to unreliable predictions when those models are used for assessing future water resources availability, floods or droughts, or when they are used for recommendations for more sustainable water management. In this contribution I present a large-scale groundwater recharge model (0.25° x 0.25° resolution) that takes into karst hydrological processes by using statistical distribution functions to express subsurface heterogeneity. The model is applied over Europe's and the Mediterranean's carbonate rock regions ( 25% of the total area). As no measurements of the variability of subsurface properties are available at this scale, a parameter estimation procedure, which uses latent heat flux and soil moisture observations and quantifies the remaining uncertainty, was applied. The model is evaluated by sensitivity analysis, comparison to other large-scale models without karst processes included and independent recharge observations. Using with historic data (2002-2012) I can show that recharge rates vary strongly over Europe and the Mediterranean. At regions with low information for parameter estimation there is a larger prediction uncertainty (for instance in desert regions). Evaluation with independent recharge estimates shows that, on average, the model provides acceptable estimates, while the other large scale models under-estimate karstic recharge. The results of the sensitivity analysis corroborate the importance of including karst heterogeneity into the model as the distribution shape factor is the most sensitive parameter for

  5. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  6. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  7. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei

    Directory of Open Access Journals (Sweden)

    L. A. Lee

    2013-09-01

    Full Text Available Aerosol–cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day concentrations of cloud condensation nuclei (CCN. Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each model grid cell. The standard deviation around the mean CCN varies globally between about ±30% over some marine regions to ±40–100% over most land areas and high latitudes, implying that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol–cloud effects on climate. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulfate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulfur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulfate formation during cloud-processing. The results lead to several recommendations for research that would result in improved modelling of cloud–active aerosol on a global scale.

  8. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B. With approval from the proceedings editor article 020185 titled, "SEIR model simulation for Hepatitis B," is retracted from the public record, as it is a duplication of article 020198 published in the same volume.

  9. Simulating pre-galactic metal enrichment for JWST deep-field observations

    Science.gov (United States)

    Jaacks, Jason

    2017-08-01

    We propose to create a new suite of mesoscale cosmological volume simulations with custom built sub-grid physics in which we independently track the contribution from Population III and Population II star formation to the total metals in the interstellar medium (ISM) of the first galaxies, and in the diffuse IGM at an epoch prior to reionization. These simulations will fill a gap in our simulation knowledge about chemical enrichment in the pre-reionization universe, which is a crucial need given the impending observational push into this epoch with near-future ground and space-based telescopes. This project is the natural extension of our successful Cycle 24 theory proposal (HST-AR-14569.001-A; PI Jaacks) in which we developed a new Pop III star formation sub-grid model which is currently being utilized to study the baseline metal enrichment of pre-reionization systems.

  10. Dynamic simulation of DH house substations. Simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, J.E. [Danfoss A/S, Nordborg (Denmark). Building Control Division

    2003-06-01

    Danfoss AS proceeds on developing simulation models of HVAC components including control equipment for district heating systems. The author presents an example of a simulated domestic hot water service station, describes some of the model components and shows the link between mathematical model and simulation model. Furthermore, an example of hardware in the loop simulation is presented. In this case a domestic heating system is built up in the laboratory by hardware components connected with real time simulations. This system forms the basis for test and evaluation of new control strategies. (orig.) [German] Danfoss AS, Nordborg/Daenemark, entwickelt Simulationsmodelle fuer Komponenten im Bereich Heizung/Lueftung/Klimatechnik einschliesslich der Regelungssysteme fuer Fernwaermeanlagen. Der Autor stellt das Simulationsmodell fuer einen Warmwassererwaermer dar. Darueber hinaus wird das Beispiel einer Simulation unter Einbeziehung von realen Komponenten beschrieben. Dabei wurde im Labor eine Heizanlage aufgebaut und an ein Echtzeit-Simulationsprogramm angeschlossen. Dieses System bildet die Grundlage fuer die Erprobung und Evaluierung neuer Regelungsstrategien. In den letzten 10 Jahren hat Danfoss mit dem Einsatz dynamischer Simulationen bei der Entwicklung von Regelungssystemen fuer Fernwaermeanlagen positive Erfahrungen gesammelt. Es hat sich gezeigt, dass die Simulation erfolgreich eingesetzt werden kann, und zwar nicht nur zur Erprobung besonderer Entwicklungsvorschlaege. Ebenso wichtig war es, Informationen und ein besseres Verstaendnis der Wechselbeziehungen zwischen verschiedenen Parametern zu gewinnen, die das Funktionieren einer Heizungs- oder Heisswasseranlage beeinflussen. Danfoss richtet zur Zeit ein Zentrum fuer die Anwendung von Gebaeudeautomatisierungssystemen ein. Dieses Zentrum wird Moeglichkeiten zur Fortbildung und praktischen Erfahrung auf dem Gebiet der Heizungs- Lueftungs- und Klimatechnik bieten. Die Simulationsprogramme werden einen

  11. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  12. Simulation modeling for the health care manager.

    Science.gov (United States)

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  13. Techniques and Simulation Models in Risk Management

    Directory of Open Access Journals (Sweden)

    Mirela GHEORGHE

    2012-12-01

    Full Text Available In the present paper, the scientific approach of the research starts from the theoretical framework of the simulation concept and then continues in the setting of the practical reality, thus providing simulation models for a broad range of inherent risks specific to any organization and simulation of those models, using the informatics instrument @Risk (Palisade. The reason behind this research lies in the need for simulation models that will allow the person in charge with decision taking inside the field of risk management to adopt new corporate strategies which will answer their current needs. The results of the research are represented by two simulation models specific to risk management. The first model follows the net profit simulation as well as simulating the impact that could be generated by a series of inherent risk factors such as losing some important colleagues, a drop in selling prices, a drop in sales volume, retrofitting, and so on. The second simulation model is associated to the IT field, through the analysis of 10 informatics threats, in order to evaluate the potential financial loss.

  14. Animated simulation models: Miracle or menace

    Directory of Open Access Journals (Sweden)

    P.S Kruger

    2003-12-01

    Full Text Available There has been a dramatic increase in the use of computer based simulation modelling over the last decade. A development that has made a significant contribution to the popularity of the simulation approach is the availability of animation facilities. These facilities are usually part of simulation model development software and often do not require very expensive microcomputer equipment. Animation provides some significant advantages during most phases of a simulation modelling effort but also has some inherent dangers and pitfalls. The purpose of this paper is: to identify and discuss some of the more important advantages and disadvantages of animation, and to provide information about some of the available simulation model development software supporting animation capabilities.

  15. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  16. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    This is supposed to recall gambling and hence the name Monte Carlo simulation. The procedure was developed by. Stanislaw Ulam and John Van Neumann. They used the simu- lation method to solve partial differential equations for diffu- sion of neutrons! (Box 2). We can illustrate the MC method by a simple example.

  17. A Storm Surge and Inundation Model of the Back River Watershed at NASA Langley Research Center

    Science.gov (United States)

    Loftis, Jon Derek; Wang, Harry V.; DeYoung, Russell J.

    2013-01-01

    This report on a Virginia Institute for Marine Science project demonstrates that the sub-grid modeling technology (now as part of Chesapeake Bay Inundation Prediction System, CIPS) can incorporate high-resolution Lidar measurements provided by NASA Langley Research Center into the sub-grid model framework to resolve detailed topographic features for use as a hydrological transport model for run-off simulations within NASA Langley and Langley Air Force Base. The rainfall over land accumulates in the ditches/channels resolved via the model sub-grid was tested to simulate the run-off induced by heavy precipitation. Possessing both the capabilities for storm surge and run-off simulations, the CIPS model was then applied to simulate real storm events starting with Hurricane Isabel in 2003. It will be shown that the model can generate highly accurate on-land inundation maps as demonstrated by excellent comparison of the Langley tidal gauge time series data (CAPABLE.larc.nasa.gov) and spatial patterns of real storm wrack line measurements with the model results simulated during Hurricanes Isabel (2003), Irene (2011), and a 2009 Nor'easter. With confidence built upon the model's performance, sea level rise scenarios from the ICCP (International Climate Change Partnership) were also included in the model scenario runs to simulate future inundation cases.

  18. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  19. Monte Carlo simulation of model Spin systemsr

    Indian Academy of Sciences (India)

    three~dimensional Ising models and Heisenberg models are dealt with in some detail. Recent applications of the Monte Carlo method to spin glass systems and to estimate renormalisation group critical exponents are reviewod. Keywords. _ Monte-carlo simulation; critical phenomena; Ising models; Heisenberg models ...

  20. Effects of simulation language and modeling methodology on simulation modeling performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.J.

    1987-01-01

    Research in simulation modeling has made little advance over the past two decades. Many simulation languages and modeling methodologies were designed but not evaluated. Model developers were given no criteria for selecting from among these modeling tools. A framework of research in simulation modeling was developed to identify factors that might most affect simulation modeling performance. First, two simulation languages (MAGIE and GPSS) that differ greatly in complexity were compared. Both languages are similar in their design philosophy. However, MAGIE is a small simulation language with ten model building blocks while GPSS is a large simulation language with fifty-six model building blocks. Secondly, two modeling methodologies, namely the top-down and the bottom-up approaches, were compared. This research shows that it is feasible to apply the user-based empirical research methodology to study simulation modeling. It is also concluded that modeling with a large simulation language does not necessarily yield better results than modeling with a small simulation language. Furthermore, it was found that using the top-down modeling approach does not necessarily yield better results than using the bottom-up modeling approach.

  1. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    Science.gov (United States)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  2. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    Science.gov (United States)

    Jung, J.

    2016-12-01

    The global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of the topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.

  3. Microgrid Modeling and Simulation Study

    Science.gov (United States)

    2016-09-01

    lightning , and other scenarios need to be simulated and hardware tested to characterize system robustness. The reviewed M&S tools were divided into the...5 capability categories for tactical microgrids: Demand Management, Power Distribution, Source Management, Communications, and Smart Controls. In...requires a short-term investment to produce results. • Component Metadata is the use of digital information from equipment for microgrid Smart

  4. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose of the s......The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  5. Modeling and simulation for RF system design

    CERN Document Server

    Frevert, Ronny; Jancke, Roland; Knöchel, Uwe; Schwarz, Peter; Kakerow, Ralf; Darianian, Mohsen

    2005-01-01

    Focusing on RF specific modeling and simulation methods, and system and circuit level descriptions, this work contains application-oriented training material. Accompanied by a CD- ROM, it combines the presentation of a mixed-signal design flow, an introduction into VHDL-AMS and Verilog-A, and the application of commercially available simulators.

  6. A nonlinear structural subgrid-scale closure for compressible MHD Part I: derivation and energy dissipation properties

    CERN Document Server

    Vlaykov, Dimitar G; Schmidt, Wolfram; Schleicher, Dominik R G

    2016-01-01

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LES), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale (SGS) dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator (W.K. Yeo CUP 1993, ed. Galperin & Orszag) and require no assumptions about the nature of the flow or magnetic field. Thus the scope of their applicability ranges from the sub- to ...

  7. Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA

    Directory of Open Access Journals (Sweden)

    Churchfield Matthew J.

    2014-01-01

    Full Text Available The National Renewable Energy Laboratory's Simulator for On/Offshore Wind Farm Applications contains an OpenFOAM-based flow solver for performing large-eddy simulation of flow through wind plants. The solver computes the atmospheric boundary layer flow and models turbines with actuator lines. Until recently, the solver was limited to flows over flat terrain and could only use the standard Smagorinsky subgrid-scale model. In this work, we present our improvements to the flow solver that enable us to 1 use any OpenFOAM-standard subgrid-scale model and 2 simulate flow over complex terrain. We used the flow solver to compute a stably stratified atmospheric boundary layer using both the standard and the Lagrangian-averaged scale-independent dynamic Smagorinsky models. Surprisingly, the results using the standard Smagorinsky model compare well to other researchers' results of the same case, although it is often said that the standard Smagorinsky model is too dissipative for accurate stable stratification calculations. The scale-independent dynamic subgrid-scale model produced poor results, probably due to the spikes in model constant with values as high as 4.6. We applied a simple bounding of the model constant to remove these spikes, which caused the model to produce results much more in line with other researchers' results. We also computed flow over a simple hilly terrain and performed some basic qualitative analysis to verify the proper operation of the terrain-local surface stress model we employed.

  8. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  9. Computational Modeling of Simulation Tests.

    Science.gov (United States)

    1980-06-01

    cavity was simulated with a nonrigid, partially reflecting heavy gas (the rigid wall of 905.0021 was replaced with additional cells of ideal gas which...the shock tunnel at the 4.14-Mpa range found in calculation 906.1081. The driver consisted of 25 cells of burned ammonium nitrate and fuel oil ( ANFO ...mm AX = 250 mm Reflected Wave Geometry--Calculation 906.1091 65 m Driver Region Reaction Region Boundary Burned Rigid ANFO Real Air Reflecting k 90.6

  10. A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-02-01

    Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.

  11. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.

  12. Gas Turbine Plant Modeling for Dynamic Simulation

    OpenAIRE

    Endale Turie, Samson

    2012-01-01

    Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A gas turbine power plant is a complex assembly of a varietyof components that are designed on the basis of aero thermodynamiclaws. This thesis work presents model development of a single-shaft gas turbine plant cycle that can operate at wide range of load settings in complete dynamic GTP simulator. The modeling and simulation has been...

  13. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  14. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  15. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  16. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...

  17. Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model

    Directory of Open Access Journals (Sweden)

    M. Bangert

    2011-05-01

    Full Text Available We have extended the coupled mesoscale atmosphere and chemistry model COSMO-ART to account for the transformation of aerosol particles into cloud condensation nuclei and to quantify their interaction with warm cloud microphysics on the regional scale. The new model system aims to fill the gap between cloud resolving models and global scale models. It represents the very complex microscale aerosol and cloud physics as detailed as possible, whereas the continental domain size and efficient codes will allow for both studying weather and regional climate. The model system is applied in a first extended case study for Europe for a cloudy five day period in August 2005.

    The model results show that the mean cloud droplet number concentration of clouds is correlated with the structure of the terrain, and we present a terrain slope parameter TS to classify this dependency. We propose to use this relationship to parameterize the probability density function, PDF, of subgrid-scale cloud updraft velocity in the activation parameterizations of climate models.

    The simulations show that the presence of cloud condensation nuclei (CCN and clouds are closely related spatially. We find high aerosol and CCN number concentrations in the vicinity of clouds at high altitudes. The nucleation of secondary particles is enhanced above the clouds. This is caused by an efficient formation of gaseous aerosol precursors above the cloud due to more available radiation, transport of gases in clean air above the cloud, and humid conditions. Therefore the treatment of complex photochemistry is crucial in atmospheric models to simulate the distribution of CCN.

    The mean cloud droplet number concentration and droplet diameter showed a close link to the change in the aerosol. To quantify the net impact of an aerosol change on the precipitation we calculated the precipitation susceptibility β for the whole model domain over a period of two days with

  18. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    Science.gov (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  19. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Likewise, ships and buildings are built by naval and civil architects. While these are useful, they are, in most cases, static models. We are ..... The basic theory of transition from one state to another was developed by the Russian mathematician. Andrei Markov and hence the name Markov chains. Andrei Markov [1856-1922] ...

  20. Network Modeling and Simulation (NEMSE)

    Science.gov (United States)

    2013-07-01

    Prioritized Packet Fragmentation", IEEE Trans. Multimedia , Oct. 2012. [13 SYSENG] . Defense Acquisition Guidebook, Chapter 4 System Engineering, and...2012 IEEE High Performance Extreme Computing Conference (HPEC) poster session [1 Ross]. Motivation  Air Force Research Lab needs o Capability...is virtual. These eight virtualizations were: System-in-the-Loop (SITL) using OPNET Modeler, COPE, Field Programmable Gate Array ( FPGA Physical

  1. Computer Based Modelling and Simulation-Modelling and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Computer Based Modelling and Simulation-Modelling and Simulation with Probability and Throwing Dice. N K Srinivasan. General Article Volume 6 Issue 4 April 2001 pp 69-77 ...

  2. Land surface modeling in convection permitting simulations

    Science.gov (United States)

    van Heerwaarden, Chiel; Benedict, Imme

    2017-04-01

    The next generation of weather and climate models permits convection, albeit at a grid spacing that is not sufficient to resolve all details of the clouds. Whereas much attention is being devoted to the correct simulation of convective clouds and associated precipitation, the role of the land surface has received far less interest. In our view, convective permitting simulations pose a set of problems that need to be solved before accurate weather and climate prediction is possible. The heart of the problem lies at the direct runoff and at the nonlinearity of the surface stress as a function of soil moisture. In coarse resolution simulations, where convection is not permitted, precipitation that reaches the land surface is uniformly distributed over the grid cell. Subsequently, a fraction of this precipitation is intercepted by vegetation or leaves the grid cell via direct runoff, whereas the remainder infiltrates into the soil. As soon as we move to convection permitting simulations, this precipitation falls often locally in large amounts. If the same land-surface model is used as in simulations with parameterized convection, this leads to an increase in direct runoff. Furthermore, spatially non-uniform infiltration leads to a very different surface stress, when scaled up to the course resolution of simulations without convection. Based on large-eddy simulation of realistic convection events at a large domain, this study presents a quantification of the errors made at the land surface in convection permitting simulation. It compares the magnitude of the errors to those made in the convection itself due to the coarse resolution of the simulation. We find that, convection permitting simulations have less evaporation than simulations with parameterized convection, resulting in a non-realistic drying of the atmosphere. We present solutions to resolve this problem.

