WorldWideScience

Sample records for subfornical organ vascular

  1. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I

    DEFF Research Database (Denmark)

    Orskov, C; Poulsen, Steen Seier; Møller, M

    1996-01-01

    -labeled GLP-I. The specificity of the binding was tested by co-injection of excess amounts of unlabeled GLP-I. Using light microscopical autoradiography of rat brain sections, we found specific 125I-GLP-I binding exclusively in the subfornical organ and the area postrema. This binding was abolished when...... an excess amount of unlabeled GLP-I was co-injected with the labeled GLP-I. We conclude that cells in the subfornical organ and the area postrema could be responsive to blood-borne GLP-I. The observed binding of peripherally administered GLP-I to the subfornical organ and the area postrema, which both have...

  2. The proinflammatory cytokine tumor necrosis factor-α excites subfornical organ neurons.

    Science.gov (United States)

    Simpson, Nick J; Ferguson, Alastair V

    2017-09-01

    Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine implicated in cardiovascular and autonomic regulation via actions in the central nervous system. TNF-α -/- mice do not develop angiotensin II (ANG II)-induced hypertension, and administration of TNF-α into the bloodstream of rats increases blood pressure and sympathetic tone. Recent studies have shown that lesion of the subfornical organ (SFO) attenuates the hypertensive and autonomic effects of TNF-α, while direct administration of TNF-α into the SFO increases blood pressure, suggesting the SFO to be a key site for the actions of TNF-α. Therefore, we used patch-clamp techniques to examine both acute and long-term effects of TNF-α on the excitability of Sprague-Dawley rat SFO neurons. It was observed that acute bath application of TNF-α depolarized SFO neurons and subsequently increased action potential firing rate. Furthermore, the magnitude of depolarization and the proportion of depolarized SFO neurons were concentration dependent. Interestingly, following 24-h incubation with TNF-α, the basal firing rate of the SFO neurons was increased and the rheobase was decreased, suggesting that TNF-α elevates SFO neuron excitability. This effect was likely mediated by the transient sodium current, as TNF-α increased the magnitude of the current and lowered its threshold of activation. In contrast, TNF-α did not appear to modulate either the delayed rectifier potassium current or the transient potassium current. These data suggest that acute and long-term TNF-α exposure elevates SFO neuron activity, providing a basis for TNF-α hypertensive and sympathetic effects. NEW & NOTEWORTHY Considerable recent evidence has suggested important links between inflammation and the pathological mechanisms underlying hypertension. The present study describes cellular mechanisms through which acute and long-term exposure of tumor necrosis factor-α (TNF-α) influences the activity of subfornical organ neurons by

  3. Subfornical organ neurons integrate cardiovascular and metabolic signals.

    Science.gov (United States)

    Cancelliere, Nicole M; Ferguson, Alastair V

    2017-02-01

    The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG ( n = 55) or CCK ( n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG ( χ 2 , P neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia. Copyright © 2017 the American Physiological Society.

  4. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats.

    Science.gov (United States)

    Yu, Yang; Wei, Shun-Guang; Weiss, Robert M; Felder, Robert B

    2017-10-01

    In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF. NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic

  5. Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons.

    Directory of Open Access Journals (Sweden)

    Markus Kuksis

    Full Text Available Hydrogen sulfide (H2S, a gasotransmitter endogenously found in the central nervous system, has recently been suggested to act as a signalling molecule in the brain having beneficial effects on cardiovascular function. This study was thus undertaken to investigate the effect of NaHS (an H2S donor in the subfornical organ (SFO, a central nervous system site important to blood pressure regulation. We used male Sprague-Dawley rats for both in vivo and in vitro experiments. We first used RT-PCR to confirm our previous microarray analyses showing that mRNAs for the enzymes required to produce H2S are expressed in the SFO. We then used microinjection techniques to investigate the physiological effects of NaHS in SFO, and found that NaHS microinjection (5 nmol significantly increased blood pressure (mean AUC = 853.5±105.7 mmHg*s, n = 5. Further, we used patch-clamp electrophysiology and found that 97.8% (88 of 90 of neurons depolarized in response to NaHS. This response was found to be concentration dependent with an EC50 of 35.6 µM. Coupled with the depolarized membrane potential, we observed an overall increase in neuronal excitability using an analysis of rheobase and action potential firing patterns. This study has provided the first evidence of NaHS and thus H2S actions and their cellular correlates in SFO, implicating this brain area as a site where H2S may act to control blood pressure.

  6. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  7. Angiotensin type 1 receptors in the subfornical organ mediate the drinking and hypothalamic-pituitary-adrenal response to systemic isoproterenol.

    Science.gov (United States)

    Krause, Eric G; Melhorn, Susan J; Davis, Jon F; Scott, Karen A; Ma, Li Y; de Kloet, Annette D; Benoit, Stephen C; Woods, Stephen C; Sakai, Randall R

    2008-12-01

    Circulating angiotensin II (ANGII) elicits water intake and activates the hypothalamic-pituitary-adrenal (HPA) axis by stimulating angiotensin type 1 receptors (AT1Rs) within circumventricular organs. The subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) are circumventricular organs that express AT1Rs that bind blood-borne ANGII and stimulate integrative and effector regions of the brain. The goal of these studies was to determine the contribution of AT1Rs within the SFO and OVLT to the water intake and HPA response to increased circulating ANGII. Antisense oligonucleotides directed against the AT1R [AT1R antisense (AT1R AS)] were administered into the OVLT or SFO. Quantitative receptor autoradiography confirmed that AT1R AS decreased ANGII binding in the SFO and OVLT compared with the scrambled sequence control but did not affect AT1R binding in other nuclei. Subsequently, water intake, ACTH, and corticosterone (CORT) were assessed after administration of isoproterenol, a beta-adrenergic agonist that decreases blood pressure and elevates circulating ANGII. Delivery of AT1R AS into the SFO attenuated water intake, ACTH, and CORT after isoproterenol, whereas similar treatment in the OVLT had no effect. To determine the specificity of this blunted drinking and HPA response, the same parameters were measured after treatment with hypertonic saline, a stimulus that induces drinking independently of ANGII. Delivery of AT1R AS into the SFO or OVLT had no effect on water intake, ACTH, or CORT after hypertonic saline. The results imply that AT1R within the SFO mediate drinking and HPA responses to stimuli that increase circulating ANGII.

  8. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Swiderski Ruth E

    2012-10-01

    Full Text Available Abstract Background Hydrocephalus is a heterogeneous disorder with multiple etiologies that are not yet fully understood. Animal models have implicated dysfunctional cilia of the ependyma and choroid plexus in the development of the disorder. In this report, we sought to determine the origin of the ventriculomegaly in four Bardet Biedl syndrome (BBS mutant mouse strains as models of a ciliopathy. Methods Evans Blue dye was injected into the lateral ventricle of wild- type and BBS mutant mice to determine whether obstruction of intra- or extra-ventricular CSF flow contributed to ventriculomegaly. Transmission electron microscopy (TEM was used to examine the ultrastructure of the choroid plexus, subfornical organ (SFO, subcommisural organ (SCO, and ventricular ependyma to evaluate their ultrastructure and the morphology of their primary and motile cilia. Results and discussion No obstruction of intra- or extra-ventricular CSF flow was observed, implying a communicating form of hydrocephalus in BBS mutant mice. TEM analyses of the mutants showed no evidence of choroidal papillomas or breakdown of the blood:CSF barrier. In contrast, structural defects were observed in a subpopulation of cilia lining the choroid plexus, SFO, and ventricular ependyma. These included disruptions of the microtubular structure of the axoneme and the presence of electron-dense vesicular-like material along the ciliary shaft and at the tips of cilia. Conclusions Abnormalities in cilia structure and function have the potential to influence ciliary intraflagellar transport (IFT, cilia maintenance, protein trafficking, and regulation of CSF production. Ciliary structural defects are the only consistent pathological features associated with CSF-related structures in BBS mutant mice. These defects are observed from an early age, and may contribute to the underlying pathophysiology of ventriculomegaly.

