WorldWideScience

Sample records for subgenomic replicon rna

  1. Persistent replication of the GBV-C subgenomic replicons in Huh7 cells.

    Science.gov (United States)

    Cao, Ming-Mei; Ren, Hao; Zhao, Ping; Pan, Wei; Chen, Qiu-Li; Qi, Zhong-Tian

    2009-05-01

    Studies of GB virus type C (GBV-C) replication in vitro have been limited because of poor growth of GBV-C in cell culture. In order to address the infection of GBV-C, two GBV-C subgenomic replicons (GBCrepEGFP and GBCrepTNF) were developed from a GBV-C full-length genomic cDNA. The viral replication, protein expression and the production of virus-like particles were evaluated in human hepatoma cell line Huh7. The results showed that the established GBCrepEGFP and GBCrepTNF replicons could be replicated autonomously and expressed in cell culture for at least 2 months and 1 month respectively. The replicon RNA could assemble RNA-containing structures in the HuhEH cells expressing GBV-C structural proteins. It suggests that a cell line supporting the replication of GBV-C was established. This replicon system might be used to understand better the biology of GBV-C.

  2. Dual Roles of Two Isoforms of Autophagy-related Gene ATG10 in HCV-Subgenomic replicon Mediated Autophagy Flux and Innate Immunity.

    Science.gov (United States)

    Zhao, Qiong; Hu, Zhan-Ying; Zhang, Jing-Pu; Jiang, Jian-Dong; Ma, Yuan-Yuan; Li, Jian-Rui; Peng, Zong-Gen; Chen, Jin-Hua

    2017-09-12

    Autophagy and immune response are two defense systems that human-body uses against viral infection. Previous studies documented that some viral mechanisms circumvented host immunity mechanisms and hijacked autophagy for its replication and survival. Here, we focus on interactions between autophagy mechanism and innate-immune-response in HCV-subgenomic replicon cells to find a mechanism linking the two pathways. We report distinct effects of two autophagy-related protein ATG10s on HCV-subgenomic replication. ATG10, a canonical long isoform in autophagy process, can facilitate HCV-subgenomic replicon amplification by promoting autophagosome formation and by combining with and detaining autophagosomes in cellular periphery, causing impaired autophagy flux. ATG10S, a non-canonical short isoform of ATG10 proteins, can activate expression of IL28A/B and immunity genes related to viral ds-RNA including ddx-58, tlr-3, tlr-7, irf-3 and irf-7, and promote autophagolysosome formation by directly combining and driving autophagosomes to perinuclear region where lysosomes gather, leading to lysosomal degradation of HCV-subgenomic replicon in HepG2 cells. ATG10S also can suppress infectious HCV virion replication in Huh7.5 cells. Another finding is that IL28A protein directly conjugates ATG10S and helps autophagosome docking to lysosomes. ATG10S might be a new host factor against HCV replication, and as a target for screening chemicals with new anti-virus mechanisms.

  3. Replicon RNA Viral Vectors as Vaccines

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2016-11-01

    Full Text Available Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.

  4. RNA Replicons - A New Approach for Influenza Virus Immunoprophylaxis

    Directory of Open Access Journals (Sweden)

    Gert Zimmer

    2010-01-01

    Full Text Available RNA replicons are derived from either positive- or negative-strand RNA viruses. They represent disabled virus vectors that are not only avirulent, but also unable to revert to virulence. Due to autonomous RNA replication, RNA replicons are able to drive high level, cytosolic expression of recombinant antigens stimulating both the humoral and the cellular branch of the immune system. This review provides an update on the available literature covering influenza virus vaccines based on RNA replicons. The pros and cons of these vaccine strategies will be discussed and future perspectives disclosed.

  5. Model-driven engineering of gene expression from RNA replicons.

    Science.gov (United States)

    Beal, Jacob; Wagner, Tyler E; Kitada, Tasuku; Azizgolshani, Odisse; Parker, Jordan Moberg; Densmore, Douglas; Weiss, Ron

    2015-01-16

    RNA replicons are an emerging platform for engineering synthetic biological systems. Replicons self-amplify, can provide persistent high-level expression of proteins even from a small initial dose, and, unlike DNA vectors, pose minimal risk of chromosomal integration. However, no quantitative model sufficient for engineering levels of protein expression from such replicon systems currently exists. Here, we aim to enable the engineering of multigene expression from more than one species of replicon by creating a computational model based on our experimental observations of the expression dynamics in single- and multireplicon systems. To this end, we studied fluorescent protein expression in baby hamster kidney (BHK-21) cells using a replicon derived from Sindbis virus (SINV). We characterized expression dynamics for this platform based on the dose-response of a single species of replicon over 50 h and on a titration of two cotransfected replicons expressing different fluorescent proteins. From this data, we derive a quantitative model of multireplicon expression and validate it by designing a variety of three-replicon systems, with profiles that match desired expression levels. We achieved a mean error of 1.7-fold on a 1000-fold range, thus demonstrating how our model can be applied to precisely control expression levels of each Sindbis replicon species in a system.

  6. Mutual Interference between Genomic RNA Replication and Subgenomic mRNA Transcription in Brome Mosaic Virus

    OpenAIRE

    Grdzelishvili, Valery Z.; Garcia-Ruiz, Hernan; Watanabe, Tokiko; Ahlquist, Paul

    2005-01-01

    Replication by many positive-strand RNA viruses includes genomic RNA amplification and subgenomic mRNA (sgRNA) transcription. For brome mosaic virus (BMV), both processes occur in virus-induced, membrane-associated compartments, require BMV replication factors 1a and 2a, and use negative-strand RNA3 as a template for genomic RNA3 and sgRNA syntheses. To begin elucidating their relations, we examined the interaction of RNA3 replication and sgRNA transcription in Saccharomyces cerevisiae expres...

  7. Discovery of SCH446211 (SCH6): A New Ketoamide Inhibitor of the HCV NS3 Serine Protease and HCV Subgenomic RNA Replication

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, Stephane L.; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond G.; Venkatraman, Srikanth; Pan, Weidong; Parekh, Tajel; Pike, Russel E.; Ruan, Sumei; Liu, Rong; Baroudy, Bahige; Agrawal, Sony; Chase, Robert; Ingravallo, Paul; Pichardo, John; Prongay, Andrew; Brisson, Jean-Marc; Hsieh, Tony Y.; Cheng, Kuo-Chi; Kemp, Scott J.; Levy, Odile E.; Lim-Wilby, Marguerita; Tamura, Susan Y.; Saksena, Anil K.; Girijavallabhan, Viyyoor; Njoroge, F. George (SPRI)

    2008-06-30

    Introduction of various modified prolines at P{sub 2} and optimization of the P{sub 1} side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K*{sub i} = 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC{sub 50} and IC{sub 90} of 40 and 100 nM, respectively. Recently, antiviral activity of 24 was demonstrated with inhibition of the full-length genotype 2a HCV genome. In addition, 24 was found to restore the responsiveness of the interferon regulatory factor 3 (IRF-3) in cells containing HCV RNA replicons.

  8. Discovery of SCH446211 (SCH6): a new ketoamide inhibitor of the HCV NS3 serine protease and HCV subgenomic RNA replication.

    Science.gov (United States)

    Bogen, Stéphane L; Arasappan, Ashok; Bennett, Frank; Chen, Kevin; Jao, Edwin; Liu, Yi-Tsung; Lovey, Raymond G; Venkatraman, Srikanth; Pan, Weidong; Parekh, Tajel; Pike, Russel E; Ruan, Sumei; Liu, Rong; Baroudy, Bahige; Agrawal, Sony; Chase, Robert; Ingravallo, Paul; Pichardo, John; Prongay, Andrew; Brisson, Jean-Marc; Hsieh, Tony Y; Cheng, Kuo-Chi; Kemp, Scott J; Levy, Odile E; Lim-Wilby, Marguerita; Tamura, Susan Y; Saksena, Anil K; Girijavallabhan, Viyyoor; Njoroge, F George

    2006-05-04

    Introduction of various modified prolines at P(2) and optimization of the P(1) side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K(i)*= 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC(50) and IC(90) of 40 and 100 nM, respectively. Recently, antiviral activity of 24 was demonstrated with inhibition of the full-length genotype 2a HCV genome. In addition, 24 was found to restore the responsiveness of the interferon regulatory factor 3 (IRF-3) in cells containing HCV RNA replicons.

  9. Effects of short RNA structural analogues against hepatitis C virus genotypes 2, 3 and 4 in replicon cells.

    Science.gov (United States)

    Elshaffei, Ismail M; Gupta, Nidhi; Wu, Catherine H; Wu, David C; Hammad, Lamiaa N; Abo-Elmatty, Dina M; Mesbah, Noha M; Wu, George Y

    2015-08-01

    To determine whether computer-predicted short RNA structural analogues could inhibit hepatitis C virus (HCV) genotype 2a, 3a and 4a replication in cultured cells. Short RNA sequences, X12, X12a and X12b, designed to be identical in secondary structure to the X region in the 3'-untranslated region (3'-UTR) of the HCV 1b genome, as well as shorter stem-loop components of X region, were inserted into a plasmid and transfected into separate Huh7.5 human hepatoma cells stably transfected with subgenomic replicons for genotypes 2a, 3a and 4a. All replicons included a firefly luciferase reporter gene. After 48 h of plasmid transfection, the inhibition of HCV replication was determined by HCV RNA isolation and quantification by real-time polymerase chain reaction and luciferase assays. All the secondary structural analogues to genotype 1b X region cross-inhibited genotype 2a, 3a and 4a replicons. The maximum inhibition by genotype 1b X region structural analogues was obtained against genotype 2a cells in which X12, X12a and X12b inhibited replication by 30%, 63% and 72%, respectively (P < 0.05 for all), compared to an unrelated hepatitis B viral analogue. Despite substantial sequence dissimilarity, HCV RNA genotype 1b X region analogues cross-inhibited the replication of HCV genotypes 2a, 3a and 4a. Particular conformations and not the sequence of the stem-loops of the X region are involved in HCV replication. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  10. Engineering a CTL-Tailored Replicon RNA Vaccine against PRRSV

    DEFF Research Database (Denmark)

    Welner, Simon; Werder, Simea; Nielsen, Morten

    The development of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) has been hampered by the high mutation rate and the multiple immunoevasive strategies of the virus. With the overall aim of designing a broad coverage vaccine that induces an effective CTL response...... detection in the presence of a proteasome inhibitor. Finally, a vaccination-challenge experiment using 18 SLA-matched pigs is currently being conducted until July 2016 in which a test group and a control group are being vaccinated twice with VRPs expressing PRRSV epitopes and non-sense control epitopes...... will be available for IVIS. This study exemplifies how bioinformatics epitope prediction, recombinant SLA molecules and RNA virus replicon design can be used to engineer a replicating non-propagating vaccine tailored to deliver conserved and immunogenic CTL epitopes....

  11. In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs.

    Science.gov (United States)

    Kamrud, Kurt I; Coffield, V McNeil; Owens, Gary; Goodman, Christin; Alterson, Kim; Custer, Max; Murphy, Michael A; Lewis, Whitney; Timberlake, Sarah; Wansley, Elizabeth K; Berglund, Peter; Smith, Jonathan

    2010-08-01

    Alphavirus-based replicon vector systems (family Togaviridae) have been developed as expression vectors with demonstrated potential in vaccine development against both infectious diseases and cancer. The single-cycle nature of virus-like replicon particles (VRP), generated by supplying the structural proteins from separate replicable helper RNAs, is an attractive safety component of these systems. MicroRNAs (miRNAs) have emerged as important cellular RNA regulation elements. Recently, miRNAs have been employed as a mechanism to attenuate or restrict cellular tropism of replication-competent viruses, such as oncolytic adenoviruses, vesicular stomatitis virus, and picornaviruses as well as nonreplicating lentiviral and adenoviral vectors. Here, we describe the incorporation of miRNA-specific target sequences into replicable alphavirus helper RNAs that are used in trans to provide the structural proteins required for VRP production. VRP were found to be efficiently produced using miRNA-targeted helper RNAs if miRNA-specific inhibitors were introduced into cells during VRP production. In the absence of such inhibitors, cellular miRNAs were capable of downregulating helper RNA replication in vitro. When miRNA targets were incorporated into a replicon RNA, cellular miRNAs were capable of downregulating replicon RNA replication upon delivery of VRP into animals, demonstrating activity in vivo. These data provide the first example of miRNA-specific repression of alphavirus replicon and helper RNA replication and demonstrate the feasibility of miRNA targeting of expression vector helper functions that are provided in trans.

  12. Subgenomic reporter RNA system for detection of alphavirus infection in mosquitoes.

    Directory of Open Access Journals (Sweden)

    J Jordan Steel

    Full Text Available Current methods for detecting real-time alphavirus (Family Togaviridae infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.

  13. Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses

    Directory of Open Access Journals (Sweden)

    Justin A. Roby

    2014-01-01

    Full Text Available Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV, Japanese encephalitis virus (JEV, yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are shown to produce a unique subgenomic flavivirus RNA (sfRNA derived from the 3' untranslated region (UTR. sfRNA is a product of incomplete degradation of genomic RNA by the cell 5'–3' exoribonuclease XRN1 which stalls at highly ordered secondary RNA structures at the beginning of the 3'UTR. Generation of sfRNA results in inhibition of XRN1 activity leading to an increase in stability of many cellular mRNAs. Mutant WNV deficient in sfRNA generation was highly attenuated displaying a marked decrease in cytopathicity in cells and pathogenicity in mice. sfRNA has also been shown to inhibit the antiviral activity of IFN-α/β by yet unknown mechanism and of the RNAi pathway by likely serving as a decoy substrate for Dicer. Thus, sfRNA is involved in modulating multiple cellular pathways to facilitate viral pathogenicity; however the overlying mechanism linking all these multiple functions of sfRNA remains to be elucidated.

  14. Noncoding subgenomic flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by Culex pipiens mosquitoes

    NARCIS (Netherlands)

    Göertz, G.P.; Fros, J.J.; Miesen, P.; Vogels, C.B.F.; Bent, van der M.L.; Geertsema, C.; Koenraadt, C.J.M.; Rij, van R.P.; Oers, van M.M.; Pijlman, G.P.

    2016-01-01

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5=-3= exoribonuclease

  15. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes

    NARCIS (Netherlands)

    Goertz, G.P.; Fros, J.J.; Miesen, P.; Vogels, C.B.F.; Bent, M.L. van der; Geertsema, C.; Koenraadt, C.J.M.; Rij, R.P. van; Oers, M.M. van; Pijlman, G.P.

    2016-01-01

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease

  16. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission.

    Science.gov (United States)

    Pompon, Julien; Manuel, Menchie; Ng, Geok Kee; Wong, Benjamin; Shan, Chao; Manokaran, Gayathri; Soto-Acosta, Ruben; Bradrick, Shelton S; Ooi, Eng Eong; Missé, Dorothée; Shi, Pei-Yong; Garcia-Blanco, Mariano A

    2017-07-01

    Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3' UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3'UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3'UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3'UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts.

  17. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission.

    Directory of Open Access Journals (Sweden)

    Julien Pompon

    2017-07-01

    Full Text Available Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3' UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3'UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3'UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3'UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts.

  18. Analysis of classical swine fever virus RNA replication determinants using replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Fahnøe, Ulrik; Gullberg, Maria

    2013-01-01

    Self-replicating RNAs (replicons), with or without reporter gene sequences, derived from the genome of the Paderborn strain of classical swine fever virus (CSFV) have been produced. The full-length viral cDNA, propagated within a bacterial artificial chromosome (BAC), was modified by targeted...... recombination within E. coli. RNA transcripts were produced in vitro and introduced into cells by electroporation. The translation and replication of the replicon RNAs could be followed by the accumulation of luciferase (from Renilla reniformis or Gaussia princeps) protein expression (where appropriate...

  19. Effects of Modification of the Transcription Initiation Site Context on Citrus Tristeza Virus Subgenomic RNA Synthesis†

    Science.gov (United States)

    Ayllón, María A.; Gowda, Siddarame; Satyanarayana, Tatineni; Karasev, Alexander V.; Adkins, Scott; Mawassi, Munir; Guerri, José; Moreno, Pedro; Dawson, William O.

    2003-01-01

    Citrus tristeza virus (CTV), a member of the Closteroviridae, has a positive-sense RNA genome of about 20 kb organized into 12 open reading frames (ORFs). The last 10 ORFs are expressed through 3′-coterminal subgenomic RNAs (sgRNAs) regulated in both amounts and timing. Additionally, relatively large amounts of complementary sgRNAs are produced. We have been unable to determine whether these sgRNAs are produced by internal promotion from the full-length template minus strand or by transcription from the minus-stranded sgRNAs. Understanding the regulation of 10 sgRNAs is a conceptual challenge. In analyzing commonalities of a replicase complex in producing so many sgRNAs, we examined initiating nucleotides of the sgRNAs. We mapped the 5′ termini of intermediate- (CP and p13) and low- (p18) produced sgRNAs that, like the two highly abundant sgRNAs (p20 and p23) previously mapped, all initiate with an adenylate. We then examined modifications of the initiation site, which has been shown to be useful in defining mechanisms of sgRNA synthesis. Surprisingly, mutation of the initiating nucleotide of the CTV sgRNAs did not prevent sgRNA accumulation. Based on our results, the CTV replication complex appears to initiate sgRNA synthesis with purines, preferably with adenylates, and is able to initiate synthesis using a nucleotide a few positions 5′ or 3′ of the native initiation nucleotide. Furthermore, the context of the initiation site appears to be a regulatory mechanism for levels of sgRNA production. These data do not support either of the established mechanisms for synthesis of sgRNAs, suggesting that CTV sgRNA production utilizes a different mechanism. PMID:12915539

  20. Involvement of a subgenomic mRNA in the generation of a variable population of defective citrus tristeza virus molecules.

    Science.gov (United States)

    Yang, G; Mawassi, M; Gofman, R; Gafny, R; Bar-Joseph, M

    1997-01-01

    The fusion sites between the termini of naturally occurring defective RNAs (D-RNAs) from three citrus tristeza virus (CTV) isolates were sequenced. Seven of eight clones showed a common 3' terminus of 940 nucleotides (nt) fused to 5' termini with different sizes. An extra cytosine nucleotide was found at the junction site of the majority of the common 3' D-RNAs. Molecular analysis of the plus and minus strands of the 0.9-kbp double-stranded RNA, corresponding to the CTV open reading frame 11 subgenomic RNA (sgRNA), showed that they were identical in length and sequence to the common 3' sequence of the D-RNAs. These results imply that viral sgRNA messengers also function as building components for genomic rearrangement and exchange of complete viral genes. PMID:9371649

  1. Accumulation of a 5' proximal subgenomic RNA of Citrus tristeza virus is correlated with encapsidation by the minor coat protein.

    Science.gov (United States)

    Gowda, Siddarame; Tatineni, Satyanarayana; Folimonova, Svetlana Y; Hilf, Mark E; Dawson, William O

    2009-06-20

    During replication, Citrus tristeza virus (CTV) produces large amounts of two unusual subgenomic (sg) RNAs that are positive-stranded and 5' coterminal. Although these RNAs are produced in similar amounts and are similar in size, with LMT1 ( approximately 750 nt) only slightly larger than LMT2 ( approximately 650), we found that the similar sgRNAs are produced differently. We previously showed that the LMT1 RNA is produced by premature termination during genomic RNA synthesis. However, LMT2 production was found to correlate with virion assembly instead of RNA replication. The time course of accumulation of the LMT2 RNA occurred late, coinciding with virion accumulation. The long flexuous virions of CTV contain two coat proteins that encapsidate the virions in a polar manner. The major coat protein encapsidates approximately 97% of the virion, while the minor capsid protein encapsidates the remainder of the genome beginning in the 5' non-translated region with the transition zone at approximately 630 nucleotides from the 5' end. The section of the virion RNA that was encapsidated by CPm was identical in size to the LMT2 RNA, suggesting that the LMT2 RNA represented a portion of the viral RNA protected by CPm encapsidation. Mutations that abrogated encapsidation by CPm also abolished the accumulation of LMT2 RNA. Thus, these two unusual but similar RNAs are produced via different pathways, one from RNA replication and one processed by the virion assembly process. To our knowledge, this represents the first evidence of a viral RNA processed by the assembly mechanism.

  2. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses

    NARCIS (Netherlands)

    Roby, J.A.; Pijlman, G.P.; Wilusz, J.; Khromykh, A.A.

    2014-01-01

    Flaviviruses are a large group of positive strand RNA viruses transmitted by arthropods that include many human pathogens such as West Nile virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus, dengue virus, and tick-borne encephalitis virus. All members in this genus tested so far are

  3. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.

    Science.gov (United States)

    Göertz, G P; Fros, J J; Miesen, P; Vogels, C B F; van der Bent, M L; Geertsema, C; Koenraadt, C J M; van Rij, R P; van Oers, M M; Pijlman, G P

    2016-11-15

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease XRN1/Pacman on conserved RNA structures in the 3' untranslated region (UTR) of the viral genomic RNA. sfRNA production is conserved in insect-specific, mosquito-borne, and tick-borne flaviviruses and flaviviruses with no known vector, suggesting a pivotal role for sfRNA in the flavivirus life cycle. Here, we investigated the function of sfRNA during WNV infection of Culex pipiens mosquitoes and evaluated its role in determining vector competence. An sfRNA1-deficient WNV was generated that displayed growth kinetics similar to those of wild-type WNV in both RNA interference (RNAi)-competent and -compromised mosquito cell lines. Small-RNA deep sequencing of WNV-infected mosquitoes indicated an active small interfering RNA (siRNA)-based antiviral response for both the wild-type and sfRNA1-deficient viruses. Additionally, we provide the first evidence that sfRNA is an RNAi substrate in vivo Two reproducible small-RNA hot spots within the 3' UTR/sfRNA of the wild-type virus mapped to RNA stem-loops SL-III and 3' SL, which stick out of the three-dimensional (3D) sfRNA structure model. Importantly, we demonstrate that sfRNA-deficient WNV displays significantly decreased infection and transmission rates in vivo when administered via the blood meal. Finally, we show that transmission and infection rates are not affected by sfRNA after intrathoracic injection, thereby identifying sfRNA as a key driver to overcome the mosquito midgut infection barrier. This is the first report to describe a key biological function of sfRNA for flavivirus infection of the arthropod vector, providing an explanation for the strict conservation of sfRNA production. Understanding the flavivirus transmission

  4. Cellular expression of a functional nodavirus RNA replicon from vaccinia virus vectors.

    Science.gov (United States)

    Ball, L A

    1992-04-01

    RNA replication provides a powerful means for the amplification of RNA, but to date it has been found to occur naturally only among RNA viruses. In an attempt to harness this process for the amplification of heterologous mRNAs, both an RNA replicase and its corresponding RNA templates have been expressed in functional form, using vaccinia virus-bacteriophage T7 RNA polymerase vectors. Plasmids were constructed which contained in 5'-to-3' order (i) a bacteriophage T7 promoter; (ii) a full-length cDNA encoding either the RNA replicase (RNA 1) or the coat protein (RNA 2) of flock house virus (FHV), (iii) a cDNA sequence that encoded the self-cleaving ribozyme of satellite tobacco ringspot virus, and (iv) a T7 transcriptional terminator. Both in vitro and in vivo, circular plasmids of this structure were transcribed by T7 RNA polymerase to produce RNAs with sizes that closely resembled those of the two authentic FHV genomic RNAs, RNA 1 and RNA 2. In baby hamster kidney cells that expressed authentic FHV RNA replicase, the RNA 2 (coat protein) transcripts were accurately replicated. Moreover, the RNA 1 (replicase) transcripts directed the synthesis of an enzyme that could replicate not only authentic virion-derived FHV RNA but also the plasmid-derived transcripts themselves. Under the latter conditions, replicative amplification of the RNA transcripts ensued and resulted in a high rate of synthesis of the encoded proteins. This successful expression from a DNA vector of the complex biological process of RNA replication will greatly facilitate studies of its mechanism and is a major step towards the goal of harnessing RNA replication for mRNA amplification.

  5. Self-replicating Replicon-RNA Delivery to Dendritic Cells by Chitosan-nanoparticles for Translation In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Kenneth C McCullough

    2014-01-01

    Full Text Available Self-amplifying replicon RNA (RepRNA possesses high potential for increasing antigen load within dendritic cells (DCs. The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs, there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein.

  6. RNA-seq based transcriptome analysis of hepatitis E virus (HEV and hepatitis B virus (HBV replicon transfected Huh-7 cells.

    Directory of Open Access Journals (Sweden)

    Neetu Jagya

    Full Text Available Pathogenesis of hepatitis B virus (HBV and hepatitis E virus (HEV infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line by transfection with HEV replicon only (HEV-only, HBV replicon only (HBV-only and both HBV and HEV replicons (HBV+HEV. Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (p<0.05 or more. Majority of the significant genes with altered expression clustered into immune-associated, signal transduction, and metabolic process categories. Differential gene expression of functionally important genes in these categories was also validated by real-time RT-PCR based relative gene-expression analysis. To our knowledge, this is the first report of in vitro replicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.

  7. Quantitative Proteomics Analysis of the Hepatitis C Virus Replicon High-Permissive and Low-Permissive Cell Lines.

    Directory of Open Access Journals (Sweden)

    Fei Ye

    Full Text Available Chronic hepatitis C virus (HCV infection is one of the leading causes of severe hepatitis. The molecular mechanisms underlying HCV replication and pathogenesis remain unclear. The development of the subgenome replicon model system significantly enhanced study of HCV. However, the permissiveness of the HCV subgenome replicon greatly differs among different hepatoma cell lines. Proteomic analysis of different permissive cell lines might provide new clues in understanding HCV replication. In this study, to detect potential candidates that might account for the differences in HCV replication. Label-free and iTRAQ labeling were used to analyze the differentially expressed protein profiles between Huh7.5.1 wt and HepG2 cells. A total of 4919 proteins were quantified in which 114 proteins were commonly identified as differentially expressed by both quantitative methods. A total of 37 differential proteins were validated by qRT-PCR. The differential expression of Glutathione S-transferase P (GSTP1, Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1, carboxylesterase 1 (CES1, vimentin, Proteasome activator complex subunit1 (PSME1, and Cathepsin B (CTSB were verified by western blot. And over-expression of CTSB or knock-down of vimentin induced significant changes to HCV RNA levels. Additionally, we demonstrated that CTSB was able to inhibit HCV replication and viral protein translation. These results highlight the potential role of CTSB and vimentin in virus replication.

  8. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  9. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Science.gov (United States)

    Halbherr, Stefan J; Brostoff, Terza; Tippenhauer, Merve; Locher, Samira; Berger Rentsch, Marianne; Zimmer, Gert

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  10. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  11. Recombination-ready Sindbis replicon expression vectors for transgene expression

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-10-01

    Full Text Available Abstract Background Sindbis viruses have been widely used as tools to study gene function in cells. Despite the utility of these systems, the construction and production of alphavirus replicons is time consuming and inefficient due to potential additional restriction sites within the insert region and lack of directionality for insert ligation. In this report, we present a system useful for producing recombinant Sindbis replicons that uses lambda phage recombination technology to rapidly and specifically construct replicon expression plasmids that contain insert regions in the desired orientation. Results Recombination of the gene of interest with the replicon plasmid resulted in nearly 100% recombinants, each of which contained a correctly orientated insert. Replicons were easily produced in cell culture and packaged into pseudo-infectious viral particles. Insect and mammalian cells infected with pseudo-infectious viral particles expressed various transgenes at high levels. Finally, inserts from persistently replicating replicon RNA were easily isolated and recombined back into entry plasmids for sequencing and subsequent analysis. Conclusion Replication-ready replicon expression plasmids make the use of alphavirus replicons fast and easy as compared to traditional replicon production methods. This system represents a significant step forward in the utility and ease of use of alphavirus replicons in the study of gene function.

  12. Identification of Cis-Acting Elements on Positive-Strand Subgenomic mRNA Required for the Synthesis of Negative-Strand Counterpart in Bovine Coronavirus

    Directory of Open Access Journals (Sweden)

    Po-Yuan Yeh

    2014-07-01

    Full Text Available It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(−-strand] complement. However, the cis-acting elements on the positive-strand [(+-strand] sgmRNA required for (−-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV sgmRNA 7 required for the synthesis of its (−-strand counterpart by deletion mutagenesis. The major findings are as follows. (1 Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (−-strand sgmRNA complement. (2 Deletions of the 3' untranslated region (UTR bulged stem-loop showed no effect on (−-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (−-strand sgmRNA. (3 Nucleotides positioned from −15 to −34 of the sgmRNA 7 3'-terminal region are required for efficient (−-strand sgmRNA synthesis. (4 Nucleotide species at the 3'-most position (−1 of sgmRNA 7 is correlated to the efficiency of (−-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (−-strand sgmRNA synthesis in BCoV.

  13. Epigenetic regulation of subgenome dominance following whole genome triplication in Brassica rapa.

    Science.gov (United States)

    Cheng, Feng; Sun, Chao; Wu, Jian; Schnable, James; Woodhouse, Margaret R; Liang, Jianli; Cai, Chengcheng; Freeling, Michael; Wang, Xiaowu

    2016-07-01

    Subgenome dominance is an important phenomenon observed in allopolyploids after whole genome duplication, in which one subgenome retains more genes as well as contributes more to the higher expressing gene copy of paralogous genes. To dissect the mechanism of subgenome dominance, we systematically investigated the relationships of gene expression, transposable element (TE) distribution and small RNA targeting, relating to the multicopy paralogous genes generated from whole genome triplication in Brassica rapa. The subgenome dominance was found to be regulated by a relatively stable factor established previously, then inherited by and shared among B. rapa varieties. In addition, we found a biased distribution of TEs between flanking regions of paralogous genes. Furthermore, the 24-nt small RNAs target TEs and are negatively correlated to the dominant expression of individual paralogous gene pairs. The biased distribution of TEs among subgenomes and the targeting of 24-nt small RNAs together produce the dominant expression phenomenon at a subgenome scale. Based on these findings, we propose a bucket hypothesis to illustrate subgenome dominance and hybrid vigor. Our findings and hypothesis are valuable for the evolutionary study of polyploids, and may shed light on studies of hybrid vigor, which is common to most species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR)

    DEFF Research Database (Denmark)

    Hornyák, Ákos; Bálint, Ádám; Farsang, Attila

    2012-01-01

    assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from...... uncertain clinical cases were also subjected to the assay. The sensitivity of the P-sg-QPCR method was high, since as few as 10 genome copies of FCoV were detected. The quantitative sg-mRNA detection method revealed more than 10–50,000 times increase of the M gene sg-mRNA in organ materials of feline...... infectious peritonitis cases, compared to those of the enteric FCoV variants present in the faeces of normal, healthy cats. These results indicate the applicability of the new P-sg-QPCR test as a powerful novel tool for the better detection and quantitation of FCoV and for the improved diagnosis of feline...

  15. Modulation of GB Virus B RNA Abundance by MicroRNA-122: Dependence on and Escape from MicroRNA-122 Restriction

    Science.gov (United States)

    Sarnow, Peter

    2013-01-01

    Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was discovered that the 5′-terminal sequences of GBV-B RNA, like HCV RNA, forms an Argonaute 2-mediated complex with two miR-122 molecules that are essential for accumulation of GBV-B subgenomic replicon RNA. However, sequences in miR-122 that anneal to each viral RNA genome were different, suggesting distinct overall structural features in HCV:miR-122 and GBV-B:miR-122 complexes. Surprisingly, a deletion that removed both miR-122 binding sites from the subgenomic GBV-B RNAs rendered viral RNA amplification independent from miR-122 and Argonaute 2. This finding suggests that structural features at the end of the viral genome dictate whether miR-122 is required to aid in maintaining viral RNA abundance. PMID:23616647

  16. SH2 modified STAT1 induces HLA-I expression and improves IFN-γ signaling in IFN-α resistant HCV replicon cells.

    Directory of Open Access Journals (Sweden)

    Bret Poat

    2010-09-01

    Full Text Available We have developed multiple stable cell lines containing subgenomic HCV RNA that are resistant to treatment with interferon alpha (IFN-α. Characterization of these IFN-α resistant replicon cells showed defects in the phosphorylation and nuclear translocation of STAT1 and STAT2 proteins due to a defective Jak-STAT pathway.In this study, we have developed an alternative strategy to overcome interferon resistance in a cell culture model by improving intracellular STAT1 signaling. An engineered STAT1-CC molecule with double cysteine substitutions in the Src-homology 2 (SH2 domains of STAT1 (at Ala-656 and Asn-658 efficiently phosphorylates and translocates to the nucleus of IFN-resistant cells in an IFN-γ dependent manner. Transfection of a plasmid clone containing STAT1-CC significantly activated the GAS promoter compared to wild type STAT1 and STAT3. The activity of the engineered STAT1-CC is dependent upon the phosphorylation of tyrosine residue 701, since the construct with a substituted phenylalanine residue at position 701 (STAT1-CC-Y701F failed to activate GAS promoter in the replicon cells. Intracellular expression of STAT1-CC protein showed phosphorylation and nuclear translocation in the resistant cell line after IFN-γ treatment. Transient transfection of STAT1-CC plasmid clone into an interferon resistant cell line resulted in inhibition of viral replication and viral clearance in an IFN-γ dependent manner. Furthermore, the resistant replicon cells transfected with STAT1-CC constructs significantly up regulated surface HLA-1 expression when compared to the wild type and Y to F mutant controls.These results suggest that modification of the SH2 domain of the STAT1 molecule allows for improved IFN-γ signaling through increased STAT1 phosphorylation, nuclear translocation, HLA-1 surface expression, and prolonged interferon antiviral gene activation.

  17. Anti-HCV RNA Aptamers Targeting the Genomic cis-Acting Replication Element

    Directory of Open Access Journals (Sweden)

    Alfredo Berzal-Herranz

    2011-12-01

    Full Text Available Hepatitis C virus (HCV replication is dependent on the existence of several highly conserved functional genomic RNA domains. The cis-acting replication element (CRE, located within the 3' end of the NS5B coding region of the HCV genome, has been shown essential for efficient viral replication. Its sequence and structural features determine its involvement in functional interactions with viral RNA-dependent RNA polymerase and distant RNA domains of the viral genome. This work reports the use of an in vitro selection strategy to select aptamer RNA molecules against the complete HCV-CRE. After six selection cycles, five potential target sites were identified within this domain. Inhibition assays using a sample of representative aptamers showed that the selected RNAs significantly inhibit the replication (>80% of a subgenomic HCV replicon in Huh-7 cell cultures. These results highlight the potential of aptamer RNA molecules as therapeutic antiviral agents.

  18. Chromosomal replicons of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.

    1987-03-16

    This brief discussion of replicons of higher plants offers a glimpse into the properties of chromosomal DNA replication. It gives evidence that the S phase of unrelated plant species is comprised of temporally ordered replicon families that increase in number with genome size. This orderly process, which assures a normal inheritance of genetic material to recipient daughter cells, is maintained at the level of replicon clusters by two mutually exclusive mechanisms, one involving the rate at which single replicons replicate their allotment of DNA, and another by means of the tempo-pause. The same two mechanisms are used by cells to alter the pattern of chromosomal DNA replication just prior to and during normal development. Both mechanisms are genetically determined and produce genetic effects when disturbed of disrupted by additional non-conforming DNAs. Further insight into how these two mechanisms operate requires more molecular information about the nature of replicons and the factors that govern when a replicon family replicates. Plant material is a rich and ideal source for this information just awaiting exploitation. 63 refs.

  19. Plasmid Replicons from Pseudomonas Are Natural Chimeras of Functional, Exchangeable Modules

    Science.gov (United States)

    Bardaji, Leire; Añorga, Maite; Ruiz-Masó, José A.; del Solar, Gloria; Murillo, Jesús

    2017-01-01

    Plasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from Pseudomonas syringae pv. savastanoi, which appears to be a natural chimera between the gene encoding a newly described replication protein and a putative replication control region present in the widespread family of PFP virulence plasmids. We present extensive evidence of this type of chimerism in structurally similar replicons from species of Pseudomonas, including environmental bacteria as well as plant, animal and human pathogens. We establish that these replicons consist of two functional modules corresponding to putative control (REx-C module) and replication (REx-R module) regions. These modules are functionally separable, do not show specificity for each other, and are dynamically exchanged among replicons of four distinct plasmid families. Only the REx-C module displays strong incompatibility, which is overcome by a few nucleotide changes clustered in a stem-and-loop structure of a putative antisense RNA. Additionally, a REx-C module from pPsv48C conferred replication ability to a non-replicative chromosomal DNA region containing features associated to replicons. Thus, the organization of plasmid replicons as independent and exchangeable functional modules is likely facilitating rapid replicon evolution, fostering their diversification and survival, besides allowing the potential co-option of appropriate genes into novel replicons and the artificial construction of new replicon specificities. PMID:28243228

  20. Interference of hepatitis C virus RNA replication by short interfering RNAs

    Science.gov (United States)

    Kapadia, Sharookh B.; Brideau-Andersen, Amy; Chisari, Francis V.

    2003-02-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, which can lead to the development of liver cirrhosis and hepatocellular carcinoma. Current therapy of patients with chronic HCV infection includes treatment with IFN in combination with ribavirin. Because most treated patients do not resolve the infection, alternative treatment is essential. RNA interference (RNAi) is a recently discovered antiviral mechanism present in plants and animals that induces double-stranded RNA degradation. Using a selectable subgenomic HCV replicon cell culture system, we have shown that RNAi can specifically inhibit HCV RNA replication and protein expression in Huh-7 cells that stably replicate the HCV genome, and that this antiviral effect is independent of IFN. These results suggest that RNAi may represent a new approach for the treatment of persistent HCV infection.

  1. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5' untranslated region of hepatitis C virus RNA.

    Science.gov (United States)

    Biegel, Jason M; Henderson, Eric; Cox, Erica M; Bonenfant, Gaston; Netzband, Rachel; Kahn, Samantha; Eager, Rachel; Pager, Cara T

    2017-07-01

    Hepatitis C virus (HCV) subverts the cellular DEAD-box RNA helicase DDX6 to promote virus infection. Using polysome gradient analysis and the subgenomic HCV Renilla reporter replicon genome, we determined that DDX6 does not affect HCV translation. Rather expression of the subgenomic HCV Renilla luciferase reporter at late times, as well as labeling of newly synthesized viral RNA with 4-thiouridine showed that DDX6 modulates replication. Because DDX6 is an effector protein of the microRNA pathway, we also investigated its role in miR-122-directed HCV gene expression. Similar to sequestering miR-122, depletion of DDX6 modulated HCV RNA stability. Interestingly, miR-122-HCV RNA interaction assays with mutant HCV genomes sites and compensatory exogenous miR-122 showed that DDX6 affects the function of miR-122 at one particular binding site. We propose that DDX6 facilitates the miR-122 interaction with HCV 5' UTR, which is necessary for stabilizing the viral genome and the switch between translation and replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Classical Swine Fever Virus-Rluc Replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Belsham, Graham J.; Rasmussen, Thomas Bruun

    Classical swine fever virus (CSFV) is the etiologic agent of the severe porcine disease, classical swine fever. Unraveling the molecular determinants of efficient replication is crucial for gaining proper knowledge of the pathogenic traits of this virus. Monitoring the replication competence with...... type CSFV-Paderborn strain, as judged by qRT-PCR, was picked as the candidate and could potentially be useful as a tool for further downstream applications including investigation of CSFV non-structural proteins involvement in viral replication....... cells can be achieved using autonomously replicating genome constructs (replicons) containing a reporter gene that expresses a readily quantifiable enzyme. Here, a newly implemented cloning technique was applied to genome modification of the full-length CSFV cDNA previously inserted into a single......-copy bacterial artificial chromosome (BAC). This technique, the Red/ET counter-selection method, is based upon homologous recombination, thus obviating the need for internal restriction sites. Several CSFV replicons with deletions in regions encoding structural viral proteins considered non-essential for RNA...

  3. Transcription Strategy in a Closterovirus: a Novel 5′-Proximal Controller Element of Citrus Tristeza Virus Produces 5′- and 3′-Terminal Subgenomic RNAs and Differs from 3′ Open Reading Frame Controller Elements†

    Science.gov (United States)

    Gowda, Siddarame; Ayllón, María A.; Satyanarayana, Tatineni; Bar-Joseph, Moshe; Dawson, William O.

    2003-01-01

    Citrus tristeza virus (CTV) produces more than thirty 3′- or 5′-terminal subgenomic RNAs (sgRNAs) that accumulate to various extents during replication in protoplasts and plants. Among the most unusual species are two abundant populations of small 5′-terminal sgRNAs of approximately 800 nucleotides (nt) termed low-molecular-weight tristeza (LMT1 and LMT2) RNAs. Remarkably, CTV replicons with all 10 3′ genes deleted produce only the larger LMT1 RNAs. These 5′-terminal positive-sense sgRNAs do not have corresponding negative strands and were hypothesized to be produced by premature termination during plus-strand genomic RNA synthesis. We characterized a cis-acting element that controls the production of the LMT1 RNAs. Since manipulation of this cis-acting element in its native position (the L-ProI region of replicase) was not possible because the mutations negatively affect replication, a region (5′TR) surrounding the putative termination sites (nt ∼550 to 1000) was duplicated in the 3′ end of a CTV replicon to allow characterization. The duplicated sequence continued to produce a 5′-terminal plus-strand sgRNA, here much larger (∼11 kb), apparently by termination. Surprisingly, a new 3′-terminal sgRNA was observed from the duplicated 5′TR. A large 3′-terminal sgRNA resulting from the putative promoter activity of the native 5′TR was not observed, possibly because of the down-regulation of a promoter ∼19 kb from the 3′ terminus. However, we were able to observe a sgRNA produced from the native 5′TR of a small defective RNA, which placed the native 5′TR closer to the 3′ terminus, demonstrating sgRNA promoter activity of the native 5′TR. Deletion mutagenesis mapped the promoter and the terminator activities of the 5′TR (in the 3′ position in the CTV replicon) to a 57-nt region, which was folded by the MFOLD computer program into two stem-loops. Mutations in the putative stem-loop structures equally reduced or prevented

  4. Veterinary Replicon Vaccines

    NARCIS (Netherlands)

    Hikke, Mia C.; Pijlman, Gorben P.

    2017-01-01

    Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have

  5. Synthesis of subgenomic mRNAs of mouse hepatitis virus is initiated independently: Evidence from UV transcription mapping

    NARCIS (Netherlands)

    Horzinek, M.C.; Jacobs, L.; Spaan, W.J.M.; Zeijst, B.A.M. van der

    1981-01-01

    The target sizes of the templates for the synthesis of the genome-sized RNA and the six subgenomic RNAs found in cells infected with mouse hepatitis virus strain A59 were determined by UV transcription mapping. Infected Sac(-) cells were irradiated at 6 h postinfection, the time when virus-specific

  6. All subgenomic mRNAs of equine arteritis virus contain a common leader sequence.

    OpenAIRE

    de Vries, A A; Chirnside, E D; Bredenbeek, P J; Gravestein, L A; Horzinek, M C; Spaan, W J

    1990-01-01

    During the replication of equine arteritis virus (EAV) six subgenomic mRNAs are synthesized. We present evidence that the viral mRNAs form a 3'-coterminal nested set and contain a common leader sequence of 208 nucleotides which is encoded by the 5'-end of the genome. The leader is joined to the bodies of mRNA 5 and 6 at positions defined by the sequence 5' UCAAC 3'. The part of the leader sequence flanking the UCAAC motif is very similar to the 5'-splice site of the Tetrahymena pre-rRNA. A po...

  7. The VSV polymerase can initiate at mRNA start sites located either up or downstream of a transcription termination signal but size of the intervening intergenic region affects efficiency of initiation.

    Science.gov (United States)

    Barr, J N; Tang, Xiaoling; Hinzman, Edward; Shen, Ruizhong; Wertz, Gail W

    2008-05-10

    Transcription by the vesicular stomatitis virus (VSV) polymerase has been characterized as obligatorily sequential with transcription of each downstream gene dependent on termination of the gene immediately upstream. In studies described here we investigated the ability of the VSV RNA-dependent RNA polymerase (RdRp) to access mRNA initiation sites located at increasing distances either downstream or upstream of a transcription termination signal. Bi-cistronic subgenomic replicons were constructed containing progressively extended intergenic regions preceding the initiation site of a downstream gene. The ability of the RdRp to access the downstream sites was progressively reduced as the length of the intergenic region increased. Alternatively, bi-cistronic replicons were constructed containing an mRNA start signal located at increasing distances upstream of a termination site. Analysis of transcription of these "overlapped" genes showed that for an upstream mRNA start site to be recognized it had to contain not only the canonical 3'-UUGUCnnUAG-5' gene start signal, but that signal needed also to be preceded by a U7 tract. Access of these upstream mRNA initiation sites by the VSV RdRp was proportionately reduced with increasing distance between the termination site and the overlapped initiation signal. Possible mechanisms for how the RdRp accesses these upstream start sites are discussed.

  8. Monitoring the determinants of efficient viral replication using Classical Swine Fever Virus-reporter replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Everett, Helen; Crooke, Helen

    2012-01-01

    of the CSFV genome within cells can be achieved using autonomously replicating constructs (replicons) containing a reporter gene that expresses a readily quantifiable enzyme. Here, a newly implemented cloning technique was applied to genome modification of the fulllength CSFV cDNA previously inserted...... into a single-copy bacterial artificial chromosome (BAC). This technique, the Red/ET counter-selection method, is based upon homologous recombination, thus obviating the need for internal restriction sites or complex cloning strategies. Several CSFV replicons with deletions in regions encoding virus structural...... proteins considered non-essential for RNA replication were constructed and these deletions were replaced with an in-frame insertion of the Renilla luciferase (Rluc) sequence. RNA transcripts from these replicons should be translated as a single functional open reading frame. Full-genome cDNAs (~10-12,3 kb...

  9. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells

    DEFF Research Database (Denmark)

    Saeed, Mohsan; Scheel, Troels K H; Gottwein, Judith M

    2012-01-01

    to express a chimeric fusion protein of firefly luciferase and neomycin phosphotransferase to yield stable replicon-expressing cells. Using these constructs, the inhibitory effects of beta interferon (IFN-β), an NS3 protease inhibitor, and an NS5B nucleoside polymerase inhibitor were readily detected...... culture adaptive mutations originally reported for genotype 1b replicons. RNA replication was confirmed by quantitative reverse transcription-PCR and detection of viral protein. Sequencing of multiple independent replicon clones revealed the presence of additional nonsynonymous mutations. Interestingly......, all potentially adaptive mutations mapped to the NS3 protein. These mutations, when introduced back into original constructs, substantially increased colony formation efficiency. To make these replicons useful for high-throughput screening and evaluation of antiviral compounds, they were modified...