  3. Filtered Mass Density Function for Large Eddy Simulation of Turbulent Reacting Flows

    Science.gov (United States)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.; Pope, S. B.

    1997-11-01

    A new methodology termed the ``filtered mass density function'' (FMDF) is developed and implemented for large eddy simulation (LES) of variable density chemically reacting turbulent flows at low Mach numbers. The FMDF represents the single point joint probability density function of the subgrid scale scalar quantities and is governed by its modeled transport equation. In this equation, the effects of chemical reaction appear in closed form but the influences of scalar mixing and convection within the subgrid are modeled. The stochastic differential equations (SDEs) which yield statistically equivalent results to that of the FMDF transport equation are derived and are solved via a Lagrangian Monte Carlo scheme. The consistency, the convergence, and the accuracy of FMDF and the Monte Carlo solution of its equivalent SDEs are demonstrated. The performance of the model is assessed by extensive comparisons with DNS and laboratory experimental data in two-dimensional (2D) and 3D reacting turbulent shear flows.

  4. Coupled ice sheet - climate simulations of the last glacial inception and last glacial maximum with a model of intermediate complexity that includes a dynamical downscaling of heat and moisture

    Science.gov (United States)

    Quiquet, Aurélien; Roche, Didier M.

    2017-04-01

    Comprehensive fully coupled ice sheet - climate models allowing for multi-millenia transient simulations are becoming available. They represent powerful tools to investigate ice sheet - climate interactions during the repeated retreats and advances of continental ice sheets of the Pleistocene. However, in such models, most of the time, the spatial resolution of the ice sheet model is one order of magnitude lower than the one of the atmospheric model. As such, orography-induced precipitation is only poorly represented. In this work, we briefly present the most recent improvements of the ice sheet - climate coupling within the model of intermediate complexity iLOVECLIM. On the one hand, from the native atmospheric resolution (T21), we have included a dynamical downscaling of heat and moisture at the ice sheet model resolution (40 km x 40 km). This downscaling accounts for feedbacks of sub-grid precipitation on large scale energy and water budgets. From the sub-grid atmospheric variables, we compute an ice sheet surface mass balance required by the ice sheet model. On the other hand, we also explicitly use oceanic temperatures to compute sub-shelf melting at a given depth. Based on palaeo evidences for rate of change of eustatic sea level, we discuss the capability of our new model to correctly simulate the last glacial inception ( 116 kaBP) and the ice volume of the last glacial maximum ( 21 kaBP). We show that the model performs well in certain areas (e.g. Canadian archipelago) but some model biases are consistent over time periods (e.g. Kara-Barents sector). We explore various model sensitivities (e.g. initial state, vegetation, albedo) and we discuss the importance of the downscaling of precipitation for ice nucleation over elevated area and for the surface mass balance of larger ice sheets.

  5. Model Driven Development of Simulation Models : Defining and Transforming Conceptual Models into Simulation Models by Using Metamodels and Model Transformations

    NARCIS (Netherlands)

    Küçükkeçeci Çetinkaya, D.

    2013-01-01

    Modeling and simulation (M&S) is an effective method for analyzing and designing systems and it is of interest to scientists and engineers from all disciplines. This thesis proposes the application of a model driven software development approach throughout the whole set of M&S activities and it

  6. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  7. A model for personality and emotion simulation

    NARCIS (Netherlands)

    Egges, A.; Kshirsagar, S.; Magnenat-Thalmann, N.

    2003-01-01

    This paper describes a generic model for personality, mood and emotion simulation for conversational virtual humans. We present a generic model for describing and updating the parameters related to emotional behaviour. Also, this paper explores how existing theories for appraisal can be integrated

  8. The behaviour of adaptive boneremodeling simulation models

    NARCIS (Netherlands)

    Weinans, H.; Huiskes, R.; Grootenboer, H.J.

    1992-01-01

    The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to

  9. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  10. Molecular simulation and modeling of complex I.

    Science.gov (United States)

    Hummer, Gerhard; Wikström, Mårten

    2016-07-01

    Molecular modeling and molecular dynamics simulations play an important role in the functional characterization of complex I. With its large size and complicated function, linking quinone reduction to proton pumping across a membrane, complex I poses unique modeling challenges. Nonetheless, simulations have already helped in the identification of possible proton transfer pathways. Simulations have also shed light on the coupling between electron and proton transfer, thus pointing the way in the search for the mechanistic principles underlying the proton pump. In addition to reviewing what has already been achieved in complex I modeling, we aim here to identify pressing issues and to provide guidance for future research to harness the power of modeling in the functional characterization of complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessment of the Suitability of a Global Hydrodynamic Model in Simulating a Regional-scale Extreme Flood at Finer Spatial Resolutions

    Science.gov (United States)

    Mateo, C. M. R.; Yamazaki, D.; Kim, H.; Champathong, A.; Oki, T.

    2015-12-01

    Global river models (GRMs) are elemental for large-scale predictions and impact analyses. However, they have limited capability in providing accurate flood information at fine resolution for practical purposes. Hyperresolution (~1km resolution) modelling is believed to improve the representation of topographical constraints, which consequently result to better predictions of surface water flows and flood inundation at regional to global scales. While numerous studies have shown that finer resolutions improve the predictions of catchment-scale floods using local-scale hydrodynamic models, the impact of finer spatial resolution on predictions of large-scale floods using GRMs is rarely examined. In this study, we assessed the suitability of a state-of-the-art hydrodynamic GRM, CaMa-Flood, in the hyperresolution simulation of a regional-scale flood. The impacts of finer spatial resolution and representation of sub-grid processes on simulating the 2011 immense flooding in Chao Phraya River Basin, Thailand was investigated. River maps ranging from 30-arcsecond (~1km) to 5-arcminute (~10km) spatial resolutions were generated from 90m resolution HydroSHEDS maps and SRTM3 DEM. Simulations were executed in each spatial resolution with the new multi-directional downstream connectivity (MDC) scheme in CaMa-Flood turned on and off. While the predictive capability of the model slightly improved with finer spatial resolution when MDC scheme is turned on, it significantly declined when MDC scheme is turned off; bias increased by 35% and NSE-coefficient decreased by 60%. These findings indicate that GRMs which assume single-downstream-grid flows are not suitable for hyperresolution modelling because of their limited capability to realistically represent floodplain connectivity. When simulating large-scale floods, MDC scheme is necessary for the following functions: provide additional storage for ovehrbank flows, enhance connectivity between floodplains which allow more realistic

  12. Landscape Modelling and Simulation Using Spatial Data

    Directory of Open Access Journals (Sweden)

    Amjed Naser Mohsin AL-Hameedawi

    2017-08-01

    Full Text Available In this paper a procedure was performed for engendering spatial model of landscape acclimated to reality simulation. This procedure based on combining spatial data and field measurements with computer graphics reproduced using Blender software. Thereafter that we are possible to form a 3D simulation based on VIS ALL packages. The objective was to make a model utilising GIS, including inputs to the feature attribute data. The objective of these efforts concentrated on coordinating a tolerable spatial prototype, circumscribing facilitation scheme and outlining the intended framework. Thus; the eventual result was utilized in simulation form. The performed procedure contains not only data gathering, fieldwork and paradigm providing, but extended to supply a new method necessary to provide the respective 3D simulation mapping production, which authorises the decision makers as well as investors to achieve permanent acceptance an independent navigation system for Geoscience applications.

  13. Development of NASA's Models and Simulations Standard

    Science.gov (United States)

    Bertch, William J.; Zang, Thomas A.; Steele, Martin J.

    2008-01-01

    From the Space Shuttle Columbia Accident Investigation, there were several NASA-wide actions that were initiated. One of these actions was to develop a standard for development, documentation, and operation of Models and Simulations. Over the course of two-and-a-half years, a team of NASA engineers, representing nine of the ten NASA Centers developed a Models and Simulation Standard to address this action. The standard consists of two parts. The first is the traditional requirements section addressing programmatics, development, documentation, verification, validation, and the reporting of results from both the M&S analysis and the examination of compliance with this standard. The second part is a scale for evaluating the credibility of model and simulation results using levels of merit associated with 8 key factors. This paper provides an historical account of the challenges faced by and the processes used in this committee-based development effort. This account provides insights into how other agencies might approach similar developments. Furthermore, we discuss some specific applications of models and simulations used to assess the impact of this standard on future model and simulation activities.

  14. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    have developed a MATLAB-based modeling and simulation (M&S) architecture for distributed fully adaptive radar (FAR) that will enable algorithm...development and testing on simulated, previously collected, and real-time streaming data. The architecture is coded in MATLAB using an object oriented...programming approach. The architecture includes a FAR engine to control the operation of the perception-action cycle and software objects that determine the

  15. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented....

  16. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together...... to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal...... and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work...

  17. Modelling and Simulation of Crude Oil Dispersion

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH

    2006-01-01

    Full Text Available This research work was carried out to develop a model equation for the dispersion of crude oil in water. Seven different crude oils (Bonny Light, Antan Terminal, Bonny Medium, Qua Iboe Light, Brass Light Mbede, Forcados Blend and Heavy H were used as the subject crude oils. The developed model equation in this project which is given as...It was developed starting from the equation for the oil dispersion rate in water which is given as...The developed equation was then simulated with the aid of MathCAD 2000 Professional software. The experimental and model results obtained from the simulation of the model equation were plotted on the same axis against time of dispersion. The model results revealed close fittings between the experimental and the model results because the correlation coefficients and the r-square values calculated using Spreadsheet Program were both found to be unity (1.00.

  18. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  19. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  20. Effect of Considering Sub-Grid Scale Uncertainties on the Forecasts of a High-Resolution Limited Area Ensemble Prediction System

    Science.gov (United States)

    Kim, SeHyun; Kim, Hyun Mee

    2017-05-01

    The ensemble prediction system (EPS) is widely used in research and at operation center because it can represent the uncertainty of predicted atmospheric state and provide information of probabilities. The high-resolution (so-called "convection-permitting") limited area EPS can represent the convection and turbulence related to precipitation phenomena in more detail, but it is also much sensitive to small-scale or sub-grid scale processes. The convection and turbulence are represented using physical processes in the model and model errors occur due to sub-grid scale processes that were not resolved. This study examined the effect of considering sub-grid scale uncertainties using the high-resolution limited area EPS of the Korea Meteorological Administration (KMA). The developed EPS has horizontal resolution of 3 km and 12 ensemble members. The initial and boundary conditions were provided by the global model. The Random Parameters (RP) scheme was used to represent sub-grid scale uncertainties. The EPSs with and without the RP scheme were developed and the results were compared. During the one month period of July, 2013, a significant difference was shown in the spread of 1.5 m temperature and the Root Mean Square Error and spread of 10 m zonal wind due to application of the RP scheme. For precipitation forecast, the precipitation tended to be overestimated relative to the observation when the RP scheme was applied. Moreover, the forecast became more accurate for heavy precipitations and the longer forecast lead times. For two heavy rainfall cases occurred during the research period, the higher Equitable Threat Score was observed for heavy precipitations in the system with the RP scheme compared to the one without, demonstrating consistency with the statistical results for the research period. Therefore, the predictability for heavy precipitation phenomena that affected the Korean Peninsula increases if the RP scheme is used to consider sub-grid scale uncertainties

  1. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}T 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at dfactor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  2. Modeling salmonella Dublin into the dairy herd simulation model Simherd

    DEFF Research Database (Denmark)

    Kudahl, Anne Braad

    2010-01-01

    Infection with Salmonella Dublin in the dairy herd and effects of the infection and relevant control measures are currently being modeled into the dairy herd simulation model called Simherd. The aim is to compare the effects of different control strategies against Salmonella Dublin on both within...... of the simulations will therefore be used for decision support in the national surveillance and eradication program against Salmonella Dublin. Basic structures of the model are programmed and will be presented at the workshop. The model is in a phase of face-validation by a group of Salmonella......-herd- prevalence and economy by simulations. The project Dublin on both within-herd- prevalence and economy by simulations. The project is a part of a larger national project "Salmonella 2007 - 2011" with the main objective to reduce the prevalence of Salmonella Dublin in Danish Dairy herds. Results...

  3. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  4. A universal simulator for ecological models

    DEFF Research Database (Denmark)

    Holst, Niels

    2013-01-01

    Software design is an often neglected issue in ecological models, even though bad software design often becomes a hindrance for re-using, sharing and even grasping an ecological model. In this paper, the methodology of agile software design was applied to the domain of ecological models. Thus the...... the principles for a universal design of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulator was constructed using C++ and XML and is provided as a resource for inspiration....

  5. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  6. EXACT SIMULATION OF A BOOLEAN MODEL

    Directory of Open Access Journals (Sweden)

    Christian Lantuéjoul

    2013-06-01

    Full Text Available A Boolean model is a union of independent objects (compact random subsets located at Poisson points. Two algorithms are proposed for simulating a Boolean model in a bounded domain. The first one applies only to stationary models. It generates the objects prior to their Poisson locations. Two examples illustrate its applicability. The second algorithm applies to stationary and non-stationary models. It generates the Poisson points prior to the objects. Its practical difficulties of implementation are discussed. Both algorithms are based on importance sampling techniques, and the generated objects are weighted.

  7. Multiscale modelling and simulation: a position paper

    NARCIS (Netherlands)

    Hoekstra, A.; Chopard, B.; Coveney, P.

    2014-01-01

    We argue that, despite the fact that the field of multiscale modelling and simulation has enjoyed significant success within the past decade, it still holds many open questions that are deemed important but so far have barely been explored. We believe that this is at least in part due to the fact

  8. preliminary multidomain modelling and simulation study

    African Journals Online (AJOL)

    user

    PRELIMINARY MULTIDOMAIN MODELLING AND SIMULATION STUDY OF A. HORIZONTAL AXIS WIND TURBINE (HAWT) TOWER VIBRATION. I. lliyasu1, I. Iliyasu2, I. K. Tanimu3 and D. O Obada4. 1,4 DEPARTMENT OF MECHANICAL ENGINEERING, AHMADU BELLO UNIVERSITY, ZARIA, KADUNA STATE. NIGERIA.

  9. MATLAB Based PCM Modeling and Simulation

    OpenAIRE

    Yongchao Jin; Hong Liang; Weiwei Feng; Qiong Wang

    2013-01-01

    PCM is the key technology of digital communication, and has especially been widely used in the optical fiber communication, digital microwave communication, satellite communication. Modeling PCM communication systems with the pulse code system by programming, and conduct computer simulation by MATLAB, to analysis performance of the linear PCM and logarithmic PCM.  

  10. Agent Based Modelling for Social Simulation

    NARCIS (Netherlands)

    Smit, S.K.; Ubink, E.M.; Vecht, B. van der; Langley, D.J.

    2013-01-01

    This document is the result of an exploratory project looking into the status of, and opportunities for Agent Based Modelling (ABM) at TNO. The project focussed on ABM applications containing social interactions and human factors, which we termed ABM for social simulation (ABM4SS). During the course

  11. Model based development of fruit simulators

    Science.gov (United States)

    Huang, Huijian; Tunnicliffe, Mark; Shim, Young-Min; Bronlund, John E.

    2017-10-01

    Optimisation of temperature management in postharvest operations, such as precooling, requires extensive experimental measurement. For this purpose, real fruit are used, but due to their relatively high cost and perishable nature, commercial scale trials are not easily conducted. In addition, significant variability between trials exists (Vigneault et al., 2005). Physical fruit analogues or simulators could provide a solution to overcome these issues. To be a solution the fruit simulators must be designed to mimic the relevant heat transfer modes and properties of individual and/or bulk fruit, ideally using an inexpensive and durable material that allows the fruit simulator to be mass produced (Redding et al., 2016). In this paper, we use a mathematical model to characterize the relative importance of the different heat transfer modes occurring during precooling. Based on this model, the modes of heat transfer that must be matched by the fruit simulator are identified. A simplified model is used, representing four fruit stacked on top of each other in a column. The contribution of each heat transfer mode can be evaluated by including or excluding terms in the model.