  9. Endoplasmic reticulum stress in the brain subfornical organ contributes to sex differences in angiotensin-dependent hypertension in rats.

    Science.gov (United States)

    Dai, S-Y; Fan, J; Shen, Y; He, J-J; Peng, W

    2016-05-01

    Endoplasmic reticulum (ER) stress in the brain subfornical organ (SFO), a key cardiovascular regulatory centre, has been implicated in angiotensin (ANG) II-induced hypertension in males; however, the contribution of ER stress to ANG II-induced hypertension in females is unknown. Female hormones have been shown to prevent ER stress in the periphery. We tested the hypothesis that females are less susceptible to ANG II-induced SFO ER stress than males, leading to sex differences in hypertension. Male, intact and ovariectomized (OVX) female rats received a continuous 2-week subcutaneous infusion of ANG II or saline. Additional male, intact and OVX female rats received intracerebroventricular (ICV) injection of ER stress inducer tunicamycin. ANG II, but not saline, increased blood pressure (BP) in both males and females, but intact females exhibited smaller increase in BP and less depressor response to ganglionic blockade compared with males or OVX females. Molecular studies revealed that ANG II elevated expression of ER stress biomarkers and Fra-like activity in the SFO in both males and females; however, elevations in these parameters were less in intact females than in males or OVX females. Moreover, ICV tunicamycin induced smaller elevation in BP and less increase in expression of ER stress biomarkers in the SFO in intact females compared with males or OVX females. The results suggest that differences in ANG II-induced brain ER stress between males and females contribute to sex differences in ANG II-mediated hypertension and that oestrogen protects females against ANG II-induced brain ER stress. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  10. Glucose-responsive neurons in the subfornical organ of the rat--a novel site for direct CNS monitoring of circulating glucose.

    Science.gov (United States)

    Medeiros, N; Dai, L; Ferguson, A V

    2012-01-10

    Glucose-sensitive neurons have been identified in a number of CNS regions including metabolic control centers of the hypothalamus. The location of these regions behind the blood-brain barrier restricts them to sensing central, but not circulating glucose concentrations. In this study, we have used patch-clamp electrophysiology to examine whether neurons in a specialized region lacking the blood-brain barrier, the subfornical organ (SFO), are also glucose sensitive. In dissociated SFO neurons, altering the bath concentration of glucose (1 mM, 5 mM, 10 mM) influenced the excitability of 49% of neurons tested (n=67). Glucose-inhibited (GI) neurons depolarized in response to decreased glucose (n=10; mean, 4.6±1.0 mV) or hyperpolarized in response to increased glucose (n=8; mean,-4.4±0.8 mV). In contrast, glucose-excited (GE) neurons depolarized in response to increased glucose (n=9; mean, 6.4±0.4 mV) or hyperpolarized in response to decreased glucose (n=6; mean,-4.8±0.6 mV). Using voltage-clamp recordings, we also identified GI (outward current to increased glucose) and GE (inward current to increased glucose) SFO neurons. The mean glucose-induced inward current had a reversal potential of -24±12 mV (n=5), while GE responses were maintained during sodium-dependent glucose transporter inhibition, supporting the conclusion that GE properties result from the activation of a nonselective cation conductance (NSCC). The glucose-induced outward current had a mean reversal potential of -78±1.2 mV (n=5), while GI responses were not observed in the presence of glibenclamide, suggesting that these properties result from the modulation of K(ATP) channels. These data demonstrate that SFO neurons are glucose responsive, further emphasizing the potential roles of this circumventricular organ as an important sensor and integrator of circulating signals of energy status. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Blood-borne interleukin-1β acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus.

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Felder, Robert B

    2018-03-01

    We previously reported that microinjection of the proinflammatory cytokine interleukin-1β (IL-1β) into the subfornical organ (SFO) elicits a pressor response accompanied by increases in inflammation and renin-angiotensin system (RAS) activity in the SFO and hypothalamic paraventricular nucleus (PVN). The present study sought to determine whether blood-borne IL-1β induces similar neurochemical changes in the SFO and PVN and, if so, whether increased inflammation and RAS activity at the SFO level orchestrate the sympathoexcitatory response to circulating IL-1β. In urethane-anesthetized male Sprague-Dawley rats, intravenous injection of IL-1β (500 ng) increased blood pressure, heart rate, renal sympathetic nerve activity, and mRNA for angiotensin-converting enzyme, angiotensin II type 1a receptor, cyclooxygenase-2, tumor necrosis factor-α, and IL-1β, as well as the tumor necrosis factor-α p55 receptor and the IL-1 receptor, in the SFO and PVN. Pretreatment with SFO microinjections of the angiotensin II type 1a receptor blocker losartan (1 µg), the angiotensin-converting enzyme inhibitor captopril (1 µg), or the cyclooxygenase-2 inhibitor NS-398 (2 µg) attenuated expression of these excitatory mediators in the SFO and downstream in the PVN and the IL-1β-induced pressor responses. An SFO lesion minimized the IL-1β-induced expression of inflammatory and RAS components as well as c-Fos, an indicator of neuronal excitation, in the PVN. These studies demonstrate that circulating IL-1β, which increases in cardiovascular disorders such as hypertension and heart failure, acts on the SFO to increase inflammation and RAS activity in the SFO and PVN and that intervening in these neurochemical processes in the SFO can significantly reduce the sympathetic response.

  12. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure.

    Science.gov (United States)

    Saxena, Ashwini; Little, Joel T; Nedungadi, T Prashant; Cunningham, J Thomas

    2015-03-01

    Sleep apnea is associated with hypertension. The mechanisms contributing to a sustained increase in mean arterial pressure (MAP) even during normoxic awake-state remain unknown. Rats exposed to chronic intermittent hypoxia for 7 days, a model of the hypoxemia associated with sleep apnea, exhibit sustained increases in MAP even during the normoxic dark phase. Activation of the renin-angiotensin system (RAS) has been implicated in chronic intermittent hypoxia (CIH) hypertension. Since the subfornical organ (SFO) serves as a primary target for the central actions of circulating ANG II, we tested the effects of ANG II type 1a receptor (AT1aR) knockdown in the SFO on the sustained increase in MAP in this CIH model. Adeno-associated virus carrying green fluorescent protein (GFP) and small-hairpin RNA against either AT1aR or a scrambled control sequence (SCM) was stereotaxically injected in the SFO of rats. After recovery, MAP, heart rate, respiratory rate, and activity were continuously recorded using radiotelemetry. In the normoxic groups, the recorded variables did not deviate from the baseline values. Both CIH groups exhibited significant increases in MAP during CIH exposures (P < 0.05). During the normoxic dark phase in the CIH groups, only the SCM-injected group exhibited a sustained increase in MAP (P < 0.05). The AT1aR-CIH group showed significant decreases in FosB/ΔFosB staining in the median preoptic nucleus and the paraventricular nuclei of the hypothalamus compared with the SCM-CIH group. Our data indicate that AT1aRs in the SFO are critical for the sustained elevation in MAP and increased FosB/ΔFosB expression in forebrain autonomic nuclei associated with CIH. Copyright © 2015 the American Physiological Society.

  13. Floral anatomy of Delphinieae (Ranunculaceae: comparing flower organization and vascular patterns

    Directory of Open Access Journals (Sweden)

    Andrew V. Novikoff

    2014-04-01

    Full Text Available Species of the tribe Delphinieae have dorsoventralized flowers; their pentamerous calyx and reduced corolla are dorsally spurred and inner spurs are nectariferous. Based on this common floral scheme, Delphinieae species exhibit a wide diversity of floral structures and morphologies. We present here the first investigation of the floral anatomy in Delphinieae. The organization of the floral vascular system has been studied in species representative of the floral morphological diversity of Delphinieae: Aconitum lasiocarpum, Delphinium elatum, and Consolida regalis. The three species show a similar vascularization of the calyx and of the reproductive organs, but exhibit distinct anatomical features in the corolla where the nectaries are borne. The sepals and the stamens have a trilacunar three-traced and a unilacunar one-traced vascularization, respectively. Three free carpels in D. elatum and A. lasiocarpum are basically supplied by six vascular bundles – three independent dorsal bundles and three fused lateral bundles. In C. regalis the single carpel is supplied by three independent vascular bundles (one dorsal and two ventral. Staminodes are not vascularized. The basic type of petal vascularization is unilacunar one-traced, but in the case of C. regalis the derived bilacunar two-traced type has been observed. This latter state arose as a result of the fusion of the two dorsal petal primordia. The results of this first comparative study of the floral anatomy of Delphinieae are discussed with the recent phylogenetic, morphological, and evo-devo findings concerning the tribe.

