WorldWideScience

Sample records for subglacial water transport

  1. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    Science.gov (United States)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area

  2. Subglacial sediment provenance and transport in West Antarctica from micropaleontologic analysis of Subglacial Lake Whillans and the upstream sectors of the Whillans and Kamb ice streams

    Science.gov (United States)

    Scherer, Reed; Coenen, Jason; Warny, Sophie

    2014-05-01

    The WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) project recovered sediment cores from Subglacial Lake Whillans (SLW) in West Antarctica. We report preliminary micropaleontological analyses of SLW sediments, augmented by analysis of sediments previously recovered from beneath the upstream camps of the Whillans Ice Stream (WIS) and Kamb Ice Stream (KIS). Microfossils in these sediments (notably diatoms, sponge spicules, and organic-walled palynomorphs), include information regarding sediment transport, subglacial physical processes and ice sheet history. Absolute abundance (particles per gram dry sediment) of identifiable diatoms and diatom fragments in different size classes were calculated to compare and contrast each environment. Sponge spicules are being analyzed for taphonomic effects from subglacial transport and shearing. Palynomorphs are analyzed for abundance, diversity, and source rock ages. In SLW the upper 30 cm is softer and more water-rich than the underlying sediments. However, no statistically significant variation in microfossil and fragment abundance or taphonomy is noted in these diamictons, which is in agreement with the stratigraphic homogeneity evident from geochemical and geological analyses performed to date. SLW contains 1.52x106 to 1.13x107 diatom fragments per gram, compared with 6.43x106 to 4.63x108 at upstream WIS and 6.13 107 to 1.58x108 at KIS. Whole diatoms are orders of magnitude lower in concentration. Low abundance and poor preservation of diatoms and spicules at SLW suggests relatively long distance transport from their marine sediment source, with evidence of high shear strain, following the subglacial shearing index of Scherer et al. (2004). Upper Miocene diatoms dominate all samples analyzed, though older and younger diatoms are noted as well. The WIS samples exhibit the highest diversity of diatoms, including Paleogene freshwater diatoms. KIS sediments have the highest abundance of whole diatoms, but they

  3. Observations and modelling of subglacial discharge and heat transport in Godthåbsfjord (Greenland, 64 °N)

    Science.gov (United States)

    Bendtsen, Jørgen; Mortensen, John; Rysgaard, Søren

    2017-04-01

    Subglacial discharge from tidewater outlet glaciers forms convective bouyant freshwater plumes ascending close the glacier face, and entrainment of ambient bottom water increases the salinity of the water until the plume reaches its level of neutral buoyancy at sub-surface levels or reaches the surface. Relatively warm bottom water masses characterize many fjords around Greenland and therefore entrainment would also increase the temperature in the plumes and, thereby, impact the heat transport in the fjords. However, relatively few oceanographic measurements have been made in or near plumes from subglacial discharge and, therefore, the potential for subglacial discharge for increasing heat transport towards the tidewater outlet glaciers are poorly understood. We present the first direct hydrographic measurements in a plume from subglacial discharge in Godthåbsfjord (located on the western coast of Greenland) where a XCTD was launched from a helicopter directly into the plume. Measurements of the surface salinity showed that the plume only contained 7% of freshwater at the surface, implying a large entrainment with a mixing ratio of 1:13 between outflowing meltwater and saline fjord water. These observations are analyzed together with seasonal observations of ocean heat transport towards the tidewater outlet glaciers in Godthåbsfjord and we show that subglacial discharge only had modest effects on the overall heat budget in front of the glacier. These results were supported from a high-resolution three-dimensional model of Godthåbsfjord. The model explicitly considered subglacial freshwater discharge from three tidewater outlet glaciers where entrainment of bottom water was taken into account. Model results showed that subglacial discharge only affected the fjord circulation relatively close ( 10 km) to the glaciers. Thus, the main effect on heat transport was due to the freshwater discharge itself whereas the subsurface discharge and associated entrainment only

  4. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities

    Science.gov (United States)

    How, Penelope; Benn, Douglas I.; Hulton, Nicholas R. J.; Hubbard, Bryn; Luckman, Adrian; Sevestre, Heïdi; van Pelt, Ward J. J.; Lindbäck, Katrin; Kohler, Jack; Boot, Wim

    2017-11-01

    Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.

  5. Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities

    Directory of Open Access Journals (Sweden)

    P. How

    2017-11-01

    Full Text Available Subglacial hydrological processes at tidewater glaciers remain poorly understood due to the difficulty in obtaining direct measurements and lack of empirical verification for modelling approaches. Here, we investigate the subglacial hydrology of Kronebreen, a fast-flowing tidewater glacier in Svalbard during the 2014 melt season. We combine observations of borehole water pressure, supraglacial lake drainage, surface velocities and plume activity with modelled run-off and water routing to develop a conceptual model that thoroughly encapsulates subglacial drainage at a tidewater glacier. Simultaneous measurements suggest that an early-season episode of subglacial flushing took place during our observation period, and a stable efficient drainage system effectively transported subglacial water through the northern region of the glacier tongue. Drainage pathways through the central and southern regions of the glacier tongue were disrupted throughout the following melt season. Periodic plume activity at the terminus appears to be a signal for modulated subglacial pulsing, i.e. an internally driven storage and release of subglacial meltwater that operates independently of marine influences. This storage is a key control on ice flow in the 2014 melt season. Evidence from this work and previous studies strongly suggests that long-term changes in ice flow at Kronebreen are controlled by the location of efficient/inefficient drainage and the position of regions where water is stored and released.

  6. Structure, morphology and water flux of a subglacial drainage system, Midtdalsbreen, Norway

    NARCIS (Netherlands)

    Willis, I.C.; Fitzsimmons, C.D.; Melvold, K.; Andreassen, L.M.; Giesen, R.H.|info:eu-repo/dai/nl/304831603

    2012-01-01

    Digital elevation models of the surface and bed of Midtdalsbreen, Norway are used to calculate subglacial hydraulic potential and infer drainage system structure for a series of subglacial water pressure assumptions ranging from atmospheric to ice overburden. A distributed degree-day model is used

  7. MODELING OF WATER CIRCULATION IN THE ANTARCTIC SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. V. Kazko

    2012-01-01

    Full Text Available Different ways of defining the characteristics of Antarctic subglacialLakeVostokcirculation are considered. The disadvantages of hydrodynamic models using the hydrostatic approximation exposed to analysis. Differential equations and boundary conditions of three-dimensional nonhydrostatic model in terms vorticity–vector potential, specially developed for the modelling of the lake circulation are presented. 3D model passed through the testing by means simulations of convective currents in the simple-form reservoirs. On the basis of the seismic data on the thickness of a glacier and bathimetry of the lake the computational domain approximating a water body ofLakeVostokis constructed. Some results of modeling of the convective processes in the lake, obtained at the initial stage of circulation evolution using finite-difference grid with a spatial resolution of 8000 × 1500 ×30 mare shown.

  8. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet

    Science.gov (United States)

    Lindbäck, K.; Pettersson, R.; Hubbard, A. L.; Doyle, S. H.; As, D.; Mikkelsen, A. B.; Fitzpatrick, A. A.

    2015-09-01

    Meltwater drainage across the surface of the Greenland ice sheet (GrIS) is well constrained by measurements and modeling, yet despite its critical role, knowledge of its transit through the subglacial environment remains limited. Here we present a subglacial hydrological analysis of a land-terminating sector of the GrIS at unprecedented resolution that predicts the routing of surface-derived meltwater once it has entered the basal drainage system. Our analysis indicates the probable existence of small subglacial lakes that remain undetectable by methods using surface elevation change or radar techniques. Furthermore, the analysis suggests transient behavior with rapid switching of subglacial drainage between competing catchments driven by seasonal changes in the basal water pressure. Our findings provide a cautionary note that should be considered in studies that attempt to relate and infer future response from surface temperature, melt, and runoff from point measurements and/or modeling with measurements of proglacial discharge and ice dynamics.

  9. An isotopic model for basal freeze-on associated with subglacial upward flow of pore water

    Science.gov (United States)

    Souchez, R.; Samyn, D.; Lorrain, R.; Pattyn, F.; Fitzsimons, S.

    2004-01-01

    Subglacial freezing in polar glaciers can have a significant dynamical effect. Recent studies have shown that freezing of pore water flowing upward through subglacial fine-grained sediments at the freezing interface and progression of this freezing front downward are responsible for fast ice flow stoppage in ice streams. The upward pore water flow leads to the formation of debris-bearing basal ice layers. A model for stable isotope composition, both in δD and δ18O, is developed for predicting the isotopic composition of the ice segregated by such a mechanism. The development of this isotopic model for water films present along the grains of the subglacial sediment predicts the absence of apparent fractionation for the ice formed. This prediction is tested against two East Antarctic outlet glaciers by studying the δD-δ18O relationships in the basal ice layers of these glaciers.

  10. Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Olsen, Nikoline S.

    2017-01-01

    The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers...... shift in predominant community members and a decline in diversity and cell abundance. These results highlight the need for further investigations into the fate of subglacial microbiota within downstream environments.......The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers...... of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance...

  11. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  12. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  13. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet.

    Science.gov (United States)

    Pattyn, Frank; Carter, Sasha P; Thoma, Malte

    2016-01-28

    Subglacial lakes have long been considered hydraulically isolated water bodies underneath ice sheets. This view changed radically with the advent of repeat-pass satellite altimetry and the discovery of multiple lake discharges and water infill, associated with water transfer over distances of more than 200 km. The presence of subglacial lakes also influences ice dynamics, leading to glacier acceleration. Furthermore, subglacial melting under the Antarctic ice sheet is more widespread than previously thought, and subglacial melt rates may explain the availability for water storage in subglacial lakes and water transport. Modelling of subglacial water discharge in subglacial lakes essentially follows hydraulics of subglacial channels on a hard bed, where ice sheet surface slope is a major control on triggering subglacial lake discharge. Recent evidence also points to the development of channels in deformable sediment in West Antarctica, with significant water exchanges between till and ice. Most active lakes drain over short time scales and respond rapidly to upstream variations. Several Antarctic subglacial lakes exhibit complex interactions with the ice sheet due to water circulation. Subglacial lakes can therefore-from a modelling point of view-be seen as confined small oceans underneath an imbedded ice shelf. © 2015 The Author(s).

  14. Clean hot water drilling for exploration of the Antarctic deep subglacial environment

    Science.gov (United States)

    Makinson, K.; Pearce, D.; Hodgson, D.; Bentley, M.; Smith, A.; Tranter, M.; Rose, M. C.; Ross, N.; Mowlem, M. C.; Parnell, J.; Siegert, M. J.

    2015-12-01

    Overlain by several kilometres of ice, the subglacial environments deep beneath the Antarctic Ice Sheet are regarded as extreme habitats for microbial life and repositories of important paleoclimate records. Of significant scientific interest, yet remaining largely unexplored, accessing and sampling these environments presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, much of it part of a hydrological drainage network, accessing of this environment must conform to international environmental contamination protocols. This makes hot water drilling the most viable option for clean, fast, access through thick ice. After two decades of planning, involving the development of drilling techniques for subglacial access, instrument design and logistics set up, significant progress has been made in attempts to directly access, measure, and sample subglacial lakes and sediments. Combining the experiences from the notable setbacks and successes, as well as recent field testing for this drilling technique, the most practical technical options and operational procedures for future clean entry into Subglacial Lake Ellsworth and other deep (>3000 m) access targets will be presented.

  15. Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland

    Science.gov (United States)

    Jordan, Thomas M.; Cooper, Michael A.; Schroeder, Dustin M.; Williams, Christopher N.; Paden, John D.; Siegert, Martin J.; Bamber, Jonathan L.

    2017-05-01

    Subglacial roughness can be determined at a variety of length scales from radio-echo sounding (RES) data either via statistical analysis of topography or inferred from basal radar scattering. Past studies have demonstrated that subglacial terrain exhibits self-affine (power law) roughness scaling behaviour, but existing radar scattering models do not take this into account. Here, using RES data from northern Greenland, we introduce a self-affine statistical framework that enables a consistent integration of topographic-scale roughness with the electromagnetic theory of radar scattering. We demonstrate that the degree of radar scattering, quantified using the waveform abruptness (pulse peakiness), is topographically controlled by the Hurst (roughness power law) exponent. Notably, specular bed reflections are associated with a lower Hurst exponent, with diffuse scattering associated with a higher Hurst exponent. Abrupt waveforms (specular reflections) have previously been used as a RES diagnostic for basal water, and to test this assumption we compare our radar scattering map with a recent prediction for the basal thermal state. We demonstrate that the majority of thawed regions (above pressure melting point) exhibit a diffuse scattering signature, which is in contradiction to the prior approach. Self-affine statistics provide a generalised model for subglacial terrain and can improve our understanding of the relationship between basal properties and ice-sheet dynamics.

  16. The use of magmatic water to reconstruct palaeo-ice thicknesses during subglacial rhyolitic eruptions

    Science.gov (United States)

    Owen, Jacqueline; Tuffen, Hugh; McGarvie, Dave; Pinkerton, Harry; Wilson, Lionel

    2010-05-01

    Magma degassing patterns can potentially be used to reconstruct ice thicknesses during subglacial eruptions, as the pressure dependence of water solubility in silicate melts is reasonably well constrained. The amount of water remaining in the quenched bulk glasses should record the quenching pressure, which, in a subglacial setting, will be dependent on the pressure of overlying ice and/or meltwater that was present. This reconstruction technique has been applied to several basaltic volcanoes[1]. In one study the dissolved water contents was seen to vary as a function of altitude, consistent with the presence of an ice sheet[2]. Similar techniques have been applied to a rhyolitic volcano, as described below. Bláhnúkur is a small-volume rhyolitic, subglacial volcano at Torfajökull volcano, southern Iceland[3] that erupted at ~95 ka[4]. 45 glassy lava samples were collected from a variety of elevations and lithofacies types. These samples were analysed for water content using infra-red spectroscopy (FTIR), and pressure-solubility relationships were calculated using VolatileCalc[5]. The results reveal a general decrease in water concentration with elevation, consistent with the presence of an ice sheet with a surface elevation of ~1,050 m a.s.l.. This corresponds with an ice thickness of ~450 m, consistent with the field evidence from tuyas of a similar age within the same region[6]. Furthermore, the results suggest an eruptive temperature of 850°C and 0 ppm CO2. However, not all samples agree with this overall trend. We suggest that samples with anomalously low water contents could have formed in regions where there was meltwater drainage which lowered the quenching pressure[7]. By contrast, water-rich samples could reflect intrusive formation resulting in loading by rock as well as ice[8]. Crucially though, the anomalous values are all from the same locations, suggesting that there are processes that are specifically affecting certain localities. In order to use

  17. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    Science.gov (United States)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  18. Subglacial biochemical weathering and transport drove fertilization in the Southern Ocean during Antarctic temperature maxima and NH Heinrich events

    Science.gov (United States)

    Frisia, S.; Augustinus, P. M.; Hellstrom, J.; Borsato, A.; Drysdale, R.; Weyrich, L.; Cooper, A.; Johnston, V. E.; Cotte, M.

    2013-12-01

    Changes in bioproductivity in the subantarctic region have been observed to coincide with episodes of significant iceberg discharge in the North Atlantic (Heinrich events), thus linking iron delivery to the Southern Ocean (SO) with abrupt climate changes in the Northern Hemisphere. Whilst upwelling has been proposed as a likely source of bioavailable iron during Heinrich events, it is well known that, today, subglacial metabolic pathways under limited carbon supply may accumulate divalent iron, which could have been mobilized and delivered to the SO during full glacial conditions. This alternative hypothesis remains largely untested for the SO because of the difficulties in accessing palaeoenvironmental archives from beneath the Antarctic ice sheets. We present a record of the subglacial production and fate of nutrients from calcite crusts formed beneath a tributary of the Rennick outlet glacier (East Antarctic Ice Sheet, EAIS) during the Last Glacial Maximum. Chemistry, stratigraphy and preliminary ancient DNA characterization of the microbial consortium of 27- to 17-kyr-old calcites suggest that bioweathering released iron in hypoxic pools of local basal meltwater. Anaerobic methane oxidising microbes released bicarbonate and sulfuric acid in the isolated pockets, which facilitated local weathering of the amphibolite rock. During episodes of channelized flow, identified by clast-rich microsparites, and which have ages near-commensurate with Antarctic Isotope Maximum2 (AIM2) and Heinrich event 2, ferrous iron may have been mobilized and transported subglacially to the ice shelf. The calcites formed during this phase preserve evidence of microbes using sulfite dehydrogenase, which explains the accumulation of sulfate in the calcite. Our data thus indicate that subglacial processes contributed to SO productivity increases at the time of Heinrich event 2, ultimately leading to drawdawn of atmospheric carbon dioxide at millennial scale.

  19. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  20. A new methodology to simulate subglacial deformation of water saturated granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Piotrowski, Jan A.

    2015-01-01

    can cause variations in the pore-fluid pressure. The pressure variations weaken or strengthen the granular phase, and in turn influence the distribution of shear strain with depth. In permeable sediments the strain distribution is governed by the grain-size distribution and effective normal stress...... of subglacial sediment to the shear stress of an overriding glacier. In this study, we present a new methodology designed to simulate subglacial deformation using a coupled numerical model for computational experiments on grain-fluid mixtures. The granular phase is simulated on a per-grain basis by the discrete......The dynamics of glaciers are to a large degree governed by processes operating at the ice-bed interface, and one of the primary mechanisms of glacier flow over soft unconsolidated sediments is subglacial deformation. However, it has proven difficult to constrain the mechanical response...

  1. Subglacial discharge-driven renewal of tidewater glacier fjords

    Science.gov (United States)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  2. Subglacial sediment mechanics investigated by computer simulation of granular material

    Science.gov (United States)

    Damsgaard, A.; Egholm, D. L.; Tulaczyk, S. M.; Piotrowski, J. A.; Larsen, N. K.; Siegfried, M. R.; Beem, L.; Suckale, J.

    2016-12-01

    The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due to the mechanical nonlinearity of the sediment, internal porosity changes during deformation, and associated structural and kinematic phase transitions. In this presentation, we introduce the Discrete Element Method (DEM) for particle-scale granular simulation. The DEM is fully coupled with fluid dynamics. The numerical method is applied to better understand the mechanical properties of the subglacial sediment and its interaction with meltwater. The computational approach allows full experimental control and offers insights into the internal kinematics, stress distribution, and mechanical stability. During confined shear with variable pore-water pressure, the sediment changes mechanical behavior, from stick, to non-linear creep, and unconstrained failure during slip. These results are contrary to more conventional models of plastic or (non-)linear viscous subglacial soft-bed sliding. Advection of sediment downstream is pressure dependent, which is consistent with theories of unstable bed bump growth. Granular mechanics prove to significantly influence the geometry and hydraulic properties of meltwater channels incised into the subglacial bed. Current models assume that channel bed erosion is balanced by linear-viscous sediment movement. We demonstrate how channel flanks are stabilized by the sediment frictional strength. Additionally, sediment liquefaction proves to be a possible mechanism for causing large and episodic sediment transport by water flow. Though computationally intense, our coupled numerical method provides a framework for quantifying a wide range of subglacial sediment-water processes, which are a key unknown in our ability to model the future evolution of ice

  3. Water-transporting proteins.

    Science.gov (United States)

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  4. Exploration of Subglacial Lake Ellsworth

    Science.gov (United States)

    Ross, N.

    2012-12-01

    Antarctic subglacial lakes are thought to be extreme habitats for microbial life and may contain important records of ice sheet history within their lake-floor sediments. To find if this is true, and to answer the science questions that would follow, direct measurement and sampling of these environments is required. Ever since the water depth of Vostok Subglacial Lake in East Antarctica was shown to be >500 m, attention has been given to how these unique, ancient and pristine subglacial environments may be entered without contamination and adverse disturbance. Several organizations have offered guidelines on the desirable cleanliness and sterility requirements for direct sampling experiments, including the US National Academy of Sciences and the Scientific Committee on Antarctic Research. The aims, design and implementation of subglacial lake access experiments have direct relevance for the exploration of extra-terrestrial ice-covered bodies (e.g. Europa) and the search for microbial life elsewhere in the Solar System. This presentation summarizes the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, and provides an up-to-date summary of the status of the project. The proposed exploration, planned for December 2012, involves accessing the lake using a hot-water drill and deploying a sampling probe and sediment corer to allow in situ measurement and sample collection. Details are presented on how this can be undertaken with minimal environmental impact that maximizes scientific return without compromising the environment for future experiments. The implications of this experiment for the search for extra-terrestrial life will be discussed.

  5. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...

  6. Creep and stick-slip in subglacial granular beds forced by variations in water pressure

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    of grain and fluid dynamics to show that rapid rearrangements of load-bearing force chains within the granular sediments drive mechanical transitions between stability and failure. Cyclic variations in driving stresses or pore-water pressure give rise to strain-rate dependent creeping motion at stress...

  7. Water-transporting proteins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas

    2010-01-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein...... is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial...

  8. Water transport in brain:

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Hamann, Steffan; Zeuthen, Thomas

    2004-01-01

    It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both...... the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic......(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia...

  9. Subglacial Calcites from Northern Victoria Land: archive of Antarctic volcanism in the Last Glacial Maximum

    Science.gov (United States)

    Frisia, Silvia; Weirich, Laura; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Barbante, Carlo; Cooper, Alan

    2017-04-01

    Subglacial carbonates bear similarities to stalagmites in their fabrics and the potential to obtain precise chronologies using U-series methods. Their chemical properties also reflect those of their parent waters, which, in contrast to stalagmites, are those of subglacial meltwaters. In analogy to speleothems, stable Carbon isotope ratios and trace elements such as Uranium, Iron and Manganese provide the opportunity to investigate ancient extreme environments without the need to drill through thousands of metres of ice. Sedimentological, geochemical and microbial evidence preserved in LGM subglacial calcites from Northern Victoria Land, close to the East Antarctic Ice Sheet margin, allow us to infer that subglacial volcanism was active in the Trans Antarctic Mountain region and induced basal ice melting. We hypothesize that a meltwater reservoir was drained and injected into interconnected basal pore systems where microbial processes enhanced bedrock weathering and, thus, released micronutrients. Volcanic influence is supported by the presence of fluorine (F) and sulphur in sediment-laden calcite layers containing termophilic species. Notably, calcite δ13C points to dissolved inorganic carbon evolved from subglacial metabolic processes. Once transported to the sea, soluble iron likely contributed to fertilizing the Southern Ocean and CO2 drawdown. This is the first well-dated evidence for LGM volcanism in Antarctica, which complements the record of volcanic eruptions retrieved from Talos Dome ice core, and supports the hypothesis of large-scale volcanism as an important driver of climate change. We conclude that subglacial carbonates are equivalent to speleothems in their palaeoclimate potential and may become a most useful source of information of ecosystems and processes at peak glacials in high altitude/high latitude settings.

  10. Water transport and energy.

    Science.gov (United States)

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  11. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    Science.gov (United States)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the

  12. The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum

    Science.gov (United States)

    Frisia, Silvia; Weyrich, Laura S.; Hellstrom, John; Borsato, Andrea; Golledge, Nicholas R.; Anesio, Alexandre M.; Bajo, Petra; Drysdale, Russell N.; Augustinus, Paul C.; Rivard, Camille; Cooper, Alan

    2017-06-01

    Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions.

  13. Recharge of a subglacial lake by surface meltwater in northeast Greenland.

    Science.gov (United States)

    Willis, Michael J; Herried, Bradley G; Bevis, Michael G; Bell, Robin E

    2015-02-12

    In a warming climate, surface meltwater production on large ice sheets is expected to increase. If this water is delivered to the ice sheet base it may have important consequences for ice dynamics. For example, basal water distributed in a diffuse network can decrease basal friction and accelerate ice flow, whereas channelized basal water can move quickly to the ice margin, where it can alter fjord circulation and submarine melt rates. Less certain is whether surface meltwater can be trapped and stored in subglacial lakes beneath large ice sheets. Here we show that a subglacial lake in Greenland drained quickly, as seen in the collapse of the ice surface, and then refilled from surface meltwater input. We use digital elevation models from stereo satellite imagery and airborne measurements to resolve elevation changes during the evolution of the surface and basal hydrologic systems at the Flade Isblink ice cap in northeast Greenland. During the autumn of 2011, a collapse basin about 70 metres deep and about 0.4 cubic kilometres in volume formed near the southern summit of the ice cap as a subglacial lake drained into a nearby fjord. Over the next two years, rapid uplift of the floor of the basin (which is approximately 8.4 square kilometres in area) occurred as surface meltwater flowed into crevasses around the basin margin and refilled the subglacial lake. Our observations show that surface meltwater can be trapped and stored at the bed of an ice sheet. Sensible and latent heat released by this trapped meltwater could soften nearby colder basal ice and alter downstream ice dynamics. Heat transport associated with meltwater trapped in subglacial lakes should be considered when predicting how ice sheet behaviour will change in a warming climate.

  14. Fuel cell water transport

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  15. Numerical modelling of esker formation in semi-circular subglacial channels

    Science.gov (United States)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    Eskers hold valuable information about past subglacial hydraulic conditions in their spatial organization, geometry, and sedimentary structures. The relations between hydraulic conditions and esker properties are nevertheless intricate as the formation of eskers has been mainly inferred from descriptive theories, about which a consensus has yet to be reached. Eskers are prevalent in areas of rigid bed and thin till cover and their formation is thought to be predominantly controlled by either water or sediment availability. In this study, we develop a 1-D numerical model of sediment transport in semi-circular bedrock-floored channels to explore the physical processes leading to esker formation. The model encompasses channel evolution by melt-opening created by the viscous heat dissipated as water flows, the creep closure of the ice walls, and changes in cross-sectional area due to sediment accumulation and removal. We find that a bottleneck in sediment transport close to the terminus is an inherent characteristic of subglacial channels. Creep closure is reduced as the ice thins towards the terminus and hydraulic potential gradients decline, thus reducing shear stresses. This bottleneck is accentuated when water discharge drops in a well established channel. We find the conditions most conducive to sediment deposition are low ice-surface slopes within several kilometres of the terminus and water discharge fluctuations over a few to several weeks. The model also produces shear stresses large enough to transport boulders under typical melt-season conditions. Our results thus suggest that incipient eskers form toward the end of the melt season, provided water input and sediment supply are sufficient. Overall these findings corroborate the theory that eskers are formed progressively during the waning stage of an ice sheet, although we suggest that eskers are a natural manifestation of the subglacial hydraulic system in the presence of an adequate trade-off between

  16. Probe technologies for clean sampling and measurement of subglacial lakes.

    Science.gov (United States)

    Mowlem, Matt; Saw, Kevin; Brown, Robin; Waugh, Edward; Cardwell, Christopher L; Wyatt, James; Magiopoulos, Iordanis; Keen, Peter; Campbell, Jon; Rundle, Nicholas; Gkritzalis-Papadopoulos, Athanasios

    2016-01-28

    It is 4 years since the subglacial lake community published its plans for accessing, sampling, measuring and studying the pristine, and hitherto enigmatic and very different, Antarctic subglacial lakes, Vostok, Whillans and Ellsworth. This paper summarizes the contrasting probe technologies designed for each of these subglacial environments and briefly updates how these designs changed or were used differently when compared to previously published plans. A detailed update on the final engineering design and technical aspects of the probe for Subglacial Lake Ellsworth is presented. This probe is designed for clean access, is negatively buoyant (350 kg), 5.2 m long, 200 mm in diameter, approximately cylindrical and consists of five major units: (i) an upper power and communications unit attached to an optical and electrical conducting tether, (ii)-(iv) three water and particle samplers, and (v) a sensors, imaging and instrumentation pack tipped with a miniature sediment corer. To date, only in Subglacial Lake Whillans have instruments been successfully deployed. Probe technologies for Subglacial Lake Vostok (2014/15) and Lake Ellsworth (2012/13) were not deployed for technical reasons, in the case of Lake Ellsworth because hot-water drilling was unable to access the lake during the field season window. Lessons learned and opportunities for probe technologies in future subglacial access missions are discussed. © 2015 The Author(s).

  17. Water intensity of transportation.

    Science.gov (United States)

    King, Carey W; Webber, Michael E

    2008-11-01

    As the need for alternative transportation fuels increases, it is important to understand the many effects of introducing fuels based upon feedstocks other than petroleum. Water intensity in "gallons of water per mile traveled" is one method to measure these effects on the consumer level. In this paper we investigate the water intensity for light duty vehicle (LDV) travel using selected fuels based upon petroleum, natural gas, unconventional fossil fuels, hydrogen, electricity, and two biofuels (ethanol from corn and biodiesel from soy). Fuels more directly derived from fossil fuels are less water intensive than those derived either indirectly from fossil fuels (e.g., through electricity generation) or directly from biomass. The lowest water consumptive (electricity, and electricity derived from nonthermal renewable sources. LDVs running on electricity and hydrogen derived from the aggregate U.S. grid (heavily based upon fossil fuel and nuclear steam-electric power generation) withdraw 5-20 times and consume nearly 2-5 times more water than by using petroleum gasoline. The water intensities (gal H20/mile) of LDVs operating on biofuels derived from crops irrigated in the United States at average rates is 28 and 36 for corn ethanol (E85) for consumption and withdrawal, respectively. For soy-derived biodiesel the average consumption and withdrawal rates are 8 and 10 gal H2O/mile.

  18. Rock comminution as a source of hydrogen for subglacial ecosystems

    Science.gov (United States)

    Telling, J.; Boyd, E. S.; Bone, N.; Jones, E. L.; Tranter, M.; Macfarlane, J. W.; Martin, P. G.; Wadham, J. L.; Lamarche-Gagnon, G.; Skidmore, M. L.; Hamilton, T. L.; Hill, E.; Jackson, M.; Hodgson, D. A.

    2015-11-01

    Substantial parts of the beds of glaciers, ice sheets and ice caps are at the pressure melting point. The resulting water harbours diverse subglacial microbial ecosystems capable of affecting global biogeochemical cycles. Such subglacial habitats may have acted as refugia during Neoproterozoic glaciations. However, it is unclear how life in subglacial environments could be supported during glaciations lasting millions of years because energy from overridden organic carbon would become increasingly depleted. Here we investigate the potential for abiogenic H2 produced during rock comminution to provide a continual source of energy to support subglacial life. We collected a range of silicate rocks representative of subglacial environments in Greenland, Canada, Norway and Antarctica and crushed them with a sledgehammer and ball mill to varying surface areas. Under an inert atmosphere in the laboratory, we added water, and measured H2 production with time. H2 was produced at 0 °C in all silicate-water experiments, probably through the reaction of water with mineral surface silica radicals formed during rock comminution. H2 production increased with increasing temperature or decreasing silicate rock grain size. Sufficient H2 was produced to support previously measured rates of methanogenesis under a Greenland glacier. We conclude that abiogenic H2 generation from glacial bedrock comminution could have supported life and biodiversity in subglacial refugia during past extended global glaciations.

  19. Modeling Subglacial Permafrost Evolution

    Science.gov (United States)

    Koutnik, M. R.; Marshall, S.

    2002-12-01

    Permanently frozen ground was present both beneath and peripheral to the Quaternary ice sheets. In areas where the ice sheet grew or advanced over permafrost, the ice sheet insulated the ground, leading to subglacial permafrost degradation. This has created distinct signatures of ice sheet occupation in the Canadian north and in Alaska during the last glacial period, with greatly diminished permafrost thickness in regions that were ice covered for an extended period. In contrast, areas peripheral to the ice sheet, including the Midwest United States, were cooled by the glacial climate conditions and the regional cooling influence of the ice sheet, leading to permafrost growth. We have developed a sub- and proglacial diffusion based permafrost model that utilizes a logarithmic grid transformation to more efficiently track the changing depth of permafrost with time. This model is coupled with the ice sheet thermodynamic model of Marshall and Clarke [1997a] to explore the geologic signatures of the last glacial cycle in North America. This offers the potential for new constraints on modeled ice sheet history. Preliminary model runs show that the overlying ice sheet has a significant effect on the underlying and peripheral permafrost degradation and formation. Subglacial permafrost is also important because its evolution influences the basal temperature of the ice sheet, critical for evolution of subglacial hydrology and fast flow instabilities (e.g. ice streams). We present results of permafrost conditions under the last glacial maximum ice sheet and the effect of permafrost on basal temperature evolution through the last glacial cycle in North America. Marshall, S. J. and G. K. C. Clarke, 1997a. J. Geophys. Res., 102 (B9), 20,599-20,614.

  20. Subglacial sediment mechanics investigated by computer simulation of granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Tulaczyk, Slawek

    to the mechanical nonlinearity of the sediment, internal porosity changes during deformation, and associated structural and kinematic phase transitions. In this presentation, we introduce the Discrete Element Method (DEM) for particle-scale granular simulation. The DEM is fully coupled with fluid dynamics....... The numerical method is applied to better understand the mechanical properties of the subglacial sediment and its interaction with meltwater. The computational approach allows full experimental control and offers insights into the internal kinematics, stress distribution, and mechanical stability. During...... by linear-viscous sediment movement. We demonstrate how channel flanks are stabilized by the sediment frictional strength. Additionally, sediment liquefaction proves to be a possible mechanism for causing large and episodic sediment transport by water flow. Though computationally intense, our coupled...

  1. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ɛNd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study

  2. Osmotic water transport in aquaporins

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric

    2013-01-01

    no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward......Abstract  We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute...... molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, P(S), is proportional to 1 - σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel...

  3. Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica)

    Science.gov (United States)

    Tabacco, I. E.; Cianfarra, P.; Forieri, A.; Salvini, F.; Zirizotti, A.

    2006-06-01

    We present the interpretation of 11 radio echo-sounding (RES) missions carried out over the Vostok-Dome Concordia region during the Italian Antarctic expeditions in the period 1995-2001. The extension and the density of the radar data in the surveyed area allowed to reconstruct a reliable subglacial morphology and to identify four relevant morphological structures namely: the Aurora trench, the Concordia trench, the Concordia ridge and the South Hills. These structures show evidence compatible with the presence of tectonic features. Morphological considerations indicate their development in Cenozoic time. Hybrid cellular automata (HCA)-based numerical modelling allowed to justify a possible role played by the tectonics of the Aurora and Concordia trench evolution. This was accomplished by matching the bed profiles along opportunely projected sections with the modelled surfaces as derived by the activity of normal faults with variable surfaces within the continental crust. The Vostok-Dome C region is characterized by a large number of subglacial lakes. From the analysis of basal reflected power echo, we identified 14 new lakes and obtained information about their physiography as well as their possible relations with tectonics. We propose a grouping of subglacial lakes on the base of their physiography and geological setting, namely relief lakes, basin lakes and trench lakes. Relief lakes located in the Belgica subglacial highlands and are characterized by sharp and steep symmetric edges, suggesting a maximum water depth of the order of 100 m. Their origin may well relate to localized, positive geothermal flux anomalies. Basin lakes located in the Vincennes subglacial basin and are characterized by wider dimension that allow the development of well-defined, flat ice surface anomalies. Trench lakes characterize the Aurora and Concordia trenches as the possible effect of normal fault activity.

  4. Students' Conceptions of Water Transport

    Science.gov (United States)

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  5. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    Science.gov (United States)

    Dow, C. F.; Kulessa, B.; Rutt, I. C.; Tsai, V. C.; Pimentel, S.; Doyle, S. H.; van As, D.; Lindbäck, K.; Pettersson, R.; Jones, G. A.; Hubbard, A.

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections.

  6. Subglacial till formation: Microscale processes within the subglacial shear zone

    Science.gov (United States)

    Hart, Jane K.

    2017-08-01

    This was a study of subglacial deformation till genesis from a modern temperate glacier, at Skálafellsjökull, Iceland. Detailed microscale properties of till samples (from Scanning Electron Microscope [SEM] and thin section analysis) were examined from a glacial site with in situ subglacial process monitoring and an exposed subglacial surface in the foreland. Two lithofacies were examined, a grey sandy till derived from the ash and basalt, and a silty reddish brown till derived from oxidized paleosols and/or tephra layers. These also represented a clay-content continuum from low (0.3%) to high (22.3%). The evolution from debris to subglacial till was investigated. This included a reduction in grain-size (21% for grey lithology, 13% reddish brown lithology), and reduction in rounding (RA) (32% for the grey lithology, 26% for the reddish brown lithology), and the quantification and analysis of the different grain erosion/comminution processes in the resultant till. It was shown that the microstructures within a till were dependent on shear strain and glaciological conditions (deformation history). The low clay content tills were dominated by linear structures (lineations and boudins, and anisotropic microfabric) whilst the higher clay content tills were dominated by rotational structures (turbates and plaster, and isotropic microfabric). These results are important in our understanding of the formation of both modern and Quaternary tills and informs our reconstruction of past glacial dynamics.

  7. Seismicity and Subglacial Hydrological Processes During Early Melt Season, Engabreen, Norway

    Science.gov (United States)

    Moore, P. L.; Winberry, J.; Christianson, K.; Iverson, N. R.; Anandakrishnan, S.; Jackson, M.; Cohen, D. O.

    2012-12-01

    A broad array of mechanical and seismic instrumentation was deployed during May 2011 in subglacial tunnels beneath Engabreen, an outlet glacier of the Svartisen ice cap in northern Norway. Following a warm spell, increased melt supply to the glacier bed prompted several episodes of transient ice uplift and establishment of a more efficient basal hydraulic system. In each event, hydrological adjustment was accompanied by three distinct seismic sources, two of which have not been previously documented in glacial environments. High-frequency impulsive events with dominant Rayleigh-wave energy increased their rate-of-occurrence immediately prior to an abrupt change in basal water pressure and normal stress. These events are inferred represent propagation of water-filled crevasses permitting meltwater access to the bed. Ultra-long period (ULP, hydraulic jacking. During recovery of basal water pressure, vertical ULP deflections were correlated with increases in basal water flux and doubling of local subglacial seismic noise. The increase in seismic noise may represent turbulent flow and bedload sediment transport through newly-opened subglacial meltwater passages. The vertical ULP signal therefore likely reflects meltwater-forced uplift of ice. Surprisingly, although there was direct evidence that jacking activated frictional slip at the bed, there was no clear seismic expression of slip. Thus, broadband seismometers appear to have captured the transit of meltwater through crevasses, into isolated pockets at the glacier bed and then, by promoting ice uplift, draining though newly-established meltwater passages along the bed. Similar seismic sources could be detected elsewhere with strategically-located broadband seismic instrumentation, providing a means of remotely monitoring the hydrological processes that control ice motion.

  8. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.

    Science.gov (United States)

    Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A

    2014-10-02

    Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

  9. Greenland subglacial drainage evolution regulated by weakly connected regions of the bed.

    Science.gov (United States)

    Hoffman, Matthew J; Andrews, Lauren C; Price, Stephen A; Catania, Ginny A; Neumann, Thomas A; Lüthi, Martin P; Gulley, Jason; Ryser, Claudia; Hawley, Robert L; Morriss, Blaine

    2016-12-19

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

  10. Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments

    Science.gov (United States)

    Siegert, Martin J.; Clarke, Rachel J.; Mowlem, Matt; Ross, Neil; Hill, Christopher S.; Tait, Andrew; Hodgson, Dominic; Parnell, John; Tranter, Martyn; Pearce, David; Bentley, Michael J.; Cockell, Charles; Tsaloglou, Maria-Nefeli; Smith, Andy; Woodward, John; Brito, Mario P.; Waugh, Ed

    2012-01-01

    Antarctic subglacial lakes are thought to be extreme habitats for microbial life and may contain important records of ice sheet history and climate change within their lake floor sediments. To find whether or not this is true, and to answer the science questions that would follow, direct measurement and sampling of these environments are required. Ever since the water depth of Vostok Subglacial Lake was shown to be >500 m, attention has been given to how these unique, ancient, and pristine environments may be entered without contamination and adverse disturbance. Several organizations have offered guidelines on the desirable cleanliness and sterility requirements for direct sampling experiments, including the U.S. National Academy of Sciences and the Scientific Committee on Antarctic Research. Here we summarize the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, planned for 2012-2013, which we offer as a guide to future subglacial environment research missions. The proposed exploration involves accessing the lake using a hot-water drill and deploying a sampling probe and sediment corer to allow sample collection. We focus here on how this can be undertaken with minimal environmental impact while maximizing scientific return without compromising the environment for future experiments.

  11. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    Science.gov (United States)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  12. Evolution of climate, glaciation and subglacial environments of Antarctica from the deep ice core and Lake Vostok water sample studies (Key results of implementation of the Russian Science Foundation project, 2014–2016

    Directory of Open Access Journals (Sweden)

    V. Ya. Lipenkov

    2017-01-01

    Full Text Available Work on the project focused on the following five areas: 1  field works in Antarctica at Vostok and Concordia stations; 2  experimental and theoretical studies in the field of ice core and paleoclimate research; 3 experimental and theoretical works related to the exploration of subglacial Lake Vostok; 4 development of technology and drilling equipment for deep ice coring and exploration of subglacial lakes; 5 upgrading the analytical instrumentation in the Climate and Environmental Research Laboratory (CERL of the Arctic and Antarctic Research Institute. The main achievements in the field of ice core and paleoclimate research include 1 further elaboration of a new method of ice core dating, which is based on the link between air content of ice and local insolation, 2 investigation of the possible applications of the 17O-excess measurements in ice core to the paleoclimate research, 3  a better understanding of the mechanisms of the formation of relief-related variations in the isotopic content of an ice core drilled in the area of Antarctic megadunes, and 4 obtaining the first reliable data set on the variations of the 17O-excess in the Vostok core corresponding to marine isotope stage 11. As part of our studies of subglacial Lake Vostok, we have obtained a large body of new experimental data from the new ice core recovered from the 5G-3 borehole to the surface of the subglacial lake. Stacked profiles of isotopic composition, gas content and the size and orientation of the ice crystals in the lake ice have been composed from the data of three replicate cores from boreholes 5G-1, 5G-2 and 5G-3. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of Lake Vostok, has been discerned in the three different properties of the accreted ice (the ice texture, the isotopic and

  13. Landscape evolution by subglacial quarrying

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.; Iverson, Neal R.

    of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential...... to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence...... evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)...

  14. Incorporating modelled subglacial hydrology into inversions for basal drag

    Directory of Open Access Journals (Sweden)

    C. P. Koziol

    2017-12-01

    Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.

