WorldWideScience

Sample records for subglacial water system

  1. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    Science.gov (United States)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  2. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    Science.gov (United States)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  3. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  4. Dissolution of calcite in glacial water; evidence of inhibition and consequences for subglacial speleogenesis.

    Science.gov (United States)

    Lauritzen, S.-E.

    2012-04-01

    Subglacial speleogenesis (i.e. formation of caves by ice-contact underneath or along glaciers) is an important speleogenetic modus that have taken place in many previously glaciated areas. It is however controversial how efficient this process is when compared to speleogenesis under non-glacial conditions: Can caves be formed from 'scratch' - from a pristine, microscopic fracture (speleogenesis sensu stricto) - or is this process more intensive under non-glacial conditions, so that ice-contact water can only widen pre-existing conduits (speleogenesis sensu lato)? Subglacial waters are low in CO2 and close to zero degrees. A critical parameter for transforming a fracture into a cave is the breakthrough time, tB, which is the time from commencement of flow until undersaturated water can flow freely through the full length of the flowpath. The breathrough effect (i.e. when radial widening accelerates) is dependent on the switching concentration, Cs, which drops dramatically with low CO2 in the system. Apart from the initial aperture and length of the percolation paths through the rock mass, two additional factors are important for tB: 1) the concentration of glacial rock flour and 2) its ability to interfer with the carbonate chemistry. A series of thermostated dissolution experiments using marble and various additions of authentic glacier silt and crushed metamorphic rocks demonstrate and support theoretical considerations that subglacial speleogenesis in low CO2 waters is slower than first anticipated. The sensu stricto mechanism is also severely hampered by the clogging effect of glacial silt, whilst the sensu lato mechanism is sluggish because corrosion of the large specific area of silt particles consumes aggressiveness thus slowing first-order rates when the water comes in contact with the karst surface. Also, for the same reason, Cs may be exceeded before the water enters karst, so that breakthrough may be totally suppressed. Interglacial waters seem > 50 times

  5. Seismic observations of subglacial water discharge from glacier-dammed lake drainage at Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Labedz, C. R.; Bartholomaus, T. C.; Gimbert, F.; Amundson, J. M.; Vore, M. E.; Karplus, M. S.; Tsai, V. C.

    2017-12-01

    Subglacial water flow affects the dynamics of glaciers, influencing basal sliding, sediment transport, fracturing, and terminus dynamics. However, the difficulty of directly observing glacial hydrologic systems creates significant challenges in understanding such glacier behavior. Recently-developed descriptions of ground motion generated by subglacial water flow provide a promising basis for new and unique characterization of glacial hydrologic systems. Particularly, high-frequency ( 1.5-20 Hz) seismic tremor observed near glaciers has been shown to correlate with subglacial runoff. In addition, specific properties of subglacial water flow like water pressure, conduit size, sediment flux, and grain size can be inferred by examining hysteretic behavior over time between different parts of these signals. In this study, we observe the seismic signals generated by subglacial water flow using a high-density array of more than 100 nodes deployed for 10-25 days, and six broadband seismometers deployed for 80 days at Lemon Creek Glacier, Alaska. Specifically, we examine the 36-hour drainage of a glacier-dammed lake into subglacial conduits, comparing hydrologic metrics such as lake level, precipitation, and outlet stream flow rate to the power of seismic signals. Our node array captures this annually-significant hydraulic transient with sensors spaced approximately every 250 m over the majority of the 5.7 km long glacier. This and other lake drainage events provide natural experiments for exploring glaciohydraulic tremor, because the increased water flux through the glacier increases the power of the tremor and hosts the hysteretic behaviors described previously. Analysis of the tremor from events such as this can be extended to further understand subglacial runoff at Lemon Creek glacier and for glacier hydrology in general.

  6. Spatio-temporal evolution of efficient subglacial water discharge at Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Bartholomaus, T. C.; Labedz, C. R.; Amundson, J. M.; Gimbert, F.; Tsai, V. C.; Vore, M. E.; Karplus, M. S.

    2017-12-01

    The impact of subglacial hydrology on glacier motion, glacier erosion and sediment transport, and submarine melt is well established. However, despite its importance, critical gaps in our understanding of subglacial hydrology and its seasonal evolution remain, in large part due to the challenge of making observations of glacier beds. Thus far, no spatially extensive, temporally continuous observations of subglacial water discharge exist. Seismic signals produced by subglacial water flow, and which correlate with subglacial water discharge, can meet this need. Here, we present the first observations from a 2017 summer seismic, geodetic, and hydrologic experiment. Our experiment seeks to better understand the evolution of efficient subglacial drainage and water storage through data collection and analysis at Lemon Creek Glacier, a 5.7 km-long glacier with a gauged outlet in Southeast Alaska. Data with nested spatial resolutions create an unparalleled perspective of subglacial discharge and its seasonal evolution. Six broadband seismometers and two GPS receivers installed for 80 days provide a long-term view of subglacial discharge and its impact on glacier dynamics. More than 100 nodes, installed approximately every 250 m over the glacier surface ( 13 nodes per 1 km^2) and deployed for up to 25 days, reveal the detailed spatial pattern of glaciohydraulic tremor amplitudes. These nodes enable us to more precisely infer the locations of subglacial discharge and its change, as well as better interpret long-term patterns of glaciohydraulic tremor observed by the broadband seismometers. We infer the subglacial response to hydraulic transients over the duration of the deployment through examination of intermittent melt and rain events, and the abrupt drainage of a glacier-dammed lake. These observations demonstrate the promise of seismology to significantly advance our understanding of glacier hydrology and associated glaciological processes.

  7. Can Subglacial Meltwater Films Carve Into the till Beneath? Insights from a Coupled Till-Water Model

    Science.gov (United States)

    Kasmalkar, I.; Mantelli, E.; Suckale, J.

    2017-12-01

    Networks of water channels are known to exist beneath regions of the continental ice sheets such as Antarctica and Greenland. These channels are fed by meltwater and form along the interface between the ice and the underlying till layer. Their presence localizes basal strength by reducing pore pressure and hence alters the resistance to ice slip provided by the till. Subglacial channels thus play a major role in determining the rate of ice flow for glaciers and ice streams. It is unclear whether subglacial meltwater can evolve from a thin film into a network of distributed channels by erosion of the sediment bed. Models that involve hard-rock beds can only account for water channels that carve into the ice and not the till. Alternative approaches that include erodible sediment mostly assume viscous behavior in the till layer, which is not well supported by laboratory experiments of till failure. To better understand the physical processes that govern channelization, we couple water flow in a thin film with sediment transport to capture the dynamic interactions between water and till. We present a two-dimensional model which consists of a thin subglacial water film that is in the laminar regime and an erodible till layer that obeys the Shield's criterion. We use analytic techniques to study the long-term behavior of perturbations of the water-till interface. We discuss the stability of the system under such perturbations in the context of channel formation.

  8. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  9. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  10. Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels

    Science.gov (United States)

    Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero

    2018-04-01

    Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide

  11. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  12. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  13. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.

    Science.gov (United States)

    Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A

    2014-10-02

    Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.

  14. A new methodology to simulate subglacial deformation of water saturated granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Piotrowski, Jan A.

    2015-01-01

    The dynamics of glaciers are to a large degree governed by processes operating at the ice-bed interface, and one of the primary mechanisms of glacier flow over soft unconsolidated sediments is subglacial deformation. However, it has proven difficult to constrain the mechanical response of subglac......The dynamics of glaciers are to a large degree governed by processes operating at the ice-bed interface, and one of the primary mechanisms of glacier flow over soft unconsolidated sediments is subglacial deformation. However, it has proven difficult to constrain the mechanical response...... or weakening components, depending on the rate of deformation, the material state, clay mineral content, and the hydrological properties of the material. The influence of the fluid phase is negligible when relatively permeable sediment is deformed. However, by reducing the local permeability, fast deformation...... can cause variations in the pore-fluid pressure. The pressure variations weaken or strengthen the granular phase, and in turn influence the distribution of shear strain with depth. In permeable sediments the strain distribution is governed by the grain-size distribution and effective normal stress...

  15. Greenland Subglacial Drainage Evolution Regulated by Weakly Connected Regions of the Bed

    Science.gov (United States)

    Hoffman, Matthew J.; Andrews, Lauren C.; Price, Stephen F.; Catania, Ginny A.; Neumann, Thomas A.; Luthi, Martin P.; Gulley, Jason; Ryser, Claudia; Hawley, Robert L.; Morriss, Blaine

    2016-01-01

    Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

  16. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  17. Incorporating modelled subglacial hydrology into inversions for basal drag

    Directory of Open Access Journals (Sweden)

    C. P. Koziol

    2017-12-01

    Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.

  18. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  19. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  20. Understanding and Observing Subglacial Friction Using Seismology

    Science.gov (United States)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction

  1. Meltwater drainage beneath ice sheets: What can we learn from uniting observations of paleo- and contemporary subglacial hydrology?

    Science.gov (United States)

    Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.

    2017-12-01

    Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial

  2. ENVIRONMENT PROTECTION AND ENVIRONMENT MONITORING ISSUES IN THE PROJECTS OF SUBGLACIAL LAKES STUDIES IN ANTARCTICA

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2012-01-01

    Full Text Available Antarctic subglacial lakes can represent extreme natural habitats for microorganisms from the position of their evolution and adaptation, as well as they can contain the information on Antarctic ice sheet history and climatic changes in their sediments. Now only direct measurements and sampling from these habitats can answer on many fundamental questions. Special precaution should be complied at penetration into these unique relic environments without unfavorable impacts and contamination. A number of recommendations were developed on levels of cleanliness and sterility during direct exploration and research of subglacial environments. Documents considered in the article are the first and necessary steps for appropriate and long-term ecological management of subglacial Antarctic environments. Today there are three projects of subglacial aquatic environment research which are in preparation and realization – the Russian project of Lake Vostok, the similar British project of Lake Ellsworth and the American project on Whillans Ice Stream. The programs of ecological stewardship for direct exploration of these lakes are discussed. All these subglacial aquatic objects of further exploration and research are so various on their structure, age and regime, that only results of all programs as a whole can help to draw us a uniform picture of a subglacial ecological system. Ecological stewardship of these should provide the minimal ecological impact with maximal scientific results. On the basis of existing documents and recommendations the general approaches and the program of ecological stewardship for Lake Vostok research are discussed. Study of drilling fluid, drilling chips, Vostok ice core and the fresh frozen water will allow to make an assessment of biological and chemical contamination as a result of the first penetration and to modify the further stewardship program for the second penetration and direct exploration of lake water.

  3. Investigating palaeo-subglacial lakes in the central Barents Sea

    Science.gov (United States)

    Esteves, M.; Shackleton, C.; Winsborrow, M.; Andreassen, K.; Bjarnadóttir, L. R.

    2017-12-01

    In the past decade hundreds of subglacial lakes have been detected beneath the Antarctic Ice Sheet, and several more beneath the Greenland Ice Sheet. These are important components of the subglacial hydrological system and can influence basal shear stress, with implications for ice sheet dynamics and mass balance, potentially on rapid timescales. Improvements in our understanding of subglacial hydrological systems are therefore important, but challenging due to the inaccessibility of contemporary subglacial environments. Whilst the beds of palaeo-ice sheets are easier to access, few palaeo-subglacial lakes have been identified due to uncertainties in the sedimentological and geomorphological diagnostic criteria. In this study we address these uncertainties, using a suite of sedimentological, geomorphological and modelling approaches to investigate sites of potential palaeo-subglacial lakes in the central Barents Sea. Geomorphological signatures of hydraulic activity in the area include large meltwater channels, tunnel valleys, and several interlinked basins. Modelling efforts indicate the potential for subglacial hydraulic sinks within the area during the early stages of ice retreat since the Last Glacial Maximum. In support of this, sedimentological observations indicate the presence of a dynamic glaciolacustrine depositional environment. Using the combined results of the modelling, geomorphology, and sedimentological analyses, we conclude that palaeo-subglacial lakes are likely to have formed on the northwestern banks of Thor Iversenbanken, central Barents Sea, and suggest that numerous other subglacial lakes may have been present beneath the Barents Sea Ice Sheet. Furthermore, we investigate and refine the existing diagnostic criteria for the identification of palaeo-subglacial lakes.

  4. Modeling the response of subglacial drainage at Paakitsoq, west Greenland, to 21st century climate change

    Science.gov (United States)

    Mayaud, Jerome R.; Banwell, Alison F.; Arnold, Neil S.; Willis, Ian C.

    2014-12-01

    Although the Greenland Ice Sheet (GrIS) is losing mass at an accelerating rate, much uncertainty remains about how surface runoff interacts with the subglacial drainage system and affects water pressures and ice velocities, both currently, and into the future. Here, we apply a physically based, subglacial hydrological model to the Paakitsoq region, west Greenland, and run it into the future to calculate patterns of daily subglacial water pressure fluctuations in response to climatic warming. The model is driven with moulin input hydrographs calculated by a surface routing model, forced with distributed runoff. Surface runoff and routing are simulated for a baseline year (2000), before the model is forced with future climate scenarios for the years 2025, 2050, and 2095, based on the IPCC's Representative Concentration Pathways (RCPs). Our results show that as runoff increases throughout the 21st century, and/or as RCP scenarios become more extreme, the subglacial drainage system makes an earlier transition from a less efficient network operating at high water pressures, to a more efficient network with lower pressures. This will likely cause an overall decrease in ice velocities for marginal areas of the GrIS. However, short-term variations in runoff, and therefore subglacial pressure, can still cause localized speedups, even after the system has become more efficient. If these short-term pressure fluctuations become more pronounced as future runoff increases, the associated late-season speedups may help to compensate for the drop in overall summer velocities, associated with earlier transitioning from a high to a low pressure system.

  5. Investigations into the Regional and Local Timescale Variations of Subglacial Drainage Networks

    Science.gov (United States)

    Hiester, Justin

    Subglacial water plays an important role in the regulation of an ice sheet's mass balance. It may be the dominant control on the velocities of ice streams and outlet glaciers on scales of months to millennia. Recent satellite observations of ice surface elevation changes have given researchers new insights into how subglacial water is stored and transported. Localized uplift and settling of the ice surface implies that lakes exist beneath the ice sheet that are being filled and drained on relatively short time scales. At the base of an ice sheet water can be transported through a variety of drainage networks or stored in subglacial lakes. Here, a numerical investigation of the mechanisms of transport and storage of subglacial water and the associated time scales is presented. Experiments are carried out using a finite element model of coupled ice and water flow. The first experiment seeks to understand the relationship between the depth of a basal depression and the area over which the feature affects basal water flow. It is found that as the perturbation to a topographic depression's depth is increased, water is rerouted in response to the perturbation. Additionally it is found that the relationship between perturbation depth and the extent upstream to which its effects reach is nonlinear. The second experiment examines how the aspect ratio of bed features (prolate, oblate, or equidimensional) influences basal water flow. It is found that the systems that develop and their interactions are mediated by both the topography and the feedbacks taken into account by the coupling of the systems in the model. Features oriented parallel to ice and water flow are associated with distributed fan systems that develop branches which migrate laterally across the domain and interact with one another on monthly and yearly timescales. Laterally oriented features develop laterally extensive ponds. As the ratio of longitudinal to lateral dimension of the topography is increased, a

  6. Landscape evolution by subglacial quarrying

    Science.gov (United States)

    Ugelvig, Sofie V.; Egholm, David L.; Iverson, Neal R.

    2014-05-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form along the lee side of bed obstacles when the sliding velocity is to high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness: larger rock bodies have lower strengths since they have greater possibility of containing a large flaw [Jaeger and Cook, 1979]. Inclusion of this effect strongly influences the erosion rates and questions the dominant role of sliding rate in standard models for subglacial erosion. Effective pressure, average bedslope, and bedrock fracture density are primary factors that, in addition to sliding rate, influence the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. Compared to model results using a

  7. Subglacial hydrology of the lake district ice lobe during the Younger Dryas (ca. 12 500 - 11 600 years ago) in the Kylaeniemi area, SE Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lunkka, J. P.; Moisio, K.; Vainio, A. [Univ. of Oulu (Finland)

    2013-07-15

    It is essential to gain knowledge on the subglacial hydrological conditions at the glacier bed / bedrock interface when assessing how bedrock fracture zones affect subglacial melt water flow and in which subglacial zones pressurized and oxygen-rich melt water penetrates into the bedrock fracture systems. In the warm-based glacier zones, a part of subglacial melt water will penetrate deep into the fracture systems although the major part of melt water is drained to and beyond the ice margin via subglacial tunnel networks especially in the areas where ice is flowing on the crystalline bedrock. During the last deglaciation phase of the former Scandinavian Ice Sheet, glaciofluvial accumulations were deposited and these sediment accumulations are highly important when picturing the subglacial hydrology of different ice streams during deglaciation in the crystalline bedrock area. The aim of the present work was to map the bedrock fracture zones in the Kylaeniemi area and to shed light on the subglacial hydrology of the Scandinavian Ice Sheet's Lake District Ice Stream that occupied the Kylaeniemi area during the Younger Dryas between ca. 12 500 - 11 600 years ago. The special emphasis within this general aim was to study the relationship between bedrock fracture zones and the routes of subglacial drainage paths. The methods used to map and study bedrock fracture zones and subglacial drainage paths included remotes sensing methods, field observations, ground penetrating radar (GPR) investigations and GIS-based reconstructions. Conventional geological field methods aided by the GPR-method were also used to map bedrock exposures and their structures and to define the type of glaciofluvial sediments and glaciofluvial landform associations. Two main fracture zone sets occur in the study area. The most prominent bedrock fracture zone set trends NW-SE while the other, less prominent fracture zone set is aligned in NE-SW direction. The majority of the minor joint sets in

  8. Subglacial hydrology of the lake district ice lobe during the Younger Dryas (ca. 12 500 - 11 600 years ago) in the Kylaeniemi area, SE Finland

    International Nuclear Information System (INIS)

    Lunkka, J. P.; Moisio, K.; Vainio, A.

    2013-07-01

    It is essential to gain knowledge on the subglacial hydrological conditions at the glacier bed / bedrock interface when assessing how bedrock fracture zones affect subglacial melt water flow and in which subglacial zones pressurized and oxygen-rich melt water penetrates into the bedrock fracture systems. In the warm-based glacier zones, a part of subglacial melt water will penetrate deep into the fracture systems although the major part of melt water is drained to and beyond the ice margin via subglacial tunnel networks especially in the areas where ice is flowing on the crystalline bedrock. During the last deglaciation phase of the former Scandinavian Ice Sheet, glaciofluvial accumulations were deposited and these sediment accumulations are highly important when picturing the subglacial hydrology of different ice streams during deglaciation in the crystalline bedrock area. The aim of the present work was to map the bedrock fracture zones in the Kylaeniemi area and to shed light on the subglacial hydrology of the Scandinavian Ice Sheet's Lake District Ice Stream that occupied the Kylaeniemi area during the Younger Dryas between ca. 12 500 - 11 600 years ago. The special emphasis within this general aim was to study the relationship between bedrock fracture zones and the routes of subglacial drainage paths. The methods used to map and study bedrock fracture zones and subglacial drainage paths included remotes sensing methods, field observations, ground penetrating radar (GPR) investigations and GIS-based reconstructions. Conventional geological field methods aided by the GPR-method were also used to map bedrock exposures and their structures and to define the type of glaciofluvial sediments and glaciofluvial landform associations. Two main fracture zone sets occur in the study area. The most prominent bedrock fracture zone set trends NW-SE while the other, less prominent fracture zone set is aligned in NE-SW direction. The majority of the minor joint sets in

  9. Physiological ecology of microorganisms in Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Trista J Vick-Majors

    2016-10-01

    Full Text Available Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep, oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1 obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8% indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms

  10. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    Science.gov (United States)

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  11. Properties of the subglacial till inferred from supraglacial lake drainage

    Science.gov (United States)

    Neufeld, J. A.; Hewitt, D.

    2017-12-01

    The buildup and drainage of supraglacial lakes along the margins of the Greenland ice sheet has been previously observed using detailed GPS campaigns which show that rapid drainage events are often preceded by localised, transient uplift followed by rapid, and much broader scale, uplift and flexure associated with the main drainage event [1,2]. Previous models of these events have focused on fracturing during rapid lake drainage from an impermeable bedrock [3] or a thin subglacial film [4]. We present a new model of supraglacial drainage that couples the water flux from rapid lake drainage events to a simplified model of the pore-pressure in a porous, subglacial till along with a simplified model of the flexure of glacial ice. Using a hybrid mathematical model we explore the internal transitions between turbulent and laminar flow throughout the evolving subglacial cavity and porous till. The model predicts that an initially small water flux may locally increase pore-pressure in the till leading to uplift and a local divergence in the ice velocity that may ultimately be responsible for large hydro-fracturing and full-scale drainage events. Furthermore, we find that during rapid drainage while the presence of a porous, subglacial till is crucial for propagation, the manner of spreading is remarkably insensitive to the properties of the subglacial till. This is in stark contrast to the post-drainage relaxation of the pore pressure, and hence sliding velocity, which is highly sensitive to the permeability, compressibility and thickness of subglacial till. We use our model, and the inferred sensitivity to the properties of the subglacial till after the main drainage event, to infer the properties of the subglacial till. The results suggest that a detailed interpretation of supraglacial lake drainage may provide important insights into the hydrology of the subglacial till along the margins of the Greenland ice sheet, and the coupling of pore pressure in subglacial till

  12. Tracking seasonal subglacial drainage evolution of alpine glaciers using radiogenic Nd and Sr isotope systematics: Lemon Creek Glacier, Alaska

    Science.gov (United States)

    Clinger, A. E.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    The transport pathways of water beneath a glacier are subject to change as melt seasons progress due to variability in the balance between basal water pressure and water flux. Subglacial hydrology has been well studied, but the understanding of spatial distribution is less well constrained. Whereas radiogenic isotopic tracers have been traditionally used as proxies to track spatial variability and weathering rates in fluvial and riverine systems, these techniques have yet to be applied extensively to the subglacial environment and may help resolve ambiguity in subglacial hydrology. Research has shown the 143Nd/144Nd values can reflect variation in source provenance processes due to variations in the age of the continental crust. Correlating the 143Nd/144Nd with other radiogenic isotope systematics such as strontium (87Sr/86Sr) provides important constraints on the role of congruent and incongruent weathering processes. Our study presents the application of Nd and Sr systematics using isotopic ratios to the suspended load of subglacial meltwater collected over a single melt season at Lemon Creek Glacier, USA (LCG). The time-series data show an average ɛNd ~ -6.83, indicating a young bedrock (~60 MYA). Isotopic variation helps track the seasonal expansion of the subglacial meltwater channels and subsequent return to early season conditions due to the parabolic trend towards less radiogenic Nd in June and towards more radiogenic Nd beginning in mid-August. However, the high variability in July and early August may reflect a mixture of source as the channels diverge and derive sediment from differently aged lithologies. We find a poor correlation between 143Nd/144Nd and 87Sr/86Sr (R2= 0.38) along with a slight trend towards more radiogenic 87Sr/86Sr values with time ((R2= 0.49). This may indicate that, even as the residence time decreases over the melt season, the LCG subglacial system is relatively stable and that the bedrock is congruently weathered. Our study

  13. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    Science.gov (United States)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  14. Investigating the hydrological origins of Blood Falls - geomicrobiological insights into a briny subglacial Antarctic aquifer

    Science.gov (United States)

    Mikucki, J.; Tulaczyk, S. M.; Purcell, A. M.; Dachwald, B.; Lyons, W. B.; Welch, K. A.; Auken, E.; Dugan, H. A.; Walter, J. I.; Pettit, E. C.; Doran, P. T.; Virginia, R. A.; Schamper, C.; Foley, N.; Feldmann, M.; Espe, C.; Ghosh, D.; Francke, G.