  10. The subgenomic promoter of brome mosaic virus folds into a stem-loop structure capped by a pseudo-triloop that is structurally similar to the triloop of the genomic promoter

    DEFF Research Database (Denmark)

    Skov, J.; Gaudin, M.; Podbevsek, P.

    2012-01-01

    In brome mosaic virus, both the replication of the genomic (+)-RNA strands and the transcription of the subgenomic RNA are carried out by the viral replicase. The production of (-)-RNA strands is dependent on the formation of an AUA triloop in the stem-loop C (SLC) hairpin in the 3'-untranslated...

  11. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour.

    Science.gov (United States)

    Herd, Karen A; Harvey, Tracey; Khromykh, Alexander A; Tindle, Robert W

    2004-02-20

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses.

  12. A Viral mRNA Motif at the 3′-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution

    Science.gov (United States)

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2016-01-01

    Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3′ untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3′-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5′-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3′-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range. PMID:26755446

  13. A Viral mRNA Motif at the 3'-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution.

    Science.gov (United States)

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2016-01-12

    Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3' untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3'-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5'-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3'-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range.

  14. Transcriptional strategy of closteroviruses: mapping the 5' termini of the citrus tristeza virus subgenomic RNAs.

    Science.gov (United States)

    Karasev, A V; Hilf, M E; Garnsey, S M; Dawson, W O

    1997-01-01

    Citrus tristeza virus (CTV) induces formation of a nested set of at least nine 3' coterminal subgenomic RNAs (sgRNAs) in infected tissue. The organization and expression of the 19,296-nucleotide (nt) CTV genome resembles that of coronaviruses, with polyprotein processing, translational frameshifting, and multiple sgRNA formation, but phylogenetically the CTV polymerase, like polymerases of other closteroviruses, belongs to the Sindbis virus-like lineage of RNA virus polymerases. Both positive-strand RNA virus supergroups, coronaviruses and Sindbis-like viruses, utilize different mechanisms of transcription. To address the mechanism of CTV transcription, 5' termini for the two most abundant sgRNAs, 1.5 and 0.9 kb, respectively, were mapped by runoff reverse transcription. The two sgRNAs were demonstrated to have 48- and 38-nt 5' untranslated regions (5'-UTRs), respectively. The 5'-UTR for the 1.5-kb RNA was cloned, sequenced, and demonstrated to be colinear with the 48-nt genomic sequence upstream of the initiator codon of the respective open reading frame 10, i.e., to be of continuous template origin. The data obtained suggest that the sgRNA transcription of CTV is dissimilar from the coronavirus transcription and consistent with the transcriptional mechanism of other Sindbis-like viruses. Thus, the Sindbis virus-like mechanism of transcription of the positive-strand RNA genomes might be successfully utilized by the closterovirus genome of up to 19.3 kb with multiple sgRNAs. PMID:9223524

  15. Reduced expression of Jak-1 and Tyk-2 proteins leads to interferon resistance in Hepatitis C virus replicon

    Directory of Open Access Journals (Sweden)

    Luftig Ronald

    2007-09-01

    Full Text Available Abstract Background Alpha interferon in combination with ribavirin is the standard therapy for hepatitis C virus infection. Unfortunately, a significant number of patients fail to eradicate their infection with this regimen. The mechanisms of IFN-resistance are unclear. The aim of this study was to determine the contribution of host cell factors to the mechanisms of interferon resistance using replicon cell lines. Results HCV replicons with high and low activation of the IFN-promoter were cultured for a prolonged period of time in the presence of interferon-alpha (IFN-alpha2b. Stable replicon cell lines with resistant phenotype were isolated and characterized by their ability to continue viral replication in the presence of IFN-alpha. Interferon resistant cell colonies developed only in replicons having lower activation of the IFN promoter and no resistant colonies arose from replicons that exhibit higher activation of the IFN promoter. Individual cell clones were isolated and nine IFN resistant cell lines were established. HCV RNA and protein levels in these cells were not altered by IFN- alpha2b. Reduced signaling and IFN-resistant phenotype was found in all Huh-7 cell lines even after eliminating HCV, suggesting that cellular factors are involved. Resistant phenotype in the replicons is not due to lack of interferon receptor expression. All the cell lines show defect in the JAK-STAT signaling and phosphorylation of STAT 1 and STAT 2 proteins were strongly inhibited due to reduced expression of Tyk2 and Jak-1 protein. Conclusion This in vitro study provides evidence that altered expression of the Jak-Stat signaling proteins can cause IFN resistance using HCV replicon cell clones.

  16. Novel perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C virus and hepatitis A virus RNA replication.

    Science.gov (United States)

    Esser-Nobis, Katharina; Harak, Christian; Schult, Philipp; Kusov, Yuri; Lohmann, Volker

    2015-08-01

    Hepatitis A virus (HAV) and hepatitis C virus (HCV) are two positive-strand RNA viruses sharing a similar biology, but causing opposing infection outcomes, with HAV always being cleared and HCV establishing persistence in the majority of infections. To gain deeper insight into determinants of replication, persistence, and treatment, we established a homogenous cell-culture model allowing a thorough comparison of RNA replication of both viruses. By screening different human liver-derived cell lines with subgenomic reporter replicons of HAV as well as of different HCV genotypes, we found that Huh7-Lunet cells supported HAV- and HCV-RNA replication with similar efficiency and limited interference between both replicases. HAV and HCV replicons were similarly sensitive to interferon (IFN), but differed in their ability to establish persistent replication in cell culture. In contrast to HCV, HAV replicated independently from microRNA-122 and phosphatidylinositol 4-kinase IIIα and β (PI4KIII). Both viruses were efficiently inhibited by cyclosporin A and NIM811, a nonimmunosuppressive analog thereof, suggesting an overlapping dependency on cyclophilins for replication. However, analysis of a broader set of inhibitors revealed that, in contrast to HCV, HAV does not depend on cyclophilin A, but rather on adenosine-triphosphate-binding cassette transporters and FK506-binding proteins. Finally, silibinin, but not its modified intravenous formulation, efficiently inhibited HAV genome replication in vitro, suggesting oral silibinin as a potential therapeutic option for HAV infections. We established a cell-culture model enabling comparative studies on RNA replication of HAV and HCV in a homogenous cellular background with comparable replication efficiency. We thereby identified new host cell targets and potential treatment options for HAV and set the ground for future studies to unravel determinants of clearance and persistence. © 2015 by the American Association for the

  17. Transfer of tetracycline resistance gene (tetr) between replicons in ...

    African Journals Online (AJOL)

    Transfer of tetracycline resistance gene (tetr) between replicons in some enteric bacteria of diarrhoeal origin from some hospitals in South-South, Nigeria. ... Attempt was made to transfer the tetr gene from one replicon to the other within the same species and from one genus to the other. The rate of intra-species transfer of ...

  18. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays.

    Directory of Open Access Journals (Sweden)

    Leena Pohjala

    Full Text Available Chikungunya virus (CHIKV, an alphavirus, has recently caused epidemic outbreaks and is therefore considered a re-emerging pathogen for which no effective treatment is available. In this study, a CHIKV replicon containing the virus replicase proteins together with puromycin acetyltransferase, EGFP and Renilla luciferase marker genes was constructed. The replicon was transfected into BHK cells to yield a stable cell line. A non-cytopathic phenotype was achieved by a Pro718 to Gly substitution and a five amino acid insertion within non-structural protein 2 (nsP2, obtained through selection for stable growth. Characterization of the replicon cell line by Northern blotting analysis revealed reduced levels of viral RNA synthesis. The CHIKV replicon cell line was validated for antiviral screening in 96-well format and used for a focused screen of 356 compounds (natural compounds and clinically approved drugs. The 5,7-dihydroxyflavones apigenin, chrysin, naringenin and silybin were found to suppress activities of EGFP and Rluc marker genes expressed by the CHIKV replicon. In a concomitant screen against Semliki Forest virus (SFV, their anti-alphaviral activity was confirmed and several additional inhibitors of SFV with IC₅₀ values between 0.4 and 24 µM were identified. Chlorpromazine and five other compounds with a 10H-phenothiazinyl structure were shown to inhibit SFV entry using a novel entry assay based on a temperature-sensitive SFV mutant. These compounds also reduced SFV and Sindbis virus-induced cytopathic effect and inhibited SFV virion production in virus yield experiments. Finally, antiviral effects of selected compounds were confirmed using infectious CHIKV. In summary, the presented approach for discovering alphaviral inhibitors enabled us to identify potential lead structures for the development of alphavirus entry and replication phase inhibitors as well as demonstrated the usefulness of CHIKV replicon and SFV as biosafe surrogate

  19. Packaging of HCV-RNA into lentiviral vector

    Energy Technology Data Exchange (ETDEWEB)

    Caval, Vincent [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Piver, Eric [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France); Ivanyi-Nagy, Roland; Darlix, Jean-Luc [LaboRetro, ENS-Lyon INSERM, U758, 46 Allee d' Italie, 69364 Lyon (France); Pages, Jean-Christophe, E-mail: jean-christophe.pages@univ-tours.fr [INSERM U966, Universite Francois Rabelais de Tours, Faculte de Medecine, 10 Bd. Tonnelle, 37000 Tours (France); Service de Biochimie et Biologie Moleculaire, CHRU de Tours (France)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Description of HCV-RNA Core-D1 interactions. Black-Right-Pointing-Pointer In vivo evaluation of the packaging of HCV genome. Black-Right-Pointing-Pointer Determination of the role of the three basic sub-domains of D1. Black-Right-Pointing-Pointer Heterologous system involving HIV-1 vector particles to mobilise HCV genome. Black-Right-Pointing-Pointer Full length mobilisation of HCV genome and HCV-receptor-independent entry. -- Abstract: The advent of infectious molecular clones of Hepatitis C virus (HCV) has unlocked the understanding of HCV life cycle. However, packaging of the genomic RNA, which is crucial to generate infectious viral particles, remains poorly understood. Molecular interactions of the domain 1 (D1) of HCV Core protein and HCV RNA have been described in vitro. Since compaction of genetic information within HCV genome has hampered conventional mutational approach to study packaging in vivo, we developed a novel heterologous system to evaluate the interactions between HCV RNA and Core D1. For this, we took advantage of the recruitment of Vpr fusion-proteins into HIV-1 particles. By fusing HCV Core D1 to Vpr we were able to package and transfer a HCV subgenomic replicon into a HIV-1 based lentiviral vector. We next examined how deletion mutants of basic sub-domains of Core D1 influenced HCV RNA recruitment. The results emphasized the crucial role of the first and third basic regions of D1 in packaging. Interestingly, the system described here allowed us to mobilise full-length JFH1 genome in CD81 defective cells, which are normally refractory to HCV infection. This finding paves the way to an evaluation of the replication capability of HCV in various cell types.

  20. Development of dengue virus replicons expressing HIV-1 gp120 and other heterologous genes: a potential future tool for dual vaccination against dengue virus and HIV

    Directory of Open Access Journals (Sweden)

    Dayton Andrew I

    2001-11-01

    Full Text Available Abstract Background Toward the goals of providing an additional vector to add to the armamentarium available to HIV vaccinologists and of creating a bivalent vaccine effective against dengue virus and HIV, we have attempted to create vectors which express dengue virus non-structural proteins and HIV immunogens. Previously we reported the successful construction of dengue virus replicons which lack structural genes necessary for virion release and spreading infection in culture but which can replicate intracellularly and abundantly produce dengue non-structural proteins. Here we attempted to express heterologous genetic material from these replicons. Results We cloned into a Δpre-M/E dengue virus replicon genes for either green fluorescent protein (GFP, HIV gp160 or HIV gp120 and tested the ability of these constructs to express dengue virus proteins as well as the heterologous proteins in tissue culture after transfection of replicon RNA. Conclusions Heterologous proteins were readily expressed from these constructs. GFP and gp120 demonstrated minimal or no toxicity. Gp160 expressing replicons were found to express proteins abundantly at 36 hours post transfection, but after 50 hrs of transfection, few replicon positive cells could be found despite the presence of cellular debris positive for replicon proteins. This suggested that gp160 expressed from dengue virus replicons is considerably more toxic than either GFP or gp120. The successful expression of heterologous proteins, including HIV gp120 for long periods in culture suggests this vector system may be useful as a vaccine vector, given appropriate delivery methods.

  1. Replication of a hepatitis C virus replicon clone in mouse cells

    Directory of Open Access Journals (Sweden)

    Chisari Francis V

    2006-10-01

    Full Text Available Abstract Background Hepatitis C Virus (HCV is a significant public health burden and small animal models are needed to study the pathology and immunobiology of the virus. In effort to develop experimental HCV mouse models, we screened a panel of HCV replicons to identify clones capable of replicating in mouse hepatocytes. Results We report the establishment of stable HCV replication in mouse hepatocyte and fibroblast cell lines using replicons derived from the JFH-1 genotype 2a consensus sequence. Viral RNA replication efficiency in mouse cells was comparable to that observed in human Huh-7 replicon cells, with negative-strand HCV RNA and the viral NS5A protein being readily detected by Northern and Western Blot analysis, respectively. Although HCV replication was established in the absence of adaptive mutations that might otherwise compromise the in vitro infectivity of the JFH-1 clone, no infectious virus was detected when the culture medium from full length HCV RNA replicating mouse cells was titrated on Huh-7 cells, suggesting that the mouse cells were unable to support production of infectious progeny viral particles. Consistent with an additional block in viral entry, infectious JFH-1 particles produced in Huh-7 cells were not able to establish detectable HCV RNA replication in naïve mouse cells. Conclusion Thus, this report expands the repertoire of HCV replication systems and possibly represents a step toward developing mouse models of HCV replication, but it also highlights that other species restrictions might continue to make the development of a purely murine HCV infectious model challenging.

  2. Extraction of the Constituent Subgenomes of the Natural Allopolyploid Rapeseed (Brassica napus L.).

    Science.gov (United States)

    Zhu, Bin; Tu, Yuqin; Zeng, Pan; Ge, Xianhong; Li, Zaiyun

    2016-11-01

    As the dynamic nature of progenitor genomes accompanies the speciation by interspecific hybridization, the extraction of the constituent subgenome(s) from a natural allopolyploid species of long history and then restitution of the progenitor(s) provides the unique opportunity to study the genome evolution and interplay. Herein, the A subgenome from the allotetraploid oilseed rape (Brassica napus L., AACC) was extracted through inducing the preferential elimination of C-subgenome chromosomes in intertribal crosses and the progenitor B. rapa was restituted (RBR). Then by crossing and backcrossing RBR with B. napus donor, the C subgenome was in situ dissected by adding each of its nine chromosomes to the extracted A subgenome and establishing the whole set of monosonic alien addition lines (MAALs). RBR from spring-type B. napus genotype "Oro" expressed a phenotype resembling some type of B. rapa never observed before, but showed a winter-type flowering habit. This RBR had weaker growth vigor and suffered more seriously from biotic and abiotic stresses compared with Oro. The phenotypes specific for these MAALs showed the location of the related genes on the particular C-subgenome chromosomes. These MAALs exhibited obviously different frequencies in homeologous pairing and transmission of additional C-subgenome chromosomes, which were associated with the distinct degrees of their relatedness, and even with the possible genetic regulation for meiotic pairing evolved in B. napus Finally, large scaffolds undetermined for sequence assembly of B. napus were anchored to specific C-subgenome chromosomes using MAALs. Copyright © 2016 by the Genetics Society of America.

  3. Alphavirus vector-based replicon particles expressing multivalent cross-protective Lassa virus glycoproteins.

    Science.gov (United States)

    Wang, Min; Jokinen, Jenny; Tretyakova, Irina; Pushko, Peter; Lukashevich, Igor S

    2018-01-29

    Lassa virus (LASV) is the most prevalent rodent-borne arenavirus circulated in West Africa. With population at risk from Senegal to Nigeria, LASV causes Lassa fever and is responsible for thousands of deaths annually. High genetic diversity of LASV is one of the challenges for vaccine R&D. We developed multivalent virus-like particle vectors (VLPVs) derived from the human Venezuelan equine encephalitis TC-83 IND vaccine (VEEV) as the next generation of alphavirus-based bicistronic RNA replicon particles. The genes encoding VEEV structural proteins were replaced with LASV glycoproteins (GPC) from distantly related clades I and IV with individual 26S promoters. Bicistronic RNA replicons encoding wild-type LASV GPC (GPCwt) and C-terminally deleted, non-cleavable modified glycoprotein (ΔGPfib), were encapsidated into VLPV particles using VEEV capsid and glycoproteins provided in trans. In transduced cells, VLPVs induced simultaneous expression of LASV GPCwt and ΔGPfib from 26S alphavirus promoters. LASV ΔGPfib was predominantly expressed as trimers, accumulated in the endoplasmic reticulum, induced ER stress and apoptosis promoting antigen cross-priming. VLPV vaccines were immunogenic and protective in mice and upregulated CD11c + /CD8 + dendritic cells playing the major role in cross-presentation. Notably, VLPV vaccination resulted in induction of cross-reactive multifunctional T cell responses after stimulation of immune splenocytes with peptide cocktails derived from LASV from clades I-IV. Multivalent RNA replicon-based LASV vaccines can be applicable for first responders, international travelers visiting endemic areas, military and lab personnel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    Science.gov (United States)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated

  5. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  6. Entamoeba histolytica: construction and applications of subgenomic databases.

    Science.gov (United States)

    Hofer, Margit; Duchêne, Michael

    2005-07-01

    Knowledge about the influence of environmental stress such as the action of chemotherapeutic agents on gene expression in Entamoeba histolytica is limited. We plan to use oligonucleotide microarray hybridization to approach these questions. As the basis for our array, sequence data from the genome project carried out by the Institute for Genomic Research (TIGR) and the Sanger Institute were used to annotate parts of the parasite genome. Three subgenomic databases containing enzymes, cytoskeleton genes, and stress genes were compiled with the help of the ExPASy proteomics website and the BLAST servers at the two genome project sites. The known sequences from reference species, mostly human and Escherichia coli, were searched against TIGR and Sanger E. histolytica sequence contigs and the homologs were copied into a Microsoft Access database. In a similar way, two additional databases of cytoskeletal genes and stress genes were generated. Metabolic pathways could be assembled from our enzyme database, but sometimes they were incomplete as is the case for the sterol biosynthesis pathway. The raw databases contained a significant number of duplicate entries which were merged to obtain curated non-redundant databases. This procedure revealed that some E. histolytica genes may have several putative functions. Representative examples such as the case of the delta-aminolevulinate synthase/serine palmitoyltransferase are discussed.

  7. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  8. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  9. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens

    Science.gov (United States)

    Wilms, Ina; Overlöper, Aaron; Nowrousian, Minou; Sharma, Cynthia M.; Narberhaus, Franz

    2012-01-01

    Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium. PMID:22336765

  10. Evolutionary Origins and Dynamics of Octoploid Strawberry Subgenomes Revealed by Dense Targeted Capture Linkage Maps

    Science.gov (United States)

    Tennessen, Jacob A.; Govindarajulu, Rajanikanth; Ashman, Tia-Lynn; Liston, Aaron

    2014-01-01

    Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes. PMID:25477420

  11. DNA Replicons for Plant Genome Engineering[W][OPEN

    Science.gov (United States)

    Baltes, Nicholas J.; Gil-Humanes, Javier; Cermak, Tomas; Atkins, Paul A.; Voytas, Daniel F.

    2014-01-01

    Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator–like effector nucleases, and the clustered, regularly interspaced, short palindromic repeat/Cas system) and delivery of DNA repair templates. In tobacco (Nicotiana tabacum), replicons based on the bean yellow dwarf virus enhanced gene targeting frequencies one to two orders of magnitude over conventional Agrobacterium tumefaciens T-DNA. In addition to the nuclease-mediated DNA double-strand breaks, gene targeting was promoted by replication of the repair template and pleiotropic activity of the geminivirus replication initiator proteins. We demonstrate the feasibility of using geminivirus replicons to generate plants with a desired DNA sequence modification. By adopting a general plant transformation method, plantlets with a desired DNA change were regenerated in genome engineering. PMID:24443519

  12. 3-(imidazo[1,2-a:5,4-b']dipyridin-2-yl)aniline inhibits pestivirus replication by targeting a hot spot drug binding pocket in the RNA-dependent RNA polymerase.

    Science.gov (United States)

    Musiu, Simone; Leyssen, Pieter; Froeyen, Mathy; Chezal, Jean-Michel; Neyts, Johan; Paeshuyse, Jan

    2016-05-01

    The compound 3-(imidazo[1,2-a:5,4-b']dipyridin-2-yl)aniline (CF02334) was identified as a selective inhibitor of the cytopathic effect (CPE) caused by bovine viral diarrhea virus (BVDV) in a virus-cell-based assay. The EC50-values for inhibition of CPE, viral RNA synthesis and the production of infectious virus progeny were 13.0 ± 0.6 μM, 2.6 ± 0.9 μM and 17.8 ± 0.6 μM, respectively. CF02334 was found to be inactive in the hepatitis C subgenomic replicon system. CF02334-resistant BVDV was obtained and was found to carry the N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). Molecular modeling revealed that N264D is located in a small cavity near the fingertip domain of the pestivirus polymerase. CF02334-resistant BVDV was proven to be cross-resistant to BPIP, AG110 and LZ37, inhibitors that have previously been described to target the same region of the BVDV RdRp. CF02334 did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of BVDV replication complexes. Taken together, these observations indicate that CF02334 likely interacts with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110 and LZ37, which marks this region of the viral polymerase as a "hot spot" for inhibition of pestivirus replication. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    Science.gov (United States)

    Mithani, Aziz; Belfield, Eric J; Brown, Carly; Jiang, Caifu; Leach, Lindsey J; Harberd, Nicholas P

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies. We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment. We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  14. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): \\'HSP base Assignment using NGS data through Diploid Similarity\\' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  15. Insight into octoploid strawberry (Fragaria) subgenome composition revealed by GISH analysis of pentaploid hybrids.

    Science.gov (United States)

    Liu, Bo; Poulsen, Elizabeth G; Davis, Thomas M

    2016-02-01

    As the product of interspecific hybridization between its two ancestral octoploid (2n = 8x = 56) species (Fragaria chiloensis and F. virginiana), the cultivated strawberry (F. ×ananassa) is among the most genomically complex of crop plants, harboring subgenomic components derived from as many as four different diploid ancestors. To physically visualize the octoploids' subgenome composition(s), we launched molecular cytogenetic studies using genomic in situ hybridization (GISH), comparative GISH (cGISH), and rDNA-FISH techniques. First, GISH resolution in Fragaria was tested by using diploid and triploid hybrids with predetermined genome compositions. Then, observation of an octoploid genome was implemented by hybridizing chromosomes of pentaploid (2n = 5x = 35) hybrids from F. vesca × F. virginiana with genomic DNA probes derived from diploids (2n = 2x = 14) F. vesca and F. iinumae, which have been proposed by phylogenetic studies to be closely related to the octoploids yet highly divergent from each other. GISH and cGISH results indicated that octoploid-derived gametes (n = 4x = 28) carried seven chromosomes with hybridization affinities to F. vesca, while the remaining 21 chromosomes displayed varying affinities to F. iinumae, indicating differing degrees of subgenomic contribution to the octoploids by these two putatively ancestral diploids. Combined rDNA-FISH revealed severe 25S rDNA loss in both the F. vesca- and F. iinumae-like chromosome groups, while only the prior group retained its 5S loci.

  16. A cooperative interaction between nontranslated RNA sequences and NS5A protein promotes in vivo fitness of a chimeric hepatitis C/GB virus B.

    Directory of Open Access Journals (Sweden)

    Lucile Warter

    Full Text Available GB virus B (GBV-B is closely related to hepatitis C virus (HCV, infects small non-human primates, and is thus a valuable surrogate for studying HCV. Despite significant differences, the 5' nontranslated RNAs (NTRs of these viruses fold into four similar structured domains (I-IV, with domains II-III-IV comprising the viral internal ribosomal entry site (IRES. We previously reported the in vivo rescue of a chimeric GBV-B (vGB/III(HC containing HCV sequence in domain III, an essential segment of the IRES. We show here that three mutations identified within the vGB/III(HC genome (within the 3'NTR, upstream of the poly(U tract, and NS5A coding sequence are necessary and sufficient for production of this chimeric virus following intrahepatic inoculation of synthetic RNA in tamarins, and thus apparently compensate for the presence of HCV sequence in domain III. To assess the mechanism(s underlying these compensatory mutations, and to determine whether 5'NTR subdomains participating in genome replication do so in a virus-specific fashion, we constructed and evaluated a series of chimeric subgenomic GBV-B replicons in which various 5'NTR subdomains were substituted with their HCV homologs. Domains I and II of the GBV-B 5'NTR could not be replaced with HCV sequence, indicating that they contain essential, virus-specific RNA replication elements. In contrast, domain III could be swapped with minimal loss of genome replication capacity in cell culture. The 3'NTR and NS5A mutations required for rescue of the related chimeric virus in vivo had no effect on replication of the subgenomic GBneoD/III(HC RNA in vitro. The data suggest that in vivo fitness of the domain III chimeric virus is dependent on a cooperative interaction between the 5'NTR, 3'NTR and NS5A at a step in the viral life cycle subsequent to genome replication, most likely during particle assembly. Such a mechanism may be common to all hepaciviruses.

  17. Potentiation of anthrax vaccines using protective antigen-expressing viral replicon vectors.

    Science.gov (United States)

    Wang, Hai-Chao; An, Huai-Jie; Yu, Yun-Zhou; Xu, Qing

    2015-02-01

    DNA vaccines require improvement for human use because they are generally weak stimulators of the immune system in humans. The efficacy of DNA vaccines can be improved using a viral replicon as vector to administer antigen of pathogen. In this study, we comprehensively evaluated the conventional non-viral DNA, viral replicon DNA or viral replicon particles (VRP) vaccines encoding different forms of anthrax protective antigen (PA) for specific immunity and protective potency against anthrax. Our current results clearly suggested that these viral replicon DNA or VRP vaccines derived from Semliki Forest virus (SFV) induced stronger PA-specific immune responses than the conventional non-viral DNA vaccines when encoding the same antigen forms, which resulted in potent protection against challenge with the Bacillus anthracis strain A16R. Additionally, the naked PA-expressing SFV replicon DNA or VRP vaccines without the need for high doses or demanding particular delivery regimens elicited robust immune responses and afforded completely protective potencies, which indicated the potential of the SFV replicon as vector of anthrax vaccines for use in clinical application. Therefore, our results suggest that these PA-expressing SFV replicon DNA or VRP vaccines may be suitable as candidate vaccines against anthrax. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Vesicular stomatitis virus replicon expressing the VP2 outer capsid protein of bluetongue virus serotype 8 induces complete protection of sheep against challenge infection.

    Science.gov (United States)

    Kochinger, Stefanie; Renevey, Nathalie; Hofmann, Martin A; Zimmer, Gert

    2014-06-13

    Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.

  19. SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells.

    Science.gov (United States)

    Malcolm, B A; Liu, R; Lahser, F; Agrawal, S; Belanger, B; Butkiewicz, N; Chase, R; Gheyas, F; Hart, A; Hesk, D; Ingravallo, P; Jiang, C; Kong, R; Lu, J; Pichardo, J; Prongay, A; Skelton, A; Tong, X; Venkatraman, S; Xia, E; Girijavallabhan, V; Njoroge, F G

    2006-03-01

    Cleavage of the hepatitis C virus (HCV) polyprotein by the viral NS3 protease releases functional viral proteins essential for viral replication. Recent studies by Foy and coworkers strongly suggest that NS3-mediated cleavage of host factors may abrogate cellular response to alpha interferon (IFN-alpha) (E. Foy, K. Li, R. Sumpter, Jr., Y.-M. Loo, C. L. Johnson, C. Wang, P. M. Fish, M. Yoneyama, T. Fujita, S. M. Lemon, and M. Gale, Jr., Proc. Natl. Acad. Sci. USA 102:2986-2991, 2005, and E. Foy, K. Li, C. Wang, R. Sumpter, Jr., M. Ikeda, S. M. Lemon, and M. Gale, Jr., Science 300:1145-1148, 2003). Blockage of NS3 protease activity therefore is expected to inhibit HCV replication by both direct suppression of viral protein production as well as by restoring host responsiveness to IFN. Using structure-assisted design, a ketoamide inhibitor, SCH 503034, was generated which demonstrated potent (overall inhibition constant, 14 nM) time-dependent inhibition of the NS3 protease in cell-free enzyme assays as well as robust in vitro activity in the HCV replicon system, as monitored by immunofluorescence and real-time PCR analysis. Continuous exposure of replicon-bearing cell lines to six times the 90% effective concentration of SCH 503034 for 15 days resulted in a greater than 4-log reduction in replicon RNA. The combination of SCH 503034 with IFN was more effective in suppressing replicon synthesis than either compound alone, supporting the suggestion of Foy and coworkers that combinations of IFN with protease inhibitors would lead to enhanced therapeutic efficacy.

  20. Alphavirus replicon-based adjuvants enhance the immunogenicity and effectiveness of Fluzone ® in rhesus macaques.

    Science.gov (United States)

    Carroll, Timothy D; Matzinger, Shannon R; Barro, Mario; Fritts, Linda; McChesney, Michael B; Miller, Christopher J; Johnston, Robert E

    2011-01-29

    Venezuelan equine encephalitis virus replicon particles (VRP) without a transgene (null VRP) have been used to adjuvant effective humoral [1], cellular [2], and mucosal [3] immune responses in mice. To assess the adjuvant activity of null VRP in the context of a licensed inactivated influenza virus vaccine, rhesus monkeys were immunized with Fluzone(®) alone or Fluzone(®) mixed with null VRP and then challenged with a human seasonal influenza isolate, A/Memphis/7/2001 (H1N1). Compared to Fluzone(®) alone, Fluzone(®)+null VRP immunized animals had stronger influenza-specific CD4(+) T cell responses (4.4 fold) with significantly higher levels of virus-specific IFN-γ (7.6 fold) and IL-2 (5.3 fold) producing CD4+ T cells. Fluzone(®)+null VRP immunized animals also had significantly higher plasma anti-influenza IgG (pVRP immunization was 1.2 log greater (pVRP immunized monkeys had a significantly lower level of viral replication (pVRP immunized monkeys immediately after challenge. There were significant inverse correlations between influenza RNA levels in tracheal lavages and plasma anti-influenza HI and IgG anti-influenza antibody titers prior to challenge. These results demonstrate that null VRP dramatically improve both the immunogenicity and protection elicited by a licensed inactivated influenza vaccine. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Amplification of Nicotiana sylvestris mitochondrial subgenomes is under nuclear control and is associated with phenotypic changes.

    Science.gov (United States)

    Albert, Béatrice; Lelandais, Christine; Pla, Magali; Leuret, Corine; Vitart, Véronique; Mathieu, Chantal; Sihachakr, Darasinh; Godelle, Bernard; De Paepe, Rosine

    2003-01-01

    We have previously shown the presence in a Nicotiana sylvestris protoplast-derived plant of both a nuclear mutation conferring male sterility (ms4) and a mtDNA reorganisation, named U, characterised by the amplification of substoichiometric mtDNA fragments generated by recombination in the parent T mtDNA. Here we show by physical mapping that the recombining repeats are in direct orientation, thus generating two subgenomes both of which are amplified in the U organisation to the detriment of the parent molecule, and are maintained through sexual reproduction. The nuclear ms4 mutation is likely to have play a role in the shift in mitochondrial molecule equilibrium, as higher levels of recombinant fragments were present in protoplast-derived T calli carrying the ms4 allele than in wild type calli or leaves. The MS4 gene could then lead to conflictual situation. However, subgenomic molecules were counter-selected during the regeneration process, suggesting the existence of different selective pressures in differentiated and non-differentiated cells. The U organisation is associated with higher stem height and late flowering, characters that may not be neutral from a selection point of view. The U equilibrium is an unusual example of sudden mtDNA reorganisation, without obvious differences in genetic information and with only a limited phenotypic impact.

  2. Isolation of broad-host-range replicons from marine sediment bacteria.

    Science.gov (United States)

    Sobecky, P A; Mincer, T J; Chang, M C; Toukdarian, A; Helinski, D R

    1998-08-01

    Naturally occurring plasmids isolated from heterotrophic bacterial isolates originating from coastal California marine sediments were characterized by analyzing their incompatibility and replication properties. Previously, we reported on the lack of DNA homology between plasmids from the culturable bacterial population of marine sediments and the replicon probes specific for a number of well-characterized incompatibility and replication groups (P. A. Sobecky, T. J. Mincer, M. C. Chang, and D. R. Helinski, Appl. Environ. Microbiol. 63:888-895, 1997). In the present study we isolated 1.8- to 2.3-kb fragments that contain functional replication origins from one relatively large (30-kb) and three small (marine isolates. 16S rRNA sequence analyses indicated that the four plasmid-bearing marine isolates belonged to the alpha and gamma subclasses of the class Proteobacteria. Three of the marine sediment isolates are related to the gamma-3 subclass organisms Vibrio splendidus and Vibrio fischeri, while the fourth isolate may be related to Roseobacter litoralis. Sequence analysis of the plasmid replication regions revealed the presence of features common to replication origins of well-characterized plasmids from clinical bacterial isolates, suggesting that there may be similar mechanisms for plasmid replication initiation in the indigenous plasmids of gram-negative marine sediment bacteria. In addition to replication in Escherichia coli DH5alpha and C2110, the host ranges of the plasmid replicons, designated repSD41, repSD121, repSD164, and repSD172, extended to marine species belonging to the genera Achromobacter, Pseudomonas, Serratia, and Vibrio. While sequence analysis of repSD41 and repSD121 revealed considerable stretches of homology between the two fragments, these regions do not display incompatibility properties against each other. The replication origin repSD41 was detected in 5% of the culturable plasmid-bearing marine sediment bacterial isolates, whereas the

  3. A personal reflection on the replicon theory: from R1 plasmid to replication timing regulation in human cells.

    Science.gov (United States)

    Masai, Hisao

    2013-11-29

    Fifty years after the Replicon Theory was originally presented, detailed mechanistic insight into prokaryotic replicons has been obtained and rapid progress is being made to elucidate the more complex regulatory mechanisms of replicon regulation in eukaryotic cells. Here, I present my personal perspectives on how studies of model replicons have contributed to our understanding of the basic mechanisms of DNA replication as well as the evolution of replication regulation in human cells. I will also discuss how replication regulation contributes to the stable maintenance of the genome and how disruption of replication regulation leads to human diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9.

    Science.gov (United States)

    Gil-Humanes, Javier; Wang, Yanpeng; Liang, Zhen; Shan, Qiwei; Ozuna, Carmen V; Sánchez-León, Susana; Baltes, Nicholas J; Starker, Colby; Barro, Francisco; Gao, Caixia; Voytas, Daniel F

    2017-03-01

    The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence-specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T-DNA, biolistics or by stably integrating nuclease-encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10-fold enhancements in GT frequencies have been achieved using DNA virus-based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon-based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110-fold increase in expression of a reporter gene relative to non-replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12-fold greater than non-viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene-targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV-based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge.

    Science.gov (United States)

    Dodd, Kimberly A; Bird, Brian H; Metcalfe, Maureen G; Nichol, Stuart T; Albariño, César G

    2012-04-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRP(RVF)) vaccine candidate. Using a mouse model, we show that VRP(RVF) immunization provides the optimal balance of safety and single-dose robust efficacy. VRP(RVF) can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRP(RVF) proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRP(RVF), although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD(50)). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRP(RVF) immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection.

  6. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis

    Directory of Open Access Journals (Sweden)

    Yu Ziniu

    2006-10-01

    Full Text Available Abstract Background Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. Results A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165, an origin of replication (ori165 and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10 were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMβ1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. Conclusion The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMβ1 family replicons.

  7. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis.

    Science.gov (United States)

    Huang, Junyan; Guo, Suxia; Mahillon, Jacques; Van der Auwera, Géraldine A; Wang, Li; Han, Dongmei; Yu, Ziniu; Sun, Ming

    2006-10-23

    Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb) of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165), an origin of replication (ori165) and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10) were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMbeta1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMbeta1 family replicons.

  8. A highly pathogenic porcine reproductive and respiratory syndrome virus candidate vaccine based on Japanese encephalitis virus replicon system.

    Science.gov (United States)

    Hu, Pingsheng; Chen, Xiaoming; Huang, Lihong; Liu, Shukai; Zang, Fuyu; Xing, Jinchao; Zhang, Youyue; Liang, Jiaqi; Zhang, Guihong; Liao, Ming; Qi, Wenbao

    2017-01-01

    In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS.

  9. Transcription of mouse Sp2 yields alternatively spliced and sub-genomic mRNAs in a tissue- and cell type-specific fashion

    Science.gov (United States)

    Yin, Haifeng; Nichols, Teresa D.; Horowitz, Jonathan M.

    2010-01-01

    The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly-conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a “knock-out” mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5′ untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. PMID:20353838

  10. Identification and characterization of genes on a single subgenome in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring'.

    Science.gov (United States)

    Ma, Jian; Zheng, Zhi; Stiller, Jiri; Lan, Xiu-Jin; Liu, Yaxi; Deng, Mei; Wang, Penghao; Pu, Zhien; Chen, Guangdeng; Jiang, Qian-Tao; Wei, Yuming; Zheng, You-Liang

    2017-03-01

    Gene loss during the formation of hexaploid bread wheat has been repeatedly reported. However, our knowledge on genome-wide analysis of the genes present on a single subgenome (SSG) in bread wheat is still limited. In this study, by analysing the 'Chinese Spring' chromosome arm shotgun sequences together with high-confidence gene models, we detected 433 genes on a SSG. Greater gene loss was observed in A and D subgenomes compared with B subgenome. More than 79% of the orthologs for these SSG genes were detected in diploid and tetraploid relatives of hexaploid wheat. Unexpectedly, no bias in expression breadth or in the distribution patterns of GO (gene ontology) terms for these genes was detected among the high-confidence genes. Further, network and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses indicated that most of these genes were not functionally related to each other. Interestingly, 30.7% of these SSG genes were most highly expressed in root, showing biased distribution given the distribution of the whole high-confidence genes. Collectively, these results facilitate our understanding of the loss of the genes that were retained in a SSG during the formation of hexaploid wheat.

  11. Intracellular expression of IRF9 Stat fusion protein overcomes the defective Jak-Stat signaling and inhibits HCV RNA replication

    Directory of Open Access Journals (Sweden)

    Balart Luis A

    2010-10-01

    Full Text Available Abstract Interferon alpha (IFN-α binds to a cell surface receptor that activates the Jak-Stat signaling pathway. A critical component of this pathway is the translocation of interferon stimulated gene factor 3 (a complex of three proteins Stat1, Stat2 and IRF9 to the nucleus to activate antiviral genes. A stable sub-genomic replicon cell line resistant to IFN-α was developed in which the nuclear translocation of Stat1 and Stat2 proteins was prevented due to the lack of phosphorylation; whereas the nuclear translocation of IRF9 protein was not affected. In this study, we sought to overcome defective Jak-Stat signaling and to induce an antiviral state in the IFN-α resistant replicon cell line by developing a chimera IRF9 protein fused with the trans activating domain (TAD of either a Stat1 (IRF9-S1C or Stat2 (IRF9-S2C protein. We show here that intracellular expression of fusion proteins using the plasmid constructs of either IRF9-S1C or IRF9-S2C, in the IFN-α resistant cells, resulted in an increase in Interferon Stimulated Response Element (ISRE luciferase promoter activity and significantly induced HLA-1 surface expression. Moreover, we show that transient transfection of IRF9-S1C or IRF9-S2C plasmid constructs into IFN-α resistant replicon cells containing sub-genomic HCV1b and HCV2a viruses resulted in an inhibition of viral replication and viral protein expression independent of IFN-α treatment. The results of this study indicate that the recombinant fusion proteins of IRF9-S1C, IRF9-S2C alone, or in combination, have potent antiviral properties against the HCV in an IFN-α resistant cell line with a defective Jak-Stat signaling.

  12. In Vitro Resistance Study of AG-021541, a Novel Nonnucleoside Inhibitor of the Hepatitis C Virus RNA-Dependent RNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Shi, S.T.; Herlihy, K.J.; Graham, J.P.; Fuhrman, S.A.; Doan, C.; Parge, H.; Hickey, M.; Gao, J.; Yu, X.; Chau, F.; Gonzalez, J.; Li, H.; Lewis, C.; Patrick, A.K.; Duggal, R.

    2009-05-27

    A novel class of nonnucleoside hepatitis C virus (HCV) polymerase inhibitors characterized by a dihydropyrone core was identified by high-throughput screening. Crystallographic studies of these compounds in complex with the polymerase identified an allosteric binding site close to the junction of the thumb and finger domains, approximately 30 A away from the catalytic center. AG-021541, a representative compound from this series, displayed measurable in vitro antiviral activity against the HCV genotype 1b subgenomic replicon with a mean 50% effective concentration of 2.9 muM. To identify mutations conferring in vitro resistance to AG-021541, resistance selection was carried out using HCV replicon cells either by serial passages in increasing concentrations of AG-021541 or by direct colony formation at fixed concentrations of the compound. We identified several amino acid substitutions in the AG-021541-binding region of the polymerase, including M423(T/V/I), M426T, I482(S/T), and V494A, with M423T as the predominant change observed. These mutants conferred various levels of resistance to AG-021541 and structurally related compounds but remained sensitive to interferon and HCV polymerase inhibitors known to interact with the active site or other allosteric sites of the protein. In addition, dihydropyrone polymerase inhibitors retained activity against replicons that contain signature resistance changes to other polymerase inhibitors, including S282T, C316N, M414T, and P495(S/L), indicating their potential to be used in combination therapies with these polymerase inhibitors. AG-021541-resistant replicon cell lines provide a valuable tool for mechanism-of-action studies of dihydropyrone polymerase inhibitors. The clinical relevance of in vitro resistance to HCV polymerase inhibitors remains to be investigated.

  13. Replicon typing of plasmids encoding resistance to newer beta-lactams.

    Science.gov (United States)

    Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria

    2006-07-01

    Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.

  14. Replicon Typing of Plasmids Encoding Resistance to Newer β-Lactams

    Science.gov (United States)

    Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M.; Rossolini, Gian Maria

    2006-01-01

    Polymerase chain reaction–based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems. PMID:16836838

  15. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice.

    Science.gov (United States)

    Boylan, Brendan T; Moreira, Fernando R; Carlson, Tim W; Bernard, Kristen A

    2017-02-01

    Half of the human population is at risk of infection by an arthropod-borne virus. Many of these arboviruses, such as West Nile, dengue, and Zika viruses, infect humans by way of a bite from an infected mosquito. This infectious inoculum is insect cell-derived giving the virus particles distinct qualities not present in secondary infectious virus particles produced by infected vertebrate host cells. The insect cell-derived particles differ in the glycosylation of virus structural proteins and the lipid content of the envelope, as well as their induction of cytokines. Thus, in order to accurately mimic the inoculum delivered by arthropods, arboviruses should be derived from arthropod cells. Previous studies have packaged replicon genome in mammalian cells to produce replicon particles, which undergo only one round of infection, but no studies exist packaging replicon particles in mosquito cells. Here we optimized the packaging of West Nile virus replicon genome in mosquito cells and produced replicon particles at high concentration, allowing us to mimic mosquito cell-derived viral inoculum. These particles were mature with similar genome equivalents-to-infectious units as full-length West Nile virus. We then compared the mosquito cell-derived particles to mammalian cell-derived particles in mice. Both replicon particles infected skin at the inoculation site and the draining lymph node by 3 hours post-inoculation. The mammalian cell-derived replicon particles spread from the site of inoculation to the spleen and contralateral lymph nodes significantly more than the particles derived from mosquito cells. This in vivo difference in spread of West Nile replicons in the inoculum demonstrates the importance of using arthropod cell-derived particles to model early events in arboviral infection and highlights the value of these novel arthropod cell-derived replicon particles for studying the earliest virus-host interactions for arboviruses.

  16. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution.

    Science.gov (United States)

    Wright, R J; Thaxton, P M; El-Zik, K M; Paterson, A H

    1998-08-01

    A detailed RFLP map was used to determine the chromosomal locations and subgenomic distributions of cotton (Gossypium) genes/QTLs that confer resistance to the bacterial blight pathogen, Xanthomonas campestris pv. malvacearum (Xcm). Genetic mapping generally corroborated classic predictions regarding the number and dosage effects of genes conferring Xcm resistance. One recessive allele (b6) was a noteworthy exception to the genetic dominance of most plant resistance alleles. This recessive allele appeared to uncover additional QTLs from both resistant and ostensibly susceptible genotypes, some of which corresponded in location to resistance (R)-genes effective against other Xcm races. One putatively "defeated" resistance allele (B3) reduced severity of Xcm damage by "virulent" races. Among the six resistance genes derived from tetraploid cottons, five (83%) mapped to D-subgenome chromosomes-if each subgenome were equally likely to evolve new R-gene alleles, this level of bias would occur in only about 1.6% of cases. Possible explanations of this bias include biogeographic factors, differences in evolutionary rates between subgenomes, gene conversion or other intergenomic exchanges that escaped detection by genetic mapping, or other factors. A significant D-subgenome bias of Xcm resistance genes may suggest that polyploid formation has offered novel avenues for phenotypic response to selection.

  17. The Combination of Grazoprevir, a Hepatitis C Virus (HCV) NS3/4A Protease Inhibitor, and Elbasvir, an HCV NS5A Inhibitor, Demonstrates a High Genetic Barrier to Resistance in HCV Genotype 1a Replicons.