  12. Modeling and Simulation of Count Data

    Science.gov (United States)

    Plan, E L

    2014-01-01

    Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity. PMID:25116273

  13. The Global Mars Multiscale Model: A tool for simulation of climate and weather

    Science.gov (United States)

    Mouden, Youssef

    The present work presents a new three dimensional model for the Martian atmosphere and several application studies that highlight its performance and give some attempts to understand various aspects of the atmosphere of Mars. The dynamical core of the model, that deals with numerically solving the Navier- Stokes equations, has been adapted from the operational weather forecast model used in the Meteorological Service of Canada. The adapted grid-point dynamical core allows the definition of a region of variable horizontal resolution using a zooming system and hence the ability to conduct mesoscale simulations over areas of interest. Such mesoscale studies are usually performed using limited area models. The time resolution method is semi-implicit and the advection scheme is semi-Lagrangian, both characteristics allow moderate time-steps to be used and high resolutions to be specified without affecting the stability of the model. The model uses the topography measured by the Mars Orbiter Laser Altimeter and the surface radiative properties measured by the Thermal Emission Spectrometer, both instruments are aboard the Mars Global Surveyor spacecraft launched to Mars in 1996. The model's vertical extent covers the atmosphere from the surface to 160-180 km. At present, the atmosphere's composition is currently held constant and the total mass is constant during simulations. A new comprehensive radiative scheme has been developed and appended to the model to calculate the heating and cooling tendencies that result from Solar radiation and infra-red emission. The surface response to the radiative energy is obtained using a force-restore method. The convective activity in the turbulent boundary layer affects the large scale flow and an eddy diffusion parameterization gives the subgrid turbulent fluxes. Molecular diffusion becomes an important process in the low densities of the thermosphere, and thus thermal diffusion is included in the energy equation. The evaluation of

  14. Adaptive System Modeling for Spacecraft Simulation

    Science.gov (United States)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  15. Twitter's tweet method modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  16. Numerical simulation of flow around the NREL S826 airfoil at moderate Reynolds number using delayed detached Eddy simulation (DDES)

    Science.gov (United States)

    Prytz, Erik R.; Huuse, Øyvind; Müller, Bernhard; Bartl, Jan; Sætran, Lars Roar

    2017-07-01

    Turbulent flow at Reynolds numbers 5 . 104 to 106 around the NREL S826 airfoil used for wind turbine blades is simulated using delayed detached eddy simulation (DDES). The 3D domain is built as a replica of the low speed wind tunnel at the Norwegian University of Science and Technology (NTNU) with the wind tunnel walls considered as slip walls. The subgrid turbulent kinetic energy is used to model the sub-grid scale in the large eddy simulation (LES) part of DDES. Different Reynoldsaveraged Navier-Stokes (RANS) models are tested in ANSYS Fluent. The realizable k - ∈ model as the RANS model in DDES is found to yield the best agreement of simulated pressure distributions with the experimental data both from NTNU and the Technical University of Denmark (DTU), the latter for a shorter spanwise domain. The present DDES results are in excellent agreement with LES results from DTU. Since DDES requires much fewer cells in the RANS region near the wing surface than LES, DDES is computationally much more efficient than LES. Whereas DDES is able to predict lift and drag in close agreement with experiment up to stall, pure 2D RANS simulations fail near stall. After testing different numerical settings, time step sizes and grids for DDES, a Reynolds number study is conducted. Near stall, separated flow structures, so-called stall cells, are observed in the DDES results.

  17. Fault diagnosis based on continuous simulation models

    Science.gov (United States)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  18. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  19. A parallel computational model for GATE simulations.

    Science.gov (United States)

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  1. Simulating the Sulphur Lamp with PLASIMO, a plasma simulation model.

    Science.gov (United States)

    Johnston, C. W.; van der Heijden, H.; van Dijk, Jan; van der Mullen Joost

    1999-10-01

    Several electrodeless lamps are currently available on the market. Examples of these are the Philips QL, Osrams Endura and GE's Genura. While these lamps make use of induction as a means of power coupling, the source of their light, namely mercury, remains the same as in older lamps. Another electrodeless configuration is the microwave powered Sulphur Lamp. Sulphur lighting has several advantages over other lamp systems. Firstly, large fluxes (≈100,000 lm) of high quality light are obtained with circuit efficacies of up to 60 percent. Secondly, unlike fluorescent and HID lamps there is no decrease in brightness with time since phospors and electrodes are not needed. Another significant aspect of the sulphur lamp is that it contains no mercury, lessening environmental hazards associated with disposal. In order to simulate the operation of this light source, PLASIMO, a plasma modeling tool which was developed at the Eindhoven University of Technology, was used. Modules were included to describe the transport properties and power in- coupling. Results of the simulations will be shown and compared with experiment.

  2. Dynamics modeling and simulation of flexible airships

    Science.gov (United States)

    Li, Yuwen

    The resurgence of airships has created a need for dynamics models and simulation capabilities of these lighter-than-air vehicles. The focus of this thesis is a theoretical framework that integrates the flight dynamics, structural dynamics, aerostatics and aerodynamics of flexible airships. The study begins with a dynamics model based on a rigid-body assumption. A comprehensive computation of aerodynamic effects is presented, where the aerodynamic forces and moments are categorized into various terms based on different physical effects. A series of prediction approaches for different aerodynamic effects are unified and applied to airships. The numerical results of aerodynamic derivatives and the simulated responses to control surface deflection inputs are verified by comparing to existing wind-tunnel and flight test data. With the validated aerodynamics and rigid-body modeling, the equations of motion of an elastic airship are derived by the Lagrangian formulation. The airship is modeled as a free-free Euler-Bernoulli beam and the bending deformations are represented by shape functions chosen as the free-free normal modes. In order to capture the coupling between the aerodynamic forces and the structural elasticity, local velocity on the deformed vehicle is used in the computation of aerodynamic forces. Finally, with the inertial, gravity, aerostatic and control forces incorporated, the dynamics model of a flexible airship is represented by a single set of nonlinear ordinary differential equations. The proposed model is implemented as a dynamics simulation program to analyze the dynamics characteristics of the Skyship-500 airship. Simulation results are presented to demonstrate the influence of structural deformation on the aerodynamic forces and the dynamics behavior of the airship. The nonlinear equations of motion are linearized numerically for the purpose of frequency domain analysis and for aeroelastic stability analysis. The results from the latter for the

  3. A Simulation Model for Extensor Tendon Repair

    Directory of Open Access Journals (Sweden)

    Elizabeth Aronstam

    2017-07-01

    Full Text Available Audience: This simulation model is designed for use by emergency medicine residents. Although we have instituted this at the PGY-2 level of our residency curriculum, it is appropriate for any level of emergency medicine residency training. It might also be adapted for use for a variety of other learners, such as practicing emergency physicians, orthopedic surgery residents, or hand surgery trainees. Introduction: Tendon injuries commonly present to the emergency department, so it is essential that emergency physicians be competent in evaluating such injuries. Indeed, extensor tendon repair is included as an ACGME Emergency Medicine Milestone (Milestone 13, Wound Management, Level 5 – “Performs advanced wound repairs, such as tendon repairs…”.1 However, emergency medicine residents may have limited opportunity to develop these skills due to a lack of patients, competition from other trainees, or preexisting referral patterns. Simulation may provide an alternative means to effectively teach these skills in such settings. Previously described tendon repair simulation models that were designed for surgical trainees have used rubber worms4, licorice5, feeding tubes, catheters6,7, drinking straws8, microfoam tape9, sheep forelimbs10 and cadavers.11 These models all suffer a variety of limitations, including high cost, lack of ready availability, or lack of realism. Objectives: We sought to develop an extensor tendon repair simulation model for emergency medicine residents, designed to meet ACGME Emergency Medicine Milestone 13, Level 5. We wished this model to be simple, inexpensive, and realistic. Methods: The learner responsible content/educational handout component of our innovation teaches residents about emergency department extensor tendon repair, and includes: 1 relevant anatomy 2 indications and contraindications for emergency department extensor tendon repair 3 physical exam findings 4 tendon suture techniques and 5 aftercare. During

  4. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  5. Simulation as a surgical teaching model.

    Science.gov (United States)

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Modeling and simulation of economic processes

    Directory of Open Access Journals (Sweden)

    Bogdan Brumar

    2010-12-01

    Full Text Available In general, any activity requires a longer action often characterized by a degree of uncertainty, insecurity, in terms of size of the objective pursued. Because of the complexity of real economic systems, the stochastic dependencies between different variables and parameters considered, not all systems can be adequately represented by a model that can be solved by analytical methods and covering all issues for management decision analysis-economic horizon real. Often in such cases, it is considered that the simulation technique is the only alternative available. Using simulation techniques to study real-world systems often requires a laborious work. Making a simulation experiment is a process that takes place in several stages.

  7. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  8. Facebook's personal page modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  9. Optimisation Strategies for Modelling and Simulation

    Science.gov (United States)

    Louchet, Jean

    2007-12-01

    Progress in computation techniques has been dramatically reducing the gap between modeling and simulation. Simulation as the natural outcome of modeling is used both as a tool to predict the behavior of natural or artificial systems, a tool to validate modeling, and a tool to build and refine models - in particular identify model internal parameters. In this paper we will concentrate upon the latter, model building and identification, using modern optimization techniques, through application examples taken from the digital imaging field. The first example is given by Image Processing with retrieval of known patterns in an image. The second example is taken from synthetic image animation: we show how it is possible to learn the model's internal physical parameters from actual trajectory examples, using Darwin-inspired evolutionary algorithms. In the third example, we will demonstrate how it is possible, when the problem cannot easily be handled by a reasonably simple optimization technique, to split the problem into simpler elements which can be efficiently evolved by an evolutionary optimization algorithm - which is now called "Parisian Evolution". The "Fly algorithm" is a realtime stereovision algorithm which skips conventional preliminary stages of image processing, now applied into mobile robotics and medical imaging. The main question left is now, to which degree is it possible to delegate to a computer a part of the physicist's role, which is to collect examples and build general laws from these examples?

  10. Theory, modeling and simulation: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  11. Simulation modelling of fynbos ecosystems: Systems analysis and conceptual models

    CSIR Research Space (South Africa)

    Kruger, FJ

    1985-03-01

    Full Text Available This report outlines progress with the development of computer based dynamic simulation models for ecosystems in the fynbos biome. The models are planned to run on a portable desktop computer with 500 kbytes of memory, extended BASIC language...

  12. eShopper modeling and simulation

    Science.gov (United States)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  13. Adaptive mesh refinement simulations of a galaxy cluster merger - I. Resolving and modelling the turbulent flow in the cluster outskirts

    Science.gov (United States)

    Iapichino, L.; Federrath, C.; Klessen, R. S.

    2017-08-01

    The outskirts of galaxy clusters are characterized by the interplay of gas accretion and dynamical evolution involving turbulence, shocks, magnetic fields and diffuse radio emission. The density and velocity structure of the gas in the outskirts provide an effective pressure support and affect all processes listed above. Therefore, it is important to resolve and properly model the turbulent flow in these mildly overdense and relatively large cluster regions; this is a challenging task for hydrodynamical codes. In this work, grid-based simulations of a galaxy cluster are presented. The simulations are performed using adaptive mesh refinement (AMR) based on the regional variability of vorticity, and they include a subgrid scale (SGS) model for unresolved turbulence. The implemented AMR strategy is more effective in resolving the turbulent flow in the cluster outskirts than any previously used criterion based on overdensity. We study a cluster undergoing a major merger, which drives turbulence in the medium. The merger dominates the cluster energy budget out to a few virial radii from the centre. In these regions, the shocked intra-cluster medium is resolved and the SGS turbulence is modelled, and compared with diagnostics on larger length-scale. The volume-filling factor of the flow with a large vorticity is about 60 per cent at low redshift in the cluster outskirts, and thus smaller than in the cluster core. In the framework of modelling radio relics, this point suggests that upstream flow inhomogeneities might affect preexisting cosmic-ray population and magnetic fields, and the resulting radio emission.

  14. A framework for Large Eddy Simulation (LES) based on spatiotemporal statistical information

    Science.gov (United States)

    Vedula, Prakash; Attar, Peter; Labryer, Allen

    2013-11-01

    We present a computational framework that will have the potential to not only improve the efficiency of computational predictions based on LES but will also be able to address a major drawback of many existing constructs of LES, namely inaccurate predictions of the underlying spatiotemporal structure. The latter drawback could be especially critical in prediction of tornado paths and jet-noise intensities. In our proposed framework, the relevant sub-grid scale stress models are constructed based on information that is consistent with the underlying spatiotemporal statistics. Unlike in many existing constructs of LES, the proposed sub-grid scale stress models include non-Markovian or memory terms whose origins can be explained based on the theory of optimal prediction. These optimal models for LES are studied using a one-dimensional Burgers equation with and without forcing. Results indicate that the proposed framework performs better than most existing frameworks of LES, by virtue of accurate predictions of spatiotemporal structure. The presence of coarse-grained temporal information in our sub-grid scale models also allows for faster simulations by allowing for larger time steps. Implications of these findings to more complicated turbulent flows will also be discussed.

  15. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... wind farm, the simulated results cannot be compared directly with wind farm measurements that have a high uncertainty in the measured reference wind direction. When this uncertainty is used to post-process the CFD results, a fairer comparison with measurements is achieved....... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...

  16. Difficulties with True Interoperability in Modeling & Simulation

    Science.gov (United States)

    2011-12-01

    Standards in M&S cover multiple layers of technical abstraction. There are middleware specifica- tions, such as the High Level Architecture (HLA) ( IEEE Xplore ... IEEE Xplore Digital Library. 2010. 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) – Framework and Rules...using different communication protocols being able to allow da- 2642978-1-4577-2109-0/11/$26.00 ©2011 IEEE Report Documentation Page Form ApprovedOMB No

  17. Streptococcus mutans, Caries and Simulation Models

    OpenAIRE

    Ouwehand, Arthur C.; Marika Björklund; Forssten, Sofia D.

    2010-01-01

    Dental caries and dental plaque are among the most common diseases worldwide, and are caused by a mixture of microorganisms and food debris. Specific types of acid-producing bacteria, especially Streptococcus mutans, colonize the dental surface and cause damage to the hard tooth structure in the presence of fermentable carbohydrates e.g., sucrose and fructose. This paper reviews the link between S. mutans and caries, as well as different simulation models that are available for studying carie...

  18. A Placement Model for Flight Simulators.

    Science.gov (United States)

    1982-09-01

    simulator basing strategies. Captains David R. VanDenburg and Jon D. Veith developed a mathematical model to assist in the placement analysis of A-7...Institute for Defense Analysis, Arlington VA, August 1977. AD A049979. 23. Sugarman , Robert C., Steven L. Johnson, and William F. H. Ring. "B-I Systems...USAF Cost and Plan- nin& Factors. AFR 173-13. Washington: Govern- ment Printing Office, I February 1982. * 30. Van Denburg, Captain David R., USAF

  19. High-Fidelity Roadway Modeling and Simulation

    Science.gov (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  20. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  1. MODELING AND SIMULATION OF A HYDROCRACKING UNIT

    Directory of Open Access Journals (Sweden)

    HASSAN A. FARAG

    2016-06-01

    Full Text Available Hydrocracking is used in the petroleum industry to convert low quality feed stocks into high valued transportation fuels such as gasoline, diesel, and jet fuel. The aim of the present work is to develop a rigorous steady state two-dimensional mathematical model which includes conservation equations of mass and energy for simulating the operation of a hydrocracking unit. Both the catalyst bed and quench zone have been included in this integrated model. The model equations were numerically solved in both axial and radial directions using Matlab software. The presented model was tested against a real plant data in Egypt. The results indicated that a very good agreement between the model predictions and industrial values have been reported for temperature profiles, concentration profiles, and conversion in both radial and axial directions at the hydrocracking unit. Simulation of the quench zone conversion and temperature profiles in the quench zone was also included and gave a low deviation from the actual ones. In concentration profiles, the percentage deviation in the first reactor was found to be 9.28 % and 9.6% for the second reactor. The effect of several parameters such as: Pellet Heat Transfer Coefficient, Effective Radial Thermal Conductivity, Wall Heat Transfer Coefficient, Effective Radial Diffusivity, and Cooling medium (quench zone has been included in this study. The variation of Wall Heat Transfer Coefficient, Effective Radial Diffusivity for the near-wall region, gave no remarkable changes in the temperature profiles. On the other hand, even small variations of Effective Radial Thermal Conductivity, affected the simulated temperature profiles significantly, and this effect could not be compensated by the variations of the other parameters of the model.

  2. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  3. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  4. Simulation models generator. Applications in scheduling

    Directory of Open Access Journals (Sweden)

    Omar Danilo Castrillón

    2013-08-01

    Rev.Mate.Teor.Aplic. (ISSN 1409-2433 Vol. 20(2: 231–241, July 2013 generador de modelos de simulacion 233 will, in order to have an approach to reality to evaluate decisions in order to take more assertive. To test prototype was used as the modeling example of a production system with 9 machines and 5 works as a job shop configuration, testing stops processing times and stochastic machine to measure rates of use of machines and time average jobs in the system, as measures of system performance. This test shows the goodness of the prototype, to save the user the simulation model building

  5. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  6. Integrating Visualizations into Modeling NEST Simulations

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  7. Biomedical Simulation Models of Human Auditory Processes

    Science.gov (United States)

    Bicak, Mehmet M. A.