    2015-12-01

    Subglacial waters tend to accumulate solutes from extensive rock-water interactions, which, when released to the surface, can provide nutrients to surface ecosystems providing a 'hot spot' for microbial communities. Blood Falls, an iron-rich, saline feature at the terminus of Taylor Glacier in the McMurdo Dry Valleys, Antarctica is a well-studied subglacial discharge. Here we present an overview of geophysical surveys, thermomechanical drilling exploration and geomicrobiological analyses of the Blood Falls system. A helicopter-borne transient electromagnetic system (SkyTEM) flown over the Taylor Glacier revealed a surprisingly extensive subglacial aquifer and indicates that Blood Falls may be the only surface manifestation of this extensive briny groundwater. Ground-based temperature sensing and GPR data combined with the helicopter-borne TEM data enabled targeted drilling into the englacial conduit that delivers brine to the surface. During the 2014-15 austral summer field season, we used a novel ice-melting drill (the IceMole) to collect englacial brine for geomicrobiological analyses. Results from previously collected outflow and more recent samples indicate that the brine harbors a metabolically active microbial community that persists, despite cold, dark isolation. Isotope geochemistry and molecular analysis of functional genes from BF suggested that a catalytic or 'cryptic' sulfur cycle was linked to iron reduction. Recent metagenomic analysis confirms the presence of numerous genes involved in oxidative and reductive sulfur transformations. Metagenomic and metabolic activity data also indicate that subglacial dark CO2 fixation occurs via various pathways. Genes encoding key steps in CO2 fixation pathways including the Calvin Benson Basham and Wood Ljungdahl pathway were present and brine samples showed measureable uptake of 14C-labeled bicarbonate. These results support the notion that, like the deep subsurface, subglacial environments are chemosynthetic

  15. Landscape evolution by subglacial quarrying

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.; Iverson, Neal R.

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates of ...... evolution models. Geology, v. 40, no. 8, 679-682 (2012). Schoof, C. The effect of cavitation on glacier sliding. Proc. R. Soc. A , 461, 609-627 (2005). Jaeger, J.C., and Cook, N.G.W. Fundamentals of rock mechanics: New York, Chapman and Hall, 593 p. (1979)......In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified for bedrock abrasion because rock debris transported in the basal ice drives the erosion. However, a simple relation between rates...... of sliding and erosion is not well supported when considering models for quarrying of rock blocks from the bed. Iverson (2012) introduced a new subglacial quarrying model that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential...

  16. Numerical Modeling of Subglacial Sediment Deformation

    DEFF Research Database (Denmark)

    Damsgaard, Anders

    2015-01-01

    may cause mass loss in the near future to exceed current best estimates. Ice flow in larger ice sheets focuses in fast-moving streams due to mechanical non-linearity of ice. These ice streams often move at velocities several magnitudes larger than surrounding ice and consequentially constitute...... glaciers move by deforming their sedimentary beds. Several modern ice streams, in particular, move as plug flows due to basal sediment deformation. An intense and long-winded discussion about the appropriate description for subglacial sediment mechanics followed this discovery, with good reason...... incompatible with commonly accepted till rheology models. Variation in pore-water pressure proves to cause reorganization in the internal stress network and leads to slow creeping deformation. The rate of creep is non-linearly dependent on the applied stresses. Granular creep can explain slow glacial...

  17. Blood Falls: A novel management approach for a subglacial feature of outstanding scientific importance

    Science.gov (United States)

    Carr, J. R.; Penhale, P. A.; Dahood, A.; Biletnikoff, N.; Harris, C. M.

    2012-04-01

    Blood Falls is a subglacial feature located in the ablation zone of the Taylor Glacier, Taylor Valley, McMurdo Dry Valleys, Antarctica. Blood Falls has a unique physical configuration, microbial ecology and geochemistry and consists of a subglacial brine reservoir and an iron-rich, saline surface discharge at the Taylor Glacier terminus. The feature provides a rare opportunity to sample properties of a subglacial reservoir and its ecosystem without the need for direct contact and is a key site for exobiological studies. The Blood Falls subglacial feature is globally unique and of outstanding scientific importance. As such, it warrants special protection from potential damage by drilling and/or surface activities. Moreover, currently subglacial environments are not represented in the Antarctic protected area network. To address these points, the United States National Science Foundation is working with the scientific community to develop at Blood Falls the first subglacial protected area in Antarctica. The protected area aims to maintain the integrity of the Blood Falls system, whilst allowing continued access for scientific and management purposes. Novel management approaches are being designed to protect the values of the site in three dimensions. Specific guidelines on activities conducted within the area, most notably drilling and coring, are being defined in a management plan. This new approach incorporates uncertainties in the location of the Blood Falls brine reservoir and the connectivity of the subglacial hydrological system of the Taylor Glacier. The management approaches employed at Blood Falls draw on the experience of the subglacial research community and potentially offer an effective framework for the protection of other subglacial environments.

  18. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  19. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  20. Unveiling the Antarctic subglacial landscape.

    Science.gov (United States)

    Warner, Roland; Roberts, Jason

    2010-05-01

    Better knowledge of the subglacial landscape of Antarctica is vital to reducing uncertainties regarding prediction of the evolution of the ice sheet. These uncertainties are associated with bedrock geometry for ice sheet dynamics, including possible marine ice sheet instabilities and subglacial hydrological pathways (e.g. Wright et al., 2008). Major collaborative aerogeophysics surveys motivated by the International Polar Year (e.g. ICECAP and AGAP), and continuing large scale radar echo sounding campaigns (ICECAP and NASA Ice Bridge) are significantly improving the coverage. However, the vast size of Antarctica and logistic difficulties mean that data gaps persist, and ice thickness data remains spatially inhomogeneous. The physics governing large scale ice sheet flow enables ice thickness, and hence bedrock topography, to be inferred from knowledge of ice sheet surface topography and considerations of ice sheet mass balance, even in areas with sparse ice thickness measurements (Warner and Budd, 2000). We have developed a robust physically motivated interpolation scheme, based on these methods, and used it to generate a comprehensive map of Antarctic bedrock topography, using along-track ice thickness data assembled for the BEDMAP project (Lythe et al., 2001). This approach reduces ice thickness biases, compared to traditional inverse distance interpolation schemes which ignore the information available from considerations of ice sheet flow. In addition, the use of improved balance fluxes, calculated using a Lagrangian scheme, eliminates the grid orientation biases in ice fluxes associated with finite difference methods (Budd and Warner, 1996, Le Brocq et al., 2006). The present map was generated using a recent surface DEM (Bamber et al., 2009, Griggs and Bamber, 2009) and accumulation distribution (van de Berg et al., 2006). Comparing our results with recent high resolution regional surveys gives confidence that all major subglacial topographic features are

  1. International Planning for Subglacial Lake Exploration

    Science.gov (United States)

    Kennicutt, M.; Priscu, J.

    2003-04-01

    As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.

  2. Oxygen 18 isotopic analysis of sub-glacial concentrations of the Laurentide Ice Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Hillaire-Marcel, C [Quebec Univ., Montreal (Canada); Cailleux, A [Observatoire de Paris, Section de Meudon, 92 (France); Soucy, J

    1979-07-01

    Calcareous concretions occuring on Grenvillian gneiss have been discovered north of Hull, Quebec. Their structure and isotopic composition (delta/sub PDB//sup 18/O approximately equal to -26%; delta/sub PDB//sup 13/C approximately equal to 0%; /sup 14/C age > 35,000 BP) indicate subglacial conditions of precipitation. It is concluded that they were deposited at the base of the Laurentide ice sheet. Assuming equilibrium conditions with the subglacial film of water during precipitation of calcite, it is possible to define a -27.5 to -31.8% (vs. 'standard mean ocean water' (SMOW)) range for the oxygen-18 content of ice.

  3. Evolution of Pine Island Glacier subglacial conditions in response to 18 years of ice flow acceleration

    Science.gov (United States)

    Brisbourne, A.; Bougamont, M. H.; Christoffersen, P.; Cornford, S. L.; Nias, I.; Vaughan, D.; Smith, A.

    2017-12-01

    Antarctica's main contribution to sea-level rise originates from the Amundsen Coast, when warm ocean water intrudes onto the continental shelf. As a result, strong melting beneath the ice shelves induces thinning near the grounding line of glaciers, which is ensued by large ice flow speed up diffusing rapidly inland. In particular, ice loss from Pine Island Glacier (PIG) accounts for 20% of the total ice loss in West Antarctica, amounting to 0.12 mm yr-1 of global sea-level rise. Forecasting the future flow of Amundsen Coast glaciers is however hindered by large uncertainties regarding how the thinning initiated at the grounding line is transmitted upstream, and how the grounded flow will ultimately respond. This work aims at elucidating the role of subglacial processes beneath PIG tributaries in modulating the ice flow response to frontal perturbations. We used the Community Ice Sheet Model (CISM 2.0) to perform numerical inversions of PIG surface velocity as observed in 1996 and 2014. Over that time period, ice flow acceleration has been widespread over PIG's basin, and the inversions provide insights into the related evolution of the basal thermal and stress conditions. We assume the latter to be directly related to changes in the properties of a soft sediment (till) layer known to exist beneath PIG. We find that the overall bed strength has weakened by 18% in the region of enhanced flow, and that the annual melt production for PIG catchment increased by 25% between 1996 and 2014. Specifically, regions of high melt production are located in the southern tributaries, where the overall stronger bed allows for more frictional melting. However, we find no significant and widespread change in the basal strength of that region, and we infer that the water produced is transported away in a concentrated hydrological system, without much interaction with the till layer. In contrast, we find that relatively less basal melting occurs elsewhere in the catchment, where the

  4. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Science.gov (United States)

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  5. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes

    Science.gov (United States)

    Clarke, G. K.

    2006-12-01

    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  6. Recent technical developments at the IMAU: A new generation of AWS and wireless subglacial measurements

    NARCIS (Netherlands)

    Smeets, C.J.P.P.; Boot, W.; van den Broeke, M.R.; van de Wal, R.S.W.

    2011-01-01

    Two technical developments are presented: a new generation of AWS and a wireless subglacial measurement system. Both systems build on the experience of the IMAU in developing GPS systems (Den Ouden et al., 2010). Combining methods to minimize energy consumption and wireless communication form the

  7. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. I. Leychenkov

    2012-01-01

    Full Text Available In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift depression during preglacial and early glacial times.

  8. Geology and environments of subglacial Lake Vostok.

    Science.gov (United States)

    Leitchenkov, German L; Antonov, Anton V; Luneov, Pavel I; Lipenkov, Vladimir Ya

    2016-01-28

    The reconstruction of the geological (tectonic) structure and environments of subglacial Lake Vostok is based on geophysical surveys and the study of mineral particles found in cores of accreted ice and frozen lake water (sampled after the lake was unsealed). Seismic reflection and refraction investigations conducted in the southern part of Lake Vostok show very thin (200-300 m) sedimentary cover overlying a crystalline basement. Most of this thin veneer is thought to have been deposited during temperate-glacial conditions in Oligocene to Middle Miocene time (ca 34-14 Ma). The composition of the lake-bottom sediments can be deduced from mineral inclusions found in cores of accreted ice. Inclusions are represented by soft aggregates consisting mainly of clay-mica minerals and micrometre-sized quartz grains. Some of these inclusions contain subangular to semi-rounded rock clasts (siltstones and sandstones) ranging from 0.3 to 8 mm in size. In total, 31 zircon grains have been identified in two rock clasts and dated using SHRIMP-II. The ages of the studied zircons range from 0.6 to 2.0 Ga with two distinct clusters between 0.8 and 1.15 Ga and between 1.6 and 1.8 Ga. Rock clasts obviously came from the western lake shore, which is thus composed of terrigenous strata with an age of not older than 600 Ma. The sedimentary nature of the western lake shore is also confirmed by seismic refraction data showing seismic velocities there of 5.4-5.5 km s(-1) at the bedrock surface. After Lake Vostok was unsealed, its water (frozen and sampled next season) was also studied with scanning electron microscopy and X-ray microprobe analysis. This study showed the existence of calcium carbonate and silica microparticles (10-20 μm across) in frozen water. © 2015 The Author(s).

  9. Penicillium mycobiota in Arctic subglacial ice

    DEFF Research Database (Denmark)

    Sonjak, S.; Frisvad, Jens Christian; Gunde-Cimerman, N.

    2006-01-01

    , representing on the average half of all isolated strains from all three glaciers. The other most frequently isolated species were P. bialowiezense, P. chrysogenum, P. thomii, P. solitum, P. palitans, P. echinulatum, P. polonicum, P. commune, P. discolor, P. expansum, and new Penicillium species (sp. 1). Twelve...... to be inhabited exclusively by heterotrophic bacteria. In this study we report on the very high occurrence (up to 9000 CFU L-1) and diversity of filamentous Penicillium spp. in the sediment-rich subglacial ice of three different polythermal Arctic glaciers (Svalbard, Norway). The dominant species was P. crustosum...... more Penicillium species were occasionally isolated. The fungi isolated produced consistent profiles of secondary metabolites, not different from the same Penicillium species from other habitats. This is the first report on the presence of large populations of Penicillium spp. in subglacial sediment...

  10. Modeling subglacial sediment discharge in 1-dimension: comparison with measurments and implications for glacial retreat

    Science.gov (United States)

    Delaney, I. A.; Werder, M.; Farinotti, D.

    2017-12-01

    In recent decades increased sedimentation rates have been observed in reservoirs downstream of some retreating glaciers. This material either originates from slopes recently exposed by glacier retreat and no longer stabilized by ice, or subglacially, where pressurized melt water transports sediments from the glacier bed. Some evidence suggests that recently exposed periglacial areas can stablize relatively quickly and in some catchments provides a smaller precentage of the total sediment compared to the subglacial environment. As a result, in order predict and forecast sediment yield from glaciated catchments as glaciers thin and thier hydrology evolves, a subglacial sediment transport model must be implemented. Here a simple 1-dimensional glacio-hydraulic model uses the Darcy-Weissbach relationship to determine shear-stress of presurized water on the glacier bed. This is coupled with a sediment transport relationship to determine quantity of discharged material from the glacier snout. Several tuning factors allow calibration and the model to reproduces processes known to occur subglacially, including seasonal evolution of sediment expulsion and deposition of sediment on adverse slopes of overdeepenings. To asses the model's application to real glaciers, sediment flux data has been collected from Gornergletscher, Aletschgletscher and Griesgletscher in the Swiss Alps over time-scales of up to decades. By calibrating to these data, the skill of the model in recreating sediment trends and volumes is assesed. The outputs capture annual erosion quanities relatively well, however, challenges exist in capturing inter-annual variations in sediment discharge. Many of the model's short comings relate to caputuring the spatial distribution of sediment throughout the glacier bed, which is particularing difficult in 1-dimension. However, this work suggests that a simple models can be used to predict subglacial sediment transport with reasonable ability. Additionally, further

  11. PROSPECTS FOR LIFE IN THE SUBGLACIAL LAKE VOSTOK, EAST ANTARCTICA

    Directory of Open Access Journals (Sweden)

    S. A. Bulat

    2012-01-01

    Full Text Available The objective was to estimate the genuine microbial content of ice samples from refrozen water (accretion ice from the subglacialLakeVostok(Antarctica buried beneath the 4-km thick East Antarctic ice sheet as well as surface snow nearby Vostok station. The lake ice samples were extracted by heavy deep ice drilling from3764 mbelow the surface reaching the depth3769.3 mby February 2011 (lake entering. High pressure, an ultra low carbon and chemical content, isolation, complete darkness and the probable excess of oxygen in water for millions of years characterize this extreme environment. A decontamination protocol was first applied to samples selected for the absence of cracks to remove the outer part contaminated by handling and drilling fluid. Preliminary indications showed the accretion ice samples to be almost gas free with the very low impurity content. Flow cytometry showed the very low unevenly distributed biomass in both accretion (0–19 cells per ml and glacier (0–24 cells per ml ice and surface snow (0–0.02 cells per ml as well while repeated microscopic observations were unsuccessful meaning that the whole Central East Antarctic ice sheet seems to be microbial cell-free.We used strategies of Ancient DNA research that include establishing contaminant databases and criteria to validate the amplification results. To date, positive results that passed the artifacts and contaminant databases have been obtained for a few bacterial phylotypes only in accretion ice samples featured by some bedrock sediments. Amongst them are the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus of beta-Proteobacteria, the actinobacterium rather related (95% to Ilumatobacter luminis and one unclassified phylotype distantly related (92% to soil-inhabiting uncultured bacteria. Combined with geochemical and geophysical considerations, our results suggest the presence of a deep biosphere, possibly thriving within some active faults of the bedrock

  12. Lasting Effects of Glacial Lake Outburst Floods on Subglacial Drainage Networks

    Science.gov (United States)

    Robbins, M.; Hendy, I. L.; Bassis, J. N.; Aciego, S.; Stevenson, E. I.

    2017-12-01

    Supraglacial lakes forming in the ablation zone around the Greenland Ice Sheet will likely migrate toward higher elevations as polar temperatures rise through the 21st century. Present understanding of lake drainage shows it can temporarily enhance ice sheet motion, but other possible effects and interactions - especially with older pre-existing subglacial reservoirs - remain unexamined. Here we investigate possible enduring effects of the record high 2012 melt year on the en/subglacial hydrologic network, how this network responds to immediate high fluxes of water from floods, and how these phenomena might connect to previously isolated subglacial pools. Lake Hullet is a large ice dammed lake situated in south Greenland 22km up-ice from where Kiattuut Sermiat (KS) branches from a larger outlet glacier. Lake Hullet rests on bedrock and is contained by a bedrock ridge. It drains roughly annually through Lake Hullet's hydrologic network in a glacial lake outburst flood (GLOF) when water level rises such that it can flow over the obstructive ridge. Subglacial water samples collected from the toe of KS in July 2013 pre-flood were dated using U isotopes with 222Rn concentrations as well as noble gas ratios. These two independent methods reveal an exceedingly old water age of > 1000 years, indicating existence of isolated enduring subglacial meltwater pool(s). A comparison field study at the KS toe in August and September 2015 re-examined glacial hydrochemistry in a time series. 2015 222Rn concentrations are lower than 2013 values, suggesting less water-rock interaction, a reduction in residence time, and a proximal meltwater source. Increased water volume from the record high 2012 melt year may have enlarged the existing en/subglacial drainage network further into the ice sheet releasing meltwater with longer residence times beneath the ice, with effects lasting into subsequent melt seasons due to the stability of channels maintained from recurrent floods. These

  13. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    Science.gov (United States)

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  14. Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

    International Nuclear Information System (INIS)

    Duerst Stucki, M.; Reber, R.; Schlunegger, F.

    2010-01-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4'000 borehole data within a 430 km 2 -large area reveal the presence of a network of >200 m-deep and 1'000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20 o steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure. (authors)

  15. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  16. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  17. Antarctic Active Subglacial Lake Inventory from ICESat Altimetry, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains lake boundaries, volume changes, and gridded elevations for 124 active subglacial lakes beneath the Antarctic ice sheet. Lakes were identified...

  18. A varied subglacial landscape under Thwaites Glacier, West Antarctica

    Science.gov (United States)

    Christianson, K. A.; Holschuh, N.; Paden, J. D.; Sprick, J.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.

    2017-12-01

    Deglaciated landscapes, whether subaerial or submarine, are often host to a rich panoply of subglacial landforms, such as drumlims, crags, megascale glacial lineations, grounding-line wedges, deep meltwater channels, and more. These landforms are formed and shaped by interactions between the ice and underlying substrate, and thus have implications for the flow of the overlying ice. Robust interpretations of the relationship between the ice and its substrate based on subglacial landforms that remain after deglaciation have been inhibited by a dearth of high-resolution observations of currently glaciated subglacial landscapes, where ice flow speed is known and where subglacial conditions can be ascertained using geophysical methods. Past direct observations of landforms under currently fast-flowing ice have been limited to a few ice streams, where relatively homogeneous, thick dilatant till layers may favor formation of specific subglacial features, i.e., megascale glacial lineations and grounding-zone wedges. Here we present two detailed gridded subglacial topographies, obtained from ice-penetrating radar measurements, from Thwaites Glacier, West Antarctica, where ice flows over a highly variable bed (in both topography and model-inferred basal shear stress). One grid is located ˜170 km downstream from the ice divide where ice is moving ˜100 m/yr. Here the ice advects over a broad basin and then flows into a subglacial ridge (of several hundred meters amplitude) oriented orthogonally to flow. A deep canyon ( 400 m) that cuts through this ridge in roughly the ice-flow direction and relatively soft sediments on the downstream side of the basin (immediately upstream of the canyon) suggest that a large subglacial lake may have formed in this location and drained catastrophically, as has been hypothesized as the formation mechanism for the deep canyons observed on the Amundsen Sea continental shelf. Numerous multiscale glacial lineations are also observed in the

  19. Crushing of Subglacial Lake Sediment as a Source of Bio-utilisable Gases.

    Science.gov (United States)

    Gill Olivas, B.; Telling, J.; Michaud, A. B.; Skidmore, M. L.; Priscu, J. C.; Tranter, M.

    2017-12-01

    Recent research has shown microbial ecosystems exist under glaciers and ice sheets. The sources of energy to support these ecosystems are still not fully understood, particularly beneath the Antarctic Ice Sheet, where direct access to the atmosphere and in-washed organic matter and oxidising agents does not occur. Hence, sub-ice sheet energy sources are restricted to those in subglacial environments, except for ice-margin environments. This study focuses on sediments from Subglacial Lake Whillans (SLW), the first subglacial lake to be directly and cleanly sampled. Sediment from three depths in a shallow core extracted from SLW were used to assess the possible energy contributions from mechanochemical reactions to this subglacial ecosystem. To do this, the samples were crushed under an anoxic atmosphere using a ball mill. The sediments were then transferred into serum bottles under anoxic conditions. They were wetted and the headspace gas was subsequently sampled and analysed during a 40 day incubation. Results show the release of substantial amounts of hydrogen, which could potentially serve as an abiotic source of energy to microbes, in particular, methanogenic archaea. Significant amounts of short chain hydrocarbons (including methane and ethylene), possibly from the reactivation of ancient organic carbon, were also observed. Crushed samples showed a significant concentration of hydrogen peroxide produced on contact with water, as well as significant amounts of Si radicals, showing comminution of these sediments unlocks the potential for a wide range of redox conditions and reactions to develop within glacially eroded sediment under ice. This in turn provides a previously overlooked source of nutrients and energy for microbes to utilise.

  20. Prospects of obtaining samples of bottom sediments from subglacial lake Vostok

    Directory of Open Access Journals (Sweden)

    Н. И. Васильев

    2017-04-01

    Full Text Available The paper proves the timeliness of obtaining and examining bottom sediments from subglacial Lake Vostok. Predictive geological section of Lake Vostok and information value of bottom sediments have been examined. Severe requirements towards environmental security of lake examinations and sampling of bottom sediments rule out the use of conventional drilling technologies, as they would pollute the lake with injection liquid from the borehole. In order to carry out sampling of bottom sediments from the subglacial lake, it is proposed to use a dynamically balanced tool string, which enables rotary drilling without any external support on borehole walls to transmit counter torque.     A theoretical analysis has been carried out to assess the operation of the tool string, which is a two-mass oscillatory electromechanical system of reciprocating and rotating motion (RRM with two degrees of freedom.

  1. Joint Geodetic and Seismic Analysis of the effects of Englacial and Subglacial Hydraulics on Surface Crevassing near a Seasonal, Glacier-Dammed Lake on Gornergletscher, Switzerland

    Science.gov (United States)

    Garcia, L.; Luttrell, K. M.; Kilb, D. L.; Walter, F.

    2017-12-01

    light on crevasse formation on short time scales where glacier flow is controlled by sliding variations in response to water input into the subglacial drainage system. Coupled seismic and GPS monitoring can thus make a key contribution to our understanding of brittle deformation and crevassing of glacier ice.

  2. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  3. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  4. Subglacial sediment mechanics investigated by computer simulation of granular material

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Tulaczyk, Slawek

    The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due to the m......The mechanical properties of subglacial sediments are known to directly influence the stability of ice streams and fast-moving glaciers, but existing models of granular sediment deformation are poorly constrained. In addition, upscaling to generalized mathematical models is difficult due....... The numerical method is applied to better understand the mechanical properties of the subglacial sediment and its interaction with meltwater. The computational approach allows full experimental control and offers insights into the internal kinematics, stress distribution, and mechanical stability. During...