    Science.gov (United States)

    Lahser, Frederick C; Bystol, Karin; Curry, Stephanie; McMonagle, Patricia; Xia, Ellen; Ingravallo, Paul; Chase, Robert; Liu, Rong; Black, Todd; Hazuda, Daria; Howe, Anita Y M; Asante-Appiah, Ernest

    2016-05-01

    The selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.9 nM and 0.006 nM for grazoprevir and elbasvir, respectively. No cross-resistance was observed when clinically relevant NS5A and NS3 RAVs were profiled against grazoprevir and elbasvir, respectively. Kinetic analyses of HCV RNA reduction over 14 days showed that grazoprevir and elbasvir inhibited prototypic NS5A Y93H and NS3 R155K RAVs, respectively, with kinetics comparable to those for the wild-type GT1a replicon. In combination, grazoprevir and elbasvir interacted additively in GT1a replicon cells. Colony formation assays with a 10-fold multiple of the EC90 values of the grazoprevir-elbasvir inhibitor combination suppressed emergence of resistant colonies, compared to a 100-fold multiple for the independent agents. The selected resistant colonies with the combination harbored RAVs that required two or more nucleotide changes in the codons. Mutations in the cognate gene caused greater potency losses for elbasvir than for grazoprevir. Replicons bearing RAVs identified from resistant colonies showed reduced fitness for several cell lines and may contribute to the activity of the combination. These studies demonstrate that the combination of grazoprevir and elbasvir exerts a potent effect on HCV RNA replication and presents a high genetic barrier to resistance. The combination of grazoprevir and elbasvir is currently approved for

  18. Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1.

    Science.gov (United States)

    Wang, Yuchen; Sima, Linshan; Lv, Jie; Huang, Suiyuan; Liu, Ying; Wang, Jiao; Krupovic, Mart; Chen, Xiangdong

    2016-07-15

    The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic

  19. Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles

    OpenAIRE

    Tonkin, Daniel R; Whitmore, Alan; Johnston, Robert E; Barro, Mario

    2012-01-01

    Replicon particles derived from Venezuelan equine encephalitis virus (VEE) are infectious non-propagating particles which act as a safe and potent systemic, mucosal, and cellular adjuvant when delivered with antigen. VEE and VEE replicon particles (VRP) can target multiple cell types including dendritic cells (DCs). The role of these cell types in VRP adjuvant activity has not been previously evaluated, and for these studies we focused on the contribution of DCs to the response to VRP. By ana...

  20. Discrimination of candidate subgenome-specific loci by linkage map construction with an S1population of octoploid strawberry (Fragaria × ananassa).

    Science.gov (United States)

    Nagano, Soichiro; Shirasawa, Kenta; Hirakawa, Hideki; Maeda, Fumi; Ishikawa, Masami; Isobe, Sachiko N

    2017-05-12

    The strawberry, Fragaria × ananassa, is an allo-octoploid (2n = 8x = 56) and outcrossing species. Although it is the most widely consumed berry crop in the world, its complex genome structure has hindered its genetic and genomic analysis, and thus discrimination of subgenome-specific loci among the homoeologous chromosomes is needed. In the present study, we identified candidate subgenome-specific single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) loci, and constructed a linkage map using an S 1 mapping population of the cultivar 'Reikou' with an IStraw90 Axiom® SNP array and previously published SSR markers. The 'Reikou' linkage map consisted of 11,574 loci (11,002 SNPs and 572 SSR loci) spanning 2816.5 cM of 31 linkage groups. The 11,574 loci were located on 4738 unique positions (bin) on the linkage map. Of the mapped loci, 8999 (8588 SNPs and 411 SSR loci) showed a 1:2:1 segregation ratio of AA:AB:BB allele, which suggested the possibility of deriving loci from candidate subgenome-specific sequences. In addition, 2575 loci (2414 SNPs and 161 SSR loci) showed a 3:1 segregation of AB:BB allele, indicating they were derived from homoeologous genomic sequences. Comparative analysis of the homoeologous linkage groups revealed differences in genome structure among the subgenomes. Our results suggest that candidate subgenome-specific loci are randomly located across the genomes, and that there are small- to large-scale structural variations among the subgenomes. The mapped SNPs and SSR loci on the linkage map are expected to be seed points for the construction of pseudomolecules in the octoploid strawberry.

  1. Prolonged transgene expression in glomeruli using an EBV replicon vector system combined with HVJ liposomes.

    Science.gov (United States)

    Tsujie, M; Isaka, Y; Nakamura, H; Kaneda, Y; Imai, E; Hori, M

    2001-04-01

    Various gene transfer vectors as well as delivery systems have been developed; however, many problems remain to be solved. We already achieved a technique to introduce genes into glomerular mesangial cells by hemagglutinating virus of Japan (HVJ) liposome-mediated gene transfer via renal artery. The main limitation of this method is the transient transgene expression. For long-term gene expression in glomeruli, Epstein-Barr virus (EBV) replicon-based plasmid was employed, containing the latent viral DNA replication origin (oriP) and EBV nuclear antigen-1 (EBNA-1), which are the minimum EBV component of transgene-nuclear retention. To examine the effect of EBV replicon apparatus on the duration of transgene expression in glomeruli in vivo, the EBV replicon vector pEBActLuc, and the control plasmid vector pActLuc were adopted. These plasmid vectors were transferred into the kidney via renal artery by using artificial viral envelope (AVE)-type HVJ liposome method, and glomerular luciferase activities were analyzed at various time points after transfection. On day 4, pEBActLuc and pActLuc transfer resulted in equal glomerular luciferase activity, and the luciferase gene expression was sustained for at least 56 days in glomeruli transfected with pEBActLuc, whereas it was reduced on seven days in glomeruli transfected with pActLuc. The combination of EBV replicon apparatus and HVJ liposomes appears to be a powerful tool for long-term gene expression in vivo, and furthermore, it may be a promising new therapeutic method for the progression of renal disease.

  2. Chromatin structural changes precede replication in initiated replicons during inhibition of DNA elongation

    Energy Technology Data Exchange (ETDEWEB)

    D' Anna, J.A.; Grady, D.L.; Tobey, R.A.

    1988-01-01

    Partial inhibition of replicative DNA synthesis by hydroxyurea or other agents produces changes in the composition and structure of bulk chromatin. We have begun to investigate the structural changes in specific regions of the genome using synchronized cells and cloned genomic probes. Current results indicate changes in chromatin structure occur preferentially in initiated replicons and can precede the replication fork during inhibition of DNA elongation. 4 refs., 2 figs.

  3. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Elodie eGazave

    2016-04-01

    Full Text Available The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP, winter Europe (WE, and winter Asia (WA. Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  4. Virion-Independent Transfer of Replication-Competent Hepatitis C Virus RNA between Permissive Cells

    OpenAIRE

    Longatti, Andrea; Boyd, Bryan; Chisari, Francis V.

    2014-01-01

    In this study, we show that replication-competent subgenomic hepatitis C virus (HCV) RNA can be transferred to permissive Huh7 cells, leading to the establishment of viral RNA replication. Further, we show that these events are mediated by exosomes rather than infectious virus particles. If similar events occur in vivo, this could represent a novel, albeit inefficient, mechanism of viral spread and immune escape.

  5. Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells.

    Science.gov (United States)

    Longatti, Andrea; Boyd, Bryan; Chisari, Francis V

    2015-03-01

    In this study, we show that replication-competent subgenomic hepatitis C virus (HCV) RNA can be transferred to permissive Huh7 cells, leading to the establishment of viral RNA replication. Further, we show that these events are mediated by exosomes rather than infectious virus particles. If similar events occur in vivo, this could represent a novel, albeit inefficient, mechanism of viral spread and immune escape. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections.

    Science.gov (United States)

    Yang, Zhenhua; Wu, Rui; Li, Robert W; Li, Ling; Xiong, Zhongliang; Zhao, Haizhong; Guo, Deyin; Pan, Zishu

    2012-04-01

    A trans-complemented chimeric CSF-JE virus replicon was constructed using an infectious cDNA clone of the CSF virus (CSFV) Alfort/187 strain. The CSFV E2 gene was deleted, and a fragment containing the region encoding a truncated envelope protein (tE, amino acid 292-402, domain III) of JE virus (JEV) was inserted into the resultant plasmid, pA187delE2, to generate the recombinant cDNA clone pA187delE2/JEV-tE. Porcine kidney 15 (PK15) cells that constitutively express the CSFV E2p7 proteins were then transfected with in vitro-transcribed RNA from pA187delE2/JEV-tE. As a result, the chimeric CSF-JE virus replicon particle (VRP), rv187delE2/JEV-tE, was rescued. In a mouse model, immunization with the chimeric CSF-JE VRP induced strong production of JEV-specific antibody and conferred protection against a lethal JEV challenge. Pigs immunized with CSF-JE VRP displayed strong anti-CSFV and anti-JEV antibody responses and protection against CSFV and JEV challenge infections. Our evidence suggests that E2-complemented CSF-JE VRP not only has potential as a live-attenuated non-transmissible vaccine candidate against CSF and JE but also serves as a potential DIVA (Differentiating Infected from Vaccinated Animals) vaccine for CSF in pigs. Together, our data suggest that the non-transmissible chimeric VRP expressing foreign antigenic proteins may represent a promising strategy for bivalent DIVA vaccine design. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Introgressing subgenome components from Brassica rapa and B. carinata to B. juncea for broadening its genetic base and exploring intersubgenomic heterosis

    Directory of Open Access Journals (Sweden)

    Zili Wei

    2016-11-01

    Full Text Available Brassica juncea (AjAjBjBj, is an allotetraploid that arose from two diploid species, B. rapa (ArAr and B. nigra (BnBn. It is an old oilseed crop with unique favorable traits, but the genetic improvement on this species is limited. We developed an approach to broaden its genetic base within several generations by intensive selection. The Ar subgenome from the Asian oil crop B. rapa (ArAr and the Bc subgenome from the African oil crop B. carinata (BcBcCcCc were combined in a synthesized allohexaploid (ArArBcBcCcCc, which was crossed with traditional B. juncea to generate pentaploid F1 hybrids (ArAjBcBjCc, with subsequent self-pollination to obtain newly synthesized B. juncea (Ar/jAr/jBc/jBc/j. After intensive cytological screening and phenotypic selection of fertility and agronomic traits, a population of new-type B. juncea was obtained and was found to be genetically stable at the F6 generation. The new-type B. juncea possesses good fertility and rich genetic diversity and is distinctly divergent but not isolated from traditional B. juncea, as revealed by population genetic analysis with molecular markers. More than half of its genome was modified, showing exotic introgression and novel variation. In addition to the improvement in some traits of the new-type B. juncea lines, a considerable potential for heterosis was observed in inter-subgenomic hybrids between new-type B. juncea lines and traditional B. juncea accessions. The new-type B. juncea exhibited a stable chromosome number and a novel genome composition through multiple generations, providing insight into how to significantly broaden the genetic base of crops with subgenome introgression from their related species and the potential of exploring inter-subgenomic heterosis for hybrid breeding.

  8. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  9. Development of expression vectors for Escherichia coli based on the pCR2 replicon

    Directory of Open Access Journals (Sweden)

    Deb J K

    2007-05-01

    Full Text Available Abstract Background Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility. Results We utilized the pCR2 replicon of Corynebacterium renale, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% stable over a large number of generations in the absence of selection pressure. Compatibility of this plasmid was studied with different Escherichia coli plasmid replicons viz. pMB1 and p15A. It was observed that pCR2 was able to coexist with these E.coli plasmids for 60 generations in the absence of selection pressure. Soluble intracellular production was checked by expressing GFP under the lac promoter in an expression plasmid pCR2GFP. Also high level production of human IFNγ was obtained by cloning the h-IFNγ under a T7 promoter in the expression plasmid pCR2-IFNγ and using a dual plasmid heat shock system for expression. Repeated sub-culturing in the absence of selection pressure for six days did not lead to any fall in the production levels post induction, for both GFP and h-IFNγ, demonstrating that pCR2 is a useful plasmid in terms of stability and compatibility. Conclusion We have constructed a series of expression vectors based on the pCR2 replicon and demonstrated its high stability and sustained expression capacity, in the absence of selection pressure which will make it an efficient tool for metabolic engineering and co-expression studies, as well as for scale up of expression.

  10. Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia.

    Science.gov (United States)

    Althabegoiti, María Julia; Ormeño-Orrillo, Ernesto; Lozano, Luis; Torres Tejerizo, Gonzalo; Rogel, Marco Antonio; Mora, Jaime; Martínez-Romero, Esperanza

    2014-01-08

    Rhizobium grahamii belongs to a new phylogenetic group of rhizobia together with Rhizobium mesoamericanum and other species. R. grahamii has a broad-host-range that includes Leucaena leucocephala and Phaseolus vulgaris, although it is a poor competitor for P. vulgaris nodulation in the presence of Rhizobium etli or Rhizobium phaseoli strains. This work analyzed the genome sequence and transfer properties of R. grahamii plasmids. Genome sequence was obtained from R. grahamii CCGE502 type strain isolated from Dalea leporina in Mexico. The CCGE502 genome comprises one chromosome and two extrachromosomal replicons (ERs), pRgrCCGE502a and pRgrCCGE502b. Additionally, a plasmid integrated in the CCGE502 chromosome was found. The genomic comparison of ERs from this group showed that gene content is more variable than average nucleotide identity (ANI). Well conserved nod and nif genes were found in R. grahamii and R. mesoamericanum with some differences. R. phaseoli Ch24-10 genes expressed in bacterial cells in roots were found to be conserved in pRgrCCGE502b. Regarding conjugative transfer we were unable to transfer the R. grahamii CCGE502 symbiotic plasmid and its megaplasmid to other rhizobial hosts but we could transfer the symbiotic plasmid to Agrobacterium tumefaciens with transfer dependent on homoserine lactones. Variable degrees of nucleotide identity and gene content conservation were found among the different R. grahamii CCGE502 replicons in comparison to R. mesoamericanum genomes. The extrachromosomal replicons from R. grahamii were more similar to those found in phylogenetically related Rhizobium species. However, limited similarities of R. grahamii CCGE502 symbiotic plasmid and megaplasmid were observed in other more distant Rhizobium species. The set of conserved genes in R. grahamii comprises some of those that are highly expressed in R. phaseoli on plant roots, suggesting that they play an important role in root colonization.

  11. Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1

    OpenAIRE

    Wang, Yuchen; Sima, Linshan; Lv, Jie; Huang, Suiyuan; Liu, Ying; Wang, Jiao; Krupovic, Mart; Chen, Xiangdong

    2016-01-01

    The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased du...

  12. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp tenebrionis

    OpenAIRE

    Yu Ziniu; Han Dongmei; Wang Li; Van der Auwera Géraldine A; Mahillon Jacques; Guo Suxia; Huang Junyan; Sun Ming

    2006-01-01

    Abstract Background Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. Results A 20 kb DNA fragment containing a plasmi...

  13. Analysis of Venezuelan equine encephalitis replicon particles packaged in different coats.

    Science.gov (United States)

    Kamrud, Kurt I; Alterson, Kim D; Andrews, Chasity; Copp, Laura O; Lewis, Whitney C; Hubby, Bolyn; Patel, Deepa; Rayner, Jonathan O; Talarico, Todd; Smith, Jonathan F

    2008-07-16

    The Venezuelan equine encephalitis (VEE) virus replicon system was used to produce virus-like replicon particles (VRP) packaged with a number of different VEE-derived glycoprotein (GP) coats. The GP coat is believed to be responsible for the cellular tropism noted for VRP and it is possible that different VEE GP coats may have different affinities for cells. We examined VRP packaged in four different VEE GP coats for their ability to infect cells in vitro and to induce both humoral and cellular immune responses in vivo. The VRP preparations were characterized to determine both infectious units (IU) and genome equivalents (GE) prior to in vivo analysis. VRP packaged with different VEE GP coats demonstrated widely varying GE/IU ratios based on Vero cell infectivity. BALB/c mice were immunized with the different VRP based on equal GE titers and the humoral and cellular responses to the expressed HIV gag gene measured. The magnitude of the immune responses measured in mice revealed small but significant differences between different GP coats when immunization was based on GE titers. We suggest that care should be taken when alternative coat proteins are used to package vector-based systems as the titers determined by cell culture infection may not represent accurate particle numbers and in turn may not accurately represent actual in vivo dose.

  14. Analysis of Venezuelan equine encephalitis replicon particles packaged in different coats.

    Directory of Open Access Journals (Sweden)

    Kurt I Kamrud

    2008-07-01

    Full Text Available The Venezuelan equine encephalitis (VEE virus replicon system was used to produce virus-like replicon particles (VRP packaged with a number of different VEE-derived glycoprotein (GP coats. The GP coat is believed to be responsible for the cellular tropism noted for VRP and it is possible that different VEE GP coats may have different affinities for cells. We examined VRP packaged in four different VEE GP coats for their ability to infect cells in vitro and to induce both humoral and cellular immune responses in vivo.The VRP preparations were characterized to determine both infectious units (IU and genome equivalents (GE prior to in vivo analysis. VRP packaged with different VEE GP coats demonstrated widely varying GE/IU ratios based on Vero cell infectivity. BALB/c mice were immunized with the different VRP based on equal GE titers and the humoral and cellular responses to the expressed HIV gag gene measured. The magnitude of the immune responses measured in mice revealed small but significant differences between different GP coats when immunization was based on GE titers.We suggest that care should be taken when alternative coat proteins are used to package vector-based systems as the titers determined by cell culture infection may not represent accurate particle numbers and in turn may not accurately represent actual in vivo dose.

  15. Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines

    Directory of Open Access Journals (Sweden)

    Chen Margaret

    2011-01-01

    Full Text Available Abstract Background Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP or as DNA (DREP. It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP. Results We show that the induction of a CD8+ T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN, induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization. Conclusions We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.

  16. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes.

    Science.gov (United States)

    Suter, Rolf; Summerfield, Artur; Thomann-Harwood, Lisa J; McCullough, Kenneth C; Tratschin, Jon-Duri; Ruggli, Nicolas

    2011-02-04

    Virus replicon particles (VRP) are genetically engineered infectious virions incapable of generating progeny virus due to partial or complete deletion of at least one structural gene. VRP fulfil the criteria of a safe vaccine and gene delivery system. With VRP derived from classical swine fever virus (CSF-VRP), a single intradermal vaccination protects from disease. Spreading of the challenge virus in the host is however not completely abolished. Parameters that are critical for immunogenicity of CSF-VRP are not well characterized. Considering the importance of type I interferon (IFN-α/β) to immune defence development, we generated IFN-α/β-inducing VRP to determine how this would influence vaccine efficacy. We also evaluated the effect of co-expressing granulocyte macrophage colony-stimulating factor (GM-CSF) in the vaccine context. The VRP were capable of long-term replication in cell culture despite the presence of IFN-α/β. In vivo, RNA replication was essential for the induction of an immune response. IFN-α/β-inducing and GM-CSF-expressing CSF-VRP were similar to unmodified VRP in terms of antibody and peripheral T-cell responses, and in reducing the blood levels of challenge virus RNA. Importantly, the IFN-α/β-inducing VRP did show increased efficacy over the unmodified VRP in terms of B-cell and T-cell responses, when tested with secondary immune responses by in vitro restimulation assay. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. A Polyprotein-Expressing Salmonid Alphavirus Replicon Induces Modest Protection in Atlantic Salmon (Salmo Salar Against Infectious Pancreatic Necrosis

    Directory of Open Access Journals (Sweden)

    Azila Abdullah

    2015-01-01

    Full Text Available Vaccination is an important strategy for the control and prevention of infectious pancreatic necrosis (IPN in farmed Atlantic salmon (Salmo salar in the post-smolt stage in sea-water. In this study, a heterologous gene expression system, based on a replicon construct of salmonid alphavirus (SAV, was used for in vitro and in vivo expression of IPN virus proteins. The large open reading frame of segment A, encoding the polyprotein NH2-pVP2-VP4-VP3-COOH, as well as pVP2, were cloned and expressed by the SAV replicon in Chinook salmon embryo cells (CHSE-214 and epithelioma papulosum cyprini (EPC cells. The replicon constructs pSAV/polyprotein (pSAV/PP and pSAV/pVP2 were used to immunize Atlantic salmon (Salmo salar by a single intramuscular injection and tested in a subsequent IPN virus (IPNV challenge trial. A low to moderate protection against IPN was observed in fish immunized with the replicon vaccine that encoded the pSAV/PP, while the pSAV/pVP2 construct was not found to induce protection.

  18. Replicon-Helper Systems from Attenuated Venezuelan Equine Encephalitis Virus: Expression of Heterologous Genes in Vitro and Immunization Against Heterologous Pathogens in Vivo

    National Research Council Canada - National Science Library

    Pushko, Peter

    1997-01-01

    ...) or the Lassa virus nucleocapsid (N) gene, and upon transfection into eukaryotic cells by electroportation, these replicon RNAs directed the efficient, high-level synthesis of the HA or N proteins...

  19. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

    Science.gov (United States)

    McGowen, Michael R; Clark, Clay; Gatesy, John

    2008-08-01

    The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are

  20. Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: new insight into the evolution of this complex.

    Directory of Open Access Journals (Sweden)

    Ángeles Cuadrado

    Full Text Available Hordeum murinum L. is a species complex composed of related taxa, including the subspecies glaucum, murinum and leporinum. However, the phylogenetic relationships between the different taxa and their cytotypes, and the origin of the polyploid forms, remain points of controversy. The present work reports a comparative karyotype analysis of seven accessions of the H. murinum complex representing all subspecies and cytotypes. The karyotypes were determined by examining the distribution of the repetitive Triticeae DNA sequences pTa71, pTa794, pSc119.2, pAs1 and pHch950, the simple sequence repeats (SSRs (AG10, (AAC5, (AAG5, (ACT5, (ATC5, and (CCCTAAA3 via in situ hybridization. The chromosomes of the three subgenomes involved in the polyploids were identified. All tetraploids of all subspecies shared the same two subgenomes (thus suggesting them to in fact belong to the same taxon, the result of hybridization between two diploid ancestors. One of the subgenomes present in all tetraploids of all subspecies was found to be very similar (though not identical to the chromosome complement of the diploid glaucum. The hexaploid form of leporinum came about through a cross between a tetraploid and a third diploid form. Exclusively bivalent associations among homologous chromosomes were observed when analyzing pollen mother cells of tetraploid taxa. In conclusion, the present results identify all the individual chromosomes within the H. murinum complex, reveal its genome structure and phylogeny, and explain the appearance of the different cytotypes. Three cryptic species are proposed according to ploidy level that may deserve full taxonomic recognition.

  1. BARE retrotransposons are translated and replicated via distinct RNA pools.

    Directory of Open Access Journals (Sweden)

    Wei Chang

    Full Text Available The replication of Long Terminal Repeat (LTR retrotransposons, which can constitute over 80% of higher plant genomes, resembles that of retroviruses. A major question for retrotransposons and retroviruses is how the two conflicting roles of their transcripts, in translation and reverse transcription, are balanced. Here, we show that the BARE retrotransposon, despite its organization into just one open reading frame, produces three distinct classes of transcripts. One is capped, polyadenylated, and translated, but cannot be copied into cDNA. The second is not capped or polyadenylated, but is destined for packaging and ultimate reverse transcription. The third class is capped, polyadenylated, and spliced to favor production of a subgenomic RNA encoding only Gag, the protein forming virus-like particles. Moreover, the BARE2 subfamily, which cannot synthesize Gag and is parasitic on BARE1, does not produce the spliced sub-genomic RNA for translation but does make the replication competent transcripts, which are packaged into BARE1 particles. To our knowledge, this is first demonstration of distinct RNA pools for translation and transcription for any retrotransposon.

  2. Antimicrobial resistance and plasmid replicons in Yersinia enterocolitica strains isolated in Brazil in 30 years.

    Science.gov (United States)

    Frazão, Miliane R; Andrade, Leonardo N; Darini, Ana L C; Falcão, Juliana P

    Some studies evaluated the resistance profile of the Y. enterocolitica strains isolated in diverse countries. However, in Brazil the isolation and the study of Y. enterocolitica are not common and therefore information about the antimicrobial resistance profile of this species in this country is scarce. Therefore, the aim of this study was to evaluate the antimicrobial resistance of Y. enterocolitica of biotypes 1A, 2 and 4 isolated from clinical and non-clinical sources between 1979 and 2012, in Brazil. This study showed that some Yersinia enterocolitica of different biotypes remain susceptible to antimicrobials used for gastroenteritis treatment. Moreover, neither acquired resistance genes nor diversity of plasmids replicons were found; however, variation in the in vitro intrinsic resistant pattern was detected, except the non-resistance to cefoxitin in all strains. Notwithstanding, due to epidemiological link between Y. enterocolitica and the pork production chain, monitoring plasmid acquired resistance in Y. enterocolitica could also be considered for antimicrobial resistance control purposes and food safety measures. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce.

    Science.gov (United States)

    Lai, Huafang; He, Junyun; Engle, Michael; Diamond, Michael S; Chen, Qiang

    2012-01-01

    Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for the generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties owing to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that are effective, safe, low cost, and amenable to large-scale manufacturing. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  4. An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Rui Lu

    2009-02-01

    Full Text Available Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi. C. elegans also encodes three Dicer-related helicase (drh genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense.

  5. Replicon Particles of Venezuelan Equine Encephalitis Virus as a Reductionist Murine Model for Encephalitis▿

    Science.gov (United States)

    Schäfer, Alexandra; Whitmore, Alan C.; Konopka, Jennifer L.; Johnston, Robert E.

    2009-01-01

    Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) were used to model the initial phase of VEE-induced encephalitis in the mouse brain. VRP can target and infect cells as VEE, but VRP do not propagate beyond the first infected cell due to the absence of the structural genes. Direct intracranial inoculation of VRP into mice induced acute encephalitis with signs similar to the neuronal phase of wild-type VEE infection and other models of virus-induced encephalitis. Using the previously established VRP-mRNP tagging system, a new method to distinguish the host responses in infected cells from those in uninfected bystander cell populations, we detected a robust and rapid innate immune response in the central nervous system (CNS) by infected neurons and uninfected bystander cells. Moreover, this innate immune response in the CNS compromised blood-brain barrier integrity, created an inflammatory response, and directed an adaptive immune response characterized by proliferation and activation of microglia cells and infiltration of inflammatory monocytes, in addition to CD4+ and CD8+ T lymphocytes. Taken together, these data suggest that a naïve CNS has an intrinsic potential to induce an innate immune response that could be crucial to the outcome of the infection by determining the composition and dynamics of the adaptive immune response. Furthermore, these results establish a model for neurotropic virus infection to identify host and viral factors that contribute to invasion of the brain, the mechanism(s) whereby the adaptive immune response can clear the infection, and the role of the host innate response in these processes. PMID:19225006

  6. Venezuelan equine encephalitis replicon particles can induce rapid protection against foot-and-mouth disease virus.

    Science.gov (United States)

    Diaz-San Segundo, Fayna; Dias, Camila C A; Moraes, Mauro P; Weiss, Marcelo; Perez-Martin, Eva; Owens, Gary; Custer, Max; Kamrud, Kurt; de los Santos, Teresa; Grubman, Marvin J

    2013-05-01

    We have previously shown that delivery of the porcine type I interferon gene (poIFN-α/β) with a replication-defective human adenovirus vector (adenovirus 5 [Ad5]) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) 1 day later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock industry. Venezuelan equine encephalitis virus (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against either homologous or, in some cases, heterologous virus challenge. As an alternative approach to induce rapid protection against FMDV, we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-α (VRP-poIFN-α) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP significantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h posttreatment. Furthermore, mice pretreated with either 10(7) or 10(8) infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with induction of an antiviral response and production of IFN-α. By 6 h after treatment several genes were upregulated, and the number of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by IFN-α and VRP-GFP, is directly involved in protection against FMDV.

  7. Replicon particles of Venezuelan equine encephalitis virus as a reductionist murine model for encephalitis.

    Science.gov (United States)

    Schäfer, Alexandra; Whitmore, Alan C; Konopka, Jennifer L; Johnston, Robert E

    2009-05-01

    Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) were used to model the initial phase of VEE-induced encephalitis in the mouse brain. VRP can target and infect cells as VEE, but VRP do not propagate beyond the first infected cell due to the absence of the structural genes. Direct intracranial inoculation of VRP into mice induced acute encephalitis with signs similar to the neuronal phase of wild-type VEE infection and other models of virus-induced encephalitis. Using the previously established VRP-mRNP tagging system, a new method to distinguish the host responses in infected cells from those in uninfected bystander cell populations, we detected a robust and rapid innate immune response in the central nervous system (CNS) by infected neurons and uninfected bystander cells. Moreover, this innate immune response in the CNS compromised blood-brain barrier integrity, created an inflammatory response, and directed an adaptive immune response characterized by proliferation and activation of microglia cells and infiltration of inflammatory monocytes, in addition to CD4(+) and CD8(+) T lymphocytes. Taken together, these data suggest that a naïve CNS has an intrinsic potential to induce an innate immune response that could be crucial to the outcome of the infection by determining the composition and dynamics of the adaptive immune response. Furthermore, these results establish a model for neurotropic virus infection to identify host and viral factors that contribute to invasion of the brain, the mechanism(s) whereby the adaptive immune response can clear the infection, and the role of the host innate response in these processes.

  8. The contribution of type I interferon signaling to immunity induced by alphavirus replicon vaccines.

    Science.gov (United States)

    Thompson, Joseph M; Whitmore, Alan C; Staats, Herman F; Johnston, Robert

    2008-09-15

    The type I interferon (IFN) system is critical for protecting the mammalian host from numerous virus infections and plays a key role in shaping the antiviral adaptive immune response. In this report, the importance of type I IFN signaling was assessed in a mouse model of alphavirus-induced humoral immune induction. Venezuelan equine encephalitis virus replicon particles (VRP) expressing the hemagglutinin (HA) gene from influenza virus (HA-VRP) were used to vaccinate both wildtype (wt) and IFN alpha/beta receptor knockout (RKO) mice. HA-VRP vaccination induced equivalent levels of flu-specific systemic IgG, mucosal IgG, and systemic IgA antibodies in both wt and IFN RKO mice. In contrast, HA-VRP vaccination of IFN RKO mice failed to induce significant levels of flu-specific mucosal IgA antibodies at multiple mucosal surfaces. In the VRP adjuvant system, co-delivery of null VRP with ovalbumin (OVA) protein significantly increased the levels of OVA-specific serum IgG, fecal IgG, and fecal IgA antibodies in both wt and RKO mice, suggesting that type I IFN signaling plays a less significant role in the VRP adjuvant effect. Taken together, these results suggest that (1) at least in regard to IFN signaling, the mechanisms which regulate alphavirus-induced immunity differ when VRP are utilized as expression vectors as opposed to adjuvants, and (2) type I IFN signaling is required for the induction of mucosal IgA antibodies directed against VRP-expressed antigen. These results shed new light on the regulatory networks which promote immune induction, and specifically mucosal immune induction, with alphavirus vaccine vectors.

  9. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV in cattle

    Directory of Open Access Journals (Sweden)

    Loy John Dustin

    2013-01-01

    Full Text Available Abstract Background Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and expression was confirmed in vitro using polyclonal and monoclonal antibodies specific to E2. Vaccine made from particles was generated in Vero cells and administered to BVDV free calves in a prime/boost regimen at two dosage levels. Vaccination resulted in neutralizing antibody titers that cross-neutralized both type 1 and type 2 BVD genotypes following booster vaccination. Additionally, high dose vaccine administration demonstrated some protection from clinical disease and significantly reduced the degree of leukopenia caused by viral infection. Conclusions Replicon particle vaccines administered in a prime/boost regimen expressing BVDV E2 glycoprotein can induce cross-neutralizing titers, reduce leukopenia post challenge, and mitigate clinical disease in calves. This strategy holds promise for a safe and effective vaccine to BVDV.

  10. In vivo DNA cloning and adjacent gene fusing with a mini-Mu-lac bacteriophage containing a plasmid replicon.

    OpenAIRE

    Groisman, E A; Castilho, B A; Casadaban, M J

    1984-01-01

    A mini-Mu bacteriophage containing a high copy number plasmid replicon was constructed to clone genes in vivo. A chloramphenicol resistance gene for independent selection and the lacZYA operon to form gene fusions were also incorporated into this phage. This mini-Mu element can transpose at a high frequency when derepressed, and it can be complemented by a helper Mu prophage for lytic growth. DNA sequences that are flanked by two copies of this mini-Mu can be packaged along with them. After i...

  11. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Directory of Open Access Journals (Sweden)

    Juana M Sánchez-Puig

    Full Text Available Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  12. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    Science.gov (United States)

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC50) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir. The

  13. Characterisation of several heterogeneous species of defective RNAs derived from RNA 3 of cucumber mosaic virus.

    Science.gov (United States)

    López, C; Aramburu, J; Galipienso, L; Nuez, F

    2007-01-01

    Preparations of double-stranded RNAs (dsRNAs) extracted from Nicotiana tabacum cv Xanthi plants infected with a subgroup IB isolate of Cucumber mosaic virus (CMV) were found to contain a heterogeneous population of defective RNAs (D-RNAs) derived from RNA 3. Characterised D-RNAs ranged in size from 1.5 to 1.9 kb and were derived either by a single in-frame deletion within the 3a or 3b genes or by means of double in-frame deletions within both genes. Also, northern blot hybridisation showed two other types of RNA derived from RNA 3: (a) RNA species of ca. 0.7 kb containing the 3'-terminus but lacking the 5'-terminus, which could be 3'-coterminal subgenomic of D-RNAs derived from the 3b gene and (b) RNA species of unknown origin of ca. 0.8 kb containing the 5'-terminus but lacking the 3'-terminus.

  14. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse.

    Science.gov (United States)

    Barends, Sharief; Bink, Hugo H J; van den Worm, Sjoerd H E; Pleij, Cornelis W A; Kraal, Barend

    2003-01-10

    Turnip yellow mosaic virus (TYMV) has a genomic plus-strand RNA with a 5' cap followed by overlapping and different reading frames for the movement protein and polyprotein, while the distal coat protein cistron is translated from a subgenomic RNA. The 3'-untranslated region harbors a tRNA-like structure (TLS) to which a valine moiety can be added and it is indispensable for virus viability. Here, we report about a surprising interaction between TYMV-RNA-programmed ribosomes and 3'-valylated TLS that yields polyprotein with the valine N terminally incorporated by a translation mechanism resistant to regular initiation inhibitors. Disruption of the TLS exclusively abolishes polyprotein synthesis, which can be restored by adding excess TLS in trans. Our observations imply a novel eukaryotic mechanism for internal initiation of mRNA translation.

  15. Enhanced potency of individual and bivalent DNA replicon vaccines or conventional DNA vaccines by formulation with aluminum phosphate.

    Science.gov (United States)

    Yu, Yun-Zhou; Wang, Wen-Bin; Li, Na; Wang, Shuang; Yu, Wei-Yuan; Sun, Zhi-Wei

    2010-11-01

    DNA vaccines against botulinum neurotoxin (BoNTs) induce protective humoral immune responses in mouse model, but when compared with conventional vaccines such as toxoid and protein vaccines, DNA vaccines often induce lower antibody level and protective efficacy and are still necessary to increase their potency. In this study we evaluated the potency of aluminum phosphate as an adjuvant of DNA vaccines to enhance antibody responses and protective efficacy against botulinum neurotoxin serotypes A and B in Balb/c mice. The administration of these individual and bivalent plasmid DNA replicon vaccines against botulinum neurotoxin serotypes A and B in the presence of aluminum phosphate improved both antibody responses and protective efficacy. Furthermore, formulation of conventional plasmid DNA vaccines encoding the same Hc domains of botulinum neurotoxin serotypes A and B with aluminum phosphate adjuvant increased both antibody responses and protective efficacy. These results indicate aluminum phosphate is an effective adjuvant for these two types of DNA vaccines (i.e., plasmid DNA replicon vaccines and conventional plasmid DNA vaccines), and the vaccine formulation described here may be an excellent candidate for further vaccine development against botulinum neurotoxins. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  16. A 96-well based analysis of replicon elimination with the HCV NS5A replication complex inhibitor daclatasvir.

    Science.gov (United States)

    O'Boyle, Donald R; Nower, Peter T; Sun, Jin-Hua; Fridell, Robert; Wang, Chunfu; Valera, Lourdes; Gao, Min

    2013-10-01

    A 96-well based replicon elimination and colony formation assay is presented for comparing the resistance barrier of the hepatitis C virus (HCV) NS5A replication complex inhibitor daclatasvir (DCV, BMS-790052) on three HCV genotypes (gts) in a proof of concept experimental protocol. The 96-well assay format provides both individual colony as well as population characterization and is readily applicable to other HCV direct-acting antiviral agents (DAAs). The assay provides an assessment of HCV replication levels over a 5log10 range by measuring a luciferase reporter resident in the HCV replicons. Individual colony status can be measured with a separate and compatible resazurin assay to assess relative host cell fitness following inhibitor treatments. The methods employed are non-toxic and leave intact isolatable colonies that can be used for phenotyping and genotyping. The utility of the assay is demonstrated by the identification and isolation of resistant variants as well as in the ranking of the relative resistance barrier for the replication complex inhibitor DCV for gts 1a, 1b and 2a. The format provides a quantitative ranking based upon luciferase activity and has the ability to monitor DAA resistance development over time for large numbers of compounds. Copyright © 2013. Published by Elsevier B.V.

  17. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus.

    Science.gov (United States)

    Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M

    2013-05-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.

  18. Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen.

    Science.gov (United States)

    Thompson, Joseph M; Whitmore, Alan C; Staats, Herman F; Johnston, Robert E

    2008-08-05

    Alphavirus replicon particles induce strong antibody and CD8+ T cell responses to expressed antigens in numerous experimental systems. We have recently demonstrated that Venezuelan equine encephalitis virus replicon particles (VRP) possess adjuvant activity for systemic and mucosal antibody responses. In this report, we demonstrate that VRP induced an increased and balanced serum IgG subtype response to co-delivered antigen, with simultaneous induction of antigen-specific IgG1 and IgG2a antibodies, and increased both systemic and mucosal antigen-specific CD8+ T cell responses, as measured by an IFN-gamma ELISPOT assay. Additionally, VRP further increased antigen-specific T cell immunity in an additive fashion following co-delivery with the TLR ligand, CpG DNA. VRP infection led to recruitment of CD8+ T cells into the mucosal compartment, possibly utilizing the mucosal homing receptor, as this integrin was upregulated on CD8+ T cells in the draining lymph node of VRP-infected animals, where VRP-infected dendritic cells reside. This newly recognized ability of VRP to mediate increased T cell response towards co-delivered antigen provides the potential to both define the molecular basis of alphavirus-induced immunity, and improve alphavirus-based vaccines.

  19. Replicon typing of plasmids carrying blaCTX-M-1 in Enterobacteriaceae of animal, environmental and human origin

    Directory of Open Access Journals (Sweden)

    Katrin eZurfluh

    2014-10-01

    Full Text Available Objectives: The aim of this work was to determine the plasmid replicon profiles of a collection of blaCTX-M-1-positive enterobacterial strains. The isolates originated from chicken in the production pyramid, healthy food-producing animals at slaughter (chicken, calves and pigs, chicken retail meat, environmental isolates originating from water bodies, and isolates from humans. A selection of IncI and IncN plasmids were characterized by multilocus sequence typing in order to determine their epidemiological relatedness. Methods: Transconjugants of 74 blaCTX-M-1-positive isolates were analysed by PCR-based replicon typing and by PCR-based plasmid multilocus sequence typing.Results: The incompatibility groups detected among the blaCTX-M-1-harboring plasmids included IncI1, IncN, IncHI1B, IncF, IncFIIS, IncFIB and IncB/O, with plasmid lineage IncI1/ST3 predominating in isolates from chicken and from humans. Lineage IncN/ST1 was detected mainly in isolates from pigs. For the first time, blaCTX-M-1 genes encoded on IncHI1 plasmids were detected in isolates from cattle and from water bodies.Conclusions: This study identifies plasmid lineages that are contributing to the dissemination of blaCTX-M-1 genes in the food chain, the environment, and humans.

  20. The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to nonnucleoside polymerase or protease inhibitors.

    Science.gov (United States)

    McCown, Matthew F; Rajyaguru, Sonal; Le Pogam, Sophie; Ali, Samir; Jiang, Wen-Rong; Kang, Hyunsoon; Symons, Julian; Cammack, Nick; Najera, Isabel

    2008-05-01

    Specific inhibitors of hepatitis C virus (HCV) replication that target the NS3/4A protease (e.g., VX-950) or the NS5B polymerase (e.g., R1479/R1626, PSI-6130/R7128, NM107/NM283, and HCV-796) have advanced into clinical development. Treatment of patients with VX-950 or HCV-796 rapidly selected for drug-resistant variants after a 14-day monotherapy treatment period. However, no viral resistance was identified after monotherapy with R1626 (prodrug of R1479) or NM283 (prodrug of NM107) after 14 days of monotherapy. Based upon the rapid selection of resistance to the protease and nonnucleoside inhibitors during clinical trials and the lack of selection of resistance to the nucleoside inhibitors, we used the replicon system to determine whether nucleoside inhibitors demonstrate a higher genetic barrier to resistance than protease and nonnucleoside inhibitors. Treatment of replicon cells with nucleoside inhibitors at 10 and 15 times the 50% effective concentration resulted in clearance of the replicon, while treatment with a nonnucleoside or protease inhibitor selected resistant colonies. In combination, the presence of a nucleoside inhibitor reduced the frequency of colonies resistant to the other classes of inhibitors. These results indicate that the HCV replicon presents a higher barrier to the selection of resistance to nucleoside inhibitors than to nonnucleoside or protease inhibitors. Furthermore, the combination of a nonnucleoside or protease inhibitor with a nucleoside polymerase inhibitor could have a clear clinical benefit through the delay of resistance emergence.

  1. Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon

    DEFF Research Database (Denmark)

    Chen, Zhengjun; Lin, Jinzhong; Ma, Chengjie

    2014-01-01

    %. These vectors were employed to express a green fluorescent protein (GFP) using the promoter of S-layer protein SlpA from Lactobacillus acidophilus. And a growth-phase regulated expression of GFP was observed in different strains. In conclusion, these shuttle vectors provide efficient genetic tools for DNA......Many lactic acid bacteria carry different plasmids, particularly those that replicate via a theta mechanism. Here we describe Lactobacillus casei MCJ(CCTCC AB20130356), a new isolate that contains pMC11, carrying two distinct theta-type replicons. Each replicon contained an iteron in the origin...... of replication (oriV1 or oriV2) and a gene coding for the replicase (RepA_1 or RepB_1), both of which are essential for plasmid replication. Escherichia coli/Lactobacillus shuttle vectors were constructed with each replicon, yielding pEL5.7 and pEL5.6 that are based on oriV2 and oriV1 replicons, respectively...

  2. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3.

    Science.gov (United States)

    French, R; Ahlquist, P

    1987-05-01

    The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted individually and both can be simultaneously inactivated by N-terminal frameshift mutations without significantly interfering with amplification of RNA3 or production of its subgenomic mRNA. However, simultaneous major deletions in both coding regions greatly attenuate RNA3 accumulation. RNA3 levels can be largely restored by insertion of a heterologous, nonviral sequence in such mutants, suggesting that RNA3 requires physical separation of its terminal domains or a minimum overall size for normal replication or stability. Unexpectedly, deletions in a 150-base segment of the intercistronic noncoding region drastically reduce RNA3 accumulation. This segment contains a sequence element homologous to sequences found near the 5' ends of BMV RNA1 and RNA2 and in analogous positions in the three genomic RNAs of the related cucumber mosaic virus, suggesting a possible role in plus-strand synthesis.

  3. High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system.

    Science.gov (United States)

    Huang, Zhong; Phoolcharoen, Waranyoo; Lai, Huafang; Piensook, Khanrat; Cardineau, Guy; Zeitlin, Larry; Whaley, Kevin J; Arntzen, Charles J; Mason, Hugh S; Chen, Qiang

    2010-05-01

    Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of hetero-oligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the "competing" nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al., 2009. Biotechnol Bioeng 103: 706-714). In this article, we report further development of this expression system for its application in high-yield production of oligomeric protein complexes including monoclonal antibodies (mAbs) in plants. We showed that the BeYDV replicon system permits simultaneous efficient replication of two DNA replicons and thus, high-level accumulation of two recombinant proteins in the same plant cell. We also demonstrated that a single vector that contains multiple replicon cassettes was as efficient as the three-component system in driving the expression of two distinct proteins. Using either the non-competing, three-vector system or the multi-replicon single vector, we produced both the heavy and light chain subunits of a protective IgG mAb 6D8 against Ebola virus GP1 (Wilson et al., 2000. Science 287: 1664-1666) at 0.5 mg of mAb per gram leaf fresh weight within 4 days post-infiltration of Nicotiana benthamiana leaves. We further demonstrated that full-size tetrameric IgG complex containing two heavy and two light chains was efficiently assembled and readily purified, and retained its functionality in specific binding to inactivated Ebola virus. Thus, our single-vector replicon system provides high-yield production capacity for hetero-oligomeric proteins, yet eliminates the difficult task of identifying non-competing virus and the need for co-infection of multiple expression modules. The multi-replicon vector represents a

  4. Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles.

    Science.gov (United States)

    Tonkin, Daniel R; Whitmore, Alan; Johnston, Robert E; Barro, Mario

    2012-06-22

    Replicon particles derived from Venezuelan equine encephalitis virus (VEE) are infectious non-propagating particles which act as a safe and potent systemic, mucosal, and cellular adjuvant when delivered with antigen. VEE and VEE replicon particles (VRP) can target multiple cell types including dendritic cells (DCs). The role of these cell types in VRP adjuvant activity has not been previously evaluated, and for these studies we focused on the contribution of DCs to the response to VRP. By analysis of VRP targeting in the draining lymph node, we found that VRP induced rapid recruitment of TNF-secreting monocyte-derived inflammatory dendritic cells. VRP preferentially infected these inflammatory DCs as well as classical DCs and macrophages, with less efficient infection of other cell types. DC depletion suggested that the interaction of VRP with classical DCs was required for recruitment of inflammatory DCs, induction of high levels of many cytokines, and for stable transport of VRP to the draining lymph node. Additionally, in vitro-infected DCs enhanced antigen-specific responses by CD4 and CD8 T cells. By transfer of VRP-infected DCs into mice we showed that these DCs generated an inflammatory state in the draining lymph node similar to that achieved by VRP injection. Most importantly, VRP-infected DCs were sufficient to establish robust adjuvant activity in mice comparable to that produced by VRP injection. These findings indicate that VRP infect, recruit and activate both classical and inflammatory DCs, and those DCs become mediators of the VRP adjuvant activity. Published by Elsevier Ltd.

  5. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates.

    Science.gov (United States)

    Hooper, Jay W; Ferro, Anthony M; Golden, Joseph W; Silvera, Peter; Dudek, Jeanne; Alterson, Kim; Custer, Max; Rivers, Bryan; Morris, John; Owens, Gary; Smith, Jonathan F; Kamrud, Kurt I

    2009-12-11

    Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 1970s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRPs) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 x 10(6)pfu of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine.