    2012-01-01

    Detailed acoustic engineering models that explore noise propagation mechanisms associated with noise attenuation and transmission paths created when using hearing protectors such as earplugs and headsets in high noise environments. Biomedical finite element (FE) models are developed based on volume Computed Tomography scan data which provides explicit external ear, ear canal, middle ear ossicular bones and cochlea geometry. Results from these studies have enabled a greater understanding of hearing protector to flesh dynamics as well as prioritizing noise propagation mechanisms. Prioritization of noise mechanisms can form an essential framework for exploration of new design principles and methods in both earplug and earcup applications. These models are currently being used in development of a novel hearing protection evaluation system that can provide experimentally correlated psychoacoustic noise attenuation. Moreover, these FE models can be used to simulate the effects of blast related impulse noise on human auditory mechanisms and brain tissue.

  8. Modeling and simulation of direct contact evaporators

    Directory of Open Access Journals (Sweden)

    Campos F.B.

    2001-01-01

    Full Text Available A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under quasi-steady-state conditions were in very good agreement with experimental data. The transient behavior of liquid height was only reasonably simulated. In order to explain this partial disagreement, some possible causes were analyzed.

  9. Simulation and Modeling in High Entropy Alloys

    Science.gov (United States)

    Toda-Caraballo, I.; Wróbel, J. S.; Nguyen-Manh, D.; Pérez, P.; Rivera-Díaz-del-Castillo, P. E. J.

    2017-11-01

    High entropy alloys (HEAs) is a fascinating field of research, with an increasing number of new alloys discovered. This would hardly be conceivable without the aid of materials modeling and computational alloy design to investigate the immense compositional space. The simplicity of the microstructure achieved contrasts with the enormous complexity of its composition, which, in turn, increases the variety of property behavior observed. Simulation and modeling techniques are of paramount importance in the understanding of such material performance. There are numerous examples of how different models have explained the observed experimental results; yet, there are theories and approaches developed for conventional alloys, where the presence of one element is predominant, that need to be adapted or re-developed. In this paper, we review of the current state of the art of the modeling techniques applied to explain HEAs properties, identifying the potential new areas of research to improve the predictability of these techniques.

  10. Best Practices for Crash Modeling and Simulation

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  11. Systematic simulations of modified gravity: chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.

  12. Impact of an additional radiative CO2 cooling induced by subgrid-scale gravity waves in the middle and upper atmosphere

    Science.gov (United States)

    Medvedev, A. S.; Yigit, E.; Kutepov, A.; Feofilov, A.

    2011-12-01

    Atmospheric fluctuations produced by GWs are a substantial source of momentum and energy in the thermosphere (Yigit et al., 2009). These fluctuations also affect radiative transfer and, ultimately, the radiative heating/cooling rates. Recently, Kutepov et al. (2007) developed a methodology to account for radiative effects of subgrid-scale GWs not captured by general circulation models (GCMs). It has been extended by Kutepov et al (2011) to account not only for wave-induced variations of temperature, but also of CO2 and atomic oxygen. It was shown that these GWs can cause additional cooling of up to 3 K/day around mesopause. A key parameter for calculating the additional cooling is the temperature variance associated with GWs, which is a subproduct of conventional GW schemes. In this study, the parameterization of Kutepov et al. (2011) has been implemented into a 3-D comprehensive GCM that incorporates the effects of unresolved GWs via the extended nonlinear scheme of Yigit et al. (2008). Simulated net effects of the additional radiative CO2 cooling on the temperature and wind in the mesosphere and lower thermosphere are presented and discussed for solstice conditions. 1. Kutepov, A. A, A. G. Feofilov, A. S. Medvedev, A. W. A. Pauldrach, and P. Hartogh (2007), Geophys. Res. Lett. 34, L24807, doi:10.1029/2007GL032392. 2. Kutepov, A. A., A. G. Feofilov, A. S. Medvedev, U. Berger, and M. Kaufmann (2011), submitted to Geophys. Res. Letts. 3. Yigit, E., A. D. Aylward, and A. S. Medvedev (2008), J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135. 4. Yigit, E., A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris (2009), J. Geophys. Res., 114, D07101, doi:10.1029/2008JD011132.

  13. Closed loop models for analyzing engineering requirements for simulators

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  14. Modeling and Simulation of Amorphous Materials

    Science.gov (United States)

    Pandey, Anup

    The general and practical inversion of diffraction data - producing a computer model correctly representing the material explored - is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this dissertation, we introduce a robust method, Force-Enhanced Atomic Refinement (FEAR), which jointly exploits the power of ab initio atomistic simulation along with the information carried by diffraction data. As a preliminary trial, the method has been implemented using empirical potentials for amorphous silicon (a-Si) and silica ( SiO2). The models obtained are comparable to the ones prepared by the conventional approaches as well as the experiments. Using ab initio interactions, the method is applied to two very different systems: amorphous silicon (a-Si) and two compositions of a solid electrolyte memory material silver-doped GeSe3. It is shown that the method works well for both the materials. Besides that, the technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. It offers a means to add a priori information in first principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information. Moreover, the method has also been used to create a computer model of a-Si, using highly precise X-ray diffraction data. The model predicts properties that are close to the continuous random network models but with no a priori assumptions. In addition, using the ab initio molecular dynamics simulations (AIMD) we explored the doping and transport in hydrogenated amorphous silicon a-Si:H with the most popular impurities: boron and phosphorous. We investigated doping for these impurities and the role of H in the doping process. We revealed the network motion and H hopping induced by

  15. Implications of Simulation Conceptual Model Development for Simulation Management and Uncertainty Assessment

    Science.gov (United States)

    Pace, Dale K.

    2000-01-01

    A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.

  16. A Simple Memristor Model for Circuit Simulations

    Science.gov (United States)

    Fullerton, Farrah-Amoy; Joe, Aaleyah; Gergel-Hackett, Nadine; Department of Chemistry; Physics Team

    This work describes the development of a model for the memristor, a novel nanoelectronic technology. The model was designed to replicate the real-world electrical characteristics of previously fabricated memristor devices, but was constructed with basic circuit elements using a free widely available circuit simulator, LT Spice. The modeled memrsistors were then used to construct a circuit that performs material implication. Material implication is a digital logic that can be used to perform all of the same basic functions as traditional CMOS gates, but with fewer nanoelectronic devices. This memristor-based digital logic could enable memristors' use in new paradigms of computer architecture with advantages in size, speed, and power over traditional computing circuits. Additionally, the ability to model the real-world electrical characteristics of memristors in a free circuit simulator using its standard library of elements could enable not only the development of memristor material implication, but also the development of a virtually unlimited array of other memristor-based circuits.

  17. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  18. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  19. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    Science.gov (United States)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  20. Exploitation of parallelism in climate models. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Ferdinand; Tribbia, Joseph J.; Williamson, David L.

    2001-02-05

    This final report includes details on the research accomplished by the grant entitled 'Exploitation of Parallelism in Climate Models' to the University of Maryland. The purpose of the grant was to shed light on (a) how to reconfigure the atmospheric prediction equations such that the time iteration process could be compressed by use of MPP architecture; (b) how to develop local subgrid scale models which can provide time and space dependent parameterization for a state-of-the-art climate model to minimize the scale resolution necessary for a climate model, and to utilize MPP capability to simultaneously integrate those subgrid models and their statistics; and (c) how to capitalize on the MPP architecture to study the inherent ensemble nature of the climate problem. In the process of addressing these issues, we created parallel algorithms with spectral accuracy; we developed a process for concurrent climate simulations; we established suitable model reconstructions to speed up computation; we identified and tested optimum realization statistics; we undertook a number of parameterization studies to better understand model physics; and we studied the impact of subgrid scale motions and their parameterization in atmospheric models.

  1. Modeling photosynthesis in sea ice-covered waters

    Science.gov (United States)

    Long, Matthew C.; Lindsay, Keith; Holland, Marika M.

    2015-09-01

    The lower trophic levels of marine ecosystems play a critical role in the Earth System mediating fluxes of carbon to the ocean interior. Many of the functional relationships describing biological rate processes, such as primary productivity, in marine ecosystem models are nonlinear functions of environmental state variables. As a result of nonlinearity, rate processes computed from mean fields at coarse resolution will differ from similar computations that incorporate small-scale heterogeneity. Here we examine how subgrid-scale variability in sea ice thickness impacts simulated net primary productivity (NPP) in a 1°×1° configuration of the Community Earth System Model (CESM). CESM simulates a subgrid-scale ice thickness distribution and computes shortwave penetration independently for each ice thickness category. However, the default model formulation uses grid-cell mean irradiance to compute NPP. We demonstrate that accounting for subgrid-scale shortwave heterogeneity by computing light limitation terms under each ice category then averaging the result is a more accurate invocation of the photosynthesis equations. Moreover, this change delays seasonal bloom onset and increases interannual variability in NPP in the sea ice zone in the model. The new treatment reduces annual production by about 32% in the Arctic and 19% in the Antarctic. Our results highlight the importance of considering heterogeneity in physical fields when integrating nonlinear biogeochemical reactions.

  2. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  3. Study on lattice Boltzmann method/large eddy simulation and its application at high Reynolds number flow

    Directory of Open Access Journals (Sweden)

    Haiqing Si

    2015-03-01

    Full Text Available Lattice Boltzmann method combined with large eddy simulation is developed in the article to simulate fluid flow at high Reynolds numbers. A subgrid model is used as a large eddy simulation model in the numerical simulation for high Reynolds flow. The idea of subgrid model is based on an assumption to include the physical effects that the unresolved motion has on the resolved fluid motion. It takes a simple form of eddy viscosity models for the Reynolds stress. Lift and drag evaluation in the lattice Boltzmann equation takes momentum-exchange method for curved body surface. First of all, the present numerical method is validated at low Reynolds numbers. Second, the developed lattice Boltzmann method/large eddy simulation method is performed to solve flow problems at high Reynolds numbers. Some detailed quantitative comparisons are implemented to show the effectiveness of the present method. It is demonstrated that lattice Boltzmann method combined with large eddy simulation model can efficiently simulate high Reynolds numbers’ flows.

  4. Modelling and simulations of controlled release fertilizer

    Science.gov (United States)

    Irfan, Sayed Ameenuddin; Razali, Radzuan; Shaari, Ku Zilati Ku; Mansor, Nurlidia

    2016-11-01

    The recent advancement in controlled release fertilizer has provided an alternative solution to the conventional urea, controlled release fertilizer has a good plant nutrient uptake they are environment friendly. To have an optimum plant intake of nutrients from controlled release fertilizer it is very essential to understand the release characteristics. A mathematical model is developed to predict the release characteristics from polymer coated granule. Numerical simulations are performed by varying the parameters radius of granule, soil water content and soil porosity to study their effect on fertilizer release. Understanding these parameters helps in the better design and improve the efficiency of controlled release fertilizer.

  5. The mathematical model of a LUNG simulator

    Directory of Open Access Journals (Sweden)

    František Šolc

    2014-12-01

    Full Text Available The paper discusses the design, modelling, implementation and testing of a specific LUNG simulator,. The described research was performed as a part of the project AlveoPic – Advanced Lung Research for Veterinary Medicine of Particles for Inhalation. The simulator was designed to establish a combined study programme comprising Biomedical Engineering Sciences (FEEC BUT and Healthcare and Rehabilitation Technology (FH Technikum Wien. The simulator is supposed to be an advanced laboratory equipment which should enhance the standard of the existing research activities within the above-mentioned study programs to the required level. Thus, the proposed paper introduces significant technical equipment for the laboratory education of students at both FH Technikum Wien and the Faculty of Electrical Engineering and Communication, Brno University of Technology. The apparatuses described here will be also used to support cooperative research activities. In the given context, the authors specify certain technical solutions and parameters related to artificial lungs, present the electrical equipment of the system, and point out the results of the PC-based measurement and control.

  6. Simulation model for port shunting yards

    Science.gov (United States)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  7. Modeling and Simulation of Ultrasound Wave Propagation

    Science.gov (United States)

    Isler, Sylvia Kay

    The specific aim of this work is to model diagnostic ultrasound under strong acoustic scattering conditions. This work is divided into three main sub-topics. The first concerns the solution of the Helmholtz integral equation in three-dimensions. The Pade approximant method for accelerating the convergence of the Neumann series, first proposed by Chandra and Thompson for two-dimensional acoustic scattering problems, is extended to three-dimensions. Secondly, the propagation of acoustic pulses through a medium that is characterized by spatial variations in compressibility is considered. The medium is excited using an ideal, bandlimited acoustic transducer having a Gaussian radiation profile. The time response is determined by using a spatial Fourier wavenumber decomposition of the incident and scattered pressure fields. Using the Pade approximant method, the pressure is evaluated for each wavenumber at each spatial grid location. By taking the inverse Fourier transform of the result, the temporal and spatial evolution of the pressure field is obtained. The third part examines acoustic wave propagation in simulated soft tissue. Methods for generating spatially correlated random media are discussed and applied to simulating the structure of soft tissue. Simulated sonograms are constructed and the effects of strong scattering are considered.

  8. Large-eddy simulation of the diurnal cycle of the atmospheric boundary layer and influence of the radiative forcing during the Wangara experiment.

    Science.gov (United States)

    Dall'Ozzo, Cédric; Carissimo, Bertrand; Milliez, Maya; Musson-Genon, Luc; Dupont, Eric

    2013-04-01

    The ability to simulate the whole diurnal cycle of the atmospheric boundary layer in order to study the complex turbulent structures remains a difficult topic. Consequently large-eddy simulations (LES) are performed with the open source CFD code Code_Saturne [Archambeau et al., 2004]. First the code is validated on an atmospheric convective case [Schmidt and Schumann, 1989] where different subgrid-scale (SGS) models are compared: two non-dynamical SGS models [Smagorinsky, 1963] [Nicoud and Ducros, 1999] and two dynamical SGS models [Germano et al., 1991 ; Lilly, 1992] [Wong and Lilly, 1994]. Then LES are performed to simulate the whole diurnal cycle of the Wangara experiment (Day 33-34). The results are compared to measurements , RANS "k-ɛ" model and other LES performed by [Basu et al., 2008] using a locally averaged scale-dependent dynamic (LASDD) SGS model. Thereafter the influence of the radiative forcing on the atmosphere is studied testing several SGS models. The results are especially discussed on nocturnal low level jet and potential temperature gradient in the stable boundary layer. References: [Archambeau et al., 2004] Archambeau F., Mehitoua N., Sakiz M. (2004). Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. International Journal on Finite Volumes 1(1). [Basu et al., 2008] Basu S., Vinuesa J. F., and Swift A. (2008). Dynamic LES modeling of a diurnal cycle. Journal of Applied Meteorology and Climatology, 47 :1156-1174. [Germano et al., 1991] Germano M., Piomelli U., Moin P., and Cabot W. H. (1991). A dynamic subgrid-scale eddy-viscosity model. Physics of Fluids, A3 :1760-1765. [Lilly, 1992] Lilly D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, A 4 :633-635. [Schmidt and Schumann, 1989] Schmidt H. and Schumann U. (1989). Coherent structure of the convective boundary layer derived from lage-eddy simulation. Journal of Fluid Mechanics, 200 :511-562. [Smagorinsky

  9. The Analysis of Ship Air Defense: The Simulation Model SEAROADS

    NARCIS (Netherlands)

    Dongen, M.P.F.M. van; Kos, J.

    1995-01-01

    The Simulation, Evaluation, Analysis, and Research On Air Defense Systems model (SEAROADS) is a computer simulation model for evaluating, analyzing, and studying the performance of air defense systems aboard naval frigates. The SEAROADS model simulates an engagement between a given ship

  10. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  11. General relativistic simulations of binary neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Giacomazzo, Bruno [Trento Univ. (Italy)

    2016-11-01

    Currently, we are running additional simulations to investigate additional models for the properties of dense matter. Furthermore, we are using remote visualization resources provided by LRZ to produce movies showing 3D visualizations of our simulations, which will be available soon on the web page of our group. One of the main challenges for our simulations is the fact that some important effects leading to magnetic field amplification happen on small length scales. This makes it very difficult to resolve them numerically. In order to further improve the accuracy, we proposed a follow- up study in which we will evolve one or more models with very high resolution and then use the results to calibrate a so-called sub-grid model, which is designed to capture the field amplification on scales not resolved with the lower, more affordable resolutions. Once calibrated, the sub-grid approach will allow to investigate a large number of models without the need for very high resolutions.

  12. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  13. VISION: Verifiable Fuel Cycle Simulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  14. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  15. Dispersion modeling by kinematic simulation: Cloud dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Fung, J C H [Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Perkins, R J [Laboratoire de Mecanique des Fluides et d' Acoustique, Ecole Centrale de Lyon (France)], E-mail: majfung@ust.hk

    2008-04-30

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  16. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited in the sense that they use conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought, and will perform numerical simulations using three single column model versions of the Community Earth System Model (SCM-CESM) at multiple sites overlying the Ogallala Aquifer for the 2010-2012 period. In the first version of SCM-CESM, CESM will be used in standard mode (Community Atmospheric Model (CAM) coupled to a single instance of the Community Land Model (CLM)), secondly, CESM will be used in Super-Parameterized mode (SP-CESM), where a cloud resolving model (CRM consists of 32 atmospheric columns) replaces the standard CAM atmospheric parameterization and is coupled to a single instance of CLM, and thirdly, CESM is used in "Multi Instance" SP-CESM mode, where an instance of CLM is coupled to each CRM column of SP-CESM (32 CRM columns coupled to 32 instances of CLM). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of SCM-CESM, differences in simulated energy and moisture fluxes will be computed between years for the 2010-2012 period, and will be compared to differences calculated using

  17. Autonomous Operation of Hybrid Microgrid with AC and DC Sub-Grids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage...... the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc...... sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid....