  5. Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Duerst Stucki, M.; Reber, R.; Schlunegger, F.

    2010-12-15

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4'000 borehole data within a 430 km{sup 2}-large area reveal the presence of a network of >200 m-deep and 1'000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20 {sup o} steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure. (authors)

  6. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  7. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  8. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  9. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  10. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  11. Modeling the response of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge

    Science.gov (United States)

    Morlighem, M.; Wood, M.; Seroussi, H. L.; Bondzio, J. H.; Rignot, E. J.

    2017-12-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warm and salty Atlantic water, which is typically found at a depth below 200-300 m, has the potential to trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. It remains unclear, however, which glaciers are currently stable but may retreat in the future, and how far inland and how fast they will retreat. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the Northwest coast of Greenland (from 72.5° to 76°N) to ocean forcing using the Ice Sheet System Model (ISSM), and its new ice front migration capability. We rely on the ice melt parameterization from Rignot et al. 2016, and use ocean temperature and salinity from high-resolution ECCO2 simulations on the continental shelf to constrain the thermal forcing. The ice flow model includes a calving law based on a Von Mises criterion. We investigate the sensitivity of Northwest Greenland to enhanced ocean thermal forcing and subglacial discharge. We find that some glaciers, such as Dietrichson Gletscher or Alison Gletscher, are sensitive to small increases in ocean thermal forcing, while others, such as Illullip Sermia or Qeqertarsuup Sermia, are very difficult to destabilize, even with a quadrupling of the melt. Under the most intense melt experiment, we find that Hayes Gletscher retreats by more than 50 km inland into a deep trough and its velocity increases by a factor of 10 over only 15 years. The model confirms that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude. This work was performed at the University of California Irvine under a contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program (#NNX15AD55G), and the National Science Foundation's ARCSS program (#1504230).

  12. Phenol compounds in the borehole 5G, Vostok station, after the unlocking of the subglacial lake

    Directory of Open Access Journals (Sweden)

    I. A. Alekhina

    2017-01-01

    Full Text Available The main results after the first unlocking into the subglacial Lake Vostok were as follows: the Lake had been opened and not polluted; the water pressure within the lake was not balanced by a column of the drilling liquid that resulted in unplanned rise of water in the borehole up to 340 m. The main problem during the drilling in the lake ice was to prevent a pollution of water by the drilling fluid, which filled the borehole, and thus, to avoid a compression of the fluid which could be the main source of chemical and biological pollution of not only the Lake itself, but also the Lake water samples and ice cores. The article presents results of analysis of causes for the occurrence of phenolic compounds in the central channel in the core of secondary ice, being formed by the lake water that rose into the well after the first penetration (the range of depths was 3426–3450 m. It was found that the process, running within the borehole during the drilling, can be described as the fractionation of phenolic compounds, being contained in the filling liquid, to the water phase with its subsequent freezing. We have developed methods for the determination of concentrations of phenolic compounds in the original aviation kerosene and Freon HCFC-141b: 6. mg·l−1 and 0.032 mg·l−1, respectively. To analyze the composition of phenolic compounds in the extract of real filling liquid, located at the bottom of the borehole, the method of gas chromatography-mass spectrometry (GC-MS was used. The corresponding peaks were quite well resolved and identified as phenol and its derivatives. The main components of the extract were phenol (20%, 2.5-dimethyl phenol (23,8%, 2,4,6-trimethylphenol, and other congeners of phenol. In our case, the Lake Vostok was not polluted during both, the first and second penetrations, however, the problem of human impact on these pristine and unique subglacial reservoirs remains extremely relevant. This impact includes not only

  13. Clastic dykes in over-consolidated tills: evidence for subglacial hydrofracturing at Killiney Bay, eastern Ireland

    Science.gov (United States)

    Rijsdijk, Kenneth F.; Owen, Geraint; Warren, William P.; McCarroll, Danny; van der Meer, Jaap J. M.

    1999-11-01

    A swarm of vertical gravel-filled dykes up to 6 m high and several decimetres wide, cut through an over-consolidated till at Killiney Bay. The dykes are rooted in a gravel layer and many display plumes of clastic debris ejected into the overlying sediments — `burst-out structures'. Such features have not previously been described. These clastic dykes are interpreted as the infillings of hydrofractures which formed when water pressures in the basal gravel layer exceeded the overburden pressure and tensile shear strength of the capping till. The burst-out structures extend up to 7 m from the tops of the dykes and provide strong evidence for forceful upward flow. Evidence suggests that the hydrofractures formed subglacially, probably during a minor re-advance. Their presence in Late Devensian (26-13 ka BP) tills with an Irish Sea provenance (`Irish Sea till') may have important implications for the subglacial hydrology of the last Irish Sea ice sheet. These hydrofractures cannot form in unconsolidated glacimarine sediment and their presence precludes a glacimarine origin for these deposits. They greatly affect the geotechnical properties of Irish Sea tills, in particular providing very permeable routes through otherwise impermeable layers, with important consequences in situations elsewhere in the Irish Sea basin, where they have been used as aquicludes in landfill and low-level nuclear waste disposal sites.

  14. Constraining local subglacial bedrock erosion rates with cosmogenic nuclides

    Science.gov (United States)

    Wirsig, Christian; Ivy-Ochs, Susan; Christl, Marcus; Reitner, Jürgen; Reindl, Martin; Bichler, Mathias; Vockenhuber, Christof; Akcar, Naki; Schlüchter, Christian

    2014-05-01

    The constant buildup of cosmogenic nuclides, most prominently 10Be, in exposed rock surfaces is routinely employed for dating various landforms such as landslides or glacial moraines. One fundamental assumption is that no cosmogenic nuclides were initially present in the rock, before the event to be dated. In the context of glacially formed landscapes it is commonly assumed that subglacial erosion of at least a few meters of bedrock during the period of ice coverage is sufficient to remove any previously accumulated nuclides, since the production of 10Be ceases at a depth of 2-3 m. Insufficient subglacial erosion leads to overestimation of surface exposure ages. If the time since the retreat of the glacier is known, however, a discordant concentration of cosmogenic nuclides delivers information about the depth of subglacial erosion. Here we present data from proglacial bedrock at two sites in the Alps. Goldbergkees in the Hohe Tauern National Park in Austria and Gruebengletscher in the Grimsel Pass area in Switzerland. Samples were taken inside as well as outside of the glaciers' Little Ice Age extent. Measured nuclide concentrations are analyzed with the help of a MATLAB model simulating periods of exposure or glacial cover of user-definable length and erosion rates.

  15. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  16. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    study area. However, analysis of dated internal layers over several bright, flat, "lake-like" reflectors reveals a very different age versus depth relationship in which deeper layers actually thicken with depth. This thickening of deep layers results from ice flowing in from the sides to accommodate significant liquid water production at the base of the ice sheet. This melt is occurring today and can be quantified. With our knowledge of melt rates we can begin to estimate inputs and assess hydrologic parameters for the subglacial lake systems of East Antarctica.

  17. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  18. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  19. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice.

    Science.gov (United States)

    Lipenkov, Vladimir Ya; Ekaykin, Alexey A; Polyakova, Ekaterina V; Raynaud, Dominique

    2016-01-28

    Deep drilling at the Vostok Station has reached the surface of subglacial Lake Vostok (LV) twice-in February 2012 and January 2015. As a result, three replicate cores from boreholes 5G-1, 5G-2 and 5G-3 became available for detailed and revalidation analyses of the 230 m thickness of the accreted ice, down to its contact with water at 3769 m below the surface. The study reveals that the concentration of gases in the lake water beneath Vostok is unexpectedly low. A clear signature of the melt water in the surface layer of the lake, which is subject to refreezing on the icy ceiling of LV, has been discerned in the three different properties of the accreted ice: the ice texture, the isotopic and the gas content of the ice. These sets of data indicate in concert that poor mixing of the melt (and hydrothermal) water with the resident lake water and pronounced spatial and/or temporal variability of local hydrological conditions are likely to be the characteristics of the southern end of the lake. The latter implies that the surface water may be not representative enough to study LV's behaviour, and that direct sampling of the lake at different depths is needed in order to move ahead with our understanding of the lake's hydrological regime. © 2015 The Author(s).

  20. The Wilkes subglacial basin eastern margin electrical conductivity anomaly

    Science.gov (United States)

    Rizzello, Daniele; Armadillo, Egidio; Ferraccioli, Fausto; Caneva, Giorgio

    2014-05-01

    We have analyzed the deep conductivity structure at the transition between the Transantarctic Mountains (TAM) and the eastern margin of the WSB in NVL, by means of the GDS (Geomagnetic Deep Sounding) technique, in order to constrain the geodynamical interpretation of this antarctic sector. The TAM form the uplifted flank of the Mesozoic and Cenozoic West Antarctic Rift System. Structure of the TAM rift flank has been partially investigated with different geophysical approaches.The Wilkes Subglacial Basin is a broad depression over 400 km wide at the George V Coast and 1200 km long. Geology, lithospheric structure and tectonics of the Basin are only partially known because the Basin is buried beneath the East Antarctic Ice Sheet and is located in a remote region which makes geophysical exploration logistically challenging. Different authors have proposed contrasting hypothesis regarding the origin of the WSB: it could represent a region of rifted continental crust, or it may have a flexural origin or might represent an "extended terrane". Recently aerogeophysical investigations have demonstrated a strong structural control on the margin. Magnetovariational studies carried out at high geomagnetic latitudes are often hampered by source effects, mainly due to the closeness to the Polar Electrojet currents systems (PEJ). Its presence, in fact, makes the uniform magnetic field assumption, on which the magnetovariational methods are based on, often invalid, which outcome is a bias in the GDS transfer functions and to compromise the reliability of the inverted models. Data from the aforementioned campaigns have been then processed under the ISEE project (Ice Sheet Electromagnetic Experiment), aimed at evaluate and mitigate the bias effect of the PEJ on geomagnetic an magnetotelluric transfer functions at high geomagnetic latitudes, by means of suitable processing algorithms, developed upon a statistical analysis study on PEJ effects (Rizzello et al. 2013). Recent results

  1. Sensitivity analysis for the coupling of a subglacial hydrology model with a 3D ice-sheet model.

    Science.gov (United States)

    Bertagna, L.; Perego, M.; Gunzburger, M.; Hoffman, M. J.; Price, S. F.

    2017-12-01

    When studying the movement of ice sheets, one of the most important factors that influence the velocity of the ice is the amount of friction against the bedrock. Usually, this is modeled by a friction coefficient that may depend on the bed geometry and other quantities, such as the temperature and/or water pressure at the ice-bedrock interface. These quantities are often assumed to be known (either by indirect measurements or by means of parameter estimation) and constant in time. Here, we present a 3D computational model for the simulation of the ice dynamics which incorporates a 2D model proposed by Hewitt (2011) for the subglacial water pressure. The hydrology model is fully coupled with the Blatter-Pattyn model for the ice sheet flow, as the subglacial water pressure appears in the expression for the ice friction coefficient, and the ice velocity appears as a source term in the hydrology model. We will present results on real geometries, and perform a sensitivity analysis with respect to the hydrology model parameters.

  2. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  3. Identification and analysis of low molecular weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    Science.gov (United States)

    Lawson, E. C.; Wadham, J. L.; Lis, G. P.; Tranter, M.; Pickard, A. E.; Stibal, M.; Dewsbury, P.; Fitzsimons, S.

    2015-08-01

    Glacial runoff is an important source of dissolved organic carbon (DOC) for downstream heterotrophic activity, despite the low overall DOC concentrations. This is because of the abundance of bioavailable, low molecular weight (LMW) DOC species. However, the provenance and character of LMW-DOC is not fully understood. We investigated the abundance and composition of DOC in subglacial environments via a molecular level DOC analysis of basal ice, which forms by water/sediment freeze-on to the glacier sole. Spectrofluorometry and a novel ion chromatographic method, which has been little utilised in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates and carboxylic acids) in basal ice from four glaciers, each with a different basal debris type. Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse FAA pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn, was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard) and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden paleosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (>17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet sediments in current subglacial

  4. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  5. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  6. Exploration of Gamburtsev Subglacial Mountains, East Antarctica: Background and Plans for the Near Future

    Science.gov (United States)

    Talalay, Pavel; Sun, Youhong; Zhao, Yue; Li, Yuansheng; Cao, Pinlu; Xu, Huiwen; Zheng, Zhichuan; Wang, Rusheng; Zhang, Nan; Markov, Alexey; Yu, Dahui; Fan, Xiaopeng; Hu, Zhengyi; Yang, Cheng; Gong, Da; Hong, Jialing; Liu, Chunpeng; Han, Junjie; Yu, Chengfeng; Wang, Lili

    2014-05-01

    The Gamburtsev Subglacial Mountains (GSM), located in the central part of East Antarctica, were discovered by the Soviet team of the 3rd Complex Antarctic Expedition in 1958-1959. The GSM has highly dissected Alpine topography reaching maximum elevations of 3000 m and are completely covered by over 600 m of ice and snow. The mechanism driving uplift of the young-shaped GSM in the middle of the old East Antarctic Shield is unknown. With only limited constraints available on the topography, geology, and lithospheric structure, the origin of the GSM has been a matter of considerable speculation. The latest interpretation suggested that the GSM were formed during Permian and Cretaceous (roughly 250-100 Ma ago) due to the combination of rift-flank uplift, root buoyancy and the isostatic response. Later on, the Antarctic Ice Sheet covered the range and protected it from erosion. However, this theory cannot explain lack of erosion process during many millions years in between uplifting and beginning of glaciation. The next step of the GSM exploration focuses on the direct observation of ice sheet bed by drilling. In order to penetrate into subglacial bedrock in the GSM region the development activity already has been started in China. Drilling operations in Antarctica are complicated by extremely low temperature at the surface and within ice sheet, by ice flow, the absence of roads and infrastructures, storms, winds, snowfalls, etc. All that are the reasons that up to the present moment bedrock cores were never obtained at inland of Antarctica. It is proposed to use cable-suspended drilling technology in which an armored cable with a winch is used instead of a pipe-string to provide power to the down-hole motor system and to retrieve the down-hole unit. It is assumed to choose the drill site with the ice thickness at most of 1000 m and to pierce into the mountain slope to a depth of few meters. Proposed borehole construction includes five following steps: (1) dry core

  7. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  8. Development and Antarctic Testing of a Maneuverable Probe for Clean In-Situ Analysis and Sampling of Subsurface Ice and Subglacial Aquatic Ecosystems

    Science.gov (United States)

    Francke, G.; Dachwald, B.; Kowalski, J.; Digel, I.; Tulaczyk, S. M.; Mikucki, J.; Feldmann, M.; Espe, C.; Schöngarth, S.; Hiecker, S.; Blandfort, D.; Schüller, K.; Plescher, E.

    2016-12-01

    There is significant interest in sampling subglacial environments for geochemical and microbiological studies, but those environments are difficult to access. Such environments exist not only on Earth but are also expected beneath the icy crusts of some outer solar system bodies, like the Jovian moon Europa and the Saturnian moon Enceladus. Existing ice drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The "IceMole" is a maneuverable subsurface ice probe for clean in-situ analysis and sampling of glacial ice and subglacial materials. The design is based on combining melting and mechanical propulsion, using an ice screw at the tip of the melting head to maintain firm contact between the melting head and the ice. It can change melting direction by differential heating of the melting head and optional side wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland, where they demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. Hence, the IceMole allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. Therefore, between 2012 and 2014, a more advanced probe was developed as part of the "Enceladus Explorer" (EnEx) project. The EnEx-IceMole offers systems for relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection, which is all integrated through a high-level sensor fusion. In December 2014, it was used for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, where a subglacial brine sample was successfully obtained after about 17 meters of oblique melting. Particular

  9. A Viable Microbial Community in a Subglacial Volcanic Crater Lake, Iceland

    Science.gov (United States)

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-09-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L-1). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 × 104 ml-1 and 4 × 107 g-1, respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Gr??msv??tn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  10. Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland

    Directory of Open Access Journals (Sweden)

    A. D. Booth

    2012-08-01

    Full Text Available Seismic amplitude-versus-angle (AVA methods are a powerful means of quantifying the physical properties of subglacial material, but serious interpretative errors can arise when AVA is measured over a thinly-layered substrate. A substrate layer with a thickness less than 1/4 of the seismic wavelength, λ, is considered "thin", and reflections from its bounding interfaces superpose and appear in seismic data as a single reflection event. AVA interpretation of subglacial till can be vulnerable to such thin-layer effects, since a lodged (non-deforming till can be overlain by a thin (metre-scale cap of dilatant (deforming till. We assess the potential for misinterpretation by simulating seismic data for a stratified subglacial till unit, with an upper dilatant layer between 0.1–5.0 m thick (λ / 120 to > λ / 4, with λ = 12 m. For dilatant layers less than λ / 6 thick, conventional AVA analysis yields acoustic impedance and Poisson's ratio that indicate contradictory water saturation. A thin-layer interpretation strategy is proposed, that accurately characterises the model properties of the till unit. The method is applied to example seismic AVA data from Russell Glacier, West Greenland, in which characteristics of thin-layer responses are evident. A subglacial till deposit is interpreted, having lodged till (acoustic impedance = 4.26±0.59 × 106 kg m−2 s−1 underlying a water-saturated dilatant till layer (thickness < 2 m, Poisson's ratio ~ 0.5. Since thin-layer considerations offer a greater degree of complexity in an AVA interpretation, and potentially avoid misinterpretations, they are a valuable aspect of quantitative seismic analysis, particularly for characterising till units.

  11. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  12. Stress Redistribution Explains Anti-correlated Subglacial Pressure Variations

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Lefeuvre

    2018-01-01

    Full Text Available We used a finite element model to interpret anti-correlated pressure variations at the base of a glacier to demonstrate the importance of stress redistribution in the basal ice. We first investigated two pairs of load cells installed 20 m apart at the base of the 210 m thick Engabreen glacier in Northern Norway. The load cell data for July 2003 showed that pressurisation of a subglacial channel located over one load cell pair led to anti-correlation in pressure between the two pairs. To investigate the cause of this anti-correlation, we used a full Stokes 3D model of a 210 m thick and 25–200 m wide glacier with a pressurised subglacial channel represented as a pressure boundary condition. The model reproduced the anti-correlated pressure response at the glacier bed and variations in pressure of the same order of magnitude as the load cell observations. The anti-correlation pattern was shown to depend on the bed/surface slope. On a flat bed with laterally constrained cross-section, the resulting bridging effect diverted some of the normal forces acting on the bed to the sides. The anti-correlated pressure variations were then reproduced at a distance >10–20 m from the channel. In contrast, when the bed was inclined, the channel support of the overlying ice was vertical only, causing a reduction of the normal stress on the bed. With a bed slope of 5 degrees, the anti-correlation occurred within 10 m of the channel. The model thus showed that the effect of stress redistribution can lead to an opposite response in pressure at the same distance from the channel and that anti-correlation in pressure is reproduced without invoking cavity expansion caused by sliding.

  13. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  14. Contributions of an ancient evaporitic-type reservoir to subglacial Lake Vostok chemistry

    Science.gov (United States)

    De Angelis, M.; Petit, J.-R.; Savarino, J.; Souchez, R.; Thiemens, M. H.

    2004-06-01

    We present here the first comprehensive study of the chemical composition of accretion ice from Lake Vostok. Ion chromatographic analyses were performed on samples obtained along the deeper part of the Vostok ice core. Samples were taken from 3350 down to 3611 m depth, both in glacier ice and subglacial lake ice. The total ionic contents of two accretion ice layers—a few meters thick and centered around 3540 and 3590 m depth—are several times lower than those of glacier ice. Very low concentrations were also observed in the deeper part of accretion ice, below 3609 m depth. Elsewhere, the total ionic content is variable but remains 5 to 50 times higher than in glacier ice. Whatever its total ionic content, the ionic composition of accretion ice is significantly different from what is observed in glacier ice. It is dominated by sodium chloride, homogeneously distributed throughout the ice lattice, as well as calcium and magnesium sulfate, likely located in solid inclusions, or to a lesser extent at grain boundaries. Chemical considerations combined with additional studies of sulfur and oxygen isotopes in sulfate, and iron measurements strongly suggest that glacier water recycling and bedrock hydrolysis do not play a prominent role in providing impurities to accretion ice. It is more likely that NaCl rich water carrying fine sulfate salt particles is sporadically incorporated in the ice accreting in a shallow bay upstream from Vostok. The origin of such salty water, which should also contribute to Lake salinity, is discussed.

  15. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  16. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  17. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  18. Subglacial drainage effects on surface motion on a small surge type alpine glacier on the St. Elias range, Yukon Territory, Canada.

    Science.gov (United States)

    Rada, C.; Schoof, C.; King, M. A.; Flowers, G. E.; Haber, E.

    2017-12-01

    Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also one of the most poorly understood process in glacier flow due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for nine years. Over 300 boreholes were instrumented with pressure transducers over a 0.5 km² in its upper ablation area, in addition to a weather station and a permanent GPS array consisting on 16 dual-frequency receivers within the study area. We study the influence of the subglacial drainage system on the glacier surface velocity. However, pressure variations in the drainage system during the melt season are dominated by diurnal oscillations.Therefore, GPS solutions have to be computed at sub-diurnal time intervals in order to explore the effects of transient diurnal pressure variations. Due to the small displacements of the surface of the glacier over those periods (4-10 cm/day), sub-diurnal solutions are dominated by errors, making it impossible to observe the diurnal variations in glacier motion. We have found that the main source of error is GPS multipath. This error source does largely cancel out when solutions are computed over 24 hour periods (or more precisely, over a sidereal day), but solution precisions decrease quickly when computed over shorter periods of time. Here we present an inverse problem approach to remove GPS multipath errors on glaciers, and use the reconstructed glacier motion to explore how the subglacial drainage morphology and effective pressure influence glacier dynamics at multiple time scales.

  19. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  20. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    Science.gov (United States)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  1. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  2. Unrest at Bárdarbunga: Preparations for possible flooding due to subglacial volcanism

    Science.gov (United States)

    Hardardottir, Jorunn; Roberts, Matthew; Pagneux, Emmanuel; Einarsson, Bergur; Thorarinsdottir, Tinna; Johannesson, Tomas; Sigurdsson, Oddur; Egilson, David; Sigurdsson, Gunnar; Imo hydrological-monitoring-team

    2015-04-01

    Located partly beneath northwest Vatnajökull, Iceland, the Bárdarbunga volcanic system comprises an ice-capped central volcano and a fissure swarm extending beyond the ice margin. During the last 1100 years the volcano has erupted on at least 26 occasions. Outburst floods (jökulhlaups) on a scale of >100,000 m3 s-1 are known to have occurred during major explosive eruptions. Repeated jökulhlaups from Bárdarbunga have inundated the Jökulsá á Fjöllum River, which drains over 200 km northwards from the Dyngjujökull outlet glacier to the north coast of Iceland. Depending on the location of the eruption within the 80 km2 caldera, jökulhlaups could also flow northwards along Skjálfandafljót River and towards west and southwest into present-day tributaries of the extensively hydropower-harnessed Thjórsá River. On 16 August 2014, an intense earthquake swarm began within the Bárdarbunga caldera. Seismicity propagated from the caldera, extending ~10 km northwards of the ice margin where a fissure eruption developed in late August and remains ongoing in early January 2015. In connection with the lateral migration of magma from the caldera, the ice surface of Bárdarbunga has lowered by over 60 m; also associated with increased geothermal heat on the caldera rim, as manifested by the development of ice-surface depressions. In preparation for a subglacial eruption in the Bárdarbunga volcanic system, the Icelandic Meteorological Office (IMO) has made several assessments of likely hydrological hazards. Assessments were undertaken on Jökulsá á Fjöllum and Skjálfandafljót at key locations where preliminary evacuation plans for populated areas were made in cooperation with the local police. Floodwater extent was estimated for key infrastructures, such as bridges, telecommunication and power lines for maximum discharge levels ranging from 3,000 to 20,000 m3 s-1. The estimations were made using either simple Manning's calculations or HEC-RAS modelling

  3. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  4. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  5. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Long-term subglacial sliding patterns based on a sliding law with cavitation

    DEFF Research Database (Denmark)

    Ugelvig, Sofie Vej; Egholm, D.L.