  14. New aspects of fenestrated vasculature and tissue dynamics in the sensory circumventricular organs of adult brains

    Directory of Open Access Journals (Sweden)

    Seiji eMiyata

    2015-10-01

    Full Text Available The blood–brain barrier (BBB generally consists of endothelial tight junction barriers that prevent the free entry of blood-derived substances, thereby maintaining the extracellular environment of the brain. However, the circumventricular organs (CVOs, which are located along the midlines of the brain ventricles, lack these endothelial barriers and have fenestrated capillaries; therefore, they have a number of essential functions, including the transduction of information between the blood circulation and brain. Previous studies have demonstrated the extensive contribution of the CVOs to body fluid and thermal homeostasis, energy balance, the chemoreception of blood-derived substances, and neuroinflammation. In this review, recent advances have been discussed in fenestrated capillary characterization and dynamic tissue reconstruction accompanied by angiogenesis and neurogliogenesis in the sensory CVOs of adult brains. The sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT, subfornical organ (SFO, and area postrema (AP, have size-selective and heterogeneous vascular permeabilities. Astrocyte-/tanycyte-like neural stem cells (NSCs sense blood- and cerebrospinal fluid-derived information through the transient receptor potential vanilloid 1, a mechanical/osmotic receptor, Toll-like receptor 4, a lipopolysaccharide receptor, and Nax, a Na-sensing Na channel. They also express tight junction proteins and densely and tightly surround mature neurons to protect them from blood-derived neurotoxic substances, indicating that the NSCs of the CVOs perform BBB functions while maintaining the capacity to differentiate into new neurons and glial cells. In addition to neurogliogenesis, the density of fenestrated capillaries is regulated by angiogenesis, which is accompanied by the active proliferation and sprouting of endothelial cells. Vascular endothelial growth factor (VEGF signaling may be involved in angiogenesis and

  15. Radioisotope treatment for benign strictures of non-vascular luminal organs

    International Nuclear Information System (INIS)

    Shin, Ji Hoon

    2006-01-01

    Tissue hyperplasia in one of the most frequently encountered complications when self-expanding stents are placed in benign non-vascular luminal organ strictures, thus causing of the lumen. The investigators postulated that ionizing irradiation could be applied to prevent restenosis caused by tissue hyperplasia in non-vascular luminal organs as it reduced coronary or peripheral arterial narrowing successfully. The authors combined β-irradiation using 188 Re-MAG 3 solution with balloon for animal and clinical studies because this new treatment approach had the advantages such as low penetration depth of β-ray, self-centering irradiation, and mechanical effect of balloon dilation over using γ-irradiation with afterloading devices. In this article, the concept and mechanism of radioisotope balloon dilation, and animal and clinical studies using radioisotope balloon dilation are reviewed

  16. Alexis Carrel (1873-1944): visionary vascular surgeon and pioneer in organ transplantation.

    Science.gov (United States)

    Aida, Lai

    2014-08-01

    Alexis Carrel was a French surgeon in the 20th century. He made significant contributions to many advances in the fields of vascular surgery, cardiothoracic surgery and organ transplantation. He demonstrated that blood vessels can be united end-to-end and pioneered the triangulation suturing technique in vascular anastomosis. The methods he developed are still in use to this day. He insisted on the importance of absolute asepsis in vascular surgery when such practices were almost unheard of. He was also considered the father of solid organ transplantation. He was awarded the Nobel Prize in recognition of his work. Together with Charles Lindbergh, he developed the extracorporeal perfusion pump to keep organs alive outside the human body. His contribution to medicine also extended to tissue culture and wound management. He was one of the most controversial figures of his generation, believing in the idea of genetic superiority and eugenics and he was associated with fascism in the 1930s. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Changes in vascularization of internal organs in rabbits with experimental atherosclerosis, treated with protein hydrolysate

    International Nuclear Information System (INIS)

    Demireva, K.; Popdimitrov, I.

    1979-01-01

    The vascularization of the internal organs of rabbits with experimental atherosclerosis was studied by the method of Sapirstein with 86 rubidium. Experiments were carried out on male Chinchilla rabbits, fed cholesterol in a dose of 0,2 g/kg of body weight daily for a period of 90 days. Part of the animals were treated with protein hydrolysate in a dose of 5 ml/kg of body weight subcutaneously and the remaining - with physiologic saline. There was reduced vascularization in the heart, kidneys, intestines, liver, adrenals, pancreas and other internal organs in rabbits fed cholestrol and treated with physiologic saline. Administration of protein hydrolysate had protective effect on organ vascularization. Accumulation of 86 rubidium in a large part of the animals was greater than in control group. It is shown that protein hydrolysate amino acids stabilize the endothelial cells and stimulate the local vascularization. (author)

  18. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  19. Vascular pattern formation in plants.

    Science.gov (United States)

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  1. Vascular perfusion of reproductive organs in pony mares and heifers during sedation with detomidine or xylazine.

    Science.gov (United States)

    Araujo, Reno R; Ginther, O J

    2009-01-01

    To assess the vascular effects of detomidine and xylazine in pony mares and heifers, respectively, as determined in a major artery and by extent of vascular perfusion of reproductive organs. 10 pony mares and 10 Holstein heifers. Pony mares were assigned to receive physiologic saline (0.9% NaCl) solution (n = 5) or detomidine (3.0 mg/mare, IV; 5). Heifers were assigned to receive saline solution (5) or xylazine (14 mg/heifer, IM; 5). Color Doppler ultrasonographic examinations were performed immediately before and 10 minutes after administration of saline solution or sedative. In spectral Doppler mode, a spectral graph of blood flow velocities during a cardiac cycle was obtained at the internal iliac artery and at the ovarian pedicle. In color-flow mode, color signals of blood flow in vessels of the corpus luteum and endometrium were assessed. Systemic effects of sedation in the 2 species were evident as a decrease in heart rate; increase in duration of systole, diastole, or both; decrease in volume of blood flow; and decrease in velocity of blood flow within the internal iliac artery. However, an effect of sedatives on local vascular perfusion in the ovaries and endometrium was not detected. Sedation with detomidine in pony mares and xylazine in heifers did not affect vascular perfusion in reproductive organs. These sedatives can be used in experimental and clinical color Doppler evaluations of vascular perfusion of the corpus luteum and endometrium.

  2. Vascular and Cardiac Target Organ Damage in Type 2 Diabetics With and Without Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Francisco Leon-Garrigosa

    2013-08-01

    Conclusions: Although the sample size limited the conclusions that could be drawn between diabetic retinopathy and levels of vascular and cardiac target organ damage, trends were observed in a number of indices for these conditions and measures thereof. [Arch Clin Exp Surg 2013; 2(4.000: 212-218

  3. Vascular retraction driven by matrix softening

    Science.gov (United States)

    Valentine, Megan

    We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).

  4. Constraining Biomarkers of Dissolved Organic Matter Sourcing Using Microbial Incubations of Vascular Plant Leachates of the California landscape

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.

    2017-12-01

    Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.

  5. New aspects of vascular remodelling: the involvement of all vascular cell types.

    Science.gov (United States)

    McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J

    2005-07-01

    Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.

  6. Utilization of organs from donors after circulatory death for vascularized pancreas and islet of Langerhans transplantation: recommendations from an expert group.