  6. Burkholderia xernovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Denef, Vincent [University of California, Berkeley; Konstantinidis, Konstantinos T [Michigan State University, East Lansing; Vergez, Lisa [Lawrence Livermore National Laboratory (LLNL); Agullo, Loreine [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Reyes, Valeria Latorre [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Hauser, Loren John [ORNL; Cordova, Macarena [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Gomez, Luis [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Gonzalez, Myriam [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Land, Miriam L [ORNL; Lao, Victoria [Lawrence Livermore National Laboratory (LLNL); Larimer, Frank W [ORNL; LiPuma, John J [University of Michigan; Mahenthiralingam, Eshwar [Cardiff University, Wales; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Marx, Christopher J [Harvard University; Parnell, J Jacob [Michigan State University, East Lansing; Ramette, Alban [Michigan State University, East Lansing; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Seeger, Michael [Universidad Tecnica Federico Santa Maria, Casilla 110-V; Smith, Daryl [University of British Columbia, Vancouver; Spilker, Theodore [University of Michigan; Sul, Woo Jun [Michigan State University, East Lansing; Tsoi, Tamara V [Michigan State University, East Lansing; Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Tiedje, James M. [Michigan State University, East Lansing

    2006-01-01

    Burkholderia xenovorans LB400 (LB400), a well studied, effective polychlorinated biphenyl-degrader, has one of the two largest known bacterial genomes and is the first nonpathogenic Burkholderia isolate sequenced. From an evolutionary perspective, we find significant differences in functional specialization between the three replicons of LB400, as well as a more relaxed selective pressure for genes located on the two smaller vs. the largest replicon. High genomic plasticity, diversity, and specialization within the Burkholderia genus are exemplified by the conservation of only 44% of the genes between LB400 and Burkholderia cepacia complex strain 383. Even among four B. xenovorans strains, genome size varies from 7.4 to 9.73 Mbp. The latter is largely explained by our findings that >20% of the LB400 sequence was recently acquired by means of lateral gene transfer. Although a range of genetic factors associated with in vivo survival and intercellular interactions are present, these genetic factors are likely related to niche breadth rather than determinants of pathogenicity. The presence of at least eleven 'central aromatic' and twenty 'peripheral aromatic' pathways in LB400, among the highest in any sequenced bacterial genome, supports this hypothesis. Finally, in addition to the experimentally observed redundancy in benzoate degradation and formaldehyde oxidation pathways, the fact that 17.6% of proteins have a better LB400 paralog than an ortholog in a different genome highlights the importance of gene duplication and repeated acquirement, which, coupled with their divergence, raises questions regarding the role of paralogs and potential functional redundancies in large-genome microbes.

  7. 5’ and 3’ untranslated regions strongly enhance performance of geminiviral replicons in Nicotiana benthamiana leaves

    Directory of Open Access Journals (Sweden)

    Andrew G. Diamos

    2016-02-01

    Full Text Available We previously reported a recombinant protein production system based on a geminivirus replicon that yields high levels of vaccine antigens and monoclonal antibodies in plants. The bean yellow dwarf virus (BeYDV replicon generates massive amounts of DNA copies, which engage the plant transcription machinery. However, we noticed a disparity between transcript level and protein production, suggesting that mRNAs could be more efficiently utilized. In this study, we systematically evaluated genetic elements from human, viral, and plant sources for their potential to improve the BeYDV system. The tobacco extensin terminator enhanced transcript accumulation and protein production compared to other commonly used terminators, indicating that efficient transcript processing plays an important role in recombinant protein production. Evaluation of human-derived 5’ untranslated regions (UTRs indicated that many provided high levels of protein production, supporting their cross-kingdom function. Among the viral 5’ UTRs tested, we found the greatest enhancement with the tobacco mosaic virus omega leader. An analysis of the 5’ UTRs from the Arabidopsis thaliana and Nicotinana benthamiana photosystem I K genes found that they were highly active when truncated to include only the near upstream region, providing a dramatic enhancement of transgene production that exceeded that of the tobacco mosaic virus omega leader. The tobacco Rb7 matrix attachment region (MAR inserted downstream from the gene of interest provided significant enhancement, which was correlated with a reduction in plant cell death. Evaluation of agrobacterium strains found that EHA105 enhanced protein production and reduced cell death compared to LBA4301 and GV3101. We used these improvements to produce Norwalk virus capsid protein at >20% total soluble protein, corresponding to 1.8mg/g leaf fresh weight, more than twice the highest level ever reported in a plant system. We also produced

  8. RNA topology

    OpenAIRE

    Frank-Kamenetskii, Maxim D.

    2013-01-01

    A new variety on non-coding RNA has been discovered by several groups: circular RNA (circRNA). This discovery raises intriguing questions about the possibility of the existence of knotted RNA molecules and the existence of a new class of enzymes changing RNA topology, RNA topoisomerases.

  9. RTE and CTE mRNA export elements synergistically increase expression of unstable, Rev-dependent HIV and SIV mRNAs

    Directory of Open Access Journals (Sweden)

    Michalowski Daniel

    2006-01-01

    Full Text Available Abstract Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved eukaryotic mRNA export mechanism(s, namely the Constitutive Transport Element (CTE and the RNA Transport Element (RTE. Although RTE and CTE are potent in nucleocytoplasmic mRNA transport and expression, neither element is as powerful as the Rev-RRE posttranscriptional control. Here, we found that whereas CTE and the up-regulatory mutant RTEm26 alone increase expression from a subgenomic gag and env clones, the combination of these elements led to a several hundred-fold, synergistic increase. The use of the RTEm26-CTE combination is a simple way to increase expression of poorly expressed retroviral genes to levels otherwise only achieved via more cumbersome RNA optimization. The potent RTEm26-CTE element could be useful in lentiviral gene therapy vectors, DNA-based vaccine vectors, and gene transfer studies of other poorly expressed genes.

  10. Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon.

    Science.gov (United States)

    Chen, Zhengjun; Lin, Jinzhong; Ma, Chengjie; Zhao, Shumiao; She, Qunxin; Liang, Yunxiang

    2014-07-01

    Many lactic acid bacteria carry different plasmids, particularly those that replicate via a theta mechanism. Here we describe Lactobacillus casei MCJ(CCTCC AB20130356), a new isolate that contains pMC11, carrying two distinct theta-type replicons. Each replicon contained an iteron in the origin of replication (oriV1 or oriV2) and a gene coding for the replicase (RepA_1 or RepB_1), both of which are essential for plasmid replication. Escherichia coli/Lactobacillus shuttle vectors were constructed with each replicon, yielding pEL5.7 and pEL5.6 that are based on oriV2 and oriV1 replicons, respectively. These plasmids showed distinct properties: pEL5.7 was capable of replicating in L. casei MCJΔ1 and Lactobacillus delbrueckii subsp. lactic LBCH-1 but failed to do so in two other tested lactobacilli strains whereas pEL5.6 replicated in three different strains, including L. casei MCJΔ1, L. casei NJ, Lactobacillus paracasei LPC-37 and L. delbrueckii subsp. lactic LBCH-1. Plasmid stability was studied: pEL5.6 and pEL5.7 were very stably maintained in L. casei, as the loss rate was lower than 1 % per generation. pEL5.7 was also stable in L. delbrueckii subsp. lactic LBCH-1 with the loss rate estimated to be 3 %. These vectors were employed to express a green fluorescent protein (GFP) using the promoter of S-layer protein SlpA from Lactobacillus acidophilus. And a growth-phase regulated expression of GFP was observed in different strains. In conclusion, these shuttle vectors provide efficient genetic tools for DNA cloning and heterologous gene expression in lactobacilli.

  11. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    OpenAIRE

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2012-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associat...

  12. Structure and Immunogenicity of Alternative Forms of the Simian Immunodeficiency Virus Gag Protein Expressed Using Venezuelan Equine Encephalitis Virus Replicon Particles

    OpenAIRE

    Cecil, Chad; West, Ande; Collier, Martha; Jurgens, Christy; Madden, Victoria; Whitmore, Alan; Johnston, Robert; Moore, Dominic T.; Swanstrom, Ronald; Davis, Nancy L.

    2007-01-01

    Venezuelan equine encephalitis virus replicon particles (VRP) were engineered to express different forms of SIV Gag to compare expression in vitro, formation of intra- and extracellular structures and induction of humoral and cellular immunity in mice. The three forms examined were full-length myristylated SIV Gag (Gagmyr+), full-length Gag lacking the myristylation signal (Gagmyr-), or a truncated form of Gagmyr- comprising only the matrix and capsid domains (MA/CA). Comparison of VRP-infect...

  13. The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon.

    Science.gov (United States)

    Wang, Jing; Pettis, Gregg S

    2010-09-01

    Conjugal transfer of circular plasmids in Streptomyces involves a unique mechanism employing few plasmid-encoded loci and the transfer of double-stranded DNA by an as yet uncharacterized intercellular route. Efficient transfer of the circular streptomycete plasmid pIJ101 requires only two plasmid loci: the pIJ101 tra gene, and as a cis-acting function known as clt. Here, we compared the ability of the pIJ101 transfer apparatus to promote conjugal transfer of circular versus linear versions of the same replicon. While the pIJ101 tra locus readily transferred the circular form of the replicon, the linear version was transferred orders of magnitude less efficiently and all plasmids isolated from the transconjugants were circular, regardless of their original configuration in the donor. Additionally, relatively rare circularization of linear plasmids was detectable in the donor cells, which is consistent with the notion that this event was a prerequisite for transfer by TraB(pIJ101). Linear versions of this same replicon did transfer efficiently, in that configuration, from strains containing the conjugative linear plasmid SLP2. Our data indicate that functions necessary and sufficient for transfer of circular DNA were insufficient for transfer of a related linear DNA molecule. The results here suggest that the conjugation mechanisms of linear versus circular DNA in Streptomyces spp. are inherently different and/or that efficient transfer of linear DNA requires additional components.

  14. Effects of different replicons in conjugative plasmids on transformation efficiency, plasmid stability, gene expression and n-butanol biosynthesis in Clostridium tyrobutyricum

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingrui; Du, Yinming; Jiang, Wenyan; Chang, Wei-Lun; Yang, Shang-Tian [Ohio State Univ., Columbus, OH (United States). William G. Lowrie Dept. of Chemical and Biomolecular Engineering; Tang, I-Ching [Bioprocessing Innovative Company, Dublin, OH (United States)

    2012-01-15

    Clostridium tyrobutyricum ATCC 25755 can produce butyric acid, acetic acid, and hydrogen as the main products from various carbon sources. In this study, C. tyrobutyricum was used as a host to produce n-butanol by expressing adhE2 gene under the control of a native thiolase promoter using four different conjugative plasmids (pMTL82151, 83151, 84151, and 85151) each with a different replicon (pBP1 from C. botulinum NCTC2916, pCB102 from C. butyricum, pCD6 from Clostridium difficile, and pIM13 from Bacillus subtilis). The effects of different replicons on transformation efficiency, plasmid stability, adhE2 expression and aldehyde/alcohol dehydrogenase activities, and butanol production by different mutants of C. tyrobutyricum were investigated. Among the four plasmids and replicons studied, pMTL82151 with pBP1 gave the highest transformation efficiency, plasmid stability, gene expression, and butanol biosynthesis. Butanol production from various substrates, including glucose, xylose, mannose, and mannitol were then investigated with the best mutant strain harboring adhE2 in pMTL82151. A high butanol titer of 20.5 g/L with 0.33 g/g yield and 0.32 g/L h productivity was obtained with mannitol as the substrate in batch fermentation with pH controlled at {proportional_to}6.0. (orig.)

  15. Acute infection with venezuelan equine encephalitis virus replicon particles catalyzes a systemic antiviral state and protects from lethal virus challenge.

    Science.gov (United States)

    Konopka, Jennifer L; Thompson, Joseph M; Whitmore, Alan C; Webb, Drue L; Johnston, Robert E

    2009-12-01

    The host innate immune response provides a critical first line of defense against invading pathogens, inducing an antiviral state to impede the spread of infection. While numerous studies have documented antiviral responses within actively infected tissues, few have described the earliest innate response induced systemically by infection. Here, utilizing Venezuelan equine encephalitis virus (VEE) replicon particles (VRP) to limit infection to the initially infected cells in vivo, a rapid activation of the antiviral response was demonstrated not only within the murine draining lymph node, where replication was confined, but also within distal tissues. In the liver and brain, expression of interferon-stimulated genes was detected by 1 to 3 h following VRP footpad inoculation, reaching peak expression of >100-fold over that in mock-infected animals. Moreover, mice receiving a VRP footpad inoculation 6, 12, or 24 h prior to an otherwise lethal VEE footpad challenge were completely protected from death, including a drastic reduction in challenge virus titers. VRP pretreatment also provided protection from intranasal VEE challenge and extended the average survival time following intracranial challenge. Signaling through the interferon receptor was necessary for antiviral gene induction and protection from VEE challenge. However, VRP pretreatment failed to protect mice from a heterologous, lethal challenge with vesicular stomatitis virus, yet conferred protection following challenge with influenza virus. Collectively, these results document a rapid modulation of the host innate response within hours of infection, capable of rapidly alerting the entire animal to pathogen invasion and leading to protection from viral disease.

  16. Alphavirus replicon-based enhancement of mucosal and systemic immunity is linked to the innate response generated by primary immunization.

    Science.gov (United States)

    Tonkin, Daniel R; Jorquera, Patricia; Todd, Tracie; Beard, Clayton W; Johnston, Robert E; Barro, Mario

    2010-04-19

    Venezuelan equine encephalitis virus replicon particles (VRP) function as an effective systemic, cellular and mucosal adjuvant when codelivered with antigen, and show promise for use as a component in new and existing human vaccine formulations. We show here that VRP are effective at low dose and by intramuscular delivery, two useful features for implementation of VRP as a vaccine adjuvant. In mice receiving a prime and boost with antigen, we found that VRP are required in prime only to produce a full adjuvant effect. This outcome indicates that the events triggered during prime with VRP are sufficient to establish the nature and magnitude of the immune response to a second exposure to antigen. Events induced by VRP in the draining lymph node after prime include robust secretion of many inflammatory cytokines, upregulation of CD69 on leukocytes, and increased cellularity, with a disproportionate increase of a cell population expressing CD11c, CD11b, and F4/80. We show that antigen delivered 24h after administration of VRP does not benefit from an adjuvant effect, indicating that the events which are critical to VRP-mediated adjuvant activity occur within the first 24h. Further studies of the events induced by VRP will help elucidate the mechanism of VRP adjuvant activity and will advance the safe implementation of this adjuvant in human vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Small high-yielding binary Ti vectors pLSU with co-directional replicons for Agrobacterium tumefaciens-mediated transformation of higher plants.

    Science.gov (United States)

    Lee, Seokhyun; Su, Guiying; Lasserre, Eric; Aghazadeh, Monty Arta; Murai, Norimoto

    2012-05-01

    Small high-yielding binary Ti vectors of Agrobacterium tumefaciens were constructed to increase the cloning efficiency and plasmid yield in Escherichia coli and A. tumefaciens for transformation of higher plants. We reduced the size of the binary vector backbone to 4566bp with ColE1 replicon (715bp) for E. coli and VS1 replicon (2654bp) for A. tumefaciens, a bacterial kanamycin resistance gene (999bp), and the T-DNA region (152bp). The binary Ti vectors with the truncated VS1 replicon were stably maintained with more than 98% efficiency in A. tumefaciens without antibiotic selection for 4 days of successive transfers. The transcriptional direction of VS1 replicon can be the same as that of ColE1 replicon (co-directional transcription), or opposite (head-on transcription) as in the case of widely used vectors (pPZP or pCambia). New binary vectors with co-directional transcription yielded in E. coli up to four-fold higher transformation frequency than those with the head-on transcription. In A. tumefaciens the effect of co-directional transcription is still positive in up to 1.8-fold higher transformation frequency than that of head-on transcription. Transformation frequencies of new vectors are over six-fold higher than those of pCambia vector in A. tumefaciens. DNA yields of new vectors were three to five-fold greater than pCambia in E. coli. The proper functions of the new T-DNA borders and new plant selection marker genes were confirmed after A. tumefaciens-mediated transformation of tobacco leaf discs, resulting in virtually all treated leaf discs transformed and induced calli. Genetic analysis of kanamycin resistance trait among the progeny showed that the kanamycin resistance and sensitivity traits were segregated into the 3:1 ratio, indicating that the kanamycin resistance genes were integrated stably into a locus or closely linked loci of the nuclear chromosomal DNA of the primary transgenic tobacco plants and inherited to the second generation. © 2012

  18. Hepatitis E virus ORF2 protein over-expressed by baculovirus in hepatoma cells, efficiently encapsidates and transmits the viral RNA to naïve cells

    Directory of Open Access Journals (Sweden)

    Emerson Suzanne U

    2011-04-01

    Full Text Available Abstract A recombinant baculovirus(vBacORF2 that expressed the full-length ORF2 capsid protein of a genotype 1 strain of hepatitis E virus(HEV was constructed. Transduction of S10-3 human hepatoma cells with this baculovirus led to large amounts of ORF2 protein production in ~50% of the cells as determined by immune fluorescence microscopy. The majority of the ORF2 protein detected by Western blot was 72 kDa, the size expected for the full-length protein. To determine if the exogenously-supplied ORF2 protein could transencapsidate viral genomes, S10-3 cell cultures that had been transfected the previous day with an HEV replicon of genotype 1 that contained the gene for green fluorescent protein(GFP, in place of that for ORF2 protein, were transduced with the vBacORF2 virus. Cell lysates were prepared 5 days later and tested for the ability to deliver the GFP gene to HepG2/C3A cells, another human hepatoma cell line. FACS analysis indicated that lysates from cell cultures receiving only the GFP replicon were incapable of introducing the replicon into the HepG2/C3A cells whereas ~2% of the HepG2/C3A cells that received lysate from cultures that had received both the replicon and the baculovirus produced GFP. Therefore, the baculovirus-expressed ORF2 protein was able to trans-encapsidate the viral replicon and form a particle that could infect naïve HepG2/C3A cells. This ex vivo RNA packaging system should be useful for studying many aspects of HEV molecular biology.

  19. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann (Scripps)

    2016-10-18

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis.

  20. Genome-wide analysis of host factors in nodavirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Linhui Hao

    Full Text Available Flock House virus (FHV, the best studied of the animal nodaviruses, has been used as a model for positive-strand RNA virus research. As one approach to identify host genes that affect FHV RNA replication, we performed a genome-wide analysis using a yeast single gene deletion library and a modified, reporter gene-expressing FHV derivative. A total of 4,491 yeast deletion mutants were tested for their ability to support FHV replication. Candidates for host genes modulating FHV replication were selected based on the initial genome-wide reporter gene assay and validated in repeated Northern blot assays for their ability to support wild type FHV RNA1 replication. Overall, 65 deletion strains were confirmed to show significant changes in the replication of both FHV genomic RNA1 and sub-genomic RNA3 with a false discovery rate of 5%. Among them, eight genes support FHV replication, since their deletion significantly reduced viral RNA accumulation, while 57 genes limit FHV replication, since their deletion increased FHV RNA accumulation. Of the gene products implicated in affecting FHV replication, three are localized to mitochondria, where FHV RNA replication occurs, 16 normally reside in the nucleus and may have indirect roles in FHV replication, and the remaining 46 are in the cytoplasm, with functions enriched in translation, RNA processing and trafficking.

  1. Molecular characterization and PCR-based replicon typing of multidrug resistant Shigella sonnei isolates from an outbreak in Thimphu, Bhutan.

    Science.gov (United States)

    Ruekit, Sirigade; Wangchuk, Sonam; Dorji, Tshering; Tshering, Kinzang Pem; Pootong, Piyarat; Nobthai, Panida; Serichantalergs, Oralak; Poramathikul, Kamonporn; Bodhidatta, Ladaporn; Mason, Carl Jeffries

    2014-02-20

    Shigella species are an important cause of diarrhea in developing countries. These bacteria normally acquire their antibiotic resistance via several different mobile genetic elements including plasmids, transposons, and integrons involving gene cassettes. During a diarrhea surveillance study in Thimphu, Bhutan in June and July, 2011, Shigella sonnei were isolated more frequently than expected. This study describes the antibiotic resistance of these S. sonnei isolates. A total of 29 S. sonnei isolates from Thimphu, Bhutan was characterized for antimicrobial susceptibility by disc diffusion assay and minimum inhibitory concentration (MIC) assay. All isolates were tested by pulsed-field gel electrophoresis (PFGE) with restriction enzyme XbaI and were tested for plasmid. The plasmid patterns and the PFGE patterns were analyzed by Bionumerics software. DNA sequencing was performed on amplified products for gyraseA gene and class 1 and class 2 integrons. S. sonnei isolates were classified for incompatibility of plasmids by PCR-based replicon typing (PBRT). These S. sonnei were resistant to multiple drugs like ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, streptomycin, and tetracycline but susceptible to azithromycin. All isolates had class 2 integrons dfrA1, sat1 and aadA1 genes. Two point mutations in Gyrase A subunit at position Ser83Leu and Asp87Gly were detected in these quinolone resistant isolates. The plasmid and PFGE patterns of S. sonnei isolates suggested a clonal relationship of the isolates. All isolates carried common ColE plasmid. ColE plasmid co-resided with B/O plasmid (nine isolates) or I1 plasmid (one isolate). The characteristics of 29 S. sonnei isolates from Thimphu, Bhutan in June and July, 2011 are identical in PFGE, plasmid and resistance pattern. This study suggests that these recent S. sonnei isolates are clonally related and multidrug-resistant.

  2. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Directory of Open Access Journals (Sweden)

    Francesca Avogadri

    2010-09-01

    Full Text Available Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs.VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2, which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors.This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  3. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity.

    Science.gov (United States)

    Avogadri, Francesca; Merghoub, Taha; Maughan, Maureen F; Hirschhorn-Cymerman, Daniel; Morris, John; Ritter, Erika; Olmsted, Robert; Houghton, Alan N; Wolchok, Jedd D

    2010-09-10

    Malignant melanoma is the deadliest form of skin cancer and is refractory to conventional chemotherapy and radiotherapy. Therefore alternative approaches to treat this disease, such as immunotherapy, are needed. Melanoma vaccine design has mainly focused on targeting CD8+ T cells. Activation of effector CD8+ T cells has been achieved in patients, but provided limited clinical benefit, due to immune-escape mechanisms established by advanced tumors. We have previously shown that alphavirus-based virus-like replicon particles (VRP) simultaneously activate strong cellular and humoral immunity against the weakly immunogenic melanoma differentiation antigen (MDA) tyrosinase. Here we further investigate the antitumor effect and the immune mechanisms of VRP encoding different MDAs. VRP encoding different MDAs were screened for their ability to prevent the growth of the B16 mouse transplantable melanoma. The immunologic mechanisms of efficacy were investigated for the most effective vaccine identified, focusing on CD8+ T cells and humoral responses. To this end, ex vivo immune assays and transgenic mice lacking specific immune effector functions were used. The studies identified a potent therapeutic VRP vaccine, encoding tyrosinase related protein 2 (TRP-2), which provided a durable anti-tumor effect. The efficacy of VRP-TRP2 relies on a novel immune mechanism of action requiring the activation of both IgG and CD8+ T cell effector responses, and depends on signaling through activating Fcγ receptors. This study identifies a VRP-based vaccine able to elicit humoral immunity against TRP-2, which plays a role in melanoma immunotherapy and synergizes with tumor-specific CD8+ T cell responses. These findings will aid in the rational design of future immunotherapy clinical trials.

  4. An oral Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus delivered by Escherichia coli elicits immune responses in dogs.

    Science.gov (United States)

    Dahiya, S S; Saini, M; Kumar, P; Gupta, P K

    2011-01-01

    A Sindbis virus replicon-based DNA vaccine containing VP2 gene of canine parvovirus (CPV) was delivered by Escherichia coli to elicit immune responses. The orally immunized dogs developed CPV-specific serum IgG and virus neutralizing antibody responses. The cellular immune responses analyzed using lymphocyte proliferation test and flow cytometry indicated CPV-specific sensitization of both CD3+CD4+ and CD3+CD8+ lymphocytes. This study demonstrated that the oral CPV DNA vaccine delivered by E. coli can be considered as a promising approach for vaccination of dogs against CPV.

  5. In Vitro Synthesized RNA Generated from cDNA Clones of Both Genomic Components of Cucurbit yellow stunting disorder virus Replicates in Cucumber Protoplasts

    Directory of Open Access Journals (Sweden)

    Carolyn A. Owen

    2016-06-01

    Full Text Available Cucurbit yellow stunting disorder virus (CYSDV, a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants.

  6. In Vitro Synthesized RNA Generated from cDNA Clones of Both Genomic Components of Cucurbit yellow stunting disorder virus Replicates in Cucumber Protoplasts.

    Science.gov (United States)

    Owen, Carolyn A; Moukarzel, Romy; Huang, Xiao; Kassem, Mona A; Eliasco, Eleonora; Aranda, Miguel A; Coutts, Robert H A; Livieratos, Ioannis C

    2016-06-14

    Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5'- and 3'-UTRs plus the 3'-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants.

  7. RNA genetics

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA gentics: Variability of RNA genomes, Volume III. Topics covered include: High error rate, population equilibrium, and evolution of RNA replication systems; Influenza viruses; High rate of nutation and evolution; and Sequence space and quasi species distribution.

  8. Replicon properties of chromosomal DNA fibers and the duration of DNA synthesis of sunflower root-tip meristem cells at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.; Bjerknes, C.A.; Clinton, J.H.

    1978-01-01

    Chromosomal DNA fiber autoradiography was used to examine the replicon properties of root-tip meristem cells of Helianthus annuus intact seedlings grown at temperatures from 10 to 38/sup 0/C and those of root-tip cells grown in vitro at 23/sup 0/. The average replicon size was approximately 22 ..mu..m and it did not change with temperature nor when the roots were grown in culture. The average fork rate was 6 ..mu..m/h at 10/sup 0/ and it rose gradually to 12 ..mu..m/h at 38/sup 0/. The responses of replication fork movement and of the duration of S to temperature were of three types: those in which change in fork rate was primarily (more than 90%) responsible for change in the duration of S, those in which the fork rate remained constant while S increased nearly twofold, and those in which the duration of S increased even though the replication forks were moving faster. The first type of response listed was observed at temperatures from 20 to 35/sup 0/, the second type listed was observed at 10 to 15/sup 0/, and the third, was produced at 38/sup 0/.

  9. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications

    NARCIS (Netherlands)

    Pijlman, G.P.; Suhrbier, A.; Khromykh, A.A.

    2006-01-01

    The application of viral vectors for gene expression and delivery is rapidly evolving, with several entering clinical trials. However, a number of issues, including safety, gene expression levels, cell selectivity and antivector immunity, are driving the search for new vector systems. A number of

  10. Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri.

    Science.gov (United States)

    Maughan, P J; Kolano, B A; Maluszynska, J; Coles, N D; Bonifacio, A; Rojas, J; Coleman, C E; Stevens, M R; Fairbanks, D J; Parkinson, S E; Jellen, E N

    2006-07-01

    The nucleolus organizer region (NOR) and 5S ribosomal RNA (rRNA) genes are valuable as chromosome landmarks and in evolutionary studies. The NOR intergenic spacers (IGS) and 5S rRNA nontranscribed spacers (NTS) were PCR-amplified and sequenced from 5 cultivars of the Andean grain crop quinoa (Chenopodium quinoa Willd., 2n = 4x = 36) and a related wild ancestor (C. berlandieri Moq. subsp. zschackei (Murr) A. Zobel, 2n = 4x = 36). Length heterogeneity observed in the IGS resulted from copy number difference in subrepeat elements, small re arrangements, and species-specific indels, though the general sequence composition of the 2 species was highly similar. Fifteen of the 41 sequence polymorphisms identified among the C. quinoa lines were synapomorphic and clearly differentiated the highland and lowland ecotypes. Analysis of the NTS sequences revealed 2 basic NTS sequence classes that likely originated from the 2 allopolyploid subgenomes of C. quinoa. Fluorescence in situ hybridization (FISH) analysis showed that C. quinoa possesses an interstitial and a terminal pair of 5S rRNA loci and only 1 pair of NOR, suggesting a reduction in the number of rRNA loci during the evolution of this species. C. berlandieri exhibited variation in both NOR and 5S rRNA loci without changes in ploidy.

  11. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.

    Science.gov (United States)

    Nakagawa, K; Lokugamage, K G; Makino, S

    2016-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. © 2016 Elsevier Inc. All rights reserved.

  12. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    RNA modification has attracted increasing interest as it is realized that epitranscriptomics is important in disease development. In type 2 diabetes we have suggested that high urinary excretion of 8-oxo-2'-Guanosine (8oxoGuo), as a measure of global RNA oxidation, is associated with poor survival.......9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  13. Suppression of RNAi by dsRNA-degrading RNaseIII enzymes of viruses in animals and plants.

    Directory of Open Access Journals (Sweden)

    Isabel Weinheimer

    2015-03-01

    Full Text Available Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant and Caenorhabditis elegans (nematode and found that it cleaves double-stranded small interfering RNA (ds-siRNA molecules that are pivotal in the host RNA interference (RNAi pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3 produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are

  14. A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon.

    Directory of Open Access Journals (Sweden)

    Marianne Berger Rentsch

    Full Text Available Type I interferons (IFN comprise a family of cytokines that signal through a common cellular receptor to induce a plethora of genes with antiviral and other activities. Recombinant IFNs are used for the treatment of hepatitis C virus infection, multiple sclerosis, and certain malignancies. The capability of type I IFN to suppress virus replication and resultant cytopathic effects is frequently used to measure their bioactivity. However, these assays are time-consuming and require appropriate biosafety containment. In this study, an improved IFN assay is presented which is based on a recombinant vesicular stomatitis virus (VSV replicon encoding two reporter proteins, firefly luciferase and green fluorescent protein. The vector lacks the essential envelope glycoprotein (G gene of VSV and is propagated on a G protein-expressing transgenic cell line. Several mammalian and avian cells turned out to be susceptible to infection with the complemented replicon particles. Infected cells readily expressed the reporter proteins at high levels five hours post infection. When human fibroblasts were treated with serial dilutions of human IFN-β prior to infection, reporter expression was accordingly suppressed. This method was more sensitive and faster than a classical IFN bioassay based on VSV cytopathic effects. In addition, the antiviral activity of human IFN-λ (interleukin-29, a type III IFN, was determined on Calu-3 cells. Both IFN-β and IFN-λ were acid-stable, but only IFN-β was resistant to alkaline treatment. The antiviral activities of canine, porcine, and avian type I IFN were analysed with cell lines derived from the corresponding species. This safe bioassay will be useful for the rapid and sensitive quantification of multi-species type I IFN and potentially other antiviral cytokines.

  15. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs.

    Science.gov (United States)

    Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas

    2016-02-19

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.

  16. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316(T)-A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae.

    Science.gov (United States)

    Bartling, Pascal; Brinkmann, Henner; Bunk, Boyke; Overmann, Jörg; Göker, Markus; Petersen, Jörn

    2017-01-01

    A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316(T). PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.

  17. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316T–A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae

    Science.gov (United States)

    Bartling, Pascal; Brinkmann, Henner; Bunk, Boyke; Overmann, Jörg; Göker, Markus; Petersen, Jörn

    2017-01-01

    A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia. PMID:28983283

  18. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    for biosensorer,  der kan spore enten microRNA’er eller små molekyler, eksemplificeret ved S-adenosylmethionin (SAM). Slutteligt indikerer foreløbige resultater, at apta-FRET SAM sensoren kan udtrykkes i Escherichia coli-celler, hvilket viser, at RNA-origami arkitekturen muliggør cotransskriptionel foldning af...... fra en enkelt RNA-streng, og udfører en lang række komplekse cellulære funktioner. Mange af funktionerne er blevet udnyttet til at skabe funktionelle RNA-baserede nanoapparater, men den nuværende litteratur giver kun få eksempler på cotranskriptionel produktion af RNA-nanostrukturer. I 2014...... introducerede vores gruppe den enkeltstrengede RNA-origami metode, der giver mulighed for cotranscriptional foldning af veldefinerede nanostrukturer, og er en central del af arbejdet præsenteret heri. Denne ph.d.-afhandling udforsker potentielle anvendelser af RNA-origami nanostrukturer, som nanomedicin eller...

  19. Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag.

    Science.gov (United States)

    Grewe, Bastian; Hoffmann, Bianca; Ohs, Inga; Blissenbach, Maik; Brandt, Sabine; Tippler, Bettina; Grunwald, Thomas; Uberla, Klaus

    2012-03-01

    In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.

  20. The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous.

    Science.gov (United States)

    Ni, Peng; Vaughan, Robert C; Tragesser, Brady; Hoover, Haley; Kao, C Cheng

    2014-03-06

    Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses. © 2013.

  1. Three clustered origins of replication in a promiscuous-plasmid replicon and their differential use in a PolA+ strain and a delta PolA strain of Escherichia coli K-12.

    OpenAIRE

    Banerjee, S. K.; Luck, B T; Kim, H Y; Iyer, V. N.

    1992-01-01

    A 1,197-bp region of the broad-host-range plasmid pCU1 is adequate for its replication. Analysis of replicating molecules containing this region reveals three clustered origins of vegetative replication and replication proceeds bidirectionally from each in a theta mode. In an Escherichia coli polymerase I deletion mutant, utilization of one of these three origins was not detected. The potentiality for origin utilization may therefore be a determinant of replicon host range.

  2. Three clustered origins of replication in a promiscuous-plasmid replicon and their differential use in a PolA+ strain and a delta PolA strain of Escherichia coli K-12.

    Science.gov (United States)

    Banerjee, S K; Luck, B T; Kim, H Y; Iyer, V N

    1992-12-01

    A 1,197-bp region of the broad-host-range plasmid pCU1 is adequate for its replication. Analysis of replicating molecules containing this region reveals three clustered origins of vegetative replication and replication proceeds bidirectionally from each in a theta mode. In an Escherichia coli polymerase I deletion mutant, utilization of one of these three origins was not detected. The potentiality for origin utilization may therefore be a determinant of replicon host range.

  3. Preclinical evaluation of an anti-HCV miRNA cluster for treatment of HCV infection.

    Science.gov (United States)

    Yang, Xiao; Marcucci, Katherine; Anguela, Xavier; Couto, Linda B

    2013-03-01

    We developed a strategy to treat hepatitis C virus (HCV) infection by replacing five endogenous microRNA (miRNA) sequences of a natural miRNA cluster (miR-17-92) with sequences that are complementary to the HCV genome. This miRNA cluster (HCV-miR-Cluster 5) is delivered to cells using adeno-associated virus (AAV) vectors and the miRNAs are expressed in the liver, the site of HCV replication and assembly. AAV-HCV-miR-Cluster 5 inhibited bona fide HCV replication in vitro by up to 95% within 2 days, and the spread of HCV to uninfected cells was prevented by continuous expression of the anti-HCV miRNAs. Furthermore, the number of cells harboring HCV RNA replicons decreased dramatically by sustained expression of the anti-HCV miRNAs, suggesting that the vector is capable of curing cells of HCV. Delivery of AAV-HCV-miR-Cluster 5 to mice resulted in efficient transfer of the miRNA gene cluster and expression of all five miRNAs in liver tissue, at levels up to 1,300 copies/cell. These levels achieved up to 98% gene silencing of cognate HCV sequences, and no liver toxicity was observed, supporting the safety of this approach. Therefore, AAV-HCV-miR-Cluster 5 represents a different paradigm for the treatment of HCV infection.

  4. Stearoyl coenzyme A desaturase 1 is associated with hepatitis C virus replication complex and regulates viral replication

    DEFF Research Database (Denmark)

    Nguyen, LN; Lim, YS; Pham, Long

    2014-01-01

    The hepatitis C virus (HCV) life cycle is tightly regulated by lipid metabolism of host cells. In order to identify host factors involved in HCV propagation, we have recently screened a small interfering RNA (siRNA) library targeting host genes that control lipid metabolism and lipid droplet...... formation using cell culture-grown HCV (HCVcc)-infected cells. We selected and characterized the gene encoding stearoyl coenzyme A (CoA) desaturase 1 (SCD1). siRNA-mediated knockdown or pharmacological inhibition of SCD1 abrogated HCV replication in both subgenomic replicon and Jc1-infected cells, while...... exogenous supplementation of either oleate or palmitoleate, products of SCD1 activity, resurrected HCV replication in SCD1 knockdown cells. SCD1 was coimmunoprecipitated with HCV nonstructural proteins and colocalized with both double-stranded RNA (dsRNA) and HCV nonstructural proteins, indicating that SCD1...

  5. Directory of Open Access Journals (Sweden)

    Sabrina R.A. Queiroz

    2013-01-01

    Full Text Available RNA replicon derived from Flavivirus genome is a valuable tool for studying viral replication independent of virion assembly and maturation, besides being a great potencial for heterologous gene expression. In this study we described the construction of subgenomic replicons of yellow fever virus by yeast-based homologous recombination technique. The plasmid containing the yellow fever 17D strain replicon (pBSC-repYFV-17D, previously characterized, was handled to heterologous expression of the green fluorescent protein (repYFV-17D-GFP and firefly luciferase (repYFV-17D-Luc reporter genes. Both replicons were constructed by homologous recombination between the linearized vector pBSC-repYFV-17D and the PCR product containing homologous 25 nucleotides ends incorporated into PCR primers. The genomic organization of these constructs is similar to repYFV-17D, but with insertion of the reporter gene between the remaining 63 N-terminal nucleotides of the capsid protein and 72 C-terminal nucleotides of the E protein. The replicons repYFV-17D-GFP and repYFV-17D-Luc showed efficient replication and expression of the reporter genes. The yeast-based homologous recombination technique used in this study proved to be applicable for manipulation of the yellow fever virus genome in order to construct subgenomic replicons.O replicon de RNA derivado do genoma de Flavivirus é uma ferramenta valiosa para o estudo de replicação viral independente da montagem e da maturação do virion, além de possuir um grande potencial para expressão de genes heterólogos. Neste estudo nós descrevemos a construção de replicons subgenômicos do vírus da febre amarela utilizando a técnica de recombinação homóloga em levedura. O plasmídeo contendo o replicon do vírus febre amarela cepa 17D (pBSC-repYFV-17D, caracterizado anteriormente, foi manipulado para a expressão heteróloga dos genes repórteres green fluorescent protein (repYFV-17D-GFP e firelly luciferase (rep

  6. Effective primary isolation of wild-type canine distemper virus in MDCK, MV1 Lu and Vero cells without nucleotide sequence changes within the entire haemagglutinin protein gene and in subgenomic sections of the fusion and phospho protein genes.

    Science.gov (United States)

    Lednicky, John A; Meehan, Thomas P; Kinsel, Michael J; Dubach, Jean; Hungerford, Laura L; Sarich, Nicolene A; Witecki, Kelley E; Braid, Michael D; Pedrak, Casandra; Houde, Christiane M

    2004-06-15

    Canine distemper virus (CDV) is an important pathogen of many carnivores. We are developing a field-based model of morbillivirus virulence and pathogenesis through a study of distemper in naturally infected free-ranging raccoons. The isolation of CDV from raccoon tissues is essential for this work. CDV has often been isolated from animals only after co-cultivation of infected tissues with peripheral blood mononuclear cells derived from specific pathogen-free dogs or similar methods. We explored the utility and consequences of a simpler and cheaper alternative: CDV isolation in Vero, MDCK, and MV1 Lu cells. Virus growth was detected first in MDCK cells, whereas viral cytopathic effects were most obvious in Vero cells. CDV growth in MV1 Lu cells was relatively protracted and occurred without the formation of cytopathic effects. In primary CDV isolates, the entire nucleotide sequence of the receptor binding haemagglutinin (H) gene, and subgenomic fusion (F) and phospho (P) protein gene sequences corresponding to nt 5399-5733 and 2132-2563 of CDV reference strain Onderstepoort, respectively, were identical to those in matched infected tissues. Virus isolation confirmed the presence of CDV in instances where RT-PCR failed to detect CDV in infected tissues. Different viral phenotypes and genotypes were detected. The conservation of H gene sequences in primary CDV isolates suggests that MDCK, MV1 Lu, and Vero cells express proper receptors for wild-type CDV.

  7. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    Science.gov (United States)

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  8. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species.

    Science.gov (United States)

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-02-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species.

  9. PacBio SMRT assembly of a complex multi-replicon genome reveals chlorocatechol degradative operon in a region of genome plasticity.

    Science.gov (United States)

    Ricker, N; Shen, S Y; Goordial, J; Jin, S; Fulthorpe, R R

    2016-07-25

    We have sequenced a Burkholderia genome that contains multiple replicons and large repetitive elements that would make it inherently difficult to assemble by short read sequencing technologies. We illustrate how the integrated long read correction algorithms implemented through the PacBio Single Molecule Real-Time (SMRT) sequencing technology successfully provided a de novo assembly that is a reasonable estimate of both the gene content and genome organization without making any further modifications. This assembly is comparable to related organisms assembled by more labour intensive methods. Our assembled genome revealed regions of genome plasticity for further investigation, one of which harbours a chlorocatechol degradative operon highly homologous to those previously identified on globally ubiquitous plasmids. In an ideal world, this assembly would still require experimental validation to confirm gene order and copy number of repeated elements. However, we submit that particularly in instances where a polished genome is not the primary goal of the sequencing project, PacBio SMRT sequencing provides a financially viable option for generating a biologically relevant genome estimate that can be utilized by other researchers for comparative studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer.

    Science.gov (United States)

    Slovin, Susan F; Kehoe, Marissa; Durso, Robert; Fernandez, Celina; Olson, William; Gao, Jian P; Israel, Robert; Scher, Howard I; Morris, Stephen

    2013-01-30

    PSMA-VRP is a propagation defective, viral replicon vector system encoding PSMA under phase I evaluation for patients with castration resistant metastatic prostate cancer (CRPC). The product is derived from an attenuated strain of the alphavirus, Venezuelan Equine Encephalitis (VEE) virus, and incorporates multiple redundant safety features. In this first in human trial, two cohorts of 3 patients with CRPC metastatic to bone were treated with up to five doses of either 0.9×10(7)IU or 0.36×10(8)IU of PSMA-VRP at weeks 1, 4, 7, 10 and 18, followed by an expansion cohort of 6 patients treated with 0.36×10(8)IU of PSMA-VRP at weeks 1, 4, 7, 10 and 18. No toxicities were observed. In the first dose cohort, no PSMA specific cellular immune responses were seen but weak PSMA-specific signals were observed by ELISA. The remaining 9 patients, which included the higher cohort and the extension cohort, had no PSMA specific cellular responses. PSMA-VRP was well-tolerated at both doses. While there did not appear to be clinical benefit nor robust immune signals at the two doses studied, neutralizing antibodies were produced by both cohorts suggesting that dosing was suboptimal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Transient Expression of Lumbrokinase (PI239 in Tobacco (Nicotiana tabacum Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots

    Directory of Open Access Journals (Sweden)

    Alexia Dickey

    2017-01-01

    Full Text Available Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239 was produced from a plant system. Both wild-type (WT and plant codon-optimized (OP PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

  12. Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies.

    Science.gov (United States)

    Ricklin, Meret E; Vielle, Nathalie J; Python, Sylvie; Brechbühl, Daniel; Zumkehr, Beatrice; Posthaus, Horst; Zimmer, Gert; Summerfield, Artur

    2016-01-01

    This work was initiated by previous reports demonstrating that mismatched influenza A virus (IAV) vaccines can induce enhanced disease, probably mediated by antibodies. Our aim was, therefore, to investigate if a vaccine inducing opsonizing but not neutralizing antibodies against the hemagglutinin (HA) of a selected heterologous challenge virus would enhance disease or induce protective immune responses in the pig model. To this end, we immunized pigs with either whole inactivated virus (WIV)-vaccine or HA-expressing virus replicon particles (VRP) vaccine based on recombinant vesicular stomatitis virus (VSV). Both types of vaccines induced virus neutralizing and opsonizing antibodies against homologous virus as shown by a highly sensitive plasmacytoid dendritic cell-based opsonization assay. Opsonizing antibodies showed a broader reactivity against heterologous IAV compared with neutralizing antibodies. Pigs immunized with HA-recombinant VRP vaccine were partially protected from infection with a mismatched IAV, which was not neutralized but opsonized by the immune sera. The VRP vaccine reduced lung lesions, lung inflammatory cytokine responses, serum IFN-α responses, and viral loads in the airways. Only the VRP vaccine was able to prime IAV-specific IFNγ/TNFα dual secreting CD4(+) T cells detectable in the peripheral blood. In summary, this work demonstrates that with the virus pair selected, a WIV vaccine inducing opsonizing antibodies against HA which lack neutralizing activity, is neither protective nor does it induce enhanced disease in pigs. In contrast, VRP-expressing HA is efficacious vaccines in swine as they induced both potent antibodies and T-cell immunity resulting in a broader protective value.

  13. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  14. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and antitumor effects.

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Yang, Xiao Yi; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R; Clay, Timothy M; Smith, Jonathan; Kim Lyerly, H

    2012-11-01

    We recently demonstrated that Venezuelan equine encephalitis virus-based replicon particle (VRPs) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP-expressing interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and antitumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)), and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12, and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP-IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing antitumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than that of VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted.

  15. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  16. RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.

    Science.gov (United States)

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-07-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles.

    Science.gov (United States)

    Afonin, Kirill A; Viard, Mathias; Kagiampakis, Ioannis; Case, Christopher L; Dobrovolskaia, Marina A; Hofmann, Jen; Vrzak, Ashlee; Kireeva, Maria; Kasprzak, Wojciech K; KewalRamani, Vineet N; Shapiro, Bruce A

    2015-01-27

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use.

  18. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism.