  15. Drumlins, subglacial meltwater floods, and ocean responses

    Science.gov (United States)

    Shaw, John

    1989-09-01

    Drumlins and erosional marks in bedrock give evidence for broad, subglacial meltwater floods that have discharge-rate estimates of about 106 m3/s. Similar discharge rates are obtained for other late glacial catastrophic floods. The total volume of meltwater that is thought to have formed the Livingstone Lake, Saskatchewan, drumlin field is estimated at 8.4 x 104 km3. This volume is equivalent to a eustatic rise of 0.23 m in global sea level. Meltwater release and roughly contemporaneous formation of drumlin fields in North America and Europe could have involved several metres of sea-level rise in a few years. The implications of such floods for the generation of myths and the interpretation of the oxygen isotopic record of the oceans are discussed. High meltwater discharges are of potential importance to the generation of a lid of cold, fresh water over the North Atlantic and its effects on late glacial climate.

  16. Subglacial lake and meltwater flow predictions of the last North American and European Ice Sheets

    Science.gov (United States)

    Livingstone, S. J.; Clark, C. D.; Tarasov, L.

    2012-04-01

    There is increasing recognition that subglacial lakes act as key components within the ice sheet system, capable of influencing ice-sheet topography, ice volume and ice flow. The subglacial water systems themselves are recognised as being both active and dynamic, with large discharges of meltwater capable of flowing down hydrological pathways both between lakes and to the ice-sheet margins. At present, much glaciological research is concerned with the role of modern subglacial lake systems in Antarctica. Another approach to the exploration of subglacial lakes involves identification of the geological record of subglacial lakes that once existed beneath ice sheets of the last glaciation. Investigation of such palaeo-subglacial lakes offers significant advantages because we have comprehensive information about the bed properties, they are much more accessible and we can examine and sample the sediments with ease. If we can find palaeo-subglacial lakes then we have the potential to advance understanding with regard to the topographic context and hydrological pathways that the phenomena form a part of; essentially we gain spatial and sedimentological information in relation to investigations of contemporary subglacial lakes and lose out on the short-time dynamics. In this work we present predictions of palaeo-subglacial lakes and meltwater drainage pathways under the former European and North American ice sheets during the last glaciation. We utilise data on the current topography and seafloor bathymetry, and elevation models of the ice and ground surface topography (interpolated to a 5 km grid) to calculate the hydraulic potential surface at the ice-sheet bed. Meltwater routing algorithms and the flooding of local hydraulic minima allow us to predict subglacial channels and lakes respectively. Given that specific ice-surface and bed topographies are only known from modelled outputs, and thus contain significant uncertainty, we utilise many such outputs to examine

  17. Unveiling the Antarctic subglacial landscape.

    Science.gov (United States)

    Warner, Roland; Roberts, Jason

    2010-05-01

    Better knowledge of the subglacial landscape of Antarctica is vital to reducing uncertainties regarding prediction of the evolution of the ice sheet. These uncertainties are associated with bedrock geometry for ice sheet dynamics, including possible marine ice sheet instabilities and subglacial hydrological pathways (e.g. Wright et al., 2008). Major collaborative aerogeophysics surveys motivated by the International Polar Year (e.g. ICECAP and AGAP), and continuing large scale radar echo sounding campaigns (ICECAP and NASA Ice Bridge) are significantly improving the coverage. However, the vast size of Antarctica and logistic difficulties mean that data gaps persist, and ice thickness data remains spatially inhomogeneous. The physics governing large scale ice sheet flow enables ice thickness, and hence bedrock topography, to be inferred from knowledge of ice sheet surface topography and considerations of ice sheet mass balance, even in areas with sparse ice thickness measurements (Warner and Budd, 2000). We have developed a robust physically motivated interpolation scheme, based on these methods, and used it to generate a comprehensive map of Antarctic bedrock topography, using along-track ice thickness data assembled for the BEDMAP project (Lythe et al., 2001). This approach reduces ice thickness biases, compared to traditional inverse distance interpolation schemes which ignore the information available from considerations of ice sheet flow. In addition, the use of improved balance fluxes, calculated using a Lagrangian scheme, eliminates the grid orientation biases in ice fluxes associated with finite difference methods (Budd and Warner, 1996, Le Brocq et al., 2006). The present map was generated using a recent surface DEM (Bamber et al., 2009, Griggs and Bamber, 2009) and accumulation distribution (van de Berg et al., 2006). Comparing our results with recent high resolution regional surveys gives confidence that all major subglacial topographic features are

  18. A confined-unconfined aquifer model for subglacial hydrology

    Science.gov (United States)

    Beyer, Sebastian; Kleiner, Thomas; Humbert, Angelika

    2017-04-01

    Modeling the evolution of subglacial channels underneath ice sheets is an urgent need for ice sheet modellers, as channels affect sliding velocities and hence ice discharge. Owing to very limited observations of the subglacial hydraulic system, the development of physical models is quite restricted. Subglacial hydrology models are currently taking two different approaches: either modeling the development of a network of individual channels or modeling an equivalent porous layer where the channels are not resolved individually but modeled as a diffusive process, adjusted to reproduce the characteristic of an efficient system. Here, we use the latter approach, improving it by using a confined-unconfined aquifer model (CUAS), that allows the system to run dry in absence of sufficient water input. This ensures physical values for the water pressure. Channels are represented by adjusting the permeability and storage of the system according to projected locations of channels. The evolution of channel positions is governed by a reduced complexity model that computes channel growths according to simple rules (weighted random walks descending the hydraulic potential). As a proof of concept we present the results of the evolution of the hydrological system over time for a simple artificial glacier geometry.

  19. Burning water: The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims to replace 10 percent of total transport fuels by biofuels by 2020. This study calculates the water footprint (WF) of different transport modes using bio-ethanol, biodiesel or

  20. Antarctic Subglacial Lake Classification Inventory, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is an Antarctic radar-based subglacial lake classification collection, which focuses on the radar reflection properties of each given lake.

  1. Microbial sulfur transformations in sediments from Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Alicia M Purcell

    2014-11-01

    Full Text Available Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW, Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5’-phosphosulfate (APS reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct OTUs. The majority of APS reductase sequences (74% clustered with known sulfur oxidizers including those within the Sideroxydans and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR and 16S rRNA gene sequences further support dominance of Sideroxydans and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm-3d-1 of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.

  2. Predicting water transport in multilayer coatings

    NARCIS (Netherlands)

    Baukh, V.; Huinink, H.P.; Adan, O.C.G.; Erich, S.J.F.; Ven, L.G.J. van der

    2012-01-01

    Water transport in polymer coatings is a key process in their failure. Mostly, such systems are composed of multiple layers to meet the required specifications. Understanding water transport requires a model that relates the kinetics with the properties of the layers. In this article a theoretical

  3. Subglacial lake matters: piracy on a divide between thawed and frozen bed

    Science.gov (United States)

    Carter, S. P.; Bougamont, M. H.; Christoffersen, P.; Fricker, H. A.; Lipscomb, W. H.; Price, S. F.

    2011-12-01

    The two most populated active subglacial lake districts in Antarctica, upper Kamb Ice Stream and lower Whillans Ice Stream, occur along boundaries between where temperature models predict net basal freezing and net basal accretion. This occurs in part due to a basal traction contrast, which creates a ridge in the ice surface and creates a pressure seal; this impedes the downstream movement of water until a subglacial lake flood occurs. Here we use a model for basal water routing, which incorporates subglacial floods and a realistic term for effective pressure, to explore the ability of these floods to provide water to areas of net basal accretion and thus maintain basal lubrication. We hypothesize that these floods can distribute sufficient water to most of the regions experiencing net basal freezing; the exception being those nearest to the lakes themselves, Discharge in these regions likely occurs via narrow subglacial conduits. Over time this will cause ice downstream of the dam to thicken and pre-flood lake levels to increase until water ultimately exits the lake via an alternate route i.e. water piracy. Once piracy occurs, water is no longer supplied along the former flowpath and ice stream shutdown accelerates. We conclude that the formation and quasi-periodic flooding of lakes at the basal melt/ basal freezing boundary is a critical process in accelerating ice stream shutdown.

  4. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  5. Heat sources for glacial ice melt in a West Greenland tidewater outlet glacier fjord: The role of subglacial freshwater discharge

    DEFF Research Database (Denmark)

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk

    2015-01-01

    The melting of tidewater outlet glaciers from the Greenland Ice Sheet contributes significantly to global sea level rise. Accelerated mass loss is related to melt-processes in front of calving glaciers, yet the role of ocean heat transports is poorly understood. Here we present the first direct...... measurements from a subglacial plume in front of a calving tidewater outlet glacier. Surface salinity in the plume corresponded to a meltwater content of 7 %, which is indicative of significant entrainment of warm bottom water and, according to plume model calculations, significant ice melt. Energy balance...... of the area near the glacier showed that ice melt was mainly due to ocean heat transport and that direct plume-associated melt was only important in periods with high meltwater discharge rates of ~100 m3 s−1. Ocean mixing outside of the plume area was thus the primary heat source for melting glacier ice....

  6. Glucose transporters serve as water channels.

    OpenAIRE

    FISCHBARG, J.; Kuang, K Y; Vera, J C; Arant, S; Silverstein, S C; Loike, J; Rosen, O M

    1990-01-01

    Water traverses the plasma membranes of some eukaryotic cells faster than can be explained by the water permeability of their lipid bilayers. This has led to a search for a water channel. Our previous work identified glucose transporters as candidates for such a channel. We report here that Xenopus laevis oocytes injected with mRNA encoding the brain/Hep G2, adult skeletal muscle/adipocyte, or liver forms of the glucose transporter exhibit an osmotic water permeability of their plasma membran...

  7. Water transport properties of fuel cell ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Zawodzinski, T.A. Jr.; Springer, T.E.; Davey, J.; Valerio, J.; Gottesfeld, S.

    1991-01-01

    We will report transport parameters measured for several available perfluorosulfonate membranes. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and conductivity will be compared for these materials. The intrinsic properties of the membranes will be the basis of our comparison. An objective look at transport parameters should enable us to compare membranes without the skewing effects of extensive features such as membrane thickness. 8 refs., 4 figs., 2 tabs.

  8. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line

    Science.gov (United States)

    Drews, R.; Pattyn, F.; Hewitt, I. J.; Ng, F. S. L.; Berger, S.; Matsuoka, K.; Helm, V.; Bergeot, N.; Favier, L.; Neckel, N.

    2017-05-01

    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability.

  9. Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line.

    Science.gov (United States)

    Drews, R; Pattyn, F; Hewitt, I J; Ng, F S L; Berger, S; Matsuoka, K; Helm, V; Bergeot, N; Favier, L; Neckel, N

    2017-05-09

    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers' size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability.

  10. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  11. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...

  12. Physiological ecology of microorganisms in Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Trista J Vick-Majors

    2016-10-01

    Full Text Available Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep, oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1 obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8% indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms

  13. Physiological Ecology of Microorganisms in Subglacial Lake Whillans

    Science.gov (United States)

    Vick-Majors, Trista J.; Mitchell, Andrew C.; Achberger, Amanda M.; Christner, Brent C.; Dore, John E.; Michaud, Alexander B.; Mikucki, Jill A.; Purcell, Alicia M.; Skidmore, Mark L.; Priscu, John C.

    2016-01-01

    Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d−1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW

  14. Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport

    NARCIS (Netherlands)

    Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.

    2009-01-01

    Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up

  15. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 2. Preliminary outcomes from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    Science.gov (United States)

    Doyle, Samuel; Hubbard, Bryn; Christoffersen, Poul; Young, Tun Jan; Hofstede, Coen; Todd, Joe; Bougamont, Marion; Hubbard, Alun

    2015-04-01

    As part of the SAFIRE research programme, pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The short (week long) records obtained from these sensors in summer 2014 tentatively reveal (i) water pressure varying diurnally close to overburden albeit of a small magnitude (~0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21° C, (iii) and thermistors in the lowest 10 m of the borehole recorded temperatures above the pressure melting point indicating the presence of water. Data loggers were left running and longer records should become available in the near future. Differential drilling and instrument installation depths together with observations of discrete, diurnal turbidity events provisionally suggest the presence of sediment at the bed. These preliminary borehole observations will be complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys to be undertaken over the next two years.

  16. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.

    Directory of Open Access Journals (Sweden)

    John K Hillier

    Full Text Available Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL. By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity. Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.

  17. Passive water and ion transport by cotransporters

    DEFF Research Database (Denmark)

    Loo, D D; Hirayama, B A; Meinild, A K

    1999-01-01

    1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from...... the changes in oocyte volume in response to osmotic gradients. The specific SGLT1 and GAT1 Lp values were obtained by measuring Lp in the presence and absence of blockers (phlorizin and SKF89976A). In the presence of the blockers, the Lp values of oocytes expressing SGLT1 and GAT1 were indistinguishable from...... the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 micro...

  18. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  19. Geology and environments of subglacial Lake Vostok.

    Science.gov (United States)

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  20. Modelling subglacial drainage and its role in ice-ocean interaction

    Science.gov (United States)

    Hewitt, Ian; Dallaston, Michael; Wells, Andrew

    2015-04-01

    Melting at the ice-ocean interface, both beneath ice shelves and at near-vertical tidewater margins, is strongly influenced by discharge of meltwater from beneath the grounded ice. The fresh water source can help to initiate a buoyant plume that rises up the ice face, entraining heat from the ocean to melt the ice. When the subglacial discharge is spatially and temporally variable, it can cause spatial and temporal variations in the melting rate, which in turn may influence ocean circulation in the cavity and ice flow within the shelf. Recent observations of channelized ice shelf bases may have their origin in variable subglacial discharge from beneath the grounded ice. In this work, we use physically-based models of the subglacial drainage system to examine the likely mode of melt water delivery across the grounding line. We find that if subglacial channels (Rothlisberger channels) exist they can be expected to `trumpet' out as the ocean is approached, due to a lack of confining stress to counteract wall melting. This causes a reduction in horizontal momentum in the water and can lead to pronounced localized melting around channel termini. This may lead to increased propensity for calving at such locations. We also examine the effect of subglacial discharge variations on the evolution of a downstream floating ice shelf. We find that lateral variations in the flow across the grounding line can result in variations in plume-driven melting which evolve to create basal channels in the shelf aligned with the flow. The preferred spacing of the channels is controlled by a balance between buoyancy-driven acceleration and turbulent mixing in the ocean layer.

  1. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica.

    Science.gov (United States)

    Achberger, Amanda M; Christner, Brent C; Michaud, Alexander B; Priscu, John C; Skidmore, Mark L; Vick-Majors, Trista J

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new

  2. Penicillium mycobiota in Arctic subglacial ice

    DEFF Research Database (Denmark)

    Sonjak, S.; Frisvad, Jens Christian; Gunde-Cimerman, N.

    2006-01-01

    to be inhabited exclusively by heterotrophic bacteria. In this study we report on the very high occurrence (up to 9000 CFU L-1) and diversity of filamentous Penicillium spp. in the sediment-rich subglacial ice of three different polythermal Arctic glaciers (Svalbard, Norway). The dominant species was P. crustosum......, representing on the average half of all isolated strains from all three glaciers. The other most frequently isolated species were P. bialowiezense, P. chrysogenum, P. thomii, P. solitum, P. palitans, P. echinulatum, P. polonicum, P. commune, P. discolor, P. expansum, and new Penicillium species (sp. 1). Twelve...... more Penicillium species were occasionally isolated. The fungi isolated produced consistent profiles of secondary metabolites, not different from the same Penicillium species from other habitats. This is the first report on the presence of large populations of Penicillium spp. in subglacial sediment...

  3. Numerical Modeling of Subglacial Sediment Deformation

    DEFF Research Database (Denmark)

    Damsgaard, Anders

    2015-01-01

    may cause mass loss in the near future to exceed current best estimates. Ice flow in larger ice sheets focuses in fast-moving streams due to mechanical non-linearity of ice. These ice streams often move at velocities several magnitudes larger than surrounding ice and consequentially constitute...... glaciers move by deforming their sedimentary beds. Several modern ice streams, in particular, move as plug flows due to basal sediment deformation. An intense and long-winded discussion about the appropriate description for subglacial sediment mechanics followed this discovery, with good reason...... velocities previously associated with elastic or viscous ice deformation. If a glacier dominated by subglacial creep experiences prolonged events of strong surface melt or increased driving stresses, the plastic strength limit can cause rapid acceleration downslope due to imbalance of stresses....

  4. Understanding transport in model water desalination membranes

    Science.gov (United States)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  5. Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica

    Directory of Open Access Journals (Sweden)

    F. O. Nitsche

    2013-02-01

    Full Text Available Increasing evidence for an elaborate subglacial drainage network underneath modern Antarctic ice sheets suggests that basal meltwater has an important influence on ice stream flow. Swath bathymetry surveys from previously glaciated continental margins display morphological features indicative of subglacial meltwater flow in inner shelf areas of some paleo ice stream troughs. Over the last few years several expeditions to the eastern Amundsen Sea embayment (West Antarctica have investigated the paleo ice streams that extended from the Pine Island and Thwaites glaciers. A compilation of high-resolution swath bathymetry data from inner Pine Island Bay reveals details of a rough seabed topography including several deep channels that connect a series of basins. This complex basin and channel network is indicative of meltwater flow beneath the paleo-Pine Island and Thwaites ice streams, along with substantial subglacial water inflow from the east. This meltwater could have enhanced ice flow over the rough bedrock topography. Meltwater features diminish with the onset of linear features north of the basins. Similar features have previously been observed in several other areas, including the Dotson-Getz Trough (western Amundsen Sea embayment and Marguerite Bay (SW Antarctic Peninsula, suggesting that these features may be widespread around the Antarctic margin and that subglacial meltwater drainage played a major role in past ice-sheet dynamics.

  6. PROSPECTS FOR LIFE IN THE SUBGLACIAL LAKE VOSTOK, EAST ANTARCTICA

    Directory of Open Access Journals (Sweden)

    S. A. Bulat

    2012-01-01

    Full Text Available The objective was to estimate the genuine microbial content of ice samples from refrozen water (accretion ice from the subglacialLakeVostok(Antarctica buried beneath the 4-km thick East Antarctic ice sheet as well as surface snow nearby Vostok station. The lake ice samples were extracted by heavy deep ice drilling from3764 mbelow the surface reaching the depth3769.3 mby February 2011 (lake entering. High pressure, an ultra low carbon and chemical content, isolation, complete darkness and the probable excess of oxygen in water for millions of years characterize this extreme environment. A decontamination protocol was first applied to samples selected for the absence of cracks to remove the outer part contaminated by handling and drilling fluid. Preliminary indications showed the accretion ice samples to be almost gas free with the very low impurity content. Flow cytometry showed the very low unevenly distributed biomass in both accretion (0–19 cells per ml and glacier (0–24 cells per ml ice and surface snow (0–0.02 cells per ml as well while repeated microscopic observations were unsuccessful meaning that the whole Central East Antarctic ice sheet seems to be microbial cell-free.We used strategies of Ancient DNA research that include establishing contaminant databases and criteria to validate the amplification results. To date, positive results that passed the artifacts and contaminant databases have been obtained for a few bacterial phylotypes only in accretion ice samples featured by some bedrock sediments. Amongst them are the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus of beta-Proteobacteria, the actinobacterium rather related (95% to Ilumatobacter luminis and one unclassified phylotype distantly related (92% to soil-inhabiting uncultured bacteria. Combined with geochemical and geophysical considerations, our results suggest the presence of a deep biosphere, possibly thriving within some active faults of the bedrock

  7. Water transport in graphene nano-channels

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Oyarzua, Elton; Walther, J. H.

    The transport of water in nanopores is of both fundamental and practical interest. Graphene Channels (GCs) are potential building blocks for nanofluidic devices dueto their molecularly smooth walls and exceptional mechanical properties. Numerous studies have found a significant flow rate...... between the chirality of the graphene walls and the slip length has not been established. In this study, we perform non-equilibrium molecular dynamics simulations of water flow in single- and multi-walled GCs. We examine the influence on the flow rates of dissipating the viscous heat produced...... by connecting the thermostat to the water molecules, the CNT wall atoms or both of them. From the atomic trajectories, we compute the fluid flow rates in GCs with zig-zag and armchair walls, heights from 1 to 4 nm and different number of graphene layers on the walls. A relation between the chirality, slip...

  8. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    Science.gov (United States)

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  9. Ecological aspects of water coal fuel transportation and application

    Directory of Open Access Journals (Sweden)

    Anna SHVORNIKOVA

    2010-01-01

    Full Text Available This paper deals with the aspects of influence of transportation process and burning of water coal fuel on an ecological condition of environment. Also mathematical dependences between coal ash level and power consumption for transportation are presented.

  10. Geomorphological evidence of channelized subglacial meltwater drainage under the Scandinavian Ice Sheet

    Science.gov (United States)

    Adamczyk, Aleksander; Wysota, Wojciech; Sobiech, Marcin; Piotrowski, Jan A.

    2016-04-01

    The impact of subglacial meltwater erosion on shaping glacial landscapes is contentious and often difficult to constrain due to the lack of unequivocal diagnostic criteria. The same holds for the role of subglacial meltwater in glacier movement processes and sediment transport and deposition. Here we present new evidence of widespread channelized erosion under the southern, soft-bedded fringe of the last Scandinavian Ice Sheet (SIS) based on high-resolution terrain analysis with LiDAR imagery. We identify several tens of sites with "glacial curvilineation" landscapes first recognized by Lesemann et al. (2010, 2014) and considered as evidence of erosion by turbulent meltwater flows at the ice/bed interface. The "glacial curvilineation" landscapes mapped here consist of sets of parallel, winding ridges typically several metres high and up to several kilometres long occupying glacial overdeepenings and tunnel valleys. The ridges are aligned approximately perpendicular to the past ice sheet margins and they are composed of various deposits often pre-dating the last ice advance. We interpret them as erosional remnants of older landscapes dissected by high-energy subglacial meltwater flows. These findings suggest that the palaeoglaciological significance of meltwater drainage under the southern portion of SIS may have been grossly underestimated. References Lesemann, J.-E., Piotrowski, J.A. and Wysota, W., 2010. „Glacial curvilineations": New glacial landforms produced by longitudinal vortices in subglacial meltwater flows. Geomorphology 120, 153-161. Lesemann, J.-E., Piotrowski, J.A. and Wysota, W., 2014. Genesis of the "glacial curvilineation" landscape by meltwater processes under the former Scandinavian Ice Sheet, Poland. Sedimentary Geology 312, 1-18.

  11. Geophysical investigations of subglacial Antarctic lakes: identifying drill sites for lake access

    Science.gov (United States)

    Woodward, J.; Tulaczyk, S. M.; Smith, A.; Walter, J.; Ross, N.; Fricker, H. A.; Siegert, M. J.; Pettersson, R.; Thoma, M.; Corr, H.; King, E. C.; Vaughan, D.

    2009-12-01

    Subglacial lakes are regarded as viable habitats for novel microbial life forms and may contain sedimentary palaeo-environmental records which would provide critical insights into the glacial history of Antarctica. In-situ sampling and analysis is the only way to explore these lake environments. In order to successfully plan access programs detailed geophysical investigations, in particular seismic measurements of water depth, are required to identify suitable drill sites. Prior to the austral summer of 2006/07 measurements of water depths only existed for Subglacial Lake Vostok, and spatial coverage was limited due to the size of the lake. More recently, active source seismic experiments have been carried out over three subglacial lakes, South Pole Lake, Subglacial Lake Ellsworth (SLE) and Subglacial Lake Whillans (SLW). With drilling programs now funded for SLW (access planned for 2011/12) and SLE (access planned for 2012/13) we present results from the geophysical experiments at SLE and SLW to allow the identification of primary drill sites. The two lakes are very different. Geophysical results from SLE suggest that the lake is over 155 m deep and has been a stable system for much of the Holocene. We propose that in order to optimize the chances of successful access and sampling, the entry site should be located in an area with a melting interface near the centre of the lake where water depths are in the order of 100 m. This is away from the down-lake end which shows a higher possibility for basal freezing, with the consequent risk to equipment deployment and retrieval. In contrast, SLW is characterized by dynamic filling and draining over short (2-3 year periods) and most likely has a shallow water column (currently estimated to be in the order of 5-10 m). We suggest that the most suitable location for access will be the centre of the elevation change anomaly recorded over the lake. This point is near equidistant from the lake shoreline features identified from

  12. Subglacial hydrology of the lake district ice lobe during the Younger Dryas (ca. 12 500 - 11 600 years ago) in the Kylaeniemi area, SE Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lunkka, J. P.; Moisio, K.; Vainio, A. [Univ. of Oulu (Finland)

    2013-07-15

    It is essential to gain knowledge on the subglacial hydrological conditions at the glacier bed / bedrock interface when assessing how bedrock fracture zones affect subglacial melt water flow and in which subglacial zones pressurized and oxygen-rich melt water penetrates into the bedrock fracture systems. In the warm-based glacier zones, a part of subglacial melt water will penetrate deep into the fracture systems although the major part of melt water is drained to and beyond the ice margin via subglacial tunnel networks especially in the areas where ice is flowing on the crystalline bedrock. During the last deglaciation phase of the former Scandinavian Ice Sheet, glaciofluvial accumulations were deposited and these sediment accumulations are highly important when picturing the subglacial hydrology of different ice streams during deglaciation in the crystalline bedrock area. The aim of the present work was to map the bedrock fracture zones in the Kylaeniemi area and to shed light on the subglacial hydrology of the Scandinavian Ice Sheet's Lake District Ice Stream that occupied the Kylaeniemi area during the Younger Dryas between ca. 12 500 - 11 600 years ago. The special emphasis within this general aim was to study the relationship between bedrock fracture zones and the routes of subglacial drainage paths. The methods used to map and study bedrock fracture zones and subglacial drainage paths included remotes sensing methods, field observations, ground penetrating radar (GPR) investigations and GIS-based reconstructions. Conventional geological field methods aided by the GPR-method were also used to map bedrock exposures and their structures and to define the type of glaciofluvial sediments and glaciofluvial landform associations. Two main fracture zone sets occur in the study area. The most prominent bedrock fracture zone set trends NW-SE while the other, less prominent fracture zone set is aligned in NE-SW direction. The majority of the minor joint sets in

  13. Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains

    Science.gov (United States)

    Carter, Sasha P.; Fricker, Helen A.; Siegfried, Matthew R.

    2017-02-01

    Over the past decade, satellite observations of ice surface height have revealed that active subglacial lake systems are widespread under the Antarctic Ice Sheet, including the ice streams. For some of these systems, additional observations of ice-stream motion have shown that lake activity can affect ice-stream dynamics. Despite all this new information, we still have insufficient understanding of the lake-drainage process to incorporate it into ice-sheet models. Process models for drainage of ice-dammed lakes based on conventional R-channels incised into the base of the ice through melting are unable to reproduce the timing and magnitude of drainage from Antarctic subglacial lakes estimated from satellite altimetry given the low hydraulic gradients along which such lakes drain. We have developed an alternative process model, in which channels are mechanically eroded into the underlying deformable subglacial sediment. When applied to the known active lakes of the Whillans-Mercer ice-stream system, the model successfully reproduced both the inferred magnitudes and recurrence intervals of lake-volume changes, derived from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data for the period 2003-2009. Water pressures in our model changed as the flood evolved: during drainage, water pressures initially increased as water flowed out of the lake primarily via a distributed system, then decreased as the channelized system grew, establishing a pressure gradient that drew water away from the distributed system. This evolution of the drainage system can result in the observed internal variability of ice flow over time. If we are correct that active subglacial lakes drain through canals in the sediment, this mechanism also implies that active lakes are typically located in regions underlain by thick subglacial sediment, which may explain why they are not readily observed using radio-echo-sounding techniques.

  14. Microscale evidence of liquefaction and its potential triggers during soft-bed deformation within subglacial traction tills

    Science.gov (United States)

    Phillips, Emrys R.; Evans, David J. A.; van der Meer, Jaap J. M.; Lee, Jonathan R.

    2018-02-01

    Published conceptual models argue that much of the forward motion of modern and ancient glaciers is accommodated by deformation of soft-sediments within the underlying bed. At a microscale this deformation results in the development of a range of ductile and brittle structures in water-saturated sediments as they accommodate the stresses being applied by the overriding glacier. Detailed micromorphological studies of subglacial traction tills reveal that these polydeformed sediments may also contain evidence of having undergone repeated phases of liquefaction followed by solid-state shear deformation. This spatially and temporally restricted liquefaction of subglacial traction tills lowers the shear strength of the sediment and promotes the formation of "transient mobile zones" within the bed, which accommodate the shear imposed by the overriding ice. This process of soft-bed sliding, alternating with bed deformation, facilitates glacier movement by way of 'stick-slip' events. The various controls on the slip events have previously been identified as: (i) the introduction of pressurised meltwater into the bed, a process limited by the porosity and permeability of the till; and (ii) pressurisation of porewater as a result of subglacial deformation; to which we include (iii) episodic liquefaction of water-saturated subglacial traction tills in response to glacier seismic activity (icequakes), which are increasingly being recognized as significant processes in modern glaciers and ice sheets. As liquefaction operates only in materials already at very low values of effective stress, its process-form signatures are likely indicative of glacier sub-marginal tills.

  15. Antarctic Active Subglacial Lake Inventory from ICESat Altimetry, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains lake boundaries, volume changes, and gridded elevations for 124 active subglacial lakes beneath the Antarctic ice sheet. Lakes were identified...

  16. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays

    Science.gov (United States)

    Urbanski, Jacek Andrzej; Stempniewicz, Lech; Węsławski, Jan Marcin; Dragańska-Deja, Katarzyna; Wochna, Agnieszka; Goc, Michał; Iliszko, Lech

    2017-01-01

    Although the processes occurring at the front of an ice face in tidewater glacier bays still await thorough investigation, their importance to the rapidly changing polar environment is spurring a considerable research effort. Glacier melting, sediment delivery and the formation of seabird foraging hotspots are governed by subglacial discharges of meltwater. We have combined the results of tracking black-legged kittiwakes Rissa tridactyla equipped with GPS loggers, analyses of satellite images and in situ measurements of water temperature, salinity and turbidity in order to examine the magnitude and variability of such hotspots in the context of glacier bay hydrology. Small though these hotspots are in size, foraging in them appears to be highly intensive. They come into existence only if the subglacial discharge reaches the surface, if the entrainment velocity at a conduit is high and if there is sufficient macroplankton in the entrainment layer. The position and type of subglacial discharges may fluctuate in time and space, thereby influencing glacier bay hydrology and the occurrence of foraging hotspots. PMID:28266602

  17. Subglacial discharges create fluctuating foraging hotspots for sea birds in tidewater glacier bays

    Science.gov (United States)

    Urbanski, Jacek Andrzej; Stempniewicz, Lech; Węsławski, Jan Marcin; Dragańska-Deja, Katarzyna; Wochna, Agnieszka; Goc, Michał; Iliszko, Lech

    2017-03-01

    Although the processes occurring at the front of an ice face in tidewater glacier bays still await thorough investigation, their importance to the rapidly changing polar environment is spurring a considerable research effort. Glacier melting, sediment delivery and the formation of seabird foraging hotspots are governed by subglacial discharges of meltwater. We have combined the results of tracking black-legged kittiwakes Rissa tridactyla equipped with GPS loggers, analyses of satellite images and in situ measurements of water temperature, salinity and turbidity in order to examine the magnitude and variability of such hotspots in the context of glacier bay hydrology. Small though these hotspots are in size, foraging in them appears to be highly intensive. They come into existence only if the subglacial discharge reaches the surface, if the entrainment velocity at a conduit is high and if there is sufficient macroplankton in the entrainment layer. The position and type of subglacial discharges may fluctuate in time and space, thereby influencing glacier bay hydrology and the occurrence of foraging hotspots.

  18. NATIONAL SEISMIC, RADAR AND SEISMOLOGICAL STUDIES OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    S. V. Popov

    2012-01-01

    Full Text Available The results of the remote sensing which carried out in the LakeVostokarea are discussed in the paper. A.P. Kapitsa and O.G. Sorokhtin started the geophysical researches in this area in 1950s. Satellite altimetry data, which analyzed in 1990s yielded to the discovering of the LakeVostok. After that, PMGE and RAE started the systematic studying of this natural phenomenon by seismic and radio-echo sounding. Total, 318 seismic soundings and 5190 kmof the radio-echo profiles has been collected by 2008. Special precise measurements which carried out in the 5G-1 borehole vicinity are resulted in the ice thickness over Vostok Station is 3760±30 mby seismic and 3775±15 mby radio-echo sounding. Thus, the error of geophysical measurements is less than 0.3%. The Russian investigations are resulted in definition the border of the lake, the discovering of 56 subglacial water caves around the lake and compilation the maps including ice thickness, ice base and bedrock topography and the depth of the lake. Average depth of the LakeVostokis about 400 m; water volume is 6100 km3. After 2008, the remote sensing works have been concentrated to the studying of the bottom sediments by refraction seismic technique. The firsts result shown that the bottom sediments thickness varies from 400 to1200 m.

  19. Investigating the hydrological origins of Blood Falls - geomicrobiological insights into a briny subglacial Antarctic aquifer

    Science.gov (United States)

    Mikucki, J.; Tulaczyk, S. M.; Purcell, A. M.; Dachwald, B.; Lyons, W. B.; Welch, K. A.; Auken, E.; Dugan, H. A.; Walter, J. I.; Pettit, E. C.; Doran, P. T.; Virginia, R. A.; Schamper, C.; Foley, N.; Feldmann, M.; Espe, C.; Ghosh, D.; Francke, G.

    2015-12-01

    Subglacial waters tend to accumulate solutes from extensive rock-water interactions, which, when released to the surface, can provide nutrients to surface ecosystems providing a 'hot spot' for microbial communities. Blood Falls, an iron-rich, saline feature at the terminus of Taylor Glacier in the McMurdo Dry Valleys, Antarctica is a well-studied subglacial discharge. Here we present an overview of geophysical surveys, thermomechanical drilling exploration and geomicrobiological analyses of the Blood Falls system. A helicopter-borne transient electromagnetic system (SkyTEM) flown over the Taylor Glacier revealed a surprisingly extensive subglacial aquifer and indicates that Blood Falls may be the only surface manifestation of this extensive briny groundwater. Ground-based temperature sensing and GPR data combined with the helicopter-borne TEM data enabled targeted drilling into the englacial conduit that delivers brine to the surface. During the 2014-15 austral summer field season, we used a novel ice-melting drill (the IceMole) to collect englacial brine for geomicrobiological analyses. Results from previously collected outflow and more recent samples indicate that the brine harbors a metabolically active microbial community that persists, despite cold, dark isolation. Isotope geochemistry and molecular analysis of functional genes from BF suggested that a catalytic or 'cryptic' sulfur cycle was linked to iron reduction. Recent metagenomic analysis confirms the presence of numerous genes involved in oxidative and reductive sulfur transformations. Metagenomic and metabolic activity data also indicate that subglacial dark CO2 fixation occurs via various pathways. Genes encoding key steps in CO2 fixation pathways including the Calvin Benson Basham and Wood Ljungdahl pathway were present and brine samples showed measureable uptake of 14C-labeled bicarbonate. These results support the notion that, like the deep subsurface, subglacial environments are chemosynthetic

  20. Analysis of subglacial hydrodynamics and ice dynamics through combined terrestrial laser scanning and ground penetrating radar survey

    Science.gov (United States)

    Gabbud, Chrystelle; Rüttimann, Sébastien; Micheletti, Natan; Irving, James; Lane, Stuart

    2015-04-01

    This study shows how high resolution surveys of subglacial channel morphology combined with high resolution terrestrial laser scanner survey of an Alpine glacier help to understand subglacial hydrological forcing of ice dynamics. The study area is the Haut Glacier d'Arolla in Switzerland, an Alpine valley glacier for which subglacial drainage system has been well studied. A new generation of terrestrial laser scanners was used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The LiDAR RIEGL VZ-6000 scanner, with a laser 3B specifically designed for measurements of snow and ice cover surfaces, was tested at seasonal and daily scales. The data revealed spatial variations in the patterns of surface melt, controlled by both aspect and differential debris cover at the seasonal scale, and controlled by ogive-related differences in ice surface debris content at the daily scale. More tentatively, intra-daily scale measurements pointed to possible hydraulic jacking of the glacier associated with short-term water pressure rises at the downstream part of the glacier. A ground-penetrating radar (GPR) field campaign was conducted a year later in the location where possible hydraulic jacking had been detected previously. The aims of this campaign were (i) to assess GPR usage for subglacial channel detection; (ii) identify more precisely the channel morphology; and (iii) investigate further the hydraulic jacking hypothesis. 100 MHz antennas were used to map a 240 x 34 m area near the glacier snout where the ice thickness did not exceed 50 m. The corresponding data, after processing, allowed reconstruction of the bed topography and the morphology of subglacial channels in 3D, showing two of the latter in this area. One channel was followed for approximately 20 m upglacier and corresponding morphology estimates were performed. These data allowed for 3D reconstructions of both the bed

  1. Small scale high resolution LiDAR measurements of a subglacial conduit

    Science.gov (United States)

    Mankoff, K. D.; Gulley, J.

    2012-04-01

    We present direct measurements of surface roughness in a sub-glacial conduit system underneath the Rieperbreen Glacier, Svalbard, Norway. Data was collected with a low-cost (129 USD) Microsoft Kinect video game device used as a LIDAR sensor. Surface roughness is a primary control on water flow in rivers, channels, and cave conduit systems and understanding the effects of surface roughness on water flow has been problematic due to lack of direct measurements of roughness in natural systems. We use the ice scallop dimensions to derive flow velocity and explore implications of the changing roughness parameters as the cave grows and shrinks.

  2. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  3. The Economics of Bulk Water Transport in Southern California

    Directory of Open Access Journals (Sweden)

    Andrew Hodges

    2014-12-01

    Full Text Available Municipalities often face increasing demand for limited water supplies with few available alternative sources. Under some circumstances, bulk water transport may offer a viable alternative. This case study documents a hypothetical transfer between a water utility district in northern California and urban communities located on the coast of central and southern California. We compare bulk water transport costs to those of constructing a new desalination facility, which is the current plan of many communities for increasing supplies. We find that using water bags to transport fresh water between northern and southern California is in some instances a low-cost alternative to desalination. The choice is constrained, however, by concerns about reliability and, thus, risk. Case-study results demonstrate the challenges of water supply augmentation in water-constrained regions.

  4. Barriers to Superfast Water Transport in Carbon Nanotube Membranes

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Ritos, Konstantinos; Cruz-Chu, Eduardo R.

    2013-01-01

    Carbon nanotube (CNT) membranes hold the promise of extraordinary fast water transport for applications such as energy efficient filtration and molecular level drug delivery. However, experiments and computations have reported flow rate enhancements over continuum hydrodynamics that contradict each...... over the continuum predictions. These rates are far below those reported experimentally. The results suggest that the reported superfast water transport rates cannot be attributed to interactions of water with pristine CNTs alone....

  5. Greenland englacial drainage: conditions favoring water transport through a fractured aquifer

    Science.gov (United States)

    Creyts, T. T.; Fountain, A. G.

    2015-12-01

    Recently, the subglacial hydrology of glaciers and ice sheets has garnered intense interest because of its effects on ice sliding and potential ice sheet responses leading to sea level rise. Less attention has focused on the englacial water system that connects surface meltwater sources to the basal drainage system. Observations of englacial drainage have revealed diametrically opposed behaviors, so that understanding the role of the englacial system is critical to developing knowledge of ice sheet responses. The englacial connections either enhance or limit subglacial processes, including sliding. Some observations show cases where water drainage is mainly through an englacial system of fractures so that water flow at the bed is stunted. Other observations show static englacial water systems that play little role in drainage with primary drainage routes being along the bed. Here, we use a thermomechanical model of englacial water flow to understand the interaction between ice and water along these connections. We assume that water flow is through a series of connected fractures analogous to crevassed Greenland outlet glaciers. The fractures are modified by ice flow, and freezing and melting of the water system. Simple mathematical analyses show trade offs between closure rates and melting rates that determine the englacial flowpaths. From numerical experiments, we show that the dominance of englacial flow follows the locations of both bed overdeepenings and areas where the basal water system is compressed dynamically. The preponderance of overdeependenings in Greenland suggests that englacial systems may be favored in critical areas of ice sheet flow. We conclude by relating the insights from the analytic and numerical results to the broad scale patterns of change of the Greenland Ice Sheet.

  6. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  7. Height changes over subglacial Lake Vostok, East Antarctica: Insights from GNSS observations

    National Research Council Canada - National Science Library

    Richter, Andreas; Popov, Sergey V; Fritsche, Mathias; Lukin, Valery V; Matveev, Alexey Yu; Ekaykin, Alexey A; Lipenkov, Vladimir Ya; Fedorov, Denis V; Eberlein, Lutz; Schröder, Ludwig; Ewert, Heiko; Horwath, Martin; Dietrich, Reinhard

    2014-01-01

    Height changes of the ice surface above subglacial Lake Vostok, East Antarctica, reflect the integral effect of different processes within the subglacial environment and the ice sheet. Repeated GNSS...

  8. Structure-function relationships in sapwood water transport and storage.

    Science.gov (United States)

    Barbara L. Gartner; Frederick C. Meinzer

    2005-01-01

    Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high...

  9. Effect of sunlight, transport and storage vessels on drinking water ...

    African Journals Online (AJOL)

    The objective was to evaluate the effect of sunlight, transport and storage vessels on drinking water quality in rural Ghana with the aim of reducing the high demand for fuel wood in the household treatment of water. Well water was exposed for 6h to direct natural sunlight in aluminium, iron, and plastic receptacles and ...

  10. Mechanism of water transport in graphene oxide laminates.

    Science.gov (United States)

    Deng, Junjiao; You, Yi; Bustamante, Heriberto; Sahajwalla, Veena; Joshi, Rakesh K

    2017-03-01

    It is understood that nano-channels of graphene oxide membranes have a water flow mechanism which is similar to the water flow inside carbon nanotube pores. The water transport mechanisms recently proposed by various researchers suggest that membranes composed of graphene oxide laminates could be regarded as an assembly of many tiny carbon nanotubes stacked together with attached functional groups as spacers.

  11. Seismic Tremor Reveals Subglacial Discharge at Tidewater Glaciers

    Science.gov (United States)

    Bartholomaus, T. C.; Larsen, C. F.; O'Neel, S.; West, M. E.; Amundson, J. M.; Walter, J. I.; Catania, G. A.; Stearns, L. A.; Walker, R. T.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2014-12-01

    Subglacial discharge from the termini of tidewater glaciers drives submarine terminus melting, influences fjord circulation, erodes and redeposits subglacial sediment, and is a central component of proglacial marine ecosystems. The timing and variability of subglacial discharge can also exert a strong influence on the upstream flow of tidewater glaciers through hydrology-mediated changes in basal motion. However, a lack of observations of subglacial discharge at the ice-ocean interface hinders progress in understanding these processes and contributes to some of the largest uncertainties in sea level rise projections. Here we demonstrate that passive seismic observations collected adjacent to glaciers can meet this observational need. At tidewater and lake-terminating glaciers in Alaska and Greenland, we observe hourly to seasonal variations in low-amplitude, background seismic noise, termed glacio-hydraulic tremor. Variations in tremor amplitude correlate with discharge during the drainage of a glacially-dammed lake and reveal increases in discharge efficiency over the course of the melt season. Recordings of glacio-hydraulic tremor across a range of settings suggest widespread utility for our method. Reliable prediction of future sea level rise requires observations of subglacial discharge that elicit physical insight and can validate models. Our findings provide a platform for new understanding of ice-ocean interactions and related oceanographic, geologic, and ecological disciplines.