    Science.gov (United States)

    Berney, Thierry; Boffa, Catherine; Augustine, Titus; Badet, Lionel; de Koning, Eelco; Pratschke, Johann; Socci, Carlo; Friend, Peter

    2016-07-01

    Donation after circulatory death (DCD) donors are increasingly being used as a source of pancreas allografts for vascularized organ and islet transplantation. We provide practice guidelines aiming to increase DCD pancreas utilization. We review risk assessment and donor selection criteria. We report suggested factors in donor and recipient clinical management and provide an overview of the activities and outcomes of vascularized pancreas and islet transplantation. © 2015 Steunstichting ESOT.

  7. Vascularized Composite Allografts: Procurement, Allocation, and Implementation.

    Science.gov (United States)

    Rahmel, Axel

    Vascularized composite allotransplantation is a continuously evolving area of modern transplant medicine. Recently, vascularized composite allografts (VCAs) have been formally classified as 'organs'. In this review, key aspects of VCA procurement are discussed, with a special focus on interaction with the procurement of classical solid organs. In addition, options for a matching and allocation system that ensures VCA donor organs are allocated to the best-suited recipients are looked at. Finally, the different steps needed to promote VCA transplantation in society in general and in the medical community in particular are highlighted.

  8. Open and endovascular aneurysm repair in the Society for Vascular Surgery Vascular Quality Initiative.

    Science.gov (United States)

    Spangler, Emily L; Beck, Adam W

    2017-12-01

    The Society for Vascular Surgery Vascular Quality Initiative is a patient safety organization and a collection of procedure-based registries that can be utilized for quality improvement initiatives and clinical outcomes research. The Vascular Quality Initiative consists of voluntary participation by centers to collect data prospectively on all consecutive cases within specific registries which physicians and centers elect to participate. The data capture extends from preoperative demographics and risk factors (including indications for operation), through the perioperative period, to outcomes data at up to 1-year of follow-up. Additionally, longer-term follow-up can be achieved by matching with Medicare claims data, providing long-term longitudinal follow-up for a majority of patients within the Vascular Quality Initiative registries. We present the unique characteristics of the Vascular Quality Initiative registries and highlight important insights gained specific to open and endovascular abdominal aortic aneurysm repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection.

    Science.gov (United States)

    Simberg, Dmitri; Weisman, Sarah; Talmon, Yeshayahu; Faerman, Alexander; Shoshani, Tzipora; Barenholz, Yechezkel

    2003-10-10

    Following intravenous administration of cationic lipid-DNA complexes (lipoplexes) into mice, transfection (lipofection) occurs predominantly in the lungs. This was attributed to high entrapment of lipoplexes in the extended lung vascular tree. To determine whether lipofection in other organs could be enhanced by increasing the degree of vascularization, we used a transgenic mouse model with tissue-specific angiogenesis in liver. Tail vein injection of N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol lipoplexes resulted in increased lipoplex entrapment in hypervascularized liver but did not boost luciferase expression, suggesting that lipoplex delivery is not a sufficient condition for efficient organ lipofection. Because the intravenously injected lipoplexes migrated within seconds to lungs, we checked whether the effects of immediate contact with serum correlate with lung lipofection efficiency of different DOTAP-based formulations. Under conditions mimicking the injection environment, the lipoplex-serum interaction was strongly dependent on helper lipid and ionic strength: lipoplexes prepared in 150 mM NaCl or lipoplexes with high (>33 mol%) cholesterol were found to aggregate immediately. This aggregation process was irreversible and was inversely correlated with the percentage of lung cells that took up lipoplexes and with the efficiency of lipofection. No other structural changes in serum were observed for cholesterol-based lipoplexes. Dioleoyl phosphatidylethanolamine-based lipoplexes were found to give low expression, apparently because of an immediate loss of integrity in serum, without lipid-DNA dissociation. Our study suggests that efficient in vivo lipofection is the result of cross-talk between lipoplex composition, interaction with serum, hemodynamics, and target tissue "susceptibility" to transfection.

  10. VE-cadherin Y685F knock-in mouse is sensitive to vascular permeability in recurrent angiogenic organs.

    Science.gov (United States)

    Sidibé, Adama; Polena, Helena; Pernet-Gallay, Karin; Razanajatovo, Jeremy; Mannic, Tiphaine; Chaumontel, Nicolas; Bama, Soumalamaya; Maréchal, Irène; Huber, Philippe; Gulino-Debrac, Danielle; Bouillet, Laurence; Vilgrain, Isabelle

    2014-08-01

    Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs. To achieve this aim, we generated a knock-in mouse carrying a tyrosine-to-phenylalanine point mutation of VE-cadherin Y685 (VE-Y685F). Although homozygous VE-Y685F mice were viable and fertile, the nulliparous knock-in female mice exhibited enlarged uteri with edema. This phenotype was observed in 30% of females between 4 to 14 mo old. Histological examination of longitudinal sections of the VE-Y685F uterus showed an extensive disorganization of myometrium and endometrium with highly edematous uterine glands, numerous areas with sparse cells, and increased accumulation of collagen fibers around blood vessels, indicating a fibrotic state. Analysis of cross section of ovaries showed the appearance of spontaneous cysts, which suggested increased vascular hyperpermeability. Electron microscopy analysis of capillaries in the ovary showed a slight but significant increase in the gap size between two adjacent endothelial cell membranes in the junctions of VE-Y685F mice (wild-type, 11.5 ± 0.3, n = 78; and VE-Y685F, 12.48 ± 0.3, n = 65; P = 0.045), as well as collagen fiber accumulation around capillaries. Miles assay revealed that either basal or vascular endothelial growth factor-stimulated permeability in the skin was increased in VE-Y685F mice. Since edema and fibrotic appearance have been identified as hallmarks of initial increased vascular permeability, we conclude that the site Y685 in VE-cadherin is involved in the physiological regulation of capillary

  11. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  12. Systemic Hypoxia Changes the Organ-Specific Distribution of Vascular Endothelial Growth Factor and Its Receptors

    Science.gov (United States)

    Marti, Hugo H.; Risau, Werner

    1998-12-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

  13. Double-filter identification of vascular-expressed genes using Arabidopsis plants with vascular hypertrophy and hypotrophy.

    Science.gov (United States)

    Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas

    2011-08-01

    Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  15. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    Science.gov (United States)

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  16. Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport.

    Science.gov (United States)

    Clay, Nicole K; Nelson, Timothy

    2005-06-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.

  17. Utilization of organs from donors after circulatory death for vascularized pancreas and islet of Langerhans transplantation : recommendations from an expert group

    NARCIS (Netherlands)

    Berney, Thierry; Boffa, Catherine; Augustine, Titus; Badet, Lionel; de Koning, Eelco; Pratschke, Johann; Socci, Carlo; Friend, Peter

    2015-01-01

    Donation after circulatory death (DCD) donors are increasingly being used as a source of pancreas allografts for vascularized organ and islet transplantation. We provide practice guidelines aiming to increase DCD pancreas utilization. We review risk assessment and donor selection criteria. We report

  18. Lipidomics in vascular health: current perspectives.

    Science.gov (United States)

    Kolovou, Genovefa; Kolovou, Vana; Mavrogeni, Sophie

    2015-01-01

    Identifying the mechanisms that convert a healthy vascular wall to an atherosclerotic wall is of major importance since the consequences may lead to a shortened lifespan. Classical risk factors (age, smoking, obesity, diabetes mellitus, hypertension, and dyslipidemia) may result in the progression of atherosclerotic lesions by processes including inflammation and lipid accumulation. Thus, the evaluation of blood lipids and the full lipid complement produced by cells, organisms, or tissues (lipidomics) is an issue of importance. In this review, we shall describe the recent progress in vascular health research using lipidomic advances. We will begin with an overview of vascular wall biology and lipids, followed by a short analysis of lipidomics. Finally, we shall focus on the clinical implications of lipidomics and studies that have examined lipidomic approaches and vascular health.