    Directory of Open Access Journals (Sweden)

    Tim R Blower

    Full Text Available Abortive infection, during which an infected bacterial cell commits altruistic suicide to destroy the replicating bacteriophage and protect the clonal population, can be mediated by toxin-antitoxin systems such as the Type III protein-RNA toxin-antitoxin system, ToxIN. A flagellum-dependent bacteriophage of the Myoviridae, ΦTE, evolved rare mutants that "escaped" ToxIN-mediated abortive infection within Pectobacterium atrosepticum. Wild-type ΦTE encoded a short sequence similar to the repetitive nucleotide sequence of the RNA antitoxin, ToxI, from ToxIN. The ΦTE escape mutants had expanded the number of these "pseudo-ToxI" genetic repeats and, in one case, an escape phage had "hijacked" ToxI from the plasmid-borne toxIN locus, through recombination. Expression of the pseudo-ToxI repeats during ΦTE infection allowed the phage to replicate, unaffected by ToxIN, through RNA-based molecular mimicry. This is the first example of a non-coding RNA encoded by a phage that evolves by selective expansion and recombination to enable viral suppression of a defensive bacterial suicide system. Furthermore, the ΦTE escape phages had evolved enhanced capacity to transduce replicons expressing ToxIN, demonstrating virus-mediated horizontal transfer of genetic altruism.

  19. The p23 Protein of Citrus Tristeza Virus Controls Asymmetrical RNA Accumulation †

    Science.gov (United States)

    Satyanarayana, Tatineni; Gowda, Siddarame; Ayllón, María A.; Albiach-Martí, María R.; Rabindran, Shailaja; Dawson, William O.

    2002-01-01

    Citrus tristeza virus (CTV), a member of the Closteroviridae, has a 19.3-kb positive-stranded RNA genome that is organized into 12 open reading frames (ORFs) with the 10 3′ genes expressed via a nested set of nine or ten 3′-coterminal subgenomic mRNAs (sgRNAs). Relatively large amounts of negative-stranded RNAs complementary to both genomic and sgRNAs accumulate in infected cells. As is characteristic of RNA viruses, wild-type CTV produced more positive than negative strands, with the plus-to-minus ratios of genomic and sgRNAs estimated at 10 to 20:1 and 40 to 50:1, respectively. However, a mutant with all of the 3′ genes deleted replicated efficiently, but produced plus to minus strands at a markedly decreased ratio of 1 to 2:1. Deletion analysis of 3′-end genes revealed that the p23 ORF was involved in asymmetric RNA accumulation. A mutation which caused a frameshift after the fifth codon resulted in nearly symmetrical RNA accumulation, suggesting that the p23 protein, not a cis-acting element within the p23 ORF, controls asymmetric accumulation of CTV RNAs. Further in-frame deletion mutations in the p23 ORF suggested that amino acid residues 46 to 180, which contained RNA-binding and zinc finger domains, were indispensable for asymmetrical RNA accumulation, while the N-terminal 5 to 45 and C-terminal 181 to 209 amino acid residues were not absolutely required. Mutation of conserved cysteine residues to alanines in the zinc finger domain resulted in loss of activity of the p23 protein, suggesting involvement of the zinc finger in asymmetric RNA accumulation. The absence of p23 gene function was manifested by substantial increases in accumulation of negative-stranded RNAs and only modest decreases in positive-stranded RNAs. Moreover, the substantial decrease in the accumulation of negative-stranded coat protein (CP) sgRNA in the presence of the functional p23 gene resulted in a 12- to 15-fold increase in the expression of the CP gene. Apparently the excess

  20. Extracellular RNA Communication (ExRNA)

    Data.gov (United States)

    Federal Laboratory Consortium — Until recently, scientists believed RNA worked mostly inside the cell that produced it. Some types of RNA help translate genes into proteins that are necessary for...

  1. [The interrelation between changes in the structural organization of replicon clusters, a retarded fork displacement rate and the high level of spontaneous SCEs in form II of xeroderma pigmentosum].

    Science.gov (United States)

    Barenfel'd, L S; Nergadze, S G; Pleskach, N M; Mikhel'son, V M

    1992-01-01

    A cytogenetic observation, that the sister chromatid exchanges (SCE) occur 3 times more frequently in a special form of xeroderma pigmentosum--XPII than in the norm, prompted a study of DNA replication in this rare disease. Using DNA fiber autoradiography, the rate of fork movement and the frequency of initiation in the adjacent clusters of replicons were estimated. The rate of fork movement was significantly slower than that in classical XP and in normal cells. Here evidence was provided on another defect in DNA replication in XPII that involves a significantly decreased number of simultaneously operating adjacent clusters of replicons, which results in a decreased rate of DNA chain-growth. According to the Painter replication model for SCE, the exchanges arise due to double-strand DNA breaks occurring on the border between two adjacent clusters, respectively, completely and partially replicated. A retarded fork-displacement rate together with a decreased rate of DNA-chain growth may cause this situation to persist longer than in the norm. Thus, our data provide a further support of the replication model for SCE. A similar combination of cytogenetic and molecular defects has been obtained earlier in the Bloom syndrome cells.

  2. RNA Sequencing Analysis of Salivary Extracellular RNA.

    Science.gov (United States)

    Majem, Blanca; Li, Feng; Sun, Jie; Wong, David T W

    2017-01-01

    Salivary biomarkers for disease detection, diagnostic and prognostic assessments have become increasingly well established in recent years. In this chapter we explain the current leading technology that has been used to characterize salivary non-coding RNAs (ncRNAs) from the extracellular RNA (exRNA) fraction: HiSeq from Illumina® platform for RNA sequencing. Therefore, the chapter is divided into two main sections regarding the type of the library constructed (small and long ncRNA libraries), from saliva collection, RNA extraction and quantification to cDNA library generation and corresponding QCs. Using these invaluable technical tools, one can identify thousands of ncRNA species in saliva. These methods indicate that salivary exRNA provides an efficient medium for biomarker discovery of oral and systemic diseases.

  3. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  4. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation.

    Directory of Open Access Journals (Sweden)

    Jessica Wagoner

    Full Text Available Silymarin prevents liver disease in many experimental rodent models, and is the most popular botanical medicine consumed by patients with hepatitis C. Silibinin is a major component of silymarin, consisting of the flavonolignans silybin A and silybin B, which are insoluble in aqueous solution. A chemically modified and soluble version of silibinin, SIL, has been shown to potently reduce hepatitis C virus (HCV RNA levels in vivo when administered intravenously. Silymarin and silibinin inhibit HCV infection in cell culture by targeting multiple steps in the virus lifecycle. We tested the hepatoprotective profiles of SIL and silibinin in assays that measure antiviral and anti-inflammatory functions. Both mixtures inhibited fusion of HCV pseudoparticles (HCVpp with fluorescent liposomes in a dose-dependent fashion. SIL inhibited 5 clinical genotype 1b isolates of NS5B RNA dependent RNA polymerase (RdRp activity better than silibinin, with IC50 values of 40-85 µM. The enhanced activity of SIL may have been in part due to inhibition of NS5B binding to RNA templates. However, inhibition of the RdRps by both mixtures plateaued at 43-73%, suggesting that the products are poor overall inhibitors of RdRp. Silibinin did not inhibit HCV replication in subgenomic genotype 1b or 2a replicon cell lines, but it did inhibit JFH-1 infection. In contrast, SIL inhibited 1b but not 2a subgenomic replicons and also inhibited JFH-1 infection. Both mixtures inhibited production of progeny virus particles. Silibinin but not SIL inhibited NF-κB- and IFN-B-dependent transcription in Huh7 cells. However, both mixtures inhibited T cell proliferation to similar degrees. These data underscore the differences and similarities between the intravenous and oral formulations of silibinin, which could influence the clinical effects of this mixture on patients with chronic liver diseases.

  5. RNA structures regulating nidovirus RNA synthesis

    NARCIS (Netherlands)

    Born, Erwin van den

    2006-01-01

    Viruses depend on their host cell for the production of their progeny. The genetic information that is required to regulate this process is contained in the viral genome. In the case of plus-stranded RNA viruses, like nidoviruses, the RNA genome is directly involved in translation (resulting in the

  6. "ISA-Lation" of Single-Stranded Positive-Sense RNA Viruses from Non-Infectious Clinical/Animal Samples.

    Directory of Open Access Journals (Sweden)

    Fabien Aubry

    Full Text Available Isolation of viral pathogens from clinical and/or animal samples has traditionally relied on either cell cultures or laboratory animal model systems. However, virus viability is notoriously susceptible to adverse conditions that may include inappropriate procedures for sample collection, storage temperature, support media and transportation. Using our recently described ISA method, we have developed a novel procedure to isolate infectious single-stranded positive-sense RNA viruses from clinical or animal samples. This approach, that we have now called "ISA-lation", exploits the capacity of viral cDNA subgenomic fragments to re-assemble and produce infectious viral RNA in susceptible cells. Here, it was successfully used to rescue enterovirus, Chikungunya and Tick-borne encephalitis viruses from a variety of inactivated animal and human samples. ISA-lation represents an effective option to rescue infectious virus from clinical and/or animal samples that may have deteriorated during the collection and storage period, but also potentially overcomes logistic and administrative difficulties generated when complying with current health and safety and biosecurity guidelines associated with shipment of infectious viral material.

  7. Working with RNA

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2011-01-01

    Working with RNA is not a special discipline in molecular biology. However, RNA is chemically and structurally different from DNA and a few simple work rules have to be implemented to maintain the integrity of the RNA. Alkaline pH, high temperatures, and heavy metal ions should be avoided when...... possible and ribonucleases kept in check. The chapter outlines the specific precautions recommended for work with RNA and describes some of the modifications to standard protocols in molecular biology that are relevant to RNA work. The methods are applicable to all types of RNA and require a minimum...

  8. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing

    Directory of Open Access Journals (Sweden)

    Adriana F. Fusaro

    2017-10-01

    Full Text Available The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV, however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense.

  9. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found...... to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  10. In vitro antiviral activity of SCH446211 (SCH6), a novel inhibitor of the hepatitis C virus NS3 serine protease.

    Science.gov (United States)

    Liu, Rong; Abid, Karim; Pichardo, John; Pazienza, Valerio; Ingravallo, Paul; Kong, Rong; Agrawal, Sony; Bogen, Stephane; Saksena, Anil; Cheng, Kuo-Chi; Prongay, Andrew; Njoroge, F George; Baroudy, Bahige M; Negro, Francesco

    2007-01-01

    Current hepatitis C virus (HCV) therapies may cure approximately 60% of infections. They are often contraindicated or poorly tolerated, underscoring the need for safer and more effective drugs. A novel, alpha-ketoamide-derived, substrate-based inhibitor of the HCV serine protease (SCH446211) was developed. Compared with earlier reported inhibitors of similar chemical class, it has a P1'-P2' extension which provides extended interaction with the protease active site. The aim of this study was to evaluate the in vitro antiviral activity of SCH446211. Binding constant of SCH446211 to HCV NS3 protease was measured with the chromogenic substrate in vitro cleavage assay. Cell-based activity of SCH446211 was evaluated in replicon cells, which are Huh-7 hepatoma cells stably transfected with a subgenomic HCV RNA as reported previously. After 72 h of incubation with SCH446211, viral transcription and protein expression were measured by real-time RT-PCR (TaqMan), quantitative in situ hybridization, immunoblot and indirect immunofluorescence. The binding constant of SCH446211 to HCV NS3 protease was 3.8 +/- 0.4 nM. HCV replication and protein expression were inhibited by SCH446211 in replicon cells as consistently shown by four techniques. In particular, based on quantitative real-time RT-PCR measurements, the IC50 and IC90 of SCH446211 were estimated to be 40 +/- 20 and 100 +/- 20 nM (n = 17), respectively. Long-term culture of replicon cells with SCH446211 reduced replicon RNA to <0.1 copy per cell. SCH446211 did not show cellular toxicity at concentrations up to 50 microM. SCH446211 is a potent inhibitor of HCV protease in vitro. Its extended interaction with the HCV NS3 protease active site is associated with potent in vitro antiviral activity. This observation is potentially a useful guide for development of future potent inhibitors against HCV NS3 protease.

  11. Antisense RNA Approach

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Antisense RNA Approach. Antisense RNA approach is already well documented and well established in therapeutic research. Our system can also be subjected to such an approach. Which gene to target? Our objective would be to target the leader RNA as is thought ...

  12. Messenger RNA transcripts

    Science.gov (United States)

    Dan Cullen

    2004-01-01

    In contrast to DNA, messenger RNA (mRNA) in complex substrata is rarely analyzed, in large part because labile RNA molecules are difficult to purify. Nucleic acid extractions from fungi that colonize soil are particularly difficult and plagued by humic substances that interfere with Taq polymerase (Tebbe and Vahjen 1993 and references therein). Magnetic capture...

  13. RNA self-assembly and RNA nanotechnology.

    Science.gov (United States)

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  14. Fast Prediction of RNA-RNA Interaction

    Science.gov (United States)

    Salari, Raheleh; Backofen, Rolf; Sahinalp, S. Cenk

    Regulatory antisense RNAs are a class of ncRNAs that regulate gene expression by prohibiting the translation of an mRNA by establishing stable interactions with a target sequence. There is great demand for efficient computational methods to predict the specific interaction between an ncRNA and its target mRNA(s). There are a number of algorithms in the literature which can predict a variety of such interactions - unfortunately at a very high computational cost. Although some existing target prediction approaches are much faster, they are specialized for interactions with a single binding site.

  15. Analysis of the Enzymatic Activity of an NS3 Helicase Genotype 3a Variant Sequence Obtained from a Relapse Patient.

    Directory of Open Access Journals (Sweden)

    Paola J S Provazzi

    Full Text Available The hepatitis C virus (HCV is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.

  16. Combinatorics of RNA-RNA interaction.

    Science.gov (United States)

    Li, Thomas J X; Reidys, Christian M

    2012-02-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including their generating function, singularity analysis as well as explicit recurrence relations. In particular, our results imply simple asymptotic formulas for the number of joint structures.

  17. Methods for RNA Analysis

    DEFF Research Database (Denmark)

    Olivarius, Signe

    of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...

  18. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3'-terminal region of the genomic RNA and affects the host small RNA profile.

    Science.gov (United States)

    Ruiz-Ruiz, Susana; Navarro, Beatriz; Gisel, Andreas; Peña, Leandro; Navarro, Luis; Moreno, Pedro; Di Serio, Francesco; Flores, Ricardo

    2011-04-01

    To get an insight into the host RNA silencing defense induced by Citrus tristeza virus (CTV) and into the counter defensive reaction mediated by its three silencing suppressors (p25, p20 and p23), we have examined by deep sequencing (Solexa-Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show that CTV sRNAs: (i) represent more than 50% of the total sRNAs in Mexican lime and sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange (where the CTV titer is significantly lower), (ii) are predominantly of 21-22-nt, with a biased distribution of their 5' nucleotide and with those of (+) polarity accumulating in a moderate excess, and (iii) derive from essentially all the CTV genome (ca. 20 kb), as revealed by its complete reconstruction from viral sRNA contigs, but adopt an asymmetric distribution with a prominent hotspot covering approximately the 3'-terminal 2,500 nt. These results suggest that the citrus homologues of Dicer-like (DCL) 4 and 2 most likely mediate the genesis of the 21 and 22 nt CTV sRNAs, respectively, and show that both ribonucleases act not only on the genomic RNA but also on the 3' co-terminal subgenomic RNAs and, particularly, on their double-stranded forms. The plant sRNA profile, very similar and dominated by the 24-nt sRNAs in the three mock-inoculated controls, was minimally affected by CTV infection in sour orange, but exhibited a significant reduction of the 24-nt sRNAs in Mexican lime and sweet orange. We have also identified novel citrus miRNAs and determined how CTV influences their accumulation.

  19. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Science.gov (United States)

    Zhang, Rui; Liu, Shengxue; Chiba, Sotaro; Kondo, Hideki; Kanematsu, Satoko; Suzuki, Nobuhiro

    2014-01-01

    Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10) of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1). A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A) tail. The genome possesses two non-overlapping open reading frames (ORFs): a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5′-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1). Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1 and FgV1. PMID:25101066

  20. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Directory of Open Access Journals (Sweden)

    Rui eZhang

    2014-07-01

    Full Text Available Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10 of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1. A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A tail. The genome possesses two non-overlapping open reading frames (ORFs: a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1. Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  1. Mycoviruses, RNA silencing, and viral RNA recombination.

    Science.gov (United States)

    Nuss, Donald L

    2011-01-01

    In contrast to viruses of plants and animals, viruses of fungi, mycoviruses, uniformly lack an extracellular phase to their replication cycle. The persistent, intracellular nature of the mycovirus life cycle presents technical challenges to experimental design. However, these properties, coupled with the relative simplicity and evolutionary position of the fungal host, also provide opportunities for examining fundamental aspects of virus-host interactions from a perspective that is quite different from that pertaining for most plant and animal virus infections. This chapter presents support for this view by describing recent advances in the understanding of antiviral defense responses against one group of mycoviruses for which many of the technical experimental challenges have been overcome, the hypoviruses responsible for hypovirulence of the chestnut blight fungus Cryphonectria parasitica. The findings reveal new insights into the induction and suppression of RNA silencing as an antiviral defense response and an unexpected role for RNA silencing in viral RNA recombination. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Topology of RNA-RNA interaction structures

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Huang, Fenix Wenda; Penner, Robert

    2012-01-01

    Abstract The topological filtration of interacting RNA complexes is studied, and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that, for two interacting RNAs, called interaction structures, there exis...... complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partition function and base pairing probabilities.......Abstract The topological filtration of interacting RNA complexes is studied, and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that, for two interacting RNAs, called interaction structures, there exist...

  3. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs....

  4. PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501-and pHT beta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems

    DEFF Research Database (Denmark)

    Rosvoll, T.C.S.; Pedersen, T.; Sletvold, H.

    2010-01-01

    A PCR-based typing scheme was applied to identify plasmids in an epidemiologically and geographically diverse strain collection of Enterococcus faecium (n=93). Replicon types of pRE25 (n=56), pRUM (n=41), pIP501 (n=17) and pHT beta (n=14) were observed in 83% of the strains, while pS86, pCF10, p...

  5. Characterization of a Minimal pKW2124 Replicon from Weissella cibaria KLC140 and Its Application for the Construction of the Weissella Expression Vector pKUCm1

    Directory of Open Access Journals (Sweden)

    Hye-Jin eKu

    2015-02-01

    Full Text Available A 2.1-kb plasmid was previously isolated from Weissella cibaria KLC140 in kimchi and cloned into pUC19 along with the slpA and gfp genes, resulting in an 8.6-kb pKWCSLGFP construct for use as a novel surface display vector. To reduce the size of the vector, the minimal replicon of pKW2124 was determined. The pKW2124 plasmid contains a putative origin of replication (ori, a potential ribosomal binding site (RBS, and the repA gene encoding a plasmid replication protein. To conduct the minimal replicon experiment, three different PCR products (MR1, ori + RBS + repA; MR2, RBS + repA; MR2’, repA; MR3, fragment of repA were obtained and cloned into pUC19 (pKUCm1, pKUCm2, and pKUCm3, respectively containing the chloramphenicol acetyltransferase (CAT gene. These three constructed vectors were electroporated into W. confusa ATCC 10881 with different transformation efficiencies of 1.5×105 CFU/μg, 1.3×101 CFU/μg, and no transformation, respectively, suggesting that the putative ori, RBS, and repA gene are essential for optimum plasmid replication. Subsequent segregational plasmid stability testing of pKUCm1 and pKUCm2 showed that the vector pKUCm1 is highly stable up to 100 generations but pKUCm2 was completely lost after 60 generations, suggesting that the putative ori may be important for plasmid stability in the host strain. In addition, a host range test of pKUCm1 revealed that it has a broad host range spectrum including Weissella, Lactococcus, Leuconostoc, and even Lactobacillus. To verify the application of pKUCm1, the β-galactosidase gene and its promoter region from W. cibaria KSD1 were cloned in the vector, resulting in pKUGal. Expression of the β-galactosidase gene was confirmed using blue-white screening after IPTG induction. The small and stable pKUGal vector will be useful for gene transfer, expression, and manipulation in the Weissella genome and in other lactic acid bacteria.

  6. Characterization of a minimal pKW2124 replicon from Weissella cibaria KLC140 and its application for the construction of the Weissella expression vector pKUCm1

    Science.gov (United States)

    Ku, Hye-Jin; Park, Myeong Soo; Lee, Ju-Hoon

    2015-01-01

    A 2.1-kb plasmid was previously isolated from Weissella cibaria KLC140 in kimchi and cloned into pUC19 along with the slpA and gfp genes, resulting in an 8.6-kb pKWCSLGFP construct for use as a novel surface display vector. To reduce the size of the vector, the minimal replicon of pKW2124 was determined. The pKW2124 plasmid contains a putative origin of replication (ori), a potential ribosomal binding site (RBS), and the repA gene encoding a plasmid replication protein. To conduct the minimal replicon experiment, four different PCR products (MR1, ori+RBS+repA; MR2, RBS+repA; MR2’, repA; MR3, fragment of repA) were obtained and cloned into pUC19 (pKUCm1, pKUCm2, pKUCm2’, and pKUCm3, respectively) containing the chloramphenicol acetyltransferase (CAT) gene. These constructed vectors were electroporated into W. confusa ATCC 10881 with different transformation efficiencies of 1.5 × 105 CFU/μg, 1.3 × 101 CFU/μg, and no transformation, respectively, suggesting that the putative ori, RBS, and repA gene are essential for optimum plasmid replication. Subsequent segregational plasmid stability testing of pKUCm1 and pKUCm2 showed that the vector pKUCm1 is highly stable up to 100 generations but pKUCm2 was completely lost after 60 generations, suggesting that the putative ori may be important for plasmid stability in the host strain. In addition, a host range test of pKUCm1 revealed that it has a broad host range spectrum including Weissella, Lactococcus, Leuconostoc, and even Lactobacillus. To verify the application of pKUCm1, the β-galactosidase gene and its promoter region from W. cibaria KSD1 were cloned in the vector, resulting in pKUGal. Expression of the β-galactosidase gene was confirmed using blue-white screening after IPTG induction. The small and stable pKUGal vector will be useful for gene transfer, expression, and manipulation in the Weissella genome and in other lactic acid bacteria. PMID:25691882

  7. Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer.

    Science.gov (United States)

    Hamann, Martin V; Stanke, Nicole; Müllers, Erik; Stirnnagel, Kristin; Hütter, Sylvia; Artegiani, Benedetta; Bragado Alonso, Sara; Calegari, Federico; Lindemann, Dirk

    2014-08-01

    Vector systems based on different retroviruses are widely used to achieve stable integration and expression of transgenes. More recently, transient genetic manipulation systems were developed that are based on integration- or reverse transcription-deficient retroviruses. Lack of viral genome integration is desirable not only for reducing tumorigenic potential but also for applications requiring transient transgene expression such as reprogramming or genome editing. However, all existing transient retroviral vector systems rely on virus-encoded encapsidation sequences for the transfer of heterologous genetic material. We discovered that the transient transgene expression observed in target cells transduced by reverse transcriptase-deficient foamy virus (FV) vectors is the consequence of subgenomic RNA encapsidation into FV particles. Based on this initial observation, we describe here the establishment of FV vectors that enable the efficient transient expression of various transgenes by packaging, transfer, and de novo translation of nonviral RNAs both in vitro and in vivo. Transient transgene expression levels were comparable to integrase-deficient vectors but, unlike the latter, declined to background levels within a few days. Our results show that this new FV vector system provides a useful, novel tool for efficient transient genetic manipulation of target tissues by transfer of nonviral RNAs.

  8. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation......, regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  9. Tomato bushy stunt virus and DI RNAs as a model for studying mechanisms of RNA virus replication, pathogenicity and recombination. Final technical report for 1994--1997

    Energy Technology Data Exchange (ETDEWEB)

    Morris, T.J. [Univ. of Nebraska, Lincoln, NE (United States). School of Biological Sciences; Jackson, A.O. [Univ. of California, Berkeley, CA (United States). Dept. of Plant Biology

    1997-12-31

    Tomato bushy stunt virus (TBSV) is a small icosahedral virus with a very broad host-range. The symptoms of systemic infection range from mild mosaic to severe necrosis that often results in death. The genome of TBSV is composed of a single plus stranded RNA molecule with five genes. Two 5 inch genes are translated from the viral RNA, and the remaining three are translated from two subgenomic RNAs. Prior to the DOE supported studies, TBSV gene function had been assigned solely on the basis of sequence similarity with other virus genes of known function. The two 5 inch proximal genes (p33 and p92) were thought to be involved in viral replication, the middle gene encoded the capsid protein (p41), but no clear function was assigned to two nested 3 inch genes (p19 and p22), although it was suggested that at least one could be involved in movement. This research has determined the roles of each of the viral genes in the infection process, and the authors have obtained considerable genetic information pertinent to the contributions of the coat protein and the nested genes to the disease phenotypes observed in several host plants. They have also identified another genetic element with a short open reading frame in the 3 inch-noncoding region of the genome that provides a host-dependent replication function.

  10. Deletion of the rnl gene encoding a nick-sealing RNA ligase sensitizes Deinococcus radiodurans to ionizing radiation.

    Science.gov (United States)

    Schmier, Brad J; Chen, Xinguo; Wolin, Sandra; Shuman, Stewart

    2017-04-20

    Deinococcus radiodurans RNA ligase (DraRnl) seals 3΄-OH/5΄-PO4 nicks in duplex nucleic acids in which the 3΄-OH nick terminus consists of two or more ribonucleotides. DraRnl exemplifies a widely distributed Rnl5 family of nick-sealing RNA ligases, the physiological functions of which are uncharted. Here we show via gene knockout that whereas DraRnl is inessential for growth of D. radiodurans, its absence sensitizes the bacterium to killing by ionizing radiation (IR). DraRnl protein is present in exponentially growing and stationary phase cells, but is depleted during the early stages of recovery from 10 kGy of IR and subsequently replenished during the late phase of post-IR genome reassembly. Absence of DraRnl elicts a delay in reconstitution of the 10 kGy IR-shattered D. radiodurans replicons that correlates with the timing of DraRnl replenishment in wild-type cells. Complementation with a catalytically dead mutant highlights that nick sealing activity is important for the radioprotective function of DraRnl. Our findings suggest a scenario in which DraRnl acts at genomic nicks resulting from gap-filling by a ribonucleotide-incorporating repair polymerase. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  12. Generation of siRNA Nanosheets for Efficient RNA Interference

    Science.gov (United States)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  13. RNA gets in phase.

    Science.gov (United States)

    Saha, Shambaditya; Hyman, Anthony A

    2017-08-07

    Several neurological disorders are linked to tandem nucleotide repeat expansion in the mutated gene. Jain and Vale (2017. Nature. https://doi.org/10.1038/nature22386) show that, above a pathological threshold repeat number, base pairing interactions drive phase separation of RNA into membrane-less gels, suggesting that RNA can scaffold the assembly of phase-separated compartments that sequester proteins/RNAs causing toxicity. © 2017 Saha and Hyman.

  14. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  15. RNA catalysis through compartmentalization

    Science.gov (United States)

    Strulson, Christopher A.; Molden, Rosalynn C.; Keating, Christine D.; Bevilacqua, Philip C.

    2012-11-01

    RNA performs important cellular functions in contemporary life forms. Its ability to act both as a catalyst and a storage mechanism for genetic information is also an important part of the RNA world hypothesis. Compartmentalization within modern cells allows the local concentration of RNA to be controlled and it has been suggested that this was also important in early life forms. Here, we mimic intracellular compartmentalization and macromolecular crowding by partitioning RNA in an aqueous two-phase system (ATPS). We show that the concentration of RNA is enriched by up to 3,000-fold in the dextran-rich phase of a polyethylene glycol/dextran ATPS and demonstrate that this can lead to approximately 70-fold increase in the rate of ribozyme cleavage. This rate enhancement can be tuned by the relative volumes of the two phases in the ATPS. Our observations support the importance of compartmentalization in the attainment of function in an RNA World as well as in modern biology.

  16. Studying RNA-protein interactions in vivo by RNA immunoprecipitation

    DEFF Research Database (Denmark)

    Selth, Luke A; Close, Pierre; Svejstrup, Jesper Q

    2011-01-01

    The crucial roles played by RNA-binding proteins in all aspects of RNA metabolism, particularly in the regulation of transcription, have become increasingly evident. Moreover, other factors that do not directly interact with RNA molecules can nevertheless function proximally to RNA polymerases...

  17. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Bryan Holland

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are highly conserved, short (18-22 nts, non-coding RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3'UTRs of mRNAs. While numerous cellular microRNAs have been associated with the progression of various diseases including cancer, miRNAs associated with retroviruses have not been well characterized. Herein we report identification of microRNA-like sequences in coding regions of several HIV-1 genomes. RESULTS: Based on our earlier proteomics and bioinformatics studies, we have identified 8 cellular miRNAs that are predicted to bind to the mRNAs of multiple proteins that are dysregulated during HIV-infection of CD4+ T-cells in vitro. In silico analysis of the full length and mature sequences of these 8 miRNAs and comparisons with all the genomic and subgenomic sequences of HIV-1 strains in global databases revealed that the first 18/18 sequences of the mature hsa-miR-195 sequence (including the short seed sequence, matched perfectly (100%, or with one nucleotide mismatch, within the envelope (env genes of five HIV-1 genomes from Africa. In addition, we have identified 4 other miRNA-like sequences (hsa-miR-30d, hsa-miR-30e, hsa-miR-374a and hsa-miR-424 within the env and the gag-pol encoding regions of several HIV-1 strains, albeit with reduced homology. Mapping of the miRNA-homologues of env within HIV-1 genomes localized these sequence to the functionally significant variable regions of the env glycoprotein gp120 designated V1, V2, V4 and V5. CONCLUSIONS: We conclude that microRNA-like sequences are embedded within the protein-encoding regions of several HIV-1 genomes. Given that the V1 to V5 regions of HIV-1 envelopes contain specific, well-characterized domains that are critical for immune responses, virus neutralization and disease progression, we propose that the newly discovered miRNA-like sequences within the HIV-1 genomes may have evolved to self-regulate survival of the

  18. Antiviral evaluation of an Hsp90 inhibitor, gedunin, against dengue ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antiviral potential of a tetranortriterpenoid, gedunin, against dengue virus (DENV) replication by targeting the host chaperone, Hsp90. Methods: The compound, gedunin, was tested against the replication of DENV in vitro using BHK-15 cells transfected with DENV-2 subgenomic replicon. Molecular ...

  19. Chaperoning 5S RNA assembly

    National Research Council Canada - National Science Library

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-01-01

    ...—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP...

  20. A ribosome without RNA

    Directory of Open Access Journals (Sweden)

    Harold S Bernhardt

    2015-11-01

    Full Text Available It was Francis Crick who first asked why the ribosome contains so much RNA, and discussed the implications of this for the direct flow of genetic information from DNA to protein. Remarkable advances in our understanding of the ribosome and protein synthesis, including the recent publication of two mammalian mitochondrial ribosome structures, have shed new light on this intriguing aspect of evolution in molecular biology. We examine here whether RNA is indispensable for coded protein synthesis, or whether an all-protein ‘ribosome’ (or ‘synthosome’ might be possible, with a protein enzyme catalyzing peptide synthesis, and release factor-like protein adaptors able to read a message composed of deoxyribonucleotides. We also compare the RNA world hypothesis with the alternative ‘proteins first’ hypothesis in terms of their different understandings of the evolution of the ribosome, and whether this might have been preceded by an ancestral form of nonribosomal peptide synthesis catalyzed by protein enzymes.

  1. Pyrite footprinting of RNA

    Energy Technology Data Exchange (ETDEWEB)

    Schlatterer, Joerg C., E-mail: joerg.schlatterer@einstein.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Wieder, Matthew S. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Jones, Christopher D.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, NY (United States); Brenowitz, Michael [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  2. The 5'-terminal region of the Aichi virus genome encodes cis-acting replication elements required for positive- and negative-strand RNA synthesis.

    Science.gov (United States)

    Nagashima, Shigeo; Sasaki, Jun; Taniguchi, Koki

    2005-06-01

    Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.

  3. The 5′-Terminal Region of the Aichi Virus Genome Encodes cis-Acting Replication Elements Required for Positive- and Negative-Strand RNA Synthesis

    Science.gov (United States)

    Nagashima, Shigeo; Sasaki, Jun; Taniguchi, Koki

    2005-01-01

    Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5′ end) formed at the 5′ end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5′-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5′-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5′-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5′-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5′ end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3′ end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5′ end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis. PMID:15890931

  4. RNA interference in Lepidoptera

    DEFF Research Database (Denmark)

    Terenius, Ole; Papanicolaou, Alexie; Garbutt, Jennie S.

    2011-01-01

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive...... is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success...

  5. Genome-scale identification of miRNA-mRNA and miRNA-lncRNA interactions in domestic animals.

    Science.gov (United States)

    Li, A; Zhang, J; Zhou, Z; Wang, L; Sun, X; Liu, Y

    2015-12-01

    Domestic animals show considerable genetic diversity. Previous studies suggested that animal phenotypes were affected by miRNA-mRNA interplay, but these studies focused mainly on the analysis of one or several miRNA-mRNA interactions. However, in this study, we investigated miRNA-mRNA and miRNA-lncRNA interactions on a genomic scale using miranda and targetscan algorithms. There has been strong directional artificial selection practiced during the domestication of animals. Thus, we investigated SNPs that were located in miRNAs and miRNA binding sites and found that several SNPs located in 3'-UTRs of mRNAs had the potential to affect miRNA-mRNA interactions. In addition, a database, named miRBond, was developed to provide visualization, analysis and downloading of the resulting datasets. Our results open the way to further experimental verification of miRNA-mRNA and miRNA-lncRNA interactions as well as the influence of SNPs upon such interplay. © 2015 Stichting International Foundation for Animal Genetics.

  6. Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA

    OpenAIRE

    Smith, Cameron; Heyne, Steffen; Richter, Andreas S.; Will, Sebastian; Backofen, Rolf

    2010-01-01

    The Freiburg RNA tools web server integrates three tools for the advanced analysis of RNA in a common web-based user interface. The tools IntaRNA, ExpaRNA and LocARNA support the prediction of RNA?RNA interaction, exact RNA matching and alignment of RNA, respectively. The Freiburg RNA tools web server and the software packages of the stand-alone tools are freely accessible at http://rna.informatik.uni-freiburg.de.

  7. A rat model for hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Yannick Debing

    2016-10-01

    Full Text Available Hepatitis E virus (HEV is one of the prime causes of acute viral hepatitis, and chronic hepatitis E is increasingly recognized as an important problem in the transplant setting. Nevertheless, the fundamental understanding of the biology of HEV replication is limited and there are few therapeutic options. The development of such therapies is partially hindered by the lack of a robust and convenient animal model. We propose the infection of athymic nude rats with the rat HEV strain LA-B350 as such a model. A cDNA clone, pLA-B350, was constructed and the infectivity of its capped RNA transcripts was confirmed in vitro and in vivo. Furthermore, a subgenomic replicon, pLA-B350/luc, was constructed and validated for in vitro antiviral studies. Interestingly, rat HEV proved to be less sensitive to the antiviral activity of α-interferon, ribavirin and mycophenolic acid than genotype 3 HEV (a strain that infects humans. As a proof-of-concept, part of the C-terminal polymerase sequence of pLA-B350/luc was swapped with its genotype 3 HEV counterpart: the resulting chimeric replicon replicated with comparable efficiency as the wild-type construct, confirming that LA-B350 strain is amenable to humanization (replacement of certain sequences or motifs by their counterparts from human HEV strains. Finally, ribavirin effectively inhibited LA-B350 replication in athymic nude rats, confirming the suitability of the rat model for antiviral studies.

  8. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  9. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  10. The RNA interference revolution

    Directory of Open Access Journals (Sweden)

    G. Lenz

    2005-12-01

    Full Text Available The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.

  11. The fundamentals of RNA purification.

    Science.gov (United States)

    Nilsen, Timothy W

    2013-07-01

    The ability to purify, analyze, and manipulate RNA is now essential for many laboratories working in the life sciences; however, the skills and practices required to work with RNA are not present in every laboratory, and initiating RNA research can be intimidating. In this article, we provide an overview of RNA purification procedures and discuss strategies to prevent RNA degradation, so that any competent researcher can confidently purify RNA and use it to perform meaningful experiments from the most basic to the highly sophisticated.

  12. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids

    Directory of Open Access Journals (Sweden)

    Graham H Cowan

    2012-12-01

    Full Text Available The potato mop-top virus (PMTV triple gene block 2 (TGB2 movement protein fused to monomeric red fluorescent protein (mRFP-TGB2 was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localisations and interactions of mRFP-TGB2 were investigated using confocal imaging (CLSM and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum, mobile granules, small round structures (1-2 µm in diameter and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labelled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein, genomic RNA and fluorescently-labelled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localised to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.

  13. Messenger RNA (mRNA) nanoparticle tumour vaccination

    Science.gov (United States)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  14. Retinoids and rexinoids inhibit hepatitis C virus independently of retinoid receptor signaling.

    Science.gov (United States)

    Murakami, Yuko; Fukasawa, Masayoshi; Kaneko, Yukihiro; Suzuki, Tetsuro; Wakita, Takaji; Fukazawa, Hidesuke

    2014-02-01

    Using a high-throughput screening system involving HCV JFH-1-Huh 7.5.1 cells, we determined that the ligands of class II nuclear receptors, retinoids and rexinoids inhibit HCV infection. Retinoids, ligands of retinoic acid receptor (RAR), and rexinoids, ligands of retinoid X receptor (RXR), reduced extracellular HCV RNA of HCV infected cells in a dose-dependent manner. The 50% effective concentrations were below 10 nM, and the 50% cytotoxic concentrations were over 10 μM. Both agonists and antagonists demonstrated inhibition, which indicates that the effect is not dependent on retinoic acid signaling. These chemicals reduced HCV RNA and NS5A protein levels in cells harboring the subgenomic HCV replicon RNA, which suggests that the chemicals affect HCV RNA replication. These compounds were also effective against persistently infected cells, although the reduction in the intracellular HCV RNA was smaller than that of the extracellular HCV RNA, suggesting that viral post-replication step is also inhibited. In combination with interferon (IFN), retinoid exhibited a synergistic effect. Retinoids did not enhance expression of the IFN effector molecule PKR. These series of compounds warrant further investigation as new class of HCV drugs, for the clinical translation of our observation may lead to increased anti-HCV efficacy. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas B; Jensen, Trine I; Clausen, Bettina H

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  16. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  17. The tmRNA website

    National Research Council Canada - National Science Library

    Hudson, Corey M; Williams, Kelly P

    2015-01-01

    .... Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http://bioinformatics.sandia.gov/tmrna...

  18. PCBP2 enhances the antiviral activity of IFN-α against HCV by stabilizing the mRNA of STAT1 and STAT2.

    Directory of Open Access Journals (Sweden)

    Zhongshuai Xin

    Full Text Available Interferon-α (IFN-α is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b. However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.

  19. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  20. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression.

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J

    2015-03-20

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Rouleau Yanouchka

    2009-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV infection is a global health problem. A number of studies have implicated a direct role of cellular lipid metabolism in the HCV life cycle and inhibitors of the mevalonate pathway have been demonstrated to result in an antiviral state within the host cell. Transcriptome profiling was conducted on Huh-7 human hepatoma cells bearing subgenomic HCV replicons with and without treatment with 25-hydroxycholesterol (25-HC, an inhibitor of the mevalonate pathway that alters lipid metabolism, to assess metabolic determinants of pro- and antiviral states within the host cell. These data were compared with gene expression profiles from HCV-infected chimpanzees. Results Transcriptome profiling of Huh-7 cells treated with 25-HC gave 47 downregulated genes, 16 of which are clearly related to the mevalonate pathway. Fewer genes were observed to be upregulated (22 in the presence of 25-HC and 5 genes were uniquely upregulated in the HCV replicon bearing cells. Comparison of these gene expression profiles with data collected during the initial rise in viremia in 4 previously characterized HCV-infected chimpanzees yielded 54 overlapping genes, 4 of which showed interesting differential regulation at the mRNA level in both systems. These genes are PROX1, INSIG-1, NK4, and UBD. The expression of these genes was perturbed with siRNAs and with overexpression vectors in HCV replicon cells, and the effect on HCV replication and translation was assessed. Both PROX1 and NK4 regulated HCV replication in conjunction with an antiviral state induced by 25-hydroxycholesterol. Conclusion Treatment of Huh-7 cells bearing HCV replicons with 25-HC leads to the downregulation of many key genes involved in the mevalonate pathway leading to an antiviral state within the host cell. Furthermore, dysregulation of a larger subset of genes not directly related to the mevalonate pathway occurs both in 25-HC-treated HCV replicon harbouring cells

  2. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    Science.gov (United States)

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme. © 2014 Desai et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  4. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  5. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing.

    Science.gov (United States)

    Calo, Eliezer; Flynn, Ryan A; Martin, Lance; Spitale, Robert C; Chang, Howard Y; Wysocka, Joanna

    2015-02-12

    DEAD-box RNA helicases are vital for the regulation of various aspects of the RNA life cycle, but the molecular underpinnings of their involvement, particularly in mammalian cells, remain poorly understood. Here we show that the DEAD-box RNA helicase DDX21 can sense the transcriptional status of both RNA polymerase (Pol) I and II to control multiple steps of ribosome biogenesis in human cells. We demonstrate that DDX21 widely associates with Pol I- and Pol II-transcribed genes and with diverse species of RNA, most prominently with non-coding RNAs involved in the formation of ribonucleoprotein complexes, including ribosomal RNA, small nucleolar RNAs (snoRNAs) and 7SK RNA. Although broad, these molecular interactions, both at the chromatin and RNA level, exhibit remarkable specificity for the regulation of ribosomal genes. In the nucleolus, DDX21 occupies the transcribed rDNA locus, directly contacts both rRNA and snoRNAs, and promotes rRNA transcription, processing and modification. In the nucleoplasm, DDX21 binds 7SK RNA and, as a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, is recruited to the promoters of Pol II-transcribed genes encoding ribosomal proteins and snoRNAs. Promoter-bound DDX21 facilitates the release of the positive transcription elongation factor b (P-TEFb) from the 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes. Our results uncover the multifaceted role of DDX21 in multiple steps of ribosome biogenesis, and provide evidence implicating a mammalian RNA helicase in RNA modification and Pol II elongation control.

  6. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  7. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  8. RNA:RNA interaction can enhance RNA localization in Drosophila oocytes

    Science.gov (United States)

    Hartswood, Eve; Brodie, Jim; Vendra, Georgia; Davis, Ilan; Finnegan, David J.

    2012-01-01

    RNA localization is a key mechanism for targeting proteins to particular subcellular domains. Sequences necessary and sufficient for localization have been identified, but little is known about factors that affect its kinetics. Transcripts of gurken and the I factor, a non-LTR retrotransposon, colocalize at the nucleus in the dorso–antero corner of the Drosophila oocyte directed by localization signals, the GLS and ILS. I factor RNA localizes faster than gurken after injection into oocytes, due to a difference in the intrinsic localization ability of the GLS and ILS. The kinetics of localization of RNA containing the ILS are enhanced by the presence of a stem–loop, the A loop. This acts as an RNA:RNA interaction element in vivo and in vitro, and stimulates localization of RNA containing other localization signals. RNA:RNA interaction may be a general mechanism for modulating RNA localization and could allow an mRNA that lacks a localization signal to hitchhike on another RNA that has one. PMID:22345148

  9. RNA Accessibility in cubic time

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2011-03-01

    Full Text Available Abstract Background The accessibility of RNA binding motifs controls the efficacy of many biological processes. Examples are the binding of miRNA, siRNA or bacterial sRNA to their respective targets. Similarly, the accessibility of the Shine-Dalgarno sequence is essential for translation to start in prokaryotes. Furthermore, many classes of RNA binding proteins require the binding site to be single-stranded. Results We introduce a way to compute the accessibility of all intervals within an RNA sequence in (n3 time. This improves on previous implementations where only intervals of one defined length were computed in the same time. While the algorithm is in the same efficiency class as sampling approaches, the results, especially if the probabilities get small, are much more exact. Conclusions Our algorithm significantly speeds up methods for the prediction of RNA-RNA interactions and other applications that require the accessibility of RNA molecules. The algorithm is already available in the program RNAplfold of the ViennaRNA package.

  10. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition.

    Science.gov (United States)

    Madina, Bhaskara R; Kumar, Vikas; Metz, Richard; Mooers, Blaine H M; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-07-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3'-to-5' in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3' ends and strain-specific alternative 3' editing within 3' UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. © 2014 Madina et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Polymerase Chain Transcription: Exponential Synthesis of RNA and Modified RNA.

    Science.gov (United States)

    Chen, Tingjian; Romesberg, Floyd E

    2017-07-26

    There is increasing demand for RNA and modified RNA oligonucleotides, but in contrast to DNA oligonucleotides, they are typically prohibitively expensive to chemically synthesize, and unlike longer RNAs, they are only inefficiently produced by in vitro transcription, especially when modified. To address these challenges, we previously reported the evolution of a thermostable DNA polymerase, SFM4-3, that more efficiently accepts substrates with 2'-substituents. We now show that SFM4-3 efficiently transcribes RNA or 2'-F-modified RNA and that it also efficiently PCR amplifies oligonucleotides of mixed RNA and DNA composition. In addition, with thermocycling and the use of a novel DNA template, we demonstrate a polymerase chain transcription (PCT) reaction that results in the exponential production of orders of magnitude more RNA or modified RNA than is available by conventional transcription. PCT is more efficient and general than conventional transcription and can produce large amounts of any RNA or modified RNA oligonucleotide at a fraction of the cost of chemical synthesis.

  12. A cell-based assay for RNA synthesis by the HCV polymerase reveals new insights on mechanism of polymerase inhibitors and modulation by NS5A.

    Directory of Open Access Journals (Sweden)

    C T Ranjith-Kumar

    Full Text Available RNA synthesis by the genotype 1b hepatitis C virus (HCV polymerase (NS5B transiently expressed in Human embryonic kidney 293T cells or liver hepatocytes was found to robustly stimulate RIG-I-dependent luciferase production from the interferon β promoter in the absence of exogenously provided ligand. This cell-based assay, henceforth named the 5BR assay, could be used to examine HCV polymerase activity in the absence of other HCV proteins. Mutations that decreased de novo initiated RNA synthesis in biochemical assays decreased activation of RIG-I signaling. In addition, NS5B that lacks the C-terminal transmembrane helix but remains competent for RNA synthesis could activate RIG-I signaling. The addition of cyclosporine A to the cells reduced luciferase levels without affecting agonist-induced RIG-I signaling. Furthermore, non-nucleoside inhibitor benzothiadiazines (BTDs that bind within the template channel of the 1b NS5B were found to inhibit the readout from the 5BR assay. Mutation M414T in NS5B that rendered the HCV replicon resistant to BTD was also resistant to BTDs in the 5BR assay. Co-expression of the HCV NS5A protein along with NS5B and RIG-I was found to inhibit the readout from the 5BR assay. The inhibition by NS5A was decreased with the removal of the transmembrane helix in NS5B. Lastly, NS5B from all six major HCV genotypes showed robust activation of RIG-I in the 5BR assay. In summary, the 5BR assay could be used to validate inhibitors of the HCV polymerase as well as to elucidate requirements for HCV-dependent RNA synthesis.