  18. Modeling and simulation of cascading contingencies

    Science.gov (United States)

    Zhang, Jianfeng

    This dissertation proposes a new approach to model and study cascading contingencies in large power systems. The most important contribution of the work involves the development and validation of a heuristic analytic model to assess the likelihood of cascading contingencies, and the development and validation of a uniform search strategy. We model the probability of cascading contingencies as a function of power flow and power flow changes. Utilizing logistic regression, the proposed model is calibrated using real industry data. This dissertation analyzes random search strategies for Monte Carlo simulations and proposes a new uniform search strategy based on the Metropolis-Hastings Algorithm. The proposed search strategy is capable of selecting the most significant cascading contingencies, and it is capable of constructing an unbiased estimator to provide a measure of system security. This dissertation makes it possible to reasonably quantify system security and justify security operations when economic concerns conflict with reliability concerns in the new competitive power market environment. It can also provide guidance to system operators about actions that may be taken to reduce the risk of major system blackouts. Various applications can be developed to take advantage of the quantitative security measures provided in this dissertation.

  19. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  20. Large-Eddy Simulation of the Evolving Stable Boundary Layer Over Flat Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, R

    2002-01-02

    The stable boundary layer (SBL) in the atmosphere is of considerable interest because it is often the worse case scenario for air pollution studies and health effect assessments associated with the accidental release of toxic material. Traditional modeling approaches used in such studies do not simulate the non-steady character of the velocity field, and hence often overpredict concentrations while underpredicting spatial coverage of potentially harmful concentrations of airborne material. The challenge for LES is to be able to resolve the rather small energy-containing eddies of the SBL while still maintaining an adequate domain size. This requires that the subgrid-scale (SGS) parameterization of turbulence incorporate an adequate representation of turbulent energy transfer. Recent studies have shown that both upscale and downscale energy transfer can occur simultaneously, but that overall the net transfer is downscale. Including the upscale transfer of turbulent energy (energy backscatter) is particularly important near the ground and under stably-stratified conditions. The goal of this research is to improve the ability to realistically simulate the SBL. The large-eddy simulation (LES) approach with its subgrid-scale (SGS) turbulence model does a better job of capturing the temporally and spatially varying features of the SBL than do Reynolds-averaging models. The scientific objectives of this research are: (1) to characterize features of the evolving SBL structure for a range of meteorological conditions (wind speed and surface cooling), (2) to simulate realistically the transfer of energy between resolved and subgrid scales, and (3) to apply results to improve simulation of dispersion in the SBL.

  1. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  2. Detached eddy simulation and large eddy simulation models for the simulation of gas entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E.; Ninokata, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan); Baglietto, E. [CD-adapco, New York, NY (United States)

    2007-07-01

    The eventual entrainment of gas bubbles in the reactor core of a Light Metal Fast Breeder Reactors (LMFBR) may cause an effective increase in reactivity as in the current state of the art since LMFBRs have usually a positive void coefficient. Since this may have a negative effect on safety and operation, the possibility of gas entrainment needs to be evaluated in the thermohydraulics design. Several studies on the gas entrainment in a LMFBR system have been conducted over the years. The most common situations that may lead to gas entrainment have been classified into vortex dimple, concave free surface and breaking wave. Among these, the vortex-induced gas entrainment phenomenon is considered in the present work, because more likely to be present in operating or accidental conditions. The focus is on the issue of turbulence modeling for the simulation of gas-driving vortexes, and in particular for the benchmark case of Moriya. We will propose two different approaches: a large eddy simulation and a detached eddy simulation. Results are in excellent agreement with the experiment for the radial velocity even if no surface model has been employed. (authors)

  3. Cognitive Modeling for Agent-Based Simulation of Child Maltreatment

    Science.gov (United States)

    Hu, Xiaolin; Puddy, Richard

    This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.

  4. Modeling and simulation of turbulent multiphase flows

    Science.gov (United States)

    Li, Zhaorui

    The atomization of liquid spray in turbulent reacting and non-reacting flows usually occurs in two successive steps, i.e., primary breakup and secondary breakup. In the primary breakup region, the evolution of the interface between the phases is usually complex and very difficult to model. In the secondary breakup region, the average droplet size and volume occupied by the droplets are relatively small but the number of droplets is usually very significant. In this study, we use different mathematical and numerical models for different regions of the spray. For dense spray simulations, a coupled Lagrangian interface-tracking and Eulerian level set method is developed and implemented. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties are obtained from the level set function. The level set function maintains a signed distance function via the particle-based Lagrangian re-initialization technique. Numerical simulations of several 'standard interface-moving' problems and two-fluid laminar and turbulent flows are conducted to assess this new hybrid method. The results of our analysis indicate that the hybrid particle-level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant mass loss or gain. The results obtained for isotropic two-fluid turbulence via the new particle-level set method are validated by comparison with those obtained by the 'zero Mach number', variable-density method. The two-way interactions between the turbulent velocity field and the interface are studied by the particle-level set method. Extensive analysis of vorticity and energy equations indicates that the destabilization effect of turbulence and stability effect of surface tension on the interface motion and interface's effect on turbulence are strongly dependent on the density ratio and Weber number. For

  5. A Three-Dimensional Scale-adaptive Turbulent Kinetic Energy Model in ARW-WRF Model

    Science.gov (United States)

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2017-04-01

    A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing model is developed to address the problem of simulating the convective boundary layer (CBL) across the terra incognita in the Advanced Research version of the Weather Research and Forecasting Model (ARW-WRF). The new model combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the convectional one-dimensional (1D) planetary boundary layer (PBL) schemes. The transition between large-eddy simulation (LES) and mesoscale limit is accomplished in the new scale-adaptive model. A series of dry CBL and real-time simulations using the WRF model are carried out, in which the newly-developed, scale-adaptive, more general and energetically consistent TKE-based model is compared with the conventional 1D TKE-based PBL schemes for parameterizing vertical subgrid turbulent mixing against the WRF LES dataset and observations. The characteristics of the WRF-simulated results using the new and conventional schemes are compared. The importance of including the nonlocal component in the vertical buoyancy specification in the newly-developed general TKE-based scheme is illustrated. The improvements of the new scheme over convectional PBL schemes across the terra incognita can be seen in the partitioning of vertical flux profiles. Through comparing the results from the simulations against the WRF LES dataset and observations, we will show the feasibility of using the new scheme in the WRF model in the lieu of the conventional PBL parameterization schemes.

  6. Effective Momentum and heat flux models for simulation of stratification and mixing in a large pool of water

    Energy Technology Data Exchange (ETDEWEB)

    Hua Li; Villanueva, W.; Kudinov, P. [Royal Institute of Technology (KTH). Div. of Nuclear Power Safety, Stockholm (Sweden)

    2012-06-15

    Performance of a boiling water reactor (BWR) containment is mostly determined by reliable operation of pressure suppression pool which serves as a heat sink to cool and condense steam released from the core vessel. Thermal stratification in the pool can significantly impede the pool's pressure suppression capacity. A source of momentum is required in order to break stratification and mix the pool. It is important to have reliable prediction of transient development of stratification and mixing in the pool in different regimes of steam injection. Previously, we have proposed to model the effect of steam injection on the mixing and stratification with the Effective Heat Source (EHS) and the Effective Momentum Source (EMS) models. The EHS model is used to provide thermal effect of steam injection on the pool, preserving heat and mass balance. The EMS model is used to simulate momentum induced by steam injection in different flow regimes. The EMS model is based on the combination of (1) synthetic jet theory, which predicts effective momentum if amplitude and frequency of flow oscillations in the pipe are given, and (2) model proposed by Aya and Nariai for prediction of the amplitude and frequency of oscillations at a given pool temperature and steam mass flux. The complete EHS/EMS models only require the steam mass flux, initial pool bulk temperature, and design-specific parameters, to predict thermal stratification and mixing in a pressure suppression pool. In this work we use EHS/EMS models implemented in containment thermal hydraulic code GOTHIC. The POOLEX/PPOOLEX experiments (Lappeenranta University of Technology, Finland) are utilized, to (a) quantify errors due to GOTHIC's physical models and numerical schemes, (b) propose necessary improvements in GOTHIC sub-grid scale modeling, and (c) validate our proposed models. Specifically the data from POOLEX STB-21 and PPOOLEX STR-03 and STR-04 tests are used for validation of the EHS and EMS models in this

  7. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    simulator, which was then used to assess the impact of the capillary pressure on phase behavior in oil and gas production from tight reservoirs. Since capillary pressure and adsorption occur simultaneously in shale, its combined effect was studied. A model comparison for high-pressure adsorption in shale...... is presented. The adsorption data in shale is generally scarce, therefore, additional capabilities besides the accuracy were considered in the comparison. The multicomponent potential theory of adsorption yields the best results. Moreover, it shows to be useful to extrapolate adsorption data for hydrocarbons...... calculation tools for phase equilibrium in porous media with capillary pressure and adsorption effects. Analysis using these tools have shown that capillary pressure and adsorption have non-negligible effects on phase equilibrium in shale. As general tools, they can be used to calculate phase equilibrium...

  8. Modelling and Simulation of Search Engine

    Science.gov (United States)

    Nasution, Mahyuddin K. M.

    2017-01-01

    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.

  9. Assessing Molecular Dynamics Simulations with Solvatochromism Modeling.

    Science.gov (United States)

    Schwabe, Tobias

    2015-08-20

    For the modeling of solvatochromism with an explicit representation of the solvent molecules, the quality of preceding molecular dynamics simulations is crucial. Therefore, the possibility to apply force fields which are derived with as little empiricism as possible seems desirable. Such an approach is tested here by exploiting the sensitive solvatochromism of p-nitroaniline, and the use of reliable excitation energies based on approximate second-order coupled cluster results within a polarizable embedding scheme. The quality of the various MD settings for four different solvents, water, methanol, ethanol, and dichloromethane, is assessed. In general, good agreement with the experiment is observed when polarizable force fields and special treatment of hydrogen bonding are applied.

  10. Modeling and simulation technology readiness levels.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we

  11. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... and relevance Empirical and theoretical research is needed to develop in situ simulation and to theorize and experiment with how we best take reported critical incidents and adverse events back to the clinic. In situ simulation offers a unique way to study team interactions there are widely different approaches......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...

  12. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  13. Simulating the [CII] emission of high redshift galaxies

    DEFF Research Database (Denmark)

    Pardos Olsen, Karen; Greve, Thomas Rodriguez; Narayanan, Desika

    2016-01-01

    The fine structure line of [CII] at 158 microns can arise throughout the interstellar medium (ISM) and has been proposed as a tracer of star formation rate (SFR). But the origin of [CII] and how it depends on e.g. metallicity and radiation field of a galaxy remain uncertain.Simulating [CII] can...... be done by combining the output from galaxy simulations with prescriptions for the subgrid physics, as has now been demonstrated by several groups. However, these models are either built on analytical discs or contain other simplifying assumptions. SÍGAME (Simulator of GAlaxy Millimeter....../submillimeter emission) avoids these issues by using cosmological simulations and calculates [CII] emission reliably on resolved scales within each galaxy. The local metallicity is that of the simulation, whereas the far-ultraviolet radiation field and cosmic ray intensity are both scaled with local star formation rate...

  14. GPU Accelerated DG-FDF Large Eddy Simulator

    Science.gov (United States)

    Inkarbekov, Medet; Aitzhan, Aidyn; Sammak, Shervin; Givi, Peyman; Kaltayev, Aidarkhan

    2017-11-01

    A GPU accelerated simulator is developed and implemented for large eddy simulation (LES) of turbulent flows. The filtered density function (FDF) is utilized for modeling of the subgrid scale quantities. The filtered transport equations are solved via a discontinuous Galerkin (DG) and the FDF is simulated via particle based Lagrangian Monte-Carlo (MC) method. It is demonstrated that the GPUs simulations are of the order of 100 times faster than the CPU-based calculations. This brings LES of turbulent flows to a new level, facilitating efficient simulation of more complex problems. The work at Al-Faraby Kazakh National University is sponsored by MoES of RK under Grant 3298/GF-4.

  15. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...

  16. Using Computational Simulations to Confront Students' Mental Models

    Science.gov (United States)

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  17. Review of Modelling Approaches for Healthcare Simulation

    Directory of Open Access Journals (Sweden)

    Bożena Mielczarek

    2016-01-01

    Full Text Available The goal of this paper is to present a summary of various simulation methods applied to health services and to discuss several internal and external determinants for selecting a particular simulation method to study a given managerial problem within the healthcare system. The analysis presented is based on a literature survey and considers four primary simulation techniques: Monte Carlo, discrete-event simulation, agent-based simulation and system dynamics. A range of internal and external factors are reviewed and characterised to determine the most suitable simulation technique for addressing a particular healthcare decision problem. (original abstract

  18. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation.

    Science.gov (United States)

    Gustafsson, Leif; Sternad, Mikael

    2007-10-01

    Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.

  19. Combining Simulation and Optimization Models for Hardwood Lumber Production

    Science.gov (United States)

    G.A. Mendoza; R.J. Meimban; W.G. Luppold; Philip A. Araman

    1991-01-01

    Published literature contains a number of optimization and simulation models dealing with the primary processing of hardwood and softwood logs. Simulation models have been developed primarily as descriptive models for characterizing the general operations and performance of a sawmill. Optimization models, on the other hand, were developed mainly as analytical tools for...

  20. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  1. Modeling and Simulation at Tidewater Community College

    Science.gov (United States)

    Summers, Michael

    2008-01-01

    Investment of $1.5 million in medical simulation technology. Integration of medical simulation activities into the curriculum. Support from TCC leadership. Individual and team activities. Skill development and critical thinking/problem solving skills.

  2. An educational model for ensemble streamflow simulation and uncertainty analysis

    National Research Council Canada - National Science Library

    AghaKouchak, A; Nakhjiri, N; Habib, E

    2013-01-01

    ...) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching uncertainty analysis, parameter estimation, ensemble simulation and model sensitivity...

  3. Development of a Generic Didactic Model for Simulator Training

    National Research Council Canada - National Science Library

    Emmerik, M

    1997-01-01

    .... The development of such a model is motivated by the need to control training and instruction factors in research on simulator fidelity, the need to assess the benefit of training simulators, e.g...

  4. A generic testing framework for agent-based simulation models

    OpenAIRE

    Gürcan, Önder; Dikenelli, Oguz; Bernon, Carole

    2013-01-01

    Agent-based modelling and simulation (ABMS) had an increasing attention during the last decade. However, the weak validation and verification of agent-based simulation models makes ABMS hard to trust. There is no comprehensive tool set for verification and validation of agent-based simulation models, which demonstrates that inaccuracies exist and/or reveals the existing errors in the model. Moreover, on the practical side, many ABMS frameworks are in use. In this sense, we designed and develo...

  5. Modelling toolkit for simulation of maglev devices

    Science.gov (United States)

    Peña-Roche, J.; Badía-Majós, A.

    2017-01-01

    A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.

  6. Simulation and Modeling Application in Agricultural Mechanization

    Directory of Open Access Journals (Sweden)

    R. M. Hudzari

    2012-01-01

    Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.

  7. Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Niko Speybroeck

    2013-11-01

    Full Text Available Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks.

  8. Powertrain modeling and simulation for off-road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, S. [McGill Univ., Montreal, PQ (Canada)

    2010-07-01

    Standard forward facing automotive powertrain modeling and simulation methodology did not perform equally for all vehicles in all applications in the 2010 winter Olympics, 2009 world alpine ski championships, summit station in Greenland, the McGill Formula Hybrid, Unicell QuickSider, and lunar mobility. This presentation provided a standard automotive powertrain modeling and simulation flow chart as well as an example. It also provided a flow chart for location based powertrain modeling and simulation and discussed location based powertrain modeling and simulation implementation. It was found that in certain applications, vehicle-environment interactions cannot be neglected in order to have good model fidelity. Powertrain modeling and simulation of off-road vehicles demands a new approach to powertrain modeling and simulation. It was concluded that the proposed location based methodology could improve the results for off-road vehicles. tabs., figs.

  9. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

    Science.gov (United States)

    Liou, Tong-Miin; Wang, Chun-Sheng

    2018-01-01

    Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

  10. Validation of Simulation Model for Full Scale Wave Simulator and Discrete Fuild Power PTO System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Hansen, Rico Hjerm

    2014-01-01

    In controller development for large scale machinery a good simulation model may serve as a time and money saving factor as well as a safety precaution. Having good models enables the developer to design and test control strategies in a safe and possibly less time consuming environment....... For applicable control strategies to take form in a simulation environment the model must with reasonable accuracy model the real system. The current paper presents a simulation model for a full scale wave simulator and a discrete fluid power Power Take Off (PTO) system. Good correlation is seen between...... the simulation model and the physical machine. Hence, this model may serve as a great bacis for model based controller development and for scaling the PTO system to a full wave energy converter....