  19. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    Science.gov (United States)

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  20. Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport1

    Science.gov (United States)

    Clay, Nicole K.; Nelson, Timothy

    2005-01-01

    Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745

  1. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    Science.gov (United States)

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  2. COMPARATIVE STUDY OF ORGANIC MENTAL DISORDERS OF VASCULAR ORIGIN WITH PARTICIPANTS OF THE LIQUIDATION OF THE CHERNOBYL ACCIDENT

    OpenAIRE

    G. M. Rumyantseva; T. M. Levina; O. V. Chinkina

    2011-01-01

    The result of the carried investigation of participants of liquidation of Chernobyl accident consequences, suffering from organic disease of a brain of a vascular origin with mental infringements, and patients with the similar pathology, not exposed with radiating influence, revealed a number of the сlinico- psychopathological and paraclinical peculiarities testifying heavier current of disease among liquidators, forming a chronic ischemic condition of a brain, and the atrophy phenomena among...

  3. Arterial complications of vascular Ehlers-Danlos syndrome.

    Science.gov (United States)

    Eagleton, Matthew J

    2016-12-01

    Vascular Ehlers-Danlos syndrome (EDS) is a relatively rare genetic syndrome that occurs owing to disorders in the metabolism of fibrillary collagen. These defects affect the soft connective tissues resulting in abnormalities in the skin, joints, hollow organs, and blood vessels. Patients with these defects frequently present at a young age with spontaneous arterial complications involving the medium-sized arteries. Complications involving the hollow organs, such as spontaneous colonic perforation, are observed as well. Given the fragility of the soft tissue, open and endovascular intervention on patients with vascular EDS is fraught with high complication rates. A PubMed search was performed to identify manuscripts published related to vascular EDS. This search included more than 747 articles. These findings were cross-referenced using key terms, including endovascular, embolization, surgery, genetics, pathophysiology, connective tissue disorders, vascular complications, systematic review, type III collagen, and COL3A1. The references in key articles and review articles were evaluated for additional resources not identified in the PubMed search. Care must be taken to balance the risk of intervention vs the risk of continued observation. Life-threatening hemorrhage, however, mandates intervention. With careful, altered approaches to tissue handling, endovascular approaches may provide a safer option for managing the arterial complications observed in patients with vascular EDS. Additional hope may also be found in the use of pharmacologic agents that reduce the incidence and severity of the arterial complications. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  4. COMPARATIVE STUDY OF ORGANIC MENTAL DISORDERS OF VASCULAR ORIGIN WITH PARTICIPANTS OF THE LIQUIDATION OF THE CHERNOBYL ACCIDENT

    Directory of Open Access Journals (Sweden)

    G. M. Rumyantseva

    2011-01-01

    Full Text Available The result of the carried investigation of participants of liquidation of Chernobyl accident consequences, suffering from organic disease of a brain of a vascular origin with mental infringements, and patients with the similar pathology, not exposed with radiating influence, revealed a number of the сlinico- psychopathological and paraclinical peculiarities testifying heavier current of disease among liquidators, forming a chronic ischemic condition of a brain, and the atrophy phenomena among mentioned group.

  5. Incorporating simulation in vascular surgery education.

    Science.gov (United States)

    Bismuth, Jean; Donovan, Michael A; O'Malley, Marcia K; El Sayed, Hosam F; Naoum, Joseph J; Peden, Eric K; Davies, Mark G; Lumsden, Alan B

    2010-10-01

    The traditional apprenticeship model introduced by Halsted of "learning by doing" may just not be valid in the modern practice of vascular surgery. The model is often criticized for being somewhat unstructured because a resident's experience is based on what comes through the "door." In an attempt to promote uniformity of training, multiple national organizations are currently delineating standard curricula for each trainee to govern the knowledge and cases required in a vascular residency. However, the outcomes are anything but uniform. This means that we graduate vascular specialists with a surprisingly wide spectrum of abilities. Use of simulation may benefit trainees in attaining a level of technical expertise that will benefit themselves and their patients. Furthermore, there is likely a need to establish a simulation-based certification process for graduating trainees to further ascertain minimum technical abilities. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  6. Vascular lumen formation.

    Science.gov (United States)

    Lammert, Eckhard; Axnick, Jennifer

    2012-04-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.

  7. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Abstract. Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the ..... cohort with nominal significance, and a recent meta-analysis ..... Whereas it is generally thought that lysine acetylation is.

  8. Our vascular surgery experiences in Syrian civil war

    Directory of Open Access Journals (Sweden)

    İyad Fansa

    2014-12-01

    Full Text Available Objective: Due to the ongoing civil war in Syria, numerous vascular injured patients are admitted to our hospital with gunshot wounds. In this study, patients who admitted our hospital, diagnosed with vascular trauma due to gunshot were evaluated with the respect of injury site, additional injuries, surgical interventions and outcomes. Methods: The study included 58 patients wounded in Syrian war and admitted to our hospital between 01.01.2012 and 01.09.2014. Results= There were 5.1% (n=3 female and 94.9% (n=55 male patients. Age range is 5-75 years and the average of age was identified as 28.61. In 12.1% (n=7 of patients with extensive tissue defects of the muscle-nerve-bone injury has been identified, despite the vascular interventions in these patients, 8.6% (n=5 of patients, the limb has been amputated. Totally 15.5% (n=9 of 58 operated patients died. Two patients died because of major vascular injury with intra-abdominal organ injuries. In one patient; infection induced sepsis and multi organ failure was detected. Six patients were lost due to hypovolemic shock as a result of late arriving. Conclusion: In patients admitted with gunshot vascular injury arrival time, the presence of additional injuries and the location of injury affect mortality rates.

  9. Guidance of vascular development: lessons from the nervous system.

    Science.gov (United States)

    Larrivée, Bruno; Freitas, Catarina; Suchting, Steven; Brunet, Isabelle; Eichmann, Anne

    2009-02-27

    The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.

  10. Fetal origin of vascular aging

    Directory of Open Access Journals (Sweden)

    Shailesh Pitale

    2011-01-01

    Full Text Available Aging is increasingly regarded as an independent risk factor for development of cardiovascular diseases such as atherosclerosis and hypertension and their complications (e.g. MI and Stroke. It is well known that vascular disease evolve over decades with progressive accumulation of cellular and extracellular materials and many inflammatory processes. Metabolic syndrome, obesity and diabetes are conventionally recognized as risk factors for development of coronary vascular disease (CVD. These conditions are known to accelerate ageing process in general and vascular ageing in particular. Adverse events during intrauterine life may programme organ growth and favour disease later in life, popularly known as, ′Barker′s Hypothesis′. The notion of fetal programming implies that during critical periods of prenatal growth, changes in the hormonal and nutritional milieu of the conceptus may alter the full expression of the fetal genome, leading to permanent effects on a range of physiological.

  11. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits

    International Nuclear Information System (INIS)

    Dolati, Farzaneh; Yu, Yin; Zhang, Yahui; Ozbolat, Ibrahim T; Jesus, Aribet M De; Sander, Edward A

    2014-01-01

    Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this paper, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon nanotubes (CNTs) to enhance their mechanical properties and bioprintability. In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication. (paper)

  12. VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype

    International Nuclear Information System (INIS)

    Nagy, Janice A.; Senger, Donald R.

    2006-01-01

    Normal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective. We propose that the serious structural and functional anomalies associated with VEGF-A-elicited neovessels, reflect, at least in part, imbalances in the internal molecular cues that govern the ordered assembly of ECs into three dimensional vascular networks and preserve vessel barrier function. Adopting such a viewpoint widens the focus from solely on specific pro-angiogenic stimuli such as VEGF-A to include a key set of cytoskeletal regulatory molecules, the Rho GTPases, which are known to direct multiple aspects of vascular morphogenesis including EC motility, alignment, multi-cellular organization, as well as intercellular junction integrity. We offer this perspective to draw attention to the importance of endothelial cytoskeletal dynamics for proper neovascularization and to suggest new therapeutic strategies with the potential to improve the pathological vascular phenotype

  13. Plant Vascular Biology 2010

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  14. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    Science.gov (United States)

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  15. Graph analysis of cell clusters forming vascular networks

    Science.gov (United States)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  16. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Pier Andrea Nicolosi

    2016-01-01

    Full Text Available Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc. The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

  17. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play ...