  12. Subglacial hydrological modelling of a rapid lake drainage event on the Russell Glacier catchment, SW Greenland

    Science.gov (United States)

    Dow, C. F.; Pimentel, S.; Doyle, S. H.; Booth, A. D.; Fitzpatrick, A.; Jones, G. A.; Kulessa, B.; Hubbard, A.

    2011-12-01

    We use local-scale subglacial hydrological models to assess the development of the basal drainage system in response to a rapid lake-tapping event on the Russell Glacier catchment, SW Greenland. Water inputs to the model are constrained by in-situ records of the lake drainage rate. Subglacial conditions are estimated from active seismic line analysis including basal topography and substrate characteristics. A borehole slug test model is used to determine the radial flux of water from the drainage input point. Water flowing in the downstream direction is used to drive a 1-D flowband model, which allows development of interacting channelised and distributed drainage systems. The simulated basal water pressures are applied to an elastic beam model to assess vertical uplift at the lake drainage site. Modelled uplift outputs are compared with results from GPS stations located next to the lake. Initial modelling results suggest that channels are necessary for evacuation of water from rapid lake drainage events, even with the presence of a sediment-based bed, the latter of which is usually associated with distributed drainage.

  13. Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1981-04-01

    The study objective of "The Mathematical Simulation of Sediment and Radionuclide Transport in Surface Waters" is to synthesize and test radionuclide transport models capable of realistically assessing radionuclide transport in various types of surface water bodies by including the sediment-radionuclide interactions. These interactions include radionuclide adsorption by sediment; desorption from sediment into water; and transport, deposition, and resuspension of sorbed radionuclides controlled by the sediment movements. During FY-1979, the modification of sediment and contaminant (radionuclide) transport model, FETRA, was completed to make it applicable to coastal waters. The model is an unsteady, two-dimensional (longitudinal and lateral) model that consists of three submodels (for sediment, dissolved-contaminant, and particulate-contaminant transport), coupled to include the sediment-contaminant interactions. In estuaries, flow phenomena and consequent sediment and radionuclide migration are often three-dimensional in nature mainly because of nonuniform channel cross-sections, salinity intrusion, and lateral-flow circulation. Thus, an unsteady, three-dimensional radionuclide transport model for estuaries is also being synthesized by combining and modifying a PNL unsteady hydrothermal model and FETRA. These two radionuclide transport models for coastal waters and estuaries will be applied to actual sites to examine the validity of the codes.

  14. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. I. Leychenkov

    2012-01-01

    Full Text Available In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift depression during preglacial and early glacial times.

  15. Urea transport mediated by aquaporin water channel proteins.

    Science.gov (United States)

    Li, Chunling; Wang, Weidong

    2014-01-01

    Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen aquaporins have been characterized. They are distributed wildly in specific cell types in multiple organs and tissues. Each AQP channel consists of six membrane-spanning alpha-helices that have a central water-transporting pore. Four AQP monomers assemble to form tetramers, which are the functional units in the membrane. Some of AQPs also transport urea, glycerol, ammonia, hydrogen peroxide, and gas molecules. AQP-mediated osmotic water transport across epithelial plasma membranes facilitates transcellular fluid transport and thus water reabsorption. AQP-mediated urea and glycerol transport is involved in energy metabolism and epidermal hydration. AQP-mediated CO2 and NH3 transport across membrane maintains intracellular acid-base homeostasis. AQPs are also involved in the pathophysiology of a wide range of human diseases (including water disbalance in kidney and brain, neuroinflammatory disease, obesity, and cancer). Further work is required to determine whether aquaporins are viable therapeutic targets or reliable diagnostic and prognostic biomarkers.

  16. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    Science.gov (United States)

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  17. Scaling behaviour for the water transport in nanoconfined geometries

    Science.gov (United States)

    Chiavazzo, Eliodoro; Fasano, Matteo; Asinari, Pietro; Decuzzi, Paolo

    2014-04-01

    The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter θ as D(θ)=DB[1+(DC/DB-1)θ], with DB and DC the bulk and totally confined diffusion of water, respectively. The parameter θ is primarily influenced by geometry and represents the ratio between the confined and total water volumes. The D(θ) relationship is interpreted within the thermodynamics of supercooled water. As an example, such relationship is shown to accurately predict the relaxometric response of contrast agents for magnetic resonance imaging. The D(θ) relationship can help in interpreting the transport of water molecules under nanoconfined conditions and tailoring nanostructures with precise modulation of water mobility.

  18. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  19. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  20. Coupling autotrophic sulfide mineral weathering with dolomite dissolution in a subglacial ecosystem

    Science.gov (United States)

    Boyd, E. S.; Hamilton, T. L.; Havig, J. R.; Lange, R.; Murter, E.; Skidmore, M. L.; Peters, J.; Shock, E.

    2013-12-01

    and abundant autotrophic community in the RG subglacial environment with the dominant population exhibiting close affiliation with the sulfide mineral oxidizing autotroph Sideroxydans lithoautotrophicus. Analysis of dissolved solutes in late season glacial meltwaters indicate that the production of sulfate through sulfide mineral oxidation is closely coupled with increases in the concentration of calcium, magnesium, and carbonate ions, suggesting that the oxidation of pyrite is closely coupled with the dissolution of dolomite, a dominant carbonate mineral in the local bedrock. Thus, microbially mediated sulfide mineral weathering in subglacial systems provides a conduit for transport of nutrients to downstream freshwater and marine systems. Collectively, these results underscore the contribution of cold and dark subglacial environments to global biogeochemical cycles, both today and in Earth's past, and demonstrate the potential role of autotrophic microorganisms in sustaining subglacial microbial communities over geologic time periods.

  1. Photogrammetric recognition of subglacial drainage channels during glacier lake outburst events

    Science.gov (United States)

    Schwalbe, Ellen; Koschitzki, Robert

    2016-04-01

    In recent years, many glaciers all over the world have been distinctly retreating and thinning. One of the consequences of this is the increase of so called glacier lake outburst flood events (GLOFs): Lakes that have been dammed by a glacier spontaneously start to drain through a subglacial channel underneath the glacier due to their outweighing hydrostatic pressure. In a short period of time, the lake water drains under the glacier and causes floods in downstream valleys. In many cases the latter become hazardous for people and their property. Due to glacier movement, the tunnel will soon collapse, and the glacier lake refills, thus starting a new GLOF cycle. The mechanisms ruling GLOF events are yet still not fully understood by glaciologists. Thus, there is a demand for data and measurement values that can help to understand and model the phenomena. In view of the above, we will show how photogrammetric image sequence analysis can be used to collect data which allows for drawing conclusions about the location and development of a subglacial channel. The work is a follow-up on earlier work on a photogrammetric GLOF early warning system (Mulsow et. al., 2013). For the purpose of detecting the subglacial tunnel, a camera has been installed in a pilot study to observe the area of the Colonia glacier (Northern Patagonian ice field) where it dams the lake Lago Cachet II. To verify the hypothesis, that the course of the subglacial tunnel is indicated by irregular surface motion patterns during its collapse, the camera acquired image sequences of the glacier surface during several GLOF events. Applying LSM-based tracking techniques to these image sequences, surface feature motion trajectories could be obtained for a dense raster of glacier points. Since only a single camera has been used for image sequence acquisition, depth information is required to scale the trajectories. Thus, for scaling and georeferencing of the measurements a GPS-supported photogrammetric network

  2. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 1. Borehole-based englacial and subglacial measurements from a rapidly-moving tidewater glacier: Store Glacier, Greenland

    Science.gov (United States)

    Hubbard, Bryn; Doyle, Samuel; Christoffersen, Poul; Young, Tun Jan; Hofstede, Coen; Hubbard, Alun; Box, Jason; Todd, Joe; Bougamont, Marion

    2016-04-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70 degrees N, ~1000 m elevation). Four wired sensor strings were successfully installed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of combined water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological connection between them. The sensors, which were wired to data-loggers at the surface, operated for between ~30 and >80 days from late summer into autumn before the cables stretched and snapped, with the lowermost sensors failing first. The records obtained from these sensors reveal (i) subglacial water pressures that were close to overburden but which generally increased through the period of measurement and varied diurnally by ~0.3 m, (ii) a minimum englacial temperature of -21 degrees C underlain by a zone of temperate ice, some tens of m thick, located immediately above the bed, and (iii) high rates of internal deformation and strain that increased towards the bed. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  3. Ice thickness, volume and subglacial topography of Urumqi Glacier ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 3. Ice thickness, volume and subglacial topography of Urumqi Glacier No. 1, Tianshan mountains, central Asia, by ground penetrating radar survey. Puyu Wang Zhongqin Li Shuang Jin Ping Zhou Hongbing Yao Wenbin Wang. Volume 123 Issue 3 April ...

  4. Lake Vostok: From a Continental Margin to a Subglacial Lake

    Science.gov (United States)

    Studinger, M.; Bell, R. E.; KArner, G. D.; Tikku, A. A.; Levin, V.; Raymond, C. A.; Lerner-Lam, A.

    2002-05-01

    Subglacial ecosystems, in particular subglacial lakes, represent the most oligothrophic environments on Earth. The geologic origin of Lake Vostok is a critical boundary condition for both the stability of the lake and energy fluxes into the lake. Microbial life may use geothermal energy, similar to life discovered at deep sea hydrothermal vents. Significant geothermal anomalies are often associated with active faulting. The topographic depression which forms the craddle for Lake Vostok is part of a regional tectonic structure ranging from the Gamburtsev Subglacial Mountains to the Aurora Subglacial Basin. This geologic boundary was formed by emplacement of a thrust sheet from the east over a pre-existing passive continental margin beneath the present-day Lake Vostok. No data exist to directly date either the timing of passive margin formation or the subsequent crustal shortening. Minor extensional reactivation of the thrust sheet explains a simple mechanism to explain the formation of the Lake Vostok basin. The steep slopes bounding this depression are likley being fault-controlled. Our recent discovery of microseismic activity suggest that this faults might be active and could act as conduits for convecting fluids. The tectonic processes can have an important influence on the ecosystem within the lake.

  5. A wireless subglacial probe for deep ice applications

    NARCIS (Netherlands)

    Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236; Boot, W.; Hubbard, A.; Pettersson, R.; Wilhelms, F.; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556

    2012-01-01

    We present the design and first results from two experiments using a wireless subglacial sensor system (WiSe) that is able to transmit data through 2500m thick ice. Energy consumption of the probes is minimized, enabling the transmission of data for at least 10 years. In July 2010 the first

  6. In-Situ Observations of a Subglacial Outflow Plume in a Greenland Fjord

    Science.gov (United States)

    Mankoff, K. D.; Straneo, F.; Singh, H.; Das, S. B.

    2014-12-01

    We present oceanographic observations collected in and immediately outside of a buoyant, fresh, sediment-laden subglacial outflow plume rising up the marine-terminating front of Sarqardleq Glacier, Greenland (68.9 N, 50.4 W). Subglacial outflow plumes, associated with the discharge at depth of upstream glacial surface melt, entrain the relatively warm fjord waters and are correlated with enhanced submarine melt and increased calving. Few in-situ observations exist due to the challenges of making measurements at the calving front of glaciers. Our data were collected using a small boat, a helicopter, and a JetYak (a remote-controlled jet-ski-powered kayak). Temperature and salinity profiles in, around, and far from the plume are used to described its oceanographic properties, spatial extent, and temporal variability. This plume rises vertically up the ice front expanding laterally and away from the ice, over-shoots its stable isopycnal and reaches the surface. Its surface expression is identified by colder, saltier, sediment-laden water flowing at ~5 m/s away from the ice face. Within ~300 m from the ice it submerges as it seeks buoyant stability.

  7. Effect of hydrophilic defects on water transport in MFI zeolites.

    Science.gov (United States)

    Humplik, Thomas; Raj, Rishi; Maroo, Shalabh C; Laoui, Tahar; Wang, Evelyn N

    2014-06-10

    The subnanometer pore structure of zeolites and other microporous materials has been proposed to act as a molecular sieve for various water separation technologies. However, due to the increased interaction between the solid and water in these nanoconfined spaces, it is unclear which type of interface, be it hydrophilic or hydrophobic, offers an advantageous medium for enhancing transport properties. In this work, we probe the role of hydrophilic defects on the transport of water inside the microporous hydrophobic MFI zeolite pore structure via combined sorption and high-pressure infiltration experiments. While the inclusion of defects was observed to increase the amount of water within the zeolite pore network by up to 7 times at the saturation pressure, the diffusivity of this infiltrated water was lowered by up to 2 orders of magnitude in comparison to that of water within the nearly defect-free hydrophobic MFI zeolite. Subsequently, the permeability of water within the more defective MFI zeolite was an order of magnitude lower than that of the nearly defect-free zeolite. The results from these experiments suggest that the intrinsic hydrophobic pore structure of MFI zeolites can facilitate faster water transport due to the decreased attraction between the water and the defect-free surface. While the strong attraction of water to the defects allows for water to infiltrate the porous network at lower pressures, the results suggest that this strong attraction decreases the mobility of the infiltrated water. The insights gained from this study can be utilized to improve the design of future membranes for water desalination and other separation techniques.

  8. Examination of water quality changes during transportation of different fish

    Directory of Open Access Journals (Sweden)

    Istvan Nemeth

    2015-12-01

    Full Text Available Introduction The growth of population is increasing intensively (7.3 billion people in 2015 and it generates growing importance of fish farming. Primarily, fish meat could provide protein requirements for population so more and more attention must be paid to each sections of farming, for example fish transportation. A badly organized transportation technology can significantly reduce high quality stocks which were produced over several years. Deterioration of transport may occur on each fish distinctly. Bacterial or fungal diseases appear either immediately or days later. During our work, changes in several freshwater (peaceful or predator fish species (of different ages were monitored and analyzed during transport. There were two reasons why we examined the main physical and chemical parameters of the water. On one hand, we were curious to know how much the individuals exposed to heavy loads, which we tried to identify with some stress tests. On the other hand, we would develop a national water carrier monitoring system for the practice. Materials and methods Delivery technologies (foil sack and transport tankers used in practice was applied in the experiment of the study in a real road transport. The physical and chemical data were monitored and checked with the use of multiparameter instruments and photometrial tests. Physiological and stress tests were analyzed from blood plasma of each fish, primarily plasma glucose determination was used. Results After analysis of examined fish species and each ages, it is obvious that either short or long delivery times we choose physical and chemical properties of the transport water would change dramatically, even adequate oxygen balance was ensured. Values of individuals exposed to stress were more significant compared to baseline values. Conclusion We could define concrete changes in key parameters of the transport water with the number of realtime transport implementation which is a good help to

  9. Kinetics of proton transport in water

    DEFF Research Database (Denmark)

    Kornyshev, A.A.; Kuznetsov, A.M.; Spohr, E.

    2003-01-01

    +), (ii) proton transfer from hydronium to a neighboring water molecule, and (iii) structural diffusion of the Zundel complex (H5O2+), the processes all controlled by orientational fluctuations or hydrogen bond breaking in neighboring hydration shells. Spontaneous conversion of excess proton states...... are brought into the framework of quantum mechanical PT theory in condensed media. Both the nature of the elementary act and the reaction coordinates are, however, different for the two types of PT clusters. The corresponding rate constants are calculated and compared with MD simulations. Within the framework...

  10. Palaeogeographical And Archaeological Records Of Natural Changes Of The Jordanowo-Niesulice Subglacial Channel Near Lubrza, The Lubusz Lakeland

    Directory of Open Access Journals (Sweden)

    Ratajczak-Szczerba Magdalena

    2015-09-01

    Full Text Available The region of the Lubusz Lakeland in western Poland where there are a lot of subglacial channels provides opportunity for multi-proxy palaeoenvironmental reconstructions. None of them has not been the object of a specific study. The developmental history of the palaeolakes and their vicinity in the subglacial trough Jordanowo-Niesulice, spanning the Late Glacial and beginning of the Holocene, was investigated using geological research, lithological and geomorphological analysis, geochemical composition, palynological and archaeological research, OSL and AMS-radiocarbon dating. Geological research shows varied morphology of subglacial channel where at least two different reservoirs functioned in the end of the Last Glacial period and at the beginning of the Holocene. Mostly during the Bølling-Allerød interval and at the beginning of the Younger Dryas there took place melting of buried ice-blocks which preserved the analysied course of the Jordanowo-Niesulice trough. The level of water, and especially depth of reservoirs underwent also changes. Palynological analysis shows very diversified course of the Allerød interval.

  11. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    Science.gov (United States)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  12. Transient analysis of water transport in PEM fuel cells

    Science.gov (United States)

    Yan, Wei-Mon; Chu, Hsin-Sen; Chen, Jian-Yao; Soong, Chyi-Yeou; Chen, Falin

    This paper theoretically studies the water transport phenomena in PEM fuel cells, mainly investigating the transient behavior in the gas diffusion layer (GDL), catalyst layer (CL) and proton exchange membrane (PEM). In the PEM, both diffusion and electro-osmosis processes are considered, while in the GDL and CL, only diffusion process is taken into account. The process of water uptake is employed to account for the water transport at the interface between the PEM and CL. The results indicate that the water content in the PEM and the time for reaching the steady state in the start-up process are influenced by the humidification constant, k, the humidification, and the thickness of PEM. The rise of the k increases the water content in the membrane and shortens the time for reaching the steady state. Insufficient humidification causes relatively small water content and long steady time. When the PEM is thinner, the water is more uniformly distributed, the water content gets higher, and the time for reaching the steady state is distinctly shorter.

  13. Comparison of a modified peptone water transport medium with two ...

    African Journals Online (AJOL)

    A laboratory modified peptone water medium was evaluated alongside Stuart and Amies media for their relative suitability as transport media for aerobic bacteria isolated from wound specimens obtained from Central Hospital, Benin City, Nigeria. The survival rates of isolates from the three media were assessed ...

  14. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  15. Simultaneous transport of water and solutes under transient ...

    Indian Academy of Sciences (India)

    Simultaneous transport of water and solutes under transient unsaturated flow conditions – A case study. B K Purandara N ... In the present study,Malaprabha sub-basin (up to dam site)has been selected which has two distinct climatic zones,sub-humid (upstream of Khanapur)and semi-arid region (downstream of Khanapur).

  16. Infrastructure to 2030: telecom, land transport, water and electricity

    National Research Council Canada - National Science Library

    2006-01-01

    ... to economic and social development in the years to come. The project has a time horizon out to 2020-30. It covers energy, surface transport, water and telecommunications, and focuses on OECD countries and some of the so-called Big 5 economies (Brazil, China, India, Indonesia and Russia). One of the expected benefits of this multi-sectoral approa...

  17. Water Transport in Trees--An Artificial Laboratory Tree

    Science.gov (United States)

    Susman, K.; Razpet, N.; Cepic, M.

    2011-01-01

    Water transport in tall trees is an everyday phenomenon, seldom noticed and not completely understood even by scientists. As a topic of current research in plant physiology it has several advantages for presentation within school physics lectures: it is interdisciplinary and clearly shows the connection between physics and biology; the…

  18. Superconductivity and Fast Proton Transport in Nanoconfined Water

    CERN Document Server

    Johnson, K H

    2016-01-01

    A real-space molecular-orbital description of Cooper pairing in conjunction with the dynamic Jahn-Teller mechanism for high-Tc superconductivity predicts that electron-doped water confined to the nanoscale environment of a carbon nanotube or biological macromolecule should superconduct below and exhibit fast proton transport above the transition temperature, Tc = 230 degK (-43 degC).

  19. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and endothe...

  20. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Science.gov (United States)

    Humplik, Thomas; Lee, Jongho; O’Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  1. Comparison of a modified peptone water transport medium with two ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, Ambrose Alli. University ... Statistical analysis using the students t-test at 90% confidence limit showed ... Key words: Modified peptone water, Stuart, Amies, transport medium, comparison, swab specimens.

  2. Strategic transportation model for oil in US waters

    Energy Technology Data Exchange (ETDEWEB)

    Lakovou, E.; Douligeris, C. [Miami Univ., FL (United States)

    1996-12-31

    This paper presents the development of a strategic transportation model for marine oil transportation in US waters. The model is a high-level strategic decision-making tool that will be used to interface with a risk analysis model, to identify ``weak`` links in the system and evaluate alternative routing and shipping scenarios. It may also be used to provide suggestions for the designation of lightering zones which will enable the U.S. to draw from the general world supply of tanker capacity and reduce oil transportation costs and risks. The model has been developed at the request of the United States Interagency Coordinating Committee for Oil Pollution Research to allow for the quantification of oil transported within the geographic boundaries of the United States, for the analysis of risks and effects of oil spills, and finally the identification of appropriate technologies that will support intervention and mitigation to reduce the impact of spills. (UK)

  3. Impacts of transportation infrastructure on storm water and surfaces waters in Chittenden County, Vermont, USA.

    Science.gov (United States)

    2014-06-01

    Transportation infrastructure is a major source of stormwater runoff that can alter hydrology and : contribute significant loading of nutrients, sediment, and other pollutants to surface waters. These : increased loads can contribute to impairment of...

  4. Modeling Nitrogen Fate and Transport at the Sediment-Water ...

    Science.gov (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of various environmental pollutants such as nutrients, pesticides, metals, PCBs, PAHs, etc. Environmental problems caused by excessive use of agricultural chemicals (e.g., pesticides and fertilizers) and improper discharge of industrial waste and fuel leaks are all influenced by the diffusive nature of pollutants in the environment. Eutrophication is one such environmental problem where the sediment-water interface exerts a significant physical and geochemical control on the eutrophic condition of the stressed water body. Exposure of streams and lakes to contaminated sediment is another common environmental problem whereby transport of the contaminant (PCBs, PAHs, and other organic contaminants) across the sediment water can increase the risk for exposure to the chemicals and pose a significant health hazard to aquatic life and human beings. This chapter presents analytical and numerical models describing fate and transport phenomena at the sediment-water interface in freshwater ecosystems, with the primary focus on nitrogen cycling and the applicability of the models to real-world environmental problems and challenges faced in their applications. The first model deals with nitrogen cycling

  5. Pore Water PAH Transport in Amended Sediment Caps

    Science.gov (United States)

    Gidley, P. T.; Kwon, S.; Ghosh, U.

    2009-05-01

    Capping is a common remediation strategy for contaminated sediments that creates a physical barrier between contaminated sediments and the water column. Diffusive flux of contaminants through a sediment cap is small. However, under certain hydrodynamic conditions such as groundwater potential and tidal pumping, groundwater advection can accelerate contaminant transport. Hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) could be transported through the cap under advective conditions. To better understand PAH migration under these conditions, physical models of sediment caps were evaluated in the laboratory through direct measurement of pore water using solid phase micro-extraction with gas chromatography and mass spectrometry. Contaminated sediment and capping material was obtained from an existing Superfund site that was capped at Eagle Harbor, Washington. A PAH dissolution model linked to an advection-dispersion equation with retardation using published organic carbon-water partitioning coefficients (Koc) was compared to measured PAHs in the sediment and cap porewater of the physical model.

  6. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2013-01-01

    Graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. Extensive molecular dynamics simulations on pore-size effects suggest that γ-graphyne-4, with 4 acetylene bonds between two adjacent phenyl rings, has the best performance with 100% salt rejection and an unprecedented water permeability, to our knowledge, of ~13 L/cm2/day/MPa, 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore size. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membranes. PMID:24196437

  7. Constraining local subglacial bedrock erosion rates with cosmogenic nuclides

    Science.gov (United States)

    Wirsig, Christian; Ivy-Ochs, Susan; Christl, Marcus; Reitner, Jürgen; Reindl, Martin; Bichler, Mathias; Vockenhuber, Christof; Akcar, Naki; Schlüchter, Christian

    2014-05-01

    The constant buildup of cosmogenic nuclides, most prominently 10Be, in exposed rock surfaces is routinely employed for dating various landforms such as landslides or glacial moraines. One fundamental assumption is that no cosmogenic nuclides were initially present in the rock, before the event to be dated. In the context of glacially formed landscapes it is commonly assumed that subglacial erosion of at least a few meters of bedrock during the period of ice coverage is sufficient to remove any previously accumulated nuclides, since the production of 10Be ceases at a depth of 2-3 m. Insufficient subglacial erosion leads to overestimation of surface exposure ages. If the time since the retreat of the glacier is known, however, a discordant concentration of cosmogenic nuclides delivers information about the depth of subglacial erosion. Here we present data from proglacial bedrock at two sites in the Alps. Goldbergkees in the Hohe Tauern National Park in Austria and Gruebengletscher in the Grimsel Pass area in Switzerland. Samples were taken inside as well as outside of the glaciers' Little Ice Age extent. Measured nuclide concentrations are analyzed with the help of a MATLAB model simulating periods of exposure or glacial cover of user-definable length and erosion rates.

  8. What controls the explosivity of subglacial rhyolite in Iceland?

    Science.gov (United States)

    Owen, J.; Tuffen, H.; McGarvie, D. W.

    2012-04-01

    The eruption controls of subglacial rhyolite are poorly understood but this is of key importance in mitigating hazards. In subaerial rhyolite eruptions the pre-eruptive volatile content and degassing path are considered to be the primary controls of explosivity, but is this also the case when rhyolitic eruptions occur under ice? We present the first pre-eruptive volatile content and degassing path data for subglacial rhyolite eruptions, comparing three edifices of contrasting eruption style from the Torfajökull complex in South Iceland[1]. Volatile concentrations were measured using infra-red spectroscopy (FTIR) and Secondary Ion Mass Spectroscopy (SIMS). SE Rauðfossafjöll is a large volume (~1 km3) explosively erupted tuya, Dalakvísl (~0.2 km3) is an entirely subglacial edifice that has both explosive and effusive deposits and Bláhnúkur is a small volume (Bull Vol. [3] Tuffen et al. (2007) Ann Glac, 45(1): 87-94

  9. Water transport and purification in nanochannels controlled by asymmetric wettability.

    Science.gov (United States)

    Chen, Qinwen; Meng, Lingyi; Li, Qikai; Wang, Dong; Guo, Wei; Shuai, Zhigang; Jiang, Lei

    2011-08-08

    Biomimetic asymmetric nanochannels have recently attracted increasing attention from researchers, especially in the aspect of the asymmetric wettability (a hydrophilic-hydrophobic system), which can be utilized to control the wetting behavior of aqueous media and to offer a means for guiding water motion. By using molecular dynamics simulations, a design for a potentially efficient water filter is presented based on (n, n) single-walled carbon nanotubes, where n = 6, 8, 10 and 12, asymmetrically modified with hydrophilic groups (carboxyl, -COOH) at one tip and hydrophobic groups (trifluoromethyl, -CF(3) ) at the other. The reduced water density on the hydrophobic sides of the functionalized nanotubes are observed in both pure water and aqueous electrolyte solution, except for the functionalized (6, 6) tube, due to the change of dipole orientation of the single-file water wire within it. The functionalized (8, 8) tube can significantly maintain the low water density on the hydrophobic side. Both (6, 6) and (8, 8) tubes have relatively high energy barriers at their tips for ion permeation, which can be obtained by calculating the potential of mean force. Such tip functionalization of a nanotube therefore suggests the great possibilities of water transport and filtration, dominated by asymmetric wettability. The functionalized (8, 8) tube could act as a nanofluidic channel for water purification, not only for ion exclusion but also as a stable water column structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural basis of water-specific transport through the AQP1 water channel

    Science.gov (United States)

    Sui, Haixin; Han, Bong-Gyoon; Lee, John K.; Walian, Peter; Jap, Bing K.

    2001-12-01

    Water channels facilitate the rapid transport of water across cell membranes in response to osmotic gradients. These channels are believed to be involved in many physiological processes that include renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. Members of the water channel superfamily have been found in a range of cell types from bacteria to human. In mammals, there are currently 10 families of water channels, referred to as aquaporins (AQP): AQP0-AQP9. Here we report the structure of the aquaporin 1 (AQP1) water channel to 2.2Å resolution. The channel consists of three topological elements, an extracellular and a cytoplasmic vestibule connected by an extended narrow pore or selectivity filter. Within the selectivity filter, four bound waters are localized along three hydrophilic nodes, which punctuate an otherwise extremely hydrophobic pore segment. This unusual combination of a long hydrophobic pore and a minimal number of solute binding sites facilitates rapid water transport. Residues of the constriction region, in particular histidine 182, which is conserved among all known water-specific channels, are critical in establishing water specificity. Our analysis of the AQP1 pore also indicates that the transport of protons through this channel is highly energetically unfavourable.

  11. Predictive modelling of (palaeo-)subglacial lake locations and their meltwater drainage routeways

    Science.gov (United States)

    Livingstone, S. J.; Clark, C.; Tarasoff, L.; Woodward, J.

    2013-12-01

    There is increasing recognition that subglacial lakes act as key components within the ice sheet system, capable of influencing ice-sheet topography, ice volume and ice flow. At present, much glaciological research is concerned with the role of modern subglacial lake systems in Antarctica. Another approach to the exploration of subglacial lakes involves identification of the geological record of subglacial lakes that once existed beneath ice sheets of the last glaciation. Investigation of such palaeo-subglacial lakes offers significant advantages because we have comprehensive information about the bed properties, they are much more accessible and we can examine and sample the sediments with ease. However, their identification in the geological record remains controversial. We therefore present a simple diagnostic approach based on the Shreve equation, for predicting and investigating likely (palaeo-)subglacial lake locations. Data on the current topography and seafloor bathymetry, and elevation models of the ice and ground surface topography from data-calibrated glaciological modelling are used to calculate the hydraulic potential surface at the ice-sheet bed. Meltwater routing algorithms and the flooding of local hydraulic minima allow us to predict subglacial routeways and lakes respectively. Discovered subglacial lakes beneath the Antarctic Ice Sheet present an opportunity to verify the model using the BEDMAP2 dataset. Using a lake threshold of 5 km2 we identify 12,767 subglacial lakes occurring over 4% of the grounded bed and are able to recover >60% of the discovered subglacial lakes. Applying the same approach to the Greenland Ice Sheet produces 1,607 potential subglacial lakes, covering 1.3% of the bed. These lake localities will make suitable targets for radar surveys attempting to find subglacial lakes. Finally, we apply the Shreve equation to the North American Ice Sheet to try and predict likely palaeo-subglacial lake locations. Given that specific ice

  12. Molecular level water and solute transport in reverse osmosis membranes

    Science.gov (United States)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  13. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  14. Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters

    Science.gov (United States)

    1992-01-01

    Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume was measured by 45 degrees light scattering using an inverted microscope; measurement accuracy was validated by confocal imaging microscopy. The time required for greater than 90% fluid exchange was less than 1 s. In response to a decrease in perfusate osmolality from 300 to 210 mosM, cells swelled without lag at an initial rate of 4.5%/s, corresponding to a water permeability coefficient of (6.3 +/- 0.4) x 10(-3) cm/s (SE, n = 20, 23 degrees C), assuming a cell surface-to-volume ratio of 4,400 cm-1. The initial rate of cell swelling was proportional to osmotic gradient size, independent of perfusate viscosity, and increased by amphotericin B (25 micrograms/ml), and had an activation energy of 10.0 +/- 1 kcal/mol (12-39 degrees C). The compounds phloretin (20 microM) and cytochalasin B (2.5 micrograms/ml) inhibited glucose transport by greater than 85% but did not influence Pf in paired experiments in which Pf was measured before and after inhibitor addition. The mercurials HgCl2 (0.1 mM) and p-chloromercuribenzoate (1 mM) did not inhibit Pf. A stopped-flow light scattering technique was used to measure Pf independently in J774 macrophages grown in suspension culture. Pf in suspended cells was (4.4 +/- 0.3) x 10(-3) cm/s (assuming a surface-to-volume ratio of 8,800 cm-1), increased more than threefold by amphotericin B, and not inhibited by phloretin and cytochalasin B under conditions of strong inhibition of glucose transport. The glucose reflection coefficient was 0.98 +/- 0.03 as measured by induced osmosis, assuming a unity reflection coefficient for sucrose. These results

  15. Ion and water transport in charge-modified graphene nanopores

    Science.gov (United States)

    Qiu, Ying-Hua; Li, Kun; Chen, Wei-Yu; Si, Wei; Tan, Qi-Yan; Chen, Yun-Fei

    2015-10-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly influence fluid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5% and 90.2% when the nanopores are negatively and positively charged, respectively. The Cl- ion current increases and reaches a plateau, and the Na+ current decreases as the charge amount increases in systems in which Na+ ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB707601 and 2011CB707605), the National Natural Science Foundation of China (Grant No. 50925519), the Fundamental Research Funds for the Central Universities, Funding of Jiangsu Provincial Innovation Program for Graduate Education, China (Grant No. CXZZ13_0087), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ 1322).

  16. Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Boisen, A M Z; Amstrup, J; Novak, I

    2003-01-01

    While the zebrafish is commonly used for studies of developmental biology and toxicology, very little is known about their osmoregulatory physiology. The present investigation of Na(+) and Cl(-) transport revealed that the zebrafish is able to tolerate extremely low ambient ion concentrations and...... inhibitor was more variable. Differential response of Na(+) uptake to amiloride depending on acclimation medium suggests that different Na(+) transport mechanisms are employed by zebrafish acclimated to soft and hard water....... and that this is achieved at least in part by a greatly enhanced apparent uptake capacity and affinity for both ions. Zebrafish maintain plasma and whole body electrolyte concentrations similar to most other freshwater teleosts even in deionized water containing only 35 microM NaCl, i.e soft water. We recorded an extremely...... low transport affinity constant (K(m)) of 8+/-1 microM for the active uptake of Cl(-) in soft water acclimated fish, while other transport kinetic parameters were in agreement with reports for other freshwater organisms. While both Na(+) and Cl(-) uptake in soft water clearly depends on apical proton...

  17. Water Transport and the Evolution of CM Parent Bodies

    Science.gov (United States)

    Coker, R.; Cohen, B.

    2014-01-01

    Extraterrestrial water-bearing minerals are of great importance both for understanding the formation and evolution of the solar system and for supporting future human activities in space. Asteroids are the primary source of meteorites, many of which show evidence of an early heating episode and varying degrees of aqueous alteration. The origin and characterization of hydrated minerals (minerals containing H2O or OH) among both the main-belt and near-earth asteroids is important for understanding a wide range of solar system formation and evolutionary processes, as well as for planning for human exploration. Current hypotheses postulate asteroids began as mixtures of water ice and anhydrous silicates. A heating event early in solar system history was then responsible for melting the ice and driving aqueous alteration. The link between asteroids and meteorites is forged by reflectance spectra, which show 3-µm bands indicative of bound OH or H2O on the C-class asteroids, which are believed to be the parent bodies of the carbonaceous chondrites in our collections. The conditions at which aqueous alteration occurred in the parent bodies of carbonaceous chondrites are thought to be well-constrained: at 0-25 C for less than 15 Myr after asteroid formation. In previous models, many scenarios exhibit peak temperatures of the rock and co-existing liquid water in more than 75 percent of the asteroid's volume rising to 150 C and higher, due to the exothermic hydration reactions triggering a thermal runaway effect. However, even in a high porosity, water-saturated asteroid very limited liquid water flow is predicted (distances of 100's nm at most). This contradiction has yet to be resolved. Still, it may be possible for water to become liquid even in the near-surface environment, for a long enough time to drive aqueous alteration before vaporizing or freezing then subliming. Thus, we are using physics- and chemistry-based models that include thermal and fluid transport as well

  18. Estimating ship-induced sediment transport in confined waters

    Science.gov (United States)

    Ulm, Marius; Niehüser, Sebastian; Arns, Arne; Jensen, Jürgen; Kondziella, Bernhard; Uliczka, Klemens

    2017-04-01

    The maintenance of waterways is a challenging task for federal authorities. An expensive subtask is dredging and disposing of accumulated sediments. Dredging volumes are often estimated based on experience while the underlying physical transport processes causing sedimentations are not fully explored yet. For instance, in confined waterways moving ships have an influence on the turbidity by resuspending sediments which can then be transported by prevailing currents. Therefore, the German Federal Waterways Engineering and Research Institute (BAW) conducted an eight-day field campaign using a network of three probes which recorded parameters like turbidity, pressure, and flow velocities in the Kiel Canal (Schleswig-Holstein, Germany). The advantages of this canal as test site are the laboratory-like conditions with almost no natural flow and no influence of tides. Data assimilation and analysis of the field campaign have been performed at the Research Institute for Water and Environment at the University of Siegen as part of a research cooperation with the BAW to estimate the ship-induced proportion of the totally transported sediment volume in the Kiel Canal. Therefore the three high-frequency turbidity records from the canal bed were used to model the turbidity distribution in the canal cross-section. Linking the turbidity distributions with the measured flow velocities yields an estimation of the totally transported sediment volume during the field campaign. In a second step smoothing the turbidity and flow velocity time series and recalculating the estimation removes all ship influences from the transported volumes so that the difference in both volumes describes the ship-induced proportion of the totally transported sediment volume. As a result, a proportion of about 10% of the entirely transported sediments can be attributed to ship-induced resuspension. In reverse, the majority of the sediment transport originates from a slow but steady drainage flow in the

  19. Microbial life in ice and subglacial environments

    Science.gov (United States)

    Price, P. B.; Bramall, N.; Tatebe, K.

    2003-04-01

    Conditions for microbial life to exist in solid ice require the presence of liquid water and sources of energy and bioelements. In ice in thermal equilibrium, liquid water will exist in a three-dimensional network of micron-sized veins and in nanometer-thick films on mineral grains in ice. Ionic impurities lower the freezing temperature in the veins to as low as -95^oC. Depending on mineral type, the film on a grain surface will remain liquid down to ˜ -40^oC. The impurities provide both energy (via microbially catalyzed redox reactions) and bioelements. The maximum sustainable microbial population depends on metabolic rate, which in turn depends on species, temperature, and type and concentration of impurities in veins and surfaces. Microbes have been imaged by epifluorescence in veins in sea and Arctic lake ice and on grains in Dry Valleys lake ice. Indirect evidence exists for metabolism of microbes in Vostok glacial ice, in Greenland basal ice, and in Sajama (Bolivia) glacial ice. We will discuss several approaches to detection of microbes: epifluorescence microscopy of glacial ice at low temperature; fluorescence spectra taken with BSL (a new borehole logging instrument); fluorescence of microbes on surfaces of silt and volcanic ash in glacial ice; and in-situ cultivation of bacterial colonies at intersections of mineral grains and liquid veins in ice held in contact with a nutrient medium at subfreezing temperature. Based on measurements in the oligotrophic Lake Tahoe, BSL is sensitive to a concentration of ˜10^3 microbes cm-3, which may be adequate to detect life in Greenland ice and in Lake Vostok. A miniaturized version could be used to search for life in Martian permafrost and in diapirs in Europan ice.

  20. Subglacial processes revealed by the internal structure of drumlins, Stargard drumlin field, NW Poland

    Science.gov (United States)

    Hermanowski, Piotr; Piotrowski, Jan A.; Szuman-Kalita, Izabela

    2017-04-01

    Numerous studies have provided insight into processes operating under contemporary and palaeo-ice sheets. Many of these studies concerned drumlins, landforms whose formation is essential to the understanding of subglacial soft-bedded systems. Despite the interdisciplinary efforts involving sophisticated analytical and interpretative tools the "drumlin problem" remains elusive and continues to generate much controversy. In this study the geological composition of two drumlins from the Stargard drumlin field (NW Poland) in the terminal area of a major last-glacial palaeo-ice stream was examined in three excavated trenches at macro- and microscales. In each trench, sediment description and fabric analyses were conducted, and samples collected for micromorphological, AMS (anisotropy of magnetic susceptibility) and grain size measurements. Both investigated drumlins are mainly composed of macroscopically homogeneous till with minor, max. 5 cm thick sand stringers and sparse silty inclusions. Distinct features are (1) a highly deformed, up to 18-cm thick till layer with clay- and pebble-sized clasts at the top, and (2) a continuous thin intra-till clay layer. Till macro-fabric measurements reveal a very high clustering strength and low isotropy index. AMS eigenvectors V1 vary significantly, but the dominant direction is consistent with the macrofabric measurements. Most of the observed microstructures indicate ductile deformation of the till. The overall observations suggest a shallow subglacial deformation not affecting the entire till thickness at any time intervening with ice/bed separation facilitating enhanced basal sliding. The intra-till clay layer of low hydraulic conductivity contributed to elevated pore-water pressure in the sediment causing its fluidization and deformation. Intervening thin-skinned sediment deformation and basal de-coupling resulted in fast ice flow that, coupled with material release from the ice sole and its accretion at the ice

  1. Test of simultaneous synthetic DNA tracer injections for the estimation of the englacial and subglacial drainage system structure of Storglaciären, northern Sweden

    Science.gov (United States)

    Dahlke, H. E.; Leung, S.; Lyon, S. W.; Sharma, A. N.; Walter, M. T.; Williamson, A.

    2013-12-01

    Storglaciären glacier, located in the sub-arctic Tarfala catchment, in northern Sweden is one of the world's longest continuously monitored glaciers which provides a unique research platform for the long-term assessment of glacier and ice sheet processes. For example, small mountain glacier hydrological knowledge of the subglacial water distribution at the ice-bed interface has been applied to ice sheets to predict basal sliding processes. Basal sliding promoted by hydraulic jacking is an important glacial-velocity control that is dependent on the subglacial flow pathways' morphology. Thus, understanding subglacial water distribution and drainage system structure and morphology is crucial for modeling ice masses' flow. In order to estimate subglacial drainage system structure and morphology dye tracing experiments are widely employed. Tracer experiments provide quantitative parameters for any input location including tracer transit velocity, dispersivity, recovery and storage. However, spatial data coverage is limited by the finite number of tracers available for simultaneous tracing. In the presented study we test the use of synthetic DNA tracers for the assessment of the englacial and subglacial drainage system structure of Storglaciären. The synthetic DNA tracer is composed of polylactic acid (PLA) microspheres into which short strands of synthetic DNA and paramagnetic iron oxide nanoparticles are incorporated (Sharma et al., 2012, Environmental Science & Technology). Because the DNA sequences can be randomly combined the synthetic DNA tracer provides an enormous number of unique tracers (approximately 1.61 x 1060). Thus, these synthetic tracers have the advantage that multiple (>10) experiments can be conducted simultaneously, allowing a greater information gain within a shorter measurement period. Quantities of a certain DNA strand can be detected using biotechnology tools such as polymerase chain reaction (PCR) and quantitative PCR (qPCR). During the 2013

  2. Cation and water transport during maturation of cortical cataract

    Directory of Open Access Journals (Sweden)

    Khurana A

    1988-01-01

    Full Text Available Water, electrolyte and free amino acid content of the crystalline lens were estimated in patients with nuclear cataract and in immature, mature and hypermature cortical cataract groups. Wet weight/dry weight and sodium/potassium ratios were calculated. Sodium, potassium ratio was significantly higher in immature cortical cataract when compared with the nuclear cataract. With maturation of the cortical cataract, the lens was found to be more hydrated and there was accumulation of sodium. However, free amino acid content of the lens decreased. A hypothesis has been proposed for alterations in the active transport pump of the crystalline lens during the maturation of the cortical cataract.