  13. Targeting the nuclear RNA exosome

    DEFF Research Database (Denmark)

    Meola, Nicola; Jensen, Torben Heick

    2017-01-01

    Centrally positioned in nuclear RNA metabolism, the exosome deals with virtually all transcript types. This 3'-5' exo- and endo-nucleolytic degradation machine is guided to its RNA targets by adaptor proteins that enable substrate recognition. Recently, the discovery of the 'Poly(A) tail exosome...... targeting (PAXT)' connection as an exosome adaptor to human nuclear polyadenylated transcripts has relighted the interest of poly(A) binding proteins (PABPs) in both RNA productive and destructive processes....

  14. Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition

    Science.gov (United States)

    Madina, Bhaskara R.; Kumar, Vikas; Metz, Richard; Mooers, Blaine H.M.; Bundschuh, Ralf; Cruz-Reyes, Jorge

    2014-01-01

    Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. PMID:24865612

  15. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  16. Small RNA Deep Sequencing Reveals Role for Arabidopsis thaliana RNA-Dependent RNA Polymerases in Viral siRNA Biogenesis

    OpenAIRE

    Qi, Xiaopeng; Bao, Forrest Sheng; Xie, Zhixin

    2009-01-01

    RNA silencing functions as an important antiviral defense mechanism in a broad range of eukaryotes. In plants, biogenesis of several classes of endogenous small interfering RNAs (siRNAs) requires RNA-dependent RNA Polymerase (RDR) activities. Members of the RDR family proteins, including RDR1and RDR6, have also been implicated in antiviral defense, although a direct role for RDRs in viral siRNA biogenesis has yet to be demonstrated. Using a crucifer-infecting strain of Tobacco Mosaic Virus (T...

  17. RNase-assisted RNA chromatography

    Science.gov (United States)

    Michlewski, Gracjan; Cáceres, Javier F.

    2010-01-01

    RNA chromatography combined with mass spectrometry represents a widely used experimental approach to identify RNA-binding proteins that recognize specific RNA targets. An important drawback of most of these protocols is the high background due to direct or indirect nonspecific binding of cellular proteins to the beads. In many cases this can hamper the detection of individual proteins due to their low levels and/or comigration with contaminating proteins. Increasing the salt concentration during washing steps can reduce background, but at the cost of using less physiological salt concentrations and the likely loss of important RNA-binding proteins that are less stringently bound to a given RNA, as well as the disassembly of protein or ribonucleoprotein complexes. Here, we describe an improved RNA chromatography method that relies on the use of a cocktail of RNases in the elution step. This results in the release of proteins specifically associated with the RNA ligand and almost complete elimination of background noise, allowing a more sensitive and thorough detection of RNA-binding proteins recognizing a specific RNA transcript. PMID:20571124

  18. Posttranscriptional recoding by RNA editing.

    Science.gov (United States)

    Maas, Stefan

    2012-01-01

    The posttranscriptional recoding of nuclear RNA transcripts has emerged as an important regulatory mechanism during eukaryotic gene expression. In particular the deamination of adenosine to inosine (interpreted by the translational machinery as a guanosine) is a frequent event that can recode the meaning of amino acid codons in translated exons, lead to structural changes in the RNA fold, or may affect splice consensus or regulatory sequence sites in noncoding exons or introns and modulate the biogenesis of small RNAs. The molecular mechanism of how the RNA editing machinery and its substrates recognize and interact with each other is not understood well enough to allow for the ab initio delineation of bona fide RNA editing sites. However, progress in the identification of various physiological modification sites and their characterization has given important insights regarding molecular features and events critical for productive RNA editing reactions. In addition, structural studies using components of the RNA editing machinery and together with editing competent substrate molecules have provided information on the chemical mechanism of adenosine deamination within the context of RNA molecules. Here, I give an overview of the process of adenosine deamination RNA editing and describe its relationship to other RNA processing events and its currently established roles in gene regulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Regulation of hepatitis C virus replication by nuclear translocation of nonstructural 5A protein and transcriptional activation of host genes.

    Science.gov (United States)

    Maqbool, Muhammad Ahmad; Imache, Mohamed R; Higgs, Martin R; Carmouse, Sophie; Pawlotsky, Jean-Michel; Lerat, Hervé

    2013-05-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is involved in regulating viral replication through its direct interaction with the HCV RNA-dependent RNA polymerase. NS5A also alters infected cell metabolism through complex interactions with numerous host cell proteins. NS5A has furthermore been suggested to act as a transcriptional activator, although the impact on viral replication is unclear. To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-infected patient, and their abilities to activate gene transcription were analyzed in a single-hybrid yeast (Saccharomyces cerevisiae) model. Different variants isolated from the same patient displayed different transactivational activities. When these variants were inserted into the HCV subgenomic replicon system, they demonstrated various levels of RNA replication, which correlated with their transactivational activities. We showed that the C-terminal fragment of NS5A was localized to the nucleus and that a functional NS5A nuclear localization signal and cellular caspase activity were required for this process. Furthermore, nuclear localization of NS5A was necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to host cell promoters of several genes previously identified as important for efficient HCV RNA replication, inducing their transcription. Taken together, these results demonstrate a new mechanism by which HCV modulates its cellular environment, thereby enhancing viral replication.

  20. Suppression of RNA interference by adenovirus virus-associated RNA

    NARCIS (Netherlands)

    Andersson, M. Gunnar; Haasnoot, P. C. Joost; Xu, Ning; Berenjian, Saideh; Berkhout, Ben; Akusjärvi, Göran

    2005-01-01

    We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses

  1. INFO-RNA--a fast approach to inverse RNA folding.

    Science.gov (United States)

    Busch, Anke; Backofen, Rolf

    2006-08-01

    The structure of RNA molecules is often crucial for their function. Therefore, secondary structure prediction has gained much interest. Here, we consider the inverse RNA folding problem, which means designing RNA sequences that fold into a given structure. We introduce a new algorithm for the inverse folding problem (INFO-RNA) that consists of two parts; a dynamic programming method for good initial sequences and a following improved stochastic local search that uses an effective neighbor selection method. During the initialization, we design a sequence that among all sequences adopts the given structure with the lowest possible energy. For the selection of neighbors during the search, we use a kind of look-ahead of one selection step applying an additional energy-based criterion. Afterwards, the pre-ordered neighbors are tested using the actual optimization criterion of minimizing the structure distance between the target structure and the mfe structure of the considered neighbor. We compared our algorithm to RNAinverse and RNA-SSD for artificial and biological test sets. Using INFO-RNA, we performed better than RNAinverse and in most cases, we gained better results than RNA-SSD, the probably best inverse RNA folding tool on the market. www.bioinf.uni-freiburg.de?Subpages/software.html.

  2. The RNA Exosome and RNA Exosome-linked Disease.

    Science.gov (United States)

    Morton, Derrick J; Kuiper, Emily G; Jones, Stephanie K; Leung, Sara W; Corbett, Anita H; Fasken, Milo B

    2017-11-01

    The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Switching off small RNA regulation with trap-mRNA

    DEFF Research Database (Denmark)

    Overgaard, Martin; Johansen, Jesper; Møller-Jensen, Jakob

    2009-01-01

    M, which silences the expression of an outer membrane protein, YbfM under most growth conditions, does not become destabilized by target mRNA overexpression, indicating that the small RNA regulator acts catalytically. Furthermore, our regulatory studies suggested that control of micM expression is unlikely...

  4. Origin and Evolution of RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    de Farias, Savio T; Dos Santos Junior, Ariosvaldo P; Rêgo, Thais G; José, Marco V

    2017-01-01

    RNA-dependent RNA polymerases (RdRp) are very ancient enzymes and are essential for all viruses with RNA genomes. We reconstruct the origin and evolution of this polymerase since the initial stages of the origin of life. The origin of the RdRp was traced back from tRNA ancestors. At the origin of the RdRp the most ancient part of the protein is the cofactor-binding site that had the capacity of binding to simple molecules as magnesium, calcium, and ribonucleotides. Our results suggest that RdRp originated from junctions of proto-tRNAs that worked as the first genes at the emergence of the primitive translation system, where the RNA was the informational molecule. The initial domain, worked as a building block for the emergence of the fingers and thumb domains. From the ancestral RdRp, we could establish the evolutionary stages of viral evolution from a rooted ancestor to modern viruses. It was observed that the selective pressure under the RdRp was the organization and functioning of the genome, where RNA double-stranded and RNA single-stranded virus formed a separate group. We propose an evolutionary route to the polymerases and the results suggest an ancient scenario for the origin of RNA viruses.

  5. Bringing RNA into View: RNA and Its Roles in Biology.

    Science.gov (United States)

    Atkins, John F.; Ellington, Andrew; Friedman, B. Ellen; Gesteland, Raymond F.; Noller, Harry F.; Pasquale, Stephen M.; Storey, Richard D.; Uhlenbeck, Olke C.; Weiner, Alan M.

    This guide presents a module for college students on ribonucleic acid (RNA) and its role in biology. The module aims to integrate the latest research and its findings into college-level biology and provide an opportunity for students to understand biological processes. Four activities are presented: (1) "RNA Structure: Tapes to Shapes"; (2) "RNA…

  6. RNA Interference-Towards RNA becoming a Medicine

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 12. RNA Inteference – Towards RNA becoming a Medicine. Subhanjan Mondal. General Article Volume 8 Issue 12 December 2003 pp 42-49. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. On the linkage between RNA processing and RNA translatability.

    Science.gov (United States)

    Connor, A; Wiersma, E; Shulman, M J

    1994-10-07

    The immunoglobulin mu heavy chain gene of mouse hybridoma cells is expressed in two forms, microseconds and microns, differing in their use of 3' exons. As for many other mammalian genes, mutations in the mu gene which prematurely terminate translation often have the effect of reducing the amount of these mu RNAs. To test the generality of this relationship, we selected mutant hybridoma cell lines defective in IgM production and searched both for translation termination mutations which do not reduce the amount of mu RNA as well as for mutants which show the more commonly observed reduction in mu RNA. As observed previously, the amount of microseconds RNA is normal in mutants terminating in the C mu 4 exon; by contrast the amount of microns RNA is reduced in these mutants, indicating that the effect of the mutation is influenced by some feature near the 3' end of the RNA. Mutations terminating translation in other C region exons have a graded effect on RNA content, ranging from 10% the normal level for termination in the C mu 3 exon down to 1% for termination in the C mu 2 exon. By contrast, a mutant cell line terminating in the leader exon contained 25% the normal amount of mu RNA, suggesting that translation past some point might be required to fully engage the RNA degradation process.

  8. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    OpenAIRE

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cy...

  9. Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles

    Science.gov (United States)

    2015-01-01

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use. PMID:25521794

  10. Nuclear Export of Messenger RNA

    Directory of Open Access Journals (Sweden)

    Jun Katahira

    2015-03-01

    Full Text Available Transport of messenger RNA (mRNA from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.

  11. Catalysis and prebiotic RNA synthesis

    Science.gov (United States)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  12. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily...

  13. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    Science.gov (United States)

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  14. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    2014-01-01

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...

  15. RNA er jo bare matematik!

    DEFF Research Database (Denmark)

    Blaavand, Jakob Lindblad

    2011-01-01

    Hvordan kan man kurere sygdomme med matematiske geometriske strukturer? Det kan man i princippet, hvis de geometriske figurer er RNA-molekyler, og sygdommen skyldes syge gener.......Hvordan kan man kurere sygdomme med matematiske geometriske strukturer? Det kan man i princippet, hvis de geometriske figurer er RNA-molekyler, og sygdommen skyldes syge gener....

  16. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis.

    Directory of Open Access Journals (Sweden)

    Xiaopeng Qi

    Full Text Available RNA silencing functions as an important antiviral defense mechanism in a broad range of eukaryotes. In plants, biogenesis of several classes of endogenous small interfering RNAs (siRNAs requires RNA-dependent RNA Polymerase (RDR activities. Members of the RDR family proteins, including RDR1and RDR6, have also been implicated in antiviral defense, although a direct role for RDRs in viral siRNA biogenesis has yet to be demonstrated. Using a crucifer-infecting strain of Tobacco Mosaic Virus (TMV-Cg and Arabidopsis thaliana as a model system, we analyzed the viral small RNA profile in wild-type plants as well as rdr mutants by applying small RNA deep sequencing technology. Over 100,000 TMV-Cg-specific small RNA reads, mostly of 21- (78.4% and 22-nucleotide (12.9% in size and originating predominately (79.9% from the genomic sense RNA strand, were captured at an early infection stage, yielding the first high-resolution small RNA map for a plant virus. The TMV-Cg genome harbored multiple, highly reproducible small RNA-generating hot spots that corresponded to regions with no apparent local hairpin-forming capacity. Significantly, both the rdr1 and rdr6 mutants exhibited globally reduced levels of viral small RNA production as well as reduced strand bias in viral small RNA population, revealing an important role for these host RDRs in viral siRNA biogenesis. In addition, an informatics analysis showed that a large set of host genes could be potentially targeted by TMV-Cg-derived siRNAs for posttranscriptional silencing. Two of such predicted host targets, which encode a cleavage and polyadenylation specificity factor (CPSF30 and an unknown protein similar to translocon-associated protein alpha (TRAP alpha, respectively, yielded a positive result in cleavage validation by 5'RACE assays. Our data raised the interesting possibility for viral siRNA-mediated virus-host interactions that may contribute to viral pathogenicity and host specificity.

  17. [Capping strategies in RNA viruses].

    Science.gov (United States)

    Bouvet, Mickaël; Ferron, François; Imbert, Isabelle; Gluais, Laure; Selisko, Barbara; Coutard, Bruno; Canard, Bruno; Decroly, Etienne

    2012-04-01

    Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential. © 2012 médecine/sciences – Inserm / SRMS.

  18. RNA in extracellular vesicles.

    Science.gov (United States)

    Kim, Kyoung Mi; Abdelmohsen, Kotb; Mustapic, Maja; Kapogiannis, Dimitrios; Gorospe, Myriam

    2017-07-01

    Cells release a range of membrane-enclosed extracellular vesicles (EVs) into the environment. Among them, exosomes and microvesicles (collectively measuring 40-1000 nm in diameter) carry proteins, signaling lipids, and nucleic acids from donor cells to recipient cells, and thus have been proposed to serve as intercellular mediators of communication. EVs transport cellular materials in many physiologic processes, including differentiation, stem cell homeostasis, immune responses, and neuronal signaling. EVs are also increasingly recognized as having a direct role in pathologies such as cancer and neurodegeneration. Accordingly, EVs have been the focus of intense investigation as biomarkers of disease, prognostic indicators, and even therapeutic tools. Here, we review the classes of RNAs present in EVs, both coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, and circular RNAs). The rising attention to EV-resident RNAs as biomarkers stems from the fact that RNAs can be detected at extremely low quantities using a number of methods. To illustrate the interest in EV biology, we discuss EV RNAs in cancer and neurodegeneration, two major age-associated disease processes. WIREs RNA 2017, 8:e1413. doi: 10.1002/wrna.1413 For further resources related to this article, please visit the WIREs website. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  19. The RNA synthesis machinery of negative-stranded RNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Ortín, Juan, E-mail: jortin@cnb.csic.es [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC) and CIBER de Enfermedades Respiratorias (ISCIII), Madrid (Spain); Martín-Benito, Jaime, E-mail: jmartinb@cnb.csic.es [Department of Macromolecular Structures, Centro Nacional de Biotecnología (CSIC), Madrid (Spain)

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  20. Broad-spectrum antiviral activity including human immunodeficiency and hepatitis C viruses mediated by a novel retinoid thiosemicarbazone derivative.

    Science.gov (United States)

    Kesel, Andreas J

    2011-05-01

    Aromatic aldehyde-derived thiosemicarbazones 4-6, the S-substituted modified thiosemicarbazones 7/8, and a vitamin A-derived (retinoid) thiosemicarbazone derivative 12 were investigated as inhibitors of human hepatitis C virus (HCV) subgenomic RNA replicon Huh7 ET (luc-ubi-neo/ET) replication. Compounds 4-6 and 12 were found to be potent suppressors of HCV RNA replicon replication. The trifluoromethoxy-substituted thiosemicarbazone 6 and the retinoid thiosemicarbazone derivative 12 were even superior in selectivity to the included reference agent recombinant human alpha-interferon-2b, showing potencies in the nanomolar range of concentration. In addition, compounds 5, 6, 8 and 12 were tested as inhibitors of cytopathic effect (CPE) induced by human varicella-zoster virus (VZV) and/or human cytomegalovirus (HCMV). Compounds 4-6, 8 and 12 were additionally examined as inhibitors of CPE induced by cowpox virus and vaccinia virus. Thiosemicarbazone 4 was inhibitory on cowpox and vaccinia virus replication comparable in potency and selectivity to the reference agent cidofovir. Retinoid thiosemicarbazone derivative 12 was active as micromolar inhibitor of VZV, HCMV, and, in addition, human immunodeficiency virus type 1 (HIV-1) replication. These results indicate that thiosemicarbazone derivatives are appropriate lead structures to be evaluated in targeted antiviral therapies for hepatitis C (STAT-C), and that the vitamin A-related thiosemicarbazone derivative 12 emerges as a broad-spectrum antiviral agent, co-suppressing the multiplication of important RNA and DNA viruses. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Deciphering the RNA landscape by RNAome sequencing

    NARCIS (Netherlands)

    K.W.J. Derks (Kasper); B. Misovic (Branislav); M.C.G.N. van den hout (Mirjam); C. Kockx (Christel); C.P. Gomez (Cesar Payan); R.W.W. Brouwer (Rutger); H. Vrieling (Harry); J.H.J. Hoeijmakers (Jan); W.F.J. van IJcken (Wilfred); J. Pothof (Joris)

    2015-01-01

    textabstractCurrent RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a

  2. Cofactors in the RNA World

    Science.gov (United States)

    Ditzler, Mark A.

    2014-01-01

    RNA world theories figure prominently in many scenarios for the origin and early evolution of life. These theories posit that RNA molecules played a much larger role in ancient biology than they do now, acting both as the dominant biocatalysts and as the repository of genetic information. Many features of modern RNA biology are potential examples of molecular fossils from an RNA world, such as the pervasive involvement of nucleotides in coenzymes, the existence of natural aptamers that bind these coenzymes, the existence of natural ribozymes, a biosynthetic pathway in which deoxynucleotides are produced from ribonucleotides, and the central role of ribosomal RNA in protein synthesis in the peptidyl transferase center of the ribosome. Here, we uses both a top-down approach that evaluates RNA function in modern biology and a bottom-up approach that examines the capacities of RNA independent of modern biology. These complementary approaches exploit multiple in vitro evolution techniques coupled with high-throughput sequencing and bioinformatics analysis. Together these complementary approaches advance our understanding of the most primitive organisms, their early evolution, and their eventual transition to modern biochemistry.

  3. The Landscape of MicroRNA, Piwi-Interacting RNA, and Circular RNA in Human Saliva

    Science.gov (United States)

    Bahn, Jae Hoon; Zhang, Qing; Li, Feng; Chan, Tak-Ming; Lin, Xianzhi; Kim, Yong; Wong, David T.W.; Xiao, Xinshu

    2015-01-01

    BACKGROUND Extracellular RNAs (exRNAs) in human body fluids are emerging as effective biomarkers for detection of diseases. Saliva, as the most accessible and noninvasive body fluid, has been shown to harbor exRNA biomarkers for several human diseases. However, the entire spectrum of exRNA from saliva has not been fully characterized. METHODS Using high-throughput RNA sequencing (RNA-Seq), we conducted an in-depth bioinformatic analysis of noncoding RNAs (ncRNAs) in human cell-free saliva (CFS) from healthy individuals, with a focus on microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and circular RNAs (circRNAs). RESULTS Our data demonstrated robust reproducibility of miRNA and piRNA profiles across individuals. Furthermore, individual variability of these salivary RNA species was highly similar to those in other body fluids or cellular samples, despite the direct exposure of saliva to environmental impacts. By comparative analysis of >90 RNA-Seq data sets of different origins, we observed that piRNAs were surprisingly abundant in CFS compared with other body fluid or intracellular samples, with expression levels in CFS comparable to those found in embryonic stem cells and skin cells. Conversely, miRNA expression profiles in CFS were highly similar to those in serum and cerebrospinal fluid. Using a customized bioinformatics method, we identified >400 circRNAs in CFS. These data represent the first global characterization and experimental validation of circRNAs in any type of extracellular body fluid. CONCLUSIONS Our study provides a comprehensive landscape of ncRNA species in human saliva that will facilitate further biomarker discoveries and lay a foundation for future studies related to ncRNAs in human saliva. PMID:25376581

  4. The ViennaRNA web services.

    Science.gov (United States)

    Gruber, Andreas R; Bernhart, Stephan H; Lorenz, Ronny

    2015-01-01

    The ViennaRNA package is a widely used collection of programs for thermodynamic RNA secondary structure prediction. Over the years, many additional tools have been developed building on the core programs of the package to also address issues related to noncoding RNA detection, RNA folding kinetics, or efficient sequence design considering RNA-RNA hybridizations. The ViennaRNA web services provide easy and user-friendly web access to these tools. This chapter describes how to use this online platform to perform tasks such as prediction of minimum free energy structures, prediction of RNA-RNA hybrids, or noncoding RNA detection. The ViennaRNA web services can be used free of charge and can be accessed via http://rna.tbi.univie.ac.at.

  5. Mechanism of action for respiratory syncytial virus inhibitor RSV604.

    Science.gov (United States)

    Challa, SreeRupa; Scott, Andrew D; Yuzhakov, Olga; Zhou, Ying; Tiong-Yip, Choi Lai; Gao, Ning; Thresher, Jason; Yu, Qin

    2015-02-01

    Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children and other high-risk populations. RSV nucleoprotein (N) is essential for virus assembly and replication as part of the viral ribonucleoprotein (RNP) complex. RSV604 was a putative N inhibitor in phase 2 clinical trials whose molecular mechanism of action (MoA) was not well understood. This study investigated the cell line-dependent potency of RSV604 and demonstrated its direct binding to the N protein in vitro, providing the first evidence of direct target engagement for this class of inhibitors reported to date. The affinity of RSV604 N binding was not affected by RSV604 resistance mutations in the N protein. RSV604 engaged in two different MoAs in HeLa cells, inhibiting both RSV RNA synthesis and the infectivity of released virus. The lack of inhibition of viral RNA synthesis in some cell lines explained the cell-type-dependent potency of the inhibitor. RSV604 did not inhibit viral RNA synthesis in the RSV subgenomic replicon cells or in the cell-free RNP assay, suggesting that it might act prior to viral replication complex formation. RSV604 did not alter N protein localization in the infected cells. Taken together, these results provide new insights leading to an understanding of the MoAs of RSV604 and other similar N inhibitors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    NARCIS (Netherlands)

    Kluiver, Joost; Gibcus, Johan H.; Hettinga, Chris; Adema, Annelies; Richter, Mareike K. S.; Halsema, Nancy; Slezak-Prochazka, Izabella; Ding, Ye; Kroesen, Bart-Jan; van den Berg, Anke

    2012-01-01

    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and

  7. Hepatitis C virus RNA: molecular switches mediated by long-range RNA-RNA interactions?

    Science.gov (United States)

    Shetty, Sumangala; Stefanovic, Snezana; Mihailescu, Mihaela Rita

    2013-02-01

    Multiple conserved structural cis-acting regulatory elements have been recognized both in the coding and untranslated regions (UTRs) of the hepatitis C virus (HCV) genome. For example, the cis-element 5BSL3.2 in the HCV-coding region has been predicted to use both its apical and internal loops to interact with the X RNA in the 3'-UTR, with the IIId domain in the 5'-UTR and with the Alt sequence in the coding region. Additionally, the X RNA region uses a palindromic sequence that overlaps the sequence required for the interaction with 5BSL3.2, to dimerize with another HCV genome. The ability of the 5BSL3.2 and X RNA regions to engage in multi-interactions suggests the existence of one or more molecular RNA switches which may regulate different steps of the HCV life cycle. In this study, we used biophysical methods to characterize the essential interactions of these HCV cis-elements at the molecular level. Our results indicate that X RNA interacts with 5BSL3.2 and another X RNA molecule by adopting two different conformations and that 5BSL3.2 engages simultaneously in kissing interactions using its apical and internal loops. Based on these results, we propose a mode of action for possible molecular switches involving the HCV RNA.

  8. MicroRNA and cancer

    National Research Council Canada - National Science Library

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    .... The best characterized non‐coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human...

  9. Isothermal titration calorimetry of RNA.

    Science.gov (United States)

    Salim, Nilshad N; Feig, Andrew L

    2009-03-01

    Isothermal titration calorimetry (ITC) is a fast and robust method to study the physical basis of molecular interactions. A single well-designed experiment can provide complete thermodynamic characterization of a binding reaction, including K(a), DeltaG, DeltaH, DeltaS and reaction stoichiometry (n). Repeating the experiment at different temperatures allows determination of the heat capacity change (DeltaC(P)) of the interaction. Modern calorimeters are sensitive enough to probe even weak biological interactions making ITC a very popular method among biochemists. Although ITC has been applied to protein studies for many years, it is becoming widely applicable in RNA biochemistry as well, especially in studies which involve RNA folding and RNA interactions with small molecules, proteins and with other RNAs. This review focuses on best practices for planning, designing and executing effective ITC experiments when one or more of the reactants is an RNA.

  10. Slow molecular recognition by RNA.

    Science.gov (United States)

    Gleitsman, Kristin R; Sengupta, Raghuvir N; Herschlag, Daniel

    2017-12-01

    Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events. © 2017 Gleitsman et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  12. Deciphering the RNA landscape by RNAome sequencing.

    Science.gov (United States)

    Derks, Kasper W J; Misovic, Branislav; van den Hout, Mirjam C G N; Kockx, Christel E M; Gomez, Cesar Payan; Brouwer, Rutger W W; Vrieling, Harry; Hoeijmakers, Jan H J; van IJcken, Wilfred F J; Pothof, Joris

    2015-01-01

    Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods.

  13. Topological classification of RNA structures.

    Science.gov (United States)

    Bon, Michael; Vernizzi, Graziano; Orland, Henri; Zee, A

    2008-06-13

    We present a novel topological classification of RNA secondary structures with pseudoknots. It is based on the topological genus of the circular diagram associated to the RNA base-pair structure. The genus is a positive integer number whose value quantifies the topological complexity of the folded RNA structure. In such a representation, planar diagrams correspond to pure RNA secondary structures and have zero genus, whereas non-planar diagrams correspond to pseudoknotted structures and have higher genus. The topological genus allows for the definition of topological folding motifs, similar in spirit to those introduced and commonly used in protein folding. We analyze real RNA structures from the databases Worldwide Protein Data Bank and Pseudobase and classify them according to their topological genus. For simplicity, we limit our analysis by considering only Watson-Crick complementary base pairs and G-U wobble base pairs. We compare the results of our statistical survey with existing theoretical and numerical models. We also discuss possible applications of this classification and show how it can be used for identifying new RNA structural motifs.

  14. Predicting and Modeling RNA Architecture

    Science.gov (United States)

    Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice

    2011-01-01

    SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963

  15. Epilepsy and microRNA.

    Science.gov (United States)

    Jimenez-Mateos, E M; Henshall, D C

    2013-05-15

    MicroRNA (miRNA) is a class of small non-coding RNA which regulates post-transcriptional gene expression by repressing and thereby fine-tuning protein production, mainly via sequence-specific binding within the 3'untranslated region of mRNA transcripts. Although in humans there are only ∼1600 miRNAs, bioinformatics, systems studies and advanced quantitative proteomics reveal miRNA regulation of over half of all protein-coding genes and that each miRNA can regulate multiple proteins. Epilepsy is a common, serious neurologic disorder characterized by recurring unprovoked seizures that result from abnormal firing of populations of neurons in the brain. The brain expresses several unique miRNAs which control dendritic morphology as well as ion channel levels, neuronal migration and glial function. There is an emerging view that the patho-mechanisms underlying the process of epileptogenesis, as well as maintenance and progression of the epileptic state, involve miRNAs that control multiple genes and proteins on a systems level. Expression profiling studies reveal select changes to brain miRNA levels following prolonged seizures (status epilepticus) in animal models. Inflammation, stress signaling and neuronal excitation are among the pathways most impacted. Analysis of miRNA expression in human epilepsy has also been performed, where again neuroinflammatory processes were prominent. These studies suggest that miRNAs may regulate certain key processes but are not necessarily broadly altering all patho-mechanisms in epilepsy. Functional studies employing antagomirs have identified contributions from miR-34a and miR-132 to seizure-induced neuronal death whereas silencing miR-134 potently reduced status epilepticus, seizure-damage and the later occurrence of spontaneous seizures. Efforts to identify the in vivo target(s) of epilepsy-regulated miRNAs, is now a priority. Last, miRNAs are stable, information-carrying (paracrine) signals. Profiling miRNA in biofluids may

  16. Viral counterdefense on RNA silencing : analysis of RNA silencing suppressors from arthropod-borne negative strand RNA plant viruses

    NARCIS (Netherlands)

    Schnettler, E.

    2010-01-01

    This thesis describes that RNA silencing suppressor (RSS) proteins encoded by negative-stranded RNA plant viruses are able to interfere with different RNA silencing pathways in a variety of organisms by interacting with double stranded (ds)RNA molecules. These RSS proteins are able to counteract the

  17. Chaperoning 5S RNA assembly.

    Science.gov (United States)

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-07-01

    In eukaryotes, three of the four ribosomal RNAs (rRNAs)—the 5.8S, 18S, and 25S/28S rRNAs—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53. The nucleolar localization of the 5S RNP and its assembly into preribosomes are performed by a specialized complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterization of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA, and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialized 5S RNA E-loop-binding module, contacts the Rpl5 protein, and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in preribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit. © 2015 Madru et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Science.gov (United States)

    Takada, Hiraku; Shimada, Tomohiro; Dey, Debashish; Quyyum, M Zuhaib; Nakano, Masahiro; Ishiguro, Akira; Yoshida, Hideji; Yamamoto, Kaneyoshi; Sen, Ranjan; Ishihama, Akira

    2016-01-01

    Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed

  19. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  20. Epigenetic microRNA Regulation

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman

    2011-01-01

    distinguish oral cancer patients from healthy controls; these miRNAs therefore have potential applications as clinical biomarkers. Finally, we show that the predominantly nuclear miR-671 controls CDR1 expression via a novel regulatory mechanism involving a circular antisense RNA. The nuclear function of mi......MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression post-transcriptionally by binding to complementary sequences in the 3’UTR of target mRNAs in the cytoplasm. However, recent evidence suggests that certain miRNAs are enriched in the nucleus......, and their targets do not seem restricted to mRNA 3’UTRs. Therefore, miRNAs are predicted to have a variety functions throughout mammalian cells. MiRNA genes appear to be regulated in much the same way as coding genes, but current insight into transcriptional miRNA control lacks detail, as mapping miRNA promoters...

  1. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  2. MicroRNA mimicry blocks pulmonary fibrosis

    NARCIS (Netherlands)

    Montgomery, Rusty L; Yu, Guoying; Latimer, Paul A; Stack, Christianna; Robinson, Kathryn; Dalby, Christina M; Kaminski, Naftali; van Rooij, Eva

    2014-01-01

    Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular

  3. Biochemistry and Function of the RNA Exosomes

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Chlebowski, Aleksander; Dziembowski, Andrzej

    2012-01-01

    Discovery of the evolutionary conserved RNA exosome was a milestone in RNA biology. First identified as an activity essential for the processing of ribosomal RNA, the exosome has since proved to be central for RNA processing and degradation in both the nucleus and the cytoplasm of eukaryotic cell...

  4. Combinatorics of RNA structures with pseudoknots.

    Science.gov (United States)

    Jin, Emma Y; Qin, Jing; Reidys, Christian M

    2008-01-01

    In this paper, we derive the generating function of RNA structures with pseudoknots. We enumerate all k-noncrossing RNA pseudoknot structures categorized by their maximal sets of mutually intersecting arcs. In addition, we enumerate pseudoknot structures over circular RNA. For 3-noncrossing RNA structures and RNA secondary structures we present a novel 4-term recursion formula and a 2-term recursion, respectively. Furthermore, we enumerate for arbitrary k all k-noncrossing, restricted RNA structures i.e. k-noncrossing RNA structures without 2-arcs i.e. arcs of the form (i,i+2), for 1< or =i< or =n-2.

  5. Role of CBCA in RNA biogenesis

    DEFF Research Database (Denmark)

    Iasillo, Claudia

    RNA transcription and RNA processing are key steps in eukaryotic gene expression, which includes, therefore, RNA synthesis by RNA polymerase enzymes and a range of modifications of the pre-mRNA before the transcript can leave the nucleus and reach the cytoplasm for translation. Interestingly......, a large body of evidence suggests that these RNA processing events occur often already during transcription. One of these modifications, the co-transcriptional 5’ end capping of a nascent RNA, is occurring specifically during RNA polymerase II (RNAPII) transcription. The 5’ cap exerts its role via...... is an interactor of the RNA exosome, the main nuclear RNA degradation machinery. Through this binding, CBCA is involved in the degradation of some non-functional RNAs which are exosome targets. In addition, CBCA also promotes the transcription termination at some gene 3’ ends. Therefore, the study of the CBCA...

  6. RNAome sequencing delineates the complete RNA landscape.

    Science.gov (United States)

    Derks, Kasper W J; Pothof, Joris

    2015-09-01

    Standard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a strand-specific method to determine the expression of small and large RNAs from ribosomal RNA-depleted total RNA in a single sequence run. RNAome sequencing quantitatively preserves all RNA classes. This characteristic allows comparisons between RNA classes, thereby facilitating relationships between different RNA classes. Here, we describe in detail the experimental procedure associated with RNAome sequencing published by Derks and colleagues in RNA Biology (2015) [1]. We also provide the R code for the developed Total Rna Analysis Pipeline (TRAP), an algorithm to analyze RNAome sequencing datasets (deposited at the Gene Expression Omnibus data repository, accession number GSE48084).

  7. RNAome sequencing delineates the complete RNA landscape

    Directory of Open Access Journals (Sweden)

    Kasper W.J. Derks

    2015-09-01

    Full Text Available Standard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a strand-specific method to determine the expression of small and large RNAs from ribosomal RNA-depleted total RNA in a single sequence run. RNAome sequencing quantitatively preserves all RNA classes. This characteristic allows comparisons between RNA classes, thereby facilitating relationships between different RNA classes. Here, we describe in detail the experimental procedure associated with RNAome sequencing published by Derks and colleagues in RNA Biology (2015 [1]. We also provide the R code for the developed Total Rna Analysis Pipeline (TRAP, an algorithm to analyze RNAome sequencing datasets (deposited at the Gene Expression Omnibus data repository, accession number GSE48084.

  8. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  9. Abstract shape analysis of RNA.

    Science.gov (United States)

    Janssen, Stefan; Giegerich, Robert

    2014-01-01

    Abstract shape analysis abstract shape analysis is a method to learn more about the complete Boltzmann ensemble of the secondary structures of a single RNA molecule. Abstract shapes classify competing secondary structures into classes that are defined by their arrangement of helices. It allows us to compute, in addition to the structure of minimal free energy, a set of structures that represents relevant and interesting structural alternatives. Furthermore, it allows to compute probabilities of all structures within a shape class. This allows to ensure that our representative subset covers the complete Boltzmann ensemble, except for a portion of negligible probability. This chapter explains the main functions of abstract shape analysis, as implemented in the tool RNA shapes. RNA shapes It reports on some other types of analysis that are based on the abstract shapes idea and shows how you can solve novel problems by creating your own shape abstractions.

  10. Screening of Modified RNA duplexes

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen

    Because of sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... RNAs include the 2´-5´ oligoadenylate synthetase system, the protein kinase R, RIG-I and Toll-like receptor activated pathways all resulting in antiviral defence mechanism. We have previously shown that antiviral innate immune reactions against double stranded RNAs could be detected in vivo as partial...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form...

  11. Biases in small RNA deep sequencing data

    OpenAIRE

    Raabe, Carsten A.; Tang, Thean-Hock; Brosius, Juergen; Rozhdestvensky, Timofey S.

    2013-01-01

    High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samp...

  12. A Regulatory RNA Inducing Transgenerationally Inherited Phenotypes

    DEFF Research Database (Denmark)

    Jensen, Lea Møller

    . The variation in Arabidopsis enables different regulatory networks and mechanisms to shape the phenotypic characteristics. The thesis describes the identification of regulatory RNA encoded by an enzyme encoding gene. The RNA regulates by inducing transgenerationally inherited phenotypes. The function of the RNA...... is dependent on the genetic background illustrating that polymorphisms are found in either interactors or target genes of the RNA. Furthermore, the RNA provides a mechanistic link between accumulation of glucosinolate and onset of flowering....

  13. RNA Interference - Towards RNA becoming a Medicine -42 ...

    Indian Academy of Sciences (India)

    becoming a Medicine. Subhanjan Mondal is pursuing MSc biotechnol- ogy at MaduaraiKamaraj. University. His interest lies in cell biology and structural biology. Subhanjan Mondal. The central dogma in molecular biology stipulates that the flow of genetic information is from DNA (i.e. the gene) through RNA to proteins ...

  14. RNA Study Using DNA Nanotechnology.

    Science.gov (United States)

    Tadakuma, Hisashi; Masubuchi, Takeya; Ueda, Takuya

    2016-01-01

    Transcription is one of the fundamental steps of gene expression, where RNA polymerases (RNAPs) bind to their template genes and make RNAs. In addition to RNAP and the template gene, many molecules such as transcription factors are involved. The interaction and the effect of these factors depend on the geometry. Molecular layout of these factors, RNAP and gene is thus important. DNA nanotechnology is a promising technology that allows controlling of the molecular layout in the range of nanometer to micrometer scale with nanometer resolution; thus, it is expected to expand the RNA study beyond the current limit. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. RNA-dependent RNA polymerases from cowpea mosaic virus-infected cowpea leaves

    NARCIS (Netherlands)

    Dorssers, L.

    1983-01-01

    The aim of the research described in this thesis was the purification and identification of the RNA-dependent RNA polymerase engaged in replicating viral RNA in cowpea mosaic virus (CPMV)- infected cowpea leaves.

    Previously, an RNA-dependent RNA polymerase produced upon infection of

  16. Establishment of a Novel Permissive Cell Line for the Propagation of Hepatitis C Virus by Expression of MicroRNA miR122

    Science.gov (United States)

    Kambara, Hiroto; Fukuhara, Takasuke; Shiokawa, Mai; Ono, Chikako; Ohara, Yuri; Kamitani, Wataru

    2012-01-01

    The robust cell culture systems for hepatitis C virus (HCV) are limited to those using cell culture-adapted clones (HCV in cell culture [HCVcc]) and cells derived from the human hepatoma cell line Huh7. However, accumulating data suggest that host factors, including innate immunity and gene polymorphisms, contribute to the variation in host response to HCV infection. Therefore, the existing in vitro systems for HCV propagation are not sufficient to elucidate the life cycle of HCV. A liver-specific microRNA, miR122, has been shown to participate in the efficient replication of HCV. In this study, we examined the possibility of establishing a new permissive cell line for HCV propagation by the expression of miR122. A high level of miR122 was expressed by a lentiviral vector placed into human liver cell lines at a level comparable to the endogenous level in Huh7 cells. Among the cell lines that we examined, Hep3B cells stably expressing miR122 (Hep3B/miR122) exhibited a significant enhancement of HCVcc propagation. Surprisingly, the levels of production of infectious particles in Hep3B/miR122 cells upon infection with HCVcc were comparable to those in Huh7 cells. Furthermore, a line of “cured” cells, established by elimination of HCV RNA from the Hep3B/miR122 replicon cells, exhibited an enhanced expression of miR122 and a continuous increase of infectious titers of HCVcc in every passage. The establishment of the new permissive cell line for HCVcc will have significant implications not only for basic HCV research but also for the development of new therapeutics. PMID:22114337

  17. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated microRNA...... was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  18. Predicting RNA pseudoknot folding thermodynamics

    Science.gov (United States)

    Cao, Song; Chen, Shi-Jie

    2006-01-01

    Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732

  19. The Effect of Formaldehyde Fixation on RNA

    Science.gov (United States)

    Evers, David L.; Fowler, Carol B.; Cunningham, Brady R.; Mason, Jeffrey T.; O'Leary, Timothy J.

    2011-01-01

    Formalin-fixed, paraffin-embedded tissues generally provide low yields of extractable RNA that exhibit both covalent modification of nucleic acid bases and strand cleavage. This frustrates efforts to perform retrospective analyses of gene expression using archival tissue specimens. A variety of conditions have been reported to demodify formaldehyde-fixed RNA in different model systems. We studied the reversal of formaldehyde fixation of RNA using a 50 base RNA oligonucleotide and total cellular RNA. Formaldehyde-adducted, native, and hydrolyzed RNA species were identified by their bioanalyzer electrophoretic migration patterns and RT–quantitative PCR. Demodification conditions included temperature, time, buffer, and pH. The reversal of formaldehyde-fixed RNA to native species without apparent RNA hydrolysis was most successfully performed in dilute Tris, phosphate, or similar buffers (pH 8) at 70°C for 30 minutes. Amines were not required for efficient formaldehyde demodification. Formaldehyde-fixed RNA was more labile than native RNA to treatment with heat and buffer, suggesting that antigen retrieval methods for proteins may impede RNA hybridization or RNA extraction. Taken together, the data indicate that reliable conditions may be used to remove formaldehyde adducts from RNA to improve the quality of RNA available for molecular studies. PMID:21497290

  20. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles.......Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  1. RNA Helicases at work: binding and rearranging

    Science.gov (United States)

    Jankowsky, Eckhard

    2010-01-01

    RNA helicases are ubiquitous, highly conserved enzymes that participate in nearly all aspects of RNA metabolism. These proteins bind or remodel RNA or RNA–protein complexes in an ATP-dependent fashion. How RNA helicases physically perform their cellular tasks has been a longstanding question, but in recent years, intriguing models have started to link structure, mechanism and biological function for some RNA helicases. This review outlines our current view on major structural and mechanistic themes of RNA helicase function, and on emerging physical models for cellular roles of these enzymes. PMID:20813532

  2. Roles of the Coding and Noncoding Regions of Rift Valley Fever Virus RNA Genome Segments in Viral RNA Packaging

    OpenAIRE

    Murakami, Shin; Terasaki, Kaori; Narayanan, Krishna; Makino, Shinji

    2012-01-01

    We characterized the RNA elements involved in the packaging of Rift Valley fever virus RNA genome segments, L, M, and S. The 5′-terminal 25 nucleotides of each RNA segment were equally competent for RNA packaging and carried an RNA packaging signal, which overlapped with the RNA replication signal. Only the deletion mutants of L RNA, but not full-length L RNA, were efficiently packaged, implying the possible requirement of RNA compaction for L RNA packaging.

  3. How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs.

    Science.gov (United States)

    Thomas, Justin M; Beal, Peter A

    2017-04-01

    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X-ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed considerable light on how the catalytic domains of these enzymes bind RNA and promote adenosine deamination. Here we review in detail the deaminase domain-RNA contact surfaces and present models of how full length ADARs, bearing double stranded RNA-binding domains (dsRBDs) and deaminase domains, could process naturally occurring substrate RNAs. © 2017 WILEY Periodicals, Inc.

  4. Assembly of Therapeutic pRNA-siRNA Nanoparticles Using Bipartite Approach

    OpenAIRE

    Shu, Yi; Cinier, Mathieu; Fox, Sejal R.; Ben-Johnathan, Nira; Guo, Peixuan

    2011-01-01

    The 117-nucleotide (nt) RNA, called the packaging RNA (pRNA) of bacteriophage phi29 DNA packaging motor, has been shown to be an efficient vector for the construction of RNA nanoparticles for the delivery of small interfering RNA (siRNA) into specific cancer or viral-infected cells. Currently, chemical synthesis of 117-nt RNA is not feasible commercially. In addition, labeling at specific locations on pRNA requires the understanding of its modular organization. Here, we report multiple approa...

  5. Thermodynamics of RNA folding in a conserved ribosomal RNA domain.

    Science.gov (United States)

    Laing, L G; Draper, D E

    1994-04-15

    A small, 58 nt domain of the large subunit ribosomal RNA (Escherichia coli sequence 1051 to 1108) is a highly conserved junction of three helices whose secondary structure has been established by phylogenetic comparisons. To detect any contributions of additional tertiary interactions, the thermal denaturation of the rRNA domain was followed by either UV hyperchromicity or calorimetry in buffers containing a wide range of Mg2+ concentrations. Several smaller fragments corresponding to two different hairpin stem-loop structures within the domain were also synthesized and melted for comparison with the larger molecule. A model of the secondary structure unfolding was devised, based on measured enthalpies and melting temperatures of the component hairpins and tabulated parameters of base-pair stacking and loop closure. The model closely simulates the observed melting data when three additional factors are included: two parameters to account for coaxial stackings within a junction of helices, and a set of undefined "tertiary" interactions that unfolds before the secondary structure and is preferentially stabilized by Mg2+. A critical feature of this model is a conserved pair, U1082/A1086, that is within the junction loop and hypothesized to stack with an adjacent helix. The model correctly predicts the effects of disrupting this pair in a U1086 sequence variant. Although the set of "tertiary" interactions contributes a significant fraction of the RNA unfolding enthalpy (delta H approximately 25 kcal/mol, out of 180 kcal/mol total), its overall stability is marginal at 37 degrees C.

  6. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  7. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  8. RNA Editing in Pathogenesis of Cancer.