  18. Major Vascular Neurocognitive Disorder: A Reappraisal to Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Emre Kumral

    2017-03-01

    Full Text Available Major vascular neurocognitive disorder (NCD is the second leading form of dementia after Alzheimer’s disease, accounting for 17-20% of all dementias. Vascular NCD is a progressive disease caused by reduced cerebral blood flow related to multiple large volume or lacunar infarcts that induce a sudden onset and stepwise decline in cognitive abilities. Despite its prevalence and clinical importance, there is still controversy in the terminology of vascular NCD. Only after the release of Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5 (2013 did the American Psychiatric Association define vascular dementia as “major vascular NCD”. This review includes an overview of risk factors, pathophysiology, types, diagnostic and clinical features of major vascular NCD, and current treatment options of vascular NCD regarding to DSM-5 criteria

  19. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2018-05-01

    Full Text Available Summary: Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by “self-condensation” culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation. : Takahashi et al. report on generating vascularized islet tissue from humans and mice. After transplantation, vascularized islets significantly improve survival of diabetic mice, demonstrating the quick normalization of blood glucose compared with conventional islet transplantation. Keywords: tissue engineering, tissue-based therapy, vascularization, islet transplantation, organoid

  20. [Relevance of contrast ultrasound with microbubbles in vascular medecine].

    Science.gov (United States)

    Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia

    2016-12-07

    Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.

  1. Organ culture of C57BL/6 mouse arteries with LPS as an in vitro model of vascular inflammation

    DEFF Research Database (Denmark)

    Outzen, Emilie Middelbo; Mehryar, Rahila; Boonen, Harrie C.M.

    Background: Vascular inflammation is believed to be involved in the pathogenesis of various cardiovascular diseases, the study of which often involves use of the mouse strain C57BL/6. In vivo studies can, however, be difficult to control and interpret. Aim of the study: To set up and characterise...... an in vitro model for studying vascular inflammation and function in cultured arteries from C57BL/6 mice. Methods: Segments of abdominal aorta and mesenteric arteries (MA) were incubated for 24 hours at 37̊C and 95% O2/5% CO2 in DMEM ± 100 ng/mL LPS. Aorta segments were frozen for molecular studies...... was achieved at a normalisation factor of 0.9 (0.91 ± 0.06, mean ± SEM, n = 9) as observed (0.85 ± 0.06, mean ± SEM, n = 3) and previously described in rat MA (Mulvany and Halpern, 1977). Furthermore, preliminary findings show that organ culture with 100 ng/mL LPS decreases endothelium-dependent dilation of C...

  2. Longitudinal visualization of vascular occlusion, reperfusion, and remodeling in a zebrafish model of retinal vascular leakage using OCT angiography

    Science.gov (United States)

    Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.

    2017-02-01

    Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.

  3. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  4. Non-invasive vascular imaging: assessing tumour vascularity

    International Nuclear Information System (INIS)

    Delorme, S.; Knopp, M.V.

    1998-01-01

    Non-invasive assessment of vascularity is a new diagnostic approach to characterise tumours. Vascular assessment is based on the pathophysiology of tumour angiogenesis and its diagnostic implications for tumour biology, prognosis and therapy response. Two current techniques investigating vascular features in addition to morphology are Doppler ultrasonography and contrast-enhanced MRI. Diagnostic differentiation has been shown to be possible with Doppler, and a high degree of observed vascularity could be linked to an aggressive course of the disease. Dynamic MRI using gadolinium chelates is already used clinically to detect and differentiate tumours. The histological correlation shows that capillary permeability is increased in malignant tumours and is the best criterion for differentiation from benign processes. Permeability and perfusion factors seem to be more diagnostic than overall vessel density. New clinical applications are currently being established for therapy monitoring. Further instrumental developments will bring harmonic imaging in Doppler, and faster imaging techniques, higher spatial resolution and novel pharmacokinetic concepts in MRI. Upcoming contrast agents for both Doppler and MRI will further improve estimation of intratumoural blood volume and vascular permeability. (orig.)

  5. Vascular Plant and Vertebrate Inventory of Organ Pipe Cactus National Monument

    Science.gov (United States)

    Schmidt, Cecilia A.; Powell, Brian F.; Halvorson, William L.

    2007-01-01

    Executive Summary We summarized inventory and monitoring efforts for plants and vertebrates at Organ Pipe Cactus National Monument (NM) in Arizona. We used data from previous research to compile complete species lists for the monument and to assess inventory completeness. There have been 1,031 species of plants and vertebrates observed at the monument. Most of the species on the list are documented by voucher specimens. There are 59 non-native species established in the monument: one mammal, three birds, and 55 non-native plants. Most non-native plant species were first recorded along roads. In each taxon-specific chapter, we highlight areas that contribute disproportionately to species richness or that have unique species for the monument. Of particular importance are Quitobaquito Springs and Pond, which are responsible for the monument having one of the highest number of bird species in the Sonoran Desert Network of parks. Quitobaquito also contains the only fish in the monument, the endangered Quitobaquito pupfish (Cyprinodon eremus). Other important resources for the plants and vertebrates include the xeroriparian washes (e.g., Alamo Canyon) and the Ajo Mountains. Based on the review of past studies, we believe the inventories of vascular plants and vertebrates are nearly complete and that the monument has one of the most complete inventories of any unit in the Sonoran Desert Network.

  6. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  7. Artery Tertiary Lymphoid Organs Control Aorta Immunity and Protect against Atherosclerosis via Vascular Smooth Muscle Cell Lymphotoxin β Receptors

    Science.gov (United States)

    Hu, Desheng; Mohanta, Sarajo K.; Yin, Changjun; Peng, Li; Ma, Zhe; Srikakulapu, Prasad; Grassia, Gianluca; MacRitchie, Neil; Dever, Gary; Gordon, Peter; Burton, Francis L.; Ialenti, Armando; Sabir, Suleman R.; McInnes, Iain B.; Brewer, James M.; Garside, Paul; Weber, Christian; Lehmann, Thomas; Teupser, Daniel; Habenicht, Livia; Beer, Michael; Grabner, Rolf; Maffia, Pasquale; Weih, Falk; Habenicht, Andreas J.R.

    2015-01-01

    Summary Tertiary lymphoid organs (TLOs) emerge during nonresolving peripheral inflammation, but their impact on disease progression remains unknown. We have found in aged Apoe−/− mice that artery TLOs (ATLOs) controlled highly territorialized aorta T cell responses. ATLOs promoted T cell recruitment, primed CD4+ T cells, generated CD4+, CD8+, T regulatory (Treg) effector and central memory cells, converted naive CD4+ T cells into induced Treg cells, and presented antigen by an unusual set of dendritic cells and B cells. Meanwhile, vascular smooth muscle cell lymphotoxin β receptors (VSMC-LTβRs) protected against atherosclerosis by maintaining structure, cellularity, and size of ATLOs though VSMC-LTβRs did not affect secondary lymphoid organs: Atherosclerosis was markedly exacerbated in Apoe−/−Ltbr−/− and to a similar extent in aged Apoe−/−Ltbrfl/flTagln-cre mice. These data support the conclusion that the immune system employs ATLOs to organize aorta T cell homeostasis during aging and that VSMC-LTβRs participate in atherosclerosis protection via ATLOs. PMID:26084025

  8. Cardio-ankle vascular index is associated with cardiovascular target organ damage and vascular structure and function in patients with diabetes or metabolic syndrome, LOD-DIABETES study: a case series report.