  3. Anion Conduction in Solid Electrolytes Probed by Water Transport Measurement

    OpenAIRE

    Takahashi, Hiroki; Takeguchi, Tatsuya; Yamanaka, Toshiro; Ueda, Wataru

    2010-01-01

    The application of inorganic materials as electrolyte of alkaline fuel cell is an important task to achieve noble-metal-free and high-temperature-resistant fuel cells. In the present study, water transport during ion conduction through solid electrolyte was measured to seek inorganic materials with anion conduction. We discovered the anion conduction in layered oxide NaCo2O4. Although LiCoO2 has the similar layered structure to NaCo2O4, this oxide showed cation conduction.

  4. Hydrological balance and water transport processes of partially sealed soils

    Science.gov (United States)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  5. Effect of polymer morphology on proton and water transport through ionomeric polymers. [Perfluorosulfonic ionomer

    Energy Technology Data Exchange (ETDEWEB)

    Fales, J.L.; Springer, T.E.; Vanderborgh, N.E.; Stroeve, P.

    1985-01-01

    The rate of ionic transport through perfluorosulfonic acid membranes is set by water content within mass transfer channels of the polymer. Consequently, control of water flux is important to control transport rates. Experiments show the influence of cation type on water transport properties and on polymer physical properties. These results support the model that channel geometries are determined by the interaction of coulombic forces within the membrane. Description of these transport processes is accomplished through several mathematical routes.

  6. Fast flow of Jakobshavn Isbræ and its subglacial drainage system

    Science.gov (United States)

    Werder, M. A.; Joughin, I. R.

    2013-12-01

    Jakobshavn Isbræ and many other outlet glaciers of present and past ice sheets lie in deep troughs which often have several overdeepened sections. The subglacial drainage system of such glaciers is heavily influenced by two effects caused by the pressure dependence of the melting point of water. The melting point decreases with increasing water pressure, this enhances wall-melt in downward sloping channels and diminishes wall-melt in upward sloping channels. Thus the first effect is the well known shutdown of channels on steep adverse bed slopes of overdeepenings and the associated high water pressure/low effective pressure. The second effect is a 2D effect and has not received much/any attention so far: the orientation of a channel will be deflected from the direction of the (negative) hydraulic potential gradient (which drives the water flow) towards the steepest slope of the bed. This leads to the enhanced formation of side channels dipping into the trough at about a 45° angle. This efficient connection between the margin and the trough equalizes the hydraulic potential, again leading to higher water pressure in the trough. We investigate these two effects with the 2D subglacial drainage system model GlaDS using Jakobshavn Isbræ as an example. We compare model runs with the pressure melt term disabled and enabled. With the term disabled the main channel situated in the trough is continuous and produces a large depression in the hydraulic potential and consequently high effective pressure in the trough (1-2MPa). Conversely, with the term enabled the main channel becomes discontinuous on steep adverse bed slopes and many side channels form on the margins of the trough. This leads to a hydraulic potential in the trough which is higher than in the surrounding area and consequently the effective pressure is low (0-1MPa). Low effective pressure leads to reduced basal drag and thus to more basal sliding. The modeled large decrease of effective pressure in the trough

  7. Transport Phenomena of Water in Molecular Fluidic Channels

    Science.gov (United States)

    Vo, Truong Quoc; Kim, Bohung

    2016-09-01

    In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices.

  8. Numerical analysis of coupled water transport in wood with a focus on the coupling parameter sorption

    DEFF Research Database (Denmark)

    Hozjan, T.; Turk, G.; Rodman, U.

    2011-01-01

    This paper presents a study of sorption rate function in a so-called multi-Fickian or multi-phase model. This model describes the complex moisture transport system in wood, which consists of separate water-vapour and bound-water diffusion interacting through sorption. In the numerical example...... influence of the sorption rate function on water transport is presented. It can be seen that the sorption rate function has a noticeable influence on coupled water transport in wood....

  9. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 3. Englacial and subglacial conditions revealed by seismic reflection data on Store Glacier, West Greenland.

    Science.gov (United States)

    Hofstede, Coen; Eisen, Olaf; Young, Tun Jan; Doyle, Samuel; Hubbard, Bryn; Christoffersen, Poul; Hubbard, Alun

    2015-04-01

    Basal conditions have a profound influence on the dynamics of outlet glaciers. As part of the SAFIRE research programme, we carried out a seismic survey on Store Glacier, a tidewater glacier terminating in Uummanaq Fjord in West Greenland (see joint abstracts by Christoffersen et al. and Doyle et al. for details). At the survey site the ice moves 700m/a making the terrain crevassed and bumpy. Despite the rough terrain we collected two 1.5 km long survey lines parallel and perpendicular to the ice flow direction using a 300m snow streamer and explosives as a source. The seismic data reveal an ice thickness of about 620m and 20 to 30m of subglacial sediment on the upstream side of the area thinning in the downstream direction. From polarity reversals seen along the ice-bed contact we speculate that the sediments have varying degrees of water content. The ice itself has several englacial reflections parallel and close to the bed. At approximately 475m depth, a clear single englacial reflection is observed in the parallel survey line. Thermistor data installed at this location show a clear increase in ice temperature starting at this depth. We speculate that the observed englacial reflection is caused by a change in crystal orientation fabric allowing greater ice deformation below this depth causing increased strain heating.

  10. Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland

    Directory of Open Access Journals (Sweden)

    A. D. Booth

    2012-08-01

    Full Text Available Seismic amplitude-versus-angle (AVA methods are a powerful means of quantifying the physical properties of subglacial material, but serious interpretative errors can arise when AVA is measured over a thinly-layered substrate. A substrate layer with a thickness less than 1/4 of the seismic wavelength, λ, is considered "thin", and reflections from its bounding interfaces superpose and appear in seismic data as a single reflection event. AVA interpretation of subglacial till can be vulnerable to such thin-layer effects, since a lodged (non-deforming till can be overlain by a thin (metre-scale cap of dilatant (deforming till. We assess the potential for misinterpretation by simulating seismic data for a stratified subglacial till unit, with an upper dilatant layer between 0.1–5.0 m thick (λ / 120 to > λ / 4, with λ = 12 m. For dilatant layers less than λ / 6 thick, conventional AVA analysis yields acoustic impedance and Poisson's ratio that indicate contradictory water saturation. A thin-layer interpretation strategy is proposed, that accurately characterises the model properties of the till unit. The method is applied to example seismic AVA data from Russell Glacier, West Greenland, in which characteristics of thin-layer responses are evident. A subglacial till deposit is interpreted, having lodged till (acoustic impedance = 4.26±0.59 × 106 kg m−2 s−1 underlying a water-saturated dilatant till layer (thickness < 2 m, Poisson's ratio ~ 0.5. Since thin-layer considerations offer a greater degree of complexity in an AVA interpretation, and potentially avoid misinterpretations, they are a valuable aspect of quantitative seismic analysis, particularly for characterising till units.

  11. Potential risk of microplastics transportation into ground water

    Science.gov (United States)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (pmicroplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (pmicroplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  12. Measurements and simulations of water transport in maize plants

    Science.gov (United States)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  13. Dynamic simulation of multicomponent reaction transport in water distribution systems.

    Science.gov (United States)

    Munavalli, G R; Mohan Kumar, M S M S

    2004-04-01

    Given the presence of nutrients, regrowth of bacteria within a distribution system is possible. The bacterial growth phenomena, which can be studied by developing a multicomponent (substrate, biomass and disinfectant) reaction transport model, is governed by its relationship with the substrate (organic carbon) and disinfectant (chlorine). The multicomponent reaction transport model developed in the present study utilizes the simplified expressions for the basic processes (in bulk flow and at pipe wall) such as bacterial growth and decay, attachment to and detachment from the surface, substrate utilization and disinfectant action involved in the model. The usefulness of the model is further enhanced by the incorporation of an expression for bulk reaction parameter relating it with the organic carbon. The model is validated and applied to study the sensitive behavior of the components using a hypothetical network. The developed model is able to simulate the biodegradable organic carbon threshold in accordance with the values reported in the literature. The spread of contaminant intruded into the system at any location can also be simulated by the model. The multicomponent model developed is useful for water supply authorities in identifying the locations with high substrate concentrations, bacterial growth and lower chlorine residuals.

  14. How Does Leaf Anatomy Influence Water Transport outside the Xylem?

    Science.gov (United States)

    Buckley, Thomas N; John, Grace P; Scoffoni, Christine; Sack, Lawren

    2015-08-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Science.gov (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  16. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    Science.gov (United States)

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  17. Studying Drinking Water Quality and its Change During Transportation through Samara Water-Supply Facilities

    Science.gov (United States)

    Kichigin, V. I.; Egorova, Y. A.; Nesterenko, O. I.

    2017-11-01

    The paper investigates changes in water physico-chemical composition and its physical indicators through ζ-potential in residential buildings in eight administrative districts of Samara. The results are processed by the methods of mathematical statistics and presented at the 0.05 level of importance. The sampling points for water in the city districts were chosen with the aid of random numbers tables. It was determined that the quality of drinking water was stable and consistent with the existing standards in Zheleznodorozhniy, Samarskiy, Leninskiy, Octyabrskiy, Kirovsliy, Sovetskiy and Promyshlenniy districts of Samara. The following indicators were taken into account: pH, colour, turbidity, alkalinity, general rigidity, content of ions Ca2 +, Mg2 +. It was also established that drinking water in Kuibyshevskiy district (with all other excellent indicators) had increased mineralization due to the natural hydrological conditions of the water inlet. Some change in the size of zeta-potential of the water was detected during its transportation through the existing water-supplying networks of the city. It was shown that the link between zeta-potential and various kinds of contamination in drinking water is underexplored and requires further detailed study.

  18. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  19. Detrital zircons - the unique source of information on tectonics, paleogeography and denudation processes of East Antarctica (subglacial challenge)

    Science.gov (United States)

    Belyatsky, Boris; Leitchenkov, German; Rodionov, Nickolay; Antonov, Anton; Sergeev, Sergey; Savva, Helen

    2010-05-01

    composition of hafnium in detrital zircons from two moraine samples was studied using SIMS CAMECA-4f and laser device coupled with HR-MC-ICPMS. Distribution of trace elements allows us to suggest that 70-85% zircons have been crystallized from magma of intermediate-silicic composition with temperature of crystallization of 700-800° C (65% SiO2) and about 10-15% - from low-temperature water-saturated granitoid melts. Only 5-7% zircons are formed as a result of metamorphic processes. Four zircon grains from metasandstone (Fisher Massive) have specific distribution of trace elements which are typical to high-temperature (up to 950° C) magmas of alkaline or mafic affinity. Hf isotope signatures show according to two-step evolution model that zircons from metasandstone of Fisher Massive were formed in crust protoliths of 1400-2200 m.y. old, whereas zircons from sandstone of Meridith Massive - in protolith of 1400-1600 m.y. and 3000-3400 m.y. old. Generally, Hf isotope composition of studied zircons corresponds to composition of chondrite unfractionated reservoir (CHUR). The first opportunity to obtain direct information about the bedrock geology of the central East Antarctic arose when the 3650 m deep borehole at the Vostok station, located in the southern part of Lake Vostok (largest subglacial freshwater lake in Antarctica) recovered the basal layer of the ice sheet. We studied a small (4.7 mm long) clast of siltstone extracted from the 3607 m depth ice core of the Vostok Station Borehole. This clast was entrapped from bottom sediments in the shallow area of the lake and incorporated into the accreted ice. Siltstone consists of poorly-rounded quartz and a minor amount of accessories including zircon and monazite. We infer that the bedrock upstream (northwest) of Lake Vostok from where the siltstone clast was scraped off bedrock by ice and transported to the lake is of sedimentary nature. 23 zircon and 5 monazite grains in the siltstone clast have yielded two age clusters

  20. A Laboratory Investigation of the Effects of Subglacial Meltwater Plumes on Submarine Ablation at the Fronts of Tidewater Glaciers

    Science.gov (United States)

    Kerr, R. C.; McConnochie, C. D.

    2016-12-01

    We investigate experimentally the effect of a basal freshwater source on the ablation of a vertical ice wall in salty water. We measure as a function of height the turbulent wall plume velocity, the ablation velocity of the ice, and the temperature at the ice wall. By systematically varying the volume flow rate of the freshwater source, we determine where the turbulent wall plume transitions from a free convection regime (controlled by the distributed buoyancy flux due to dissolution of the ice) to a forced convection regime (controlled by the buoyancy flux Bs of the basal freshwater source). In the forced convection regime, we find that the turbulent plume velocity is uniform with height and is proportional to Bs1/3, the interface temperature is independent of Bs, and the ablation velocity increases with Bs. In the two convection regimes, we find that there are fundamental differences in the wall turbulent plume, the turbulent entrainment coefficient, and the detrainment from the turbulent plume at the top of the wall. Lateral variations in subglacial discharge rates can enable these regimes to occur simultaneously along the front of a tidewater glacier, which will result in subglacial meltwater and submarine meltwater being seen at differing depths in the Greenland fjords.

  1. Testing the influence of subglacial erosion on the long-term evolution and stability of continental ice sheets using numerical modelling

    Science.gov (United States)

    Swift, D. A.; Egholm, D. L.; Brædstrup, C. F.; Cook, S.; Livingstone, S. J.; Clark, C.; Patton, H.; Ely, J.

    2013-12-01

    Focussed erosion beneath continental ice sheets promotes efficient evacuation of ice along fast-flowing marine outlet glacier systems. Theory indicates that bed profiles should tend toward uniformly overdeepened geometries that will reduce ice sheet stability because (a) grounding lines situated on negative slopes are vulnerable to catastrophic retreat and (b) grounding-line stability is sensitive to ice velocity, meaning grounding lines should become unstable as overdeepening causes subglacial water pressures and basal sediment thickness and continuity to increase. This suggests a conceptual model of ice-bed evolution in which ice sheets are self-destructive, because bed erosion reduces equilibrium ice sheet volume and extent. However, many outlet glacier and ice stream systems possess complex bed topographies, raising questions about the nature of subglacial landscape evolution that have major implications for our understanding of ice sheet evolution and stability. For example, a contrasting model of ice-bed evolution in which strong ice-erosion feedbacks produce multiple overdeepenings might enhance ice sheet stability, because numerous bed undulations should resist fast ice flow and impede grounding line retreat. We therefore explore the possible glaciological significance of contrasting models of subglacial landscape evolution using a higher-order ice sheet model (iSOSIA) and assess the implications for the evolution and stability of continental ice sheets. The results will also aid understanding of contemporary ice sheet stability and identify weaknesses in process understanding that will aid further development of ice-erosion models.

  2. FEATURES OF TRANSPORT OF CERTAIN ELEMENTS IN WATER NORTH CASPIAN

    Directory of Open Access Journals (Sweden)

    E. V. Chujko

    2013-01-01

    Full Text Available Major influence on the form of migration of trace elements in the North Caspian has Volga runoff. The bulk of the elements in the Volga waters carried in the suspended solids. The exception is zinc, transports mainly in dissolved form.In article presents the results of a study of dissolved and suspended forms of zinc, copper, lead, and manganese in the surface water of the North Caspian Sea from 2002 to 2009. On the basis of the received data the ratio of dissolved and suspended forms of trace elements studied. According to calculations, the bulk of the copper, lead and manganese is carried in the suspended solids. Zinc migrates mainly in dissolved form. The dominant form of migration of the metal increases, depending on the season. For zinc, the migrant in the ionic state, and for copper, lead, manganese, transferring primarily in suspension, in the autumn period the increase in the proportion of dissolved (Zn and suspended forms (Cu, Pb, Mn, respectively. Increase in the proportion of ionic forms of metals in the North Caspian occurred episodically in local areas. Over the entire study period the greatest number of excess dissolved form of weighted metal observed in the central part of the shallow zone predustevogo space p. Volga near the exit of the Kirov and Belinsky channels.

  3. Predicting subglacial lakes and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets

    Science.gov (United States)

    Livingstone, S. J.; Clark, C. D.; Woodward, J.

    2013-03-01

    In this paper we use the Shreve hydraulic potential equation to predict subglacial lakes and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. For the Antarctic Ice Sheet we are able to predict known subglacial lakes with a >70% success rate, which demonstrates the validity of this method. Despite the success in predicting known subglacial lakes the calculations produce two-orders of magnitude more lakes than are presently identified, covering 4% of the ice-sheet bed. The difference is thought to result from our poor knowledge of the bed (which has resulted in artefacts associated with the interpolation method), intrinsic errors associated with the simplified modelling approach and because thousands of subglacial lakes, particularly smaller ones, remain to be found. Applying the same modelling approach to the Greenland Ice Sheet predicts only 90 lakes under the present-day ice-sheet configuration, covering 0.2% of the bed. The paucity of subglacial lakes in Greenland is thought to be a function of steeper overall ice-surface gradients. As no lakes have currently been located under Greenland, model predictions will make suitable targets for radar surveys of Greenland to identify subglacial lakes. During deglaciation from the Last Glacial Maximum both ice sheets had more subglacial lakes at their beds, though many of these lakes have persisted to present conditions. These lakes, inherited from past ice-sheet configurations would not form under current surface conditions, suggesting a retreating ice-sheet will have many more subglacial lakes than an advancing ice sheet. This hysteresis effect has implications for ice-stream formation and flow, bed lubrication and meltwater drainage. The lake model also allows modelling of the drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Significantly, key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are shown to have

  4. Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets

    Science.gov (United States)

    Livingstone, S. J.; Clark, C. D.; Woodward, J.; Kingslake, J.

    2013-11-01

    We use the Shreve hydraulic potential equation as a simplified approach to investigate potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. We validate the method by demonstrating its ability to recall the locations of >60% of the known subglacial lakes beneath the Antarctic Ice Sheet. This is despite uncertainty in the ice-sheet bed elevation and our simplified modelling approach. However, we predict many more lakes than are observed. Hence we suggest that thousands of subglacial lakes remain to be found. Applying our technique to the Greenland Ice Sheet, where very few subglacial lakes have so far been observed, recalls 1607 potential lake locations, covering 1.2% of the bed. Our results will therefore provide suitable targets for geophysical surveys aimed at identifying lakes beneath Greenland. We also apply the technique to modelled past ice-sheet configurations and find that during deglaciation both ice sheets likely had more subglacial lakes at their beds. These lakes, inherited from past ice-sheet configurations, would not form under current surface conditions, but are able to persist, suggesting a retreating ice-sheet will have many more subglacial lakes than advancing ones. We also investigate subglacial drainage pathways of the present-day and former Greenland and Antarctic ice sheets. Key sectors of the ice sheets, such as the Siple Coast (Antarctica) and NE Greenland Ice Stream system, are suggested to have been susceptible to subglacial drainage switching. We discuss how our results impact our understanding of meltwater drainage, basal lubrication and ice-stream formation.

  5. Reconstruction of a Palaeo-Subglacial Lake Network in Alberta, Canada

    Science.gov (United States)

    Livingstone, S. J.; Utting, D.; Clark, C.; Ruffell, A.; Pawley, S. M.; Atkinson, N.; Mallon, G.

    2014-12-01

    Subglacial lakes have been widely documented since first being identified beneath the Antarctic Ice Sheet in the 1960s and comprise a significant component of the subglacial hydrological system (Wright & Siegert, 2011). However, their investigation is largely limited to contemporary ice masses despite critical information that could be gleaned from palaeo-subglacial lake studies, including: (i) their influence on meltwater drainage, ice flow and ice streams; (ii) details about how they relate to palaeo-floods, ice dynamics and sub-Milankovitch-scale climate events; and (iii) as archives of long-term Quaternary climate change. They are also readily available, we can sample the sediments and maps the landforms with ease and we have comprehensive information on the lake-bed properties. Output from numerical ice sheet models and the simple Shreve equation approach has been used to diagnose where subglacial lakes are likely to have occurred in the geological record (Livingstone et al. 2013). However, their identification remains controversial due to the difficulty in distinguishing their signature from proglacial lake deposits (see Livingstone et al. 2012). Here, we present new geomorphological, geophysical and sedimentological evidence for the existence of a palaeo-subglacial lake network beneath the suture zone of the former Cordilleran and Laurentide ice sheets. These relatively small (~1 km diameter) palaeo-subglacial lakes manifest as flat-spots in a drumlin field and are perched in upland areas behind small ridges. The flat-spots, which comprise basins in-filled with diamicton, are associated with subglacial meltwater channels and eskers that we interpret to document lake drainage events. References: Livingstone, S.J., et al., 2012. Quaternary Science Reviews,55, 88-110. Livingstone, S.J., et al., 2013. Earth and Planetary Science Letters, 375, 13-33. Wright A.P., Siegert M.J. 2011. In: Siegert, M.J., Kennicutt, C., Bindschadler, B. (Eds.). Subglacial Antarctic

  6. Does water content or flow rate control colloid transport in unsaturated porous media?

    Science.gov (United States)

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  7. Evaluating the hydrostatic equilibrium of the subglacial Lake Vostok, Antarctica, using a precise regional geoid model

    Science.gov (United States)

    Schwabe, Joachim; Ewert, Heiko; Scheinert, Mirko; Dietrich, Reinhard

    2014-05-01

    We present a study on the determination and application of a precise geoid model for the region of the subglacial Lake Vostok, Antarctica. The geoid model is derived by combining a global satellite-only geopotential model mainly based on GOCE data with dense airborne gravity data and topographic information. Ice-thickness data and lake water depths are used for a residual terrain modelling (RTM) in a remove-restore approach. In that context, special focus is given to the correct treatment of the ice sheet when computing the residual terrain effects. The use of the refined regional geoid model for glaciological and geophysical applications is exemplarily demonstrated by means of the hydrostatic equilibrium surface (HE) of the lake. It was found that the mean quadratic residual geoid signal is about two times larger than the estimated deviations of the HE surface. Thus, the significance of the refined geoid solution is proven. In this context, a comparison with the strictly computed geopotential shows that the estimated apparent lake level may be expressed as a constant metric bias w.r.t. to the quasigeoid. Furthermore, the HE condition is used to derive an adjusted estimate of the lake water density. However, in this case the theoretical latitudinal trend of the equilibrium surface needs to be taken into account. Finally, the (hypothetical) deviations from the HE state at and around the shoreline of the lake indicate candidate outflow locations in case of a possible depletion event.

  8. A computerized coal-water slurry transportation model

    Energy Technology Data Exchange (ETDEWEB)

    Ljubicic, B.R.; Trostad, B. [Univ. of North Dakota, Grand Forks, ND (United States); Bukurov, Z.; Cvijanovic, P. [Univ. of Novi Sad (Yugoslavia)

    1995-12-01

    Coal-water fuel (CWF) technology has been developed to the point where full-scale commercialization is just a matter of gaining sufficient market confidence in the price stability of alternate fossil fuels. In order to generalize alternative fuel cost estimates for the desired combinations of processing and/or transportation, a great deal of flexibility is required owing to the understood lack of precision in many of the newly emerging coal technologies. Previously, decisions regarding the sequential and spatial arrangement of the various process steps were made strictly on the basis of experience, simplified analysis, and intuition. Over the last decade, computer modeling has progressed from empirically based correlation to that of intricate mechanistic analysis. Nomograms, charts, tables, and many simple rules of thumb have been made obsolete by the availability of complex computer models. Given the ability to view results graphically in real or near real time, the engineer can immediately verify, from a practical standpoint, whether the initial assumptions and inputs were indeed valid. If the feasibility of a project is being determined in the context of a lack of specific data, the ability to provide a dynamic software-based solution is crucial. Furthermore, the resulting model can be used to establish preliminary operating procedures, test control logic, and train plant/process operators. Presented in this paper is a computerized model capable of estimating the delivered cost of CWF. The model uses coal-specific values, process and transport requirements, terrain factors, and input costs to determine the final operating configuration, bill of materials, and, ultimately, the capital, operating, and unit costs.

  9. Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Science.gov (United States)

    Jackson, R. H.; Shroyer, E. L.; Nash, J. D.; Sutherland, D. A.; Carroll, D.; Fried, M. J.; Catania, G. A.; Bartholomaus, T. C.; Stearns, L. A.

    2017-07-01

    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near-glacier measurements. Here we present a high-resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3-D structure and transport of a near-surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean-glacier models. Instead, the observations suggest a wider upwelling plume—a "truncated" line plume of ˜200 m width—with higher entrainment and plume-driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.

  10. Transport of thermal water from well to thermal baths

    Science.gov (United States)

    Montegrossi, Giordano; Vaselli, Orlando; Tassi, Franco; Nocentini, Matteo; Liccioli, Caterina; Nisi, Barbara

    2013-04-01

    The main problem in building a thermal bath is having a hot spring or a thermal well located in an appropriate position for customer access; since Roman age, thermal baths were distributed in the whole empire and often road and cities were built all around afterwards. Nowadays, the perspectives are changed and occasionally the thermal resource is required to be transported with a pipeline system from the main source to the spa. Nevertheless, the geothermal fluid may show problems of corrosion and scaling during transport. In the Ambra valley, central Italy, a geothermal well has recently been drilled and it discharges a Ca(Mg)-SO4, CO2-rich water at the temperature of 41 °C, that could be used for supplying a new spa in the surrounding areas of the well itself. The main problem is that the producing well is located in a forest tree ca. 4 km far away from the nearest structure suitable to host the thermal bath. In this study, we illustrate the pipeline design from the producing well to the spa, constraining the physical and geochemical parameters to reduce scaling and corrosion phenomena. The starting point is the thermal well that has a flow rate ranging from 22 up to 25 L/sec. The thermal fluid is heavily precipitating calcite (50-100 ton/month) due to the calcite-CO2 equilibrium in the reservoir, where a partial pressure of 11 bar of CO2 is present. One of the most vexing problems in investigating scaling processed during the fluid transport in the pipeline is that there is not a proper software package for multiphase fluid flow in pipes characterized by such a complex chemistry. As a consequence, we used a modified TOUGHREACT with Pitzer database, arranged to use Darcy-Weisbach equation, and applying "fictitious" material properties in order to give the proper y- z- velocity profile in comparison to the analytical solution for laminar fluid flow in pipes. This investigation gave as a result the lowest CO2 partial pressure to be kept in the pipeline (nearly 2

  11. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  12. Review on the development of unidirectional water-transport fibers and fabrics

    Directory of Open Access Journals (Sweden)

    Yaqian XIAO

    2017-08-01

    Full Text Available Unidirectional water-transport fabric is a kind of functional fiber assembles used to realize unidirectional conduction of liquid water, and it could be used for the design and development of clothing with the function of thermal-wet comfort. The development of unidirectional water-transport fabrics from the mechanism of the unidirectional water-transport, selection of fiber and preparation method is summarized. Five key methods to achieve the unidirectional water-transport effect have been reviewed, including the designing of fabric structure, chemical finishing, plasma treatment, electro spinning and photocatalytic treatment. According to the current problems in the research on unidirectional water-transfer fabric, it is proposed that multi-functional unidirectional water-transfer fabrics should be developed by post-treatment finishing technology with adding special functional additives to expand the practical applications.

  13. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...

  14. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Science.gov (United States)

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  15. A reassessment of the englacial and subglacial drainage system of Storglaciären in northern Sweden - How much did climate warming change the drainage system?

    Science.gov (United States)

    Dahlke, H. E.; Rosqvist, G. N.; Jansson, P.; Lyon, S. W.

    2012-12-01

    Storglaciären glacier, located in the sub-arctic Tarfala catchment, in northern Sweden is one of the world's longest continuously monitored glaciers which provides a unique research platform for the long-term assessment of climate change impacts on mountain glacier systems. In the presented study we assess signals of climate-induced change in the englacial and subglacial drainage system of the lower ablation area of Storglaciären. Flow velocities and dispersive characteristics of the englacial and subglacial hydraulic system were re-investigated in the 2012 summer melt season using fluorescent dye-tracing tests and compared to previous assessments of from the 1980s and 1990s. Historical hydro-climatic records from Tarfala catchment indicate that there have been significant increases in the cold season air temperature (0.76 °C/decade, 1965-2009) and a doubling of summer event precipitation over the past four decades. These changes contributed to the consistently negative glacier net balance of Storglaciären and significant positive trends in both the mean summer discharge and flood magnitudes over the past 45 years. Six of the eight largest annual maximum flood events occurred during the last decade and meltwater contributions from Storglaciären to the Tarfalajokken stream increased by 15% during the same period. These hydro-climatic trends in conjunction with an isotopic hydrograph separation of present-day samplings indicate that high magnitude rainfall events receive an increasing role in the runoff generation in Tarfala catchment and the glacier systems. This shift towards a greater rainwater contribution to catchment streamflow and glacier runoff indicates fundamental changes in the pathways that water takes through the glacier. The isotopic data suggests that the transit of rainwater via the englacial drainage system is increasing. However, in contrast to the 1980s assessment, dye-tracing tests conducted in 2012 indicate that the majority of meltwater

  16. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, David J. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [American Association for the Advancemetn of Science (AAAS), Washington, DC (United States)

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  17. Transport and Fate of Nitrate at the Ground Water-Surface Water Interface

    Science.gov (United States)

    Puckett, L. J.; Essaid, H. I.; Zamora, C.; Wilson, J. T.; Johnson, H. M.; Vogel, J. R.

    2006-05-01

    We investigated the transport and fate of nitrate within the ground water-surface water interface of 5 agriculturally dominated streams across the United States in Maryland, Indiana, Nebraska, California, and Washington. Water samples were collected from the streambed at depths ranging from 0.3 to 3 m, in 2-5 transects along the stream, and at 3-5 points across each transect. At 2 transects samples were collected on 3-4 occasions and analyzed for field parameters, major ions, nutrients, dissolved gases, nitrogen and oxygen isotopes, organic carbon, and CFC and SF6 age-dating tracers. Water levels were monitored continuously at each of the 5 sites in up to eight locations, and at one location temperature, pH, dissolved oxygen, and specific conductance were monitored continuously. A smaller set of measurements were made at all sampling points and transects during one high-flow and one low-flow period; potentiometric heads were measured at all sampling points at the time samples were collected. Nitrate concentrations varied widely at most sites, ranging from below detection to greater than 2.5 mM/L. Ground water discharging to the ground water-surface water interface was totally denitrified at the Indiana site, partially denitrified at the California, Nebraska, and Washington sites, and not denitrified at the Maryland site. Redox state was highly variable within and among sites, with oxygen reduction, denitrification, and Fe and Mn oxide reduction indicated at most sites; Fe reduction was predominant at the Indiana site. Only minor amounts of electron donors such as pyrite were detected in sediment samples from the 5 sites, suggesting that organic carbon was the primary electron donor for denitrification. Mean velocities through the streambed ranged from 0 m per day in California to 1.9 m per day in Nebraska. These velocities translate into mean residence times of 0.5 to 29.7 days in the upper 1 m of the streambed. Sites having longer residence times provide greater

  18. Mesoscopic modeling of liquid water transport in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Wang, Chao Yang [PENNSTATE UNIV.

    2008-01-01

    A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water leads to the coverage of the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blockage of the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL therefore playa major role in the mass transport loss and hence in the water management of a PEFC. In this article, we present the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation to study the profound influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer.

  19. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    Science.gov (United States)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  20. Subglacial bedforms and conditions associated with the 1991 surge of Skeidarárjökull, Iceland

    NARCIS (Netherlands)

    Waller, R.I.; Dijk, T. van; Knudson, O.

    2008-01-01

    Much previous research at surge-type glaciers has sought to identify features diagnostic of surge-type behaviour. However, in comparatively little work have subglacial landform-sediment characteristics been used to reconstruct changing basal processes and conditions during surge events. Subglacial

  1. The impacts of water stress on phloem transport in Douglas-fir trees

    Science.gov (United States)

    David Woodruff

    2014-01-01

    Despite the critical role that phloem plays in a number of plant functional processes and the potential impact of water stress on phloem structural and phloem sap compositional characteristics, little research has been done to examine how water stress influences phloem transport. The objectives of this study were to develop a more accurate understanding of how water...

  2. Water flow and pesticide transport in cultivated sandy soils : experimental data on complications

    NARCIS (Netherlands)

    Leistra, M.; Boesten, J.J.T.I.

    2010-01-01

    The risk of leaching of agricultural pesticides from soil to groundwater and water courses has to be evaluated. Complications in water flow and pesticide transport in humic-sandy and loamy-sandy soil profiles can be expected to increase the risk of leaching. Much of the precipitation water is

  3. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  4. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  5. Water Sorption and Transport in Dry, Crispy Bread Crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, N.H. van; Tromp, R.H.; Hamer, R.J.; Vliet, T. van

    2010-01-01

    Water - sorption and dynamic properties of bread crust have been studied in gravimetric sorption experiments. Water uptake and loss were measured while relative humidity (RH) was stepwise increased or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  6. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  7. Nebraska Department of Transportation - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against the Nebraska Department of Transportation, a state agency located at 1500 Highway 2, Lincoln, NE 68509, for alleged violations of its municipal separate stormwater sewer sy

  8. Iowa Department of Transportation. - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Iowa Department of Transportation, a state agency with its primary office located at 800 Lincoln Way, Ames, IA 50010, for alleged violations at two roadway construction pro

  9. Water transport through tomato roots infected with Meloidogyne incognita.

    NARCIS (Netherlands)

    Dorhout, R.; Gommers, F.J.; Kollöffel, C.

    1991-01-01


    The effect of Meloidogyne incognita on water flow in tomato roots was investigated in rooted split-stem cuttings. Total water flow through infected root parts was significantly lower than through comparable uninfected parts. Total water uptake was correlated with total length of the root

  10. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol

  11. Flow and transport in water repellent sandy soils

    NARCIS (Netherlands)

    Ritsema, C.J.

    1998-01-01

    Water repellency in soils is currently receiving increasing attention from scientists and policy makers, due to the adverse and sometimes devastating effects of soil water repellency on environmental quality and agricultural crop production. Soil water repellency often leads to severe

  12. Osmotic-driven mass transport of water: impact on the adhesiveness of hydrophilic polymers.

    Science.gov (United States)

    Borde, Annika; Bergstrand, Anna; Gunnarsson, Cecilia; Larsson, Anette

    2010-01-15

    Adhesion is an important property for the functionality of many medical devices. One reason for the development of adhesive forces is dehydration caused by mass transport of water. Osmotic pressure is one main driving force for mass transport and the correlation between osmotic pressure and adhesive force has not been studied yet, which was the aim of the present study. A model system was used where a Carbopol tablet was lowered onto a 1% (w/w) agarose gel. The force required to detach the tablet (adhesive force) and the weight gain of the tablet (as a measure of transported water) were determined. Sodium chloride and mannitol were added to the agarose gel to decrease the osmotic pressure difference between the agarose gel and the partially hydrated Carbopol tablet. This resulted in a decrease of both mass transport and adhesive force. In addition, experiments with restricted water transport within the agarose gel were performed by preparing gels with different agarose concentrations. An increase of the agarose concentration resulted in decreased water transport and higher adhesive forces. Hence, the results confirmed our hypothesis that osmotic-driven mass transport and restricted mass transport of water correlate very well with the adhesive force.

  13. Temperature-dependent transport mechanisms through PE-CVD coatings: comparison of oxygen and water vapour

    Science.gov (United States)

    Kirchheim, D.; Wilski, S.; Jaritz, M.; Mitschker, F.; Gebhard, M.; Brochhagen, M.; Böke, M.; Benedikt, Jan; Awakowicz, P.; Devi, A.; Hopmann, Ch; Dahlmann, R.

    2017-10-01

    When it comes to thin coatings such as plasma-enhanced chemical vapour deposition or plasma-enhanced atomic layer deposition coatings on substrates of polymeric material, existing models often describe transport through these thin coatings as mainly driven by transport through defects of different sizes. However, temperature-dependent measurements of permeation could not confirm this hypothesis and instead gaseous transport through these thin coatings was found to more likely to occur through the molecular structure. This paper correlates existing transport models with data from oxygen transmission experiments and puts recent investigations for water vapour transmission mechanisms into context for a better understanding of gaseous transport through thin coatings.

  14. Risk assessment of pesticide transport with water erosion: A conceptual model

    Science.gov (United States)

    Yang, Xiaomei; Van Der Zee, Sjoerd E. A. T. M.; Gai, Lingtong; Wesseling, Jan G.; Ritsema, Coen J.; Geissen, Violette

    2017-04-01

    Pesticides are widely used in agriculture, horticulture, and forestry, and pesticide pollution has become an important issue worldwide. Entraining in runoff and being attached to eroded soil particles, posing a risk to water and soil quality and human health. In order to assess the risk of pesticide during water erosion processes, a simple integrative model of pesticide transport by runoff and erosion was developed. Taking soil hydrological and pesticide behaviour into account, such as water infiltration, erosion, runoff, and pesticide transport and degradation in soil, the conceptual framework was based on the known assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. A sensitivity analysis was conducted and the results indicated that the total amount of pesticide related to soil eroded by water washing increased with slope gradient, rainfall intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became obviously and the time from pesticide sprayed to erosion occurring associated with pesticide degradation negatively influenced the total amount of transported pesticide. The mechanisms involved in pesticide transport, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, thus can be well accounted for pesticide risk assessment especially in the region with intensive pesticide use and soil water erosion events.

  15. Water as a transport medium for waste out of towns

    DEFF Research Database (Denmark)

    Harremoës, P.

    1999-01-01

    The historical background for centralised water management in the cities of the developed world is outlined in order to give the rationale for the technical solutions we have inherited from the last century. The key element is maintaining the hygienic conditions in the cities. The success...... is illustrated by the absence of water-borne diseases in the modem developed city. A new paradigm is introduced based on added concern for the use of resources, pollution of the environment and the concern for the welfare of the coming generations. The water resource is not the unsustainable aspect of urban...... water use, because water is not lost, but polluted, which can be abated. Water can be re-routed and recycled. There are many attractive local solutions for better handling of urban water. (C) 1999 IAWQ Published by Elsevier Science Ltd.-All rights reserved....

  16. Field-scale water flow and solute transport : SWAP model concepts, parameter estimation and case studies = [Waterstroming en transport van opgeloste stoffen op veldschaal

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale

  17. Ultrafast, Unimpeded Liquid Water Transport Through Graphene-Based Nanochannels Measured by Isotope Labelling

    CERN Document Server

    Sun, Pengzhan; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    Graphene-based laminates, with ultralong and tortuous nanocapillaries formed by simply stacking graphene flakes together, have great promises in filtration and separation. However, the information on liquid water trans-membrane permeation is lacking, which is the most fundamental problem and of crucial importance in solution-based mass transport. Here, based on isotope labelling, we investigate the liquid water transportation through graphene-based nanocapillaries under no external hydrostatic pressures. Liquid water can afford an unimpeded permeation through graphene-based nanochannels with a diffusion coefficient 4~5 orders of magnitude larger than through sub-micrometer-sized polymeric channels. When dissolving ions in sources, the diffusion coefficient of ions through graphene channels lies in the same order of magnitude as water, while the ion diffusion is faster than water, indicating that the ions are mainly transported by fast water flows and the delicate interactions between ions and nanocapillary wa...

  18. Long-term subglacial sliding patterns based on a sliding law with cavitation

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.

    In ice-sheet models and glacial landscape evolution models, subglacial sliding rates are often related to basal shear stress by a power-law. However, the power-law relationship implies that the subglacial bed can provide unlimited levels of basal drag as sliding rates increases, which is recogniz...... of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Egholm et al. Modeling the flow of glaciers in steep terrains: The integrated second-order shallow ice approximation (iSOSIA). Journal of Geophysical Research, 116, F02012 (2011)....

  19. Feedbacks between subglacial dynamics and long-term glacial landscape evolution

    DEFF Research Database (Denmark)

    Brædstrup, Christian; Egholm, D.L.; Ugelvig, Sofie Vej

    computational experiments with a higher-order ice sheet model (Egholm et al., 2009) capable of simulating the long-term evolution of subglacial dynamics at a high spatial resolution. The orientation and magnitude of subglacial stress components depend not only on ice thickness and ice surface gradients...... associated to the level of cavitation (Iverson, 2012). The highly non-linear computational experiments are made possible by new and very efficient GPU-accelerated multigrid algorithms. The computational experiments show that higher-order stress effects associated with local changes to the bed gradient...

  20. Quasi-100 ky glacial-interglacial cycles triggered by subglacial burial carbon release

    Directory of Open Access Journals (Sweden)

    N. Zeng

    2007-01-01

    Full Text Available A mechanism is proposed in which climate, carbon cycle and icesheets interact with each other to produce a feedback that can lead to quasi-100 ky glacial-interglacial cycles. A central process is the burial and preservation of organic carbon by icesheets which contributes to the observed glacial-interglacial CO2 change (the glacial burial hypothesis, Zeng, 2003. Allowing carbon cycle to interact with physical climate, here I further hypothesize that deglaciation can be triggered by the ejection of glacial burial carbon when a major icesheet grows to sufficiently large size after a prolonged glaciation so that subglacial transport becomes significant. Glacial inception may be initiated by CO2 drawdown due to a relaxation from a high but transient interglacial CO2 value as the land-originated CO2 invades into deep ocean via thermohaline circulation and CaCO3 compensation. Also important for glacial inception may be the CO2 uptake by vegetation and soil regrowth in the previously ice-covered regions. When tested in a fully coupled Earth system model with comprehensive carbon cycle components and semi-empirical physical climate components, it produced under certain parameter regimes self-sustaining glacial-interglacial cycles with durations of 93 ky, CO2 changes of 90 ppmv, temperature changes of 6°C. Since the 100 ky cycles can not be easily explained by the Milankovitch astronomical forcing alone, this carbon-climate-icesheet mechanism provides a strong feedback that could interact with external forcings to produce the major observed Quaternary climatic variations. It is speculated that some glacial terminations may be triggered by this internal feedback while others by orbital forcing. Some observable consequences are highlighted that may support or falsify the theory.