    In ice-sheet models and glacial landscape evolution models, subglacial sliding rates are often related to basal shear stress by a power-law. However, the power-law relationship implies that the subglacial bed can provide unlimited levels of basal drag as sliding rates increases, which is recognized...... as an inadequate assumption, particularly when the effects of subglacial cavities are considered (Schoof 2005). We have implemented a glacial sliding law suggested by Schoof (2005) in a depth-integrated higher-order ice-sheet model (Egholm et al. 2011) and coupled this to a model for glacial hydrology. The sliding...... law includes an upper bound to the basal drag and depends on the effects of longitudinal and transverse stress components for obtaining force balance along the glacier bed. Computational experiments indicate that high annually averaged sliding rates concentrate along valley sides when basal melt...

  7. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    Science.gov (United States)

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  8. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  9. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  10. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  11. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  12. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    Science.gov (United States)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  13. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  14. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  15. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  16. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  17. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  18. Feedbacks between subglacial dynamics and long-term glacial landscape evolution

    DEFF Research Database (Denmark)

    Brædstrup, Christian; Egholm, D.L.; Ugelvig, Sofie Vej

    focus this presentation on feedbacks between the evolving bed topography and the subglacial erosion patterns. We have performed our experiments with different sliding and erosion laws, including highly non-linear rules representing coulomb-type slip at the bed (Schoof, 2010) and a quarrying model...

  19. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    Science.gov (United States)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  20. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  1. Mud aprons in front of Svalbard surge moraines: Evidence of subglacial deforming layers or proglacial glaciotectonics?

    Science.gov (United States)

    Kristensen, Lene; Benn, Douglas I.; Hormes, Anne; Ottesen, Dag

    2009-10-01

    Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.

  2. Tectonic and erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    Science.gov (United States)

    Ferraccioli, Fausto; Jordan, Tom; Watts, Tony; Bell, Robin; Jamieson, Stewart; Finn, Carol; Damaske, Detlef

    2014-05-01

    Understanding the mechanisms leading to intraplate mountain building remains a significant challenge in Earth Sciences compared to ranges formed along plate margins. The most enigmatic intraplate mountain range on Earth is the Gamburtsev Subglacial Mountains (GSM) located in the middle of the Precambrian East Antarctic Craton. During the International Polar Year, the AGAP project acquired 120,000 line km of new airborne geophysical data (Bell et al., 2011, Science) and seismological observations (Hansen et al., 2010, EPSL) across central East Antarctica. Models derived from these datasets provide new geophysical perspectives on crustal architecture and possible uplift mechanisms for the enigmatic GSM (Ferraccioli et al., 2011, Nature). The geophysical data define a 2,500-km-long Paleozoic to Mesozoic rift system in East Antarctica surrounding the GSM. A thick high-density lower crustal root is partially preserved beneath the range and has been interpreted as formed during the Proterozoic assembly of East Antarctica. Rifting could have triggered phase/density changes at deep crustal levels, perhaps restoring some of the latent root buoyancy, as well as causing rift-flank uplift. Permian rifting is well-established in the adjacent Lambert Rift, and was followed by Cretaceous strike-slip faulting and transtension associated with Gondwana break-up; this phase may have provided a more recent tectonic trigger for the initial uplift of the modern GSM. The Cretaceous rift-flank uplift model for the Gamburtsevs is appealing because it relates the initiation of intraplate mountain-building to large-scale geodynamic processes that led to the separation of Greater India from East Antarctica. It is also consistent with several geological and geophysical interpretations within the Lambert Rift. However, recent detrital thermochrology results from Oligocene-Quaternary sediments in Prydz Bay (Tochlin et al., 2012, G3) argue against the requirement for major Cretaceous rift

  3. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  4. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  5. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  6. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  7. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  8. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  9. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  10. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  11. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  12. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  13. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  14. Ice formation in subglacial Lake Vostok, Central Antarctica

    Science.gov (United States)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  15. Representing glaciations and subglacial processes in hydrogeological models : a numerical investigation

    OpenAIRE

    Sterckx, Arnaud; Lemieux, Jean-Michel; Vaikmäe, Rein

    2017-01-01

    The specific impact of glacial processes on groundwater flow and solute transport under ice-sheets was determined by means of numerical simulations. Groundwater flow and the transport of δ18O, TDS, and groundwater age were simulated in a generic sedimentary basin during a single glacial event followed by a postglacial period. Results show that simulating subglacial recharge with a fixed flux boundary condition is relevant only for small fluxes, which could be the case under partially wet-base...

  16. Detection of subglacial lakes in airborne radar sounding data from East Antarctica.

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2004-12-01

    Airborne ice penetrating radar is an essential tool for the identification of subglacial lakes. With it, we can measure the ice thickness, the amplitude of the reflected signal from the base of the ice, the depth to isochronous surfaces and, with high quality GPS, the elevation of the ice surface. These four measurements allow us to calculate the reflection coefficient from the base of the ice, the hydrostatic head, the surface slope and basal temperature. A subglacial lake will be characterized by: a consistently high reflection coefficient from the base of the ice, a nearly flat hydraulic gradient at a relative minimum in the hydraulic potential, an exceptionally smooth ice surface, and an estimated basal temperature that is at or near the pressure melting point of ice. We have developed a computerized algorithm to identify concurrences of the above-mentioned criteria in the radar data sets for East Antarctica collected by the University of Texas (UT). This algorithm is henceforth referred to as the "lake detector". Regions which meet three or more of the above mentioned criteria are identified as subglacial lakes, contingent upon a visual inspection by the human operator. This lake detector has added over 40 lakes to the most recent inventory of subglacial lakes for Antarctica. In locations where the UT flight lines approach or intersect flight lines from other airborne radar surveys, there is generally good agreement between the "lake detector" lakes and lakes identified in these data sets. In locations where the "lake detector" fails to identify a lake which is present in another survey, the most common failing is the estimated basal temperature. However, in some regions where a bright, smooth basal reflector is shown to exist, the lake detector may be failing due to a persistent slope in the hydraulic gradient. The nature of these "frozen" and "sloping" lakes is an additional focus of this presentation.

  17. Representing Glaciations and Subglacial Processes in Hydrogeological Models: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Arnaud Sterckx

    2017-01-01

    Full Text Available The specific impact of glacial processes on groundwater flow and solute transport under ice-sheets was determined by means of numerical simulations. Groundwater flow and the transport of δ18O, TDS, and groundwater age were simulated in a generic sedimentary basin during a single glacial event followed by a postglacial period. Results show that simulating subglacial recharge with a fixed flux boundary condition is relevant only for small fluxes, which could be the case under partially wet-based ice-sheets. Glacial loading decreases overpressures, which appear only in thick and low hydraulic diffusivity layers. If subglacial recharge is low, glacial loading can lead to underpressures after the retreat of the ice-sheet. Isostasy reduces considerably the infiltration of meltwater and the groundwater flow rates. Below permafrost, groundwater flow is reduced under the ice-sheet but is enhanced beyond the ice-sheet front. Accounting for salinity-dependent density reduces the infiltration of meltwater at depth. This study shows that each glacial process is potentially relevant in models of subglacial groundwater flow and solute transport. It provides a good basis for building and interpreting such models in the future.

  18. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  19. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  20. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  1. Kansas Water Quality Action Targeting System (KATS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

  2. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  3. REGULARITIES OF CONGELATION ICE DEVELOPMENT IN SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    V. Ya. Lipenkov

    2012-01-01

    Full Text Available Petrographic studies performed on the continuous basis along the two ice cores obtained from holes 5G-1 and 5G-2 at Vostok Station has allowed to characterize with great details the evolution of the ice texture and fabric in the 232-m thick stratum of accreted ice formed from theLakeVostokwater. Conventionally the whole thickness of accreted ice is divided into two strata: lake ice 1 and lake ice 2. Lake ice 1 (3537–3618 m, formed in the sallow strait50 kmupstream of Vostok, is characterized by presence of disseminated mineral inclusions of Lake Vostok sediments, as well as of «water pockets» that represent frozen water inclusions trapped during the ice accretion. The latter constitute less than 1% of the total ice volume, their mean size is about0.5 cm. Gases trapped by «water pockets» during ice formation transform into crystalline inclusions of mixed gas hydrates. Accretion of lake ice 2 (3618–3769 m proceeds in the deep part of the lake at a very small rate that does not assume trapping of liquid water inclusions and gases.Both strata of accreted ice are formed by orthotropic crystal growth from pure water. The main tendency in the evolution of accreted ice texture is growth of the mean crystal size with depth as the lake ice becomes younger towards the ice-water interface. The high-amplitude variations of crystal size and orientation observed around this general trend are shown to be linked with temporal and spatial variability of the supercooled melt-water flux from the northern part of the lake towards the ice formation site. The presence of supercooled water at the crystallization front supports persistent preferable growth of ice crystals with sub-horizontally oriented c-axes. The lack of supercooled water in turn support persistent growth of ice crystals with vertical or inclined with respect to the crystallization front c-axis orientation. It means that each of these preferred fabric orientations could serve as an indicator of

  4. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  5. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  6. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  7. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  8. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  9. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    Science.gov (United States)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  10. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  11. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  13. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  14. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  15. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  16. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  17. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  18. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  19. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  20. Models of the Water Systems in Mauritius

    OpenAIRE

    Toth, F.L.

    1992-01-01

    Criteria for sustainable development in terms of managing a nation's water resources include the availability of water in required quantity and appropriate quality. This paper presents a set of water models developed for the IIASA/UNFPA Mauritius Project for use as an integral part of a system of models including demographic, economic, and land use models. The paper identifies the most important factors determining the available freshwater resources in Mauritius (climate, geology, hydrology),...

  1. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  2. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  3. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we

  4. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  5. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  6. Hydrologic controls on radiogenic Sr in meltwater from an alpine glacier system: Athabasca Glacier, Canada

    International Nuclear Information System (INIS)

    Arendt, C.A.; Stevenson, E.I.; Aciego, S.M.

    2016-01-01

    Filtered subglacial meltwater samples were collected daily during the onset of melt (May) and peak melt (July) over the 2011 melt season at the Athabasca Glacier (Alberta, Canada) and analyzed for strontium-87/strontium-86 ("8"7Sr/"8"6Sr) isotopic composition to infer the evolution of subglacial weathering processes. Both the underlying bedrock composition and subglacial water–rock interaction time are the primary influences on meltwater "8"7Sr/"8"6Sr. The Athabasca Glacier is situated atop Middle Cambrian carbonate bedrock that also contains silicate minerals. The length of time that subglacial meltwater interacts with the underlying bedrock and substrate is a predominant determining factor in solute concentration. Over the course of the melt season, increasing trends in Ca/K and Ca/Mg correspond to overall decreasing trends in "8"7Sr/"8"6Sr, which indicate a shift in weathering processes from the presence of silicate weathering to primarily carbonate weathering. Early in the melt season, rates of carbonate dissolution slow as meltwater approaches saturation with respect to calcite and dolomite, corresponding to an increase in silicate weathering that includes Sr-rich silicate minerals, and an increase in meltwater "8"7Sr/"8"6Sr. However, carbonate minerals are preferentially weathered in unsaturated waters. During the warmest part of a melt season the discharged meltwater is under saturated, causing an increase in carbonate weathering and a decrease in the radiogenic Sr signal. Likewise, larger fraction contributions of meltwater from glacial ice corresponds to lower "8"7Sr/"8"6Sr values, as the meltwater has lower water–rock interaction times in the subglacial system. These results indicate that although weathering of Sr-containing silicate minerals occurs in carbonate dominated glaciated terrains, the continual contribution of new meltwater permits the carbonate weathering signal to dominate. - Highlights: • Glacial meltwater "8"7Sr/"8"6Sr used to

  7. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  8. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  9. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  10. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  11. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  12. Adjustable speed drives improve circulating water system

    International Nuclear Information System (INIS)

    Dent, R.A.; Dicic, Z.

    1994-01-01

    This paper illustrates the integration of electrical and mechanical engineering requirements to produce a solution to past problems and future operating demands. The application of adjustable speed drives in the modifications of the circulating water system at Indian Point No. 3 Nuclear Power Plant provided increased operating flexibility, efficiency and avoided otherwise costly renovations to the plant electrical systems. Rectification of the original inadequate design of the circulating water system, in addition to maximizing plant efficiency consistent with environmental considerations, formed the basis for this modification. This entailed replacement of all six circulating water pumps and motors and physical modifications to the intake system. This paper details the methodology used in this engineering task. The new system was installed successfully and has been operating reliably and economically for the past eight years

  13. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  14. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  15. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  16. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  17. Distilled Water Distribution Systems. Laboratory Design Notes.

    Science.gov (United States)

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  18. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  19. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  20. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  1. Service water system aging assessment - Phase I

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Zimmerman, P.W.; Gore, M.L.

    1988-01-01

    The Service Water System (SWS) represents the final heat transfer loop between decay heat generated in the nuclear core and the safe dispersal of that heat energy in the environment. It is the objective of this investigation to demonstrate that aging phenomena can be identified and quantified such that aging degradation of system components can be detected and mitigated prior to the reduction of system availability to below an acceptable threshold. The approach used during the Phase I task was to (1) perform a literature search of government and private sector reports which relate to service water, aging related degradation, and potential methodologies for analysis; (2) assemble a data base which contains all the commercial power plants in the US, their Service Water System configuration, characteristics, and water source; (3) obtain and examine the available service water data from large generic data bases, i.e. NPRDS, LER, NPE, inspection reports, and other relevant plant reference data; (4) perform a fault tree analysis of a typical plant service water systems to examine failure propagation and understand specific input requirements of probabilistic risk analyses; (5) develop an in-depth questionnaire protocol for examining the information resource at a power plant which is not available through data base query and visit a central station power plant and solicit the required information; (6) analyze the information obtained from the in-depth plant interrogation and draw contrasts and conclusions with the data base information; (7) utilize the plant information to perform an interim assessment of service water system degradation mechanisms and focus future investigations. This paper addresses the elements of this task plan numbered 1, 3, 6, and 7. The remaining items are detailed in the phase-I report

  2. Guidelines to Avoid Biocontamination of Antarctic Subglacial Aquatic Environments: Forward Contamination Concerns, Environmental Management and Scientific Stewardship of Icy analogue environments

    Science.gov (United States)

    Race, M. S.; Hobbie, J.; et al.

    2007-12-01

    For more than a decade, scientists and space mission planners have recognized the importance of collaborative information exchange with the Antarctic research community to address their many shared exploration challenges, from drilling methods, remote sample collection, and data interpretation, to concerns about cross contamination that could adversely impact both the environment and interpretation of scientific data. Another shared concern exists in the regulatory realm; both the Antarctic and outer space environments are subject to separate international treaties that impose regulatory controls and oversight with serious implications for exploration planning. In recent years, both communities have faced the need to adjust their regulatory controls in light of fast-paced advances in scientific understanding of extreme environments, particularly related to potential microbial life. Both communities have sought and received advice from the National Research Council (NRC) through studies that suggested ways to update their respective oversight and regulatory systems while allowing for continued scientific exploration. A recently completed NRC study "Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship" provided a suite of recommendations to address1) 'cleanliness' levels necessary for equipment and devices used in exploration of subglacial aquatic environments, as well as 2) the scientific basis for contamination standards, and 3) the steps for defining an overall exploration strategy conducive to sound environmental management and scientific stewardship. This talk will present the findings of the recent multinational NRC study, which is likely to translate into useful information for analogue studies that proceed to test techniques and capabilities for exploring an Europan ocean, other icy celestial locations, and related science targets on Earth. As the science and exploration of subglacial environments grows beyond its

  3. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  4. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  5. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  6. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  7. Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea

    NARCIS (Netherlands)

    Passchier, S.; Laban, C.; Mesdag, C.S.; Rijsdijk, K.F.

    2010-01-01

    Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when

  8. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  9. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  10. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  11. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  12. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  13. Water electrolysis system refurbishment and testing

    Science.gov (United States)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  14. CLASSIFICATION OF THE MGR SITE WATER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site water system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  15. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  16. The subglacial Lake Vostok (East Antarctica) surface snow is Earth-bound DNA (and dust)-free

    Science.gov (United States)

    Bulat, S.; Marie, D.; Bulat, E.; Alekhina, I.; Petit, J.-R.

    2012-09-01

    came up with only contaminant bacterial phylotypes (mostly of human source). The bioexposure trials showed that even in one day of open exposure the gDNA of rather complex microbial community composition was fatally damaged in terms of long-, mid-range and short-size amplicon generation in PCR. All this testify for very harsh conditions for life to survive the climate conditions of Central East Antarctica which could be considered as a presentday 'zone mortale' or 'polar desert' for known Earthbound microbial life forms. In addition this means that no life seeds are expected to reach subglacial lakes and water reservoirs and establish indigenous lake microbiota during their transit through the thick and aged Antarctic ice sheet upon its bottom melting. In general the subglacial Lake Vostok surface (ice sheet as well) environ represents the unique test area (sterile - in fact Earth-bound DNA-free and clean - in fact Earth-bound dust-free) for advancing extraterrestrial (ET) life detection technologies and searching for ET life indices in AMMs and IDPs.

  17. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  18. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  19. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  20. Water column separation in power plant circulating water systems

    International Nuclear Information System (INIS)

    Papadakis, C.N.

    1977-01-01

    Power plant circulating water system condensers operate with a siphon. Column separation is a common occurence in such condensers during low pressure transients. The assumptions that no gas evolves from solution leads to very conservative values of maximum pressures upon rejoining of separated column. A less conservative method led to the development of a macroscopic mathematical model including the presence of air and vapor in a cavity which forms at the top of the condenser. The method of characteristics is used to solve the equations. A case study is analyzed to illustrate the applicability of the developed mathematical model and to provide comparisons of the results obtained

  1. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  2. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  3. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  4. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  5. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  6. Subglacial groundwater flow at Aespoe as governed by basal melting and ice tunnels

    International Nuclear Information System (INIS)

    Svensson, Urban

    1999-02-01

    A high resolution three dimensional numerical model of subglacial groundwater flow is described. The model uses conductivity data from the Aespoe region and is thus site specific. It is assumed that the groundwater flow is governed by the basal melting and ice tunnels; ice surface melting is not considered. Results are presented for the meltwater transport time (to the ice margin) and maximum penetration depth. Conditions at repository depth, i.e. about 500 metres, are also analysed. The general conclusion from the study is that the model presented gives plausible results, considering the basic conceptual assumptions made. It is however questioned if the hydraulics of the ice tunnels is well enough understood; this is a topic that is suggested for further studies

  7. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    Science.gov (United States)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  8. Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Olsen, Nikoline S.

    2017-01-01

    -related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H2-amended incubation communities changed dramatically with a major......The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers...... of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance...

  9. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  10. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  11. Army Energy and Water Reporting System Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

    2011-09-01

    There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating

  12. Process and system for treating waste water

    Science.gov (United States)

    Olesen, Douglas E.; Shuckrow, Alan J.

    1978-01-01

    A process of treating raw or primary waste water using a powdered, activated carbon/aerated biological treatment system is disclosed. Effluent turbidities less than 2 JTU (Jackson turbidity units), zero TOC (total organic carbon) and in the range of 10 mg/l COD (chemical oxygen demand) can be obtained. An influent stream of raw or primary waste water is contacted with an acidified, powdered, activated carbon/alum mixture. Lime is then added to the slurry to raise the pH to about 7.0. A polyelectrolyte flocculant is added to the slurry followed by a flocculation period -- then sedimentation and filtration. The separated solids (sludge) are aerated in a stabilization sludge basin and a portion thereof recycled to an aerated contact basin for mixing with the influent waste water stream prior to or after contact of the influent stream with the powdered, activated carbon/alum mixture.

  13. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  14. Biofouling and biocorrosion in industrial water systems.

    Science.gov (United States)

    Coetser, S E; Cloete, T E

    2005-01-01

    Corrosion associated with microorganisms has been recognized for over 50 years and yet the study of microbiologically influenced corrosion (MIC) is relatively new. MIC can occur in diverse environments and is not limited to aqueous corrosion under submerged conditions, but also takes place in humid atmospheres. Biofouling of industrial water systems is the phenomenon whereby surfaces in contact with water are colonized by microorganisms, which are ubiquitous in our environment. However, the economic implications of biofouling in industrial water systems are much greater than many people realize. In a survey conducted by the National Association of Corrosion Engineers of the United States ten years ago, it was found that many corrosion engineer did not accept the role of bacteria in corrosion, and many of then that did, could not recognize and mitigate the problem. Biofouling can be described in terms of its effects on processes and products such as material degradation (bio-corossion), product contamination, mechanical blockages, and impedance of heat transfer. Microorganisms distinguish themselves from other industrial water contaminants by their ability to utilize available nutrient sources, reproduce, and generate intra- and extracellular organic and inorganic substances in water. A sound understanding of the molecular and physiological activities of the microorganisms involved is necessary before strategies for the long term control of biofouling can be format. Traditional water treatment strategies however, have largely failed to address those factors that promote biofouling activities and lead to biocorrosion. Some of the major developments in recent years have been a redefinition of biofilm architecture and the realization that MIC of metals can be best understood as biomineralization.

  15. Guidelines for transient analysis in water transmission and distribution systems

    NARCIS (Netherlands)

    Pothof, I.W.M.; Karney, B.W.

    2012-01-01

    All water systems leak, and many supply systems do so considerably, with water losses typically of approximately 20% of the water production. The IWA Water Loss Task Force aims for a significant reduction of annual water losses by drafting documents to assist practitioners and others to prevent,

  16. 21 CFR 884.6170 - Assisted reproduction water and water purification systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction water and water purification... Devices § 884.6170 Assisted reproduction water and water purification systems. (a) Identification. Assisted reproduction water purification systems are devices specifically intended to generate high quality...

  17. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  18. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  19. Operational cost minimization in cooling water systems

    Directory of Open Access Journals (Sweden)

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  20. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  1. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  2. 21 CFR 1250.82 - Potable water systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...

  3. Radioecological models for inland water systems

    International Nuclear Information System (INIS)

    Raskob, W.; Popov, A.; Zheleznyak, M.J.

    1998-04-01

    Following a nuclear accident, radioactivity may either be directly discharged into rivers, lakes and reservoirs or - after the re-mobilisation of dry and wet deposited material by rain events - may result in the contamination of surface water bodies. These so-called aquatic exposure pathways are still missing in the decision support system IMIS/PARK. Therefore, a study was launched to analyse aquatic and radioecological models with respect to their applicability for assessing the radiation exposure of the population. The computer codes should fulfil the following requirements: 1. to quantify the impact of radionuclides in water systems from direct deposition and via runoff, both dependent on time and space, 2. to forecast the activity concentration in water systems (rivers and lakes) and sediment, both dependent on time and space, and 3. to assess the time dependent activity concentration in fish. To that purpose, a literature survey was conducted to collect a list of all relevant computer models potentially suitable for these tasks. In addition, a detailed overview of the key physical process was provided, which should be considered in the models. Based on the three main processes, 9 codes were selected for the runoff from large watersheds, 19 codes for the river transport and 14 for lakes. (orig.) [de

  4. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  5. Operator Support System for Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Shen Shifei

    1996-01-01

    Operator Support System for Pressurized Water Reactor (OSSPWR) has been developed under the sponsorship of IAEA from August 1994. The project is being carried out by the Department of Engineering Physics, Tsinghua University, Beijing, China. The Design concepts of the operator support functions have been established. The prototype systems of OSSPWR has been developed as well. The primary goal of the project is to create an advanced operator support system by applying new technologies such as artificial intelligence (AI) techniques, advanced communication technologies, etc. Recently, the advanced man-machine interface for nuclear power plant operators has been developed. It is connected to the modern computer systems and utilizes new high performance graphic displays. (author). 6 refs, 4 figs

  6. Creep and stick-slip in subglacial granular beds forced by variations in water pressure

    DEFF Research Database (Denmark)

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    of these sediment remains poorly understood. Measurements and laboratory experiments provide important constraints, but existing models have not been able to explain the internal processes driving transitions from stability to stick-slip within the sediment. In this presentation we use a coupled numerical model...