    Science.gov (United States)

    Gómez-Marcos, Manuel Ángel; Recio-Rodríguez, José Ignacio; Patino-Alonso, María Carmen; Agudo-Conde, Cristina; Gómez-Sánchez, Leticia; Gomez-Sanchez, Marta; Rodríguez-Sanchez, Emiliano; Maderuelo-Fernandez, Jose Angel; García-Ortiz, Luís

    2015-01-16

    The cardio ankle vascular index (CAVI) is a new index of the overall stiffness of the artery from the origin of the aorta to the ankle. This index can estimate the risk of atherosclerosis. We aimed to find the relationship between CAVI and target organ damage (TOD), vascular structure and function, and cardiovascular risk factors in Caucasian patients with type 2 diabetes mellitus or metabolic syndrome. We included 110 subjects from the LOD-Diabetes study, whose mean age was 61 ± 11 years, and 37.3% were women. Measurements of CAVI, brachial ankle pulse wave velocity (ba-PWV), and ankle brachial index (ABI) were taken using the VaSera device. Cardiovascular risk factors, renal function by creatinine, glomerular filtration rate, and albumin creatinine index were also obtained, as well as cardiac TOD with ECG and vascular TOD and carotid intima media thickness (IMT), carotid femoral PWV (cf-PWV), and the central and peripheral augmentation index (CAIx and PAIx). The Framingham-D'Agostino scale was used to measure cardiovascular risk. Mean CAVI was 8.7 ± 1.3. More than half (54%) of the participants showed one or more TOD (10% cardiac, 13% renal; 48% vascular), and 13% had ba-PWV ≥ 17.5 m/s. Patients with any TOD had the highest CAVI values: 1.15 (CI 95% 0.70 to 1.61, p < 0.001) and 1.14 (CI 95% 0.68 to 1.60, p < 0.001) when vascular TOD was presented, and 1.30 (CI 95% 0.51 to 2.10, p = 0.002) for the cardiac TOD. The CAVI values had a positive correlation with HbA1c and systolic and diastolic blood pressure, and a negative correlation with waist circumference and body mass index. The positive correlations of CAVI with IMT (β = 0.29; p < 0.01), cf-PWV (β = 0.83; p < 0.01), ba-PWV (β = 2.12; p < 0.01), CAIx (β = 3.42; p < 0.01), and PAIx (β = 5.05; p = 0.04) remained after adjustment for cardiovascular risk, body mass index, and antihypertensive, lipid-lowering, and antidiabetic drugs. The

  9. Placental Nano-vesicles Target to Specific Organs and Modulate Vascular Tone In Vivo.

    Science.gov (United States)

    Tong, Mancy; Stanley, Joanna L; Chen, Q; James, Joanna L; Stone, Peter R; Chamley, Larry W

    2017-11-01

    How do nano-vesicles extruded from normal first trimester human placentae affect maternal vascular function? Placental nano-vesicles affect the ability of systemic mesenteric arteries to undergo endothelium- and nitric oxide- (NO-) dependent vasodilation in vivo in pregnant mice. Dramatic cardiovascular adaptations occur during human pregnancy, including a substantial decrease in total peripheral resistance in the first trimester. The human placenta constantly extrudes extracellular vesicles that can enter the maternal circulation and these vesicles may play an important role in feto-maternal communication. Human placental nano-vesicles were administered into CD1 mice via a tail vein and their localization and vascular effects at 30 min and 24 h post-injection were investigated. Nano-vesicles from normal first trimester human placentae were collected and administered into pregnant (D12.5) or non-pregnant female mice. After either 30 min or 24 h of exposure, all major organs were dissected for imaging (n = 7 at each time point) while uterine and mesenteric arteries were dissected for wire myography (n = 6 at each time point). Additional in vitro studies using HMEC-1 endothelial cells were also conducted to investigate the kinetics of interaction between placental nano-vesicles and endothelial cells. Nano-vesicles from first trimester human placentae localized to the lungs, liver and kidneys 24 h after injection into pregnant mice (n = 7). Exposure of pregnant mice to placental nano-vesicles for 30 min in vivo increased the vasodilatory response of mesenteric arteries to acetylcholine, while exposure for 24 h had the opposite effect (P nano-vesicles did not affect the function of uterine arteries or mesenteric arteries from non-pregnant mice. Placental nano-vesicles rapidly interacted with endothelial cells via a combination of phagocytosis, endocytosis and cell surface binding in vitro. N/A. As it is not ethical to administer labelled placental nano-vesicles to

  10. Successful Recovery and Transplantation of 11 Organs Including Face, Bilateral Upper Extremities, and Thoracic and Abdominal Organs From a Single Deceased Organ Donor.

    Science.gov (United States)

    Tullius, Stefan G; Pomahac, Bohdan; Kim, Heung Bae; Carty, Matthew J; Talbot, Simon G; Nelson, Helen M; Delmonico, Francis L

    2016-10-01

    We report on the to date largest recovery of 11 organs from a single deceased donor with the transplantation of face, bilateral upper extremities, heart, 1 lung, liver (split for 2 recipients), kidneys, pancreas, and intestine. Although logistically challenging, this case demonstrates the feasibility and safety of the recovery of multiple thoracic and abdominal organs with multiple vascular composite allotransplants and tissues. Our experience of 8 additional successful multiple vascular composite allotransplants, thoracic, and abdominal organ recoveries suggests that such procedures are readily accomplishable from the same deceased donor.

  11. Supply and demand: Will we have enough vascular surgeons by 2030?

    Science.gov (United States)

    Williams, Katherine; Schneider, Brandon; Lajos, Paul; Marin, Michael; Faries, Peter

    2016-08-01

    The increase in prevalence of certain cardiovascular risk factors increases susceptibility to vascular disease, which may create demand for surgical intervention. In our study, data collected by the American Association of Medical Colleges Physician Specialty Databook of 2012, the United States Census Bureau, and other nationwide organizations were referenced to calculate future changes in vascular surgeon supply and prevalence of people at risk for vascular disease. In 2010, there were 2853 active vascular surgeons. By 2040, the workforce is expected to linearly rise to 3573. There will be an exponential rise in people with cardiovascular risk factors. Adding to concern, in 2030, an estimated 3333 vascular surgeons will be available for 180,000,000 people with at least one risk factor for peripheral arterial disease. The paucity of properly trained surgeons entering the workforce needs to be addressed before this shortage becomes a larger burden on healthcare providers and governmental spending. © The Author(s) 2015.

  12. The making of indigenous vascular prosthesis

    Directory of Open Access Journals (Sweden)

    Madathipat Unnikrishnan

    2016-01-01

    Full Text Available Background & objectives: Vascular illnesses are on the rise in India, due to increase in lifestyle diseases and demographic transition, requiring intervention to save life, organ or limbs using vascular prosthesis. The aim of this study was to develop indigenous large diameter vascular graft for treatment of patients with vascular pathologies. Methods: The South India Textile Research Association, at Coimbatore, Tamil Nadu, India, developed seamless woven polyester (Polyethylene terephthalate graft at its research wing. Further characterization and testing followed by clinical trials were conducted at Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India. Fifteen in vivo experiments were carried out in 1992-1994 in pigs as animal model. Controlled (phase I clinical trial in ten patients was performed along with control graft. Thereafter, phase II trial involved 22 patients who underwent multi-centre clinical trial in four centres across India. Results: Laboratory testing showed that polyester graft was non-toxic, non-leeching and non-haemolytic with preserved long-term quality, further confirming in pigs by implanting in thoracic aorta, comparable to control Dacron grafts. Perigraft incorporation and smooth neointima formation which are prime features of excellent healing characteristics, were noted at explantation at planned intervals. Subsequently in the phase I and II clinical trials, all patients had excellent recovery without mortality or device-related adverse events. Patients receiving the test graft were followed up for 10 and 5 years, respectively. Serial clinical, duplex scans and CT angiograms performed periodically confirmed excellent graft performance. Interpretation & conclusions: Indigenously developed Chitra vascular graft was comparable to commercially available Dacron graft, ready for clinical use at affordable cost to patients as against costly imported grafts.