  1. RESOLUTION OF THE PROBLEM OF TREATMENT OF WASTE WATER GENERATED BY CAR WASHES AND TRANSPORT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-12-01

    big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.

  2. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - on Store Glacier, West Greenland

    Science.gov (United States)

    Christoffersen, P.; Hubbard, B. P.; Doyle, S. H.; Young, T. J.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Toberg, N.; Nicholls, K. W.; Box, J.; Walter, J. I.; Hubbard, A.

    2015-12-01

    Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by 1 mm per year. The basal controls on these fast-flowing glaciers are, however, poorly understood, with the implication that numerical ice sheet models needed to predict future dynamic ice loss from Greenland relies on uncertain and often untested basal parameterizations. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - is addressing this paucity of observational constraints by drilling to the bed of Store Glacier, a fast-flowing outlet glacier terminating in Uummannaq Fjord, West Greenland. In 2014, we gained access to the bed in four boreholes drilled to depths of 603-616 m near the center of the glacier, 30 km inland from the calving terminus where ice flows at a rate of 700 m/year. A seismic survey showed the glacier bed to consist of water-saturated, soft sediment. The water level in all four boreholes nevertheless dropped rapidly to 80 m below the ice surface when the drill connected with a basal water system, indicating effective drainage over a sedimentary bed. We were able to install wired sensor strings at the bed (water pressure, temperature, electrical conductivity and turbidity) and within the glacier (temperature and tilt) in three boreholes. The sensors operated for up to 80+ days before cables stretched and ultimately snapped due to high internal strain. The data collected during this sensor deployment show ice as cold as -21 degrees Celcius; yet, temperature of water in the basal water system was persistently above the local freezing point. With diurnal variations detected in several sensor records, we hypothesise that surface water lubricates the ice flow while also warming basal ice. The fast basal motion of Store Glacier not only occurs by basal sliding, but from high rates of concentrated strain in the bottom third of the glacier

  3. Water characteristics and transport of the Antarctic circumpolar current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Mathew, B.

    Geostrophic velocities are computed across meridians 37 degrees E and 105 degrees E using hydrographic data. The estimated mass transport is represented on a temperature - salinity diagram. The characteristics of the water within the Antarctic...

  4. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers

    OpenAIRE

    Kang, Hongyan; Cancel, Limary M.; Tarbell, John M.

    2014-01-01

    Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-media...

  5. Water transport through graphene oxide membranes: the roles of driving forces.

    Science.gov (United States)

    Chong, J Y; Wang, B; Li, K

    2018-02-21

    Graphene oxide (GO) membranes have shown excellent selectivities in nanofiltration and pervaporation. However, the water transport mechanisms in the unique membrane laminar structure are still not well understood, especially in pervaporation which involves selective permeation and evaporation. Herein, water transport in GO membranes was tested under two different modes: pressure-driven permeation and pervaporation. The pure water flux was found to be 1-2 orders of magnitude higher in pervaporation due to the large capillary pressure induced by evaporation. The water flux in pervaporation was suggested to be limited by evaporation at room temperature but surface diffusion at high temperature.

  6. Design of Nano Screw Pump for Water Transport and its Mechanisms

    Science.gov (United States)

    Wang, LiYa; Wu, HengAn; Wang, FengChao

    2017-01-01

    Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898

  7. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells

    Science.gov (United States)

    Xu, C.; Zhao, T. S.; Yang, W. W.

    In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol-water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.

  8. RESOURCE-SAVING TECHNOLOGIES OF TREATMENT OF POLLUTED WASHING WATER FOR TRANSPORT COMPANIES

    OpenAIRE

    Andrei MELEKHIN; Aleksandr MELEKHIN

    2016-01-01

    Dedicated to the development of resource-saving polluted washing water treating technologies for transport companies. The article suggests methods of water purification with regard to scientifically grounded requirements to the quality of the water used and the required degree of purification and The article also considers the method of selecting efficient methods of sewage water treating, when a selective removal of individual polluting ingredients should be done. For this purpose we have co...

  9. 41 CFR 302-10.5 - May I transport a mobile home over water?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May I transport a mobile home over water? 302-10.5 Section 302-10.5 Public Contracts and Property Management Federal Travel... TRANSPORTATION OF MOBILE HOMES AND BOATS USED AS A PRIMARY RESIDENCE Eligibility and Limitations § 302-10.5 May I...

  10. On water transport in polymer electrolyte membranes during the passage of current

    DEFF Research Database (Denmark)

    Berning, Torsten

    2011-01-01

    This article discusses an approach to model the water transport in the membranes of PEM fuel cells during operation. Starting from a frequently utilized equation the various transport mechanisms are analyzed in detail. It is shown that the commonly used approach to simply balance the electro-osmo...

  11. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    Science.gov (United States)

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  12. Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-based interpolation scheme

    Directory of Open Access Journals (Sweden)

    J. L. Roberts

    2011-07-01

    Full Text Available Ice thickness data over much of East Antarctica are sparse and irregularly distributed. This poses difficulties for reconstructing the homogeneous coverage needed to properly assess underlying sub-glacial morphology and fundamental geometric constraints on sea level rise. Here we introduce a new physically-based ice thickness interpolation scheme and apply this to existing ice thickness data in the Aurora Subglacial Basin region. The skill and robustness of the new reconstruction is demonstrated by comparison with new data from the ICECAP project. The interpolated morphology shows an extensive marine-based ice sheet, with considerably more area below sea-level than shown by prior studies. It also shows deep features connecting the coastal grounding zone with the deepest regions in the interior. This has implications for ice sheet response to a warming ocean and underscores the importance of obtaining additional high resolution data in these marginal zones for modelling ice sheet evolution.

  13. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  14. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester

    Science.gov (United States)

    Tang, K. P. M.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-11-01

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  15. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: Forced Flow Water Transport Tester.

    Science.gov (United States)

    Tang, K P M; Chau, K H; Kan, C W; Fan, J T

    2015-11-23

    The water absorption and transport properties of fabrics are critical to wear comfort, especially for sportswear and protective clothing. A new testing apparatus, namely Forced Flow Water Transport Tester (FFWTT), was developed for characterizing the transplanar and in-plane wicking properties of fabrics based on gravimetric and image analysis technique. The uniqueness of this instrument is that the rate of water supply is adjustable to simulate varying sweat rates with reference to the specific end-use conditions ranging from sitting, walking, running to other strenuous activities. This instrument is versatile in terms of the types of fabrics that can be tested. Twenty four types of fabrics with varying constructions and surface finishes were tested. The results showed that FFWTT was highly sensitive and reproducible in differentiating these fabrics and it suggests that water absorption and transport properties of fabrics are sweat rate-dependent. Additionally, two graphic methods were proposed to map the direction of liquid transport and its relation to skin wetness, which provides easy and direct comparison among different fabrics. Correlation analysis showed that FFWTT results have strong correlation with subjective wetness sensation, implying validity and usefulness of the instrument.

  16. Models of Water Transport in the Soil-Plant System: A Review

    Science.gov (United States)

    Molz, Fred J.

    1981-10-01

    Although the study of plants (botany) is one of the oldest sciences, relatively detailed quantitative theories of water transport in plant tissue have lagged behind those describing water transport in soils and other geologic materials which constitute the saturated and unsaturated zones. Many existing texts deal with various aspects of water transport in these earth materials, but little or nothing is devoted to the analogous transport of water in plant roots and tissue at a similar quantitative level. Yet the soil-root-stem water pathway is a major component of the subsurface hydrologic system. Evidently there is a need for both engineering and agricultural hydrologists to further develop their quantitative understanding of water movement in plant and soil-plant systems. Modern quantitative theories of water transport in plants can be traced to concepts developed and disseminated effectively in landmark papers by Gradmann and van den Honert in 1928 and 1948 respectively. The material reviewed in this paper, while more advanced, is based on these concepts. Emphasis is placed on water movement in soil containing roots and on a general approach to water transport in living plant tissue. Detailed quantitative studies of water extraction by plant roots date back to studies by Gardner published in 1960. Many contemporary models are built around extraction functions in the Darcy-Richards equation. Several such functions are listed in a table, and their applications, relative advantages, and limitations are discussed in the text. In a series of papers published in 1958, Philip developed the first detailed quantitative description of water transport in plant tissue. His approach resulted in a diffusion equation which could be written with water potential as the dependent variable. Philip's derivation assumed that water movement was primarily from vacuole to vacuole. Subsequent workers have refined and extended Philip's development to include water movement in cell walls

  17. Energy Interconversion in Transport ATPases Role of Water in Ions Transport and in the Energy of Hydrolysis of Phosphate Compounds

    Science.gov (United States)

    de Meis, L.

    This chapter is related to the work carried out by Kjelstrup et al. [1,2,3], describing the energy dissipation of uncoupled and coupled enzymes. Here we describe the biochemical experiments that led to a partial understanding of how energy is handled by enzymes (proteins) to transport ions across a biological membrane and how the enzyme is able to determine how much of the total energy available during transport is used to perform work (ion transport) and how much is dissipated as heat. The experiments described show that the water organized around proteins (enzymes) and reactants involved in the transport process play a key role in the mechanism of energy transduction. Most of the bibliography of this chapter is related to the biological experiments that contributed to the elucidation of the mechanism of energy transduction during Ca2+ transport, as, e.g., works pertinent to the thermodynamic process of active transport, as seen in the perspective of physics [1,2,3,4,5,6,7].

  18. Comparison of a modified peptone water transport medium with two ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... Calcium chloride. 0.1. Magnesium chloride. 0.1. Agar. 4.0. pH 2 ± 0.2 swabs evaluated by maintaining the viabilities of both anaerobic and fastidious aerobic organisms for 24 h for majority of the organisms evaluated. This time period should be sufficient for transport of specimens to the clinical microbiology ...

  19. RESOURCE-SAVING TECHNOLOGIES OF TREATMENT OF POLLUTED WASHING WATER FOR TRANSPORT COMPANIES

    Directory of Open Access Journals (Sweden)

    Andrei MELEKHIN

    2016-03-01

    Full Text Available Dedicated to the development of resource-saving polluted washing water treating technologies for transport companies. The article suggests methods of water purification with regard to scientifically grounded requirements to the quality of the water used and the required degree of purification and The article also considers the method of selecting efficient methods of sewage water treating, when a selective removal of individual polluting ingredients should be done. For this purpose we have conducted a simulation process of treating polluted washing water in the circulating water systems, and provided solutions for refining the process parameters.

  20. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    Science.gov (United States)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  1. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    Science.gov (United States)

    2013-08-01

    Incipience and Vapor Bubble Growth Dynamics in Surfactant Solutions,” Int. J. Heat Mass Transfer, 42(13), pp. 2483–2488. [15] Peng, H., Ding, G., and... surfactant concentration on the transport properties of bulk surfactant aqueous solutions, focusing on the anionic surfactant sodium dodecyl sulfate...SDS), are reported. The surfactant self-diffusion and the thermal conductivity of bulk aqueous SDS solutions were computed at a range of

  2. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    Science.gov (United States)

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  3. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    Science.gov (United States)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  4. Recent technical developments at the IMAU: A new generation of AWS and wireless subglacial measurements

    NARCIS (Netherlands)

    Smeets, C.J.P.P.; Boot, W.; van den Broeke, M.R.; van de Wal, R.S.W.

    2011-01-01

    Two technical developments are presented: a new generation of AWS and a wireless subglacial measurement system. Both systems build on the experience of the IMAU in developing GPS systems (Den Ouden et al., 2010). Combining methods to minimize energy consumption and wireless communication form the

  5. Functional magnetic resonance microscopy of long- and short-distance water transport in trees

    NARCIS (Netherlands)

    Homan, N.

    2009-01-01

    Due to their long life span, changing climatic conditions are of particular importance for trees. Climate changes will affect the water balance, which can become an important limiting factor for photosynthesis and growth. Long-distance water transport in trees is directly related to the

  6. Numerical modeling of coupled water flow and heat transport in soil and snow

    Science.gov (United States)

    Thijs J. Kelleners; Jeremy Koonce; Rose Shillito; Jelle Dijkema; Markus Berli; Michael H. Young; John M. Frank; William Massman

    2016-01-01

    A one-dimensional vertical numerical model for coupled water flow and heat transport in soil and snow was modified to include all three phases of water: vapor, liquid, and ice. The top boundary condition in the model is driven by incoming precipitation and the surface energy balance. The model was applied to three different terrestrial systems: A warm desert bare...

  7. Intact plant MRI for the study of cell water relations, membrane permeability, cell-to-cell and long distance water transport

    NARCIS (Netherlands)

    As, van H.

    2007-01-01

    Water content and hydraulic conductivity, including transport within cells, over membranes, cell-to-cell, and long-distance xylem and phloem transport, are strongly affected by plant water stress. By being able to measure these transport processes non-invasely in the intact plant situation in

  8. Reconstituted aquaporin 1 water channels transport CO2 across membranes.

    Science.gov (United States)

    Prasad, G V; Coury, L A; Finn, F; Zeidel, M L

    1998-12-11

    Biological membranes provide selective barriers to a number of molecules and gases. However, the factors that affect permeability to gases remain unclear because of the difficulty of accurately measuring gas movements. To determine the roles of lipid composition and the aquaporin 1 (AQP1) water channel in altering CO2 flux across membranes, we developed a fluorometric assay to measure CO2 entry into vesicles. Maximal CO2 flux was approximately 1000-fold above control values with 0.5 mg/ml carbonic anhydrase. Unilamellar phospholipid vesicles of varying composition gave widely varying water permeabilities but similar CO2 permeabilities at 25 degreesC. When AQP1 purified from human red blood cells was reconstituted into proteoliposomes, however, it increased water and CO2 permeabilities markedly. Both increases were abolished with HgCl2, and the mercurial inhibition was reversible with beta-mercaptoethanol. We conclude that unlike water and small nonelectrolytes, CO2 permeation is not significantly altered by lipid bilayer composition or fluidity. AQP1 clearly serves to increase CO2 permeation, likely through the water pore; under certain circumstances, gas permeation through membranes is protein-mediated.

  9. Transport-limited water splitting at ion-selective interfaces during concentration polarization

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present an analytical model of salt- and water-ion transport across an ion-selective interface based on an assumption of local equilibrium of the water-dissociation reaction. The model yields current-voltage characteristics and curves of water-ion current versus salt-ion current, which....... These solutions provide closed-form expressions for the current-voltage characteristics, which include the overlimiting current due to the development of an extended space-charge region. Finally, we discuss how the addition of an acid or a base affects the transport properties of the system and thus provide...

  10. Fast Water Transport in CNTs: length dependence and entrane/exit effects

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Koumoutsakos, Petros

    , for the first time, that under imposed pressures of the order of 1 bar, water entry into the CNT cavity and exit from the CNT end, can occur only on pre-wetted membranes. We conduct large scale simulations for up to 500nm long CNTs and observe a previously unseen dependence of the flow enhancement rates......Superfast water transport in carbon nanotube (CNT) membranes has been reported in experimental studies. We use Molecular Dynamics simulations to elucidate the mechanisms of water entry, exit and transport in 2nm-diameter hydrophobic CNTs embedded in a hydrophilic membrane matrix. We demonstrate...

  11. Unprecedentedly rapid transport of single-file rolling water molecules

    Science.gov (United States)

    Qiu, Tong; Huang, Ji-Ping

    2015-10-01

    The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

  12. Modeling and Diagnostics of Fuel Cell Porous Media for Improving Water Transport

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Jeff; M' edici, Ezequiel

    2011-07-01

    When a fuel cell is operating at high current density, water accumulation is a significant cause of performance and component degradation. Investigating the water transport inside the fuel cell is a challenging task due to opacity of the components, the randomness of the porous materials, and the difficulty in gain access to the interior for measurement due to the small dimensions of components. Numerical simulation can provide a good insight of the evolution of the water transport under different working condition. However, the validation of those simulations is remains an issue due the same experimental obstacles associated with in-situ measurements. The discussion herein will focus on pore-network modeling of the water transport on the PTL and the insights gained from simulations as well as in the validation technique. The implications of a recently published criterion to characterize PTL, based on percolation theory, and validate numerical simulation are discussed.

  13. Profiling of sugar transporter genes in grapevine coping with water deficit.

    Science.gov (United States)

    Medici, Anna; Laloi, Maryse; Atanassova, Rossitza

    2014-11-03

    The profiling of grapevine (Vitis vinifera L.) genes under water deficit was specifically targeted to sugar transporters. Leaf water status was characterized by physiological parameters and soluble sugars content. The expression analysis provided evidence that VvHT1 hexose transporter gene was strongly down-regulated by the increased sugar content under mild water-deficit. The genes of monosaccharide transporter VvHT5, sucrose carrier VvSUC11, vacuolar invertase VvGIN2 and grape ASR (ABA, stress, ripening) were up-regulated under severe water stress. Their regulation in a drought-ABA signalling network and possible roles in complex interdependence between sugar subcellular partitioning and cell influx/efflux under Grapevine acclimation to dehydration are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Aeromonas hydrophila disturbs water and electrolyte transport in ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... intestine. Anterior, middle and distal gut segments of M. cephalus (L) intestine were used in an in vitro model; Everted Gut Sac (EGS). The sacs were exposed to bacteria suspension (108 cells/ ml) at 25°C for 2 h. Our results showed a significant reduction of water absorption at the anterior and the mid.

  15. Simultaneous transport of water and solutes under transient ...

    Indian Academy of Sciences (India)

    In the present study, Malaprabha sub-basin (up to dam site) has been selected which has two distinct climatic zones, sub-humid (upstream of .... The instrument allows a constant supply potential, either positive or nega- ... the air inlet tip is designed to control the size of air bubbles in order to prevent the well water level.

  16. Water transport between CNS compartments: contributions of aquaporins and cotransporters

    DEFF Research Database (Denmark)

    MacAulay, N; Zeuthen, T

    2010-01-01

    pores in analogy to the aquaporins. The putative role of cotransport proteins and uniports for the water flux into the glial cells, through the choroid plexus and across the endothelial cells of the blood-brain-barrier will be discussed and compared to the contribution of the aquaporins....

  17. Aeromonas hydrophila disturbs water and electrolyte transport in ...

    African Journals Online (AJOL)

    Fish diseases create a menace to aquaculture farms. They provoke disastrous economic losses and sanitary risks for the consumer. The present study aims to investigate the effect of the bacteria, Aeromonas hydrophila on water and electrolyte (Na+, K+, Cl-, HCO3 -) flux of Mugil cephalus (L, 1758) intestine. Anterior, middle ...

  18. Transport and transformation of surface water masses across the ...

    African Journals Online (AJOL)

    In this article, we present the results of a survey conducted along the entire Mascarene Plateau during the Northeast Monsoon, in October–November 2008. In addition, data from Argo floats were used to determine the origin of water masses entering this region. The plateau contains three gaps through which branches of ...

  19. Measurement of water transport from saturated pumice aggregates to hardening cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Bentz, Dale; Lange, David A.

    2006-01-01

    In internal water curing of High Performance Concrete, it is fundamental to know how and when the water contained in the internal curing agent is released into the hydrating cement paste. In this study, X-ray absorption measurements showed that considerable transport of water from saturated pumice...... stone to hydrating cement paste with water/cement ratio 0.3 took place in the first days after casting and covered a distance of at least 4 mm. As a consequence, the total amount of water released by the lightweight aggregates, rather than the spatial distribution of the aggregates, is in this case...

  20. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    Science.gov (United States)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  1. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    OpenAIRE

    Bazylak, A.; Berejnov, V.; Markicevic, B.; Sinton, D.; Djilali, N.

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in cont...

  2. Energetic and molecular water permeation mechanisms of the human red blood cell urea transporter B.

    Science.gov (United States)

    Azouzi, Slim; Gueroult, Marc; Ripoche, Pierre; Genetet, Sandrine; Colin Aronovicz, Yves; Le Van Kim, Caroline; Etchebest, Catherine; Mouro-Chanteloup, Isabelle

    2013-01-01

    Urea transporter B (UT-B) is a passive membrane channel that facilitates highly efficient permeation of urea. In red blood cells (RBC), while the major function of UT-B is to transport urea, it is assumed that this protein is able to conduct water. Here, we have revisited this last issue by studying RBCs and ghosts from human variants with defects of aquaporin 1 (AQP1) or UT-B. We found that UT-B's osmotic water unit permeability (pfunit) is similar to that of AQP1. The determination of diffusional permeability coefficient (Pd) allowed the calculation of the Pf/Pd ratio, which is consistent with a single-file water transport. Molecular dynamic simulations of water conduction through human UT-B confirmed the experimental finding. From these results, we propose an atomistic description of water-protein interactions involved in this permeation. Inside the UT-B pore, five water molecules were found to form a single-file and move rapidly along a channel by hydrogen bond exchange involving two critical threonines. We further show that the energy barrier for water located in the central region coincides with a water dipole reorientation, which can be related to the proton exclusion observed experimentally. In conclusion, our results indicate that UT-B should be considered as a new member of the water channel family.

  3. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977 - September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments. (ERB)

  4. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  5. Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes

    Science.gov (United States)

    Montessori, A.; Amadei, C. A.; Falcucci, G.; Sega, M.; Vecitis, C. D.; Succi, S.

    2016-12-01

    The understanding of water transport in graphene oxide (GO) membranes stands out as a major theoretical problem in graphene research. Notwithstanding the intense efforts devoted to the subject in the recent years, a consolidated picture of water transport in GO membranes is yet to emerge. By performing mesoscale simulations of water transport in ultrathin GO membranes, we show that even small amounts of oxygen functionalities can lead to a dramatic drop of the GO permeability, in line with experimental findings. The coexistence of bulk viscous dissipation and spatially extended molecular friction results in a major decrease of both slip and bulk flow, thereby suppressing the fast water transport regime observed in pristine graphene nanochannels. Inspection of the flow structure reveals an inverted curvature in the near-wall region, which connects smoothly with a parabolic profile in the bulk region. Such inverted curvature is a distinctive signature of the coexistence between single-particle zero-temperature (noiseless) Langevin friction and collective hydrodynamics. The present mesoscopic model with spatially extended friction may offer a computationally efficient tool for future simulations of water transport in nanomaterials.

  6. The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    Science.gov (United States)

    Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio

    2014-05-01

    We have analyzed the deep conductivity structure at the transition between the Transantarctic Mountains (TAM) and the eastern margin of the WSB in NVL, by means of the GDS (Geomagnetic Deep Sounding) technique, in order to constrain the geodynamical interpretation of this antarctic sector. The TAM form the uplifted flank of the Mesozoic and Cenozoic West Antarctic Rift System. Structure of the TAM rift flank has been partially investigated with different geophysical approaches.The Wilkes Subglacial Basin is a broad depression over 400 km wide at the George V Coast and 1200 km long. Geology, lithospheric structure and tectonics of the Basin are only partially known because the Basin is buried beneath the East Antarctic Ice Sheet and is located in a remote region which makes geophysical exploration logistically challenging. Different authors have proposed contrasting hypothesis regarding the origin of the WSB: it could represent a region of rifted continental crust, or it may have a flexural origin or might represent an "extended terrane". Recently aerogeophysical investigations have demonstrated a strong structural control on the margin. Magnetovariational studies carried out at high geomagnetic latitudes are often hampered by source effects, mainly due to the closeness to the Polar Electrojet currents systems (PEJ). Its presence, in fact, makes the uniform magnetic field assumption, on which the magnetovariational methods are based on, often invalid, which outcome is a bias in the GDS transfer functions and to compromise the reliability of the inverted models. Data from the aforementioned campaigns have been then processed under the ISEE project (Ice Sheet Electromagnetic Experiment), aimed at evaluate and mitigate the bias effect of the PEJ on geomagnetic an magnetotelluric transfer functions at high geomagnetic latitudes, by means of suitable processing algorithms, developed upon a statistical analysis study on PEJ effects (Rizzello et al. 2013). Recent results

  7. Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030

    NARCIS (Netherlands)

    van Lienden, A.R.; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims In the last two centuries, fossil fuels have been our major source of energy. However, issues concerning energy security and the quality of the environment have given an impulse to the

  8. Operational predictive optimal control of Barcelona water transport network

    OpenAIRE

    Pascual, J.; Romera, J.; Puig, V.; Cembrano, G.; Creus, R.; Minoves, M.

    2013-01-01

    This paper describes the application of model-based predictive control (MPC) techniques to the supervisory flow management in large-scale drinking water networks including a telemetry/telecontrol system. MPC is used to generate flow control strategies (set-points for the regulatory controllers) from the sources to the consumer areas to meet future demands, optimizing performance indexes associated to operational goals such as economic cost, safety storage volumes in the network and smoothness...

  9. Role of Aquaporins in a Composite Model of Water Transport in the Leaf

    Directory of Open Access Journals (Sweden)

    Adi Yaaran

    2016-06-01

    Full Text Available Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs. To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.

  10. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester.

    Science.gov (United States)

    Tang, K P M; Wu, Y S; Chau, K H; Kan, C W; Fan, J T

    2015-04-15

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties.

  11. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester

    Science.gov (United States)

    Tang, K. P. M.; Wu, Y. S.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties. PMID:25875329

  12. Dynamics of the water circulations in the southern South China Sea and its seasonal transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid; Ooi, See Hai Ooi; Samah, Azizan Abu

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re......-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast...... of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic...

  13. Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses.

    Science.gov (United States)

    Dobretsov, Egor A; Snytnikova, Olga A; Koptyug, Igor V; Kaptein, Robert; Tsentalovich, Yuri P

    2013-08-01

    NMR micro-imaging technique has been used for the measurement of the water content distribution in lenses of senescence-accelerated OXYS rats and age-matched Wistar rats, as well as for the study of water and phosphate transport in rat lenses. The water content in the lens cortex is significantly higher than in the nucleus; the spatial gradient of the water content becomes steeper with age. No difference in the water content distribution has been found between Wistar and OXYS rat lenses of matching ages, although cataract onset in the OXYS rat lens occurs much earlier due to the enhanced generation of reactive oxygen species associated with oxidative stress. This finding implies that cataract development does not lead to significant changes in water content distribution inside the lens. The water transport in rat lenses slows down with age, and in OXYS lenses it is somewhat faster than in lenses of Wistar rats, probably due to the compensatory response to oxidative stress. The application of (31)P MRI for the monitoring of phosphate penetration into a lens has been performed for the first time. It is found that phosphate transport in a lens is significantly slower than that of water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A High-Resolution Model of Water Mass Transformation and Transport in the Weddell Sea

    Science.gov (United States)

    Hazel, J.; Stewart, A.

    2016-12-01

    The ocean circulation around the Antarctic margins has a pronounced impact on the global ocean and climate system. One of these impacts includes closing the global meridional overturning circulation (MOC) via formation of dense Antarctic Bottom Water (AABW), which ventilates a large fraction of the subsurface ocean. AABW is also partially composed of modified Circumpolar Deep Water (CDW), a warm, mid-depth water mass whose transport towards the continent has the potential to induce rapid retreat of marine-terminating glaciers. Previous studies suggest that these water mass exchanges may be strongly influenced by high-frequency processes such as downslope gravity currents, tidal flows, and mesoscale/submesoscale eddy transport. However, evaluating the relative contributions of these processes to near-Antarctic water mass transports is hindered by the region's relatively small scales of motion and the logistical difficulties in taking measurements beneath sea ice.In this study we develop a regional model of the Weddell Sea, the largest established source of AABW. The model is forced by an annually-repeating atmospheric state constructed from the Antarctic Mesoscale Prediction System data and by annually-repeating lateral boundary conditions constructed from the Southern Ocean State Estimate. The model incorporates the full Filchner-Ronne cavity and simulates the thermodynamics and dynamics of sea ice. To analyze the role of high-frequency processes in the transport and transformation of water masses, we compute the model's overturning circulation, water mass transformations, and ice sheet basal melt at model horizontal grid resolutions ranging from 1/2 degree to 1/24 degree. We temporally decompose the high-resolution (1/24 degree) model circulation into components due to mean, eddy and tidal flows and discuss the geographical dependence of these processes and their impact on water mass transformation and transport.

  15. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, Satish G. [Rochester Inst. of Technology, Rochester, NY (United States); Lu, Zijie [Rochester Inst. of Technology, Rochester, NY (United States); Rao, Navalgund [Rochester Inst. of Technology, Rochester, NY (United States); Sergi, Jacqueline [Rochester Inst. of Technology, Rochester, NY (United States); Rath, Cody [Rochester Inst. of Technology, Rochester, NY (United States); McDade, Christopher [Rochester Inst. of Technology, Rochester, NY (United States); Trabold, Thomas [General Motors, Honeoye Falls, NY (United States); Owejan, Jon [General Motors, Honeoye Falls, NY (United States); Gagliardo, Jeffrey [General Motors, Honeoye Falls, NY (United States); Allen, Jeffrey [Michigan Technological Univ., Houghton, MI (United States); Yassar, Reza S. [Michigan Technological Univ., Houghton, MI (United States); Medici, Ezequiel [Michigan Technological Univ., Houghton, MI (United States); Herescu, Alexandru [Michigan Technological Univ., Houghton, MI (United States)

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions.

  16. Global Catalogue of the Martian Valley Networks: Evidences for Fluvial, Sapping and Subglacial Processes on Early Mars

    Science.gov (United States)

    Grau Galofre, A.; Jellinek, A. M.

    2017-10-01

    We use erosion models and statistical morphometry schemes to show quantitative evidence for fluvial, glacial, groundwater sapping and subglacial erosion on the Noachian highlands, to then build a global map of valley network origin and distribution.

  17. Dealing with water deficit in Atta ant colonies: large ants scout for water while small ants transport it

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Da-Silva

    2012-07-01

    Leafcutter ants (Atta sexdens rubropilosa (Forel 1908 have an elaborate social organization, complete with caste divisions. Activities carried out by specialist groups contribute to the overall success and survival of the colony when it is confronted with environmental challenges such as dehydration. Ants detect variations in humidity inside the nest and react by activating several types of behavior that enhance water uptake and decrease water loss, but it is not clear whether or not a single caste collects water regardless of the cost of bringing this resource back to the colony. Accordingly, we investigated water collection activities in three colonies of Atta sexdens rubropilosa experimentally exposed to water stress. Specifically, we analyzed whether or not the same ant caste foraged for water, regardless of the absolute energetic cost (distance of transporting this resource back to the colony. Our experimental design offered water sources at 0 m, 1 m and 10 m from the nest. We studied the body size of ants near the water sources from the initial offer of water (time  =  0 to 120 min, and tested for specialization. We observed a reduction in the average size and variance of ants that corroborated the specialization hypothesis. Although the temporal course of specialization changed with distance, the final outcome was similar among distances. Thus, we conclude that, for this species, a specialist (our use of the word “specialist” does not mean exclusive task force is responsible for collecting water, regardless of the cost of transporting water back to the colony.

  18. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Olesen, Jesper H; Bedal, Konstanze

    2011-01-01

    with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41......(v) by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na(+)-glucose co-transporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab, and -8ab, we detected Aqp1aa, and -1ab immunoreactivity...

  19. Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes

    DEFF Research Database (Denmark)

    Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P

    2015-01-01

    Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme...... salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two...... of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify...

  20. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  1. Impact of carbonation on the durability of cementitious materials: water transport properties characterization

    Science.gov (United States)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.-M.

    2013-07-01

    Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2) and the main hydrates of the cement paste (portlandite and C-S-H). Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation). This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions) at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.

  2. Dynamic model of ion and water transport in ionic polymer-metal composites

    Directory of Open Access Journals (Sweden)

    Zicai Zhu

    2011-12-01

    Full Text Available In the process of electro-mechanical transduction of ionic polymer-metal composites (IPMCs, the transport of ion and water molecule plays an important role. In this paper, the theoretical transport models of IPMCs are critically reviewed, with particular emphasis on the recent developments in the latest decade. The models can be divided into three classes, thermodynamics of irreversible process model, frictional model and Nernst-Planck (NP equation model. To some extent the three models can be transformed into each other, but their differences are also obvious arising from the various mechanisms that considered in different models. The transport of ion and water molecule in IPMCs is compared with that in membrane electrode assembly and electrodialysis membrane to identify and clarify the fundamental transport mechanisms in IPMCs. And an improved transport model is proposed and simplified for numerical analysis. The model considers the convection effect rather than the diffusion as the major transport mechanism, and both the self-diffusion and the electroosmosis drag are accounted for in the water flux equation.

  3. Copper distribution in water-dispersible colloids of swine manure and its transport through quartz sand.

    Science.gov (United States)

    Bao, Qibei; Lin, Qi; Tian, Guangming; Wang, Guihao; Yu, Jian; Peng, Guiqun

    2011-02-28

    To demonstrate the potential risks associated with the application of solid agricultural wastes, we investigated Cu distribution in water-dispersible colloids derived from swine manure and its transport through quartz sand. Samples were sequentially centrifuged to obtain five colloid suspensions (sand particles, and fine colloids facilitated the transport of Cu. The formation of organic complexes was hypothesized to enhance the mobility of Cu. Further research is needed to incorporate our experimental findings into a realistic model of particle mobilization and transport through soil or groundwater aquifers. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Impact of particle nanotopology on water transport through hydrophobic soils.

    Science.gov (United States)

    Truong, Vi Khanh; Owuor, Elizabeth A; Murugaraj, Pandiyan; Crawford, Russell J; Mainwaring, David E

    2015-12-15

    The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle

  5. Water transport in two-phase fuel cell microchannels

    Science.gov (United States)

    Lee, Eon Soo

    Many fuel cells contain small rectangular channels in which three of the channel walls are smooth, impermeable metal and the fourth wall is a porous gas-diffusion layer. The main function of the channels is to supply reactant gases through the porous layer to the reaction surface, but also to remove water formed by the electro-chemical reactions. Analysis of the two-phase flow through these channels is complicated by the fact that both gas and liquid can move through either the channel or the porous layer. This study presents the flow regime maps for the two-phase flow and a 1-D two-phase flow model for the frictional characteristics of the porous wall bounded channel flow. Experiments were performed on a straight 200 by 500 micron by 150 mm long rectangular channel. Three walls of the channel were machined into a solid piece of acrylic. One of the 500 micron wide walls was a commercial Toray carbon paper gas-diffusion layer (GDL) material held in place by a flat sheet of acrylic. Water was forced through the GDL layer from four evenly spaced holes in the flat acrylic piece. Two-phase flow regime maps were constructed from flow visualization in terms of a superficial gas velocity, JG and the superficial liquid velocity, JL at the channel exit between 0 < JG < 20 m/s and 0 < JL < 10 mm/s. Flow regimes were observed to change from plug flow to stratified flow through an intermediate flow regime as superficial gas velocities increased. The transition from plug flow generally occurs at a constant superficial gas velocity and a two-phase Weber number is proposed as an appropriate dimensionless parameter to characterize this transition. A one-dimensional, two-phase flow model was developed which included the effect of air and water flows in both the channel and GDL. The analysis from experimental measurements showed that the product of the friction factor and the gas flow Reynolds number was very nearly a constant, indicating that the model captures the critical physical

  6. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A

    1997-01-01

    Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin....

  7. Water transport by the Na+/glucose cotransporter under isotonic conditions

    DEFF Research Database (Denmark)

    Zeuthen, T; Meinild, A K; Klaerke, D A

    1997-01-01

    Solute cotransport in the Na+/glucose cotransporter is directly coupled to significant water fluxes. The water fluxes are energized by the downhill fluxes of the other substrates by a mechanism within the protein itself. In the present paper we investigate the Na+/glucose cotransporter expressed ...... of water molecules and the number of Na+ ions transported, equivalent to 390 water molecules per glucose molecule. Unstirred layer effects are ruled out on the basis of experiments on native oocytes incubated with the ionophores gramicidin D or nystatin....

  8. Subglacial conditions and Scandinavian Ice Sheet dynamics at the coarse-grained substratum of the fore-mountain area of southern Poland

    Science.gov (United States)

    Salamon, Tomasz

    2016-11-01

    The fore-mountain areas of southern Poland are locally composed of the coarse-grained sediments of alluvial fans, which created unusual conditions under the advancing Scandinavian Ice Sheet during the Elsterian glaciation. This highly permeable substratum potentially enabled rapid outflow of meltwater from the ice sheet base, thereby reducing the water pressure and strongly influencing the ice sheet dynamics. The subglacial conditions and the relationship between the ice sheet behaviour and its coarse-grained substratum were studied at the foreland of the western Carpathian Mountains. The sedimentological and structural analysis of the till and related sediments that were deposited above the alluvial gravel of the fore-mountain fans are presented. The study indicates that despite the high permeability of the coarse-grained substratum, it did not slow the ice sheet movement. Conversely, the ice sheet moved mainly due to basal slip and locally shallow deformations. This was a consequence of very high basal water pressure, which resulted largely from the presence of permafrost that restricted subglacial groundwater outflow. In addition, the ice sheet substratum was inclined opposite to the direction of its movement, increasing the pressure of the subglacial water. Numerous subhorizontal sandy laminae within the till indicate that the meltwater from the ice sheet base was drained by a water film along the ice/bed interface. The water escape structures within the till and subtill sediments indicate the occasional instability of the ice sheet hydrological system and suggest that the meltwater was periodically stored in the ice sheet base. Temporal changes occurring in the ice sheet hydrological system might indicate variations in the ice sheet behaviour; i.e. phases of relatively fast ice flow and phases of ice stagnation. The latter were probably correlated with the freezing of the ice margin to its base. The study shows how the coarse-grained substratum could

  9. Transients of Water Distribution and Transport in PEM Fuel Cells

    KAUST Repository

    Hussaini, Irfan S.

    2009-01-01

    The response of polymer electrolyte membrane (PEM) fuel cells to a step change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of transient response following a step increase in current, is due to transients of water distribution in the membrane and ionomers occurring at subsecond time scales. The use of humidified reactants as a means to control the magnitude of voltage undershoot is demonstrated. Further, the response under a step decrease in current density is explored to determine the existence of hysteresis. Under sufficiently humidified conditions, the responses under forward and reverse step changes are symmetric, but under low relative humidity conditions, voltage undershoot is twice as large as the overshoot. © 2009 The Electrochemical Society.

  10. Transients of Water Distribution and Transport in PEFCs

    KAUST Repository

    Hussaini, Irfan

    2008-01-01

    Response of PEM fuel cells to a step-change in load is investigated experimentally in this work. Voltage undershoot, a characteristic feature of such transient response, is shown to be due to transients of water distribution in membrane phase occurring at sub-second time scales. Use of humidified reactants as a means to control magnitude of voltage undershoot has been demonstrated. Constant stoichiometry operation under certain current-step conditions is found to result in reactant starvation, potentially leading to cell shut down. Further, response under step decrease in current density has been explored to determine existence of hysteresis. Under sufficiently humidified conditions, response under forward and reverse step changes are found to be symmetric, but under low RH conditions, voltage undershoot is found to be twice as large as the overshoot. © The Electrochemical Society.

  11. Electric field controlled transport of water in graphene nano-channels

    Science.gov (United States)

    Celebi, Alper Tunga; Barisik, Murat; Beskok, Ali

    2017-10-01

    Motivated by electrowetting-based flow control in nano-systems, water transport in graphene nano-channels is investigated as a function of the applied electric field. Molecular dynamics simulations are performed for deionized water confined in graphene nano-channels subjected to opposing surface charges, creating an electric field across the channel. Water molecules respond to the electric field by reorientation of their dipoles. Oxygen and hydrogen atoms in water face the anode and cathode, respectively, and hydrogen atoms get closer to the cathode compared to the oxygen atoms near the anode. These effects create asymmetric density distributions that increase with the applied electric field. Force-driven water flows under electric fields exhibit asymmetric velocity profiles and unequal slip lengths. Apparent viscosity of water increases and the slip length decreases with increased electric field, reducing the flow rate. Increasing the electric field above a threshold value freezes water at room temperature.

  12. Transport properties of water molecules confined between hydroxyapaptite surfaces: A Molecular dynamics simulation approach

    Science.gov (United States)

    Prakash, Muthuramalingam; Lemaire, Thibault; Di Tommaso, Devis; de Leeuw, Nora; Lewerenz, Marius; Caruel, Matthieu; Naili, Salah

    2017-10-01

    Water diffusion in the vicinity of hydroxyapatite (HAP) crystals is a key issue to describe biomineralization process. In this study, a configuration of parallel HAP platelets mimicking bone nanopores is proposed to characterize the nanoscopic transport properties of water molecules at HAP-water surface and interfaces using various potential models such as combination of the Core-Shell (CS) model, Lennard-Jones (LJ) potentials with SPC or SPC/E water models. When comparing all these potentials models, it appears that the core-shell potential for HAP together with the SPC/E water model more accurately predicts the diffusion properties of water near HAP surface. Moreover, we have been able to put into relief the possibility of observing hydroxyl (OH-) ion dissociation that modifies the water structure near the HAP surface.

  13. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  14. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  15. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    Science.gov (United States)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  16. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  17. Proton transport and the water environment in nafion fuel cell membranes and AOT reverse micelles.

    Science.gov (United States)

    Spry, D B; Goun, A; Glusac, K; Moilanen, David E; Fayer, M D

    2007-07-04

    The properties of confined water and diffusive proton-transfer kinetics in the nanoscopic water channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series of well-characterized AOT reverse micelles with known water nanopool sizes using the photoacid pyranine as a molecular probe. The side chains of Nafion are terminated by sulfonate groups with sodium counterions that are arrayed along the water channels. AOT has sulfonate head groups with sodium counterions that form the interface with the reverse micelle's water nanopool. The extent of excited-state deprotonation is observed by steady-state fluorescence measurements. Proton-transfer kinetics and orientational relaxation are measured by time-dependent fluorescence using time-correlated single photon counting. The time dependence of deprotonation is related to diffusive proton transport away from the photoacid. The fluorescence reflecting the long time scale proton transport has an approximately t-0.8 power law decay in contrast to bulk water, which has a t-3/2 power law. For a given hydration level of Nafion, the excited-state proton transfer and the orientational relaxation are similar to those observed for a related size AOT water nanopool. The effective size of the Nafion water channels at various hydration levels are estimated by the known size of the AOT reverse micelles that display the corresponding proton-transfer kinetics and orientational relaxation.