  7. Searching for traces of life in subglacial Lake Vostok (Antarctica) in terms of forward contamination: the lessons for exploration of icy environments on Mars

    Science.gov (United States)

    Bulat, S. A.; Alekhina, I. A.; Lipenkov, V. Ya.; Petit, J.-R.

    Bacterial 16S ribosomal gene analysis guarded by criteria for trace DNA analysis and Ancient DNA research clearly testifies for the very low biomass in accretion ice from giant subglacial Lake Vostok buried beneath 4-km thick East Antarctic ice sheet. It seems that the accretion ice is essentially germ-free indicating that the water body should also be hosting a highly sparse life, if any, unless the lake water lost its biological contents during accretion process. Due to this the search for life in Lake Vostok is constrained by a high chance of contamination similar to forward-contamination upon searching for life on Mars and other icy planets. Of 16 bacterial phylotypes initially recovered from the accretion ice the only one was kept with confident relevance to the lake environment while 15 others were presumed to be contaminants on the basis of indexing contaminant criteria developed for Lake Vostok and similar icy environments. The current way to avoid contamination appears to use stringent ice chemistry-based decontamination procedures and comprehensive biological controls including establishment of contemporary contaminant database as a prerequisite to identify and categorize sources of contaminants. More challenge would be to advance cleanliness and sterilization approaches and procedures in order to achieve and measure the level of cleanliness appropriate for tools exploring environments like Lake Vostok. As a guide for searching for life in (sub)glacial environments on Earth or Mars and Jovian's Europa our recommendations can be summarized as follows: (i) apply stringent ice decontamination procedures to meet chemistry and trace DNA analysis standards, (ii) document biological contents of various environments including humans in contact with ice samples (development of contaminant database), (iii) ensure in using relevant methods to cover both known and expected biodiversity and (iv) verify microbial findings through their possible metabolic profiles

  8. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Li, Zhenyu; Valladares Linares, Rodrigo; Amy, Gary

    2013-01-01

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily

  9. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  10. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  11. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  12. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  13. Biological stability in drinking water distribution systems : A novel approach for systematic microbial water quality monitoring

    NARCIS (Netherlands)

    Prest, E.I.E.D.

    2015-01-01

    Challenges to achieve biological stability in drinking water distribution systems Drinking water is distributed from the treatment facility to consumers through extended man-made piping systems. The World Health Organization drinking water guidelines (2006) stated that “Water entering the

  14. Water quality diagnosis system for power plant

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Fukumoto, Toshihiko

    1991-01-01

    An AI diagnose system for the water quality control of a BWR type reactor is divided into a general diagnosing section for generally classifying the water quality conditions of the plant depending on a causal relation between the symptom of the water quality abnormality and its causes, generally diagnosing the position and the cause of the abnormality and ranking the items considered to be the cause, and a detail diagnosing section for a further diagnosis based on the result of the diagnosis in the former section. The general diagnosing section provides a plurality of threshold values showing the extent of the abnormality depending on the cause to the causal relation between the causes and the forecast events previously formed depending on the data of process sensors in the plant. Since the diagnosis for the abnormality and normality is given not only as an ON or OFF mode but also as the extent thereof, it can enter the detailed diagnosis in the most plausible order, based on a plurality of estimated causes, to enable to find the case and take a counter-measure in an early stage. (N.H.)

  15. Chapter 13. Industrial Application of Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Design and application of modern pure tap water components and systems in industries, in particular food processing industry.......Design and application of modern pure tap water components and systems in industries, in particular food processing industry....

  16. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  17. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    Science.gov (United States)

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  18. Solar system design for water pumping

    Science.gov (United States)

    Abdelkader, Hadidi; Mohammed, Yaichi

    2018-05-01

    In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  19. Solar system design for water pumping

    Directory of Open Access Journals (Sweden)

    Abdelkader Hadidi

    2018-01-01

    Full Text Available In our days, it seems to us that nobody can suspect it on the importance of water and energy for the human needs. With technological advances, the energy need does not cease increasing. This problem of energy is even more sensitive in the isolated sites where the use of the traditional resources proves often very expensive. Indeed, several constraints, like the transport of fuel and the routine maintenances of the diesel engines, return the search for an essential alternative energy source for this type of sites. It summer necessary to seek other resources of energy of replacement. Renewable energies, like photovoltaic energy, wind or hydraulic, represent a replacement solution par excellence and they are used more and more in our days more especially as the national territory has one of the solar layers highest with the world. The duration of insolation can reach the 3900 hours/year on the Sahara. The energy acquired daily on a horizontal surface of 1m2 is about 5kWh, that is to say meadows of 2263kWh/m2/year in the south of the country. The photovoltaic energy utilization for pumping of water is well adapted for more the share of the arid and semi-arid areas because of the existence in these areas of an underground hydraulic potential not very major. Another very important coincidence supports the use of this type of energy for the water pumping is that the demand for water, especially in agriculture, reached its maximum in hot weather and dryness where it is precisely the moment when one has access to the maximum of solar energy. The goal to see an outline on the general composition of a photovoltaic system of pumping, as well as the theoretical elements making it possible to dimension the current pumping stations.

  20. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  1. Deposit control in process cooling water systems

    International Nuclear Information System (INIS)

    Venkataramani, B.

    1981-01-01

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  2. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  3. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cost reduction in deep water production systems

    International Nuclear Information System (INIS)

    Beltrao, R.L.C.

    1995-01-01

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project

  5. Life cycle management of service water systems

    International Nuclear Information System (INIS)

    Egan, Geoffrey R.; Besuner, Philip M.; Mahajan, Sat P.

    2004-01-01

    As nuclear plants age, more attention must focus on age and time dependent degradation mechanisms such as corrosion, erosion, fatigue, etc. These degradation mechanisms can best be managed by developing a life cycle management plan which integrates past historical data, current conditions and future performance needs. In this paper we present two examples of life cycle management. In the first example, the 20-year maintenance history of a sea water cooling system (cement-lined, cast iron) is reviewed to develop attributes like maintenance cost, spare part inventory, corrosion, and repair data. Based on this information, the future expected damage rate was forecast. The cost of managing the future damage was compared with the cost to replace (in kind and with upgraded materials. A decision optimization scheme was developed to choose the least cost option from: a) Run as-is and repair; b) replace in kind; or c) replace with upgraded material and better design. In the second example, life cycle management techniques were developed for a ceilcote lined steel pipe cooling water system. Screens (fixed and traveling), filters, pumps, motors, valves, and piping were evaluated. (author)

  6. STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...

  7. A simple high efficiency solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, W.S.; Hodgson, D.A. [Colorado State University, Fort Collins, CO (United States). Dept. of Mechanical Engineering

    2005-07-01

    A new passive solar water pasteurization system based on density difference flow principles has been designed, built and tested. The system contains no valves and regulates flow based on the density difference between two columns of water. The new system eliminates boiling problems encountered in previous designs. Boiling is undesirable because it may contaminate treated water. The system with a total absorber area of 0.45 m2 has achieved a peak flow rate of 19.3 kg/h of treated water. Experiments with the prototype systems presented in this paper show that density driven systems are an attractive option to existing solar water pasteurization approaches. (author)

  8. 21 CFR 876.5665 - Water purification system for hemodialysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water purification system for hemodialysis. 876... SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5665 Water purification system for hemodialysis. (a) Identification. A water purification system for hemodialysis is a...

  9. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J. [Energovyzkum Ltd, Brno (Switzerland); Grazl, K. [Vitkovice s.c., Ostrava (Switzerland); Tischler, J.; Mihalik, M. [SEP Atomove Elektrarne Bohunice (Slovakia)

    1995-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  10. Maximising water supply system yield subject to multiple reliability ...

    African Journals Online (AJOL)

    Maximising water supply system yield subject to multiple reliability constraints via simulation-optimisation. ... Water supply systems have to satisfy different demands that each require various levels of reliability ... and monthly operating rules that maximise the yield of a water supply system subject to ... HOW TO USE AJOL.

  11. Advanced feed water distributing system for WWER 440 steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J [Energovyzkum Ltd, Brno (Switzerland); Grazl, K [Vitkovice s.c., Ostrava (Switzerland); Tischler, J; Mihalik, M [SEP Atomove Elektrarne Bohunice (Slovakia)

    1996-12-31

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.). 3 refs.

  12. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  13. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  14. Advanced feed water distributing system for WWER 440 steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Grazl, K.; Tischler, J.; Mihalik, M.

    1995-01-01

    The original designed feed water distributing system was replaced by an advanced one. The characteristics of both feed water distributing systems have been measured and evaluated. The paper deals with the problems of measurement and evaluation of both feed water distributing system characteristics and comparison of statistical data obtained. (orig.)

  15. Neutral sodium/bicarbonate/sulfate hot waters in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, W.A.J. (Dept. of Industrial and Scientific Research, Wairakei, New Zealand); Klyen, L.E.; Rhode, M.

    1980-03-01

    The least understood thermal water is a near neutral water which contains varying amounts of bicarbonate and sulfate as the major anions, low concentrations of chloride (< 30 ppM) and sodium as the major cation. In the past this water has been referred to as a sodium bicarbonate water but present studies suggest that the quantities of bicarbonate and sulfate in this water type are frequently of the same order. Of particular interest is the distribution and position of the sodium/bicarbonate/sulfate water in the same and different systems. Many hot springs in Indonesia, for example, discharge water of this composition. Present studies indicate that this water type can originate from high temperature reservoirs which form the secondary steam heated part of a normal high temperature geothermal system. The hydrological conditions producing these waters in geothermal systems are investigated and the relationship between the water type and vapor dominated systems is discussed. It is suggested that the major water type occurring in the so called vapor dominated parts of geothermal systems is this water. The water does not simply represent steam condensate, rather it consists essentially of meteoric water which has been steam heated. The water composition results from the interaction of carbon dioxide and hydrogen sulfide with meteoric water and the rocks confining this water in the aquifer.

  16. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  17. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  18. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  19. Ecology of Subglacial Lake Vostok (Antarctica, Based on Metagenomic/Metatranscriptomic Analyses of Accretion Ice

    Directory of Open Access Journals (Sweden)

    Tom D'Elia

    2013-03-01

    Full Text Available Lake Vostok is the largest of the nearly 400 subglacial Antarctic lakes and has been continuously buried by glacial ice for 15 million years. Extreme cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier and dissolved oxygen (delivered by melting meteoric ice, in addition to limited nutrients and complete darkness, combine to produce one of the most extreme environments on Earth. Metagenomic/metatranscriptomic analyses of ice that accreted over a shallow embayment and over the southern main lake basin indicate the presence of thousands of species of organisms (94% Bacteria, 6% Eukarya, and two Archaea. The predominant bacterial sequences were closest to those from species of Firmicutes, Proteobacteria and Actinobacteria, while the predominant eukaryotic sequences were most similar to those from species of ascomycetous and basidiomycetous Fungi. Based on the sequence data, the lake appears to contain a mixture of autotrophs and heterotrophs capable of performing nitrogen fixation, nitrogen cycling, carbon fixation and nutrient recycling. Sequences closest to those of psychrophiles and thermophiles indicate a cold lake with possible hydrothermal activity. Sequences most similar to those from marine and aquatic species suggest the presence of marine and freshwater regions.

  20. Dissolution of subglacial volcanic glasses from Iceland: laboratory study and modelling

    International Nuclear Information System (INIS)

    Crovisier, J.-L.; Honnorez, J.; Fritz, B.; Petit, J.-C.

    1992-01-01

    Subglacial hyaloclastites from Iceland with ages ranging from 2 ka to 2.2 Ma have been studied from a mineralogical and geochemical standpoint. The chemical composition of palagonite (alteration crust formed on the surface of the glass) is almost identical with that of the clayey material filling the intergranular spaces of the rock. The clayey material is made up of two particle populations: the first is Si-, Mg-and Ca-rich with a smectite structure, while the second is amorphous, Fe-, Ti- and Al-rich, and has a smectite-like morphology. It is suggested that these two types of particles can be formed simultaneously, in the same solution, such that it is not necessary to explain their existence by local or temporary equilibria. The mineralogical sequences observed in natural samples were reproduced using the geochemical computer code DISSOL. The geochemical mass balances calculated with DISSOL also fit quite well with those calculated from Icelandic samples, illustrating the predictive capability of such a calculation code and give us confidence in applying a similar approach to nuclear waste-form glass problems. (author)

  1. Detection system for continuous 222Rn monitoring in waters

    International Nuclear Information System (INIS)

    Holy, K.; Patschova, E.; Bosa, I.; Polaskova, A.; Hola, O.

    2001-01-01

    This contribution presents one of the high-sensitive systems of continuous radon monitoring in waters. The device can be used for the continual control of 222 Rn activity concentration in water sources, for a study of the daily and seasonal variations of radon activity concentration in water systems, for the determination of the infiltration time of surface water into the ground water and for the next untraditional applications. (authors)

  2. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  3. Subglacial Lake Vostok (Antarctica accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya.

    Directory of Open Access Journals (Sweden)

    Yury M Shtarkman

    Full Text Available Lake Vostok, the 7(th largest (by volume and 4(th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier, limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.

  4. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  5. A study of Cirus heavy water system isotopic purity

    International Nuclear Information System (INIS)

    Thomas, Shibu; Sahu, A.K.; Unni, V.K.P.; Pant, R.C.

    2000-01-01

    Cirus uses heavy water as moderator and helium as cover gas. Approximately one tonne of heavy water was added to the system every year for routine make up. Isotopic purity (IP) of this water used for addition was always higher than that of the system. Though this should increase IP of heavy water in the system, it has remained almost at the same level, over the years. A study was carried out to estimate the extent of improvement in IP of heavy water in the system that should have occurred because of this and other factors in last 30 years. Reasons for non-occurrence of such an improvement were explored. Ion exchange resins used for purification of heavy water and air ingress into helium cover gas system appear to be the principal sources of entry of light water into heavy water system. (author)

  6. Enhanced monitor system for water protection

    Science.gov (United States)

    Hill, David E [Knoxville, TN; Rodriquez, Jr., Miguel [Oak Ridge, TN; Greenbaum, Elias [Knoxville, TN

    2009-09-22

    An automatic, self-contained device for detecting toxic agents in a water supply includes an analyzer for detecting at least one toxic agent in a water sample, introducing a means for introducing a water sample into the analyzer and discharging the water sample from the analyzer, holding means for holding a water sample for a pre-selected period of time before the water sample is introduced into the analyzer, and an electronics package that analyzes raw data from the analyzer and emits a signal indicating the presence of at least one toxic agent in the water sample.

  7. Water hammers in direct contact heater systems

    International Nuclear Information System (INIS)

    Uffer, R.

    1983-01-01

    This paper discusses the causes and mitigation or prevention of water hammers occurring in direct contact heaters and their attached lines. These water hammers are generally caused by rapid pressure reductions in the heaters or by water lines not flowing full. Proper design and operating measures can prevent or mitigate water hammer occurrence. Water hammers often do not originate at the areas where damage is noted

  8. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  9. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  10. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  11. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  13. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  14. The effect of water purification systems on fluoride content of drinking water

    Directory of Open Access Journals (Sweden)

    Prabhakar A

    2008-03-01

    Full Text Available Objective: The purpose of the present study was to determine the effect of different water purification systems on the fluoride content of drinking water and to compare the efficacy of these water purification systems in reducing the fluoride content. Materials and Methods: Five different water purification systems were tested in this study. They were reverse osmosis, distillation, activated carbon, Reviva ® , and candle filter. The water samples in the study were of two types, viz, borewell water and tap water, these being commonly used by the people of Davangere City, Karnataka. The samples were collected before and after purification, and fluoride analysis was done using fluoride ion-specific electrode. Results: The results showed that the systems based on reverse osmosis, viz, reverse osmosis system and Reviva ® showed maximum reduction in fluoride levels, the former proving to be more effective than the latter; followed by distillation and the activated carbon system, with the least reduction being brought about by candle filter. The amount of fluoride removed by the purification system varied between the system and from one source of water to the other. Interpretation and Conclusion: Considering the beneficial effects of fluoride on caries prevention; when drinking water is subjected to water purification systems that reduce fluoride significantly below the optimal level, fluoride supplementation may be necessary. The efficacy of systems based on reverse osmosis in reducing the fluoride content of water indicates their potential for use as defluoridation devices.

  15. Information Theory for Risk-based Water System Operation

    NARCIS (Netherlands)

    Weijs, S.V.

    2011-01-01

    Operational management of water resources needs predictions of future behavior of water systems, to anticipate shortage or excess of water in a timely manner. Because the natural systems that are part of the hydrological cycle are complex, the predictions inevitably are subject to considerable

  16. Optimal water meter selection system | Johnson | Water SA

    African Journals Online (AJOL)

    Economic/financial analysis based on an income statement together with capital budgeting techniques assist with the determination of the financial suitability of investing in a new replacement water meter. This financial analysis includes various potential income and expenditure components that will result from the ...

  17. P-Cable 3D high-resolution seismic data as a powerful tool to characterize subglacial landforms and their genesis: A case study from the SW Barents Sea

    Science.gov (United States)

    Bellwald, Benjamin; Planke, Sverre; Matar, Mohammed; Daria Piasecka, Emilia

    2017-04-01

    High-resolution 3D seismic data have significantly increased our knowledge about petroleum reservoirs and submarine geohazards. However, little effort has been undertaken to evaluate the potential of such data for mapping subglacial landforms. The Barents Sea has been subjected to repeated Pleistocene glaciations, which intensively eroded the region, resulting in a generally thin (geology. The seismic data cover an area of 200 km2 in water depths of 380-470 m with a recorded in-line spacing of geology. Therefore high-resolution seismic data is beneficial in identifying and analyzing small-scale glacial structures and their expression in the underlying strata in great detail, contributing to the understanding of processes involved in paleo-ice stream dynamics.

  18. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  19. The water energy nexus, an ISO50001 water case study and the need for a water value system

    Directory of Open Access Journals (Sweden)

    Brendan P. Walsh

    2015-06-01

    Full Text Available The world’s current utilisation of water, allied to the forecasted increase in our dependence on it, has led to the realisation that water as a resource needs to be managed. The scarcity and cost of water worldwide, along with water management practices within Europe, are highlighted in this paper. The heavy dependence of energy generation on water and the similar dependence of water treatment and distribution on energy, collectively termed the water–energy nexus, is detailed. A summary of the recently launched ISO14046 Water Footprint Standard along with other benchmarking measures is outlined and a case history of managing water using the Energy Management Standard ISO50001 is discussed in detail. From this, the requirement for a methodology for improvement of water management has been identified, involving a value system for water streams, which, once optimised will improve water management including efficiency and total utilisation.

  20. Water removal from a dry barrier cover system

    International Nuclear Information System (INIS)

    Stormont, J.C.; Ankeny, M.D.; Tansey, M.K.

    1994-01-01

    The results of the numerical simulations reveal that horizontal air flow through the coarse with reasonable pressure gradients can remove large quantities of water from the cover system. Initially, the water removal from the cover system is dominated by the evaporation and advection of water vapor out of the coarse layer. Once the coarse layer is dry, removal of water by evaporation near the fine/coarse layer interface reduces the local water content and water potential, and water moves toward the fine-coarse layer interface and becomes available for evaporation. This result is important in that it suggests the fine layer water content may be moderated by air flow in the coarse layer. Incorporating diffusion of water vapor from the fine layer into the coarse layer substantially increases the water movement out of the fine layer

  1. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  2. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  3. Water Information Management & Analysis System (WIMAS) v 4.0

    Data.gov (United States)

    Kansas Data Access and Support Center — The Water Information Management and Analysis System (WIMAS) is an ArcView based GIS application that allows users to query Kansas water right data maintained by the...

  4. Underground Water Distribution System, Fort Belvoir, Virginia. Leak Detection Survey

    National Research Council Canada - National Science Library

    1995-01-01

    .... The survey was conducted by myself, Donald Muir, Operations Coordinator, and required 12.25 working days. This was not a survey of the entire water distribution system but instead a survey of water mains 8 inch and larger...

  5. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  6. Full Scale Drinking Water System Decontamination at the Water Security Test Bed

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...

  7. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  8. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  9. Connecting streamlined subglacial bedforms with the geological/geographical environment in which they are located.

    Science.gov (United States)

    Dowling, Tom; Möller, Per; Greenwood, Sarah; Spagnolo, Matteo; Åkesson, Maria; Fraser, Stephen; Hughs, Anna; Clark, Chris

    2016-04-01

    Much work has qualitatively shown that there appears to be a relationship between the morphology of streamlined subglacial bedforms (drumlinoids) and the geological/geographical environment in which said bedforms are located upon, particularly in terms of bedrock influence. However, the one quantitative study that has been carried out on this connectivity (Greenwood and Clark, 2010) found that there appears to be a connection between bedrock type and morphology only at a local scale. At a regional scale the most important geological factor seemed to be the properties of the substrate, usually till. In order to investigate these connections further, self-organising maps (SOM) are used to investigate the role of contextual geology/geography in drumlinoid morphology. The SOM method allows the statistical exploration of data that cannot normally be evaluated by traditional means; categorical data (e.g. bedrock type) can be used in the same analysis as continuous/vector data (e.g. drift depth). Here, three large morphological data sets from Sweden (20 041), Britain (36 104) and Ireland (13 454) are combined with bedrock type, drift depth, basal elevation and distance to esker to see if there are any relationships to be found between them. The results indicate that there are pervasive, statistically significant, and weak to very weak correlations between contextual geological/geographical factors and drumlinoid morphology. The most important contextual factor appears to be 'drift depth', followed by 'distance to esker'. Therefore, models of drumlinoid formation and any efforts to use such features for palaeo-ice reconstruction must take into account the geological and geographical environment in which they are situated. The logical extension of this is that models of ice-sheet growth and retreat must also take into account and be sensitive to the type of substratum present beneath the ice. Further research into the effect of drift properties on the flow of ice is needed.

  10. Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models - Two new methods

    Science.gov (United States)

    Jorge, Marco G.; Brennand, Tracy A.

    2017-07-01

    Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.

  11. A fuzzy recommendation system for daily water intake

    OpenAIRE

    Bin Dai; Rung-Ching Chen; Shun-Zhi Zhu; Chung-Yi Huang

    2016-01-01

    Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and a...

  12. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2013-01-03

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily desalinated at very low pressures. Thus, a device consumes less energy when recovering water. The apparatus, system and method comprise an immersed forward osmosis cell.

  13. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  14. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  15. Water supply method to the fuel cell cooling water system; Nenryo denchi reikyakusuikei eno kyusui hoho

    Energy Technology Data Exchange (ETDEWEB)

    Urata, T. [Tokyo (Japan); Nishida, S. [Tokyo (Japan)

    1996-12-17

    The conventional fuel cell has long cooling water piping ranging from the fuel cell exit to the steam separator; in addition, the supply water is cooler than the cooling water. When the amount of supply water increases, the temperature of the cooling water is lowered, and the pressure fluctuation in the steam separator becomes larger. This invention relates to the water supply method of opening the supply water valve and supplying water from the supply water system to the cooling water system in accordance with the signal of the level sensor of the steam separator, wherein opening and closing of the supply valve are repeated during water supply. According to the method the pressure drop in every water supply becomes negligibly small; therefore, the pressure fluctuation of the cooling water system can be made small. The interval of the supply water valve from opening to closing is preferably from 3 seconds to 2 minutes. The method is effective when equipment for recovering heat from the cooling water is installed in the downstream pipeline of the fuel cell. 2 figs.