    Science.gov (United States)

    Baysal, Bora E; Sharma, Shraddha; Hashemikhabir, Seyedsasan; Janga, Sarath Chandra

    2017-07-15

    Several adenosine or cytidine deaminase enzymes deaminate transcript sequences in a cell type or environment-dependent manner by a programmed process called RNA editing. RNA editing enzymes catalyze A>I or C>U transcript alterations and have the potential to change protein coding sequences. In this brief review, we highlight some recent work that shows aberrant patterns of RNA editing in cancer. Transcriptome sequencing studies reveal increased or decreased global RNA editing levels depending on the tumor type. Altered RNA editing in cancer cells may provide a selective advantage for tumor growth and resistance to apoptosis. RNA editing may promote cancer by dynamically recoding oncogenic genes, regulating oncogenic gene expression by noncoding RNA and miRNA editing, or by transcriptome scale changes in RNA editing levels that may affect innate immune signaling. Although RNA editing markedly increases complexity of the cancer cell transcriptomes, cancer-specific recoding RNA editing events have yet to be discovered. Epitranscriptomic changes by RNA editing in cancer represent a novel mechanism contributing to sequence diversity independently of DNA mutations. Therefore, RNA editing studies should complement genome sequence data to understand the full impact of nucleic acid sequence alterations in cancer. Cancer Res; 77(14); 3733-9. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. RNA Structural Analysis by Evolving SHAPE Chemistry

    Science.gov (United States)

    Spitale, Robert C.; Flynn, Ryan A.; Torre, Eduardo A.; Kool, Eric T.; Chang, Howard Y.

    2017-01-01

    RNA is central to the flow of biological information. From transcription to splicing, RNA localization, translation, and decay, RNA is intimately involved in regulating every step of the gene expression program, and is thus essential for health and understanding disease. RNA has the unique ability to base-pair with itself and other nucleic acids to form complex structures. Hence the information content in RNA is not simply its linear sequence of bases, but is also encoded in complex folding of RNA molecules. A general chemical functionality that all RNAs have is a 2’-hydroxyl group in the ribose ring, and the reactivity of the 2'-hydroxyl in RNA is gated by local nucleotide flexibility. In other words, the 2'-hydroxyl is reactive at single-stranded and conformationally flexible positions but is unreactive at nucleotides constrained by base pairing. Recent efforts have been focused on developing reagents that modify RNA as a function of RNA 2’ hydroxyl group flexibility. Such RNA structure probing techniques can be read out by primer extension in experiments termed RNA SHAPE (Selective 2’ Hydroxyl Acylation and Primer Extension). Herein we describe the efforts devoted to the design and utilization of SHAPE probes for characterizing RNA structure. We also describe current technological advances that are being used to utilize SHAPE chemistry with deep sequencing to probe many RNAs in parallel. The merger of chemistry with genomics is sure to open the door to genome-wide exploration of RNA structure and function. PMID:25132067

  10. Elimination of HCV via a non-ISG-mediated mechanism by vaniprevir and BMS-788329 combination therapy in human hepatocyte chimeric mice.

    Science.gov (United States)

    Uchida, Takuro; Hiraga, Nobuhiko; Imamura, Michio; Yoshimi, Satoshi; Kan, Hiromi; Miyaki, Eisuke; Tsuge, Masataka; Abe, Hiromi; Hayes, C Nelson; Aikata, Hiroshi; Ishida, Yuji; Tateno, Chise; Ellis, Joan D; Chayama, Kazuaki

    2016-02-02

    We previously reported that interferon (IFN)-free direct-acting antiviral combination treatment succeeded in eradicating genotype 1b hepatitis C virus (HCV) in human hepatocyte chimeric mice. In this study, we examined the effect of vaniprevir (MK7009, NS3/4A protease inhibitor) and BMS-788329 (NS5A inhibitor) combination treatment on HCV genotype 1b and the expression of IFN-stimulated genes (ISGs) using a subgenomic replicon system and the same animal model. Combination treatment with vaniprevir and BMS-788329 significantly reduced HCV replication compared to vaniprevir monotherapy in HCV replicon cells (Huh7/Rep-Feo cells). HCV genotype 1b-infected human hepatocyte chimeric mice were treated with vaniprevir alone or in combination with BMS-788329 for four weeks. Vaniprevir monotherapy reduced serum HCV RNA titers in mice, but viral breakthrough was observed in mice with high HCV titers. Ultra-deep sequence analysis revealed a predominant replacement by drug-resistant substitutions at 168 in HCV NS3 region in these mice. Conversely, in mice with low HCV titers, HCV was eradicated by vaniprevir monotherapy without viral breakthrough. In contrast to monotherapy, combination treatment with vaniprevir and BMS-788329 succeeded in completely eradicating HCV regardless of serum viral titer. IFN-alpha treatment significantly increased ISG expression; however, vaniprevir and BMS-788329 combination treatment caused no increase in ISG expression both in cultured cells and in mouse livers. Therefore, combination treatment with vaniprevir and BMS-788329 eliminated HCV via a non-ISG-mediated mechanism. This oral treatment might offer an alternative DAA combination therapy for patients with chronic hepatitis C. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. RNA

    African Journals Online (AJOL)

    SARAH

    30 nov. 2013 ... Le climat est semi-aride, caractérisé par un modèle unimodal de précipitation, avec une saison de pluies (de juin à septembre) et une saison sèche. (d'octobre à mai). L'agriculture pluviale constitue près de. 90% des activités de la population. Les céréales comme le mil et le sorgho sont principalement ...

  12. Epigenetic regulation by heritable RNA.

    Directory of Open Access Journals (Sweden)

    Reinhard Liebers

    2014-04-01

    Full Text Available Genomic concepts are based on the assumption that phenotypes arise from the expression of genetic variants. However, the presence of non-Mendelian inheritance patterns provides a direct challenge to this view and suggests an important role for alternative mechanisms of gene regulation and inheritance. Over the past few years, a highly complex and diverse network of noncoding RNAs has been discovered. Research in animal models has shown that RNAs can be inherited and that RNA methyltransferases can be important for the transmission and expression of modified phenotypes in the next generation. We discuss possible mechanisms of RNA-mediated inheritance and the role of these mechanisms for human health and disease.

  13. MicroRNA promoter analysis.

    Science.gov (United States)

    Megraw, Molly; Hatzigeorgiou, Artemis G

    2010-01-01

    In this chapter, we present a brief overview of current knowledge about the promoters of plant microRNAs (miRNAs), and provide a step-by-step guide for predicting plant miRNA promoter elements using known transcription factor binding motifs. The approach to promoter element prediction is based on a carefully constructed collection of Positional Weight Matrices (PWMs) for known transcription factors (TFs) in Arabidopsis. A key concept of the method is to use scoring thresholds for potential binding sites that are appropriate to each individual transcription factor. While the procedure can be applied to search for Transcription Factor Binding Sites (TFBSs) in any pol-II promoter region, it is particularly practical for the case of plant miRNA promoters where upstream sequence regions and binding sites are not readily available in existing databases. The majority of the material described in this chapter is available for download at http://microrna.gr.

  14. Fatgraph models of RNA structure

    Directory of Open Access Journals (Sweden)

    Huang Fenix

    2017-01-01

    Full Text Available In this review paper we discuss fatgraphs as a conceptual framework for RNA structures. We discuss various notions of coarse-grained RNA structures and relate them to fatgraphs.We motivate and discuss the main intuition behind the fatgraph model and showcase its applicability to canonical as well as noncanonical base pairs. Recent discoveries regarding novel recursions of pseudoknotted (pk configurations as well as their translation into context-free grammars for pk-structures are discussed. This is shown to allow for extending the concept of partition functions of sequences w.r.t. a fixed structure having non-crossing arcs to pk-structures. We discuss minimum free energy folding of pk-structures and combine these above results outlining how to obtain an inverse folding algorithm for PK structures.

  15. Application of Live-Cell RNA Imaging Techniques to the Study of Retroviral RNA Trafficking

    Directory of Open Access Journals (Sweden)

    Darrin V. Bann

    2012-06-01

    Full Text Available Retroviruses produce full-length RNA that serves both as a genomic RNA (gRNA, which is encapsidated into virus particles, and as an mRNA, which directs the synthesis of viral structural proteins. However, we are only beginning to understand the cellular and viral factors that influence trafficking of retroviral RNA and the selection of the RNA for encapsidation or translation. Live cell imaging studies of retroviral RNA trafficking have provided important insight into many aspects of the retrovirus life cycle including transcription dynamics, nuclear export of viral RNA, translational regulation, membrane targeting, and condensation of the gRNA during virion assembly. Here, we review cutting-edge techniques to visualize single RNA molecules in live cells and discuss the application of these systems to studying retroviral RNA trafficking.

  16. How the RNA isolation method can affect microRNA microarray results

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Litman, Thomas

    2011-01-01

    microarray analysis on porcine brain tissue. One method is a phenol-guanidine isothiocyanate-based procedure that permits isolation of total RNA. The second method, miRVana™ microRNA isolation, is column based and recovers the small RNA fraction alone. We found that microarray analyses give different results......The quality of RNA is crucial in gene expression experiments. RNA degradation interferes in the measurement of gene expression, and in this context, microRNA quantification can lead to an incorrect estimation. In the present study, two different RNA isolation methods were used to perform microRNA...... that depend on the RNA fraction used, in particular because some microRNAs appear very sensitive to the RNA isolation method. We conclude that precautions need to be taken when comparing microarray studies based on RNA isolated with different methods....

  17. Concepts and introduction to RNA bioinformatics

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.; Ruzzo, Walter L.

    2014-01-01

    RNA bioinformatics and computational RNA biology have emerged from implementing methods for predicting the secondary structure of single sequences. The field has evolved to exploit multiple sequences to take evolutionary information into account, such as compensating (and structure preserving) base...

  18. Engineering RNA-binding proteins for biology.

    Science.gov (United States)

    Chen, Yu; Varani, Gabriele

    2013-08-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequence specificity will provide valuable tools for biochemical research as well as potential therapeutic applications. In this review, we discuss the suitability of various RNA-binding domains for engineering RNA-binding specificity, based on the structural basis for their recognition. We also compare various protein engineering and design methods applied to RNA-binding proteins, and discuss future applications of these proteins. © 2013 FEBS.

  19. RNA editing machinery in plant organelles.

    Science.gov (United States)

    Yan, Junjie; Zhang, Qunxia; Yin, Ping

    2017-10-23

    RNA editing is a type of post-transcriptional modification that includes nucleotide insertion/deletion or conversion. Different categories of RNA editing have been widely observed in distinct RNAs from divergent organisms. In flowering plants, RNA editing usually alters cytidine to uridine in plastids and mitochondria, playing important roles in various plant developmental processes, including organelle biogenesis, adaptation to environmental changes, and signal transduction. Numerous studies have demonstrated that a number of factors are involved in plant RNA editing, such as pentatricopeptide repeat (PPR) proteins, multiple organelle RNA editing factors (MORF, also known as RIP), organelle RNA recognition motif (ORRM) containing proteins, protoporphyrinogen IX oxidase 1 (PPO1) and organelle zinc finger 1 (OZ1). These factors play diverse roles in plant RNA editing due to their distinct characteristics. In this review, we discuss the functional roles of the individual editing factors and their associations in plant RNA editing.

  20. Comparison of whole blood RNA preservation tubes and novel generation RNA extraction kits for analysis of mRNA and MiRNA profiles.

    Directory of Open Access Journals (Sweden)

    Madlen Häntzsch

    Full Text Available BACKGROUND: Whole blood expression profiling is frequently performed using PAXgene (Qiagen or Tempus (Life Technologies tubes. Here, we compare 6 novel generation RNA isolation protocols with respect to RNA quantity, quality and recovery of mRNA and miRNA. METHODS: 3 PAXgene and 3 Tempus Tubes were collected from participants of the LIFE study with (n = 12 and without (n = 35 acute myocardial infarction (AMI. RNA was extracted with 4 manual protocols from Qiagen (PAXgene Blood miRNA Kit, Life Technologies (MagMAX for Stabilized Blood Tubes RNA Isolation Kit, and Norgen Biotek (Norgen Preserved Blood RNA Purification Kit I and Kit II, and 2 (semi-automated protocols on the QIAsymphony (Qiagen and MagMAX Express-96 Magnetic Particle Processor (Life Technologies. RNA quantity and quality was determined. For biological validation, RNA from 12 representative probands, extracted with all 6 kits (n = 72, was reverse transcribed and mRNAs (matrix metalloproteinase 9, arginase 1 and miRNAs (miR133a, miR1, shown to be altered by AMI, were analyzed. RESULTS: RNA yields were highest using the Norgen Kit I with Tempus Tubes and lowest using the Norgen Kit II with PAXgene. The disease status was the second major determinant of RNA yields (LIFE-AMI 11.2 vs. LIFE 6.7 µg, p<0.001 followed by the choice of blood collection tube. (Semi-automation reduced overall RNA extraction time but did not generally reduce hands-on-time. RNA yields and quality were comparable between manual and automated extraction protocols. mRNA expression was not affected by collection tubes and RNA extraction kits but by RT/qPCR reagents with exception of the Norgen Kit II, which led to mRNA depletion. For miRNAs, expression differences related to collection tubes (miR30b, RNA isolation (Norgen Kit II, and RT/qRT reagents (miR133a were observed. CONCLUSION: We demonstrate that novel generation RNA isolation kits significantly differed with respect to RNA recovery and affected

  1. The crystal structure of tRNA

    Indian Academy of Sciences (India)

    Madhu

    However, my attention was soon captured by the 'strange'. tRNA, shown to be formylmethionyl-tRNA (fMet-tRNA), recently discovered by Kjeld Marcker and Fred Sanger. I was able to put my experience of decoding and cell-free protein synthesis to good use in a close collaboration with. Marcker over the next six years.

  2. RNA-Seq: revelation of the messengers

    NARCIS (Netherlands)

    Verk, M.C. van; Hickman, R.; Pieterse, C.M.J.; Wees, S.C.M. van

    2013-01-01

    Next-generation RNA-sequencing (RNA-Seq) is rapidly outcompeting microarrays as the technology of choice for whole-transcriptome studies. However, the bioinformatics skills required for RNA-Seq data analysis often pose a significant hurdle for many biologists. Here, we put forward the concepts and

  3. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, Joseph Albert [Univ. of California, Berkeley, CA (United States)

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 121±s are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  4. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  5. RNA polymerase activity of Ustilago maydis virus

    Energy Technology Data Exchange (ETDEWEB)

    Yie, S.W.

    1986-01-01

    Ustilago maydis virus has an RNA polymerase enzyme which is associated with virion capsids. In the presence of Mg/sup 2 +/ ion and ribonucleotide triphosphate, the enzyme catalyzes the in vitro synthesis of mRNA by using dsRNA as a template. The products of the UmV RNA polymerase were both ssRNA and dsRNA. The dsRNA was determined by characteristic mobilities in gel electrophoresis, lack of sensitivity to RNase, and specific hybridization tests. The ssRNAs were identified by elution from a CF-11 column and by their RNase sensitivity. On the basis of the size of ssRNAs, it was concluded that partial transcripts were produced from H dsRNA segments, and full length transcripts were produced from M and L dsRNA segments. The following observations indicates that transcription occurs by strand displacement; (1) Only the positive strand of M2 dsRNA was labeled by the in vitro reaction. (2) The M2 dsRNA which had been labeled with /sup 32/''P-UTP in vitro could be chased from dsRNA with unlabeled UTP. The transcription products of three UmV strains were compared, and the overall pattern of transcription was very similar among them.

  6. Identifying complete RNA structural ensembles including pseudoknots.

    Science.gov (United States)

    Gupta, Aditi; Rahman, Reazur; Li, Kejie; Gribskov, Michael

    2012-02-01

    The close relationship between RNA structure and function underlines the significance of accurately predicting RNA structures from sequence information. Structural topologies such as pseudoknots are of particular interest due to their ubiquity and direct involvement in RNA function, but identifying pseudoknots is a computationally challenging problem and existing heuristic approaches usually perform poorly for RNA sequences of even a few hundred bases. We survey the performance of pseudoknot prediction methods on a data set of full-length RNA sequences representing varied sequence lengths, and biological RNA classes such as RNase P RNA, Group I Intron, tmRNA and tRNA. Pseudoknot prediction methods are compared with minimum free energy and suboptimal secondary structure prediction methods in terms of correct base-pairs, stems and pseudoknots and we find that the ensemble of suboptimal structure predictions succeeds in identifying correct structural elements in RNA that are usually missed in MFE and pseudoknot predictions. We propose a strategy to identify a comprehensive set of non-redundant stems in the suboptimal structure space of a RNA molecule by applying heuristics that reduce the structural redundancy of the predicted suboptimal structures by merging slightly varying stems that are predicted to form in local sequence regions. This reduced-redundancy set of structural elements consistently outperforms more specialized approaches.in data sets. Thus, the suboptimal folding space can be used to represent the structural diversity of an RNA molecule more comprehensively than optimal structure prediction approaches alone.

  7. RNAome sequencing delineates the complete RNA landscape

    NARCIS (Netherlands)

    K.W.J. Derks (Kasper); J. Pothof (Joris)

    2015-01-01

    textabstractStandard RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species. For example, small and large RNAs from the same sample cannot be sequenced in a single sequence run. We designed RNAome sequencing, which is a

  8. Biases in small RNA deep sequencing data.

    Science.gov (United States)

    Raabe, Carsten A; Tang, Thean-Hock; Brosius, Juergen; Rozhdestvensky, Timofey S

    2014-02-01

    High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samples are monitored. However, recent data uncovered severe bias in the sequencing of small non-protein coding RNA (small RNA-seq or sRNA-seq), such that the expression levels of some RNAs appeared to be artificially enhanced and others diminished or even undetectable. The use of different adapters and barcodes during ligation as well as complex RNA structures and modifications drastically influence cDNA synthesis efficacies and exemplify sources of bias in deep sequencing. In addition, variable specific RNA G/C-content is associated with unequal polymerase chain reaction amplification efficiencies. Given the central importance of RNA-seq to molecular biology and personalized medicine, we review recent findings that challenge small non-protein coding RNA-seq data and suggest approaches and precautions to overcome or minimize bias.

  9. Regulatory BC1 RNA in Cognitive Control

    Science.gov (United States)

    Iacoangeli, Anna; Dosunmu, Aderemi; Eom, Taesun; Stefanov, Dimitre G.; Tiedge, Henri

    2017-01-01

    Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and…

  10. Nonradioactive RNA mobility shift with chemiluminescent detection ...

    African Journals Online (AJOL)

    hesham

    RNA mobility shift is one among many procedures used to study RNA-protein interaction. Yet, there are some limitations for the radioactive RNA mobility shift including; 1) the risk of using radiolabeled nucleotides, 2) the long time to get the results; this could range from days to weeks, and 3) its high cost as compared to ...

  11. Inverse folding of RNA pseudoknot structures.

    Science.gov (United States)

    Gao, James Zm; Li, Linda Ym; Reidys, Christian M

    2010-06-23

    RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at http://www.combinatorics.cn/cbpc/inv.html. The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  12. Optimization of chemiluminescent detection of mitochondrial RNA ...

    African Journals Online (AJOL)

    RNA mobility shift is one among many procedures used to study RNA-protein interaction. Yet, there are some limitations for the radioactive RNA mobility shift including; 1) the risk of using radiolabeled nucleotides, 2) the long time to get the results; this could range from days to weeks, and 3) its high cost as compared to ...

  13. Transfer RNA's latest port of call

    DEFF Research Database (Denmark)

    Santos, Manuel A S; Orellana, Omar; Ibba, Michael

    2010-01-01

    Transfer RNA, or tRNA, has the dubious honor of being a recurring historical figure in molecular biology. Much like the lead character in Woody Allen's movie Zelig, tRNA keeps on turning up in history at the right place at the right time. In this respect the timing of the 23rd installment...

  14. RNA-protein interactions: an overview

    DEFF Research Database (Denmark)

    Re, Angela; Joshi, Tejal; Kulberkyte, Eleonora

    2014-01-01

    RNA binding proteins (RBPs) are key players in the regulation of gene expression. In this chapter we discuss the main protein-RNA recognition modes used by RBPs in order to regulate multiple steps of RNA processing. We discuss traditional and state-of-the-art technologies that can be used to stud...

  15. Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified arabidopsis RNA-dependent RNA polymerases RDR2 and RDR6

    DEFF Research Database (Denmark)

    Devert, Anthony; Fabre, Nicolas; Floris, Maina Huguette Joséphine

    2015-01-01

    Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ss......RNA) targeted by RNA silencing. The dsRNA is subsequently cleaved by the ribonuclease DICER-like into secondary small interfering RNAs (siRNAs) that reinforce and/or maintain the silenced state of the target RNA. Models of RNA silencing propose that RDRs could use primer-independent and primer......-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA). However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer...

  16. The first discovery of RNA interference by RNA restriction enzymes to inhibit protein synthesis.

    Science.gov (United States)

    Inouye, Masayori

    2017-01-15

    In this article, I review how an RNA restriction enzyme, a highly sequence-specific endoribonuclease, was for the first time discovered in 2003 and how the concept of RNA interference using RNA restriction enzymes or mRNA interferases has been developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A telescope for the RNA universe : novel bioinformatic approaches to analyze RNA sequencing data

    NARCIS (Netherlands)

    Pulyakhina, Irina

    2016-01-01

    In this thesis I focus on the application of bioinformatics to analyze RNA. The type of experimental data of interest is sequencing data generated with various Next Generation Sequencing technique: nuclear RNA, cytoplasmic RNA, captured polyadenylated RNA fragments, etc. I highlight the necessity in

  18. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  19. Reinitiated viral RNA-dependent RNA polymerase resumes replication at a reduced rate

    NARCIS (Netherlands)

    Vilfan, I.D.; Candelli, A.; Hage, S.; Aalto, A.P.; Poranen, M.M.; Bamford, D.H.; Dekker, N.H.

    2008-01-01

    RNA-dependent RNA polymerases (RdRP) form an important class of enzymes that is responsible for genome replication and transcription in RNA viruses and involved in the regulation of RNA interference in plants and fungi. The RdRP kinetics have been extensively studied, but pausing, an important

  20. Precursors of ribosomal RNA in yeast nucleus : Biosynthesis and relation to cytoplasmic ribosomal RNA

    NARCIS (Netherlands)

    Sillevis Smitt, W.W.; Vlak, J.M.; Schiphof, R.; Rozijn, Th.H.

    In vivo methylated precursors of ribosomal RNA in yeast have been characterized on acrylamide gels. The initial ribosomal precursor in the yeast nucleus is a 37S RNA component, which is processed to a nuclear 28S RNA. Both the 37S and the 28S RNA components are important constituents of the yeast

  1. RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex

    Science.gov (United States)

    Hale, Caryn R.; Zhao, Peng; Olson, Sara; Duff, Michael O.; Graveley, Brenton R.; Wells, Lance; Terns, Rebecca M.; Terns, Michael P.

    2009-01-01

    SUMMARY Compelling evidence indicates that the CRISPR-Cas system protects prokaryotes from viruses and other potential genome invaders. This adaptive prokaryotic immune system arises from the clustered regularly interspaced short palindromic repeats (CRISPRs) found in prokaryotic genomes, which harbor short invader-derived sequences, and the CRISPR-associated (Cas) protein-coding genes. Here we have identified a CRISPR-Cas effector complex that is comprised of small invader-targeting RNAs from the CRISPR loci (termed prokaryotic silencing (psi)RNAs) and the RAMP module (or Cmr) Cas proteins. The psiRNA-Cmr protein complexes cleave complementary target RNAs at a fixed distance from the 3' end of the integral psiRNAs. In Pyrococcus furiosus, psiRNAs occur in two size forms that share a common 5' sequence tag but have distinct 3' ends that direct cleavage of a given target RNA at two distinct sites. Our results indicate that prokaryotes possess a unique RNA silencing system that functions by homology-dependent cleavage of invader RNAs. PMID:19945378

  2. Multisubunit RNA Polymerases IV and V: Purveyors of Non-Coding RNA for Plant Gene Silencing

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Jeremy R.; Pikaard, Craig S.

    2011-08-01

    In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.

  3. RNA catalysis and the origins of life

    Science.gov (United States)

    Orgel, Leslie E.

    1986-01-01

    The role of RNA catalysis in the origins of life is considered in connection with the discovery of riboszymes, which are RNA molecules that catalyze sequence-specific hydrolysis and transesterification reactions of RNA substrates. Due to this discovery, theories positing protein-free replication as preceding the appearance of the genetic code are more plausible. The scope of RNA catalysis in biology and chemistry is discussed, and it is noted that the development of methods to select (or predict) RNA sequences with preassigned catalytic functions would be a major contribution to the study of life's origins.

  4. Hairpins under tension: RNA versus DNA.

    Science.gov (United States)

    Bercy, Mathilde; Bockelmann, Ulrich

    2015-11-16

    We use optical tweezers to control the folding and unfolding of individual DNA and RNA hairpins by force. Four hairpin molecules are studied in comparison: two DNA and two RNA ones. We observe that the conformational dynamics is slower for the RNA hairpins than for their DNA counterparts. Our results indicate that structures made of RNA are dynamically more stable. This difference might contribute to the fact that DNA and RNA play fundamentally different biological roles in spite of chemical similarity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  6. RNA interference-mediated simultaneous silencing of four genes using cross-shaped RNA.

    Science.gov (United States)

    Lee, Tae Yeon; Chang, Chan Il; Lee, Dooyoung; Hong, Sun Woo; Shin, Chanseok; Li, Chiang J; Kim, Soyoun; Haussecker, Dirk; Lee, Dong-Ki

    2013-04-01

    The structural flexibility of RNA interference (RNAi)-triggering nucleic acids suggests that the design of unconventional RNAi trigger structures with novel features is possible. Here, we report a cross-shaped RNA duplex structure, termed quadruple interfering RNA (qiRNA), with multiple target gene silencing activity. qiRNA triggers the simultaneous down-regulation of four cellular target genes via an RNAi mechanism. In addition, qiRNA shows enhanced intracellular delivery and target gene silencing over conventional siRNA when complexed with jetPEI, a linear polyethyleneimine (PEI). We also show that the long antisense strand of qiRNA is incorporated intact into an RNA-induced silencing complex (RISC). This novel RNA scaffold further expands the repertoire of RNAi-triggering molecular structures and could be used in the development of therapeutics for various diseases including viral infections and cancer.

  7. A conserved RNA polymerase III promoter required for gammaherpesvirus TMER transcription and microRNA processing.

    Science.gov (United States)

    Diebel, Kevin W; Claypool, David J; van Dyk, Linda F

    2014-07-01

    Canonical RNA polymerase III (pol III) type 2 promoters contain a single A and B box and are well documented for their role in tRNA and SINE transcription in eukaryotic cells. The genome of Murid herpesvirus 4 (MuHV-4) contains eight polycistronic tRNA-microRNA encoded RNA (TMER) genes that are transcribed from a RNA pol III type 2-like promoter containing triplicated A box elements. Here, we demonstrate that the triplicated A box sequences are required in their entirety to produce functional MuHV-4 miRNAs. We also identify that these RNA pol III type 2-like promoters are conserved in eukaryotic genomes. Human and mouse predicted tRNA genes containing these promoters also show enrichment of alternative RNA pol III transcription termination sequences and are predicted to give rise to longer tRNA primary transcripts. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. RNA Regulations and Functions Decoded by Transcriptome-wide RNA Structure Probing

    Directory of Open Access Journals (Sweden)

    Meiling Piao

    2017-10-01

    Full Text Available RNA folds into intricate structures that are crucial for its functions and regulations. To date, a multitude of approaches for probing structures of the whole transcriptome, i.e., RNA structuromes, have been developed. Applications of these approaches to different cell lines and tissues have generated a rich resource for the study of RNA structure–function relationships at a systems biology level. In this review, we first introduce the designs of these methods and their applications to study different RNA structuromes. We emphasize their technological differences especially their unique advantages and caveats. We then summarize the structural insights in RNA functions and regulations obtained from the studies of RNA structuromes. And finally, we propose potential directions for future improvements and studies. Keywords: RNA structure probing, RNA structurome, RNA secondary structure, Structure–function relationship, RNA regulation

  9. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  10. Characteristics and Prediction of RNA Structure

    Directory of Open Access Journals (Sweden)

    Hengwu Li

    2014-01-01

    Full Text Available RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.

  11. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  12. Evolution of microRNA in primates.

    Science.gov (United States)

    McCreight, Jennifer C; Schneider, Sean E; Wilburn, Damien B; Swanson, Willie J

    2017-01-01

    MicroRNA play an important role in post-transcriptional regulation of most transcripts in the human genome, but their evolution across the primate lineage is largely uncharacterized. A particular miRNA can have one to thousands of messenger RNA targets, establishing the potential for a small change in sequence or overall miRNA structure to have profound phenotypic effects. However, the majority of non-human primate miRNA is predicted solely by homology to the human genome and lacks experimental validation. In the present study, we sequenced thirteen species representing a wide range of the primate phylogeny. Hundreds of miRNA were validated, and the number of species with experimentally validated miRNA was tripled. These species include a sister taxon to humans (bonobo) and basal primates (aye-aye, mouse lemur, galago). Consistent with previous studies, we found the seed region and mature miRNA to be highly conserved across primates, with overall structural conservation of the pre-miRNA hairpin. However, there were a number of interesting exceptions, including a seed shift due to structural changes in miR-501. We also identified an increase in the number of miR-320 paralogs throughout primate evolution. Many of these non-conserved miRNA appear to regulate neuronal processes, illustrating the importance of investigating miRNA to learn more about human evolution.

  13. Evolution of microRNA in primates.

    Directory of Open Access Journals (Sweden)

    Jennifer C McCreight

    Full Text Available MicroRNA play an important role in post-transcriptional regulation of most transcripts in the human genome, but their evolution across the primate lineage is largely uncharacterized. A particular miRNA can have one to thousands of messenger RNA targets, establishing the potential for a small change in sequence or overall miRNA structure to have profound phenotypic effects. However, the majority of non-human primate miRNA is predicted solely by homology to the human genome and lacks experimental validation. In the present study, we sequenced thirteen species representing a wide range of the primate phylogeny. Hundreds of miRNA were validated, and the number of species with experimentally validated miRNA was tripled. These species include a sister taxon to humans (bonobo and basal primates (aye-aye, mouse lemur, galago. Consistent with previous studies, we found the seed region and mature miRNA to be highly conserved across primates, with overall structural conservation of the pre-miRNA hairpin. However, there were a number of interesting exceptions, including a seed shift due to structural changes in miR-501. We also identified an increase in the number of miR-320 paralogs throughout primate evolution. Many of these non-conserved miRNA appear to regulate neuronal processes, illustrating the importance of investigating miRNA to learn more about human evolution.

  14. The RNA polymerase II CTD coordinates transcription and RNA processing.

    Science.gov (United States)

    Hsin, Jing-Ping; Manley, James L

    2012-10-01

    The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.

  15. Liposomal siRNA for ovarian cancer.

    Science.gov (United States)

    Mangala, Lingegowda S; Han, Hee Dong; Lopez-Berestein, Gabriel; Sood, Anil K

    2009-01-01

    Discovery of RNA interference (RNAi) has been one of the most important findings in the last ten years. In recent years, small interfering RNA (siRNA)-mediated gene silencing is beginning to show substantial promise as a new treatment modality in preclinical studies because of its robust gene selective silencing. However, until recently, delivery of siRNA in vivo was a major impediment to its use as a therapeutic modality. We have used a neutral liposome, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), for highly efficient in vivo siRNA delivery. Using siRNA tagged with Alexa-555, incorporated in DOPC liposomes, we have demonstrated efficient intra-tumoral delivery following either intraperitoneal or intravenous injection. Furthermore, EphA2-targeted siRNA in DOPC liposomes showed significant target modulation and anti-tumor efficacy.

  16. Advances in imaging RNA in plants

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Oparka, Karl J.; Tilsner, Jens

    2010-01-01

    Increasing evidence shows that many RNAs are targeted to specific locations within cells, and that RNA-processing pathways occur in association with specific subcellular structures. Compartmentation of mRNA translation and RNA processing helps to assemble large RNA–protein complexes, while RNA...... targeting allows local protein synthesis and the asymmetric distribution of transcripts during cell polarisation. In plants, intercellular RNA trafficking also plays an additional role in plant development and pathogen defence. Methods that allow the visualisation of RNA sequences within a cellular context......, and preferably at subcellular resolution, can help to answer important questions in plant cell and developmental biology. Here, we summarise the approaches currently available for localising RNA in vivo and address the specific limitations inherent with plant systems....

  17. 5S rRNA and ribosome.

    Science.gov (United States)

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  18. The RNA modification landscape in human disease.

    Science.gov (United States)

    Jonkhout, Nicky; Tran, Julia; Smith, Martin A; Schonrock, Nicole; Mattick, John S; Novoa, Eva Maria

    2017-12-01

    RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps. © 2017 Jonkhout et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    OpenAIRE

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in c...

  20. Fluorescent peptide indicator displacement assay for monitoring interactions between RNA and RNA binding proteins.

    Science.gov (United States)

    Jeong, Hyun Seok; Choi, Sun Mi; Kim, Hyun Woo; Park, Jung Woo; Park, Ha Na; Park, Sung Mi; Jang, Sung Key; Rhee, Young Min; Kim, Byeang Hyean

    2013-05-01

    This paper describes a sensitive, non-destructive displacement assay, using a fluorescent peptide indicator, for real-time monitoring of the interactions between RNA and RNA binding proteins (RBPs). The developed fluorescent peptide indicators, each containing a mid-sequence fluorophore unit, allowed sensing of target RNA and RNA-RBP interactions through changes in fluorescence intensity. We anticipate that this assay will open up new possibilities for meaningful studies of RNA-RBP interactions.

  1. MysiRNA-Designer: A Workflow for Efficient siRNA Design

    Science.gov (United States)

    Mysara, Mohamed; Garibaldi, Jonathan M.; ElHefnawi, Mahmoud

    2011-01-01

    The design of small interfering RNA (siRNA) is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based) desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area. PMID:22046244

  2. MicroRNA and cancer

    DEFF Research Database (Denmark)

    Jansson, Martin D; Lund, Anders H

    2012-01-01

    biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we...... summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, micro...

  3. The defective RNAs of Closteroviridae

    Science.gov (United States)

    Bar-Joseph, Moshe; Mawassi, Munir

    2013-01-01

    The family Closteroviridae consists of two genera, Closterovirus and Ampelovirus with monopartite genomes transmitted respectively by aphids and mealybugs and the Crinivirus with bipartite genomes transmitted by whiteflies. The Closteroviridae consists of more than 30 virus species, which differ considerably in their phytopathological significance. Some, like beet yellows virus and citrus tristeza virus (CTV) were associated for many decades with their respective hosts, sugar beets and citrus. Others, like the grapevine leafroll-associated ampeloviruses 1, and 3 were also associated with their grapevine hosts for long periods; however, difficulties in virus isolation hampered their molecular characterization. The majority of the recently identified Closteroviridae were probably associated with their vegetative propagated host plants for long periods and only detected through the considerable advances in dsRNA isolation and sequencing of PCR amplified replicons. Molecular characterization of CTV and several other Closteroviridae revealed that, in addition to genomic and subgenomic RNAs, infected plants contain several different subviral defective RNAs (dRNAs). The roles and biological functions of dRNAs associated with Closteroviridae remain terra incognita. PMID:23734149

  4. The defective RNAs of Closteroviridae

    Directory of Open Access Journals (Sweden)

    Munir eMawassi

    2013-05-01

    Full Text Available The family Closteroviridae consists of two genera, Closterovirus and Ampelovirus with monopartite genomes transmitted respectively by aphids and mealybugs and the Crinivirus with bipartite genomes transmitted by whiteflies. The Closteroviridae consists of more than thirty virus species, which differ considerably in their phytopathological significance. Some, like Beet yellows virus (BYV and Citrus tristeza virus (CTV were associated for many decades with their respective hosts, sugar beets and citrus. Others, like the grapevine leafroll-associated ampeloviruses 1, and 3 were also associated with their grapevine hosts for long periods; however difficulties in virus isolation hampered their molecular characterization. The majority of the recently identified Closteroviridae were probably associated with their vegetative propagated host plants for long periods and only detected through the considerable advances in dsRNA isolation and sequencing of PCR amplified replicons. Molecular characterization of CTV and several other Closteroviridae revealed that, in addition to genomic and subgenomic RNAs, infected plants contain several different subviral defective RNAs (dRNAs. The roles and biological functions of dRNAs associated with Closteroviridae remain terra incognita.

  5. An analogue of the antibiotic teicoplanin prevents flavivirus entry in vitro.

    Directory of Open Access Journals (Sweden)

    Tine De Burghgraeve

    Full Text Available There is an urgent need for potent inhibitors of dengue virus (DENV replication for the treatment and/or prophylaxis of infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949 that inhibits DENV-induced cytopathic effect (CPE in a dose-dependent manner. Virus infection was completely inhibited at concentrations that had no adverse effect on the host cells. These findings were corroborated by quantification of viral RNA levels in culture supernatant. Antiviral activity was also observed against other flaviviruses such as the yellow fever virus and the tick-borne encephalitis virus (TBEV. In particular, potent antiviral activity was observed against TBEV. Time-of-drug-addition experiments indicated that LCTA-949 inhibits an early stage in the DENV replication cycle; however, a virucidal effect was excluded. This observation was corroborated by the fact that LCTA-949 lacks activity on DENV subgenomic replicon (that does not encode structural proteins replication. Using a microsopy-based binding and fusion assay employing DiD-labeled viruses, it was shown that LCTA-949 targets the early stage (binding/entry of the infection. Moreover, LCTA-949 efficiently inhibits infectivity of DENV particles pre-opsonized with antibodies, thus potentially also inhibiting antibody-dependent enhancement (ADE. In conclusion, LCTA-949 exerts in vitro activity against several flaviviruses and does so (as shown for DENV by interfering with an early step in the viral replication cycle.

  6. RNA2DMut: A web tool for the design and analysis of RNA structure mutations.

    Science.gov (United States)

    Moss, Walter N

    2017-11-28

    With the wide-spread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis- and trans-regulatory functions of RNA, secondary structure (2D base pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g. indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at: https://rna2dmut.bb.iastate.edu/. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. REDIdb: the RNA editing database.

    Science.gov (United States)

    Picardi, Ernesto; Regina, Teresa Maria Rosaria; Brennicke, Axel; Quagliariello, Carla

    2007-01-01

    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.

  8. Henipavirus RNA in African bats.

    Directory of Open Access Journals (Sweden)

    Jan Felix Drexler

    Full Text Available BACKGROUND: Henipaviruses (Hendra and Nipah virus are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. METHODOLOGY/PRINCIPAL FINDINGS: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. CONCLUSIONS/SIGNIFICANCE: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans.

  9. Challenges in RNA virus bioinformatics.

    Science.gov (United States)

    Marz, Manja; Beerenwinkel, Niko; Drosten, Christian; Fricke, Markus; Frishman, Dmitrij; Hofacker, Ivo L; Hoffmann, Dieter; Middendorf, Martin; Rattei, Thomas; Stadler, Peter F; Töpfer, Armin

    2014-07-01

    Computer-assisted studies of structure, function and evolution of viruses remains a neglected area of research. The attention of bioinformaticians to this interesting and challenging field is far from commensurate with its medical and biotechnological importance. It is telling that out of >200 talks held at ISMB 2013, the largest international bioinformatics conference, only one presentation explicitly dealt with viruses. In contrast to many broad, established and well-organized bioinformatics communities (e.g. structural genomics, ontologies, next-generation sequencing, expression analysis), research groups focusing on viruses can probably be counted on the fingers of two hands. The purpose of this review is to increase awareness among bioinformatics researchers about the pressing needs and unsolved problems of computational virology. We focus primarily on RNA viruses that pose problems to many standard bioinformatics analyses owing to their compact genome organization, fast mutation rate and low evolutionary conservation. We provide an overview of tools and algorithms for handling viral sequencing data, detecting functionally important RNA structures, classifying viral proteins into families and investigating the origin and evolution of viruses. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Movement of regulatory RNA between animal cells.

    Science.gov (United States)

    Jose, Antony M

    2015-07-01

    Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. © 2015 Wiley Periodicals, Inc.

  11. Coronavirus cis-Acting RNA Elements.

    Science.gov (United States)

    Madhugiri, R; Fricke, M; Marz, M; Ziebuhr, J

    2016-01-01

    Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis. © 2016 Elsevier Inc. All rights reserved.

  12. Alterations in micro RNA-messenger RNA (miRNA-mRNA) Coupled Signaling Networks in Sporadic Alzheimer's Disease (AD) Hippocampal CA1.

    Science.gov (United States)

    Jaber, V; Zhao, Y; Lukiw, W J

    2017-04-01

    RNA sequencing, DNA microfluidic array, LED-Northern, Western immunoassay and bioinformatics analysis have uncovered a small family of up-regulated human brain enriched microRNAs (miRNAs) and down-regulated messenger RNAs (mRNAs) in short post-mortem interval (PMI) sporadic Alzheimer's disease (AD) brain. At the mRNA level, a large majority of the expression of human brain genes found to be down-regulated in sporadic AD appears to be a consequence of an up-regulation of a specific group of NF-kB-inducible microRNAs (miRNAs). This group of up-regulated miRNAs - including miRNA-34a and miRNA-146a - has strong, energetically favorable, complimentary RNA sequences in the 3' untranslated regions (3'-UTR) of their target mRNAs which ultimately drive the down-regulation in the expression of certain essential brain genes. Interestingly, just 2 significantly up-regulated miRNAs - miRNA-34a and miRNA-146a - appear to down-regulate mRNA targets involved in synaptogenesis (SHANK3), phagocytosis deficits and tau pathology (TREM2), inflammation (CFH; complement factor H) and amyloidogenesis (TSPAN12), all of which are distinguishing pathological features characteristic of middle-to-late stage AD neuropathology. This paper reports the novel finding of parallel miRNA-34a and miRNA-146a up-regulation in sporadic AD hippocampal CA1 RNA pools and proposes an altered miRNA-mRNA coupled signaling network in AD, much of which is supported by current experimental findings in the recent literature.

  13. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    Science.gov (United States)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  14. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  15. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication.

    Science.gov (United States)

    Berger, Carola; Romero-Brey, Inés; Radujkovic, Danijela; Terreux, Raphael; Zayas, Margarita; Paul, David; Harak, Christian; Hoppe, Simone; Gao, Min; Penin, Francois; Lohmann, Volker; Bartenschlager, Ralf

    2014-11-01

    Direct-acting antivirals that target nonstructural protein 5A (NS5A), such as daclatasvir, have high potency against the hepatitis C virus (HCV). They are promising clinical candidates, yet little is known about their antiviral mechanisms. We investigated the mechanisms of daclatasvir derivatives. We used a combination of biochemical assays, in silico docking models, and high-resolution imaging to investigate inhibitor-induced changes in properties of NS5A, including its interaction with phosphatidylinositol-4 kinase IIIα and induction of the membranous web, which is the site of HCV replication. Analyses were conducted with replicons, infectious virus, and human hepatoma cells that express a HCV polyprotein. Studies included a set of daclatasvir derivatives and HCV variants with the NS5A inhibitor class-defining resistance mutation Y93H. NS5A inhibitors did not affect NS5A stability or dimerization. A daclatasvir derivative interacted with NS5A and molecular docking studies revealed a plausible mode by which the inhibitor bound to NS5A dimers. This interaction was impaired in mutant forms of NS5A that are resistant to daclatavir, providing a possible explanation for the reduced sensitivity of the HCV variants to this drug. Potent NS5A inhibitors were found to block HCV replication by preventing formation of the membranous web, which was not linked to an inhibition of phosphatidylinositol-4 kinase IIIα. Correlative light-electron microscopy revealed unequivocally that NS5A inhibitors had no overall effect on the subcellular distribution of NS5A, but completely prevented biogenesis of the membranous web. Highly potent inhibitors of NS5A, such as daclatasvir, block replication of HCV RNA at the stage of membranous web biogenesis-a new paradigm in antiviral therapy. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence.

    Science.gov (United States)

    Masliah, Grégoire; Barraud, Pierre; Allain, Frédéric H-T

    2013-06-01

    The double-stranded RNA binding domain (dsRBD) is a small protein domain of 65-70 amino acids adopting an αβββα fold, whose central property is to bind to double-stranded RNA (dsRNA). This domain is present in proteins implicated in many aspects of cellular life, including antiviral response, RNA editing, RNA processing, RNA transport and, last but not least, RNA silencing. Even though proteins containing dsRBDs can bind to very specific dsRNA targets in vivo, the binding of dsRBDs to dsRNA is commonly believed to be shape-dependent rather than sequence-specific. Interestingly, recent structural information on dsRNA recognition by dsRBDs opens the possibility that this domain performs a direct readout of RNA sequence in the minor groove, allowing a global reconsideration of the principles describing dsRNA recognition by dsRBDs. We review in this article the current structural and molecular knowledge on dsRBDs, emphasizing the intricate relationship between the amino acid sequence, the structure of the domain and its RNA recognition capacity. We especially focus on the molecular determinants of dsRNA recognition and describe how sequence discrimination can be achieved by this type of domain.

  17. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Science.gov (United States)

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  18. Hepatitis C virus infection alters P-body composition but is independent of P-body granules.

    Science.gov (United States)

    Pérez-Vilaró, Gemma; Scheller, Nicoletta; Saludes, Verónica; Díez, Juana

    2012-08-01

    Processing bodies (P-bodies) are highly dynamic cytoplasmic granules conserved among eukaryotes. They are present under normal growth conditions and contain translationally repressed mRNAs together with proteins from the mRNA decay and microRNA (miRNA) machineries. We have previously shown that the core P-body components PatL1, LSm1, and DDX6 (Rck/p54) are required for hepatitis C virus (HCV) RNA replication; however, how HCV infection affects P-body granules and whether P-body granules per se influence the HCV life cycle remain unresolved issues. Here we show that HCV infection alters P-body composition by specifically changing the localization pattern of P-body components that are required for HCV replication. This effect was not related to an altered expression level of these components and could be reversed by inhibiting HCV replication with a polymerase inhibitor. Similar observations were obtained with a subgenomic replicon that supports only HCV translation and replication, indicating that these early steps of the HCV life cycle trigger the P-body alterations. Finally, P-body disruption by Rap55 depletion did not affect viral titers or HCV protein levels, demonstrating that the localization of PatL1, LSm1, and DDX6 in P-bodies is not required for their function on HCV. Thus, the HCV-induced changes on P-bodies are mechanistically linked to the function of specific P-body components in HCV RNA translation and replication; however, the formation of P-body granules is not required for HCV infection.