  18. Dark-field X-ray imaging of unsaturated water transport in porous materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F., E-mail: fei.yang@empa.ch, E-mail: michele.griffa@empa.ch; Di Bella, C.; Lura, P. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600 (Switzerland); Institute for Building Materials (IfB), ETH Zurich, Zürich 8093 (Switzerland); Prade, F.; Herzen, J.; Sarapata, A.; Pfeiffer, F. [Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching (Germany); Griffa, M., E-mail: fei.yang@empa.ch, E-mail: michele.griffa@empa.ch; Jerjen, I. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600 (Switzerland)

    2014-10-13

    We introduce in this Letter an approach to X-ray imaging of unsaturated water transport in porous materials based upon the intrinsic X-ray scattering produced by the material microstructural heterogeneity at a length scale below the imaging system spatial resolution. The basic principle for image contrast creation consists in a reduction of such scattering by permeation of the porosity by water. The implementation of the approach is based upon X-ray dark-field imaging via Talbot-Lau interferometry. The proof-of-concept is provided by performing laboratory-scale dark-field X-ray radiography of mortar samples during a water capillary uptake experiment. The results suggest that the proposed approach to visualizing unsaturated water transport in porous materials is complementary to neutron and magnetic resonance imaging and alternative to standard X-ray imaging, the latter requiring the use of contrast agents because based upon X-ray attenuation only.

  19. Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments

    Science.gov (United States)

    Hirashima, Hiroyuki; Avanzi, Francesco; Yamaguchi, Satoru

    2017-11-01

    The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.

  20. Transport and transfer rates in the waters of the continental shelf. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Biscaye, P.E.

    1980-09-01

    The goal of govern project is to understand and quantify the processes that the transport and dispersal of energy-related pollutants introduced to the waters of the continental shelf and slope. The report is divided into sections dealing with processes associated with suspended solids; processes associated with sediments sinks for radionuclides and other pollutants; and spreading of water characteristics and species in solution. (ACR)

  1. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  2. Rapid Submarine Melting Driven by Subglacial Discharge, LeConte Glacier, Alaska

    Science.gov (United States)

    Motyka, R. J.; Dryer, W. P.; Amundson, J. M.; Truffer, M.; Fahnestock, M. A.

    2013-12-01

    Submarine melting impacts the stability of tidewater glaciers worldwide, but the connections between the ocean, a warming climate, and retreat of outlet glaciers are poorly known. Clearly warm seawater plays an important role, but the tremendous heat potential resident in oceans and fjords must first be brought into contact with outlet glacier termini in order to affect them. We show here that for many glaciers, the principal process driving high rates of submarine melting is subglacial discharge of freshwater. This buoyant discharge draws in warm seawater, entraining it in a turbulent upwelling convective flow along the submarine face that melts glacier ice. To capture the effect of changing subglacial discharge on submarine melting, we conducted four days of hydrographic transects during late summer 2012 at LeConte Glacier, Alaska. A major rainstorm allowed us to directly measure the influence of large changes in subglacial discharge. We found strong submarine melt rates that increased from 9.0×1.0 to 16.8×1.3 m/d (ice face equivalent frontal ablation) as subglacial discharge increased from 130 to 440 m^3/s over a four day period. This subglacial discharge drove influx of warm seawater (thermal forcing ~ 8° C) to the terminus with fluxes increasing from 1800 to 4000 m3/s. Our ice equivalent frontal ablation rates due to submarine melting are two to three times values found for Greenland glaciers, where thermal forcing is substantially lower (~ 1 - 4 °C) and termini are wider. Together, these studies confirm the importance of submarine melting at grounded glaciers. At LeConte, the total frontal ablation rate (calving flux plus submarine melting) is ~ 3.0 x10^6 m^3/d w.e., which far surpasses surface ablation. One-half to two-thirds of the frontal ablation during September 2012 can be attributed to submarine melting. A two-layer model driven by a buoyant plume of subglacial discharge has been previously invoked to describe the proglacial fjord circulation

  3. Prospects of obtaining samples of bottom sediments from subglacial lake Vostok

    Directory of Open Access Journals (Sweden)

    Н. И. Васильев

    2017-04-01

    Full Text Available The paper proves the timeliness of obtaining and examining bottom sediments from subglacial Lake Vostok. Predictive geological section of Lake Vostok and information value of bottom sediments have been examined. Severe requirements towards environmental security of lake examinations and sampling of bottom sediments rule out the use of conventional drilling technologies, as they would pollute the lake with injection liquid from the borehole. In order to carry out sampling of bottom sediments from the subglacial lake, it is proposed to use a dynamically balanced tool string, which enables rotary drilling without any external support on borehole walls to transmit counter torque.     A theoretical analysis has been carried out to assess the operation of the tool string, which is a two-mass oscillatory electromechanical system of reciprocating and rotating motion (RRM with two degrees of freedom.

  4. Water transport and clustering behavior in homopolymer and graft copolymer polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Du, An; Koo, Donghun; Theryo, Grayce; Hillmyer, Marc A.; Cairncross, Richard A. (Drexel); (UMM)

    2015-02-19

    Polylactide is a bio-based and biodegradable polymer well-known for its renewable origins. Water sorption and clustering behavior in both a homopolymer polylactide and a graft copolymer of polylactide was studied using the quartz crystal microbalance/heat conduction calorimetry (QCM/HCC) technique. The graft copolymer, poly(1,5-cyclooctadiene-co-5-norbornene-2-methanol-graft-D,L-lactide), contained polylactide chains (95 wt.%) grafted onto a hydrophobic rubbery backbone (5 wt.%). Clustering is an important phenomenon in the study of water transport properties in polymers since the presence of water clusters can affect the water diffusivity. The HCC method using the thermal power signals and Van't Hoff's law were both employed to estimate the water sorption enthalpy. Sorption enthalpy of water in both polymers was determined to be approximately -40 kJ/mol for all water activity levels. Zimm-Lundberg analysis showed that water clusters start to form at a water activity of 0.4. The engaged species induced clustering (ENSIC) model was used to curve fit sorption isotherms and showed that the affinity among water molecules is higher than that between water molecules and polymer chains. All the methods used indicate that clustering of water molecules exists in both polymers.

  5. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph

    Science.gov (United States)

    Harrold, Zoë R.; Skidmore, Mark L.; Hamilton, Trinity L.; Desch, Libby; Amada, Kirina; van Gelder, Will; Glover, Kevin; Roden, Eric E.

    2015-01-01

    Geochemical data indicate that protons released during pyrite (FeS2) oxidation are important drivers of mineral weathering in oxic and anoxic zones of many aquatic environments, including those beneath glaciers. Oxidation of FeS2 under oxic, circumneutral conditions proceeds through the metastable intermediate thiosulfate (S2O32−), which represents an electron donor capable of supporting microbial metabolism. Subglacial meltwaters sampled from Robertson Glacier (RG), Canada, over a seasonal melt cycle revealed concentrations of S2O32− that were typically below the limit of detection, despite the presence of available pyrite and concentrations of the FeS2 oxidation product sulfate (SO42−) several orders of magnitude higher than those of S2O32−. Here we report on the physiological and genomic characterization of the chemolithoautotrophic facultative anaerobe Thiobacillus sp. strain RG5 isolated from the subglacial environment at RG. The RG5 genome encodes genes involved with pathways for the complete oxidation of S2O32−, CO2 fixation, and aerobic and anaerobic respiration with nitrite or nitrate. Growth experiments indicated that the energy required to synthesize a cell under oxygen- or nitrate-reducing conditions with S2O32− as the electron donor was lower at 5.1°C than 14.4°C, indicating that this organism is cold adapted. RG sediment-associated transcripts of soxB, which encodes a component of the S2O32−-oxidizing complex, were closely affiliated with soxB from RG5. Collectively, these results suggest an active sulfur cycle in the subglacial environment at RG mediated in part by populations closely affiliated with RG5. The consumption of S2O32− by RG5-like populations may accelerate abiotic FeS2 oxidation, thereby enhancing mineral weathering in the subglacial environment. PMID:26712544

  6. The establishment of Atlantic Water transport as a topographically trapped slope current off Scotland

    Directory of Open Access Journals (Sweden)

    Qin Zhou

    2013-05-01

    Full Text Available Atlantic Water, with its origin in the western Atlantic, enters the Nordic Seas partly as a barotropic current following the continental slope. This water mass is carried across the Atlantic by the baroclinic North Atlantic Current (NAC. When the NAC meets the continental slope at the east side of the Atlantic, some of the transport is converted to barotropic transport over the slope before continuing northward. Here, we show that this baroclinic to barotropic conversion is in agreement with geostrophic theory. Historical observations show that the transport of the slope current increases significantly from the Rockall Channel (RC to the Faroe–Shetland Channel (FSC. Geostrophy predicts that with a northward decreasing buoyancy, baroclinic currents from the west will be transferred into northward topographically steered barotropic flow. We use hydrographic data from two sections crossing the continental slope, one located in the RC and another in the FSC, to estimate baroclinic and barotropic transport changes over the slope, within the framework of geostrophic dynamics. Our results indicate that ~1 Sv of the cross-slope baroclinic flow is mainly converted to northward barotropic transport above the 200–500m isobaths, which is consistent with observed transport changes between the RC and the FSC. Similar processes are also likely to occur further south, along the eastern Atlantic margin. This shows that AW within the slope current in the FSC is derived from both the eastern and the western Atlantic, in agreement with earlier studies of AW inflow to the Nordic Seas.

  7. Effect of passive transport of water through plasma membrane in production of extracellular enzyme.

    Science.gov (United States)

    Mahmoodi, M; Najafpour, G D; Mohammadi, M

    2017-02-01

    In this article, availability and control of water in solid-state fermentation (SSF) were investigated. Based on passive transport of water through plasma membranes, a new model was proposed for calculation and control of water activities in the mixture of solids. The validity of theoretical model and accuracy of the proposed model were proved by experimental data. This model was used for production of pectinases via mixed-SSF with the aid of a rotary drum bioreactor. It was found that in case of extracellular enzyme production, the new model is in good agreement with experimental data for the control of water activities in the mixed-SSF. Exact control of water activity in SFF, the production of endo- and exo-pectinases was relatively enhanced. Based on theoretical view point, the prominence of this new model in control of water activity was also proved.

  8. [Ultrastructural changes in the cells of the vasopressin-sensitive epithelia during the stimulation of water transport].

    Science.gov (United States)

    Snigirevskaia, E S

    1990-01-01

    The author's own and literary data are reviewed on the ultrastructural changes in cells of tight epithelia at the stimulation of osmotic water flows by vasopressin. The results of the relevant morphofunctional studies proved the idea of the transcellular water transport, being the following: 1) the absence of structural changes of tight junction under big water flows; 2) the appearance of domains with high water permeability (aggregates of IMP) in the apical membranes of cells transporting water; 3) changes in the vacuolar system of cells resulting in the appearance of gigantic vacuoles involved in transcellular water transport and in osmoregulation; 4) the redistribution of microfilaments and the enlargement of microtubules during the water transport. Hypotheses are discussed accounting for the origin of water channels from intracellular sources (aggrephores or/and granules); in addition, structural peculiarities and genesis of gigantic vacuoles are considered.

  9. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  10. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes

    NARCIS (Netherlands)

    Metz, S.J.; van de Ven, W.J.C.; Potreck, Jens; Mulder, M.H.V.; Wessling, Matthias

    2005-01-01

    This paper studies in detail the measurement of the permeation properties of highly permeable and highly selective polymers for water vapor/nitrogen gas mixtures. The analysis of the mass transport of a highly permeable polymer is complicated by the presence of stagnant boundary layers at feed and

  11. Logistics of water and salt transport through the plant: structure and functioning of the xylem

    NARCIS (Netherlands)

    Boer, de A.H.; Volkov, V.

    2003-01-01

    The xylem is a long-distance transport system that is unique to higher plants. It evolved into a very sophisticated plumbing system ensuring controlled loading/unloading of ions and water and their effective translocation to the required sinks. The focus of this overview will be the intrinsic

  12. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translatera...

  13. Heat and water transport in a polymer electrolyte fuel cell electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  14. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NARCIS (Netherlands)

    Griffioen, J.|info:eu-repo/dai/nl/091129265; van der Grift, B.|info:eu-repo/dai/nl/373433484; Maas, D.; van den Brink, C.|info:eu-repo/dai/nl/187443416; Zaadnoordijk, J. W.

    2003-01-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated

  15. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  16. Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes

    Science.gov (United States)

    Fasano, Matteo; Humplik, Thomas; Bevilacqua, Alessio; Tsapatsis, Michael; Chiavazzo, Eliodoro; Wang, Evelyn N.; Asinari, Pietro

    2016-10-01

    A comprehensive understanding of molecular transport within nanoporous materials remains elusive in a broad variety of engineering and biomedical applications. Here, experiments and atomistic simulations are synergically used to elucidate the non-trivial interplay between nanopore hydrophilicity and surface barriers on the overall water transport through zeolite crystals. At these nanometre-length scales, these results highlight the dominating effect of surface imperfections with reduced permeability on the overall water transport. A simple diffusion resistance model is shown to be sufficient to capture the effects of both intracrystalline and surface diffusion resistances, thus properly linking simulation to experimental evidence. This work suggests that future experimental work should focus on eliminating/overcoming these surface imperfections, which promise an order of magnitude improvement in permeability.

  17. Preliminary Analysis of Life within a Former Subglacial Lake Sediment in Antarctica

    Directory of Open Access Journals (Sweden)

    Gavin Burns

    2013-09-01

    Full Text Available Since the first descriptions of Antarctic subglacial lakes, there has been a growing interest and awareness of the possibility that life will exist and potentially thrive in these unique and little known environments. The unusual combination of selection pressures, and isolation from the rest of the biosphere, might have led to novel adaptations and physiology not seen before, or indeed to the potential discovery of relic populations that may have become extinct elsewhere. Here we report the first microbiological analysis of a sample taken from a former subglacial lake sediment in Antarctica (Lake Hodgson, on the Antarctic Peninsula. This is one of a number of subglacial lakes just emerging at the margins of the Antarctic ice sheet due to the renewed onset of deglaciation. Microbial diversity was divided into 23.8% Actinobacteria, 21.6% Proteobacteria, 20.2% Planctomycetes and 11.6% Chloroflexi, characteristic of a range of habitat types ( Overall, common sequences were neither distinctly polar, low temperature, freshwater nor marine. Twenty three percent of this diversity could only be identified to “unidentified bacterium”. Clearly these are diverse ecosystems with enormous potential.

  18. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    Directory of Open Access Journals (Sweden)

    Ehsan Ghane

    Full Text Available Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS, and total phosphorus (TP than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  19. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    Science.gov (United States)

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  20. Winter transport of subsurface warm water toward the Arctic Chukchi Borderland

    Science.gov (United States)

    Watanabe, Eiji; Onodera, Jonaotaro; Itoh, Motoyo; Nishino, Shigeto; Kikuchi, Takashi

    2017-10-01

    Winter subsurface transport of the Pacific-origin warm water toward the Arctic Chukchi Borderland located west of the Canada Basin was investigated by mooring measurements and modeling analyses. In mid-winter or spring of 2011-2014, subsurface warming signals under sea ice were detected by the multi-year bottom-tethered mooring data in the Chukchi Abyssal Plain (CAP) of the western Chukchi Borderland. Lateral advection of shelf-origin ocean heat is a key process for the subsurface warming. To address the detailed pathways and processes of subsurface warm water transport, which have not been deeply explored, an interannual experiment for 2001-2014 was performed using a pan-Arctic sea ice-ocean model configured in a high-resolution framework. The horizontal grid size was set to approximately 5 km so that narrow intense currents along complex sharp topography could be resolved. The model result captured the similar seasonality of subsurface temperature in the CAP region and produced interannual variability in the ocean heat content associated with the shelf-origin water distribution around the Chukchi Borderland. In addition to the Barrow Canyon throughflow, westward jets along the steep flank of the Chukchi shelf break constituted a primary pathway for the subsurface warm water transport toward the Chukchi Borderland in the model experiment. Since the simulated shelf break jet was much faster than main streams of the Beaufort Gyre, its role in ocean heat transport should be considered separately. Whereas ocean heat in the Chukchi shelf break region was partly lost via wind-driven turbulent mixing into upper halocline depths of approximately 20 m, a substantial amount of the subsurface warm water remained even after mid-winter. The highly stratified condition due to anomalous sea ice meltwater assisted the winter heat transport.

  1. Dual-permeability model for water flow and solute transport in shrinking soils

    Science.gov (United States)

    Coppola, Antonio; Gerke, Horst; Comegna, Alessandro; Basile, Angelo

    2014-05-01

    A dual-permeability approach was extended to describe preferential water flow and solute transport in shrinking soils. In the approach, the soil is treated as a dual-permeability bulk porous medium consisting of dynamic interacting matrix and fractures pore domains. Water flow and solute transport in both the domains are described by the Richards' equation and advection-dispersion equation, respectively. In the model the contributions of the two regions to water flow and solute transport is changed dynamically according to the shrinkage characteristic exhibited under soil drying. Aggregate deformation during wetting/drying cycles is assumed to change only the relative proportions of voids in the fractures and in the aggregates, while the total volume of pores (and thus the layer thickness) remains unchanged. Thus, the partial contributions of the fracture and aggregate domains, are now a function of the water content (or the pressure head h), while their sum, the bulk porosity, is assumed to be constant. Any change in the aggregate contribution to total porosity is directly converted into a proportional change in the fracture porosity. This means that bulk volume change during shrinkage is mainly determined by change in crack volume rather than by change in layer thickness. This simplified approach allows dealing with an expansive soil as with a macroscopically rigid soil. The model was already tested by investigating whether and how well hydraulic characteristics obtained under the assumption of "dynamic" dual-permeability hydraulic parameterizations, or, alternatively, assuming the rigidity of the porous medium, reproduced measured soil water contents in a shrinking soil. Here we will discuss theoretical implications of the model in terms of relative importance of the parameters involved. The relative importance will be evaluated for different flow and transport processes and for different initial and top boundary conditions. Key words: Preferential flow and

  2. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.

    Science.gov (United States)

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D

    2017-04-18

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.

  3. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  4. A Poisson random field model of pathogen transport in surface water

    Science.gov (United States)

    Yeghiazarian, L.; Samorodnitsky, G.; Montemagno, C. D.

    2009-11-01

    To address the uncertainty associated with microbial transport and surface water contamination events, we developed a new comprehensive stochastic framework that combines processes on the microscopic (single microorganism) and macroscopic (ensembles of microorganisms) scales. The spatial and temporal population behavior is modeled as a nonhomogeneous Poisson random field with Markovian field dynamics. The model parameters are based on the actual physical and biological characteristics of the Cryptosporidium parvum transport process and can be extended to cover a variety of other pathogens. Since soil particles have been shown to be a major vehicle in microbial transport, a U.S. Department of Agriculture approved erosion model (Water Erosion Prediction Project) is incorporated into the model. Risk assessment is an integral part of the stochastic model and is conducted using a set of simple calculations. Poisson intensity functions and correlations are computed. The results consistently indicate that surface water contamination events are transient, with traveling high peaks of microorganism concentrations. Correlations between microorganism populations at different points in time and space reach relatively significant levels even at large distances from one another. This information is aimed to assist water resources management teams in the decision-making process to identify the likely timing and locations of high-risk areas and thus to avoid collection of contaminated water.

  5. Water and dissolved carbon transport in an eroding soil landscape using column experiments

    DEFF Research Database (Denmark)

    Rieckh, Helene; Gerke, Horst; Glæsner, Nadia

    2014-01-01

    boundary. Breakthrough curves for a pre-applied tracer (Br-) on the soil surface and a tracer applied with irrigation water (3H2O) were modeled analytically using CXTFIT. The heterogeneity of the Luvisol horizons was generally higher than that of the Regosol horizons, which relates to the higher......In the hummocky ground moraine soil landscape, a spatial continuum of more or less eroded soils developed from till under intensive agricultural cultivation. Water flow and solute transport are affected by the variable soil structural and pedological developments, which are posing a challenge...... for flux estimation. The objective of this study was to investigate transport of water, dissolved organic (DOC), and particulate carbon (PC) through soil profiles of an eroded Haplic Luvisol and a heavily eroded Haplic Regosol. We studied 5 soil horizons in three replicates each: Ap (0-20 cm) and E (20...

  6. Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tetsuji; Morfill, Gregor E [Max-Planck Institute for Extraterrestrial Physics, 85748 Garching (Germany); Iwafuchi, Yutaka [Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577 (Japan)

    2011-05-15

    Cold atmospheric plasma is a potential tool for medical purposes, e.g. disinfection/sterilization. In order for it to be effective and functional, it is crucial to understand the transport mechanism of chemically reactive species in air as well as in liquid. An atmospheric plasma discharge was produced between a platinum pin electrode and the surface of water. The thermal flow field of a cold atmospheric plasma as well as its chemical components was measured. A gas flow with a velocity of around 15 m s{sup -1} to the water's surface was shown to be induced by the discharge. This air flow induced a circulating flow in the water from the discharge point at the water's surface because of friction. It was also demonstrated that the chemical components generated in air dissolved in water and the properties of the water changed. The reactive species were believed to be distributed mainly by convective transport in water, because the variation in the pH profile indicated by a methyl red solution resembled the induced flow pattern.

  7. Water transport confined in graphene oxide channels through the rarefied effect.

    Science.gov (United States)

    Chen, Bo; Jiang, Haifeng; Liu, Xiang; Hu, Xuejiao

    2018-02-21

    Understanding the mechanism of water transport inside an interlayer between graphene-based plates has tremendous value for theoretical studies and industrial applications. The fluid flow confined in nano-scaled spaces experiences a slip velocity near the wall, which is significantly different to that of bulk water. Here we propose a model combining classic hydrodynamics with kinetic theory to depict the dependency of the slip effect on the oxide concentration of valley plates. The influence of oxidized graphene on water flow is a comprehensive result of a slipped boundary, and depends on both the diffuse reflection coefficient of the wall, and the shrunken effective passageway caused by the electrostatic interactions between the oxidized surface and the water molecules. The former effect enhances the water flow, which reduces with increasing oxide concentration, while the latter effect inhibits water flow. We examine the diffuse reflection coefficient and the shrunken effective passageway at different oxide concentrations of the GO sheets by molecular dynamics simulations, and we quantitively predict the flux relationship at various concentrations. This work provides a molecular insight into transport processes of confined water and a useful guideline for the design of perfect graphene-derived membranes for desalination.

  8. Water level determination for transportation projects : mean high water manual, final report, November 2009.

    Science.gov (United States)

    2009-11-01

    To ensure proficient network management and safe usage of navigable waterways especially in waters that are : subject to tides, it is essential that the height of the water at various tidal phases be known. This knowledge is also : essential for prop...

  9. Magnetic resonance sounding measurements for modeling of water flow transport in variably saturated porous media

    Science.gov (United States)

    Legchenko, Anatoly; Legout, Cédric; Descloitres, Marc

    2017-04-01

    Numerical modeling of water flow in partly saturated porous media requires knowledge of hydraulic properties of the media. The straightforward approach consists of directly measuring K(teta) and h(teta), which is challenging in many practically important applications. In-situ non-invasive measurements of K(teta) and h(teta) are even more difficult and probably impossible. Additionally, K(teta) and h(teta) are both scale dependent parameters. Under favorable conditions, surface geophysical methods may allow non-invasive identification of different geological formations and estimate of the porosity. A few papers report hydrogeological modeling considering water-saturated formations with integrated geophysical data (aquifer geometry, K and teta at saturation). However, modeling of water transport in partly saturated subsurface is more difficult task because it requires more extensive knowledge of soil hydraulic properties. We use Magnetic Resonance Sounding (MRS) method for non-invasive time-lapse measurements of the water content as an input into numerical modeling tool for hydrogeological modeling. However, MRS is not able to provide h(teta), which rest inaccessible. We propose an approach, which consists of performing infiltration tests (or observation of natural infiltration and monitoring rain water) and measuring corresponding variation of the water content in the subsurface. Then, we use a data base of soils with accurately known hydraulic properties. We try different soils for modeling water transport under our conditions (reproducing our experiment) and select one, which allows fitting experimentally observed variations in the water content. When such a soil is found we obtain K(teta) and h(teta). Thus, instead of looking for true hydraulic characteristics of the subsurface we obtain some equivalent media that allows reproducing our observations. We demonstrate the feasibility of our approach using simple 1-D models and commercially available software

  10. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.

    Science.gov (United States)

    Daryabor, Farshid; Ooi, See Hai; Samah, Azizan Abu; Akbari, Abolghasem

    2016-01-01

    A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation) controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.

  11. Dynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports.

    Directory of Open Access Journals (Sweden)

    Farshid Daryabor

    Full Text Available A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic currents while those in the southern areas are due solely to the wind stress because of negligible Coriolis force there. This study clearly shows that individual surface freshwater flux (evaporation minus precipitation controls the sea salinity balance in the Southern South China Sea thermohaline circulations. Analysis of climatological data from a high resolution Regional Ocean Modeling System reveals that the complex bathymetry is important not only for water exchange through the Southern South China Sea but also in regulating various transports across the main passages in the Southern South China Sea, namely the Sunda Shelf and the Strait of Malacca. Apart from the above, in comparision with the dynamics of the Sunda Shelf, the Strait of Malacca reflects an equally significant role in the annual transports into the Andaman Sea.

  12. Co-current air-water flow in downward sloping pipes : Transport of capacity reducing gas pockets in wastewater mains

    NARCIS (Netherlands)

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes

  13. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    Science.gov (United States)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  14. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport.

    Directory of Open Access Journals (Sweden)

    Valérie Lefebvre

    Full Text Available Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE, i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1 gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components.

  15. Towards the development of a combined Norovirus and sediment transport model for coastal waters

    Science.gov (United States)

    Barry, K.; O'Kane, J. P. J.

    2009-04-01

    Sewage effluent in coastal waters used for oyster culture poses a risk to human health. The primary pathogen in outbreaks of gastroenteritis following consumption of raw oysters is the Norovirus or "winter vomiting bug". The Norovirus is a highly infectious RNA virus of the Caliciviridae taxonomic family. It has a long survival time in coastal waters (T90 = 30 days in winter). Oysters selectively concentrate Norovirus in their digestive ducts. The virus cannot be removed by conventional depuration. The primary goal of the research is to quantify the risk of Norovirus infection in coastal waters through physically-based high-resolution numerical modelling. Cork Harbour and Clew Bay in Ireland provide case studies for the research. The models simulate a number of complex physical, chemical and biological processes which influence the transport and decay of the virus as well as its bioaccumulation in oyster tissue. The current phase of the research is concerned with the adsorption of the virus to suspended sediment in the water column. Adsorbed viruses may be taken out of the water column when sedimentation occurs and, subsequently, be added to it with resuspension of the bed sediment. Preliminary simulations of the Norovirus-sediment model indicate that suspended sediment can influence the transport of the virus in coastal waters when a high sediment-water partitioning coefficient is used and the model is run under calm environmental conditions. In this instance a certain fraction of the adsorbed viruses are taken out of the water column by sedimentation and end up locked in the bed sediment. Subsequently, under storm conditions, a large number of viruses in the bed are released into the water column by erosion of the bed and a risk of contamination occurs at a time different to when the viruses were initially released into the body of water.

  16. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X.; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria

    2017-01-01

    Abstract Background and Aims Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Methods Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography–mass spectometry (GC-MS). The hydraulic conductivity of roots (Lpr) and of cortical cells (Lpc) was measured using root and cell pressure probes. Key Results When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as ‘dots’ as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lpr. Comparison of Lpr and Lpc suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lpr from Lpc showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities (Psr) and reflection coefficients (σsr) for the solutes used. The σsr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Conclusions Suberized endodermis significantly reduces Lpr of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in

  17. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).

  18. Water flow and nitrate transport through a lakeshore with different revetment materials

    Science.gov (United States)

    Li, Yong; Šimůnek, Jirka; Zhang, Zhentin; Huang, Manli; Ni, Lixiao; Zhu, Liang; Hua, Jianlan; Chen, Yong

    2015-01-01

    As an important part of a transition zone surrounding a lake, lakeshore plays a critical role in connecting hydrology and biochemistry between surface water and groundwater. The shape, slope, subsurface features, and seepage face of a lakeside slope have been reported to affect water and nutrient exchange and consequently the water quality of near-shore lake water. Soil tank experiments and Hydrus-2D model simulations were conducted to improve our understanding of the influence of slope revetment materials (SRMs) on water flow and solute transport in a lakeshore zone. The low hydraulic conductivity of SRMs affected flow patterns in the lakeshore zone and resulted in a local increase of the groundwater table near the slope face. Water and solute flux distributions on the slope face under bare-slope conditions followed an exponential function. Fluxes were concentrated within a narrow portion of the slope surface near the intersection point between the lake water level and the slope face. Surface pollutants (for example from fishponds and paddy fields surrounding a lake) were transported into the lake along shallow groundwater through both unsaturated and saturated zones. The SRMs on the slope face affected the ratio of water and solute fluxes in the unsaturated zone, increasing along with the decline of the hydraulic conductivity of SRMs. Furthermore, as the hydraulic conductivity of SRMs decreased, the retention time and the potential for oxygen reduction correspondingly increased, which affected the nitrogen transport and transformations in the lakeshore zone. Simulated and experimental results indicate that if concrete along the shoreline of Lake Taihu is replaced with a relatively high-conductivity lime or the slope is left bare, water fluxes will increase less than solute fluxes, which will rise significantly, in particular in the unsaturated zone and along the seepage face. On the other hand, the largest water and solute fluxes along the shoreline for the bare

  19. Rate of coastal transport along the southeastern mediterranean coast during storms using water hyacinth

    Science.gov (United States)

    Galili, Ehud; Weinstein-Evron, Mina

    1989-06-01

    The current study provides a potential method for measuring current velocities during storms. Water hyacinth debris, carried from the Nile outlet area by the offshore current, are washed ashore along the Israeli coasts after southwesterly winter storms. The impact of the offshore current and wind on the floating debris is such that storms of five days duration are sufficient to transport plants from the Nile to the Carmel coast, a distance of about 400 km. The available information indicates a high rate of transport in the southeastern Mediterranean.

  20. Concentration fields near air-water interfaces during interfacial mass transport: oxygen transport and random square wave analysis

    Directory of Open Access Journals (Sweden)

    H. E. Schulz

    2009-09-01

    Full Text Available Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rms concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.

  1. Transportation

    Science.gov (United States)

    2006-01-01

    container. It now permits free transit of shipping containers from their western ports, if transported by rail directly to the U.S. ( Mireles , 2005, p...Transportation Industry Study Seminar. Mireles , Richard, Castillo. (2005, January). A Cure for West Coast Congestion. Logistics Today, Vol. 46, Issue 1. 1

  2. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer

    Science.gov (United States)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent

    2015-04-01

    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  3. Water transport to circumprimary habitable zones from icy planetesimal disks in binary star systems

    Science.gov (United States)

    Bancelin, D.; Pilat-Lohinger, E.; Maindl, T. I.; Bazsó, Á.

    2017-03-01

    So far, more than 130 extrasolar planets have been found in multiple stellar systems. Dynamical simulations show that the outcome of the planetary formation process can lead to different planetary architectures (i.e. location, size, mass, and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (HZ). In this study, we make a comparison of several binary star systems and aim to show how efficient they are at moving icy asteroids from beyond the snow line into orbits crossing the HZ. We also analyze the influence of secular and mean motion resonances on the water transport towards the HZ. Our study shows that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result in a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star not only favors a faster depletion of our disk of planetesimals, but can also bring 4-5 times more water into the whole HZ. However, due to the secular resonance located either inside the HZ or inside the asteroid belt, impacts between icy planetesimals from the disk and big objects in the HZ can occur at high impact speed. Therefore, real collision modeling using a GPU 3D-SPH code show that in reality, the water content of the projectile is greatly reduced and therefore, also the water transported to planets or embryos initially inside the HZ.

  4. Water and Salt Transport Properties of Triptycene-Containing Sulfonated Polysulfone Materials for Desalination Membrane Applications.

    Science.gov (United States)

    Luo, Hongxi; Aboki, Joseph; Ji, Yuanyuan; Guo, Ruilan; Geise, Geoffrey M

    2018-01-31

    A series of triptycene-containing sulfonated polysulfone (TRP-BP) materials was prepared via condensation polymerization, and the desalination membrane-relevant fundamental water and salt transport properties (i.e., sorption, diffusion, and permeability coefficients) of the polymers were characterized. Incorporating triptycene into sulfonated polysulfone increased the water content of the material compared to sulfonated polysulfone materials that do not contain triptycene. No significant difference in salt sorption was observed between TRP-BP membranes and other sulfonated polysulfone membranes, suggesting that the presence of triptycene in the polymer did not dramatically affect thermodynamic interactions between salt and the polymer. Both water and salt diffusion coefficients in the TRP-BP membranes were suppressed relative to other sulfonated polysulfone materials with comparable water content, and these phenomena may result from the influence of triptycene on polymer chain packing and/or free-volume distribution, which could increase the tortuosity of the transport pathways in the polymers. Enhanced water/salt diffusivity selectivity was observed for some of the TRP-BP membranes relative to those materials that did not contain triptycene, and correspondingly, incorporation of triptycene into sulfonated polysulfone resulted in an increase, particularly for acid counterion form TRP-BP materials, in water/salt permeability selectivity, which is favorable for desalination membrane applications.

  5. Water and chloride transport in a fine-textured soil in a feedlot pen

    Science.gov (United States)

    Veizaga, E. A.; Rodríguez, L.; Ocampo, C. J.

    2015-11-01

    Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation.

  6. Improvement of water transport mechanisms during potato drying by applying ultrasound.

    Science.gov (United States)

    Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio

    2011-11-01

    The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P < 0.05) influence of the applied ultrasonic power on the identified kinetic parameters: effective moisture diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.

  7. MODIFIED FINITE ELEMENT TRANSPORT MODEL, FETRA, FOR SEDIMENT AND RAOIONUCLIDE MIGRATION IN OPEN COASTAL WATERS

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral} model which consists of the following three submodels coupled to include sediment-contaminant interactions: 1) sediment transport submodel, 2} dissolved contaminant transport submodel, and 3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments.

  8. Effects of water content on reactive transport of Sr in Chernobyl sand columns

    Energy Technology Data Exchange (ETDEWEB)

    Szenknect, S. [CEA, Tracers Applications Laboratory, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dewiere, L.; Ardois, C. [IRSN, Environment and Emergency Operations Division, Geosphere-related Risk Analysis Department, BP 17, 92262 Fontenay-aux-Roses (France); Gaudet, J.P. [UMR 5564 (CNRS/IRD/INPG/UJF), LTHE, BP 53, 38041 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: While transport of non-reactive solutes has been studied extensively in unsaturated porous media, much less is known about the factors that control the transport of sorbing solutes in unsaturated conditions. Three laboratory techniques were used to analyze the transport of Sr in the aeolian sand from Chernobyl Pilot Site [1] in both saturated and unsaturated flow conditions. Batch experiments were performed to study the chemical equilibrium state of the soil/solution system. Stirred flow-through reactor (SFTR) experiments were performed to study the kinetics and reversibility of sorption reactions at the surface of solid particles. Column experiments were also performed in saturated and unsaturated steady flow conditions. Experimental data pointed out a non-linear, instantaneous and reversible sorption process of Sr. A suitable cation-exchange model was used to describe the solute/soil reaction. The former model was coupled with transport models to describe behavior of Sr in saturated [2] and unsaturated flow conditions. Transport properties of sand packed columns have been determined with an inert tracer (HTO). BTCs obtained under saturated conditions exhibit a small amount of dispersion compared to those obtained under unsaturated conditions. Classical advection-dispersion model described successfully saturated tritium breakthrough curves (BTCs), whereas a mobile-immobile model (MIM) was required to described asymmetrical unsaturated BTCs. The MIM assumes that the porous medium contains a mobile water phase in which convective-dispersive transport occurs, and a immobile water phase with which solutes can exchange with a first order kinetic. In our experiments, transport by advection in the mobile phase is the predominant process whatever the flow conditions and mass transfer rate between the mobile and immobile regions is the predominant process for broadening the BTCs. Since dispersion is blurred by mass transfer resistance, the

  9. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  10. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes.

    Science.gov (United States)

    Vishnyakov, Aleksey; Mao, Runfang; Lee, Ming-Tsung; Neimark, Alexander V

    2018-01-14

    We present a coarse-grained model of the acid form of Nafion membrane that explicitly includes proton transport. This model is based on a soft-core bead representation of the polymer implemented into the dissipative particle dynamics (DPD) simulation framework. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with water beads. Morse bond formation and breakup artificially mimics the Grotthuss hopping mechanism of proton transport. The proposed DPD model is parameterized to account for the specifics of the conformations and flexibility of the Nafion backbone and sidechains; it treats electrostatic interactions in the smeared charge approximation. The simulation results qualitatively, and in many respects quantitatively, predict the specifics of nanoscale segregation in the hydrated Nafion membrane into hydrophobic and hydrophilic subphases, water diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from a collection of isolated water clusters to a 3D network of pores filled with water embedded in the hydrophobic matrix. The segregated morphology is characterized in terms of the pore size distribution with the average size growing with hydration from ∼1 to ∼4 nm. Comparison of the predicted water diffusivity with the experimental data taken from different sources shows good agreement at high and moderate hydration and substantial deviation at low hydration, around and below the percolation threshold. This discrepancy is attributed to the dynamic percolation effects of formation and rupture of merging bridges between the water clusters, which become progressively important at low hydration, when the coarse-grained model is unable to mimic the fine structure of water network that includes singe molecule bridges. Selected simulations of water diffusion are performed for the alkali metal substituted membrane which demonstrate the effects of the counter

  11. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes

    Science.gov (United States)

    Vishnyakov, Aleksey; Mao, Runfang; Lee, Ming-Tsung; Neimark, Alexander V.

    2018-01-01

    We present a coarse-grained model of the acid form of Nafion membrane that explicitly includes proton transport. This model is based on a soft-core bead representation of the polymer implemented into the dissipative particle dynamics (DPD) simulation framework. The proton is introduced as a separate charged bead that forms dissociable Morse bonds with water beads. Morse bond formation and breakup artificially mimics the Grotthuss hopping mechanism of proton transport. The proposed DPD model is parameterized to account for the specifics of the conformations and flexibility of the Nafion backbone and sidechains; it treats electrostatic interactions in the smeared charge approximation. The simulation results qualitatively, and in many respects quantitatively, predict the specifics of nanoscale segregation in the hydrated Nafion membrane into hydrophobic and hydrophilic subphases, water diffusion, and proton mobility. As the hydration level increases, the hydrophilic subphase exhibits a percolation transition from a collection of isolated water clusters to a 3D network of pores filled with water embedded in the hydrophobic matrix. The segregated morphology is characterized in terms of the pore size distribution with the average size growing with hydration from ˜1 to ˜4 nm. Comparison of the predicted water diffusivity with the experimental data taken from different sources shows good agreement at high and moderate hydration and substantial deviation at low hydration, around and below the percolation threshold. This discrepancy is attributed to the dynamic percolation effects of formation and rupture of merging bridges between the water clusters, which become progressively important at low hydration, when the coarse-grained model is unable to mimic the fine structure of water network that includes singe molecule bridges. Selected simulations of water diffusion are performed for the alkali metal substituted membrane which demonstrate the effects of the counter-ions on

  12. Geochemical processes leading to the precipitation of subglacial carbonate crusts at Bossons glacier, Mont Blanc Massif (French Alps)

    Science.gov (United States)

    Thomazo, Christophe; Buoncristiani, Jean-Francois; Vennin, Emmanuelle; Pellenard, Pierre; Cocquerez, Theophile; Mugnier, Jean L.; Gérard, Emmanuelle

    2017-09-01

    Cold climate carbonates can be used as paleoclimatic proxies. The mineralogy and isotopic composition of subglacially precipitated carbonate crusts provide insights into the subglacial conditions and processes occurring at the meltwater-basement rock interface of glaciers. This study documents such crusts discovered on the lee side of a gneissic roche moutonnée at the terminus of the Bossons glacier in the Mont Blanc Massif area (France). The geological context and mineralogical investigations suggest that the Ca used for the precipitation of large crystals of radial fibrous sparite observed in these crusts originated from subglacial chemical weathering of Ca-bearing minerals of the local bedrock (plagioclase and amphibole). Measurements of the carbon and oxygen isotope compositions in the crusts indicate precipitation at, or near to, equilibrium with the basal meltwater under open system conditions during refreezing processes. The homogeneous and low carbonate δ13C values (ca. -11.3‰) imply a large contribution of soil organic carbon to the Bossons subglacial meltwater carbon reservoir at the time of deposition. In addition, organic remains trapped within the subglacially precipitated carbonate crusts give an age of deposition around 6500 years cal BP suggesting that the Mid-Holocene climatic and pedological optima are archived in the Bossons glacier carbonate crusts.

  13. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    Science.gov (United States)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental

  14. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations

    Science.gov (United States)

    Revil, A.

    2017-05-01

    I developed a model of cross-coupled flow in partially saturated porous media based on electrokinetic coupling including the effect of ion filtration (normal and reverse osmosis) and the multi-component nature of the pore water (wetting) phase. The model also handles diffusion and membrane polarization but is valid only for saturations above the irreducible water saturation. I start with the local Nernst-Planck and Stokes equations and I use a volume-averaging procedure to obtain the generalized Ohm, Fick, and Darcy equations with cross-coupling terms at the scale of a representative elementary volume of the porous rock. These coupling terms obey Onsager's reciprocity, which is a required condition, at the macroscale, to keep the total dissipation function of the system positive. Rather than writing the electrokinetic terms in terms of zeta potential (the double layer electrical potential on the slipping plane located in the pore water), I developed the model in terms of an effective charge density dragged by the flow of the pore water. This effective charge density is found to be strongly controlled by the permeability and the water saturation. I also developed an electrical conductivity equation including the effect of saturation on both bulk and surface conductivities, the surface conductivity being associated with electromigration in the electrical diffuse layer coating the grains. This surface conductivity depends on the CEC of the porous material.

  15. Desalination of water by vapor-phase transport through hydrophobic nanopores

    Science.gov (United States)

    Lee, Jongho; Karnik, Rohit

    2010-08-01

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport of water through a nanopore with saline water on one side and pure water on the other side under a pressure difference was theoretically analyzed under the rarefied gas assumption using a probabilistic framework that accounts for diffuse scattering from the pore walls as well as reflection from the menisci. The analysis revealed that in addition to salinity, temperature, and pressure difference, the nanopore aspect ratio and the probability of condensation of a water molecule incident on a meniscus from the vapor phase, known as the condensation coefficient, are key determinants of flux. The effect of condensation coefficient on mass flux becomes critical when the aspect ratio is small. However, the mass flux becomes independent of the condensation coefficient as the pore aspect ratio increases, converging to the Knudsen flux for long nanopores. For design of a nanopore membrane that can trap vapor, a minimum aspect ratio is derived for which coalescence of the two interfaces on either side of the nanopore remains energetically unfavorable. Based on this design criterion, the analysis suggests that mass flux in the range of 20-70 g/m2 s may be feasible if the system is operated at temperatures in the range of 30-50 °C. The proposed approach further decouples transport properties from material properties of the membrane, which opens the possibility of engineering membranes with appropriate materials that may lead to reverse osmosis membranes with improved flux, better selectivity, and high chlorine resistance.