  16. Significance of losses in water distribution systems in India

    OpenAIRE

    Raman, V.

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the sys...

  17. Leaks in the internal water supply piping systems

    OpenAIRE

    Orlov Evgeniy Vladimirovich; Komarov Anatoliy Sergeevich; Mel’nikov Fedor Alekseevich; Serov Aleksandr Evgen’evich

    2015-01-01

    Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold) as a result of impaired integrity, complicating the operation of a system and leading to high costs of ...

  18. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  19. Implications for carbon processing beneath the Greenland Ice Sheet from dissolved CO2 and CH4 concentrations of subglacial discharge

    Science.gov (United States)

    Pain, A.; Martin, J.; Martin, E. E.

    2017-12-01

    Subglacial carbon processes are of increasing interest as warming induces ice melting and increases fluxes of glacial meltwater into proglacial rivers and the coastal ocean. Meltwater may serve as an atmospheric source or sink of carbon dioxide (CO2) or methane (CH4), depending on the magnitudes of subglacial organic carbon (OC) remineralization, which produces CO2 and CH4, and mineral weathering reactions, which consume CO2 but not CH4. We report wide variability in dissolved CO2 and CH4 concentrations at the beginning of the melt season (May-June 2017) between three sites draining land-terminating glaciers of the Greenland Ice Sheet. Two sites, located along the Watson River in western Greenland, drain the Isunnguata and Russell Glaciers and contained 1060 and 400 ppm CO2, respectively. In-situ CO2 flux measurements indicated that the Isunnguata was a source of atmospheric CO2, while the Russell was a sink. Both sites had elevated CH4 concentrations, at 325 and 25 ppm CH4, respectively, suggesting active anaerobic OC remineralization beneath the ice sheet. Dissolved CO2 and CH4 reached atmospheric equilibrium within 2.6 and 8.6 km downstream of Isunnguata and Russell discharge sites, respectively. These changes reflect rapid gas exchange with the atmosphere and/or CO2 consumption via instream mineral weathering. The third site, draining the Kiagtut Sermiat in southern Greenland, had about half atmospheric CO2 concentrations (250 ppm), but approximately atmospheric CH4 concentrations (2.1 ppm). Downstream CO2 flux measurements indicated ingassing of CO2 over the entire 10-km length of the proglacial river. CO2 undersaturation may be due to more readily weathered lithologies underlying the Kiagtut Sermiat compared to Watson River sites, but low CH4 concentrations also suggest limited contributions of CO2 and CH4 from OC remineralization. These results suggest that carbon processing beneath the Greenland Ice Sheet may be more variable than previously recognized

  20. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  2. A fuzzy recommendation system for daily water intake

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2016-05-01

    Full Text Available Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and ambient temperature as the input factors and daily water intake values as the output factor. The reasoning mechanism of the fuzzy system can calculate the recommended value of daily water intake. Finally, the system will compare the actual recommended values with our system to determine the usefulness. The experimental results show that this recommendation system is effective in actual application.

  3. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  4. Deterioration and optimal rehabilitation modelling for urban water distribution systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage

  5. Use of ozone in a water reuse system for salmonids

    Science.gov (United States)

    Williams, R.C.; Hughes, S.G.; Rumsey, G.L.

    1982-01-01

    A water reuse system is described in which ozone is used in addition to biological filters to remove toxic metabolic wastes from the water. The system functions at a higher rate of efficiency than has been reported for other reuse systems and supports excellent growth of rainbow trout (Salmo gairdneri).

  6. Plant experience with temporary reverse osmosis makeup water systems

    International Nuclear Information System (INIS)

    Polidoroff, C.

    1986-01-01

    Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment

  7. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  8. Quantification of Water Flux in Vesicular Systems.

    Science.gov (United States)

    Hannesschläger, Christof; Barta, Thomas; Siligan, Christine; Horner, Andreas

    2018-06-04

    Water transport across lipid membranes is fundamental to all forms of life and plays a major role in health and disease. However, not only typical water facilitators like aquaporins facilitate water flux, but also transporters, ion channels or receptors represent potent water pathways. The efforts directed towards a mechanistic understanding of water conductivity determinants in transmembrane proteins, the development of water flow inhibitors, and the creation of biomimetic membranes with incorporated membrane proteins or artificial water channels depend on reliable and accurate ways of quantifying water permeabilities P f . A conventional method is to subject vesicles to an osmotic gradient in a stopped-flow device: Fast recordings of scattered light intensity are converted into the time course of vesicle volume change. Even though an analytical solution accurately acquiring P f from scattered light intensities exists, approximations potentially misjudging P f by orders of magnitude are used. By means of computational and experimental data we point out that erroneous results such as that the single channel water permeability p f depends on the osmotic gradient are direct results of such approximations. Finally, we propose an empirical solution of which calculated permeability values closely match those calculated with the analytical solution in the relevant range of parameters.

  9. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    Science.gov (United States)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  10. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER — BASIN WATER HIGH EFFICIENCY ION EXCHANGE WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Basin Water System was conducted over a 54-day period between April 4, 2005 and May 28, 2005. The test was conducted at the Elsinore Valley Municipal Water District (EVMWD) Corydon Street Well in Lake Elsinore, California. The source water was a raw gr...

  11. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  12. Water sensors with cellular system eliminate tail water drainage in alfalfa irrigation

    Directory of Open Access Journals (Sweden)

    Rajat Saha

    2011-10-01

    Full Text Available Alfalfa is the largest consumer of water among all crops in California. It is generally flood-irrigated, so any system that decreases runoff can improve irrigation efficiency and conserve water. To more accurately manage the water flow at the tail (bottom end of the field in surface-irrigated alfalfa crops, we developed a system that consists of wetting-front sensors, a cellular communication system and a water advance model. This system detects the wetting front, determines its advance rate and generates a cell-phone alert to the irrigator when the water supply needs to be cut off, so that tail water drainage is minimized. To test its feasibility, we conducted field tests during the 2008 and 2009 alfalfa growing seasons. The field experiments successfully validated the methodology, producing zero tail water drainage.

  13. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  14. Systems and Methods for Automated Water Detection Using Visible Sensors

    Science.gov (United States)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  15. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  16. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  17. Privatisation of water systems: Crime against humanity

    Directory of Open Access Journals (Sweden)

    Titus R. Mobie

    2009-11-01

    Full Text Available This article emphasises the importance of water resources, which are vital to the sustenance of life. Water is essential for various reasons: for drinking, for personal hygiene, for cooking, for watering crops, for cleaning our homes etc. One can therefore conclude that, without this vital resource, there is no life. It is for this reason that God, giver of life, gave water as a gift – free – both to humanity and to the rest of creation, so that we may all achieve fullness of life. This article challenges the fact that, because of the insistence of the World Bank and the International Monetary Fund on the privatisation of water supplies where the poorest of the poor are unable to pay, these people are cut off from water supplies and are deprived of the right to the fullness of life. The author emphasises that there is no life without water, that water resources are a gift from the creator and should therefore be made accessible to all, rich and poor alike.

  18. Integrated Solution Support System for Water Management

    NARCIS (Netherlands)

    Kassahun, A.; Blind, M.; Krause, A.U.M.; Roosenschoon, O.R.

    2008-01-01

    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework

  19. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  20. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  1. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  2. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  3. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  4. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  5. System analysis of membrane facilitated water generation from air humidity

    NARCIS (Netherlands)

    Bergmair, D.; Metz, S.J.; Lange, de H.C.; Steenhoven, van A.A.

    2014-01-01

    The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be

  6. Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems ...

    African Journals Online (AJOL)

    Speciation of Zinc Mixed Ligand Complexes in Salt Water Systems. ... method has been used to study heavy metal interaction in model lake water in KNO3 ... is of no consequential effect because in its normal state, the [OH-] of the lake water is ...

  7. Sources Of Incidental Events In Collective Water Supply System

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2015-11-01

    Full Text Available The publication presents the main types of incidental events in collective water supply system. The special attention was addressed to the incidental events associated with a decrease in water quality, posing a threat to the health and life of inhabitants. The security method against incidental contamination in the water source was described.

  8. The Pluralistic Water Research Concept: A New Human-Water System Research Approach

    Directory of Open Access Journals (Sweden)

    Mariele Evers

    2017-11-01

    Full Text Available The use and management of water systems is influenced by a number of factors, such as economic growth, global change (e.g., urbanization, hydrological-climatic changes, politics, history and culture. Despite noteworthy efforts to develop integrative approaches to analyze water-related problems, human-water research remains a major challenge for scholars and decision makers due to the increasing complexity of human and water systems interactions. Although existing concepts try to integrate the social and water dimensions, they usually have a disciplinary starting point and perspective, which can represent an obstacle to true integration in human-water research. Hence, a pluralistic approach is required to better understand the interactions between human and water systems. This paper discusses prominent human-water concepts (Integrated Water Resources Management (IWRM, socio-hydrology, and political ecology/hydrosocial approach and presents a newly developed concept termed pluralistic water research (PWR. This is not only a pluralistic but also an integrative and interdisciplinary approach which aims to coherently and comprehensively integrate human-water dimensions. The different concepts are illustrated in a synopsis, and diverse framing of research questions are exemplified. The PWR concept integrates physical and social sciences, which enables a comprehensive analysis of human-water interactions and relations. This can lead to a better understanding of water-related issues and potentially sustainable trajectories.

  9. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  11. System for harvesting water wave energy

    Science.gov (United States)

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  12. Hydroponic systems and water management in aquaponics: A review

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2017-09-01

    Full Text Available Aquaponics (AP, the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health, and water consumption (through evapotranspiration of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min–1 and 8.0 L min–1. Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow or type (medium-based, floating or nutrient film technique of hydroponics.

  13. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  14. Instrumentation for NBI SST-1 cooling water system

    International Nuclear Information System (INIS)

    Qureshi, Karishma; Patel, Paresh; Jana, M.R.

    2015-01-01

    Neutral Beam Injector (NBI) System is one of the heating systems for Steady state Superconducting Tokamak (SST-1). It is capable of generating a neutral hydrogen beam of power 0.5 MW at 30 kV. NBI system consists of following sub-systems: Ion source, Neutralizer, Deflection Magnet and Magnet Liner (ML), Ion Dump (ID), V-Target (VT), Pre Duct Scraper (PDS), Beam Transmission Duct (BTD) and Shine Through (ST). For better heat removal management purpose all the above sub-systems shall be equipped with Heat Transfer Elements (THE). During beam operation these sub-systems gets heated due to the received heat load which requires to be removed by efficient supplying water. The cooling water system along with the other systems (External Vacuum System, Gas Feed System, Cryogenics System, etc.) will be controlled by NBI Programmable Logic Control (PLC). In this paper instrumentation and its related design for cooling water system is discussed. The work involves flow control valves, transmitters (pressure, temperature and water flow), pH and conductivity meter signals and its interface with the NBI PLC. All the analog input, analog output, digital input and digital output signals from the cooling water system will be isolated and then fed to the NBI PLC. Graphical Users Interface (GUI) needed in the Wonderware SCADA for the cooling water system shall also be discussed. (author)

  15. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  16. The optimisation of a water distribution system using Bentley WaterGEMS software

    Directory of Open Access Journals (Sweden)

    Świtnicka Karolina

    2017-01-01

    Full Text Available The proper maintenance of water distribution systems (WDSs requires from operators multiple actions in order to ensure optimal functioning. Usually, all requirements should be adjusted simultaneously. Therefore, the decision-making process is often supported by multi-criteria optimisation methods. Significant improvements of exploitation conditions of WDSs functioning can be achieved by connecting small water supply networks into group systems. Among many potential tools supporting advanced maintenance and management of WDSs, significant improvements have tools that can find the optimal solution by the implemented mechanism of metaheuristic methods, such as the genetic algorithm. In this paper, an exemplary WDS functioning optimisation is presented, in relevance to a group water supply system. The action range of optimised parameters included: maximisation of water flow velocity, regulation of pressure head, minimisation of water retention time in a network (water age and minimisation of pump energy consumption. All simulations were performed in Bentley WaterGEMS software.

  17. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  18. Water quality in North American river systems

    International Nuclear Information System (INIS)

    Becker, C.D.; Neitzel, D.A.

    1992-01-01

    This book is about water quality and other characteristics of selected ecosystems in North America. It is also about changes that have occurred in these ecosystems as a result of recent human activities-changes that result primarily from development and exploitation to sustain the needs of an ever-increasing population and the technical innovations that sustain it. Fish populations, hydrology, and water quality control efforts are discussed

  19. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  20. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    proposed method of water pumping system also provides the cost effective and highly ... in the proposed system because of its similar operational characteristics compared to SPV generator. .... (CCM) regardless of the atmospheric conditions.

  1. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    OpenAIRE

    Prof. Anubha Panchal,; Ketakee Dagade

    2014-01-01

    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  2. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  3. Joint optimization of regional water-power systems

    Science.gov (United States)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  4. Systems of erbium chloride- carbamide- water and erbium nitrate- carbamide- water at 30 deg C

    International Nuclear Information System (INIS)

    Ajtimbetov, K.; Sulajmankulov, K.S.; Batyuk, A.G.; Ismailov, M.

    1975-01-01

    The systems erbium chloride - carbamide - water and erbium nitrate - carbamide - water were studied by solubility method at 30 deg C. In the system erbium chloride - carbamide - water three compounds were detected: ErClsub(3).6CO(NHsub(2))sub(2), ErClsub(3).4CO(NHsub(2))sub(2), ErClsub(3).2CO(NHsub(2))sub2.6Hsub(2)O. In the system erbium nitrate -carbamide - water two new compounds were found: Er(NOsub(3))sub(3).4CO(NHsub(2))sub2, Er(NOsub(3) )sub(3)

  5. A General Water Resources Regulation Software System in China

    Science.gov (United States)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  6. Significance of losses in water distribution systems in India.

    Science.gov (United States)

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  7. CLOSYS: Closed System for Water and Nutrient Management in Horticulture

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Dieleman, J.A.; Boulard, T.; Garate, A.; Kittas, C.; Buschmann, C.; Brajeul, E.; Wieringa, G.; Groot, de F.; Loon, van A.; Kocsanyi, L.

    2006-01-01

    The EU project CLOSYS aimed at developing a CLOsed SYStem for water and nutrients in horticulture. The main objective was to control water and nutrients accurately such that pollution is minimized and crop quality enhanced. The closed system as developed in this project consists of crop growth

  8. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O. [Energovyzkum, Brno (Switzerland); Schmidt, S.; Mihalik, M. [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1997-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  9. Particulate fingerprinting of water quality in the distribution system ...

    African Journals Online (AJOL)

    Particles in the distribution system play an important role in the perception? Not clear what is meant) of drinking water quality, particularly in association with discolouration. In The Netherlands the water quality in the distribution system is traditionally monitored by turbidity measurements. However, turbidity is hard to quantify ...

  10. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  11. GROWTH OF HETROTROPHIC BIOFILMS IN A WATER DISTRIBUTION SYSTEM SIMULATOR

    Science.gov (United States)

    The U.S. EPA has designed and constructed a distribution system simulator (DSS) to evaluate factors which influence water quality within water distribution systems. Six individual 25 meter lengths of 15 cm diameter ductile iron pipe are arranged into loop configurations. Each lo...

  12. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  13. EBO feed water distribution system, experience gained from operation

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O [Energovyzkum, Brno (Switzerland); Schmidt, S; Mihalik, M [Atomove Elektrarne Bohunice, Jaslovske Bohunice (Switzerland)

    1998-12-31

    Advanced feed water distribution systems of the EBO design have been installed into steam generators at Units 3 and 4 of the NPP Jaslovske Bohunice (VVER 440). Experiences gained from the operation of steam generators with the advanced feed water distribution systems are discussed in the paper. (orig.). 4 refs.

  14. Artificial sweetener sucralose in U.S. drinking water systems.

    Science.gov (United States)

    Mawhinney, Douglas B; Young, Robert B; Vanderford, Brett J; Borch, Thomas; Snyder, Shane A

    2011-10-15

    The artificial sweetener sucralose has recently been shown to be a widespread of contaminant of wastewater, surface water, and groundwater. In order to understand its occurrence in drinking water systems, water samples from 19 United States (U.S.) drinking water treatment plants (DWTPs) serving more than 28 million people were analyzed for sucralose using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sucralose was found to be present in source water of 15 out of 19 DWTPs (47-2900 ng/L), finished water of 13 out of 17 DWTPs (49-2400 ng/L) and distribution system water of 8 out of the 12 DWTPs (48-2400 ng/L) tested. Sucralose was only found to be present in source waters with known wastewater influence and/or recreational usage, and displayed low removal (12% average) in the DWTPs where finished water was sampled. Further, in the subset of DWTPs with distribution system water sampled, the compound was found to persist regardless of the presence of residual chlorine or chloramines. In order to understand intra-DWTP consistency, sucralose was monitored at one drinking water treatment plant over an 11 month period from March 2010 through January 2011, and averaged 440 ng/L in the source water and 350 ng/L in the finished water. The results of this study confirm that sucralose will function well as an indicator compound for anthropogenic influence on source, finished drinking and distribution system (i.e., tap) water, as well as an indicator compound for the presence of other recalcitrant compounds in finished drinking water in the U.S.

  15. A methodology for the design of photovoltaic water supply systems

    International Nuclear Information System (INIS)

    Vilela, O.C.; Fraidenraich, N.

    2001-01-01

    Photovoltaic pumping systems are used nowadays as a valuable alternative to supply water to communities living in remote rural areas. Owing to the seasonal variation and the stochastic behavior of solar radiation, at certain times the supply of water may not be able to meet demand. A study has been made of the relationship between water pumping capacity, reservoir size and water demand, for a given water deficit. As a result, curves of equal water deficit (iso-deficit lines) can be obtained for various combinations of PV pumping capacity and reservoir size. A methodology to generate those curves is described, using as its main tool the characteristic curve of the system, that is, the relationship between water flow and collected solar radiation. The characteristic curve represents the combined behavior of the water pumping system and the well. The influence of the minimum collected solar radiation level, necessary to start the system's operation (the critical radiation level I C ). is also analyzed. Results show that PV pumping systems with different characteristic curves, but with the same critical levels, yield the same set of iso-deficit lines. This drastically reduces the number of necessary solutions to those corresponding to a few values of I C . Iso-deficit lines, calculated for the locality of Recife (PE), Brazil, are used to illustrate the sizing procedure PV water supply systems. (author)

  16. Multi-spark discharge system for preparation of nutritious water

    Science.gov (United States)

    Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi

    2018-01-01

    The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.

  17. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    Science.gov (United States)

    Kjellerup Kjeldsen, Kristian; Weinrebe, Reimer Wilhelm; Bendtsen, Jørgen; Anker Bjørk, Anders; Kjær, Kurt Henrik

    2017-08-01

    We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1-2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at pangaea.de/10.1594/PANGAEA.860627" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.860627.

  18. Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland

    Directory of Open Access Journals (Sweden)

    K. K. Kjeldsen

    2017-08-01

    Full Text Available We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1–2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater. Data are available through the PANGAEA website at https://doi.pangaea.de/10.1594/PANGAEA.860627.

  19. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  20. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  1. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  3. Mediated water electrolysis in biphasic systems.

    Science.gov (United States)

    Scanlon, Micheál D; Peljo, Pekka; Rivier, Lucie; Vrubel, Heron; Girault, Hubert H

    2017-08-30

    The concept of efficient electrolysis by linking photoelectrochemical biphasic H 2 evolution and water oxidation processes in the cathodic and anodic compartments of an H-cell, respectively, is introduced. Overpotentials at the cathode and anode are minimised by incorporating light-driven elements into both biphasic reactions. The concepts viability is demonstrated by electrochemical H 2 production from water splitting utilising a polarised water-organic interface in the cathodic compartment of a prototype H-cell. At the cathode the reduction of decamethylferrocenium cations ([Cp 2 *Fe (III) ] + ) to neutral decamethylferrocene (Cp 2 *Fe (II) ) in 1,2-dichloroethane (DCE) solvent takes place at the solid electrode/oil interface. This electron transfer process induces the ion transfer of a proton across the immiscible water/oil interface to maintain electroneutrality in the oil phase. The oil-solubilised proton immediately reacts with Cp 2 *Fe (II) to form the corresponding hydride species, [Cp 2 *Fe (IV) (H)] + . Subsequently, [Cp 2 *Fe (IV) (H)] + spontaneously undergoes a chemical reaction in the oil phase to evolve hydrogen gas (H 2 ) and regenerate [Cp 2 *Fe (III) ] + , whereupon this catalytic Electrochemical, Chemical, Chemical (ECC') cycle is repeated. During biphasic electrolysis, the stability and recyclability of the [Cp 2 *Fe (III) ] + /Cp 2 *Fe (II) redox couple were confirmed by chronoamperometric measurements and, furthermore, the steady-state concentration of [Cp 2 *Fe (III) ] + monitored in situ by UV/vis spectroscopy. Post-biphasic electrolysis, the presence of H 2 in the headspace of the cathodic compartment was established by sampling with gas chromatography. The rate of the biphasic hydrogen evolution reaction (HER) was enhanced by redox electrocatalysis in the presence of floating catalytic molybdenum carbide (Mo 2 C) microparticles at the immiscible water/oil interface. The use of a superhydrophobic organic electrolyte salt was critical to

  4. Developing the Water Supply System for Travel to Mars

    Science.gov (United States)

    Jones, Harry W.; Fisher, John W.; Delzeit, Lance D.; Flynn, Michael T.; Kliss, Mark H.

    2016-01-01

    What water supply method should be used on a trip to Mars? Two alternate approaches are using fuel cell and stored water, as was done for short missions such as Apollo and the Space Shuttle, or recycling most of the water, as on long missions including the International Space Station (ISS). Stored water is inexpensive for brief missions but its launch mass and cost become very large for long missions. Recycling systems have much lower total mass and cost for long missions, but they have high development cost and are more expensive to operate than storage. A Mars transit mission would have an intermediate duration of about 450 days out and back. Since Mars transit is about ten times longer than a brief mission but probably less than one-tenth as long as ISS, it is not clear if stored or recycled water would be best. Recycling system design is complicated because water is used for different purposes, drinking, food preparation, washing, and flushing the urinal, and because wastewater has different forms, humidity condensate, dirty wash water, and urine and flush water. The uses have different requirements and the wastewater resources have different contaminants and processing requirements. The most cost-effective water supply system may recycle some wastewater sources and also provide safety reserve water from storage. Different water supply technologies are compared using mass, cost, reliability, and other factors.

  5. Approach to the health-risk management on municipal reclaimed water reused in landscape water system

    Science.gov (United States)

    Liu, X.; Li, J.; Liu, W.

    2008-12-01

    Water pollution and water heavily shortage are both main environmental conflicts in China. Reclaimed water reuse is an important approach to lessen water pollution and solve the water shortage crisis in the city. The heath risk of reclaimed water has become the focus of the public. It is impending to evaluate the health risk of reclaimed water with risk assessment technique. Considering the ways of the reclaimed water reused, it is studied that health risk produced by toxic pollutants and pathogenic microbes in the processes of reclaimed water reused in landscape water system. The pathogenic microbes monitoring techniques in wastewater and reclaimed water are discussed and the hygienic indicators, risk assessment methods, concentration limitations of pathogenic microbes for various reclaimed water uses are studied. The principle of health risk assessment is used to research the exposure level and the health risk of concerned people in a wastewater reuse project where the reclaimed water is applied for green area irrigation in a public park in Beijing. The exposure assessment method and model of various reclaimed water uses are built combining with Beijing reclaimed water project. Firstly the daily ingesting dose and lifetime average daily dose(LADD) of exposure people are provided via field work and monitoring analysis, which could be used in health risk assessment as quantitative reference. The result shows that the main risk comes from the pathology pollutants, the toxic pollutants, the eutrophication pollutants, pathogenic microbes and the secondary pollutants when municipal wastewater is reclaimed for landscape water. The major water quality limited should include pathogenic microbes, toxic pollutants, and heavy metals. Keywords: municipal wastewater, reclaimed water, landscape water, health risk

  6. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  7. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  8. Small Water System Management Program: 100 K Area

    International Nuclear Information System (INIS)

    Hunacek, G.S. Jr.