  19. Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene Evolution

    Directory of Open Access Journals (Sweden)

    Akio Kanai

    2015-01-01

    Full Text Available Transfer RNAs (tRNAs are small non-coding RNAs with lengths of approximately 70–100 nt. They are directly involved in protein synthesis by carrying amino acids to the ribosome. In this sense, tRNAs are key molecules that connect the RNA world and the protein world. Thus, study of the evolution of tRNA molecules may reveal the processes that led to the establishment of the central dogma: genetic information flows from DNA to RNA to protein. Thanks to the development of DNA sequencers in this century, we have determined a huge number of nucleotide sequences from complete genomes as well as from transcriptomes in many species. Recent analyses of these large data sets have shown that particular tRNA genes, especially in Archaea, are disrupted in unique ways: some tRNA genes contain multiple introns and some are split genes. Even tRNA molecules themselves are fragmented post-transcriptionally in many species. These fragmented small RNAs are known as tRNA-derived fragments (tRFs. In this review, I summarize the progress of research into the disrupted tRNA genes and the tRFs, and propose a possible model for the molecular evolution of tRNAs based on the concept of the combination of fragmented tRNA halves.

  20. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

    DEFF Research Database (Denmark)

    Peng, Zhiyu; Cheng, Yanbing; Tan, Bertrand Chin-Ming

    2012-01-01

    RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed a comput......RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed...

  1. Folding RNA/DNA hybrid duplexes.

    Science.gov (United States)

    Lorenz, Ronny; Hofacker, Ivo L; Bernhart, Stephan H

    2012-10-01

    While there are numerous programs that can predict RNA or DNA secondary structures, a program that predicts RNA/DNA hetero-dimers is still missing. The lack of easy to use tools for predicting their structure may be in part responsible for the small number of reports of biologically relevant RNA/DNA hetero-dimers. We present here an extension to the widely used ViennaRNA Package (Lorenz et al., 2011) for the prediction of the structure of RNA/DNA hetero-dimers. http://www.tbi.univie.ac.at/~ronny/RNA/vrna2.html ronny@tbi.univie.ac.at, berni@bioinf.uni-leipzig.de Supplementary data are available at Bioinformatics online.

  2. Use of small RNA as antiaging cosmeceuticals.

    Science.gov (United States)

    Zhang, Pingjing; Chen, Jianxin; Li, Tiejun; Zhu, York Yuanyuan

    2013-01-01

    Over the past two decades, RNA interference (RNAi) has achieved great improvements in medicine, which has benefited the development of innovative cosmeceutical products, particular, to antiaging cosmeceuticals. A variety of ongoing research has tried to employ small RNAs-small interference RNA and microRNA as new cosmeceutical ingredients. Furthermore, several skin care companies have released new small RNA products in cosmetic market. In this review, we will describe the latest and most advanced approaches and strategies of using small RNA as antiaging cosmetics, including investigations on aging-related genes that small RNA target, method of delivering them, and challenges in the development of RNAi-based therapeutics for skin care cosmeceuticals. It is certain that advancement in this direction will evolve a new landscape for innovative antiaging cosmeceuticals.

  3. Designing synthetic RNA for delivery by nanoparticles

    Science.gov (United States)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  4. Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified Arabidopsis RNA-dependent RNA polymerases RDR2 and RDR6.

    Directory of Open Access Journals (Sweden)

    Anthony Devert

    Full Text Available Cellular RNA-dependent RNA polymerases (RDRs are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA from single stranded RNA (ssRNA targeted by RNA silencing. The dsRNA is subsequently cleaved by the ribonuclease DICER-like into secondary small interfering RNAs (siRNAs that reinforce and/or maintain the silenced state of the target RNA. Models of RNA silencing propose that RDRs could use primer-independent and primer-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA. However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer-independent and primer-dependent RNA polymerase activities with different efficiencies. We further show that RDR2 and RDR6 can initiate dsRNA synthesis either by elongation of 21- to 24- nucleotides RNAs hybridized to complementary RNA template or by elongation of self-primed RNA template. These findings provide new insights into our understanding of the molecular mechanisms of RNA silencing in plants.

  5. Synthesis and Labeling of RNA In Vitro

    Science.gov (United States)

    Huang, Chao; Yu, Yi-Tao

    2013-01-01

    This unit discusses several methods for generating large amounts of uniformly labeled, end-labeled, and site-specifically labeled RNAs in vitro. The methods involve a number of experimental procedures, including RNA transcription, 5′ dephosphorylation and rephosphorylation, 3′ terminal nucleotide addition (via ligation), site-specific RNase H cleavage directed by 2′-O-methyl RNA-DNA chimeras, and 2-piece splint ligation. The applications of these RNA radiolabeling approaches are also discussed. PMID:23547015

  6. RNA topology remolds electrostatic stabilization of viruses

    OpenAIRE

    Erdemci-Tandogan, G; Wagner, J.; Schoot, van der, PPAM Paul; Podgornik, R.; Zandi, R

    2013-01-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to maximize the amount of encapsulated genome and make assembly more efficient, allowing v...

  7. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  8. Estrogen Regulation of Messenger RNA Stability

    Science.gov (United States)

    1990-08-17

    H f / Slobin, L.I. and Jordan, P. (1984). "Translational repression of mRNA for eucaryotic elogation factors in Friend erythroleukemia cells ...101 19. In vitro Cell -Free Assay Conditions for Studying mRNA Turnover and Schematic of Characterization of Nuclease- Activity 106 20...hours for more stable species. The average half-time of turnover for mRNA in eukaryotic cells is 10-20 hours. This appears to be a weighted average of

  9. Circulating Extracellular RNA Markers of Liver Regeneration.

    Directory of Open Access Journals (Sweden)

    Irene K Yan

    Full Text Available Although a key determinant of hepatic recovery after injury is active liver regeneration, the ability to detect ongoing regeneration is lacking. The restoration of liver mass after hepatectomy involves systemic changes with coordinated changes in gene expression guiding regenerative responses, activation of progenitor cells, and proliferation of quiescent hepatocytes. We postulated that these responses involve intercellular communication involving extracellular RNA and that these could represent biomarkers of active regenerative responses.RNA sequencing was performed to identify temporal changes in serum extracellular non-coding RNA after partial hepatectomy in C57BL/6 male mice. Tissue expression of selected RNA was performed by microarray analysis and validated using qRT-PCR. Digital PCR was used to detect and quantify serum expression of selected RNA.A peak increase in extracellular RNA content occurred six hours after hepatectomy. RNA sequencing identified alterations in several small non-coding RNA including known and novel microRNAs, snoRNAs, tRNA, antisense and repeat elements after partial hepatectomy. Combinatorial effects and network analyses identified signal regulation, protein complex assembly, and signal transduction as the most common biological processes targeted by miRNA that altered. miR-1A and miR-181 were most significantly altered microRNA in both serum and in hepatic tissues, and their presence in serum was quantitated using digital PCR.Extracellular RNA selectively enriched during acute regeneration can be detected within serum and represent biomarkers of ongoing liver regeneration in mice. The ability to detect ongoing active regeneration would improve the assessment of hepatic recovery from liver injury.

  10. The Old and New RNA World

    Directory of Open Access Journals (Sweden)

    Zofia Szweykowska-Kulińska

    2014-12-01

    Full Text Available Among the numerous hypotheses offering a scenario for the origin of life on Earth, the one called “The RNA World” has gained the most attention. According to this hypothesis RNA acted as a genetic information storage material, as a catalyst of all metabolic reactions, and as a regulator of all processes in the primordial world. Various experiments show that RNA molecules could have been synthesized abiotically, with the potential to mediate a whole repertoire of metabolic reactions. Ribozymes carrying out aminoacyl-tRNA reactions have been found in SELEX (systematic evolution of ligands by exponential enrichment approaches and the development of a ribosome from a RNA-built protoribosome is easy to imagine. Transfer RNA aminoacylation, protoribosome origin, and the availability of amino acids on early Earth allowed the genetic code to evolve. Encoded proteins most likely stabilized RNA molecules and were able to create channels across membranes. In the modern cell, DNA replaced RNA as the main depositor of genetic information and proteins carry out almost all metabolic reactions. However, RNA is still playing versatile, crucial roles in the cell. Apart from its classical functions in the cell, a huge small RNA world is controlling gene expression, chromatin condensation, response to environmental cues, and protecting the cell against the invasion of various nucleic acids forms. Long non-coding RNAs act as crucial gene expression regulators. Riboswitches act at the level of transcription, splicing or translation and mediate feedback regulation on biosynthesis and transport of the ligand they sense. Alternative splicing generates genetic variability and increases the protein repertoire in response to developmental or environmental changes. All these regulatory functions are essential in shaping cell plasticity in the changing milieu. Recent discoveries of new, unexpected and important functions of RNA molecules support the hypothesis that we

  11. Trophoblasts, invasion and micro RNA

    Directory of Open Access Journals (Sweden)

    Ludivine eDoridot

    2013-11-01

    Full Text Available MicroRNAs (miRNAs have recently become essential actors in various fields of physiology and medicine, especially as easily accessible circulating biomarkers, or as modulators of cell differentiation. To this respect, terminal differentiation of trophoblasts (the characteristic cells of the placenta in Therian mammals into syncytiotrophoblast, villous trophoblast or extravillous trophoblast constitutes a good example of such a choice, where miRNAs have recently been shown to play an important role. The aim of this review is to provide a snapshot of what is known today in placentation mechanisms that are mediated by miRNA, under the angles of materno-foetal immune dialogue regulation, trophoblast differentiation and angiogenesis at the materno-foetal interface. Also, two aspects of regulation of these issues will be highlighted: the part played by oxygen concentration and the specific function of imprinted genes in the developing placenta.

  12. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.

    Science.gov (United States)

    Miao, Zhichao; Adamiak, Ryszard W; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M; Chen, Shi-Jie; Cheng, Clarence; Chojnowski, Grzegorz; Chou, Fang-Chieh; Cordero, Pablo; Cruz, José Almeida; Ferré-D'Amaré, Adrian R; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V; Dunin-Horkawicz, Stanislaw; Kladwang, Wipapat; Krokhotin, Andrey; Lach, Grzegorz; Magnus, Marcin; Major, François; Mann, Thomas H; Masquida, Benoît; Matelska, Dorota; Meyer, Mélanie; Peselis, Alla; Popenda, Mariusz; Purzycka, Katarzyna J; Serganov, Alexander; Stasiewicz, Juliusz; Szachniuk, Marta; Tandon, Arpit; Tian, Siqi; Wang, Jian; Xiao, Yi; Xu, Xiaojun; Zhang, Jinwei; Zhao, Peinan; Zok, Tomasz; Westhof, Eric

    2015-06-01

    This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5-3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson-Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/. © 2015 Miao et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. The RNA World and its origins

    Science.gov (United States)

    Schwartz, A. W.

    1995-01-01

    The theory of the "RNA World" states that the first molecular systems to display the properties of self-replication and evolution were RNA molecules. The origin of life not only depended crucially upon this event, but RNA molecules can even be viewed as the first "living" things. In recent years this theory has gained ascendancy over competing ideas and is now largely accepted by biologists as the most satisfactory explanation for the origin of life. The reasons for this development will be reviewed and the problem of the origin of the first RNA molecules will be discussed.

  14. ADAR RNA editing below the backbone.

    Science.gov (United States)

    Keegan, Liam; Khan, Anzer; Vukic, Dragana; O'Connell, Mary

    2017-09-01

    ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems. © 2017 Keegan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. RNA recognition by a human antibody against brain cytoplasmic 200 RNA.

    Science.gov (United States)

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-06-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. © 2014 Jung et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Infidelity of translation of encephalomyocarditis viral RNA with tRNA from human malignant trophoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, O.K.; Kuchino, Y.

    1977-09-23

    We have investigated tRNA from the human malignant trophoblastic cells (BeWo cell) and human chorionic tissue for the translation of specific mRNAs, in a tRNA-dependent protein synthesizing system from Ehrlich ascites cells. BeWo cell tRNA and chorionic tRNA supported oviduct mRNA or encephalomyocarditis (EMC) viral RNA directed amino acid incorporation into polypeptides equally effectively. Polypeptides synthesized with oviduct mRNA and tRNA from both sources were identical upon sodium dodecylsulfate polyacrylamide gel electrophoresis. But the EMC RNA directed polypeptides synthesized with BeWo cell tRNA were different from those synthesized with chorionic tRNA. A polypeptide (molecular weight 58,000) was apparently not synthesized and the synthesis of a faster moving component (molecular weight, 14,000) was enhanced when BeWo cell tRNA was used. These results imply a functional difference in tRNA from human malignant cells compared to their normal counterpart.

  17. Highly repetitive tRNA(Pro)-tRNA(His) gene cluster from Photobacterium phosphoreum.

    Science.gov (United States)

    Giroux, S; Beaudet, J; Cedergren, R

    1988-01-01

    A DNA fragment comprising the four tRNA gene sequences of the Escherichia coli argT locus hybridized with two Sau3A-generated DNA fragments from the vibrio Photobacterium phosphoreum (ATCC 11040). Detailed sequence analysis of the longer fragment shows the following gene organization: 5'-promoter-tRNA(Pro)-tRNAPro-tRNA(Pro)-tRNA(His)-tRNA(Pro)-tRNA(Pro)- tRNA(His)-tRNA(Pro)-five pseudogenes derived from the upstream tRNAPro interspersed by putative Rho-independent terminators. This sequence demonstrates the presence of highly repetitive, tandem tRNA genes in a bacterial genome. Furthermore, a stretch of 304 nucleotides from this cluster was found virtually unchanged in the other (shorter) fragment which was previously sequenced. The two clusters together contain eight tRNA(Pro) pseudogenes and eight fully intact tRNA(Pro) genes, an unusually high number for a single eubacterial isoacceptor tRNA. These results show that the organization of some tRNA operons is highly variable in eubacteria. Images PMID:3056906

  18. RNA Bricks--a database of RNA 3D motifs and their interactions.

    Science.gov (United States)

    Chojnowski, Grzegorz; Walen, Tomasz; Bujnicki, Janusz M

    2014-01-01

    The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA-protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. 'RNA bricks' are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching 'RNA bricks' according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions.

  19. VfoldCPX Server: Predicting RNA-RNA Complex Structure and Stability.

    Science.gov (United States)

    Xu, Xiaojun; Chen, Shi-Jie

    RNA-RNA interactions are essential for genomic RNA dimerization, mRNA splicing, and many RNA-related gene expression and regulation processes. The prediction of the structure and folding stability of RNA-RNA complexes is a problem of significant biological importance and receives substantial interest in the biological community. The VfoldCPX server provides a new web interface to predict the two-dimensional (2D) structures of RNA-RNA complexes from the nucleotide sequences. The VfoldCPX server has several novel advantages including the ability to treat RNAs with tertiary contacts (crossing base pairs) such as loop-loop kissing interactions and the use of physical loop entropy parameters. Based on a partition function-based algorithm, the server enables prediction for structure with and without tertiary contacts. Furthermore, the server outputs a set of energetically stable structures, ranked by their stabilities. The results allow users to gain extensive physical insights into RNA-RNA interactions and their roles in RNA function. The web server is freely accessible at "http://rna.physics.missouri.edu/vfoldCPX".

  20. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  1. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA

    Energy Technology Data Exchange (ETDEWEB)

    Wasmuth, Elizabeth V.; Januszyk, Kurt; Lima, Christopher D. [MSKCC

    2014-08-20

    The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.

  2. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation.

    Science.gov (United States)

    Gu, Wanjun; Xu, Yuming; Xie, Xueying; Wang, Ting; Ko, Jae-Hong; Zhou, Tong

    2014-09-01

    Recent studies have suggested that the secondary structure of the 5' untranslated region (5' UTR) of messenger RNA (mRNA) is important for microRNA (miRNA)-mediated gene regulation in humans. mRNAs that are targeted by miRNA tend to have a higher degree of local secondary structure in their 5' UTR; however, the general role of the 5' UTR in miRNA-mediated gene regulation remains unknown. We systematically surveyed the secondary structure of 5' UTRs in both plant and animal species and found a universal trend of increased mRNA stability near the 5' cap in mRNAs that are regulated by miRNA in animals, but not in plants. Intra-genome comparison showed that gene expression level, GC content of the 5' UTR, number of miRNA target sites, and 5' UTR length may influence mRNA structure near the 5' cap. Our results suggest that the 5' UTR secondary structure performs multiple functions in regulating post-transcriptional processes. Although the local structure immediately upstream of the start codon is involved in translation initiation, RNA structure near the 5' cap site, rather than the structure of the full-length 5' UTR sequences, plays an important role in miRNA-mediated gene regulation. © 2014 Gu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids.

    Science.gov (United States)

    Zhang, Zheng Z; Pannunzio, Nicholas R; Hsieh, Chih-Lin; Yu, Kefei; Lieber, Michael R

    2015-04-08

    Long genomic R-loops in eukaryotes were first described at the immunoglobulin heavy chain locus switch regions using bisulfite sequencing and functional studies. A mouse monoclonal antibody called S9.6 has been used for immunoprecipitation (IP) to identify R-loops, based on the assumption that it is specific for RNA:DNA over other nucleic acid duplexes. However, recent work has demonstrated that a variable domain of S9.6 binds AU-rich RNA:RNA duplexes with a KD that is only 5.6-fold weaker than for RNA:DNA duplexes. Most IP protocols do not pre-clear the genomic nucleic acid with RNase A to remove free RNA. Fold back of ssRNA can readily generate RNA:RNA duplexes that may bind the S9.6 antibody, and adventitious binding of RNA may also create short RNA:DNA regions. Here we investigate whether RNase A is needed to obtain reliable IP with S9.6. As our test locus, we chose the most well-documented site for kilobase-long mammalian genomic R-loops, the immunoglobulin heavy chain locus (IgH) class switch regions. The R-loops at this locus can be induced by using cytokines to stimulate transcription from germline transcript promoters. We tested IP using S9.6 with and without various RNase treatments. The RNase treatments included RNase H to destroy the RNA in an RNA:DNA duplex and RNase A to destroy single-stranded (ss) RNA to prevent it from binding S9.6 directly (as duplex RNA) and to prevent the ssRNA from annealing to the genome, resulting in adventitious RNA:DNA hybrids. We find that optimal detection of RNA:DNA duplexes requires removal of ssRNA using RNase A. Without RNase A treatment, known regions of R-loop formation containing RNA:DNA duplexes can not be reliably detected. With RNase A treatment, a signal can be detected over background, but only within a limited 2 or 3-fold range, even with a stable kilobase-long genomic R-loop. Any use of the S9.6 antibody must be preceded by RNase A treatment to remove free ssRNA that may compete for the S9.6 binding by

  4. In vitro transcription of Sonchus yellow net virus RNA by a virus-associated RNA-dependent RNA polymerase

    NARCIS (Netherlands)

    Flore, P.H.

    1986-01-01

    The aim of the investigation presented in this thesis was to elucidate the nature of the RNA- dependent RNA polymerase, thought to be associated with Sonchus yellow net virus (SYNV), a rhabdovirus infecting plants. This research was initiated to shed light on the

  5. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors

    Science.gov (United States)

    Lakatos, Lóránt; Csorba, Tibor; Pantaleo, Vitantonio; Chapman, Elisabeth J; Carrington, James C; Liu, Yu-Ping; Dolja, Valerian V; Calvino, Lourdes Fernández; López-Moya, Juan José; Burgyán, József

    2006-01-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in higher plants and insects. To counteract RNA silencing, viruses express silencing suppressors that interfere with both siRNA- and microRNA-guided silencing pathways. We used comparative in vitro and in vivo approaches to analyse the molecular mechanism of suppression by three well-studied silencing suppressors. We found that silencing suppressors p19, p21 and HC-Pro each inhibit the intermediate step of RNA silencing via binding to siRNAs, although the molecular features required for duplex siRNA binding differ among the three proteins. None of the suppressors affected the activity of preassembled RISC complexes. In contrast, each suppressor uniformly inhibited the siRNA-initiated RISC assembly pathway by preventing RNA silencing initiator complex formation. PMID:16724105

  6. Ribonucleoprotein purification and characterization using RNA Mango.

    Science.gov (United States)

    Panchapakesan, Shanker Shyam S; Ferguson, Matthew L; Hayden, Eric J; Chen, Xin; Hoskins, Aaron A; Unrau, Peter J

    2017-10-01

    The characterization of RNA-protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand, we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs. Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation ranging from pull-down assays to the isolation of large amounts of biochemically defined cellular RNPs. We have incorporated the Mango aptamer into the S. cerevisiae U1 small nuclear RNA (snRNA), shown that the Mango-snRNA is functional in cells, and used the aptamer to pull down a U1 snRNA-associated protein. To demonstrate large-scale isolation of RNPs, we purified and characterized bacterial RNA polymerase holoenzyme (HE) in complex with a Mango-containing 6S RNA. We were able to use the combination of a red-shifted TO3-Dtb ligand and eGFP-tagged HE to follow the binding and release of the 6S RNA by two-color native gel analysis as well as by single-molecule fluorescence cross-correlation spectroscopy. Together these experiments demonstrate how the Mango aptamer in conjunction with simple derivatives of its flurophore ligands enables the purification and characterization of endogenous cellular RNPs in vitro. © 2017 Panchapakesan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. RNA recognition by a human antibody against brain cytoplasmic 200 RNA

    Science.gov (United States)

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-01-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. PMID:24759090

  8. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications

    OpenAIRE

    Ebhardt, H. Alexander; Tsang, Herbert H.; Dai, Denny C.; Liu, Yifeng; Bostan, Babak; Fahlman, Richard P.

    2009-01-01

    Recent advances in DNA-sequencing technology have made it possible to obtain large datasets of small RNA sequences. Here we demonstrate that not all non-perfectly matched small RNA sequences are simple technological sequencing errors, but many hold valuable biological information. Analysis of three small RNA datasets originating from Oryza sativa and Arabidopsis thaliana small RNA-sequencing projects demonstrates that many single nucleotide substitution errors overlap when aligning homologous...

  9. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures

    Science.gov (United States)

    Miao, Zhichao; Adamiak, Ryszard W.; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cheng, Clarence; Chojnowski, Grzegorz; Chou, Fang-Chieh; Cordero, Pablo; Cruz, José Almeida; Ferré-D'Amaré, Adrian R.; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Dunin-Horkawicz, Stanislaw; Kladwang, Wipapat; Krokhotin, Andrey; Lach, Grzegorz; Magnus, Marcin; Major, François; Mann, Thomas H.; Masquida, Benoît; Matelska, Dorota; Meyer, Mélanie; Peselis, Alla; Popenda, Mariusz; Purzycka, Katarzyna J.; Serganov, Alexander; Stasiewicz, Juliusz; Szachniuk, Marta; Tandon, Arpit; Tian, Siqi; Wang, Jian; Xiao, Yi; Xu, Xiaojun; Zhang, Jinwei; Zhao, Peinan; Zok, Tomasz; Westhof, Eric

    2015-01-01

    This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5–3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson–Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/. PMID:25883046

  10. Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.

    Directory of Open Access Journals (Sweden)

    Brian J Belmont

    Full Text Available Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis-elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs, which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically-inducible RNA-protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i the Tet Repressor protein (TetR genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii a target transcript containing genetically encoded TetR-binding RNA aptamers. TetR-fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.

  11. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles.

    Science.gov (United States)

    Haque, Farzin; Guo, Peixuan

    2015-01-01

    RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

  12. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    complex removes noncoding introns, while 3'end processing involves in cleavage and addition of poly(A) tails to the nascent transcript. Rna14 protein in budding yeast has been implicated in cleavage and polyadenylation of mRNA in the nucleus but their role in the pre-mRNA splicing has not been studied. Here, we report ...

  13. Cyclin-dependent kinase 9 links RNA polymerase II transcription to processing of ribosomal RNA.

    Science.gov (United States)

    Burger, Kaspar; Mühl, Bastian; Rohrmoser, Michaela; Coordes, Britta; Heidemann, Martin; Kellner, Markus; Gruber-Eber, Anita; Heissmeyer, Vigo; Strässer, Katja; Eick, Dirk

    2013-07-19

    Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3' extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3' processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3' rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing.

  14. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

    DEFF Research Database (Denmark)

    Peng, Zhiyu; Cheng, Yanbing; Tan, Bertrand Chin-Ming

    2012-01-01

    RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed...

  15. RNA Bricks—a database of RNA 3D motifs and their interactions

    Science.gov (United States)

    Chojnowski, Grzegorz; Waleń, Tomasz; Bujnicki, Janusz M.

    2014-01-01

    The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions. PMID:24220091

  16. Signatures of RNA binding proteins globally coupled to effective microRNA target sites

    DEFF Research Database (Denmark)

    Jacobsen, Anders; Wen, Jiayu; Marks, Debora S

    2010-01-01

    MicroRNAs (miRNAs) and small interfering RNAs (siRNAs), bound to Argonaute proteins (RISC), destabilize mRNAs through base-pairing with the mRNA. However, the gene expression changes after perturbations of these small RNAs are only partially explained by predicted miRNA/siRNA targeting. Targeting...

  17. Silencing of HIV-1 with RNA interference: a multiple shRNA approach

    NARCIS (Netherlands)

    ter Brake, Olivier; Konstantinova, Pavlina; Ceylan, Mustafa; Berkhout, Ben

    2006-01-01

    Double-stranded RNA can induce gene silencing via a process known as RNA interference (RNAi). Previously, we have shown that stable expression of a single shRNA targeting the HIV-1 Nef gene strongly inhibits HIV-1 replication. However, this was not sufficient to maintain inhibition. One of the

  18. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing.

    NARCIS (Netherlands)

    Maatz, H.; Jens, M.; Liss, M.; Schafer, S.; Heinig, M.; Kirchner, M.; Adami, E.; Rintisch, C.; Dauksaite, V.; Radke, M.H.; Selbach, M.; Barton, P.J.; Cook, S.A.; Rajewsky, N.; Gotthardt, M.; Landthaler, M.; Hubner, N.

    2014-01-01

    Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and

  19. Rapid generation of microRNA sponges for microRNA inhibition.

    Directory of Open Access Journals (Sweden)

    Joost Kluiver

    Full Text Available MicroRNA (miRNA sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies.

  20. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation.

    Science.gov (United States)

    Popow, Johannes; Alleaume, Anne-Marie; Curk, Tomaz; Schwarzl, Thomas; Sauer, Sven; Hentze, Matthias W

    2015-11-01

    Mitochondrial RNA processing is an essential step for the synthesis of the components of the electron transport chain in all eukaryotic organisms, yet several aspects of mitochondrial RNA biogenesis and regulation are not sufficiently understood. RNA interactome capture identified several disease-relevant RNA-binding proteins (RBPs) with noncanonical RNA-binding architectures, including all six members of the FASTK (FAS-activated serine/threonine kinase) family of proteins. A mutation within one of these newly assigned FASTK RBPs, FASTKD2, causes a rare form of Mendelian mitochondrial encephalomyopathy. To investigate whether RNA binding of FASTKD2 contributes to the disease phenotype, we identified the RNA targets of FASTKD2 by iCLIP. FASTKD2 interacts with a defined set of mitochondrial transcripts including 16S ribosomal RNA (RNR2) and NADH dehydrogenase subunit 6 (ND6) messenger RNA. CRISPR-mediated deletion of FASTKD2 leads to aberrant processing and expression of RNR2 and ND6 mRNA that encodes a subunit of the respiratory complex I. Metabolic phenotyping of FASTKD2-deficient cells reveals impaired cellular respiration with reduced activities of all respiratory complexes. This work identifies key aspects of the molecular network of a previously uncharacterized, disease-relevant RNA-binding protein, FASTKD2, by a combination of genomic, molecular, and metabolic analyses. © 2015 Popow et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1

    Directory of Open Access Journals (Sweden)

    Yu Lianbo

    2011-05-01

    Full Text Available Abstract Background MicroRNA (miRNA-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured

  2. Optimization of yeast ( Saccharomyces cerevisiae ) RNA isolation ...

    African Journals Online (AJOL)

    Quality of the starting RNA is indispensably important for obtaining highly reproducible quantitative polymerase chain reaction (qPCR) and microarray results for all organisms as well as S. cerevisiae. Isolating RNA from yeast cells with a maximum quality was especially critical since these cells were rich in polysaccharides ...

  3. Rfam: updates to the RNA families database

    DEFF Research Database (Denmark)

    Gardner, Paul P; Daub, Jennifer; Tate, John G

    2008-01-01

    Rfam is a collection of RNA sequence families, represented by multiple sequence alignments and covariance models (CMs). The primary aim of Rfam is to annotate new members of known RNA families on nucleotide sequences, particularly complete genomes, using sensitive BLAST filters in combination wit...

  4. RNA topology remolds electrostatic stabilization of viruses

    NARCIS (Netherlands)

    Erdemci-Tandogan, Gonca; Wagner, Jef; Van Der Schoot, Paul; Podgornik, Rudolf; Zandi, Roya

    2014-01-01

    Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall.

  5. The ribosome challenge to the RNA world.

    Science.gov (United States)

    Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2015-04-01

    An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.

  6. HIV-1 as RNA evolution machine

    NARCIS (Netherlands)

    Berkhout, Ben

    2011-01-01

    We have over the years studied several sequence or structural elements within the HIV-1 RNA genome. Molecular mechanisms have been proposed for the role of these RNA motifs in virus replication. We have developed HIV-1 evolution as a powerful research method to study different aspects of the viral

  7. A comparison of RNA folding measures

    DEFF Research Database (Denmark)

    Freyhult, E.; Gardner, P. P.; Moulton, V.

    2005-01-01

    the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings. Results Our analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE) than...

  8. RNA interference against viruses: strike and counterstrike

    NARCIS (Netherlands)

    Haasnoot, Joost; Westerhout, Ellen M.; Berkhout, Ben

    2007-01-01

    RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA. RNAi holds great promise as a novel nucleic acid-based therapeutic against a wide variety of diseases, including cancer, infectious diseases and genetic disorders. Antiviral

  9. Human coding RNA editing is generally nonadaptive

    Science.gov (United States)

    Xu, Guixia; Zhang, Jianzhi

    2014-01-01

    Impairment of RNA editing at a handful of coding sites causes severe disorders, prompting the view that coding RNA editing is highly advantageous. Recent genomic studies have expanded the list of human coding RNA editing sites by more than 100 times, raising the question of how common advantageous RNA editing is. Analyzing 1,783 human coding A-to-G editing sites, we show that both the frequency and level of RNA editing decrease as the importance of a site or gene increases; that during evolution, edited As are more likely than unedited As to be replaced with Gs but not with Ts or Cs; and that among nonsynonymously edited As, those that are evolutionarily least conserved exhibit the highest editing levels. These and other observations reveal the overall nonadaptive nature of coding RNA editing, despite the presence of a few sites in which editing is clearly beneficial. We propose that most observed coding RNA editing results from tolerable promiscuous targeting by RNA editing enzymes, the original physiological functions of which remain elusive. PMID:24567376

  10. The NIH Extracellular RNA Communication Consortium

    Directory of Open Access Journals (Sweden)

    Alexandra M. Ainsztein

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c identifying exRNA biomarkers of disease, (d demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators.

  11. Modeling sRNA-regulated Plasmid Maintenance

    CERN Document Server

    Gong, Chen Chris

    2016-01-01

    We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin's mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, ...

  12. Messenger RNA surveillance: neutralizing natural nonsense

    DEFF Research Database (Denmark)

    Weischelfeldt, Joachim Lütken; Lykke-Andersen, Jens; Porse, Bo

    2005-01-01

    Messenger RNA transcripts that contain premature stop codons are degraded by a process termed nonsense-mediated mRNA decay (NMD). Although previously thought of as a pathway that rids the cell of non-functional mRNAs arising from mutations and processing errors, new research suggests a more general...

  13. How a chemist looks at RNA.

    Science.gov (United States)

    Cech, Thomas R

    2013-01-02

    RNA, just another starting material? Nobel Laureate Tom Cech shows that with an education steeped in kinetics, thermodynamics, and molecular structure, and armed with the ability to synthesize molecules, the chemist is ideally suited to investigate RNA. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In silico approaches to RNA aptamer design.

    Science.gov (United States)

    Hamada, Michiaki

    2018-02-01

    RNA aptamers are ribonucleic acids that bind to specific target molecules. An RNA aptamer for a disease-related protein has great potential for development into a new drug. However, huge time and cost investments are required to develop an RNA aptamer into a pharmaceutical. Recently, SELEX combined with high-throughput sequencers (i.e., HT-SELEX) has been widely used to select candidate RNA aptamers that bind to a target protein with high affinity and specificity. After candidate selection, further optimizations such as shortening and modifying candidate sequences are performed. In these steps, in silico approaches are expected to reduce the time and cost associated with aptamer drug development. In this article, we review existing in silico approaches to RNA aptamer development, including a method for ranking the candidates of RNA aptamers from HT-SELEX data, clustering a huge number of aptamer sequences, and finding motifs amidst a set of significant RNA aptamers. It is expected that further studies in addition to these methods will be utilized for in silico RNA aptamer design, permitting a minimal number of experiments to be performed through the utilization of sophisticated computational methods. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  16. RNA Encapsidation and Packaging in the Phleboviruses

    Directory of Open Access Journals (Sweden)

    Katherine E. Hornak

    2016-07-01

    Full Text Available The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV, severe fever with thrombocytopenia syndrome virus (SFTSV, Uukuniemi virus (UUKV, and the sandfly fever viruses. The phleboviruses have small tripartite RNA genomes that encode a repertoire of 5–7 proteins. These few proteins accomplish the daunting task of recognizing and specifically packaging a tri-segment complement of viral genomic RNA in the midst of an abundance of host components. The critical nucleation events that eventually lead to virion production begin early on in the host cytoplasm as the first strands of nascent viral RNA (vRNA are synthesized. The interaction between the vRNA and the viral nucleocapsid (N protein effectively protects and masks the RNA from the host, and also forms the ribonucleoprotein (RNP architecture that mediates downstream interactions and drives virion formation. Although the mechanism by which all three genomic counterparts are selectively co-packaged is not completely understood, we are beginning to understand the hierarchy of interactions that begins with N-RNA packaging and culminates in RNP packaging into new virus particles. In this review we focus on recent progress that highlights the molecular basis of RNA genome packaging in the phleboviruses.

  17. RNA-based therapies for genodermatoses

    NARCIS (Netherlands)

    Bornert, Olivier; Peking, Patricia; Bremer, Jeroen; Koller, Ulrich; van den Akker, Peter C.; Aartsma-Rus, Annemieke; Pasmooij, Anna M. G.; Murauer, Eva M.; Nystroem, Alexander

    Genetic disorders affecting the skin, genodermatoses, constitute a large and heterogeneous group of diseases, for which treatment is generally limited to management of symptoms. RNA-based therapies are emerging as a powerful tool to treat genodermatoses. In this review, we discuss in detail RNA

  18. Topology and prediction of RNA pseudoknots

    DEFF Research Database (Denmark)

    Reidys, Christian; Huang, Fenix; Andersen, Jørgen Ellegaard

    2011-01-01

    Motivation: Several dynamic programming algorithms for predicting RNA structures with pseudoknots have been proposed that differ dramatically from one another in the classes of structures considered. Results: Here, we use the natural topological classification of RNA structures in terms of irredu...

  19. Initiation of RNA Synthesis by the Hepatitis C Virus RNA-Dependent RNA Polymerase Is Affected by the Structure of the RNA Template

    Science.gov (United States)

    2015-01-01

    The hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is a central enzyme of the intracellular replication of the viral (+)RNA genome. Here, we studied the individual steps of NS5B-catalyzed RNA synthesis by a combination of biophysical methods, including real-time 1D 1H NMR spectroscopy. NS5B was found to bind to a nonstructured and a structured RNA template in different modes. Following NTP binding and conversion to the catalysis-competent ternary complex, the polymerase revealed an improved affinity for the template. By monitoring the folding/unfolding of 3′(−)SL by 1H NMR, the base pair at the stem’s edge was identified as the most stable component of the structure. 1H NMR real-time analysis of NS5B-catalyzed RNA synthesis on 3′(−)SL showed that a pronounced lag phase preceded the processive polymerization reaction. The presence of the double-stranded stem with the edge base pair acting as the main energy barrier impaired RNA synthesis catalyzed by NS5B. Our observations suggest a crucial role of RNA-modulating factors in the HCV replication process. PMID:25310724

  20. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism.

    Science.gov (United States)

    Wang, Na; Wang, Ruoqing; Wang, Renkai; Tian, Yongsheng; Shao, Changwei; Jia, Xiaodong; Chen, Songlin

    2017-01-01

    Albinism, a phenomenon characterized by pigmentation deficiency on the ocular side of Japanese flounder (Paralichthys olivaceus), has caused significant damage. Limited mRNA and microRNA (miRNA) information is available on fish pigmentation deficiency. In this study, a high-throughput sequencing strategy was employed to identify the mRNA and miRNAs involved in P. olivaceus albinism. Based on P. olivaceus genome, RNA-seq identified 21,787 know genes and 711 new genes by transcripts assembly. Of those, 235 genes exhibited significantly different expression pattern (fold change ≥2 or ≤0.5 and q-value≤0.05), including 194 down-regulated genes and 41 up-regulated genes in albino versus normally pigmented individuals. These genes were enriched to 81 GO terms and 9 KEGG pathways (p≤0.05). Among those, the pigmentation related pathways-Melanogenesis and tyrosine metabolism were contained. High-throughput miRNA sequencing identified a total of 475 miRNAs, including 64 novel miRNAs. Furthermore, 33 differentially expressed miRNAs containing 13 up-regulated and 20 down-regulated miRNAs were identified in albino versus normally pigmented individuals (fold change ≥1.5 or ≤0.67 and p≤0.05). The next target prediction discovered a variety of putative target genes, of which, 134 genes including Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), Microphthalmia-associated transcription factor (MITF) were overlapped with differentially expressed genes derived from RNA-seq. These target genes were significantly enriched to 254 GO terms and 103 KEGG pathways (p<0.001). Of those, tyrosine metabolism, lysosomes, phototransduction pathways, etc., attracted considerable attention due to their involvement in regulating skin pigmentation. Expression patterns of differentially expressed mRNA and miRNAs were validated in 10 mRNA and 10 miRNAs by qRT-PCR. With high-throughput mRNA and miRNA sequencing and analysis, a series of interested mRNA and miRNAs involved in fish

  1. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    of action and turnover. During my PhD period we have shown that the STA1 protein, a factor for pre-mRNA splicing and mRNA stability, is specifically involved in the splicing of pri-miRNAs and in the modulation of DCL1 transcript levels. Also, we established a novel and essential regulatory network in which...... (DCL1) protein complex. Mature miRNAs are loaded onto and guide an ARGONAUTE1 (AGO1) effector complex, leading to target mRNA silencing. The miRNA pathway is under tight temporal and spatial control and is regulated at multiple levels from transcription and precursor processing through miRNA mode...

  2. Regulation of flowering time by RNA processing.

    Science.gov (United States)

    Terzi, L C; Simpson, G G

    2008-01-01

    Plants control the time at which they flower by integrating environmental cues such as day length and temperature with an endogenous program of development. Flowering time is a quantitative trait and a model for how precision in gene regulation is delivered. In this review, we reveal that flowering time control is particularly rich in RNA processing-based gene regulatory phenomena. We review those factors which function in conserved RNA processing events like alternative 3' end formation, splicing, RNA export and miRNA biogenesis and how they affect flowering time. Likewise, we review the novel plant-specific RNA-binding proteins identified as regulators of flowering time control. In addition, we add to the network of flowering time control pathways, information on alternative processing of flowering time gene pre-mRNAs. Finally, we describe new approaches to dissect the mechanisms which underpin this control.

  3. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  4. Forms and Functions of Telomerase RNA

    Science.gov (United States)

    Collins, Kathleen

    Telomerase adds single-stranded telomeric DNA repeats to chromosome ends. Unlike other polymerases involved in genome replication, telomerase synthe¬sizes DNA without use of a DNA template. Instead, the enzyme active site copies a template carried within the integral RNA subunit of the telomerase ribonucleo-protein (RNP) complex. In addition to providing a template, telomerase RNA has non-template motifs with critical functions in the catalytic cycle of repeat synthesis. In its complexity of structure and function, telomerase RNA resembles the non-coding RNAs of RNP machines like the ribosome and spliceosome that evolved from catalytic RNAs of the RNA World. However, unlike these RNPs, telomerase evolved its RNP identity after advent of the Protein World. Insights about telomer-ase have broad significance for understanding non-coding RNA biology as well as chromosome end maintenance and human disease.

  5. Predicting RNA Structure Using Mutual Information

    DEFF Research Database (Denmark)

    Freyhult, E.; Moulton, V.; Gardner, P. P.

    2005-01-01

    Background: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure...... is often conserved in evolution, the well known, but underused, mutual information measure for identifying covarying sites in an alignment can be useful for identifying structural elements. This article presents MIfold, a MATLAB(R) toolbox that employs mutual information, or a related covariation measure......, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. Results: We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall...

  6. Emerging connections between RNA and autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Lubas, Michal; Lund, Anders H

    2017-01-01

    Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority...... of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome....../vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy...

  7. A probabilistic model of RNA conformational space

    DEFF Research Database (Denmark)

    Frellsen, Jes; Moltke, Ida; Thiim, Martin

    2009-01-01

    The increasing importance of non-coding RNA in biology and medicine has led to a growing interest in the problem of RNA 3-D structure prediction. As is the case for proteins, RNA 3-D structure prediction methods require two key ingredients: an accurate energy function and a conformational sampling...... procedure. Both are only partly solved problems. Here, we focus on the problem of conformational sampling. The current state of the art solution is based on fragment assembly methods, which construct plausible conformations by stringing together short fragments obtained from experimental structures. However...... efficient sampling of RNA conformations in continuous space, and with associated probabilities. We show that the model captures several key features of RNA structure, such as its rotameric nature and the distribution of the helix lengths. Furthermore, the model readily generates native-like 3-D...

  8. RNA as a small molecule druggable target.

    Science.gov (United States)

    Rizvi, Noreen F; Smith, Graham F

    2017-12-01

    Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  10. Selectively Constrained RNA Editing Regulation Crosstalks with piRNA Biogenesis in Primates.

    Science.gov (United States)

    Yang, Xin-Zhuang; Chen, Jia-Yu; Liu, Chu-Jun; Peng, Jiguang; Wee, Yin Rei; Han, Xiaorui; Wang, Chenqu; Zhong, Xiaoming; Shen, Qing Sunny; Liu, Hsuan; Cao, Huiqing; Chen, Xiao-Wei; Tan, Bertrand Chin-Ming; Li, Chuan-Yun

    2015-12-01

    Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe.

    Science.gov (United States)

    Sato, Shin-Ichi; Yatsuzuka, Kenji; Katsuda, Yousuke; Uesugi, Motonari

    2018-01-01

    Live-cell imaging of mRNA dynamics is increasingly important to understanding spatially restricted gene expression. We recently developed a convenient and versatile method that uses a gene-specific RNA aptamer and a fluorescent probe to enable spatiotemporal imaging of endogenous mRNAs in living cells. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. The new RNA-imaging technology might be useful for live-cell imaging of any RNA molecules.

  12. RNA Base Pairing Determines the Conformations of RNA Inside Spherical Viruses

    Science.gov (United States)

    Erdemci-Tandogan, Gonca; Orland, Henri; Zandi, Roya

    2017-11-01

    Many simple RNA viruses enclose their genetic material by a protein shell called the capsid. While the capsid structures are well characterized for most viruses, the structure of RNA inside the shells and the factors contributing to it remain poorly understood. We study the impact of base pairing on the conformations of RNA and find that it undergoes a swollen coil to globule continuous transition as a function of the strength of the pairing interaction. We also observe a first order transition and kink profile as a function of RNA length. All these transitions could explain the different RNA profiles observed inside viral shells.

  13. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    Science.gov (United States)

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  14. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications.

    Science.gov (United States)

    Ebhardt, H Alexander; Tsang, Herbert H; Dai, Denny C; Liu, Yifeng; Bostan, Babak; Fahlman, Richard P

    2009-05-01

    Recent advances in DNA-sequencing technology have made it possible to obtain large datasets of small RNA sequences. Here we demonstrate that not all non-perfectly matched small RNA sequences are simple technological sequencing errors, but many hold valuable biological information. Analysis of three small RNA datasets originating from Oryza sativa and Arabidopsis thaliana small RNA-sequencing projects demonstrates that many single nucleotide substitution errors overlap when aligning homologous non-identical small RNA sequences. Investigating the sites and identities of substitution errors reveal that many potentially originate as a result of post-transcriptional modifications or RNA editing. Modifications include N1-methyl modified purine nucleotides in tRNA, potential deamination or base substitutions in micro RNAs, 3' micro RNA uridine extensions and 5' micro RNA deletions. Additionally, further analysis of large sequencing datasets reveal that the combined effects of 5' deletions and 3' uridine extensions can alter the specificity by which micro RNAs associate with different Argonaute proteins. Hence, we demonstrate that not all sequencing errors in small RNA datasets are technical artifacts, but that these actually often reveal valuable biological insights to the sites of post-transcriptional RNA modifications.

  15. RNA interference as an antiviral approach: Targeting HIV-1

    NARCIS (Netherlands)

    Berkhout, Ben

    2004-01-01

    RNA interference (RNAi) is an evolutionary conserved gene-silencing mechanism in which 21- to 23-mer double-stranded short interfering RNA (siRNA) mediates the sequence-specific degradation of mRNA. The recent discovery that exogenously delivered siRNA can trigger RNAi in mammalian cells raises the

  16. Spatial and temporal dynamics of the RNA silencing response

    NARCIS (Netherlands)

    Groenenboom, M.A.C.

    2008-01-01

    In this thesis we studied various aspects of siRNA mediated silencing. siRNA mediated silencing is initiated by the introduction of dsRNA, transgenes and viral infection. Our first goal was to study the ability of the core pathway of RNA silencing to explain transgene and dsRNA induced silencing. To

  17. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    Science.gov (United States)

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology.

  18. Mapping Long Noncoding RNA Chromatin Occupancy Using Capture Hybridization Analysis of RNA Targets (CHART).

    Science.gov (United States)

    Vance, Keith W

    2017-01-01

    Capture Hybridization Analysis of RNA Targets (CHART) has recently been developed to map the genome-wide binding profile of chromatin-associated RNAs. This protocol uses a small number of 22-28 nucleotide biotinylated antisense oligonucleotides, complementary to regions of the target RNA that are accessible for hybridization, to purify RNAs from a cross-linked chromatin extract. RNA-chromatin complexes are next immobilized on beads, washed, and specificall