  16. The influence of inner hydrophobisation on water transport properties of modified lime plasters

    Science.gov (United States)

    Pavlíková, Milena; Pavlík, Zbyšek; Pernicová, Radka; Černý, Robert

    2016-06-01

    The effect of hydrophobic agent admixture on water vapour and liquid water transport properties of newly designed lime plasters is analysed in the paper. The major part of physico - chemical building deterioration is related to the penetration of moisture and soluble salts into the building structure. For that reason, the modified lime plasters were in the broad range of basic material properties tested. From the quantitative point of view, the measured results clearly demonstrate the big differences in the behaviour of studied materials depending on applied modifying admixtures. From the practical point of view, plaster made of lime hydrate, metakaolin, zinc stearate and air-entraining agent can be recommended for renovation purposes. The accessed material parameters will be used as input data for computational modelling of moisture transport in this type of porous building materials and will be stored in material database.

  17. Vertical wicking tester for monitoring water transportation behavior in fibrous assembly.

    Science.gov (United States)

    Singh, Pratibha; Chatterjee, Arobindo; Ghosh, Subrata

    2016-10-01

    An instrument based on the principle of change of resistance of fibrous assembly on wetting has been developed for precise monitoring of the water transportation behaviour in the fibrous assemblies. The conducting probes sense the change in resistance of a dry fibrous assembly on wetting. This change in resistance generates analog signals which trigger an amplifying circuit. This circuit produces an enlarged copy of the received signals which are further converted to digital signals by a Darlington pair and are encoded to measurable quantity with the help of a microcontroller. The data thus obtained are displayed on a suitable display device. Comparison between conventional strip test and experimental results obtained by the developed instrument shows its reliability. The developed instrument measures the initial rate of water transport with increased precision and hence could be used for detailed study of fluid flow in the fibrous structure.

  18. Water flow and multicomponent solute transport in drip-irrigated lysimeters

    Science.gov (United States)

    Raij, Iael; Šimůnek, Jiří; Ben-Gal, Alon; Lazarovitch, Naftali

    2016-08-01

    Controlled experiments and modeling are crucial components in the evaluation of the fate of water and solutes in environmental and agricultural research. Lysimeters are commonly used to determine water and solute balances and assist in making sustainable decisions with respect to soil reclamation, fertilization, or irrigation with low-quality water. While models are cost-effective tools for estimating and preventing environmental damage by agricultural activities, their value is highly dependent on the accuracy of their parameterization, often determined by calibration. The main objective of this study was to use measured major ion concentrations collected from drip-irrigated lysimeters to calibrate the variably saturated water flow model HYDRUS (2D/3D) coupled with the reactive transport model UNSATCHEM. Irrigation alternated between desalinated and brackish waters. Lysimeter drainage and soil solution samples were collected for chemical analysis and used to calibrate the model. A second objective was to demonstrate the potential use of the calibrated model to evaluate lower boundary design options of lysimeters with respect to leaching fractions determined using drainage water fluxes, chloride concentrations, and overall salinity of drainage water, and exchangeable sodium percentage (ESP) in the profile. The model showed that, in the long term, leaching fractions calculated with electrical conductivity values would be affected by the lower boundary condition pressure head, while those calculated with chloride concentrations and water fluxes would not be affected. In addition, clear dissimilarities in ESP profiles were found between lysimeters with different lower boundary conditions, suggesting a potential influence on hydraulic conductivities and flow patterns.

  19. A dual-permeability approach to preferential water flow and solute transport in shrinking soils

    Science.gov (United States)

    Coppola, Antonio; dragonetti, giovanna; Comegna, Alessandro; Gerke, Horst H.; Basile, Angelo

    2016-04-01

    The pore systems in most natural soils is dynamically changing due to alternating swelling and shrinkage processes, which induces changes in pore volume and pore size distribution including deformations in pore geometry. This is a serious difficulty for modeling flow and transport in dual permeability approaches, as it will also require that the geometrical deformation of both the soil matrix and the fracture porous systems be taken into account, as well as the dynamics of soil hydraulic properties in response to the domain deformations. This study follows up a previous work by the same authors extending the classical rigid (RGD) approach formerly proposed by Gerke and van Genuchten, to account for shrinking effects (SHR) in modeling water flow and solute transport in dual-permeability porous media. In this study we considered three SHR scenarios, assuming that aggregate shrinkage may change either: (i) the hydraulic properties of the two pore domains, (ii) their relative fractions, and (iii) both, hydraulic properties and fractions of the two domains. The objective was to compare simulation results obtained under the RGD and the SHR assumptions to illustrate the impact of matrix volume changes on water storage, water fluxes and solute concentrations during: 1) An infiltration process bringing an initially dry soil to saturation, 2) A drainage process starting from an initially saturated soil. For an infiltration process, the simulated wetting front and the solute concentration propagation velocity, as well as the water fluxes, water and solute exchange rates, for the three SHR scenarios significantly deviated from the RGD. By contrast, relatively similar water content profiles evolved under all scenarios during drying. Overall, compared to the RGD approach, the effect of changing the hydraulic properties and the weight of the two domains according to the shrinkage behavior of the soil aggregates induced a much more rapid response in terms of water fluxes and

  20. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  1. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  2. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    Science.gov (United States)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  3. FEATURES OF ADMINISTRATIVEJURISDICTIONAL ACTIVITY OF EMPLOYEES OF POLICE IN ENSURING PUBLIC SAFETY ON WATER TRANSPORT

    OpenAIRE

    L. B. Panfilova; E. A. Sychev

    2016-01-01

    The article attempts to reveal the concept of administrative and jurisdictional activity of the police to ensure public safety on water transport, the features of the stages of proceedings on administrative offenses. Under the administrative process is commonly understood outside the law enforcement activities of the executive authorities, local government agencies and other entities authorized by the state to resolve the limits of their competence in specific legal cases arising on the basis...

  4. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.

    2016-08-11

    A dispersion system for saturated fluorocarbon (SFC) liquids based on permeable hollow nanospheres with fluorous interiors is described. The nanospheres are well dispersible in water and are capable of immediate uptake of SFCs. The nanosphere shells are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere-stabilized SFC dispersions is demonstrated.

  5. An In-Situ Deep-UV Optical Probe for Examining Biochemical Presence in Deep Glaciers and Sub-Glacial Lakes

    Science.gov (United States)

    Lane, A. L.; Behar, A.; Bhartia, R.; Conrad, P. G.; Hug, W. F.

    2007-12-01

    The quest to study and understand extremophiles has led to many quite different research paths in the past 30 years. One of the more difficult directions has been the study of biochemical material in deep glacial ice and in subglacial lakes. Lake Vostok in Eastern Antarctica has been perhaps the most discussed subglacial lake because of its large size (~14,000 sq km), deep location under >3700 m of overlying ice, and thick sediment bed (~200m). Once the physical conditions of the Lake were assessed, questions immediately arose about the potential existence of biological material - either extinct or possibly extant under conditions of extremely limited energy and nutrients [1-2]. To investigate the biology of Vostok, via in-situ methods, is a major issue that awaits proven techniques that will not contaminate the Lake beyond what may have occurred to date. Lake Ellsworth, in West Antarctica, also discovered by ice penetrating radar, is of significantly smaller size, but is also >3500 m below the overlying ice. It represents a wonderful opportunity to design, engineer and build in-situ delivery systems that consider bio-cleanliness approaches to enable examination of its water, sediment bed and the "roof" area accretion ice for biochemicals [3]. Our laboratory has been developing deep UV fluorescence and UV Raman instrumentation to locate and classify organic material at a variety of extremophile locations. The confluence of the measurement techniques and the engineering for high external pressure instrument shells has enabled us to design and begin prototype fabrication of a biochemical sensing probe that can be inserted into a hot-water drilled ice borehole, functioning as a local area mapper in water environments as deep as 6000 m. Real-time command and control is conducted from a surface science station. We have been using the deep Vostok ice cores at the U.S. National Ice Core Lab to validate our science and data analysis approaches with an "inverted" system

  6. Modeling particle transport and discoloration risk in drinking water distribution networks

    Directory of Open Access Journals (Sweden)

    J. van Summeren

    2017-10-01

    Full Text Available Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs. It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  7. Modeling particle transport and discoloration risk in drinking water distribution networks

    Science.gov (United States)

    van Summeren, Joost; Blokker, Mirjam

    2017-10-01

    Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  8. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview.

    Science.gov (United States)

    Malone, Robert W; Ahuja, Lajpat R; Ma, Liwang; Wauchope, R Don; Ma, Qingli; Rojas, Kenneth W

    2004-03-01

    Pesticide transport models are tools used to develop improved pesticide management strategies, study pesticide processes under different conditions (management, soils, climates, etc) and illuminate aspects of a system in need of more field or laboratory study. This paper briefly overviews RZWQM history and distinguishing features, overviews key RZWQM components and reviews RZWQM validation studies. RZWQM is a physically based agricultural systems model that includes sub-models to simulate: infiltration, runoff, water distribution and chemical movement in the soil; macropore flow and chemical movement through macropores; evapotranspiration (ET); heat transport; plant growth; organic matter/nitrogen cycling; pesticide processes; chemical transfer to runoff; and the effect of agricultural management practices on these processes. Research to date shows that if key input parameters are calibrated, RZWQM can adequately simulate the processes involved with pesticide transport (ET, soil-water content, percolation and runoff, plant growth and pesticide fate). A review of the validation studies revealed that (1) accurate parameterization of restricting soil layers (low permeability horizons) may improve simulated soil-water content; (2) simulating pesticide sorption kinetics may improve simulated soil pesticide concentration with time (persistence) and depth and (3) calibrating the pesticide half-life is generally necessary for accurate pesticide persistence simulations. This overview/review provides insight into the processes involved with the RZWQM pesticide component and helps identify model weaknesses, model strengths and successful modeling strategies.

  9. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    Science.gov (United States)

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers.

    Science.gov (United States)

    Foght, J; Aislabie, J; Turner, S; Brown, C E; Ryburn, J; Saul, D J; Lawson, W

    2004-05-01

    Viable prokaryotes have been detected in basal sediments beneath the few Northern Hemisphere glaciers that have been sampled for microbial communities. However, parallel studies have not previously been conducted in the Southern Hemisphere, and subglacial environments in general are a new and underexplored niche for microbes. Unfrozen subglacial sediments and overlying glacier ice samples collected aseptically from the Fox Glacier and Franz Josef Glacier in the Southern Alps of New Zealand now have been shown to harbor viable microbial populations. Total direct counts of 2-7 x 10(6) cells g(-1) dry weight sediment were observed, whereas culturable aerobic heterotrophs ranged from 6-9 x 10(5) colony-forming units g(-1) dry weight. Viable counts in the glacier ice typically were 3-4 orders of magnitude smaller than in sediment. Nitrate-reducing and ferric iron-reducing bacteria were detected in sediment samples from both glaciers, but were few or below detection limits in the ice samples. Nitrogen-fixing bacteria were detected only in the Fox Glacier sediment. Restriction fragment analysis of 16S rDNA amplified from 37 pure cultures of aerobic heterotrophs capable of growth at 4 degrees C yielded 23 distinct groups, of which 11 were identified as beta-Proteobacteria. 16S rDNA sequences from representatives of these 11 groups were analyzed phylogenetically and shown to cluster with bacteria such as Polaromonas vacuolata and Rhodoferax antarcticus, or with clones obtained from permanently cold environments. Chemical analysis of sediment and ice samples revealed a dilute environment for microbial life. Nevertheless, both the sediment samples and one ice sample demonstrated substantial aerobic mineralization of 14C-acetate at 8 degrees C, indicating that sufficient nutrients and viable psychrotolerant microbes were present to support metabolism. Unfrozen subglacial sediments may represent a significant global reservoir of biological activity with the potential to

  11. Water transport in the gas diffusion layer of a polymer electrolyte fuel cell : Dynamic Pore-Network Modeling

    NARCIS (Netherlands)

    Qin, C.

    2015-01-01

    The pore-scale modeling is a powerful tool for increasing our understanding of water transport in the fibrous gas diffusion layer (GDL) of a polymer electrolyte fuel cell (PEFC). In this work, a new dynamic pore-network model for air-water flow in the GDL is developed. It incorporates water vapor

  12. A Post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam water supply dunes.

    NARCIS (Netherlands)

    Karlsen, R.H.; Smits, F.J.C.; Stuijfzand, P.J.; Olsthoorn, A.A.; van Breukelen, B.M.

    2012-01-01

    This article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The model simulates the changes in water quality following artificial recharge of pre-treated water from the river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One

  13. Geomorphic signature of an Antarctic palaeo-ice stream: implications for understanding subglacial processes and grounding line retreat

    Science.gov (United States)

    Livingstone, S. J.; Jamieson, S.; Vieli, A.; O'Cofaigh, C.; Stokes, C. R.; Hillenbrand, C.

    2010-12-01

    The ability to capture the complex spatial and temporal variability exhibited by ice streams in Antarctica and Greenland at short (decadal) time-scales, remains one of the key challenges in numerical modelling and underlies current uncertainties with predicting future contributions of ice sheets to sea-level rise. This has made ice streams a major focus for current glaciological research, particularly with regard to the processes occurring at the ice-bed interface. Such studies unfortunately, only provide a ‘snap-shot’ of the life-cycle of an ice stream, limited to the last few decades, and so there is a need for complementary investigations of former zones of fast flow in palaeo-ice sheets. The ability to observe directly the former beds of palaeo-ice streams has allowed important spatial and temporal information to be obtained on the processes that occurred at the ice-bed interface and on ice dynamics associated with the evolution of palaeo-ice streams. We present new glacial geomorphological evidence from a marine palaeo-ice stream in Marguerite Bay, Antarctic Peninsula (Ó Cofaigh et al. 2002, 2005). The landform assemblage of this palaeo-ice stream system has been derived from the mapping of over 16,000 glacial landforms from high-resolution multibeam swath-bathymetry and input into a GIS database. Analysis of the spatial distribution and geomorphic relationships between landforms and landform assemblages has revealed a complex basal régime, while the overall geomorphic imprint, constrained by radiocarbon dates, has been used to reconstruct the retreat style and history of the palaeo-ice stream. Mapping of relict subglacial meltwater channels has revealed an intricate hydrological system characterised by multiple network types (cf. Anderson & Oakes-Fretwell, 2008) that are strongly dependent on the underlying substrate and which show progressive organisation seaward. Grounding zone wedges (GZWs), formed by the subglacial transport and then deposition of

  14. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water

    Science.gov (United States)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.

    2012-12-01

    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds

  15. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  16. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  17. Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer

    Directory of Open Access Journals (Sweden)

    M. Bergvall

    2011-07-01

    Full Text Available Few studies have been carried out that cover the entire transport process of pesticides, from application at the soil surface, through subsurface transport, to contamination of drinking water in esker aquifers. In formerly glaciated regions, such as Scandinavia, many of the most important groundwater resources are situated in glaciofluvial eskers. The purpose of the present study was to model and identify significant processes that govern subsurface transport of pesticides in extensive glaciofluvial and littoral sediments. To simulate the transport processes, we coupled a vadose zone model at soil profile scale to a regional groundwater flow model. The model was applied to a municipal drinking-water aquifer, contaminated with the pesticide-metabolite BAM (2,6-dichlorobenzoamide. At regional scale, with the combination of a ten-meter-deep vadose zone and coarse texture, the observed concentrations could be described by the model without assuming preferential flow. A sensitivity analysis revealed that hydraulic conductivity in the aquifer and infiltration rate accounted for almost half of the model uncertainty. The calibrated model was applied to optimize the location of extraction wells for remediation, which were used to validate the predictive modeling. Running a worst-case scenario, the model showed that the establishment of two remediation wells would clean the aquifer in four years, compared to nine years without them. Further development of the model would require additional field measurements in order to improve the description of macrodispersion in deep, sandy vadose zones. We also suggest that future research should focus on characterization of the variability of hydraulic conductivity and its effect on contaminant transport in eskers.

  18. Water and sediment transport modeling of a large temporary river basin in Greece.

    Science.gov (United States)

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  19. Circulation and water mass transports on the East Antarctic shelf in the Mertz Glacier region

    Science.gov (United States)

    Martin, Antoine; Houssais, Marie-Noëlle; Le Goff, Hervé; Marec, Claudie; Dausse, Denis

    2017-08-01

    The East Antarctic shelf off Adélie-George V Land is known to be an important region for Dense Shelf Water (DSW) formation as a result of intense sea ice production in the Mertz Glacier Polynya during the winter season. It is also a region where the warm modified Circumpolar Deep Water (mCDW) penetrates onto the shelf during the summer. Using hydrographic observations from a summer survey in 2008 we implement a box inverse model to propose a comprehensive view of the steady state circulation on this shelf in summer. Additional information from mooring observations collected on the depression slope is used to provide context to the retrieved circulation scheme. Over the depression slope, the summer baroclinic structure of the currents is found to contrast with the almost barotropic structure in winter. The summer circulation is strongly constrained by the DSW distribution and forms a clockwise circulation primarily transporting the fresh surface waters and the warm mCDW around the dome of DSW. Over the upper flank of the Mertz Bank, the inflow branch transports the mCDW towards the Mertz Glacier, while, over the lower part of the slope, the outflow branch returns to the sill a diluted mode of the same water mass. A total of 0.19 Sv of mCDW inflows at the sill and two-third reach the Mertz Glacier and recirculate in front of it, allowing the mCDW to penetrate into the deeper part of the depression. Possible scenarios of interaction between the mCDW and the DSW with the glacier are examined. It is shown that, despite the water mass pathways and transports suggest possible ice-ocean interaction, both lateral and basal melting were likely small in summer 2008. Finally, our results suggest that, in addition to bathymetric features, the distribution of the residual DSW which is left from the preceding winter sets up regional pressure gradients which provide a seasonal control on the shelf circulation. In particular, the spring collapse of the convective patch would

  20. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  1. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers.

    Science.gov (United States)

    Kang, Hongyan; Cancel, Limary M; Tarbell, John M

    2014-04-01

    Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 h elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by an NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Water and chloride transport in a fine-textured soil in a feedlot pen.

    Science.gov (United States)

    Veizaga, E A; Rodríguez, L; Ocampo, C J

    2015-11-01

    Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply.

    Science.gov (United States)

    Yao, Lixian; Li, Guoliang; Dang, Zhi; Yang, Baomei; He, Zhaohuan; Zhou, Changmin

    2010-04-01

    Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0 g PO(4)/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites. (c) 2009 SETAC.

  4. Transportes

    Directory of Open Access Journals (Sweden)

    Hidalgo Fernández-Cano, Amalio

    1960-01-01

    Full Text Available El movimiento de materiales dentro de la Factoría está atendido por tres principales medios de transporte, en consonancia con las características del material y de los desplazamientos. Así se han establecido: sistemas de cintas transportadoras, una red ferroviaria de ancho normal y una completa malla de caminos enlazando funcionalmente las instalaciones.

  5. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  6. Circumpolar Deep Water transport and current structure at the Amundsen Sea shelf break

    Science.gov (United States)

    Assmann, Karen M.; Wåhlin, Anna K.; Heywood, Karen J.; Jenkins, Adrian; Kim, Tae Wan; Lee, Sang Hoon

    2017-04-01

    The West Antarctic Ice Sheet has been losing mass at an increasing rate over the past decades. Ocean heat transport to the ice-ocean interface has been identified as an important contributor to this mass loss and the role it plays in ice sheet stability makes it crucial to understand its drivers in order to make accurate future projections of global sea level. While processes closer to the ice-ocean interface modulate this heat transport, its ultimate source is located in the deep basin off the continental shelf as a core of relatively warm, salty water underlying a colder, fresher shallow surface layer. To reach the marine terminating glaciers and the base of floating ice shelves, this warm, salty water mass must cross the bathymetric obstacle of the shelf break. Glacial troughs that intersect the Amundsen shelf break and deepen southwards towards the ice shelf fronts have been shown to play an important role in transporting warm, salty Circumpolar Deep Water (CDW) towards the ice shelves. North of the shelf break, circulation in the Amundsen Sea occupies an intermediate regime between the eastward Antarctic Circumpolar Current that impinges on the shelf break in the Bellingshausen Sea and the westward southern limb of the Ross Gyre that follows the shelf break in the Ross Sea. Hydrographic and mooring observations and numerical model results at the mouth of the central shelf break trough leading to Pine Island and Thwaites Glaciers show a westward wind-driven shelf break current overlying an eastward undercurrent that turns onto the shelf in the trough. It is thought that the existence of the latter feature facilitates the on-shelf transport of CDW. A less clearly defined shelf break depression further west acts as the main pathway for CDW to Dotson and eastern Getz Ice shelves. Model results indicate that a similar eastward undercurrent exists here driving the on-shelf transport of CDW. Two moorings on the upper slope east of the trough entrance show a

  7. Inflow waters in the deep regions of the southern Baltic Sea - transport and transformations

    Directory of Open Access Journals (Sweden)

    Agnieszka Beszczyńska-Möller

    2004-03-01

    Full Text Available A medium-sized inflow (about 200 km3 according to IOW data, - personal communication of saline water into the southern Baltic Sea occurred during January 2003. Unlike any previously observed inflow, this one brought very cold water, of temperatures around 1-2oC and less. Since the temperature of the deep water in the southern Baltic before the inflow was exceptionally high (11-12oC, the inflowing waters produced dramatic changes and a steep temperature gradient. The movement of the inflowing waters through the deep basins and channels of the Baltic Sea from the Arkona Basin to the Gdańsk Deep during next 4-8 months is described. Frequent mesoscale structures and intensive mixing followed the eastward transport of the inflow water, particularly in the Bornholm Deep and Słupsk Furrow. The present paper is based on data collected during 6 cruises r/v "Oceania" between December 2002 and August 2003. The last cruise in August took place in order to assess the long-term consequences of the inflow.

  8. Seismic evidence for water transport out of the mantle transition zone beneath the European Alps

    Science.gov (United States)

    Liu, Zhen; Park, Jeffrey; Karato, Shun-ichiro

    2018-01-01

    The mantle transition zone has been considered a major water reservoir in the deep Earth. Mass transfer across the transition-zone boundaries may transport water-rich minerals from the transition zone into the water-poor upper or lower mantle. Water release in the mantle surrounding the transition zone could cause dehydration melting and produce seismic low-velocity anomalies if some conditions are met. Therefore, seismic observations of low-velocity layers surrounding the transition zone could provide clues of water circulation at mid-mantle depths. Below the Alpine orogen, a depressed 660-km discontinuity has been imaged clearly using seismic tomography and receiver functions, suggesting downwellings of materials from the transition zone. Multitaper-correlation receiver functions show prominent ∼0.5-1.5% velocity reductions at ∼750-800-km depths, possibly caused by partial melting in the upper part of lower mantle. The gap between the depressed 660-km discontinuity and the low-velocity layers is consistent with metallic iron as a minor phase in the topmost lower mantle reported by laboratory studies. Velocity drops atop the 410-km discontinuity are observed surrounding the Alpine orogeny, suggesting upwelling of water-rich rock from the transition zone in response to the downwelled materials below the orogeny. Our results provide evidence that convective penetration of the mantle transition zone pushes hydrated minerals both upward and downward to add hydrogen to the surrounding mantle.

  9. Transport of Ocean Waters between the Pacific Ocean and the Gulf of California

    Science.gov (United States)

    Collins, Curtis; Castro-Valdez, Ruben; Mascarenhas, Affonso; Margolina, Tetyana

    2014-05-01

    Ocean transports between the Pacific Ocean and the Gulf of California contribute to the seasonal heating and cooling of the Gulf and add high salinity waters to the surface and upper thermocline waters of the Pacific. These transports have been measured by 1) moored arrays of temperature, salinity and pressure instruments on either side of the entrance to the Gulf in water 130 m deep and 2) shipboard hydrographic measurements across the Gulf along a section between Sinaloa and Baja California. The moored measurements extended from November 2003 to May 2006 and the hydrographic section was occupied eighteen times between 1992 and 2013. Results of these measurements are described in this presentation. The moored measurements resolved baroclinic transport at 40 and 80 dbar referenced to 120 dbar. Geostrophic flow was into (out) the Gulf from May to October (November to April). Mean transport into (out) of the Gulf at 40 dbar was 5.6 x 103 m3/s (4.2 x 103 m3/s) and at 80 dbar was 1.3 x 103 m3/s (1.8 x 103 m3/s). Maximum and minimum geostrophic velocities were observed about July 1 and December 1, respectively, and were about three times as large as the mean values. Steric heights at the mooring locations were compared to satellite sea level height anomalies. Agreement was good and provided a more robust measure of the annual cycle of the mean surface geostrophic flow and transport because 9 years of continuous observations were available. The hydrographic measurements indicated predominately cyclonic flow patterns with inflow along Sinaloa and outflow along Baja California. During periods of strong exchange, narrow deep jets were observed to develop over the continental slopes of Sinaloa and Baja California. Overturning circulation within the Gulf is clearly indicated by the patterns of salinity along the hydrographic sections in which inflows of fresher Pacific waters (S34.8 for densities between 25 and 26 kg/m3) along Baja California. Geostrophic velocities for these

  10. Transport coefficients for electrons in water vapor: definition, measurement, and calculation.

    Science.gov (United States)

    Robson, R E; White, R D; Ness, K F

    2011-02-14

    Comparison of experimental and theoretical transport data for electron swarms in water vapour over a wide range of fields provides a rigorous test of (e(-), H(2)O) scattering cross sections over a correspondingly broad range of energies. That like should be compared with like is axiomatic, but the definition of transport coefficients at high fields, when non-conservative processes are significant, has long been contentious. This paper revisits and distills the most essential aspects of the definition and calculation of transport coefficients, giving numerical results for the drift velocity and ionisation coefficient of electrons in water vapour. In particular, the relationship between the theoretically calculated bulk drift velocities of [K. F. Ness and R. E. Robson, Phys. Rev. A 38, 1446 (1988)] and the experimental "arrival time spectra" drift velocity data of Hasegawa et al. [J. Phys. D 40(8), 2495 (2007)] is established. This enables the Hasegawa et al. data to be reconciliated with the previous literature, and facilitates selection of the best (e(-), H(2)O) cross section set.

  11. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  12. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  13. Changes in urinary excretion of water and sodium transporters during amiloride and bendroflumethiazide treatment

    DEFF Research Database (Denmark)

    Jensen, Janni M; Mose, Frank H; Kulik, Anna-Ewa O

    2015-01-01

    AIM: To quantify changes in urinary excretion of aquaporin2 water channels (u-AQP2), the sodium-potassium-chloride co-transporter (u-NKCC2) and the epithelial sodium channels (u-ENaC) during treatment with bendroflumethiazide (BFTZ), amiloride and placebo. METHODS: In a randomized, double......-blinded, placebo-controlled, 3-way crossover study we examined 23 healthy subjects on a standardized diet and fluid intake. The subjects were treated with amiloride 5 mg, BFTZ 1.25 mg or placebo twice a day for 4.5 d before each examination day. On the examination day, glomerular filtration rate was measured...... by the constant infusion clearance technique with (51)Cr-EDTA as reference substance. To estimate the changes in water transport via AQP2 and sodium transport via NKCC2 and ENaC, u-NKCC2, the gamma fraction of ENaC (u-ENaCγ), and u-AQP2 were measured at baseline and after infusion with 3% hypertonic saline. U...

  14. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.

    Science.gov (United States)

    Li, Zhen; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A

    2013-11-01

    This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs. Published by Elsevier Ltd.

  15. Water use impacts of future transport fuels: role of California's climate policy & National biofuel policies (Invited)

    Science.gov (United States)

    Teter, J.; Yeh, S.; Mishra, G. S.; Tiedeman, K.; Yang, C.

    2013-12-01

    In the coming decades, growing demand for energy and water and the need to address climate change will create huge challenges for energy policy and natural resource management. Synergistic strategies must be developed to conserve and use both resources more efficiently. California (CA) is a prime example of a region where policymakers have began to incorporate water planning in energy infrastructure development. But more must be done as CA transforms its energy system to meet its climate target. We analyze lifecycle water use of current and future transport fuel consumption to evaluate impacts & formulate mitigation strategies for the state at the watershed scale. Four 'bounding cases' for CA's future transportation demand to year 2030 are projected for analysis: two scenarios that only meet the 2020 climate target (business-as-usual, BAU) with high / low water use intensity, and two that meet long-term climate target with high / low water use intensity (Fig 1). Our study focuses on the following energy supply chains: (a) liquid fuels from conventional/unconventional oil & gas, (b) thermoelectric and renewable generation technologies, and (c) biofuels (Fig 2-3). We develop plausible siting scenarios that bound the range of possible water sources, impacts, and dispositions to provide insights into how to best allocate water and limit water impacts of energy development. We further identify constraints & opportunities to improve water use efficiency and highlight salient policy relevant lessons. For biofuels we extend our scope to the entire US as most of the biofuels consumed in California are and will be produced from outside of the state. We analyze policy impacts that capture both direct & indirect land use effects across scenarios, thus addressing the major shortcomings of existing studies, which ignore spatial heterogeneity as well as economic effects of crop displacement and the effects of crop intensification and extensification. We use the agronomic

  16. A Continuum Model for Water Transport in the Ionomer-Phase of Catalyst Coated Membranes for PEMFCs

    Directory of Open Access Journals (Sweden)

    Vladimir Gurau

    2010-01-01

    Full Text Available We study the problem of water transport in the ionomer-phase of catalyst coated membranes (CCMs for proton exchange membrane fuel cells (PEMFCs, where microscopic-scale phenomena at the distributed interfaces between structural components control the water management. Existing models for water transport in CCMs describe the transport in systems which consist exclusively of an ionomer-phase. Interfacial water fluxes across distributed interfaces representing various mechanisms of water transfer between ionomer and catalyst layer pores are not captured properly in these models. Here we develop a continuum model for water transport in CCMs using the method of volume averaging. Water is exchanged between ionomer and the catalyst layer pores by electro-osmotic discharge (EOD through the three-phase boundary (TPB regions and by sorption and desorption across the ionomer-pore interfaces. While the former mechanism does not affect directly the water content in the ionomer-phase, it represents an effective mechanism for water transfer during fuel cell operation and controls directly the water saturation in the catalyst pores.

  17. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter.

    Science.gov (United States)

    Devireddy, R V; Raha, D; Bischof, J C

    1998-03-01

    A new technique using a differential scanning calorimeter (DSC) was developed to obtain dynamic and quantitative water transport data in cell suspensions during freezing. The model system investigated was a nonattached spherical lymphocyte (Epstein-Barr virus transformed, EBVT) human cell line. Data from the technique show that the initial heat release of a prenucleated sample containing osmotically active cells in media is greater than the final heat release of an identical sample of osmotically inactive or lysed cells in media. The total integrated magnitude of this difference, Deltaqdsc, was found to be proportional to the cytocrit and hence also to the supercooled water volume in the sample. Further, the normalized fractional integrated heat release difference as a function of temperature, Deltaq(T)dsc/Deltaqdsc, was shown to correlate with the amount of supercooled cellular water which had exosmosed from the cell as a function of subzero temperature at constant cooling rates of 5, 10, and 20 degrees C/min. Several important limitations of the technique are (1) that it requires a priori knowledge of geometric parameters such as the surface area, initial volume, and osmotically inactive cell volume and (2) that the technique alone cannot determine whether the heat released from supercooled cellular water is due to dehydration or intracellular ice formation. Cryomicroscopy was used to address these limitations. The initial cell volume and surface area were obtained directly whereas a Boyle-van't Hoff (BVH) plot was constructed to obtain the osmotically inactive cell volume Vb. Curve fitting the BVH data assuming linear osmometric behavior yielded Vb = 0.258V0; however, nonlinearity in the data suggests that the EBVT lymphocyte cells are not "ideal osmometers" at low subzero temperatures and created some uncertainty in the actual value of Vb. Cryomicroscopy further confirmed that dehydration was the predominant biophysical response of the cells over the range of

  18. Influence of forest and rangeland management on anadromous fish habitat in Western North America: water transportation and storage of logs.

    Science.gov (United States)

    J.R. Sedell; W.S. Duval

    1985-01-01

    Environmental effects of water transportation of logs in western North America include the historical driving of logs in rivers and streams, and the current dumping, sorting, transportation, and storage of logs in rivers and estuaries in British Columbia and southeastern Alaska. The historical discussion focuses on habitat losses and volumes of...

  19. Limitations of empirical sediment transport formulas for shallow water and their consequences for swash zone modelling

    CERN Document Server

    Li, Wei; Pähtz, Thomas; He, Zhiguo; Cao, Zhixian

    2016-01-01

    Volumetric sediment concentrations computed by phase-resolving swash morphodynamic models are shown to exceed unity minus porosity (i.e. the maximal physically possible concentration value) by up to factor of $10^5$ when using standard expressions to compute the sediment transport rate. An ad hoc limit of sediment concentration is introduced as a means to evaluate consequences of exceeding physically realistic concentration by standard expressions. We find that implementation of this ad hoc limit strongly changes the quantitative and qualitative predictions of phase-resolving swash morphodynamic models, suggesting that existing swash predictions are unreliable. This is because standard expressions inappropriately consider or ignore the fact that the shallow swash water depth limits the storage capacity of transported sediment.

  20. Energy and water vapor transport across a simplified cloud-clear air interface

    CERN Document Server

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  1. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  2. Transport of Astyanax altiparanae Garutti and Britski, 2000 in saline water

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Salaro

    2015-08-01

    Full Text Available Two experiments were performed. The first aimed to assess the tolerance of fingerlings Astyanax altiparanae to water salinity. Fish were exposed to salinity of 0, 3, 6, 9, 12 or 15 g NaCl L-1 for 96 hours. The fish mortality was 0%, in the levels of 0, 3 and 6 g L-1; 75% in the level of 9 g L-1and 100% at 12 and 15 g L-1 of common salt. The second experiment aimed to assess the parameters of water quality, mortality and blood glucose during transport. For this, A. altiparanae were stored in plastic bags at 22, 30 and 37 g of fish L-1 stocking densities and salinity of 0, 3, 6 and 9 g L-1, for. Fish showed similar mortality levels in the different salinities and stocking densities. The increase in fish density reduced the dissolved oxygen levels and salinity decreased the pH. The blood glucose levels were higher in those fish with 0 g L-1 salinity and higher stocking densities. The addition of salt to the water reduces the stress responses of A. altiparanae during transport.

  3. Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation.

    Science.gov (United States)

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin; Yang, Ri-Long

    2017-03-29

    Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

  4. Cirrus and water vapor transport in the tropical tropopause layer – Part 1: A specific case modeling study

    Directory of Open Access Journals (Sweden)

    T. Dinh

    2012-10-01

    Full Text Available In a simulation of a tropical-tropopause-layer (TTL cirrus forced by a large-scale equatorial Kelvin wave, the radiatively induced mesoscale dynamics of the cloud actively contributes to the transport of water vapor in the vertical direction.

    In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of water vapor by the radiatively induced circulation leads to upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air. On the other hand, ice nucleation and depositional growth, followed by sedimentation and sublimation lead to downward transport of water vapor.

    Under the conditions specific to our simulation, the upward transport of water vapor by the mesoscale circulation dominates the downward transport by microphysical processes. The net result is upward transport of water vapor, which is equivalent to hydration of the lower stratosphere. Sensitivity to model conditions and parameters will be discussed in a follow-up paper.

  5. The Impact of Vegetative Slope on Water Flow and Pollutant Transport through Embankments

    Directory of Open Access Journals (Sweden)

    Liting Sheng

    2017-06-01

    Full Text Available Embankments are common structures along rivers or lakes in riparian zones in plain areas. They should have natural slopes instead of slopes covered by concrete or other hard materials, in order to rebuild sustainable ecosystems for riparian zones. This study was conducted to evaluate the effects of vegetative slopes on water flow and pollutant transport through the embankments. Three embankments with different slope treatments (a bare slope, a slope covered in centipede grass, a slope covered in tall fescue were examined, and three inflow applications of pollute water with different concentration of total nitrogen (TN and total phosphorus (TP used to simulate different agricultural non-point pollution levels. The results showed that the water flux rates of the three embankments were relatively stable under all inflow events, and almost all values were higher than 80%. The embankments with vegetative slopes had better nitrogen removal than the bare slope under all events, and the one with tall fescue slope was best, but the benefits of vegetative slopes decreased with increasing inflow concentration. Moreover, there were no significant differences between the embankments on phosphorus removal, for which the reductions were all high (above 90% with most loads remaining in the front third of embankment bodies. Overall, the embankments with vegetative slopes had positive effects on water exchange and reducing non-point pollutant into lake or river water, which provides a quantitative scientific basis for the actual layout of lakeshores.

  6. Wall sticking of high water-cut crude oil transported at temperatures below the gel point

    Science.gov (United States)

    Zheng, Haimin; Huang, Qiyu; Wang, Changhui

    2015-12-01

    Some high water-cut crude oils can flow in the temperature below the oil gel point, while oil particles may adhere to the pipe wall as paste; this process is known as ‘wall sticking’. This can cause partial or even total blocking of the transportation pipe. Several experiments using a laboratory flow loop were conducted to study the wall sticking characteristics of high water-cut crude oils. The experimental results indicated that the predominant influencing factors of wall sticking included shear stress, water-cut and differences between gel point and wall temperature. The wall sticking rate and occurrence temperature decrease with the increase of water-cut and shear stress. The criterion for the wall sticking occurrence temperature (WSOT), and the regression formula of the wall sticking thickness for high water-cut crude oil were then established. Typical case studies indicated that the prediction results obtained from the WSOT criterion and the wall sticking thickness regression formula were in accordance with the measured values. The wall sticking rate and WSOT vary widely under different conditions and it is necessary to consider its non-uniformity in production.

  7. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  8. Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone

    Science.gov (United States)

    Weaver, W.; Kibbey, T. C. G.; Papelis, C.

    2016-12-01

    Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.

  9. Evaluating Rotavirus and Norovirus transport processes in standardised and natural soil-water columns experiments

    Science.gov (United States)

    Gamazo, Pablo; Schijven, Jack; Victoria, Matias; Alvareda, Elena; López Tort, Fernando; Ramos, Julián; Lizasoain, Andrés; Sapriza, Gonzalo; Castells, Matias; Colina, Rodney

    2017-04-01

    In Uruguay, as in many developed and developing countries, rotavirus and norovirus are major causes of diarrhea and others symptoms of acute gastroenteritis. In some areas of Uruguay, groundwater is the only source of water for human consumption. In the rural area of the Salto district, virus contamination has been detected in several groundwater wells. Because sewer coverage is low, the most probable sources of contamination are nearby septic systems. This work aims to evaluate the transport of rotavirus and norovirus from clinic samples in two sets of column experiments under saturated conditions: 6.7-cm columns with quartz sand (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes onto the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both rotavirus and norovirus were removed two orders in magnitude. In the Salto sand column, rotavirus was removed 2 log10 as well, but norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for rotavirus in the Salto sand column. These results are consistent with the field observation where only rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent were measured for both viruses. This work, besides reporting actual parameters values for human virus transport modelling, shows the significant differences in transport that human viruses can have in standardised and natural soil-water systems.

  10. Evaluating the effects of variable water chemistry on bacterial transport during infiltration

    Science.gov (United States)

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S.

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10 × 10- 3 min- 1 to 3.71 × 10- 3 min- 1 due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10 × 10- 3 min- 1 in a

  11. Influence of transport conditions and pre-slaughter water shower spray during summer on protein characteristics and water distribution of broiler breast meat.

    Science.gov (United States)

    Xing, Tong; Li, Yun Han; Li, Ming; Jiang, Nan Nan; Xu, Xing Lian; Zhou, Guang Hong

    2016-11-01

    This study investigated the effects of pre-slaughter transport during summer and subsequent water shower spray on broiler meat quality and protein characteristics. Arbor Acres broiler chickens (n = 126, 42 days old, mixed sex, 2.5-3 kg) were randomly categorized into three treatments: (i) control group without transport (C); (ii) 30 min transport (T); and (iii) 30 min transport followed by 10 min water shower spray and 20 min lairage (T/W). Each treatment consisted of six replicates with seven birds each. Ambient temperature was 32-35°C during transportation. Results indicated that transport during high ambient temperature denatured myosin and sarcoplasmic proteins, led to decreased protein solubility and resulted in glycogen phosphorylase precipitated to the myofibrillar fraction. Furthermore, meat quality in the transport group showed a pale, soft and exudative (PSE)-like syndrome. Water shower spray during lairage after transport reduced the degree of protein denaturation and lessened the deterioration of meat quality. © 2016 Japanese Society of Animal Science.

  12. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis.

  13. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    Science.gov (United States)

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Comparison of Rotavirus and Norovirus transport in standardised and natural soil-water systems

    Science.gov (United States)

    Gamazo, P. A.; Schijven, J. F.; Victoria, M.; Alvareda, E.; Lopez, F.; Ramos, J.; Lizasoain, A.; Sapriza-Azuri, G.; Castells, M.; Colina, R.

    2016-12-01

    Rotavirus and Norovirus are waterborne viruses that are major causes of diarrhea and others symptoms of acute gastroenteritis. An important pathway of these viruses is groundwater. In Uruguay, as in many developed and developing countries, there are areas where the only source of water for human consumption is groundwater. In the rural area of the Salto district, groundwater is commonly used without any treatment, as it is traditionally considered as a safe source. However, virus contamination have been detected in several wells in the area. The most probable source of contamination are nearby septic systems, since the sewer coverage is scarce. This work aims to evaluate and compare the virus transport processes for a standardised soil-water systems and for the Salto aquifer system. For this, the transport of Rotavirus and Norovirus from clinic samples was studied in two sets of column experiments: 6.7 cm columns with quartz sand under saturated conditions (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes on the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both Rotavirus and Norovirus were removed two orders in magnitude. In the Salto sand column, Rotavirus was removed 2 log10 as well, but Norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for Rotavirus in the Salto sand column. These results are consistent with field observation where only Rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent was measured for these two viruses. This work, besides reporting actual

  15. Stochastic Modeling Of Field-Scale Water And Solute Transport Through The Unsaturated Zone Of Soils

    DEFF Research Database (Denmark)

    Loll, Per

    were previously thought not to pose a leaching threat. Thus, a reevaluation of our understanding of the mechanisms governing chemical fate in the unsaturated zone of soils has been necessary, in order for us to make better decisions regarding widely different issues such as agricultural management...... of pesticides and nutrients, and risk identification and assessment at polluted (industrial) sites. One of the key factors requiring our attention when we are trying to predict field-scale chemical leaching is spatial variability of the soil and the influence it exerts on both water and chemical transport...