    1995-01-01

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site's 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410

  9. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  10. Evidence for Subglacial Deformation and Deposition during a Complete Advance-Stagnation Cycle of Kötlujökull, Iceland – A Case Study

    DEFF Research Database (Denmark)

    Klint, K E S; Richardt, N; Krüger, Johannes

    2010-01-01

    A geological section, 70 m long and 3–4 m high, cut into dead-ice moraine in front of Kötlujökull, has been described. Five-sediment associations were recognized representing (1) proglacial glacio-fluvial sedimentation, (2) deposition and deformation in ice-marginal environment, (3) subglacial...

  11. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    Science.gov (United States)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  12. Performance Monitoring of Residential Hot Water Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  13. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  14. Corrosion control for open cooling water system

    International Nuclear Information System (INIS)

    Karweer, S.B.; Ramchandran, R.

    2000-01-01

    Frequent stoppage of water circulation due to shut down of the Detritiation Plant in Heavy Water Division, Trombay resulted in considerable algae growth. As polyphosphate is a nutrient to algae growth, studies were directed in the evaluation of a nonpolyphosphate formulation for controlling corrosion and scale formation of carbon-steel, copper and aluminium. A blend of HEDP, polyacrylate, zinc, and benzotriazole was used and the optimum condition was determined. In presence of 25 ppm kw-1002 [proprietary formulation, containing HEDP and polyacrylate], 10 ppm kw-201 [active ingredient benzotriazole] and 2 ppm zinc (as zinc sulphate), the corrosion rate of carbon-steel in Mumbai Municipal Corporation (MMC) water at pH 7.5 ± 0.1 for a period of 31 days was 10.4 x 10 -3 μm/h. When MMC water concentrated to half its original volume was used, the corrosion rate was still 9.74 x 10 -3 μm/h close to the original value without concentration. Hence, this formulation was used for controlling scale and corrosion. The results were satisfactory. (author)

  15. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  16. WaterOnto: Ontology of Context-Aware Grid-Based Riverine Water Management System

    Directory of Open Access Journals (Sweden)

    Muhammad Hussain Mughal

    2017-06-01

    Full Text Available The management of riverine water always remains a big challenge, because the volatility of water flow creates hurdles to determine the exact time and quantity of water flowing in rivers and available for daily use. The volatile water caused by various water sources and irregular flow pattern generates different kinds of challenges for management. Distribution of flow of water in irrigation network affects the relevant community in either way. In the monsoon seasons, river belt community high risk of flood, while far living community suffering drought. Contemplating this situation, we have developed an ontology for context-aware information representation of riverine water management system abetting the visualization and proactive planning for the complex real-time situation. The purpose of this WaterOnto is to improve river water management and enable for efficient use of this precious natural resource. This would also be helpful to save the extra water being discharged in sea & non-irrigational areas, and magnitude and location of water leakage. We conceptualized stakeholder and relevant entities. We developed a taxonomy of irrigation system concepts in machine process able structure. Being woven these hierarchies together we developed a detailed conceptualization of river flow that helps us to manage the flow of water and enable to extract danger situation.

  17. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  18. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  19. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  20. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  1. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    Science.gov (United States)

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  2. A model for radionuclide transport in the Cooling Water System

    International Nuclear Information System (INIS)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  3. Designing and visualizing the water-energy-food nexus system

    Science.gov (United States)

    Endo, A.; Kumazawa, T.; Yamada, M.; Kato, T.

    2017-12-01

    The objective of this study is to design and visualize a water-energy-food nexus system to identify the interrelationships between water-energy-food (WEF) resources and to understand the subsequent complexity of WEF nexus systems holistically, taking an interdisciplinary approach. Object-oriented concepts and ontology engineering methods were applied according to the hypothesis that the chains of changes in linkages between water, energy, and food resources holistically affect the water-energy-food nexus system, including natural and social systems, both temporally and spatially. The water-energy-food nexus system that is developed is significant because it allows us to: 1) visualize linkages between water, energy, and food resources in social and natural systems; 2) identify tradeoffs between these resources; 3) find a way of using resources efficiently or enhancing the synergy between the utilization of different resources; and 4) aid scenario planning using economic tools. The paper also discusses future challenges for applying the developed water-energy-food nexus system in other areas.

  4. Design and analysis of hydraulic ram water pumping system

    Science.gov (United States)

    Hussin, N. S. M.; Gamil, S. A.; Amin, N. A. M.; Safar, M. J. A.; Majid, M. S. A.; Kazim, M. N. F. M.; Nasir, N. F. M.

    2017-10-01

    The current pumping system (DC water pump) for agriculture is powered by household electricity, therefore, the cost of electricity will be increased due to the higher electricity consumption. In addition, the water needs to be supplied at different height of trees and different places that are far from the water source. The existing DC water pump can pump the water to 1.5 m height but it cost money for electrical source. The hydraulic ram is a mechanical water pump that suitable used for agriculture purpose. It can be a good substitute for DC water pump in agriculture use. The hydraulic ram water pumping system has ability to pump water using gravitational energy or the kinetic energy through flowing source of water. This project aims to analyze and develop the water ram pump in order to meet the desired delivery head up to 3 meter height with less operation cost. The hydraulic ram is designed using CATIA software. Simulation work has been done using ANSYS CFX software to validate the working concept. There are three design were tested in the experiment study. The best design reached target head of 3 m with 15% efficiency and flow rate of 11.82l/min. The results from this study show that the less diameter of pressure chamber and higher supply head will create higher pressure.

  5. Emergency field water supply system using natural filtration elements

    Science.gov (United States)

    Vikneswaran, M.; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Ismail, Siti Nor Kamariah

    2018-02-01

    Water is the most important resource in times of emergency and during military missions. In addition, if there is a war in a country, sources of clean water are essential for life. But, the safety and cleanliness of the river water for the campers and hikers still uncertain. Usually, polluted and contaminated river water is not safe to be directly consumed by human. However, this problem can be partly resolved by using water filter where the river water can be consumed directly after the filtration process. In respect of that, this study was conducted to design the filter media for personal water purification system. Hence, the objective of this work also is to develop a personal, portable dual purpose handy water filter to provide an easier way to get safe, clean and healthy drinking water for human wherever they go. The water quality of samples collected before and after filtration were analyzed. Water samples were taken from a waterfall near Lestari Block and Lake beside Marine Centre UPNM Campus. The experimental results were analyzed based on the assessment of water quality parameters. Overall, the analysis of the results showed that the water filter was designed with basic mix tabs aqua filter water purification tablets is showing a better result where it achieve the class I of water quality index (WQI). In details, the water sample taken from waterfall near Lestari Block shown the WQI around 93 which is higher than WQI of water sample from Lake near Marine Centre UPNM which is 86, class II A which can be used for external purpose only.

  6. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  7. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  8. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  9. A completely passive continuous flow solar water purification system

    Energy Technology Data Exchange (ETDEWEB)

    Duff, William S.; Hodgson, David A. [Dept. of Mechanical Enginnering, Colorado State Univ., Fort Collins, CO (United States)

    2008-07-01

    Water-borne pathogens in developing countries cause several billion cases of disease and up to 10 million deaths each year, at least half of which are children. Solar water pasteurization is a potentially cost-effective, robust and reliable solution to these problems. A completely passively controlled solar water pasteurization system with a total collector area of 0.45 m{sup 2} has been constructed. The system most recently tested produced 337 litres per m{sup 2} of collector area of treated water on a sunny day. We developed our completely passive density-driven solar water pasteurization system over a five year span so that it now achieves reliable control for all possible variations in solar conditions. We have also substantially increased its daily pure water production efficiency over the same period. We will discuss the performance of our water purification system and provide an analyses that demonstrates that the system insures safe purified water production at all times. (orig.)

  10. Modeling, control and optimization of water systems systems engineering methods for control and decision making tasks

    CERN Document Server

    2016-01-01

    This book provides essential background knowledge on the development of model-based real-world solutions in the field of control and decision making for water systems. It presents system engineering methods for modelling surface water and groundwater resources as well as water transportation systems (rivers, channels and pipelines). The models in turn provide information on both the water quantity (flow rates, water levels) of surface water and groundwater and on water quality. In addition, methods for modelling and predicting water demand are described. Sample applications of the models are presented, such as a water allocation decision support system for semi-arid regions, a multiple-criteria control model for run-of-river hydropower plants, and a supply network simulation for public services.

  11. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  12. Water reuse systems: A review of the principal components

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    Principal components of water reuse systems include ammonia removal, disease control, temperature control, aeration, and particulate filtration. Effective ammonia removal techniques include air stripping, ion exchange, and biofiltration. Selection of a particular technique largely depends on site-specific requirements (e.g., space, existing water quality, and fish densities). Disease control, although often overlooked, is a major problem in reuse systems. Pathogens can be controlled most effectively with ultraviolet radiation, ozone, or chlorine. Simple and inexpensive methods are available to increase oxygen concentration and eliminate gas supersaturation, these include commercial aerators, air injectors, and packed columns. Temperature control is a major advantage of reuse systems, but the equipment required can be expensive, particularly if water temperature must be rigidly controlled and ambient air temperature fluctuates. Filtration can be readily accomplished with a hydrocyclone or sand filter that increases overall system efficiency. Based on criteria of adaptability, efficiency, and reasonable cost, we recommend components for a small water reuse system.

  13. Modeling integrated water user decisions in intermittent supply systems

    Science.gov (United States)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  14. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen

    2010-01-01

    depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard......, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading...... to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community...

  15. Kyiv Small Rivers in Metropolis Water Objects System

    Science.gov (United States)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  16. An Advanced Microturbine System with Water-Lubricated Bearings

    Directory of Open Access Journals (Sweden)

    Susumu Nakano

    2009-01-01

    Full Text Available A prototype of the next-generation, high-performance microturbine system was developed for laboratory evaluation. Its unique feature is its utilization of water. Water is the lubricant for the bearings in this first reported application of water-lubricated bearings in gas turbines. Bearing losses and limitations under usage conditions were found from component tests done on the bearings and load tests done on the prototype microturbine. The rotor system using the water-lubricated bearings achieved stable rotating conditions at a rated rotational speed of 51,000 rpm. An electrical output of 135 kW with an efficiency of more than 33% was obtained. Water was also utilized to improve electrical output and efficiency through water atomizing inlet air cooling (WAC and a humid air turbine (HAT. The operation test results for the WAC and HAT revealed the WAC and HAT operations had significant effects on both electrical output and electrical efficiency.

  17. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  18. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  19. Measurement of Water Quality Parameters for Before and After Maintenance Service in Water Filter System

    Directory of Open Access Journals (Sweden)

    Shaharudin Nuraida

    2017-01-01

    Full Text Available An adequate supply of safe drinking water is one of major ways to obtain healthy life. Water filter system is one way to improve the water quality. However, to maintain the performance of the system, it need to undergo the maintenance service. This study evaluate the requirement of maintenance service in water filter system. Water quality was measured before and after maintenance service. Parameters measured were pH, turbidity, residual chlorine, nitrate and heavy metals and these parameters were compared with National Drinking Water Quality Standards. Collection of data were involved three housing areas in Johor. The quality of drinking water from water filter system were analysed using pH meter, turbidity meter, DR6000 and Inductively Coupled Plasma-Mass Spectrometer. pH value was increased from 16.4% for before maintenance services to 30.7% for after maintenance service. Increment of removal percentage for turbidity, residual chlorine and nitrate after maintenance were 21.5, 13.6 and 26.7, respectively. This result shows that maintenance service enhance the performance of the system. However, less significant of maintenance service for enhance the removal of heavy metals which the increment of removal percentage in range 0.3 to 9.8. Only aluminium shows percentage removal for after maintenance with 92.8% lower compared to before maintenance service with 95.5%.

  20. Maintenance and Recovery of Water System for Injection (WFI)

    International Nuclear Information System (INIS)

    Wan Anuar Wan Awang; Ahmad Firdaus Jalil; Wan Mohd Firdaus Wan Ishak

    2015-01-01

    Water system for injection (WFI) is one of the main component in manufacturing pharmaceutical materials and radiopharmaceuticals. This system accredited in 2005. Water quality produced analyzed and give the unsatisfied results. The operation of WFI was stopped temporarily due to technical problems. In 2013, recovery works were implemented with budget of RM 226,500.00. Comprehensive maintenance were implemented by Rykertech (Asia) Sdn. Bhd. With duration of 24 months (October 2014 until September 2016) with cost RM 473,550.00. Now, this system operated in good condition and produced water that meet with the specifications. (author)

  1. Urban community perception towards intermittent water supply system.

    Science.gov (United States)

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  2. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  3. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  4. Protection against deposits and corrosion in water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehmkuhl, J

    1978-11-01

    Industry generally, including mining and coal preparation, are in the habit of using large amounts of untreated service water. The service water can be softened or treated with hardness stabilisers in order to prevent deposit formation and corrosion. As often as not, deposits of dirt and attack by microorganisma also have to be eliminated. The article puts forward some suggestions for practical assistance in protecting water systems against the dangers of deposits and corrosion.

  5. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  6. Studies on corrosion inhibitors for the cooling water system at the Heavy Water Project, Kota

    International Nuclear Information System (INIS)

    Pillai, B.P.; Mehta, C.T.; Abubacker, K.M.

    1986-01-01

    The Heavy Water Project at Kota uses the water from the Rana Pratap Sagar Lake as coolant in the open recirculation system. In order to find suitable corrosion inhibitors for the above system, a series of laboratory experiments on corrosion inhibitors were carried out using the constructional materials of the cooling water system and a number of proprietary formulations and the results are tabulated. From the data thus generated through various laboratory experiments, the most useful ones have been recommended for application in practice. (author)

  7. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  8. Joint optimization of regional water-power systems

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Mo, Birger; Gjelsvik, Anders

    2016-01-01

    using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs...... for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost...... of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved...

  9. Structural material anomaly detection system using water chemistry data

    International Nuclear Information System (INIS)

    Asakura, Yamato; Nagase, Makoto; Uchida, Shunsuke; Ohsumi, Katsumi.

    1992-01-01

    The concept of an advanced water chemistry diagnosis system for detection of anomalies and preventive maintenance of system components is proposed and put into a concrete form. Using the analogy to a medical inspection system, analyses of water chemistry change will make it possible to detect symptoms of anomalies in system components. Then, correlations between water chemistry change and anomaly occurrence in the components of the BWR primary cooling system are analyzed theoretically. These fragmentary correlations are organized and reduced to an algorithm for the on-line diagnosis system using on-line monitoring data, pH and conductivity. By using actual plant data, the on-line diagnosis model system is verified to be applicable for early and automatic finding of the anomaly cause and for timely supply of much diagnostic information to plant operators. (author)

  10. Hydrostatic Water Level Systems At Homestake DUSEL

    Science.gov (United States)

    Stetler, L. D.; Volk, J. T.

    2009-12-01

    Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 μm per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 μm resolution) will be installed in the mine workings in the near future, some

  11. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  12. Performance of materials in the component cooling water systems of pressurized water reactors

    International Nuclear Information System (INIS)

    Lee, B.S.

    1993-01-01

    The component cooling water (CCW) system provides cooling water to several important loads throughout the plant under all operating conditions. An aging assessment CCW systems in pressurized water reactors (PWRs) was conducted as part of Nuclear Plant Aging Research Program (NPAR) instituted by the US Nuclear Regulatory Commission. This paper presents some of the results on the performances of materials in respect of their application in CCW Systems. All the CCW system failures reported to the Nuclear Plant Reliability Data System (NPRDS) from January 1988 to June 1990 were reviewed; it is concluded that three of the main contributors to CCW system failures are valves, pumps, and heat exchangers. This study identified the modes and causes of failure for these components; most of the causes for the aging-related failures could be related to the performance of materials. Also, in this paper the materials used for these components are reviewed, and there aging mechanisms under CCW system conditions are discussed

  13. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  14. Benchmarking leakage from water reticulation systems in South Africa

    African Journals Online (AJOL)

    driniev

    Abstract. A project to assess the levels of leakage in 30 water utilities throughout South Africa was initiated by the Water ... average operating pressure, systems input volume and the compo- ... simple, user-friendly model that is based on an excel spreadsheet ..... One can see from the four graphs presented here that various.

  15. Using WNTR to Model Water Distribution System Resilience

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of di...

  16. A system for tritium analysis in natural water

    International Nuclear Information System (INIS)

    Mozeto, A.A.

    1977-01-01

    A method for the analysis, by scintillation counting, of tritium in natural water enriched electrolytically, is presented. The characteristics of the proposed system are indicated by experimental parameters, and by the performance obtained in the analysis of rain and under ground waters. An evaluation of the precison and reproducibility of the measurements is also made [pt

  17. Effect of the Distribution System on Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    A. Grünwald

    2001-01-01

    Full Text Available The overall objective of this paper is to characterise the main aspects of water quality deterioration in a distribution system. The effect of residence time on chlorine uptake and the formation and evolution of disinfection by-products in distributed drinking water are discussed.

  18. Advanced control of a water supply system : A case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  19. FINANCING ASSISTANCE AVAILABLE FOR SMALL PUBLIC WATER SYSTEMS

    Science.gov (United States)

    Many small and very small drinking water systems require repair and upgrading if they are to comply with the Safe Drinking Water Act of 1974 and its amendments. Often, dispersed population makes infracstructure expensive on a per-capita basis. Funding shortages at the federal, ...

  20. Smart optimisation and sensitivity analysis in water distribution systems

    CSIR Research Space (South Africa)

    Page, Philip R

    2015-12-01

    Full Text Available optimisation of a water distribution system by keeping the average pressure unchanged as water demands change, by changing the speed of the pumps. Another application area considered, using the same mathematical notions, is the study of the sensitivity...

  1. Cooling Water System Monitoring by Means of Mossbauer Spectroscopy

    International Nuclear Information System (INIS)

    Novakova, A.A.; Pargamotnikas, S.A.; Taseva, V.; Dobbrevsky, I.; Nenov, V.; Bonev, B.

    1998-01-01

    Mossbauer spectroscopy have been applied to the analysis of corrosion sediments formed on mild steel coupons, which were placed in the different points of the Bourgas Petrochemical Plant Recilculating Cooling Water System. It was shown that the created corrosion products can successfully reflect the ambient water medium pollution to which the coupons were exposed

  2. Small Drinking Water Systems Communication and Outreach Highlights

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  3. Conducting Sanitary Surveys of Water Supply Systems. Student Workbook.

    Science.gov (United States)

    1976

    This workbook is utilized in connection with a 40-hour course on sanitary surveys of water supply systems for biologists, chemists, and engineers with experience as a water supply evaluator. Practical training is provided in each of the 21 self-contained modules. Each module outlines the purpose, objectives and content for that section. The course…

  4. Validation Aspects of Water Treatment Systems for Pharmaceutical ...

    African Journals Online (AJOL)

    The goal of conducting validation is to demonstrate that a process, when operated within established limits, produces a product of consistent and specified quality with a high degree of assurance. Validation of water treatment systems is necessary to obtain water with all desired quality attributes. This also provides a ...

  5. Design analysis supporting 101-SY Water Decon System

    International Nuclear Information System (INIS)

    Cleveland, K.J.

    1995-01-01

    This document contains the results of stress analysis and component sizing for the 101-SY mitigation pump, Water Decon System. Calculations included are a stress analysis of the High Pressure Manifold, the threaded connection on the Yoke Water Connector and a sizing of an air receiver tank

  6. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  7. Critical behavior in the system cyclopentanone + water + secondary butyl alcohol

    Science.gov (United States)

    Krishna, U. Santhi; Unni, P. K. Madhavan

    2018-05-01

    We report detailed measurements of coexistence surface in the ternary system cylcopentanone + water + secondary butyl alcohol. The coexistence surface is seen to have an unusual tunnel like feature and is a potential system in which special critical points such as the Quadruple Critical Point (QCP) could be studied. Analysis of coexistence curves indicates that the system shows 3D-Ising like critical behavior.

  8. Preliminary design package for solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  9. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  10. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  11. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  12. Dynamics of controlled release systems based on water-in-water emulsions: A general theory

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2008-01-01

    Phase-separated biopolymer solutions, and aqueous dispersions of hydrogel beads, liposomes, polymersomes, aqueous polymer microcapsules, and colloidosomes are all examples of water-in-water emulsions. These systems can be used for encapsulation and controlled release purposes, in for example food or

  13. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  14. Analysis of water hammer in control rod drive systems of boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Safwat, H.H.; Arastu, A.H.; Lau, S.

    1983-01-01

    The method of characteristics is applied to analyze water hammer in BWR (Boiling Water Reactor) Control Rod Drive (CRD) Systems following fast opening of scram valves. The modelling of the CRD mechanism is presented. Numerical predictions are compared to experimental data. (author)

  15. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland.

    Science.gov (United States)

    Torvinen, Eila; Suomalainen, Sini; Lehtola, Markku J; Miettinen, Ilkka T; Zacheus, Outi; Paulin, Lars; Katila, Marja-Leena; Martikainen, Pertti J

    2004-04-01

    Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 x 10(5) and 3.9 x 10(5) CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species.

  16. Decontamination of the RA reactor heavy water system, Annex 9

    International Nuclear Information System (INIS)

    Maksimovic, Z.B.; Nikolic, R.M.; Marinkovic, M.D.; Jelic, Lj.M.

    1963-01-01

    Both stainless steel and aluminium parts of the RA reactor heavy water system system were decontaminated as well as the heavy water itself. System was contaminated with 60 Co. Decontamination factor was determined by activity measurements during distillation. Concentration of the corrosion products in the heavy water was measured by spectrochemical analysis, and found to be 0.1 - 1 mg/l. Chemical analyses of the aluminium and stainless steel surfaces showed that cobalt was adsorbed on the aluminium oxide layer. Water solution of 7%H 3 PO 4 + 2% CrO 3 was used for decontamination of the heavy water system and distillation device. This was found to be the most efficient solvent which does not affect stainless steel corrosion. Decontamination factors achieved were from 60 - 100. Decontamination results enabled determining the distribution of cobalt in the system: 10 Ci on the stainless steel parts, 50 Ci in the heavy water; and above 600 Ci on the fuel and experimental channels. Specific activity of 60 Co was calculated to be 15 Ci/g on the reactor channels, 8 Ci/g on the stainless steel parts and 3 Ci/g in the heavy water. Decontamination of the aluminium parts was not done because it was considered it could initiate corrosion. Since the efficiency of distillation is increased it was expected that permanent distillation would remove most of the activity in the reactor channels

  17. The ancient heritage of water ice in the solar system.

    Science.gov (United States)

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.

  18. Modeling Jambo wastewater treatment system to predict water re ...

    African Journals Online (AJOL)

    user

    C++ programme to implement Brown's model for determining water quality usage ... predicting the re-use options of the wastewater treatment system was a ... skins from rural slaughter slabs/butchers, slaughter .... City (Karnataka State, India).

  19. Assessment of sorghum–cowpea intercrop system under water ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... In such instances, crop models can be used as decision support ... Planting dates (trigger season climate method, modelling and fixed date approaches), .... cowpea intercrop system for biomass accumulation (2.1%), water.

  20. Zero-Energy Ultrafast Water Nanofiltration System in Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this program is to develop a water nanofiltration system that functions in microgravity for use during a long-duration human space exploration. The...

  1. Water Supply Systems For Aircraft Fire And Rescue Protection

    Science.gov (United States)

    1995-01-01

    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  2. Ammonia-water system : Part I. Thermodynamic properties

    International Nuclear Information System (INIS)

    Goomer, N.C.; Dave, S.M.; Sadhukhan, H.K.

    1980-01-01

    The various thermodynamic properties which have direct bearing on design calculations and separation factor calculations for gaseous ammonia water system have been calculated and compiled in tabular form for easy reference. (auth.)