  11. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  12. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  13. Large eddy simulation of water flow over series of dunes

    Directory of Open Access Journals (Sweden)

    Jun LU

    2011-12-01

    Full Text Available Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors. The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES model.

  14. Modeling and simulation of bubbles and particles

    Science.gov (United States)

    Dorgan, Andrew James

    The interaction of particles, drops, and bubbles with a fluid (gas or liquid) is important in a number of engineering problems. The present works seeks to extend the understanding of these interactions through numerical simulation. To model many of these relevant flows, it is often important to consider finite Reynolds number effects on drag, lift, torque and history force. Thus, the present work develops an equation of motion for spherical particles with a no-slip surface based on theoretical analysis, experimental data and surface-resolved simulations which is appropriate for dispersed multiphase flows. The equation of motion is then extended to account for finite particle size. This extension is critical for particles which will have a size significantly larger than the grid cell size, particularly important for bubbles and low-density particles. The extension to finite particle size is accomplished through spatial-averaging (both volume-based and surface-based) of the continuous flow properties. This averaging is consistent with the Faxen limit for solid spheres at small Reynolds numbers and added mass and fluid stress forces at inviscid limits. Further work is needed for more quantitative assessment of the truncation terms in complex flows. The new equation of motion is then used to assess the relative importance of each force in the context of two low-density particles (an air bubble and a sand particle) in a boundary layer of water. This relative importance is measured by considering effects on particle concentration, visualization of particle-fluid interactions, diffusion rates, and Lagrangian statistics collected along the particle trajectory. Strong added mass and stress gradient effects are observed for the bubble but these were found to have little effect on a sand particle of equal diameter. Lift was shown to be important for both conditions provided the terminal velocity was aligned with the flow direction. The influence of lift was found to be

  15. Development and validation of effective models for simulation of stratification and mixing phenomena in a pool of water

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Kudinov, P.; Villanueva, W. (Royal Institute of Technology (KTH). Div. of Nuclear Power Safety (Sweden))

    2011-06-15

    This work pertains to the research program on Containment Thermal-Hydraulics at KTH. The objective is to evaluate and improve performance of methods, which are used to analyze thermal-hydraulics of steam suppression pools in a BWR plant under different abnormal transient and accident conditions. The pressure suppression pool was designed to have the capability as a heat sink to cool and condense steam released from the core vessel and/or main steam line during loss of coolant accident (LOCA) or opening of safety relief valve in normal operation of BWRs. For the case of small flow rates of steam influx, thermal stratification could develop on the part above the blowdown pipe exit and significantly impede the pool's pressure suppression capacity. Once steam flow rate increases significantly, momentum introduced by the steam injection and/or periodic expansion and collapse of large steam bubbles due to direct contact condensation can destroy stratified layers and lead to mixing of the pool water. We use CFD-like model of the general purpose thermal-hydraulic code GOTHIC for addressing the issues of stratification and mixing in the pool. In the previous works we have demonstrated that accurate and computationally efficient prediction of the pool thermal-hydraulics in the scenarios with transition between thermal stratification and mixing, presents a computational challenge. The reason is that direct contact condensation phenomena, which drive oscillatory motion of the water in the blowdown pipes, are difficult to simulate with original GOTHIC models because of appearance of artificial oscillations due to numerical disturbances. To resolve this problem we propose to model the effect of steam injection on the mixing and stratification with the Effective Heat Source (EHS) model and the Effective Momentum Source (EMS) model. We use POOLEX/PPOOLEX experiment (Lappeenranta University of Technology in Finland), in order to (a) quantify errors due to GOTHIC

  16. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  17. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Science.gov (United States)

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; Morton, Don; Hinzman, Larry; Nijssen, Bart

    2017-09-01

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties - including the distribution of permafrost and vegetation cover heterogeneity - are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to

  18. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw

    2017-09-01

    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  19. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  20. Historical Development of Simulation Models of Recreation Use

    Science.gov (United States)

    Jan W. van Wagtendonk; David N. Cole

    2005-01-01

    The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...

  1. Simulation models in population breast cancer screening : A systematic review

    NARCIS (Netherlands)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for

  2. Case studies of simulation models of recreation use

    Science.gov (United States)

    David N. Cole

    2005-01-01

    Computer simulation models can be usefully applied to many different outdoor recreation situations. Model outputs can also be used for a wide variety of planning and management purposes. The intent of this chapter is to use a collection of 12 case studies to illustrate how simulation models have been used in a wide range of recreation situations and for diverse...

  3. Federated Modelling and Simulation for Critical Infrastructure Protection

    NARCIS (Netherlands)

    Rome, E.; Langeslag, P.J.H.; Usov, A.

    2014-01-01

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic

  4. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  5. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Science.gov (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  6. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Directory of Open Access Journals (Sweden)

    C. Montzka

    2017-07-01

    Full Text Available Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC and hydraulic conductivity (HCC curves are typically derived from soil texture via pedotransfer functions (PTFs. Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller–Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem–van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based

  7. A New Model for Simulating TSS Washoff in Urban Areas

    Directory of Open Access Journals (Sweden)

    E. Crobeddu

    2011-01-01

    Full Text Available This paper presents the formulation and validation of the conceptual Runoff Quality Simulation Model (RQSM that was developed to simulate the erosion and transport of solid particles in urban areas. The RQSM assumes that solid particle accumulation on pervious and impervious areas is infinite. The RQSM simulates soil erosion using rainfall kinetic energy and solid particle transport with linear system theory. A sensitivity analysis was conducted on the RQSM to show the influence of each parameter on the simulated load. Total suspended solid (TSS loads monitored at the outlet of the borough of Verdun in Canada and at three catchment outlets of the City of Champaign in the United States were used to validate the RQSM. TSS loads simulated by the RQSM were compared to measured loads and to loads simulated by the Rating Curve model and the Exponential model of the SWMM software. The simulation performance of the RQSM was comparable to the Exponential and Rating Curve models.

  8. Business Process Simulation: Requirements for Business and Resource Models

    Directory of Open Access Journals (Sweden)

    Audrius Rima

    2015-07-01

    Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  9. RANDOM CLOSED SET MODELS: ESTIMATING AND SIMULATING BINARY IMAGES

    Directory of Open Access Journals (Sweden)

    Ángeles M Gallego

    2011-05-01

    Full Text Available In this paper we show the use of the Boolean model and a class of RACS models that is a generalization of it to obtain simulations of random binary images able to imitate natural textures such as marble or wood. The different tasks required, parameter estimation, goodness-of-fit test and simulation, are reviewed. In addition to a brief review of the theory, simulation studies of each model are included.

  10. A review on travel behaviour modelling in dynamic traffic simulation models for evacuations

    NARCIS (Netherlands)

    Pel, A.J.; Bliemer, M.C.J.; Hoogendoorn, S.P.

    2011-01-01

    Dynamic traffic simulation models are frequently used to support decisions when planning an evacuation. This contribution reviews the different (mathematical) model formulations underlying these traffic simulation models used in evacuation studies and the behavioural assumptions that are made. The

  11. Optical Imaging and Radiometric Modeling and Simulation

    Science.gov (United States)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  12. Modeling, Simulation and Position Control of 3DOF Articulated Manipulator

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2014-08-01

    Full Text Available In this paper, the modeling, simulation and control of 3 degrees of freedom articulated robotic manipulator have been studied. First, we extracted kinematics and dynamics equations of the mentioned manipulator by using the Lagrange method. In order to validate the analytical model of the manipulator we compared the model simulated in the simulation environment of Matlab with the model was simulated with the SimMechanics toolbox. A sample path has been designed for analyzing the tracking subject. The system has been linearized with feedback linearization and then a PID controller was applied to track a reference trajectory. Finally, the control results have been compared with a nonlinear PID controller.

  13. Global Information Enterprise (GIE) Modeling and Simulation (GIESIM)

    National Research Council Canada - National Science Library

    Bell, Paul

    2005-01-01

    ... AND S) toolkits into the Global Information Enterprise (GIE) Modeling and Simulation (GIESim) framework to create effective user analysis of candidate communications architectures and technologies...

  14. Functional Decomposition of Modeling and Simulation Terrain Database Generation Process

    National Research Council Canada - National Science Library

    Yakich, Valerie R; Lashlee, J. D

    2008-01-01

    .... This report documents the conceptual procedure as implemented by Lockheed Martin Simulation, Training, and Support and decomposes terrain database construction using the Integration Definition for Function Modeling (IDEF...

  15. TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere

    Directory of Open Access Journals (Sweden)

    P. I. Palmer

    2011-12-01

    Full Text Available A chemistry-transport model (CTM intercomparison experiment (TransCom-CH4 has been designed to investigate the roles of surface emissions, transport and chemical loss in simulating the global methane distribution. Model simulations were conducted using twelve models and four model variants and results were archived for the period of 1990–2007. All but one model transports were driven by reanalysis products from 3 different meteorological agencies. The transport and removal of CH4 in six different emission scenarios were simulated, with net global emissions of 513 ± 9 and 514 ± 14 Tg CH4 yr−1 for the 1990s and 2000s, respectively. Additionally, sulfur hexafluoride (SF6 was simulated to check the interhemispheric transport, radon (222Rn to check the subgrid scale transport, and methyl chloroform (CH3CCl3 to check the chemical removal by the tropospheric hydroxyl radical (OH. The results are compared to monthly or annual mean time series of CH4, SF6 and CH3CCl3 measurements from 8 selected background sites, and to satellite observations of CH4 in the upper troposphere and stratosphere. Most models adequately capture the vertical gradients in the stratosphere, the average long-term trends, seasonal cycles, interannual variations (IAVs and interhemispheric (IH gradients at the surface sites for SF6, CH3CCl3 and CH4. The vertical gradients of all tracers between the surface and the upper troposphere are consistent within the models, revealing vertical transport differences between models. An average IH exchange time of 1.39 ± 0.18 yr is derived from SF6 time series. Sensitivity simulations suggest that the estimated trends in exchange time, over the period of 1996–2007, are caused by a change of SF6 emissions towards the tropics. Using six sets of emission scenarios, we show that the decadal average CH4 growth rate likely reached equilibrium in the early 2000s due to the flattening of anthropogenic emission growth since the late 1990s. Up to

  16. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    Science.gov (United States)

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of

  17. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    Science.gov (United States)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10

  18. Modelling domain knowledge for intelligent simulation learning environments

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1992-01-01

    Computer simulations are an often applied and promising form of CAL. A main characteristic of computer simulations is that the domain knowledge is represented in amodel. This model contains all necessary information to calculate the behaviour of the simulation in terms of variables and parameters

  19. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  20. Theory, modeling and simulation of superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory; Kamenev, Dmitry I [Los Alamos National Laboratory; Chumak, Alexander [INSTIT OF PHYSICS, KIEV; Kinion, Carin [LLNL; Tsifrinovich, Vladimir [POLYTECHNIC INSTIT OF NYU

    2011-01-13

    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, that includes the resonator-drive, the resonator-bath, and resonator-qubit interactions. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using the solutions for the resonator field, we derive the equation that describes the qubit dynamics. The dependence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. We proposed a novel adiabatic method for the phase qubit measurement. The method utilizes a low-frequency, quasi-classical resonator inductively coupled to the qubit. The resonator modulates the qubit energy, and the back reaction of the qubit causes a shift in the phase of the resonator. The resonator phase shift can be used to determine the qubit state. We have simulated this measurement taking into the account the energy levels outside the phase qubit manifold. We have shown that, for qubit frequencies in the range of 8-12GHZ, a resonator frequency of 500 MHz and a measurement time of 100 ns, the phase difference between the two qubit states is greater than 0.2 rad. This phase difference exceeds the measurement uncertainty, and can be detected using a classical phase-meter. A fidelity of 0.9999 can be achieved for a relaxation time of 0.5 ms. We also model and simulate a microstrip-SQUID amplifier of frequency about 500 MHz, which could be used to amplify the resonator oscillations in the phase qubit adiabatic measurement. The voltage gain and the amplifier noise temperature are calculated. We simulate the preparation of a generalized Bell state and compute the relaxation times required for achieving high

  1. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  2. Medical simulation: Overview, and application to wound modelling and management

    Directory of Open Access Journals (Sweden)

    Dinker R Pai

    2012-01-01

    Full Text Available Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a overall increase in the number of medical students vis-à-vis the availability of patients; b increasing awareness among patients of their rights and consequent increase in litigations and c tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.

  3. Construction Safety Risk Modeling and Simulation.

    Science.gov (United States)

    Tixier, Antoine J-P; Hallowell, Matthew R; Rajagopalan, Balaji

    2017-10-01

    By building on a genetic-inspired attribute-based conceptual framework for safety risk analysis, we propose a novel approach to define, model, and simulate univariate and bivariate construction safety risk at the situational level. Our fully data-driven techniques provide construction practitioners and academicians with an easy and automated way of getting valuable empirical insights from attribute-based data extracted from unstructured textual injury reports. By applying our methodology on a data set of 814 injury reports, we first show the frequency-magnitude distribution of construction safety risk to be very similar to that of many natural phenomena such as precipitation or earthquakes. Motivated by this observation, and drawing on state-of-the-art techniques in hydroclimatology and insurance, we then introduce univariate and bivariate nonparametric stochastic safety risk generators based on kernel density estimators and copulas. These generators enable the user to produce large numbers of synthetic safety risk values faithful to the original data, allowing safety-related decision making under uncertainty to be grounded on extensive empirical evidence. One of the implications of our study is that like natural phenomena, construction safety may benefit from being studied quantitatively by leveraging empirical data rather than strictly being approached through a managerial perspective using subjective data, which is the current industry standard. Finally, a side but interesting finding is that in our data set, attributes related to high energy levels (e.g., machinery, hazardous substance) and to human error (e.g., improper security of tools) emerge as strong risk shapers. © 2017 Society for Risk Analysis.

  4. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2017-08-10

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  5. Modular Modelling and Simulation Approach - Applied to Refrigeration Systems

    DEFF Research Database (Denmark)

    Sørensen, Kresten Kjær; Stoustrup, Jakob

    2008-01-01

    This paper presents an approach to modelling and simulation of the thermal dynamics of a refrigeration system, specifically a reefer container. A modular approach is used and the objective is to increase the speed and flexibility of the developed simulation environment. The refrigeration system...... is divided into components where the inputs and outputs are described by a set of XML files that can be combined into a composite system model that may be loaded into MATLABtrade. A set of tools that allows the user to easily load the model and run a simulation are provided. The results show a simulation...

  6. Vehicle Modeling for Future Generation Transportation Simulation

    Science.gov (United States)

    2009-05-10

    Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...

  7. Ophiucus: RDF-based visualization tool for health simulation models.

    Science.gov (United States)

    Sutcliffe, Andrew; Okhmatovskaia, Anya; Shaban-Nejad, Arash; Buckeridge, David

    2012-01-01

    Simulation modeling of population health is becoming increasingly popular for epidemiology research and public health policy-making. However, the acceptability of population health simulation models is inhibited by their complexity and the lack of established standards to describe these models. To address this issue, we propose Ophiuchus - an RDF (Resource Description Framework: http://www.w3.org/RDF/)-based visualization tool for generating interactive 2D diagrams of population health simulation models, which describe these models in an explicit and formal manner. We present the results of a preliminary system assessment and discuss current limitations of the system.

  8. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, S.S.; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...

  9. A Simulation Model Articulation of the REA Ontology

    Science.gov (United States)

    Laurier, Wim; Poels, Geert

    This paper demonstrates how the REA enterprise ontology can be used to construct simulation models for business processes, value chains and collaboration spaces in supply chains. These models support various high-level and operational management simulation applications, e.g. the analysis of enterprise sustainability and day-to-day planning. First, the basic constructs of the REA ontology and the ExSpect modelling language for simulation are introduced. Second, collaboration space, value chain and business process models and their conceptual dependencies are shown, using the ExSpect language. Third, an exhibit demonstrates the use of value chain models in predicting the financial performance of an enterprise.

  10. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)

    Mekuannint

    MODELING, SIMULATION AND PERFORMANCE EVALUATION OF. PARABOLIC TROUGH. SOLAR COLLECTOR POWER GENERATION SYSTEM. Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University. ABSTRACT. Model of a parabolic trough power plant, taking.

  11. Impact of reactive settler models on simulated WWTP performance

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.

    2006-01-01

    for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takacs settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate......, combined with a non-reactive Takacs settler. The second is a fully reactive ASM1 Takacs settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively....... The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler....

  12. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  13. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  14. Validation of a Simplified Building Cooling Load Model Using a Complex Computer Simulation Model

    OpenAIRE

    Stewart, Morgan Eugene

    2001-01-01

    Building energy simulation has become a useful tool for predicting cooling, heating and electrical loads for facilities. Simulation models have been validated throughout the years by comparing simulation results to actual measured values. The simulations have become more accurate as approaches were changed to be more comprehensive in their ability to model building features. These simulation models tend to require considerable experience in determining input parameters and large amounts of...