  16. Functionally induced changes in water transport in the proximal tubule segment of rat kidneys

    DEFF Research Database (Denmark)

    Faarup, Poul; von Holstein-Rathlou, Niels-Henrik; Nørgaard, Tove

    2011-01-01

    To eliminate freezing artifacts in the proximal tubule cells, two cryotechniques were applied to normal rat kidneys, ie, freeze substitution and special freeze drying. In addition, salt depletion and salt loading were applied to groups of rats to evaluate whether the segmental structure of the pr...... segment, representing a structural background for the essential transport of water from the proximal tubules to the peritubular capillaries.......To eliminate freezing artifacts in the proximal tubule cells, two cryotechniques were applied to normal rat kidneys, ie, freeze substitution and special freeze drying. In addition, salt depletion and salt loading were applied to groups of rats to evaluate whether the segmental structure...

  17. Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Fetzer, Thomas; Mosthaf, Klaus

    2017-01-01

    Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe...... flux when available energy and transfer to the free airflow are limiting or by a critical threshold water pressure when soil water availability is limiting. The latter approach corresponds with the classical Richards equation with mixed boundary conditions. We compare the different approaches...... evaporation. Concepts range from nonisothermal two-phase flow, two-component transport in the porous medium that is coupled with one-phase flow, two-component transport in the free air flow to isothermal liquid water flow in the porous medium with upper boundary conditions defined by a potential evaporation...

  18. Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Fetzer, Thomas; Mosthaf, Klaus

    2017-01-01

    Evaporation is an important component of the soil water balance. It is composed of water flow and transport processes in a porous medium that are coupled with heat fluxes and free air flow. This work provides a comprehensive review of model concepts used in different research fields to describe...... evaporation. Concepts range from nonisothermal two-phase flow, two-component transport in the porous medium that is coupled with one-phase flow, two-component transport in the free air flow to isothermal liquid water flow in the porous medium with upper boundary conditions defined by a potential evaporation...... flux when available energy and transfer to the free airflow are limiting or by a critical threshold water pressure when soil water availability is limiting. The latter approach corresponds with the classical Richards equation with mixed boundary conditions. We compare the different approaches...

  19. Geochemical Processes Leading to the Precipitation of Subglacial Carbonate Crusts at Bossons Glacier, Mont Blanc Massif (French Alps

    Directory of Open Access Journals (Sweden)

    Christophe Thomazo

    2017-09-01

    Full Text Available Cold climate carbonates can be used as paleoclimatic proxies. The mineralogy and isotopic composition of subglacially precipitated carbonate crusts (SPCCs provide insights into the subglacial conditions and processes occurring at the meltwater-basement rock interface of glaciers. This study documents such crusts discovered on the lee side of a gneissic roche moutonnée at the terminus of the Bossons glacier in the Mont Blanc Massif area (France. The geological context and mineralogical investigations suggest that the Ca used for the precipitation of large crystals of radial fibrous sparite observed in these crusts originated from subglacial chemical weathering of Ca-bearing minerals of the local bedrock (plagioclase and amphibole. Measurements of the carbon and oxygen isotope compositions in the crusts indicate precipitation at, or near to, equilibrium with the basal meltwater under open system conditions during refreezing processes. The homogeneous and low carbonate δ13C values (ca. −11.3‰ imply a large contribution of soil organic carbon to the Bossons subglacial meltwater carbon reservoir at the time of deposition. In addition, organic remains trapped within the SPCCs give an age of deposition around 6,500 years cal BP suggesting that the Mid-Holocene climatic and pedological optima are archived in the Bossons glacier carbonate crusts.

  20. Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea

    NARCIS (Netherlands)

    Passchier, S.; Laban, C.; Mesdag, C.S.; Rijsdijk, K.F.

    2010-01-01

    Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when

  1. Swelling and water transport in temperature-sensitive hydrogels based on 2-methoxyethylacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Martellini, F. E-mail: martelli@net.ipen.br; Mei, L.H.I.; Balino, J.L.; Carenza, M. E-mail: carenza@frae.bo.cnr.it

    2002-01-01

    A series of thermoresponsive hydrogels based on copolymers of 2-methoxyethylacrylate with acrylamide or N,N-dimethylacrylamide were prepared by radiation-induced polymerization in dimethylformamide solution in the presence of a crosslinking agent. The swelling behaviour of the hydrogels was studied by immersing the polymer samples in water at 5 deg. C, 10 deg. C and 37 deg. C. The data were found to satisfactorily fit Fick's law with a constant diffusion coefficient. The results indicate that the swelling ratio increases with increasing the content of the hydrophilic monomers in the hydrogels and at the same time the equilibrium swelling time decreases. The effect of temperature on water transport mechanism was observed.

  2. Modeling water chemistry change and contaminant transport in riverbank filtration systems

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-06-01

    Riverbank filtration system is river water treatment approach based on natural removal of contaminants due to physical, chemical and biological processes. In this article, an analytical model is developed by using Green's function method to simulate the effects of pumping well and microbial activity that occurs in riverbed sediments on contaminant transport and evolution of water chemistry. The model is tested with data collected previously for RBF site in France. The results are compared with numerical simulation conducted in the literature by using finite difference method. Graphically, it is noticed that both numerical and analytical results have almost the same behavior. Also it is found that the model can simulate the decreasing of one pollutant concentration at the zone where the bacteria starts to consume this pollutant.

  3. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  4. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Directory of Open Access Journals (Sweden)

    T. J. Griffis

    2016-04-01

    Full Text Available Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL over a 3-year period (2010 to 2012. These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from −40.2 to −15.9 ‰ and δ2Hv ranged from −278.7 to −113.0 ‰ and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( >  25 mmol mol−1

  5. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  6. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation

    Science.gov (United States)

    Noone, David; Simmonds, Ian

    2004-04-01

    Sea ice in the Southern Ocean is important for Antarctic climate and hydrology. The dependence of water isotope abundance (δ18O and deuterium excess) on the winter sea ice state is examined with the isotopic version of the Melbourne University general circulation model. Reductions in the ice concentration provide warmer temperatures in winter and allow higher precipitation totals further south, while the reverse occurs with increased ice extent. The model shows clear demarcation between the changes in the isotopic conditions over the sea ice pack, where local changes in surface exchange dominate, and those of the continent interior, which depend on the long-ranged transport aloft. While less sensitive to the forcing, the interior response is influenced by changes in turbulent mixing over the ice pack and modification of the vertical transport associated with diabatic heating. The interior deuterium excess response is more strongly affected by sea ice as it captures changes in temperature over the ice rather than just the final vapor mass. Traditional reconstruction of temperature from a single isotopic nuclide would give erroneous interpretation of change in the global mean temperature unless the sea ice changes in parallel; instead, the spatial structure of the sea ice response gives some hope for extracting past sea ice conditions from multicore analysis. This study begins to explore the role of entropy production during transport such that the isotopic interpretation is more closely tied to the dynamics of the atmosphere than is expressed by idealized parcel analysis.

  7. The subglacial Lake Vostok (East Antarctica) surface snow is Earth-bound DNA (and dust)-free

    Science.gov (United States)

    Bulat, S.; Marie, D.; Bulat, E.; Alekhina, I.; Petit, J.-R.

    2012-09-01

    came up with only contaminant bacterial phylotypes (mostly of human source). The bioexposure trials showed that even in one day of open exposure the gDNA of rather complex microbial community composition was fatally damaged in terms of long-, mid-range and short-size amplicon generation in PCR. All this testify for very harsh conditions for life to survive the climate conditions of Central East Antarctica which could be considered as a presentday 'zone mortale' or 'polar desert' for known Earthbound microbial life forms. In addition this means that no life seeds are expected to reach subglacial lakes and water reservoirs and establish indigenous lake microbiota during their transit through the thick and aged Antarctic ice sheet upon its bottom melting. In general the subglacial Lake Vostok surface (ice sheet as well) environ represents the unique test area (sterile - in fact Earth-bound DNA-free and clean - in fact Earth-bound dust-free) for advancing extraterrestrial (ET) life detection technologies and searching for ET life indices in AMMs and IDPs.

  8. Radium variability produced by shelf-water transport and mixing in the western Gulf of Mexico

    Science.gov (United States)

    Reid, David F.

    1984-12-01

    — 226Ra and 228Ra exhibit significant temporal and spatial variability in the near-surface western Gulf of Mexico. Concentrations of both isotopes during March 1976 were on the order of 22 to 26% greater than those observed during February 1973. It is shown that analytical differences cannot account for this increase. Consideration of radium levels in the western Caribbean Sea indicates that there must be an internal source of radium that has a significant but temporally variable influence on near-surface radium concentrations in the western Gulf. Comparisons of radium, salinity, and temperature data from 1973 and 1976 provide evidence that advective transport and mixing of radium-rich shelf water with the interior water column of the western basin is responsible for the variability. By plotting 228Ra vs 226Ra from this region, estimates of the apparent shelf-water component in the upper water column can be made. The results indicate 36% over the northern slope, 10 to 18% in the central western Gulf, and 3 to 7% over Campeche Bank. In addition to explaining the observed short-term variations of radium in this region, this information should be useful for environmental impact assessments concerned with industrial discharges on the northern shelf.

  9. Radium variability produced by shelf-water transport and mixing in the western Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reid, D.F. (Oregon State Univ., Corvallis (USA). School of Oceanography)

    1984-12-01

    /sup 226/Ra and /sup 228/Ra exhibit significant temporal and spatial variability in the near-surface western Gulf of Mexico. Concentrations of both isotopes during March 1976 were approx. 22 to 26% greater than those observed during February 1973. It is shown that analytical differences cannot account for this increase. Consideration of radium levels in the western Caribbean Sea indicates that there must be an internal source of radium that has a significant but temporally variable influence on near-surface radium concentrations in the western Gulf. Comparisons of radium, salinity, and temperature data from 1973 and 1976 provide evidence that advective transport and mixing of radium-rich shelf water with the interior water column of the western basin is responsible for the variability. By plotting /sup 228/Ra vs /sup 226/Ra from this region, estimates of the apparent shelf-water component in the upper water column can be made. The results indicate 36% over the northern slope, 10 to 18% in the central western Gulf, and 3 to 7% over Campeche Bank. In addition to explaining observed short-term variations of radium in this region, this information should be useful for environmental impact assessments concerned with industrial discharges on the northern shelf.

  10. Radium variability produced by shelf-water transport and mixing in the western Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reid, D.F.

    1984-01-01

    Ra-226 and Ra-228 exhibit significant temporal and spatial variability in the near-surface western Gulf of Mexico. Concentrations of both isotopes during March 1976 were on the order of 22 to 26% greater than those observed during February 1973; analytical differences cannot account for this increase. Consideration of radium levels in the western Caribbean Sea indicates that there must be an internal source of radium that has a significant but temporally variable influence on near-surface radium concentrations in the western Gulf. Comparisons of radium, salinity, and temperature data from 1973 and 1976 provide evidence that advective transport and mixing of radium-rich shelf water with the interior water column of the western basin is responsible for the variability. By plotting Ra-228 vs Ra-226 from this region, estimates of the apparent shelf-water component in the upper water column can be made. The results indicate 36% over the northern slope, 10 to 18% in the central western Gulf, and 3 to 7% over Campeche Bank. In addition to explaining the observed short-term variations of radium in this region, this information should be useful for environmental impact assessments concerned with industrial discharges on the northern shelf. 10 references, 6 figures, 4 tables.

  11. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  12. Fate and Transport of Nutrients in Groundwater and Surface Water in an Urban Slum Catchment Kampala, Uganda

    NARCIS (Netherlands)

    Nyenje, P.

    2014-01-01

    This study investigates the generation, transport and fate of sanitation-related nutrients in groundwater and surface water in an urban slum area in sub-Saharan Africa. In excess, nutrients can cause eutrophication of downstream water bodies. The study argues that nitrogen-containing rains and

  13. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    Directory of Open Access Journals (Sweden)

    Deborah M G Apgaua

    Full Text Available Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees. We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  14. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    Science.gov (United States)

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  15. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water

    Science.gov (United States)

    Dingfelder, M.; Ritchie, R. H.; Turner, J. E.; Friedland, W.; Paretzke, H. G.; Hamm, R. N.

    2013-01-01

    Monte Carlo computer models that simulate the detailed, event-by-event transport of electrons in liquid water are valuable for the interpretation and understanding of findings in radiation chemistry and radiation biology. Because of the paucity of experimental data, such efforts must rely on theoretical principles and considerable judgment in their development. Experimental verification of numerical input is possible to only a limited extent. Indirect support for model validity can be gained from a comparison of details between two independently developed computer codes as well as the observable results calculated with them. In this study, we compare the transport properties of electrons in liquid water using two such models, PARTRAC and NOREC. Both use interaction cross sections based on plane-wave Born approximations and a numerical parameterization of the complex dielectric response function for the liquid. The models are described and compared, and their similarities and differences are highlighted. Recent developments in the field are discussed and taken into account. The calculated stopping powers, W values, and slab penetration characteristics are in good agreement with one another and with other independent sources. PMID:18439039

  16. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    Science.gov (United States)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed

  17. Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface: Comparison of Model Concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Smits, Kathleen; Mosthaf, Klaus

    Evaporation from the soil surface represents a water flow and transport process in a porous medium that is coupled with free air flow and with heat fluxes in the system. We give an overview of different model concepts that are used to describe this process. These range from non-isothermal two......-phase flow two-component transport in the porous medium that is coupled with one-phase flow two-component transport in the free air to isothermal water flow in the porous with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free air flow...... are limiting or by a critical threshold water pressure when soil water availability is limiting. The latter approach corresponds with the classical Richards equation with mixed boundary conditions. We formulated the different equations and identified assumptions behind simplified forms. Conditions for which...

  18. From soil water to surface water - how the riparian zone controls element transport from a boreal forest to a stream

    Science.gov (United States)

    Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.

    2017-06-01

    Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many

  19. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  20. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    Science.gov (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  1. Distribution and transport of PAHs in soil profiles of different water irrigation areas in Beijing, China.

    Science.gov (United States)

    Jin, Aifang; He, Jiangtao; Chen, Sunuan; Huang, Guoxin

    2014-05-01

    Vertical distribution characteristics and transport mechanisms of polycyclic aromatic hydrocarbons (PAHs) in soil profiles (0-5.5 m) of different water irrigation areas in the southeast suburb of Beijing were analyzed and compared. 16 priority PAHs on the United States Environmental Protection Agency (US EPA) list were analyzed using gas chromatography and mass spectrometry (GC-MS). The relationship between the properties of soil and PAHs was also studied by statistical analyses. The results showed that total PAH concentrations in the topsoils of the wastewater irrigation (WWI) area, reclaimed water irrigation (RWI) area, groundwater irrigation (GWI) area were much higher than those in the deep soils, with the concentrations of 726.0, 206.8 and 42.8 μg kg(-1) (dry wt), respectively. The low molecular weight (LMW) PAHs (2-3 ring) including naphthalene (Nap), phenanthrene (Phe), fluorene (Fl) dominated the layers (0.5-5.5 m) underneath the surfaces. The migration of LMW PAHs was faster than that of high molecular weight (HMW) PAHs and LMW PAHs were transported in dissolved matter. The different soil textures of three sites caused the differences in the variation ranges of PAHs in the profiles. The statistical analyses showed a significant linear positive correlation between PAHs and total organic carbon (TOC). The 2-4 ring PAHs were detected in the wastewater and reclaimed waters, which was consistent with those in the soil profiles. The presence of PAHs in the soil profiles was mainly due to the irrigation of wastewater. Wastewater reuse guidelines and standards for irrigation should be established urgently.

  2. Transport and retention of phosphorus in surface water in an urban slum area

    Science.gov (United States)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2013-08-01

    The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  3. New possibilities in following the transport of water in living plants

    Science.gov (United States)

    Jakusch, P.; Anda, A.

    2010-09-01

    The aim of the study was to broaden the usage of the human diagnostic MR to study the plant-water connection. The measurements were carried out at Kaposvár University, Institute of Diagnostic Imaging and Radiation Oncology with MR of Siemens Avanto type. The procedure is based on the interaction of the external magnetic field, electromagnetic waves and the hydrogen nucleus' in the substance. The MR measures the quantity and distribution of the protons. The most protons can be found in the water, where the hydrogen atoms are. As a conclusion, the MR doesn't measure the anatomical structure itself but the quantity and the distribution of the water inside. This is why this method is highly applicable for determining the plant-water connection. Our test plant was the Phylleria angustifolia, an arboreal crop. The ascendant stem and six sub-stems (which formed three other branches) were examined. For each branch the measurements were preformed separately. Each plant was one years old, with a height of 30-35 cm, and was grown in peat soil. During the measurements the peat was saturated until it reached its full capacity. The recording was repeated six times in one sequence for the same plant. The sequence used is a special "mixture" made from the human diagnostic method. The Phylleria in comparison to the human body is small, so we had to use the skull and body coils, to make the results visible. The skull coil ensured the perspicuity of the plant, while the body coil the perspicuity of the root. Our results shown, that the actual water content of the stem is also determined by the existence of the branches and tissue formations. Analyzing the signal intensities of the stems the presence of water-obstacles formed by nodes were justified. The accuracy of the MR system exceeds the margin error of the traditional plant-water investigation methods. The non-destructive method can be executed on living plants. So the MRI technique may be a new tool in the recognition of water

  4. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage.

    Science.gov (United States)

    Sundal, Aud Venke; Shepherd, Andrew; Nienow, Peter; Hanna, Edward; Palmer, Steven; Huybrechts, Philippe

    2011-01-27

    Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4 centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62 ± 16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.

  5. A Unified Constitutive Model for Subglacial Till, Part I: The Disturbed State Concept

    Science.gov (United States)

    Jenson, J. W.; Desai, C. S.; Clark, P. U.; Contractor, D. N.; Sane, S. M.; Carlson, A. E.

    2006-12-01

    Classical plasticity models such as Mohr-Coulomb may not adequately represent the full range of possible motion and failure in tills underlying ice sheets. Such models assume that deformations are initially elastic, and that when a peak or failure stress level is reached the system experiences sudden failure, after which the stress remains constant and the deformations can tend to infinite magnitudes. However, theory suggests that the actual behavior of deforming materials, including granular materials such as glacial till, can involve plastic or irreversible strains almost from the beginning, in which localized zones of microcracking and "failure" can be distributed over the material element. As the loading increases, and with associated plastic and creep deformations, the distributed failure zones coalesce. When the extent of such coalesced zones reaches critical values of stresses and strains, the critical condition (failure) can occur in the till, which would cause associated movements of the ice sheet. Failure or collapse then may occur at much larger strain levels. Classical models (e.g., Mohr-Coulomb) may therefore not be able to fully and realistically characterize deformation behavior and the gradual developments of localized failures tending to the global failure and movements. We present and propose the application of the Disturbed State Concept (DSC), a unified model that incorporates the actual pre- and post-failure behavior, for characterizing the behavior of subglacial tills. In this presentation (Part I), we describe the DSC and propose its application to subglacial till. Part II (Desai et al.) describes our application of the DSC with laboratory testing, model calibration, and validations to evaluate the mechanical properties of two regionally significant Pleistocene tills.

  6. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  7. Proton transport in water and DNA components: A Geant4 Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Champion, C., E-mail: champion@cenbg.in2p3.fr [Université Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, CENBG, 33175 Gradignan (France); Incerti, S.; Tran, H.N.; Karamitros, M. [Université Bordeaux 1, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, CENBG, 33175 Gradignan (France); Shin, J.I.; Lee, S.B. [Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyan (Korea, Republic of); Lekadir, H. [Laboratoire de Physique Moléculaire et des Collisions, Université de Lorraine (France); Bernal, M. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Science Faculty, Department of Physics, Beirut (Lebanon); Ivanchenko, V. [Ecoanalytica, 119899 Moscow (Russian Federation); Fojón, O.A. [Instituto de Física Rosario, CONICET and Universidad Nacional de Rosario (Argentina); Hanssen, J. [Laboratoire de Physique Moléculaire et des Collisions, Université de Lorraine (France); Rivarola, R.D. [Instituto de Física Rosario, CONICET and Universidad Nacional de Rosario (Argentina)

    2013-07-01

    Accurate modeling of DNA damages resulting from ionizing radiation remains a challenge of today’s radiobiology research. An original set of physics processes has been recently developed for modeling the detailed transport of protons and neutral hydrogen atoms in liquid water and in DNA nucleobases using the Geant4-DNA extension of the open source Geant4 Monte Carlo simulation toolkit. The theoretical cross sections as well as the mean energy transfers during the different ionizing processes were taken from recent works based on classical as well as quantum mechanical predictions. Furthermore, in order to compare energy deposition patterns in liquid water and DNA material, we here propose a simplified cellular nucleus model made of spherical voxels, each containing randomly oriented nanometer-size cylindrical targets filled with either liquid water or DNA material (DNA nucleobases) both with a density of 1 g/cm{sup 3}. These cylindrical volumes have dimensions comparable to genetic material units of mammalian cells, namely, 25 nm (diameter) × 25 nm (height) for chromatin fiber segments, 10 nm (d) × 5 nm (h) for nucleosomes and 2 nm (d) × 2 nm (h) for DNA segments. Frequencies of energy deposition in the cylindrical targets are presented and discussed.

  8. Modeling Water Flow and Bromide Transport in a Two-Scale-Structured Lignitic Mine Soil

    Science.gov (United States)

    Dusek, J.; Gerke, H. H.; Vogel, T.; Maurer, T.; Buczko, U.

    2008-12-01

    Two-dimensional single- and dual-permeability simulations are used to analyze water and solute fluxes in heterogeneous lignitic mine soil at a forest-reclaimed mine spoil heap. The soil heterogeneity on this experimental site "Barenbrucker Hohe" resulted from inclined dumping structures and sediment mixtures that consist of sand with lignitic dust and embedded lignitic fragments. Observations on undisturbed field suction- cell lysimeters including tracer experiments revealed funneling-type preferential flow with lateral water and bromide movement along inclined sediment structures. The spatial distribution of soil structures and fragment distributions was acquired by a digital camera and identified by a supervised classification of the digital profile image. First, a classical single-domain modeling approach was proposed with spatially variable scaling factors inferred from image analyses. In the next step, a two-continuum scenario was constructed to examine additional effects of nonequilibrium on the flow regime. The scaling factors used for the preferential flow domain are here obtained from the gradient of the grayscale images. So far, the single domain scenarios failed to predict the bromide leaching patterns although water effluent could be described. Dual-permeability model allows the incorporation of structural effects and can be used as a tool to further testing other approaches that account for structure effects. The numerical study suggests that additional experiments are required to obtain better understanding of the highly complex transport processes on this experimental site.

  9. Groundwater quality across scales: impact on nutrient transport to large water bodies

    Science.gov (United States)

    Dürr, Hans; Moosdorf, Nils; Mallast, Ulf

    2017-04-01

    High concentrations of dissolved nutrients such as nitrogen (N) and phosphorus (P) in groundwater are an increasing concern in many areas of the world. Especially regions with high agriculture impact see widespread declining groundwater quality, with considerable uncertainty mainly regarding the impact of phosphorus (P). Implications reach from direct impacts on different water users to discharge of nutrient-rich groundwater to rivers, lakes and coastal areas, where it can contribute to eutrophication, hypoxia or harmful algal blooms. While local-scale studies are abundant and management options exist, quantitative approaches at regional to continental scales are scarce and frequently have to deal with data inconsistencies or are temporally sparse. Here, we present the research framework to combine large databases of local groundwater quality to data sets of climatical, hydrological, geological or landuse parameters. Pooling of such information, together with robust methods such as water balances and groundwater models, can provide constraints such as upper boundaries and likely ranges of nutrient composition in various settings, or for the nutrient transport to large water bodies. Remote Sensing can provide spatial information on the location of groundwater seepage. Results will eventually help to identify focus areas and lead to improved understanding of the role of groundwater in the context of global biogeochemical cycles.

  10. Perinatal changes in expression of aquaporin-4 and other water and ion transporters in rat lung.

    Science.gov (United States)

    Yasui, M; Serlachius, E; Löfgren, M; Belusa, R; Nielsen, S; Aperia, A

    1997-11-15

    1. At birth, rapid removal of lung liquid from potential airspaces is required to establish pulmonary gas exchange. To investigate the role for water channels, aquaporins (AQP) and ion transporters in this process, the mRNA expression of AQP, Na+,K(+)-ATPase and the amiloride-sensitive Na+ channel (ENaC) were studied in the fetal and postnatal rat lung. 2. The mRNA expression of all transporters studied increased postnatally. 3. The following water channels were expressed in the lung, AQP1, 4 and 5. The most specific perinatal induction pattern was observed for AQP4. A sharp and transient increase of AQP4 mRNA occurred just after birth coinciding with the time course for clearance of lung liquid. This transient induction of AQP4 mRNA at birth was lung-tissue specific. Around birth there was a moderate increase in AQP1 mRNA, which was not transient. AQP5 increased continuously until adulthood. 4. Fetal lung AQP4 mRNA was induced by both beta-adrenergic agonists and glucocorticoid hormone, which are factors that have been suggested to accelerate the clearance of lung liquid. 5. Immunocytochemistry revealed that AQP4 was located in the basolateral membranes of bronchial epithelia in newborn rats, consistent with the view that this is the major site for perinatal lung liquid absorption. 6. The Na+,K(+)-ATPase alpha 1 subunit and ENaC alpha-subunit mRNA also increased around birth, suggesting that they co-operatively facilitate lung liquid clearance at birth. 7. These data indicate that removal of lung liquid at birth is associated with pronounced and well-synchronized changes in the expression of AQP and the ion transporters studied. The transient perinatal induction of AQP4, which could be prenatally induced by beta-adrenergic agonists, and the localization of this water channel strongly suggest that it plays a critical role for removal of lung liquid at the time of birth.

  11. Water transit time distributions as indicators of nitrate transport systematics in different agriculturally used catchments

    Science.gov (United States)

    Osenbrück, K.; Dilbat, M.; Knöller, K.

    2009-04-01

    The transit time distribution (TTD) of water is a fundamental parameter in hydrogeology, revealing information about the distribution of flow pathways and the origin of water in a catchment. Hence, the TTD of groundwater or of water discharging from a catchment may be used as an indicator to assess the transport of solutes like nitrate in groundwater wells or streams of agriculturally used catchments. Here we present hydrochemical and isotopic data from 4 subcatchments of the Weisse Elster basin, Germany, which range from the small to the meso scale. Catchment TTDs have been modeled using measured time series of the stable (18O and 2H) and radioactive (tritium) isotopes of water (sampled weekly to bi-weekly). In case of groundwater wells additional environmental tracers (tritiogenic 3He, CFCs) were used to further constrain the groundwater TTD. Mean residence times for baseflow range from 3 to 10 years (exponential and dispersion model) and most probably are mainly controlled by the geological characteristics of the subcatchments. However, all investigated catchments showed a positive relationship between nitrate and stream discharge indicating that a major part of the nitrate load is released during and after storm runoff. TTDs based on stream samples during baseflow as well as stormflow conditions show substantially lower mean residence times of less than 1 to about 4 months. However, the calculation of a reliable TTD on the event time scale is limited by the ‘steady state' assumption required for the modeling of the TTD with lumped parameter models. If the temporal variation of nitrate input into the subsurface is known, the TTD calculated from environmental tracers and isotopes can be used to estimate the development of nitrate concentrations in water and hence to evaluate management options and measures. This has been done in a small groundwater catchment used for drinking water purposes. The derived TTDs with high mean residence times of >30a suggest, that

  12. The Water Level and Transport Regimes of the Lower Columbia River

    Science.gov (United States)

    Jay, D. A.

    2011-12-01

    Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand

  13. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  14. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [University of California, Davis, CA 95616 (United States); Wenzhou Medical College, Wenzhou 325035 (China)

    2009-12-15

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  15. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  16. Unveiling subglacial geology and crustal architecture in the Recovery frontier of East Antarctica with recent aeromagnetic and airborne gravity imaging

    Science.gov (United States)

    Ferraccioli, F.; Forsberg, R.; Jordan, T. A.; Matsuoka, K.; Olsen, A.; King, O.; Ghidella, M.

    2014-12-01

    East Antarctica is the least known continent, despite being a keystone in the Gondwana, Rodinia and Columbia supercontinents. Significant progress has been made in recent years in exploring East Antarctica using aeromagnetic and airborne gravity together with radar. Major aerogeophysical campaigns over the Wilkes Subglacial Basin (Ferraccioli et al., 2009 Tectonophysics), the Aurora Subglacial Basin (Aitken et al., 2014 GRL) and the Gamburtsev Subglacial Mountains (Ferraccioli et al., 2011, Nature) provide new glimpses into the crustal architecture of East Antarctica. However, a major sector of the continent that includes key piercing points for reconstructing linkages between East Antarctica and Laurentia within Rodinia, and also the inferred remnants of a major suture zone active during Gondwana amalgamation in Pan-African times (ca 500 Ma), has remained largely terra incognita. Here we present the results of a major aerogeophysical survey flown over this sector of East Antarctica, named the Recovery Frontier, from the major ice stream flowing in the region. The survey was flown during the IceGRAV 2012-13 field season, as part of a Danish-Norwegian-UK and Argentine collaboration and led to the collection of 29,000 line km of radar, laser altimetry, gravity and magnetic data. We present the new aeromagnetic anomaly, Bouguer and residual and enhanced anomaly maps for the region. Using these images we trace the extent of major subglacial faults and interpret these to delineate the tectonic boundaries separating the Coast block, the Shackleton Range and the Dronning Maud Land crustal provinces. Forward magnetic and gravity modelling enables us to examine the inferred Pan-African age suture zone in the Shackleton Range and address its tectonic relationships with older terranes of the Mawson Craton and Grenvillian-age terranes of Dronning Maud Land and interior East Antarctica. Finally, we present new models to test our hypothesis that Paleozoic to Mesozoic rift basins

  17. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    Science.gov (United States)

    Dahan, O.

    2009-04-01

    Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and

  18. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... due to the high micro porosity of added biochar. In conclusion, the results showed that biochar addition to soil changed key soil structural parameters at least in the short term (1 year). In perspective, the long-term variations in soil structural parameters and related changed in microbial activity...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...

  19. Calculation of the transport and relaxation properties of dilute water vapor

    Science.gov (United States)

    Hellmann, Robert; Bich, Eckard; Vogel, Eckhard; Dickinson, Alan S.; Vesovic, Velisa

    2009-07-01

    Transport properties of dilute water vapor have been calculated in the rigid-rotor approximation using four different potential energy hypersurfaces and the classical-trajectory method. Results are reported for shear viscosity, self-diffusion, thermal conductivity, and volume viscosity in the dilute-gas limit for the temperature range of 250-2500 K. Of these four surfaces the CC-pol surface of Bukowski et al. [J. Chem. Phys. 128, 094314 (2008)] is in best accord with the available measurements. Very good agreement is found with the most accurate results for viscosity in the whole temperature range of the experiments. For thermal conductivity the deviations of the calculated values from the experimental data increase systematically with increasing temperature to around 5% at 1100 K. For both self-diffusion and volume viscosity, the much more limited number of available measurements are generally consistent with the calculated values, apart from the lower temperature isotopically labeled diffusion measurements.

  20. Subsurface-water flow and solute transport: federal glossary of selected terms

    Science.gov (United States)

    Isensee, Alan R.; Johnson, Lynn; Thornhill, Jerry; Nicholson, Thomas J.; Meyer, Gerald; Vecchioli, John; Laney, Robert

    1989-01-01

    The purpose of this report is to provide a glossary of selected terms for saturated and unsaturated flow and related processes involved in transport of contaminants in the subsurface. The glossary contains five tables. Table 1 is a list of parameters with associated symbols and units. Tables 2 to 5 are conversion charts. The original manuscript was prepared by Thomas J. Nicholson, U.S. Nuclear Regulatory Commission. It was subsequently examined by the Ground-Water Glossary Working Group and experts within and outside the Federal Government, whose recommendations were accommodated where appropriate in the glossary. It is hoped that the glossary will aid in the communications between soil scientists, hydrologists, and hydrogeologists.

  1. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource...... utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...

  2. Modelling the fate and transport of faecal bacteria in estuarine and coastal waters.

    Science.gov (United States)

    Gao, Guanghai; Falconer, Roger A; Lin, Binliang

    2015-11-15

    This paper details a numerical model developed to predict the fate and transport of faecal bacteria in receiving surface waters. The model was first validated by comparing model predicted faecal bacteria concentrations with available field measurements. The model simulations agreed well with the observation data. After calibration, the model was applied to investigate the effects of different parameters, including: tidal processes, river discharges from the upstream boundaries and bacteria inputs from the upstream boundaries, wastewater treatment works (WwTWs), rivers and combined sewer overflows (CSO), on the concentrations of faecal bacteria in the Ribble Estuary. The results revealed that the tide and upstream boundary bacteria inputs were the primary factors controlling the distribution of faecal bacteria. The bacteria inputs from the WwTWs in the model domain were generally found not to have a significant impact on distribution of faecal bacteria in the estuary. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Nonequilibrium modeling of an ammonia-water rectifyng column via fundamental thermodynamic and transport relations

    Directory of Open Access Journals (Sweden)

    J. R. Figueiredo

    2006-12-01

    Full Text Available A nonequilibrium heat and mass transfer model is presented for the steady-state operation of a rectifying column, employed in ammonia-water absorption refrigeration systems to dehumidify the ammonia vapor leaving the generator. The thermodynamic state relations of the mixture are derived from two equations representing the Gibbs free energy in terms of temperature, pressure and concentration for the liquid and the vapor phases. Two of the transport properties, surface tension and liquid diffusivity required original relations, as presented here in. The resulting nonlinear system of equations is solved by efficient use of the Newton-Raphson code that minimizes the order of the Jacobian matrix without losing any model information or the quadratic order of convergence of the numerical method. Accuracy tests are performed by grid refinement and by comparison with results in the literature. A sensitivity study is presented showing the influence of some alternative methods for estimation of the transport properties on the temperature and concentration profiles.

  4. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Baofu [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne Illinois 60439 USA; Ferru, Geoffroy [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne Illinois 60439 USA; Ellis, Ross J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne Illinois 60439 USA; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831 USA

    2016-11-23

    We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, the local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed.

  5. Sources and transport pathways of micropollutants into surface waters - an overview

    Science.gov (United States)

    Stamm, Christian

    2017-04-01

    Micropollutants reach water bodies from a large range of sources through different transport pathways. They consist of hundreds or thousands of compounds rendering exposure assessment an analytical challenge. Prominent examples of micropollutants are wastewater-born pharmaceuticals and hormones or plant protection products originating from diffuse agricultural sources. This presentation reviews the possible origin of micropollutants and their transport pathways. It demonstrates that considering municipal wastewater and agriculture may fall short of comprising all relevant source-pathway combination in a given watershed by providing examples from industry, animal production, or leaching to groundwater. The diversity of source-pathway leads on the one hand to a large number of possible chemicals to be considered including parent compounds of end products, their transformation products, legacy compounds but also intermediates used during industrial synthesis processes. On the other hand, it leads to a wide range of temporal dynamics by which these compounds reach streams and rivers. This combination makes a comprehensive exposure assessment for micropollutants a real scientific challenge. An outlook into new development in sampling and analytics will suggest possible solution for this challenge.

  6. Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Spycher, N.; Xu, T.; Apps, J.; Kharaka, Y.; Birkholzer, J.T.

    2010-11-05

    In this study, reactive transport simulations were used to assess the mobilization and transport of organics with supercritical CO{sub 2} (SCC), and the co-injection and transport of H{sub 2}S with SCC. These processes were evaluated at conditions of typical storage reservoirs, and for cases of hypothetical leakage from a reservoir to an overlying shallower fresh water aquifer. Modeling capabilities were developed to allow the simulation of multiphase flow and transport of H{sub 2}O, CO{sub 2}, H{sub 2}S, as well as specific organic compounds (benzene), coupled with multicomponent geochemical reaction and transport. This included the development of a new simulator, TMVOC-REACT, starting from existing modules of the TOUGH2 family of codes. This work also included an extensive literature review, calculation, and testing of phase-partitioning properties for mixtures of the phases considered. The reactive transport simulations presented in this report are primarily intended to illustrate the capabilities of the new simulator. They are also intended to help evaluate and understand various processes at play, in a more qualitative than quantitative manner, and only for hypothetical scenarios. Therefore, model results are not intended as realistic assessments of groundwater quality changes for specific locations, and they certainly do not provide an exhaustive evaluation of all possible site conditions, especially given the large variability and uncertainty in hydrogeologic and geochemical parameter input into simulations. The first step in evaluating the potential mobilization and transport of organics was the identification of compounds likely to be present in deep storage formations, and likely to negatively impact freshwater aquifers if mobilized by SCC. On the basis of a literature review related to the occurrence of these organic compounds, their solubility in water and SCC, and their toxicity (as reflected by their maximum contaminant levels MCL), benzene was

  7. Energy and water vapor transport across a simplified cloud-clear air interface

    Science.gov (United States)

    Gallana, L.; Di Savino, S.; De Santi, F.; Iovieno, M.; Tordella, D.

    2014-11-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers.

  8. Reactive transport modeling of secondary water quality impacts due to anaerobic bioremediation

    Science.gov (United States)

    Ng, G. H. C.; Bekins, B. A.; Kent, D. B.; Borden, R. C.; Tillotson, J.

    2014-12-01

    Bioremediation using electron donor addition produces reducing conditions in an aquifer that promote the anaerobic biodegradation of contaminants such as chlorinated solvents. There is growing concern about secondary water quality impacts (SWQIs) triggered by the injection of electron donors, due to redox reactions with electron acceptors other than the target contaminant. Secondary plumes, including those with elevated concentrations of Mn(II), Fe(II), and CH4, may create long-lasting impairment of water quality. Understanding conditions that control the production and attenuation of SWQIs is needed for guiding responsible bioremediation strategies that limit unintended consequences. Using a reactive transport model developed with data from long-term anaerobic biodegradation monitoring sites, we simulate diverse geochemical scenarios to examine the sensitivity of secondary plume extent and persistence to a range of aquifer properties and treatment implementations. Data compiled from anaerobic bioremediation sites, which include variable physical and geochemical relationships, provide the basis for the conditions evaluated. Our simulations show that reduced metal and CH4 plumes may be significantly attenuated due to immobilization (through sorption and/or precipitation) and outgassing, respectively, and that recovery time to background conditions depends strongly on the chemical forms of reduced metals on sediments. Unsurprisingly, scenarios that do not easily allow outgassing (e.g. deeper injections) led to higher CH4 concentrations, and scenarios with higher hydraulic conductivity produced more dilute concentrations of secondary species. Results are sensitive to the assumed capacity for Fe(II) sorption and reductive dissolution rates of Fe(III) oxides, which control Fe(II) concentrations. Simulations also demonstrated the potential importance of chemical reactions between different secondary components. For example, limited CH4 loss from outgassing and Fe

  9. How Does Leaf Anatomy Influence Water Transport outside the Xylem?1[OPEN

    Science.gov (United States)

    Buckley, Thomas N.; Scoffoni, Christine; Sack, Lawren

    2015-01-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. PMID:26084922

  10. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  11. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  12. The Influence of Orbital Resonances on the Water Transport to Objects in the Circumprimary Habitable Zone of Binary Star Systems

    Science.gov (United States)

    Bancelin, David; Pilat-Lohinger, Elke; Maindl, Thomas I.; Ragossnig, Florian; Schäfer, Christoph

    2017-06-01

    We investigate the role of secular and mean motion resonances on the water transport from a belt of icy asteroids onto planets or embryos orbiting inside the circumprimary habitable zone (HZ) of a binary star system. In addition, the host-star has an accompanying gas giant planet. For a comparison, we perform two case studies where a secular resonance (SR) is located either inside the HZ close to 1.0 au (causing eccentric motion of a planet or embryos therein) or in the asteroid belt, beyond the snow line. In the latter case, a higher flux of icy objects moving toward the HZ is expected. Collisions between asteroids and objects in the HZ are treated analytically. Our purely dynamical study shows that the SR in the HZ boosts the water transport however, collisions can occur at very high impact speeds. In this paper, we treat for the first time, realistic collisions using a GPU 3D-SPH code to assess the water loss in the projectile. Including the water loss into the dynamical results, we get more realistic values for the water mass fraction of the asteroid during an impact. We highlight that collisions occurring at high velocities greatly reduce the water content of the projectile and thus the amount of water transported to planets or embryos orbiting inside the HZ. Moreover, we discuss other effects that could modify our results, namely the asteroid’s surface rate recession due to ice sublimation and the atmospheric drag contribution on the asteroids’ mass loss.

  13. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    Science.gov (United States)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  14. Spreading of the Western Mediterranean Deep Water after winter 2005: Time scales and deep cyclone transport

    Science.gov (United States)

    Beuvier, J.; BéRanger, K.; Lebeaupin Brossier, C.; Somot, S.; Sevault, F.; Drillet, Y.; Bourdallé-Badie, R.; Ferry, N.; Lyard, F.

    2012-07-01

    This work is dedicated to the study of the propagation of the Western Mediterranean Deep Water (WMDW) formed in the Gulf of Lions during the exceptional winter 2005. A simulation of the 1998-2008 period has been carried out with an eddy-resolving Ocean General Circulation Model of the Mediterranean Sea, driven by interannual high-resolution air-sea fluxes. This study first presents a validation of the recently improved model configuration against satellite observations. Then, we assess the ability of the model to reproduce the particularly intense deep convection event of winter 2005 in the Gulf of Lions. A huge volume of very dense water is formed in the simulation at that time (annual formation rate higher than 3 Sv). The thermohaline characteristics of the new WMDW allow a monitoring of its deep propagation. We identify several deep cyclones as mainly responsible of the fast spreading of the WMDW southwards in the Western Mediterranean. By comparing Eulerian and Lagrangian approaches, we estimate different transport times of the WMDW by these cyclonic eddies and compare them to those deduced from several observations. Finally, we argue that these cyclones favor the propagation of the WMDW thermohaline characteristics toward the Channel of Sardinia and decrease the volume of WMDW which can reach the Strait of Gibraltar.

  15. Influence of Modern Stormwater Management Practices on Transport of Road Salt to Surface Waters.

    Science.gov (United States)

    Snodgrass, Joel W; Moore, Joel; Lev, Steven M; Casey, Ryan E; Ownby, David R; Flora, Robert F; Izzo, Grant

    2017-04-18

    Application of road salts in regions with colder climates is leading to ground and surface water contamination. However, we know little about how modern stormwater management practices affect the movement of road