  3. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Dufour, Carolina [Princeton Univ., NJ (United States); Rodgers, Keith B. [Princeton Univ., NJ (United States)

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  4. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    ... or well supplies to consumers’ taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management...

  5. Drinking Water State Revolving Fund National Information Management System Reports

    Science.gov (United States)

    The Drinking Water State Revolving Fund (DWSRF) National Information Management System collects information that provide a record of progress and accountability for the program at both the State and National level.

  6. Research on water management system based on Android

    Science.gov (United States)

    Li, Dongjiang; Hu, Songlin

    2018-04-01

    With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.

  7. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases....

  8. Water System Adaptation to Hydrological Changes: Module 1, Introduction to Water System Adaptation

    Science.gov (United States)

    Contemporary water management requires resilience, the ability to meet ever increasing water needs, and capacity to adapt to abrupt or transient changes in water quality and availability. For this purpose, effective adaptation to extreme hydrological events (e.g. intense storms, ...

  9. Model-based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Rachel; Dees, Elizabeth

    2017-03-23

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.

  10. An analysis of the water-level monitoring system for a boiling-water reactor

    International Nuclear Information System (INIS)

    Carlson, R.W.; Belblidia, L.A.; Russell, J.L. Jr.

    1985-01-01

    The water-level instrumentation system is very important to the overall safety of a BWR. This system is being monitored by the Safety Parameter Display System (SPDS) that is being installed in Georgia Power Company's Plant Hatch. One of the most significant functions of the SPDS is the comparison of redundant instrument readings and formation of the best estimate of each parameter from those readings which are consistent. When comparing water-level instrument readings, it is necessary to correct the individual readings for differences between current and calibration conditions as well as for differences between calibration conditions for the multiple instruments. This paper documents the examination of the water-level instrumentation system at Plant Hatch and presents the development of the equations that were used to determine the differences between indicated and actual water levels. (author)

  11. Water quality management in shrimp aquaculture ponds using remote water quality logging system

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Kulkarni, S.; Suryavanshi, U.; Ingole, B.S.; Drensgstig, A.; Braaten, B.

    Currently an institutional co-operation project funded by NORAD is evaluating different environmental management strategies for sustainable aquaculture in India. A brief description of a remote water quality logging system installed in shrimp ponds...

  12. A water management decision support system contributing to sustainability

    Science.gov (United States)

    Horváth, Klaudia; van Esch, Bart; Baayen, Jorn; Pothof, Ivo; Talsma, Jan; van Heeringen, Klaas-Jan

    2017-04-01

    Deltares and Eindhoven University of Technology are developing a new decision support system (DSS) for regional water authorities. In order to maintain water levels in the Dutch polder system, water should be drained and pumped out from the polders to the sea. The time and amount of pumping depends on the current sea level, the water level in the polder, the weather forecast and the electricity price forecast and possibly local renewable power production. This is a multivariable optimisation problem, where the goal is to keep the water level in the polder within certain bounds. By optimizing the operation of the pumps the energy usage and costs can be reduced, hence the operation of the regional water authorities can be more sustainable, while also anticipating on increasing share of renewables in the energy mix in a cost-effective way. The decision support system, based on Delft-FEWS as operational data-integration platform, is running an optimization model built in RTC-Tools 2, which is performing real-time optimization in order to calculate the pumping strategy. It is taking into account the present and future circumstances. As being the core of the real time decision support system, RTC-Tools 2 fulfils the key requirements to a DSS: it is fast, robust and always finds the optimal solution. These properties are associated with convex optimization. In such problems the global optimum can always be found. The challenge in the development is to maintain the convex formulation of all the non-linear components in the system, i.e. open channels, hydraulic structures, and pumps. The system is introduced through 4 pilot projects, one of which is a pilot of the Dutch Water Authority Rivierenland. This is a typical Dutch polder system: several polders are drained to the main water system, the Linge. The water from the Linge can be released to the main rivers that are subject to tidal fluctuations. In case of low tide, water can be released via the gates. In case of high

  13. Energy-Cost Optimisation in Water-Supply System

    OpenAIRE

    Farrukh Mahmood; Haider Ali

    2013-01-01

    Households as well as community water-supply systems for utilisation of underground aquifers are massive consumers of energy. Prevailing energy crisis and focus of the government on demand-side energy policies (i.e., energy conservation) in Pakistan raises need of using energy efficient techniques in almost every aspect of life. This paper analyses performance of community relative to household water-supply system in connection with efficient energy utilisation. Results suggest that total ope...

  14. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  15. Upgrade of the cooling water temperature measures system for HLS

    International Nuclear Information System (INIS)

    Guo Weiqun; Liu Gongfa; Bao Xun; Jiang Siyuan; Li Weimin; He Duohui

    2007-01-01

    The cooling water temperature measures system for HLS (Hefei Light Source) adopts EPICS to the developing platform and takes the intelligence temperature cruise instrument for the front control instrument. Data of temperatures are required by IOCs through Serial Port Communication, archived and searched by Channel Archiver. The system can monitor the real-time temperatures of many channels cooling water and has the function of history data storage, and data network search. (authors)

  16. Rehabilitation actions in water supply systems: effects on biofilm susceptibility

    OpenAIRE

    RAMOS MARTINEZ, EVA; Herrera Fernández, Antonio Manuel; Gutiérrez-Pérez, Joanna A.; Izquierdo Sebastián, Joaquín; Pérez García, Rafael

    2014-01-01

    Biofilm development in water supply systems (WSSs) depends on infrastructure and operational factors, apart from water quality. We have developed a methodology that considers WSSs hydraulic (operation) and physical (design) characteristics to identify areas with different biofilm development trends within a WSS. To achieve this aim we have used meta-analysis and multi-agent system label propagation via discriminant analysis. As a result, we recognise areas with different susceptibility to bio...

  17. Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Ljiljana Zlatanović

    2018-04-01

    Full Text Available Drinking water and fire safety are strongly bonded to each other. Actual drinking water demand and fire flows are both delivered through the same network, and are both devoted to public health and safety. In The Netherlands, the discussion about fire flows supplied by the drinking water networks has drawn fire fighters and drinking water companies together, searching for novel approaches to improve public safety. One of these approaches is the application of residential fire sprinkler systems fed by drinking water. This approach has an impact on the layout of domestic drinking water systems (DDWSs, as extra plumbing is required. This study examined the influence of the added plumbing on quality of both fresh and 10 h stagnant water in two full scale DDWSs: a conventional and an extended system. Overnight stagnation was found to promote copper and zinc leaching from pipes in both DDWSs. Microbial numbers and viability in the stagnant water, measured by heterotrophic plate count (HPC, flow cytometry (FCM and adenosine tri-phosphate (ATP, depended on the temperature of fresh water, as increased microbial numbers and viability was measured in both DDWSs when the temperature of fresh water was below the observed tipping point (15 °C for the HPC and 17 °C for the FCM and ATP measurements respectively and vice versa. A high level of similarity between water and biofilm communities, >98% and >70–94% respectively, indicates that the extension of the DDWS did not affect either the microbial quality of fresh drinking water or the biofilm composition.

  18. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  19. Observations of Warm Water in Young Solar-System Analogs

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm

    dioxide). The amount of warm water is deduced and its origin is observationally constrained. With both isotopologues observed, the HDO/H2O ratio is deduced. This ratio is then compared to other sources, e.g., comets and the Earth’s ocean, to gain understanding of the origin of the water in our own solar...... system. The emission line fluxes are modeled with radiative transfer tools and compared to other results of water abundances in the same source. The observed water emission, both H18(2 O and HDO is compact for all observed sources and traces the emission on R 150 AU scales or less. In one source...

  20. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  1. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  2. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  3. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  4. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  5. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  6. Asellus aquaticus and other invertebrates in drinking water distribution systems

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine

    hygiene. Whereas invertebrates in drinking water are known to host parasites in tropical countries they are largely regarded an aesthetical problem in temperate countries. Publications on invertebrate distribution in Danish systems have been completely absent and while reports from various countries have...... other crustaceans and nematodes protect bacteria from treatment processes. The influence of A. aquaticus has never previously been investigated. Investigations in this PhD project revealed that presence of A. aquaticus did not influence microbial water quality measurably in full scale distribution...... Campylobacter jejuni. Invertebrates enter drinking water systems through various routes e.g. through deficiencies in e.g. tanks, pipes, valves and fittings due to bursts or maintenance works. Some invertebrates pass treatment processes from ground water or surface water supplies while other routes may include...

  7. Solar water disinfecting system using compound parabolic concentrating collector

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)

    2000-05-31

    Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)

  8. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  9. Water chemistry of the JMTR IASCC irradiation loop system

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Oogiyanagi, Jin; Mori, Yuichiro; Saito, Junichi; Tsukada, Takashi

    2006-01-01

    Irradiation assisted stress corrosion cracking (IASCC) is recognized as an important degradation issue of the core-internal material for aged Boiling Water Reactors (BWRs). Therefore, irradiation loop system has been developed and installed in the Japan Materials Testing Reactor to perform the IASCC irradiation test. In the IASCC irradiation test, water chemistry of irradiation field is one of the most important key parameters because it affects initiation and propagation of cracks. This paper summarizes the measurement and evaluation method of water chemistry of IASCC irradiation loop system. (author)

  10. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  11. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Science.gov (United States)

    Urban water systems are an example of complex, dynamic human-environment coupled systems, which exhibit emergent behaviors that transcends individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and...

  12. A scheme for regulating toxic substances to water quality of Chamsil upstream water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kang Suk; Kim, Jee Hoon [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    This study asserts to reflect a concept of toxicity thoroughly in the present water quality concept. It presents an appropriate solution to control toxic substances flowing into the Chamsil upstream water system. Although a regulation of toxic substances into major rivers in Korea other than Han river is also required urgently, it will be studied in future. It is expected that this study on Chamsil upstream would be a cornerstone for establishing a national regulation policy of toxic substances into water system. 28 refs., 1 fig., 36 tabs.

  13. Portable Water Level Monitoring System via SMS

    Directory of Open Access Journals (Sweden)

    Jomar S. Vitales

    2015-11-01

    Full Text Available Damages and lives taken by the typhoon Ondoy and other super typhoons brought the researchers to think and develop a device that warns people an hour or more than an hour before the devastating phenomena. In this project the researchers have thought of using text messaging in which the country’s leading means of communication. The development of the project was guided by the Engineering Design Cycle of Dr. Allan Cheville in his book entitled “Rocket Engineering”. The researchers have identified and used the needed materials which are suited in the intended function of the project. The project was already evaluated and had gathered a favorable response from the knowledgeable respondents in the field where the design project is intended to use. The project has a high acceptability level in the respondents’ point of view. The researchers are highly recommending the implementation of the project for a better testing in the incoming rainy season and also recommending to be placed in the Pantalan Bridge in Pantalan, Nasugbu, Batangas, Philippines. The researchers are also suggesting another study for a better water proof casing of the project.

  14. Evolution of Framatome pressurized water reactor systems

    International Nuclear Information System (INIS)

    Leroy, C.; Bitsch, D.; Millot, J.P.

    1985-10-01

    FRAMATOME's PWR experience covers a total of 63 units, 36 of which are operating by end of 1984. More than 10 units were operated in load follow mode. Progress features, resulting from the feedback of construction and operating experience, and from the returns of a vast research and development program, were incorporated in their design through subsequent series of standard units. The last four loop standard, the N4 model, integrates in a rational way all those progress features, together with a significant design effort. The core design is based on the new Advanced Fuel Assemblies. The reactor control implements the ''Reactor Maximum Flexibility Package'' (R-MAX) which provides a high level of automatic reactor control. The steam generator incorporates an axial-mixed flow economizer design. The triangular-pitch tube bundle, together with modular steam/water separators and a rearrangement of the dryers resulted in a compact design. The reactor coolant pump benefits of higher performances over that of previous models due to an optimal hydraulic design, and of mechanical features which increase margins and facilitate the maintenance work. Following the N4 project, design work on advanced concepts is pursued by FRAMATOME. A main way of research is focused on the optimal use of fissile materials. These concepts are based on tight pitch fuel arrays, associated with a mechanical spectral shift device

  15. Water System Adaptation To Hydrological Changes: Module 9, Water System Resilience and Security under Hydrologic Variability and Uncertainty

    Science.gov (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  16. Water System Adaptation To Hydrological Changes: Module 14, Life Cycle Analysis (LCA) and Prioritization Tools in Water System Adaptation

    Science.gov (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  17. A new data transmission system for deep water applications

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    A novel data transmission system is now available. Conventional data transmission methods include systems that require satellites, hard wires, fiber optics and other methods that do not lend themselves to buried, remote, or deep water applications. The Data Transmission System (DTS) induces a signal into a structure such as the transmission line and retrieving the signal at a distant point. In deep water applications the power required comes from an anode array that generates its own power. In addition to deep water applications, the DTS can be used in onshore, drilling, and downhole applications. With repeater stations, most lengths of gathering and transmission lines can be used. Therefore data from control valves, strain gauges, corrosion monitoring, sand monitoring, valve position and other process variables can all be transmitted. Comparisons are made between the different data transmission systems showing the advantages and disadvantages of each type with comparative costs showing the advantages of the new DTS system. (author)

  18. Design of virtual SCADA simulation system for pressurized water reactor

    International Nuclear Information System (INIS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-01-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor

  19. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    Science.gov (United States)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  20. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  1. Development of a diagnostic expert system for secondary water chemistry

    International Nuclear Information System (INIS)

    Suganuma, S.; Ishikawa, S.; Kato, A.; Yamauchi, S.; Hattori, T.; Yoshikawa, T.; Miyamoto, S.

    1990-01-01

    Water chemistry control for the secondary side of the PWR plants is one of the most important tasks for maintaining the reliability of plant equipment and for extending the operating life of the plant. Water chemistry control should be maintained according to the plant chemist' considered judgement which is based on continual experienced observation. Mitsubishi Heavy Industries (MHI) has been developing a comprehensive data management and diagnosis system, which continuously observes the secondary water chemistry data with on-line monitors, immediately diagnosing causes whenever any symptoms of abnormality are detected and does the necessary data management, in order to support plant staff to controll water chemistry. This system has the following three basic functions: data management, diagnosis and simulation. This paper presents the outline of the total system, and then describes in detail the procedure of diagnosis, the structure of the knowledge and its validation process

  2. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  3. Valuing flexibilities in the design of urban water management systems.

    Science.gov (United States)

    Deng, Yinghan; Cardin, Michel-Alexandre; Babovic, Vladan; Santhanakrishnan, Deepak; Schmitter, Petra; Meshgi, Ali

    2013-12-15

    Climate change and rapid urbanization requires decision-makers to develop a long-term forward assessment on sustainable urban water management projects. This is further complicated by the difficulties of assessing sustainable designs and various design scenarios from an economic standpoint. A conventional valuation approach for urban water management projects, like Discounted Cash Flow (DCF) analysis, fails to incorporate uncertainties, such as amount of rainfall, unit cost of water, and other uncertainties associated with future changes in technological domains. Such approach also fails to include the value of flexibility, which enables managers to adapt and reconfigure systems over time as uncertainty unfolds. This work describes an integrated framework to value investments in urban water management systems under uncertainty. It also extends the conventional DCF analysis through explicit considerations of flexibility in systems design and management. The approach incorporates flexibility as intelligent decision-making mechanisms that enable systems to avoid future downside risks and increase opportunities for upside gains over a range of possible futures. A water catchment area in Singapore was chosen to assess the value of a flexible extension of standard drainage canals and a flexible deployment of a novel water catchment technology based on green roofs and porous pavements. Results show that integrating uncertainty and flexibility explicitly into the decision-making process can reduce initial capital expenditure, improve value for investment, and enable decision-makers to learn more about system requirements during the lifetime of the project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Report: EPA Is Taking Steps to Improve State Drinking Water Program Reviews and Public Water Systems Compliance Data

    Science.gov (United States)

    Report #17-P-0326, July 18, 2017. The EPA is taking action to improve oversight tools used to determine whether public water systems are monitoring and reporting drinking water quality in accordance with the Safe Drinking Water Act.

  5. Design of water detritiation system for fusion reactor

    International Nuclear Information System (INIS)

    Xie Bo; Wang Heyi; Liu Yunnu; Guan Rui

    2006-01-01

    The water detritiation system (WDS) of tritium plant for the International Thermonuclear Experimental Reactor (ITER) was designed. The concept of the Combined Electrolysis Catalytic Exchange and Gas Chromatography (CECE-GC) process was selected for the system and subsystems' descriptions of the WDS. ITER-WDS is characterised from the present demonstration system by rejecting the use of a recombiner and alkali electrolyzer, but a solid polymer electrolyzer (SPE) and a Pd/Ag membrane permeator system are adopted to recover tritium. (authors)

  6. Simulation of gamma irradiation system for a ballast water treatment

    International Nuclear Information System (INIS)

    Faez, T. P.; Sarkar, S.

    2006-01-01

    Invasion by different kinds of ballast the water microorganisms is one of the most important marine environment problems around the world therefore preventing the invasion of these unwanted and harmful stowaways is one of the main strategies of responsible agencies. Some of these methods such as ocean exchange, heating, filtration, hydro cyclones, UV irradiation and chemical treatment, have various problems such as technical deficiency, high costs, lack of safety and environmental side effects. Materials and Methods: A novel system of treatment by Gamma irradiation is designed to irradiate the blast water uniformly and effectively. To determine the dose distribution as a function of distance from the irradiation source, the MCNP code was used. The systems used for source implant in this simulation were Paterson-Parker, Paris and Network systems. In each system, Sivert-integral and inverse square law were used in MATLAB program to determine the dose distribution. Results: Results of initial laboratory tests on offshore water samples of Siri Island indicated that the appropriate dose for deactivation of organisms of water samples is approximately one kGy. It has been demonstrated that the dose can be provided by twenty five 100,000 Ci line sources of ' 60 Co in a triangle implant arranged in a 1*1*1 m3 cubic shape water pipe. In order to increase efficiency and radiation safety, water passed from two other coaxial and bigger cubes, after passing from the first cube. A one meter thick wall of concrete around the cubes was adequate to shield the system completely. Conclusion: The main advantages of this system such as high efficiency, safety, reliability, minimum environmental adverse effects, proves that this novel method not only can be used for ballast water treatment, but is also effective for drinking water purification

  7. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  8. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  9. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  10. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  11. Novel configurations of solar distillation system for potable water production

    International Nuclear Information System (INIS)

    Riahi, A; Yusof, K W; Sapari, N; Hashim, A M; Singh, B S

    2013-01-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  12. Oily bilge water treatment with a tubular ultrafiltration system

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L.R.; Jackson, D.F.; Schatzberg, P.

    1976-11-01

    The Navy has been developing various oil pollution abatement systems. One potential process for the separation of oil in bilge water is ultrafiltration, a pressure-driven membrane process which can separate, concentrate, and fractionate macromolecular solutes and suspended species from water. A tubular ultrafiltration system using cellulosic and noncellulosic membranes was tested with bilge oil obtained from a patrol craft. Tests were also conducted with tap water, river water, a turbine lubricating oil, and a fuel oil, alone and in combination with a nonionic detergent. The addition of the detergent was observed to result in a steeper flux decline than when any of the fluids were evaluated alone. Both membrane types produced a permeate with an oil content generally less than 15 mg/l. Although the noncellulosic membranes exhibited higher flux rates than the cellulosic membranes, only the former could be restored by a cleaning operation to its initial water flux after experiencing a decline in flux. A cumulative irreversible flux decline was exhibited by the cellulosic membrane. Cleaning operations, some of which were time-consuming, consisted of flushing the membrane with ultrafiltrate, distilled water, tap water, or the manufacturer's enzyme-detergent formulation. Only the last of these, when employed at elevated temperature (125/sup 0/F), restored the initial water flux of the noncellulosic membrane.

  13. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  14. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  15. Sustainability of Rainwater Harvesting System in terms of Water Quality

    Directory of Open Access Journals (Sweden)

    Sadia Rahman

    2014-01-01

    Full Text Available Water is considered an everlasting free source that can be acquired naturally. Demand for processed supply water is growing higher due to an increasing population. Sustainable use of water could maintain a balance between its demand and supply. Rainwater harvesting (RWH is the most traditional and sustainable method, which could be easily used for potable and nonpotable purposes both in residential and commercial buildings. This could reduce the pressure on processed supply water which enhances the green living. This paper ensures the sustainability of this system through assessing several water-quality parameters of collected rainwater with respect to allowable limits. A number of parameters were included in the analysis: pH, fecal coliform, total coliform, total dissolved solids, turbidity, NH3–N, lead, BOD5, and so forth. The study reveals that the overall quality of water is quite satisfactory as per Bangladesh standards. RWH system offers sufficient amount of water and energy savings through lower consumption. Moreover, considering the cost for installation and maintenance expenses, the system is effective and economical.

  16. A Study on Rational Pricing System for Water Supply

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    Reasonable pricing of water can induce optimal water use by the public by relaying the considerable costs of water provision and plays an important role of providing a basic scheme for the reasonable management of water. This study provides a reasonable pricing scheme of water that reflects the economic and social values of water as a resource by investigating reasonable bulk-water pricing and retail-water pricing. For bulk pricing, the study discuss the range of costs to be covered, design of efficient pricing structures(differentiated by source quality, loss ratios and time year), and sharing efficient costs between beneficiaries (customer groups and regions). The study also addresses the adjustment of present charging schemes for bulk water such as charges for bulk water from dam, abstraction charges, and river charges etc. Factoring in demand and available resource characteristics, the differentiated pricing mechanism is also investigated. The study proposes a differentiated pricing mechanism based on season, where the pricing structure reflects the cost structure related to fluctuated demand. In addition, implementation methods and effects of introducing seasonal pricing scheme are discussed. Another seasonal pricing mechanism, the seasonally differentiated pricing scheme in bulk pricing reflects a cost structure related to resource availability, is also investigated. Increasing block rate as a reasonable pricing scheme for water conservation, and priority pricing as a tool socially desirable water allocation in the case water shortage are designed. for practical implementation of pricing scheme, several issues are discussed: identification and calculation of costs that should be covered and the structure of costs as a basis of differentiated pricing scheme, issue of forecasting, and practical that could be happen in the implementation of increasing block rate and seasonal pricing schemes, etc. Institutional systems that implement the proposed pricing schemes

  17. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  18. Fungal contaminants in man-made water systems connected to municipal water.

    Science.gov (United States)

    Kadaifciler, Duygu Göksay; Demirel, Rasime

    2018-04-01

    Water-related fungi are known to cause taste and odor problems, as well as negative health effects, and can lead to water-pipeline clogging. There is no legal regulation on the occurrence of fungi in water environments. However, much research has been performed, but further studies are needed. The main objectives of this study were to evaluate the fungal load and the presence of mycotoxigenic fungi in man-made water systems (for homes, hospitals, and shopping centers) connected to municipal water in Istanbul, Turkey. The mean fungal concentrations found in the different water samples were 98 colony-forming units (CFU)/100 mL in shopping centers, 51 CFU/100 mL in hospitals, and 23 CFU/100 mL in homes. The dominant fungal species were identified as Aureobasidium pullulans and Fusarium oxysporum. Aflatoxigenic Aspergillus flavus and ochratoxigenic Aspergillus westerdijkiae were only detected in the hospital water samples. Alternaria alternata, Aspergillus clavatus, Aspergillus fumigatus, and Cladosporium cladosporioides were also detected in the samples. The study reveals that the municipal water supplies, available for different purposes, could thus contain mycotoxigenic fungi. It was concluded that current disinfection procedures may be insufficient, and the presence of the above-mentioned fungi is important for people with suppressed immune systems.

  19. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Monitoring water supply systems for anomaly detection and response

    NARCIS (Netherlands)

    Bakker, M.; Lapikas, T.; Tangena, B.H.; Vreeburg, J.H.G.

    2012-01-01

    Water supply systems are vulnerable to damage caused by unintended or intended human actions, or due to aging of the system. In order to minimize the damages and the inconvenience for the customers, a software tool was developed to detect anomalies at an early stage, and to support the responsible