  15. New Simulation Models for Addressing Like X–Aircraft Responses ...

    African Journals Online (AJOL)

    The original Monte Carlo model was previously modified for use in simulating data that conform to certain resource flow constraints. Recent encounters in communication and controls render these data absolute and irrelevant to current needs. In order to cater for these needs, we are presenting alternative simulation models ...

  16. Object Oriented Toolbox for Modelling and Simulation of Dynamic Systems

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Poulsen, Mikael Zebbelin; Wagner, Falko Jens

    1999-01-01

    Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform.......Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform....

  17. Exploiting Modelling and Simulation in Support of Cyber Defence

    NARCIS (Netherlands)

    Klaver, M.H.A.; Boltjes, B.; Croom-Jonson, S.; Jonat, F.; Çankaya, Y.

    2014-01-01

    The rapidly evolving environment of Cyber threats against the NATO Alliance has necessitated a renewed focus on the development of Cyber Defence policy and capabilities. The NATO Modelling and Simulation Group is looking for ways to leverage Modelling and Simulation experience in research, analysis

  18. A generalized simulation model of an integrated emergency post

    NARCIS (Netherlands)

    Mes, Martijn R.K.; Bruens, M.A.; Laroque, C.

    2012-01-01

    This paper discusses the development of a discrete-event simulation model for an integrated emergency post. This post is a collaboration between a general practitioners post and an emergency department within a hospital. We present a generalized and flexible simulation model, which can easily be

  19. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model Intercomparison Project (AMIP) simulations and higher resolution National Centre for Environmental Prediction (NCEP) reanalysis downscalings are presented and evaluated in this paper. The model used is the ...

  20. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the

  1. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  2. Application of Large Eddy Simulation in the process of the Multi-Physics Field Coupling in a Combustion Chamber

    Directory of Open Access Journals (Sweden)

    Xu Rang-Shu

    2015-01-01

    Full Text Available Numerical simulation is the main method to solve turbulence problems. As one of the three methods which are commonly used in large-eddy simulation model (LES is the most effective and promising research method. The basic idea of large-eddy simulation is that the large scale turbulent motion is directly simulated and we use the sub-grid scale model to simulate small-scale turbulent motion. Continuing alternative load exists in aero-engine combustion chamber during operation. This coupling phenomenon is an important reason to the combustion chamber fatigue failure. In this paper, the large-eddy simulation methods are described and applied in researching aero-engine combustion chamber multi-physics field coupling analysis. By comparing with the experimental results we verify the feasibility of this method and there is great significance of actual project.

  3. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  4. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    Science.gov (United States)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  5. Nature and nurture in galaxy formation simulations

    NARCIS (Netherlands)

    Haas, Marcel Richard

    2010-01-01

    We study several aspects of the formation of galaxies, using numerical simulations. We investigate the influence of about thirty different sub-grid physics recipes for cooling, star formation, supernova feedback, AGN feedback etc. on the resulting galaxy populations with large SPH simulations. We

  6. Large-eddy simulation of a backward facing step flow using a least-squares spectral element method

    Science.gov (United States)

    Chan, Daniel C.; Mittal, Rajat

    1996-01-01

    We report preliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100. The numerical platform is based on a high order Legendre spectral element spatial discretization and a least squares time integration scheme. A non-reflective outflow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profiles and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.

  7. Coupled Monte Carlo simulation and Copula theory for uncertainty analysis of multiphase flow simulation models.

    Science.gov (United States)

    Jiang, Xue; Na, Jin; Lu, Wenxi; Zhang, Yu

    2017-11-01

    Simulation-optimization techniques are effective in identifying an optimal remediation strategy. Simulation models with uncertainty, primarily in the form of parameter uncertainty with different degrees of correlation, influence the reliability of the optimal remediation strategy. In this study, a coupled Monte Carlo simulation and Copula theory is proposed for uncertainty analysis of a simulation model when parameters are correlated. Using the self-adaptive weight particle swarm optimization Kriging method, a surrogate model was constructed to replace the simulation model and reduce the computational burden and time consumption resulting from repeated and multiple Monte Carlo simulations. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were employed to identify whether the t Copula function or the Gaussian Copula is the optimal Copula function to match the relevant structure of the parameters. The results show that both the AIC and BIC values of the t Copula function are less than those of the Gaussian Copula function. This indicates that the t Copula function is the optimal function for matching the relevant structure of the parameters. The outputs of the simulation model when parameter correlation was considered and when it was ignored were compared. The results show that the amplitude of the fluctuation interval when parameter correlation was considered is less than the corresponding amplitude when parameter estimation was ignored. Moreover, it was demonstrated that considering the correlation among parameters is essential for uncertainty analysis of a simulation model, and the results of uncertainty analysis should be incorporated into the remediation strategy optimization process.

  8. Modeling and simulation of graphene devices

    Science.gov (United States)

    Chauhan, Jyotsna

    Graphene has been explored as one of the promising materials to sustain Moore's law especially with silicon approaching its limits. The extraordinary electronic properties of graphene like high mobility, high saturation velocity etc. have created a gold rush for graphene based electronics. The numerical study in this dissertation provides valuable insights into device physics and characteristics of graphene Field Effect Transistors (FETs). First part of dissertation studies the effect of inelastic phonon scattering in graphene FETs using semi classical approach. A kink behavior due to ambipolar transport is observed. Even the low field mobility is affected by inelastic phonon scattering in recent graphene FET experiments reporting high mobilities. Physical mechanisms for good linearity are explained. The high frequency performance limits of graphene FETs are studied by running quantum simulations. Although Klein band-to-band tunneling is significant for sub-100nm graphene FETs, it is possible to achieve a good transconductance and ballistic on-off ratio larger than 3 even at a channel length of 20nm. At a channel length of 20nm, the intrinsic cut-off frequency remains at a couple of THz for various gate insulator thickness values, but a thin gate insulator is necessary for a good transconductance and smaller degradation of cut-off frequency in the presence of parasitic capacitance. With a thin high-kappa gate insulator, the intrinsic ballistic fT is above 5THz for gate length of 10nm. The source and drain resistance severely degrade RF parameters, fMAX and f T. It is found that the intrinsic fT is close to the LC characteristic frequency set by graphene kinetic inductance and quantum capacitance. Graphene on silicon contacts are modeled. Graphene on silicon forms Schottky contact with a flexibility to tune the Schottky barrier height (SBH) by silicon doping and gate voltage. Multiple layers of graphene at the interface as well as donor type interface states reduce

  9. A novel FEA simulation model for RFID SAW tag.

    Science.gov (United States)

    Peng, Dasong; Yu, Fengqi

    2009-08-01

    Based on finite element analysis, we propose a simulation model for radio frequency identification (RFID) SAW tag devices. Electric properties of metal electrode on substrate greatly affect the characteristics of the device and are discussed in the paper. Then the right and left boundary conditions for the device are applied to remove large unwanted waves generated by wave propagation near the boundaries. To save computation time, a 2-D model is proposed, where some mesh skills are applied. The tag device is simulated in 2 steps. First, we use modal analysis to get the device phase velocity and harmonic frequency. Second, a tag with multireflectors is simulated. Based on the simulations, we have designed and fabricated a SAW tag. A comparison is made between simulation and experimental results and shows our simulation model agrees with the experiment very well.

  10. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  11. Evaluation of LES models for flow over bluff body from engineering ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Results are also discussed keeping in view limitations of LES methodology of modelling for practical problems and current developments. It is concluded that a one-equation model for subgrid kinetic energy is the best choice. Keywords. Subgrid scale stress models; engineering flows; flow over bluff body. 1. Introduction.

  12. The invaluable benefits of modeling and simulation in our lives

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C., E-mail: carlos.lorencez@opg.com [Ontario Power Generation, Nuclear Safety Div., Pickering, Ontario (Canada)

    2015-07-01

    'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)

  13. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  14. Handbook of Real-World Applications in Modeling and Simulation

    CERN Document Server

    Sokolowski, John A

    2012-01-01

    This handbook provides a thorough explanation of modeling and simulation in the most useful, current, and predominant applied areas, such as transportation, homeland security, medicine, operational research, military science, and business modeling.  The authors offer a concise look at the key concepts and techniques of modeling and simulation and then discuss how and why the presented domains have become leading applications.  The book begins with an introduction of why modeling and simulation is a reliable analysis assessment tool for complex syste

  15. Simplified Model of Brushless Synchronous Generator for Real Time Simulation

    CERN Document Server

    Lopez, M D; Rebollo, E; Blanquez, F R

    2015-01-01

    This paper presents a simplified model of brushless synchronous machine for saving hardware resources in a real time simulation system. Firstly, a brushless excitation system model is described. Thereafter, the simplified transfer function of an AC exciter and rotating diodes of the brushless excitation system is estimated. Finally, the complete system is simulated, comparing the main generator's voltage with both detailed and simplified excitation systems in several scenarios. These results show the accuracy of the simplified model against the detailed simulation model, resulting on an important hardware resources savings.

  16. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    : a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2...

  17. A study for production simulation model generation system based on data model at a shipyard

    Directory of Open Access Journals (Sweden)

    Myung-Gi Back

    2016-09-01

    Full Text Available Simulation technology is a type of shipbuilding product lifecycle management solution used to support production planning or decision-making. Normally, most shipbuilding processes are consisted of job shop production, and the modeling and simulation require professional skills and experience on shipbuilding. For these reasons, many shipbuilding companies have difficulties adapting simulation systems, regardless of the necessity for the technology. In this paper, the data model for shipyard production simulation model generation was defined by analyzing the iterative simulation modeling procedure. The shipyard production simulation data model defined in this study contains the information necessary for the conventional simulation modeling procedure and can serve as a basis for simulation model generation. The efficacy of the developed system was validated by applying it to the simulation model generation of the panel block production line. By implementing the initial simulation model generation process, which was performed in the past with a simulation modeler, the proposed system substantially reduced the modeling time. In addition, by reducing the difficulties posed by different modeler-dependent generation methods, the proposed system makes the standardization of the simulation model quality possible.

  18. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...

  19. Developing model asphalt systems using molecular simulation : final model.

    Science.gov (United States)

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  20. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  1. Reducing outpatient waiting time: a simulation modeling approach.

    Science.gov (United States)

    Aeenparast, Afsoon; Tabibi, Seyed Jamaleddin; Shahanaghi, Kamran; Aryanejhad, Mir Bahador

    2013-09-01

    The objective of this study was to provide a model for reducing outpatient waiting time by using simulation. A simulation model was constructed by using the data of arrival time, service time and flow of 357 patients referred to orthopedic clinic of a general teaching hospital in Tehran. The simulation model was validated before constructing different scenarios. In this study 10 scenarios were presented for reducing outpatient waiting time. Patients waiting time was divided into three levels regarding their physicians. These waiting times for all scenarios were computed by simulation model. According to the final scores the 9th scenario was selected as the best way for reducing outpatient's waiting time. Using the simulation as a decision making tool helps us to decide how we can reduce outpatient's waiting time. Comparison of outputs of this scenario and the based- case scenario in simulation model shows that combining physician's work time changing with patient's admission time changing (scenario 9) would reduce patient waiting time about 73.09%. Due to dynamic and complex nature of healthcare systems, the application of simulation for the planning, modeling and analysis of these systems has lagged behind traditional manufacturing practices. Rapid growth in health care system expenditures, technology and competition has increased the complexity of health care systems. Simulation is a useful tool for decision making in complex and probable systems.

  2. Calibration of the simulation model of the VINCY cyclotron magnet

    Directory of Open Access Journals (Sweden)

    Ćirković Saša

    2002-01-01

    Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  3. Calibration of the simulation model of the Vincy cyclotron magnet

    CERN Document Server

    Cirkovic, S; Vorozhtsov, A S; Vorozhtsov, S B

    2002-01-01

    The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximum obtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  4. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  5. Cognitive model supported tactical training simulation

    NARCIS (Netherlands)

    Doesburg, W.A. van; Bosch, K. van den

    2005-01-01

    Simulation-based tactical training can be made more effective by using cognitive software agents to play key roles (e.g. team mate, adversaries, instructor). Due to the dynamic and complex nature of military tactics, it is hard to create agents that behave realistically and support the training

  6. Global Solar Dynamo Models: Simulations and Predictions

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2 ... Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for ... We first define flux-transport dynamos and demonstrate how they work.

  7. MODELING AND SIMULATION OF INDUSTRIAL FORMALDEHYDE ABSORBERS

    NARCIS (Netherlands)

    WINKELMAN, JGM; SIJBRING, H; BEENACKERS, AACM; DEVRIES, ET

    1992-01-01

    The industrially important process of formaldehyde absorption in water constitutes a case of multicomponent mass transfer with multiple reactions and considerable heat effects. A stable solution algorithm is developed to simulate the performance of industrial absorbers for this process using a

  8. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... Aerospace, our results were in good agreement with experimental data. By simulation studies predeterminations became very easy to prepare, this gain is the result of the development of computational methods and hardware remarkable revolution. So mastery of computers has become indispensable for ...

  9. Modeling and simulation of membrane process

    Science.gov (United States)

    Staszak, Maciej

    2017-06-01

    The article presents the different approaches to polymer membrane mathematical modeling. Traditional models based on experimental physicochemical correlations and balance models are presented in the first part. Quantum and molecular mechanics models are presented as they are more popular for polymer membranes in fuel cells. The initial part is enclosed by neural network models which found their use for different types of processes in polymer membranes. The second part is devoted to models of fluid dynamics. The computational fluid dynamics technique can be divided into solving of Navier-Stokes equations and into Boltzmann lattice models. Both approaches are presented focusing on membrane processes.

  10. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  11. System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle

    Science.gov (United States)

    Janice K. Wiedenbeck; D. Earl Kline

    1994-01-01

    Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...

  12. ESA Simulation Language (ESL) battery model upgrade

    Science.gov (United States)

    Hay, J. L.; Owen, J. R.

    1988-03-01

    An ESL nickel-cadmium battery model was extended to match the battery manufacturer's steady state cycling characteristics, and to increase the temperature range over which the model is valid. The model was validated by comparisons with test results in the ambient temperature range 0 to 20 C. Less confidence must be attached to results produced by the model outside the 0 to 20 C range, there being no battery cycling data outside this range with which to judge model performance.

  13. Discrete event simulation: Modeling simultaneous complications and outcomes

    NARCIS (Netherlands)

    Quik, E.H.; Feenstra, T.L.; Krabbe, P.F.M.

    2012-01-01

    OBJECTIVES: To present an effective and elegant model approach to deal with specific characteristics of complex modeling. METHODS: A discrete event simulation (DES) model with multiple complications and multiple outcomes that each can occur simultaneously was developed. In this DES model parameters,

  14. Simulation of the impacts land use and land cover changes - LUCC on the hydrological response of the Ji-Parana Basin with MGB-INPE model

    Science.gov (United States)

    Rodriguez, D. A.; Tomasella, J.

    2012-04-01

    response processes are marked in sub-basins with steep slopes; while in basins with more gently topography the impacts are more pronounced in slow responses processes. The model was not able to capture the dependence of LUCC impacts on spatial scales: results from simulations have shown the impact increases almost linearly with basin scale, while analysis based on observed data have indicated that impacts are diluted at larger scales. These discrepancies are probably associated with limitations in the spatial representation of heterogeneities within the model, which become more relevant at larger scales. For instance, land use sub-grid variability is accounted only through the percentage of each land use within the cell, without an explicit representation of the location of each use within the gridcell, nor the interaction between land uses.

  15. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  16. A cognitive human behaviour model for pedestrian behaviour simulation

    OpenAIRE

    Hollmann, Claudia

    2015-01-01

    Pedestrian behaviour simulation models are being developed with the intention to simulate human behaviour in various environments in both non-emergency and emergency situations. These models are applied with the objective to understand the underlying causes and dynamics of pedestrian behaviour and how the environment or the environment’s intrinsic procedures can be adjusted in order to provide an improvement of human comfort and safety.\\ud \\ud In order to realistically model pedestrian behavi...

  17. Improving hydrological simulations by incorporating GRACE data for model calibration

    Science.gov (United States)

    Bai, Peng; Liu, Xiaomang; Liu, Changming

    2018-02-01

    Hydrological model parameters are typically calibrated by observed streamflow data. This calibration strategy is questioned when the simulated hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE)-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. In this study, a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations was compared with the traditional single-objective calibration scheme based on only streamflow simulations. Two hydrological models were employed on 22 catchments in China with different climatic conditions. The model evaluations were performed using observed streamflows, GRACE-derived TWSC, and actual evapotranspiration (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration scheme provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. The improvement in TWSC and ET simulations was more significant in relatively dry catchments than in relatively wet catchments. In addition, hydrological models calibrated using GRACE-derived TWSC data alone cannot obtain accurate runoff simulations in ungauged catchments. This study highlights the importance of including additional constraints in addition to streamflow observations to improve performances of hydrological models.

  18. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  19. Coupled Model Simulation of Snowfall Events Over the Black Hills

    Science.gov (United States)

    Wang, Jianzhong; Hjelmfelt, M. R.; Capehart, W. J.

    2000-01-01

    Although many long-term simulations of snow accumulation and oblation have been made using stand-alone land surface models and surface models coupled with GCMs, less research has focused on short-term event simulations. Actually, accurate event simulations of snow-related processes are the basis for successful long-term simulation. Three advantages of event simulations of snowfall and snow melting are availability of: (1) intensive observation data from field experiments for validation; (2) more physically-realistic precipitation schemes for use in atmospheric models to simulate snowfall; and (3) a more detailed analysis of the snow melting processes. In addition to the complexities of snow related processes themselves, terrain-induced effects on snowfall/snow melting make simulations of snow events more difficult. Climatological observations indicate that terrain features such as the Black Hills of South Dakota and Wyoming can exert important effects on snow accumulation and snow oblation processes. One of the primary effects is that the orography causes forced uplift of airflow and causes atmospheric waves to form both upwind and downwind of it. Airflow often splits around the obstacle, converging on the lee side. This convergence may lead to precipitation enhancement. It also provides an elevated heat and moisture source that enhances atmospheric instability. During the period of April 5-May 5, 1999, the Upper Missouri River Basin Pilot Project (UMRBPP) made intensive observations on precipitation events occurring in the Black Hills. Two moderate snowfall events were captured during the period. The resulting high temporal and spatial resolution data provides opportunities to investigate terrain effects on snowfall amount, distribution, and melting. Successful simulation of snowfall amount, distribution, and evolution using atmospheric models is important to subsequent modeling of snow melting using snow sub-models in land surface schemes. In this paper, a

  20. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph

    2003-01-01

    submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has......A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...

  1. Modeling neutron guides using Monte Carlo simulations

    CERN Document Server

    Wang, D Q; Crow, M L; Wang, X L; Lee, W T; Hubbard, C R

    2002-01-01

    Four neutron guide geometries, straight, converging, diverging and curved, were characterized using Monte Carlo ray-tracing simulations. The main areas of interest are the transmission of the guides at various neutron energies and the intrinsic time-of-flight (TOF) peak broadening. Use of a delta-function time pulse from a uniform Lambert neutron source allows one to quantitatively simulate the effect of guides' geometry on the TOF peak broadening. With a converging guide, the intensity and the beam divergence increases while the TOF peak width decreases compared with that of a straight guide. By contrast, use of a diverging guide decreases the intensity and the beam divergence, and broadens the width (in TOF) of the transmitted neutron pulse.

  2. Modeling and simulation of direct contact evaporators

    OpenAIRE

    Campos F.B.; Lage P. L. C.

    2001-01-01

    A dynamic model of a direct contact evaporator was developed and coupled to a recently developed superheated bubble model. The latter model takes into account heat and mass transfer during the bubble formation and ascension stages and is able to predict gas holdup in nonisothermal systems. The results of the coupled model, which does not have any adjustable parameter, were compared with experimental data. The transient behavior of the liquid-phase temperature and the vaporization rate under q...

  3. Modeling and Simulation Network Data Standards

    Science.gov (United States)

    2011-09-30

    12.1 Open Shortest Path First ( OSPF ) Protocol commonly used to find the shortest path between two nodes. User defined. 12.2 Border Gateway Protocol...Element Definition 12.7 Request for Comments – 1256 (RFC-1256) Router discovery protocol. 13.0 OSPF Sub-elements define OSPF parameters 13.1...resolution network analysis simulation tool OSPF open shortest path first OV operational view PEO-I Program Executive Office - Information

  4. Modeling and Simulating Transitions from Authoritarian Rule

    Science.gov (United States)

    1993-01-01

    employed by the black market or the largely untaxed services industry. This makes up, according to some estimates, 50% of the economy in Hungary, where tax...simulation again... --Comments: 193 Endnotes: !Imre Macuch,The Tragedy of Man, trans. George Szirtes (Gvomaendrx., Hungary: Corvina Kiado, 1988), 46...Madach, Imre. The Tragedy of Man, trans. George Szirtes (Gyomaendrod, Hungary: Corvina Kiado, 1988). Mandelbrot, Benoit. The Fractal Geometry of Nature

  5. Crash simulation: an immersive learning model.

    Science.gov (United States)

    Wenham, John; Bennett, Paul; Gleeson, Wendy

    2017-12-26

    Far West New South Wales Local Emergency Management Committee runs an annual crash simulation exercise to assess the operational readiness of all local emergency services to coordinate and manage a multi-casualty exercise. Since 2009, the Broken Hill University Department of Rural Health (BHUDRH) has collaborated with the committee, enabling the inclusion of health students in this exercise. It is an immersive interprofessional learning experience that evaluates teamwork, communication and safe effective clinical trauma management outside the hospital setting. After 7 years of modifying and developing the exercise, we set out to evaluate its impact on the students' learning, and sought ethics approval from the University of Sydney for this study. At the start of this year's crash simulation, students were given information sheets and consent forms with regards to the research. Once formal debriefing had finished, the researchers conducted a semi-structured focus-group interview with the health students to gain insight into their experience and their perceived value of the training. Students also completed short-answer questionnaires, and the anonymised responses were analysed. Crash simulation … evaluates teamwork, communication and safe effective clinical trauma management IMPLICATIONS: Participants identified that this multidisciplinary learning opportunity in a pre-hospital mass casualty situation was of value to them. It has taken them outside of their usually protected hospital or primary care setting and tested their critical thinking and communication skills. We recommend this learning concept to other educational institutions. Further research will assess the learning value of the simulated event to the other agencies involved. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  6. Simulated Tempering and Swapping on Mean-Field Models

    OpenAIRE

    Bhatnagar, Nayantara; Randall, Dana

    2015-01-01

    Simulated and parallel tempering are families of Markov Chain Monte Carlo algorithms where a temperature parameter is varied during the simulation to overcome bottlenecks to convergence due to multimodality. In this work we introduce and analyze the convergence for a set of new tempering distributions which we call \\textit{entropy dampening}. For asymmetric exponential distributions and the mean field Ising model with and external field simulated tempering is known to converge slowly. We show...

  7. Execution of VHDL Models Using Parallel Discrete Event Simulation Algorithms

    OpenAIRE

    Ashenden, Peter J.; Henry Detmold; McKeen, Wayne S.

    1994-01-01

    In this paper, we discuss the use of parallel discrete event simulation (PDES) algorithms for execution of hardware models written in VHDL. We survey central event queue, conservative distributed and optimistic distributed PDES algorithms, and discuss aspects of the semantics of VHDL and VHDL-92 that affect the use of these algorithms in a VHDL simulator. Next, we describe an experiment performed as part of the Vsim Project at the University of Adelaide, in which a simulation kernel using the...

  8. Semiempirical model for nanoscale device simulations

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Petersen, Dan Erik; Smidstrup, Søren

    2010-01-01

    We present a semiempirical model for calculating electron transport in atomic-scale devices. The model is an extension of the extended Hückel method with a self-consistent Hartree potential that models the effect of an external bias and corresponding charge rearrangements in the device. It is also...

  9. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  10. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  11. Systems modeling and simulation applications for critical care medicine

    Science.gov (United States)

    2012-01-01

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718

  12. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  13. An Open Simulation System Model for Scientific Applications

    Science.gov (United States)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  14. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  15. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M&S) users. Performing large-scale, massively...

  16. Influence of material modeling on simulation accuracy of aluminum stampings

    Science.gov (United States)

    Deng, Z.; Hennig, R.

    2017-09-01

    The best practice in modeling material yield, strain hardening and anisotropic behavior in plastic deformation has been analyzed for an AA 6016 aluminum alloy. The investigation was based on the extensive material property testing, stamping benchmarking and AutoForm simulations. For the material property testing, both the uniaxial tensile test and the hydraulic bulge test were conducted. The elliptic punch test and the cross die test served as the benchmarks to validate the simulation results. In the simulations, the material characteristics was modeled with the combinations of four strain-hardening models and three yield criteria. By comparing the simulation results with the experimental measurements, the influence of material modeling on aluminum stamping simulation accuracy was evaluated. It was concluded from this study that the yield criterion is the key factor in controlling the simulation accuracy. The simulation with the BBC2005 yield model predicts the most accurate results. It was also shown that the combined Swift/Hockett-Sherby strain-hardening model is most suitable to describe aluminum strain hardening behavior.

  17. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  18. Evaluation of articulation simulation system using artificial maxillectomy models.

    Science.gov (United States)

    Elbashti, M E; Hattori, M; Sumita, Y I; Taniguchi, H

    2015-09-01

    Acoustic evaluation is valuable for guiding the treatment of maxillofacial defects and determining the effectiveness of rehabilitation with an obturator prosthesis. Model simulations are important in terms of pre-surgical planning and pre- and post-operative speech function. This study aimed to evaluate the acoustic characteristics of voice generated by an articulation simulation system using a vocal tract model with or without artificial maxillectomy defects. More specifically, we aimed to establish a speech simulation system for maxillectomy defect models that both surgeons and maxillofacial prosthodontists can use in guiding treatment planning. Artificially simulated maxillectomy defects were prepared according to Aramany's classification (Classes I-VI) in a three-dimensional vocal tract plaster model of a subject uttering the vowel /a/. Formant and nasalance acoustic data were analysed using Computerized Speech Lab and the Nasometer, respectively. Formants and nasalance of simulated /a/ sounds were successfully detected and analysed. Values of Formants 1 and 2 for the non-defect model were 675.43 and 976.64 Hz, respectively. Median values of Formants 1 and 2 for the defect models were 634.36 and 1026.84 Hz, respectively. Nasalance was 11% in the non-defect model, whereas median nasalance was 28% in the defect models. The results suggest that an articulation simulation system can be used to help surgeons and maxillofacial prosthodontists to plan post-surgical defects that will be facilitate maxillofacial rehabilitation. © 2015 John Wiley & Sons Ltd.

  19. An Appraisal of Coupled Climate Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K

    2004-02-24

    In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''

  20. Probabilistic Load Models for Simulating the Impact of Load Management

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2009-01-01

    to simulate the impact of load management. The joint-normal model is superior in modeling the tail region of the hourly load distribution and implementing the change of hourly standard deviation. Whereas the AR(12) model requires much less parameter and is superior in modeling the autocorrelation......This paper analyzes a distribution system load time series through autocorrelation coefficient, power spectral density, probabilistic distribution and quantile value. Two probabilistic load models, i.e. the joint-normal model and the autoregressive model of order 12 (AR(12)), are proposed....... It is concluded that the AR(12) model is favored with limited measurement data and that the joint-normal model may provide better results with a large data set. Both models can be applied in general to model load time series and used in time-sequential simulation of distribution system planning....

  1. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Thus, constructing a subsystem Markov model and matching its parameters with the specified safety factors provides the basis for the entire system analysis. For the system simulation, temporal databases and predictive control algorithm are designed. The simulation results are analyzed to assess the reliability of the system ...

  2. Tidal simulation using regional ocean modeling systems (ROMS)

    Science.gov (United States)

    Wang, Xiaochun; Chao, Yi; Li, Zhijin; Dong, Changming; Farrara, John; McWilliams, James C.; Shum, C. K.; Wang, Yu; Matsumoto, Koji; Rosenfeld, Leslie K.; hide

    2006-01-01

    The purpose of our research is to test the capability of ROMS in simulating tides. The research also serves as a necessary exercise to implement tides in an operational ocean forecasting system. In this paper, we emphasize the validation of the model tide simulation. The characteristics and energetics of tides of the region will be reported in separate publications.

  3. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  4. Efficient, Almost Exact Simulation of the Heston Stochastic Volatility Model

    NARCIS (Netherlands)

    van Haastrecht, A.; Pelsser, A

    2010-01-01

    We deal with discretization schemes for the simulation of the Heston stochastic volatility model. These simulation methods yield a popular and flexible pricing alternative for pricing and managing a book of exotic derivatives which cannot be valued using closed-form expressions. For the Heston

  5. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  6. Simulation, modeling and dynamical analysis of multibody flows

    Science.gov (United States)

    Blackmore, Denis; Rosato, Anthony; Sen, Surajit; Wu, Hao

    2017-04-01

    Recent particulate flow research using a discrete element simulation-dynamical systems approach is described. The simulation code used is very efficient and the mathematical model is an integro-partial differential equation. Examples are presented to show the effectiveness of the approach.

  7. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model Intercomparison. Project (AMIP) simulations ..... to solve the hydrostatic primitive equations (McGregor, 1996). It contains a ..... SJ and ROPELEWSKI CF (2007) Validation of satellite rainfall products over ...

  8. Regularization modeling for large-eddy simulation of diffusion flames

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.

    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more

  9. Application of wildfire simulation models for risk analysis

    Science.gov (United States)

    Alan A. Ager; Mark A. Finney

    2009-01-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of...

  10. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  11. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    Science.gov (United States)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  12. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  13. Modified Numerical Simulation Model of Blood Flow in Bend.

    Science.gov (United States)

    Liu, X; Zhou, X; Hao, X; Sang, X

    2015-12-01

    The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect.

  14. Wind model for offshore power simulation

    OpenAIRE

    Hervada Sala, Carme; Jarauta Bragulat, Eusebio; Gibergans Baguena, José; Buenestado Caballero, Pablo

    2015-01-01

    Offshore wind energy is an alternative energy source of increased interest. A large offshore wind farms have been planned or under construction, mainly in northern Europe. One of the points needed to be able to implement offshore projects is to characterize and model the wind for marine generation. Models are needed for the design of the most appropriate control strategies. Some attempts have been done to do so; recently these models are implemented under a wind turbine block set in Matlab/Si...

  15. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  16. Graduate Level Modeling and Simulation Overview Course

    Science.gov (United States)

    2006-03-24

    minutes. 4. Tactical to Practical: Segment 13. Produced by the History Channel, portion of Simulators; 15 minutes. 5. The Making of Jurassic Park ... Park is available as par of the Jurassic Park DVD set. All of these videos have made a good addition to UCF’s Introduction to M&S course. 8.6 GIT course...animatronics to digital effects. The History Channel videos may be ordered from http://store.aetv.com/html/home/index.jhtml and The Making of Jurassic

  17. Carbon nanotubes as nanopipette: modelling and simulations

    Science.gov (United States)

    Hwang, Ho Jung; Byun, Ki Ryang; Kang, Jeong Won

    2004-06-01

    This paper shows that carbon nanotubes can be applied to a nanopipette. Nanospace in atomic force microscope multi-wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic forces. Since the nanospace inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications showed the possibility of nanolithography or single-metallofullerene-transistor array fabrication.

  18. Proposed best practice for projects that involve modelling and simulation.

    Science.gov (United States)

    O'Kelly, Michael; Anisimov, Vladimir; Campbell, Chris; Hamilton, Sinéad

    2017-03-01

    Modelling and simulation has been used in many ways when developing new treatments. To be useful and credible, it is generally agreed that modelling and simulation should be undertaken according to some kind of best practice. A number of authors have suggested elements required for best practice in modelling and simulation. Elements that have been suggested include the pre-specification of goals, assumptions, methods, and outputs. However, a project that involves modelling and simulation could be simple or complex and could be of relatively low or high importance to the project. It has been argued that the level of detail and the strictness of pre-specification should be allowed to vary, depending on the complexity and importance of the project. This best practice document does not prescribe how to develop a statistical model. Rather, it describes the elements required for the specification of a project and requires that the practitioner justify in the specification the omission of any of the elements and, in addition, justify the level of detail provided about each element. This document is an initiative of the Special Interest Group for modelling and simulation. The Special Interest Group for modelling and simulation is a body open to members of Statisticians in the Pharmaceutical Industry and the European Federation of Statisticians in the Pharmaceutical Industry. Examples of a very detailed specification and a less detailed specification are included as appendices. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Vertical Velocities in Cumulus Convection: Implications for Climate and Prospects for Realistic Simulation at Cloud Scale

    Science.gov (United States)

    Donner, Leo

    2014-05-01

    Cumulus mass fluxes are essential controls on the interactions between cumulus convection and large-scale flows. Cumulus parameterizations have generally been built around them, and these parameterizations are basic components of climate models. Several important questions in climate science depend also on cumulus vertical velocities. Interactions between aerosols and convection comprise a prominent example, and scale-aware cumulus parameterizations that require explicit information about cumulus areas are another. Basic progress on these problems requires realistic characterization of cumulus vertical velocities from observations and models. Recent deployments of dual-Doppler radars are providing unprecedented observations, which can be compared against cloud-resolving models (CRMs). The CRMs can subsequently be analyzed to develop and evaluate parameterizations of vertical velocities in climate models. Vertical velocities from several cloud models will be compared against observations in this presentation. CRM vertical velocities will be found to depend strongly on model resolution and treatment of sub-grid turbulence and microphysics. Although many current state-of-science CRMs do not simulate vertical velocities well, recent experiments with these models suggest that with appropriate treatments of sub-grid turbulence and microphysics robustly realistic modeling of cumulus vertical velocities is possible.

  20. Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...