  13. Vascular injury is associated with increased mortality in winter sports trauma.

    Science.gov (United States)

    Eun, John C; Bronsert, Michael; Hansen, Kristine; Moulton, Steven L; Jazaeri, Omid; Nehler, Mark; Greenberg, Joshua I

    2015-01-01

    Trauma is the leading cause of injury and death for individuals aged 1-44 years. Up to 8% of the US population participates in winter sports, and although vascular injuries are uncommon in these activities, little is published in this area. We sought to identify the incidence, injury patterns, and outcomes of vascular injuries resulting from winter sports trauma. Patients with winter sports trauma and the subset with vascular injuries were identified by accessing the National Trauma Data Bank querying years 2007-2010. Patients with and without vascular injuries were then compared. Admission variables included transport time, emergency department hypotension (systolic blood pressure Injury Severity Score ≥ 25, fractures, solid organ injury, and vascular injury. Outcomes were analyzed and associations with vascular injuries were determined. A total of 2,298 patients were identified with winter sports-related trauma and 28 (1.2%) had associated vascular injuries. Overall, the top 3 injuries were head trauma (16.7%), thoracic vertebral fractures (5.5%), and lumbar vertebral fractures (5.1%). The most common associated vascular injures were to the popliteal artery (17.7%), splenic artery (14.7%), and brachial blood vessels (14.7%). In the entire cohort, 1 patient (0.04%) suffered an amputation and 15 patients (0.7%) died. There were no amputations in the vascular injury group. Mortality was 0.6% in patients without a vascular injury compared with 7.1% of those with a vascular injury (P = 0.01). Although vascular injury is an uncommon associated finding in winter sports trauma, it is associated with a significant increase in mortality. These findings highlight the need for rapid identification of traumatic vascular injuries, which predicts worse overall outcomes in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The skeletal vascular system - Breathing life into bone tissue.

    Science.gov (United States)

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bioprinting of a functional vascularized mouse thyroid gland construct.

    Science.gov (United States)

    Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A

    2017-08-18

    Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.

  16. Polyhydroxybutyrate/valerate/polycaprolactone small-diameter vascular graft: Experimental study of integration into organism

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, L. V., E-mail: antonova.la@mail.ru; Burago, A. Yu.; Matveeva, V. G.; Velikanova, E. A.; Mukhamadiyarov, R. A.; Glushkova, T. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation); Mironov, A. V. [Kemerovo Cardiology Dispensary, Kemerovo (Russian Federation)

    2015-10-27

    We prepared polyhydroxybutyrate/valerate (PHBV)/polylcaprolactone (PCL) small-diameter vascular grafts using electrospinning. Surface structure was assessed by scanning electron microscopy whilst physicomechanical properties were investigated by longitudinal uniaxial tension testing. Patency of grafts implanted into the rat abdominal aorta was evaluated using a Doppler ultrasonography at 2 week, 1 month and 12 month postimplantation. In addition, we assessed local histological features, along with IL-1β, IL-2, IL-4, IL-10, TNFa, TGF-β1, and VEGF serum levels. We revealed that only 2 (25%) grafts were not thrombosed at 2 week and 1 month postimplantation. However, at 12 month postimplantation a satisfactory histological pattern was observed in 50% of all cases, and we detected a monolayer of endothelial cells on the inner graft surface in half the cases. Regarding other grafts, we revealed minor connective tissue hyperplasia in 41.7% of the grafts and an inflammatory infiltrate in the part of the arterial wall in 8.3% of the grafts. We found that the IL-1β serum level was 3.5-fold higher in the group of experimental rats at 12 month postimplantation (p < 0.01). In addition, the IL-2 and IL-4 serum levels at 12 month postimplantation were 2- and 2.8-fold higher as compared to short-term implantation (2 weeks and 1 month) and control rats (p < 0.05) whilst the IL-10 serum level at 1 and 12 month postimplantation was more than 100-fold higher in comparison with 2 week postimplantation and control rats (p < 0.001). Serum VEGF was detected only at 12 month postimplantation. All in all, we created a biocompatible PHBV/PCL small-diameter vascular graft with a high surface area to volume ratio. A long-term patency of biodegradable vascular grafts after implantation into the rat abdominal aorta and the absence of a considerable immune response confirmed a high biocompatibility of such construct and the possibility of its use as a vascular graft.

  17. [Menopause: Hypertension and vascular disease].

    Science.gov (United States)

    Zilberman, J M

    Hypertension is the main cardiovascular risk factor affecting 25% of women. Hormone changes and hypertension after menopause may lead to higher target organ damage and cardiovascular disease such as increased arterial stiffness, coronary diseases, chronic heart failure and stroke. The physiopathological mechanisms involved in the development of hypertension and cardiovascular diseases in menopausal women are controversial. There are pharmacokinetic and pharmacodynamic differences in both sexes, the women have more coughing when using the converting-enzyme inhibitors, more cramps when using thiazide diuretics and more oedema in the inferior limbs when using calcium antagonists. The aim of this review is to analyse possible physiopathological mechanisms involved in hypertension after menopause and to gain a better understanding of the biological effects mediated by vascular ageing in women when the level of oestrogen protective effect decreases over the vascular system. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  20. Noninvasive studies of peripheral vascular disease

    International Nuclear Information System (INIS)

    Yao, J.S.T.

    1987-01-01

    Plethysmography probably is the oldest method for measuring blood flow. In this method, measurements are made of changes in volume of an organ or region of tissue. In the modern practice of vascular surgery, the use of plethysmography has been expanded to include detection of not only arterial occlusive disease but also carotid artery disease and venous problems. Several types of plethysmographs are now available for clinical use in the evaluation of arterial occlusions. These are volume, strain-gauge, and photoelectric plethysmographs. The water-filled volume recorder, popular in the early use of plethysmography, is now obsolete and has been replaced by the air-filled volume plethysmograph, notably, the pulse-volume recorder. For clinical application, the newer plethysmographs, such as the strain-gauge, photopletyhsmograph, and pulse-volume recorder, are now standard equipment in many vascular laboratories. They are discussed in this article

  1. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome.

    Science.gov (United States)

    Byers, Peter H; Belmont, John; Black, James; De Backer, Julie; Frank, Michael; Jeunemaitre, Xavier; Johnson, Diana; Pepin, Melanie; Robert, Leema; Sanders, Lynn; Wheeldon, Nigel

    2017-03-01

    Vascular Ehlers Danlos syndrome (vEDS) is an uncommon genetic disorders characterized by arterial aneurysm, dissection and rupture, bowel rupture, and rupture of the gravid uterus. The frequency is estimated as 1/50,000-1/200,000 and results from pathogenic variants in COL3A1, which encodes the chains of type III procollagen, a major protein in vessel walls and hollow organs. Initial diagnosis depends on the recognitions of clinical features, including family history. Management is complex and requires multiple specialists who can respond to and manage the major complications. A summary of recommendations for management include: Identify causative variants in COL3A1 prior to application of diagnosis, modulate life style to minimize injury, risk of vessel/organ rupture, identify and create care team, provide individual plans for emergency care ("vascular EDS passport") with diagnosis and management plan for use when traveling, centralize management at centers of excellence (experience) when feasible, maintain blood pressure in the normal range and treat hypertension aggressively, surveillance of vascular tree by doppler ultrasound, CTA (low radiation alternatives) or MRA if feasible on an annual basis. These recommendations represent a consensus of an international group of specialists with a broad aggregate experience in the care of individuals with vascular EDS that will need to be assessed on a regular basis as new information develops. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Deleterious effects of tributyltin on porcine vascular stem cells physiology.

    Science.gov (United States)

    Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica

    2016-01-01

    The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, induces intrauterine growth restriction in mice.

    Science.gov (United States)

    Abe, Naomichi; Nakahara, Tsutomu; Morita, Akane; Wada, Yoshiko; Mori, Asami; Sakamoto, Kenji; Nagamitsu, Tohru; Ishii, Kunio

    2013-08-01

    We previously reported that treatment with KRN633, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, during mid-pregnancy caused intrauterine growth restriction resulting from impairment of blood vessel growth in the labyrinthine zone of the placenta and fetal organs. However, the relative sensitivities of blood vessels in the placenta and fetal organs to vascular endothelial growth factor (VEGF) inhibitors have not been determined. In this study, we aimed to examine the effects of KRN633 on the vasculatures of organs in mother mice and their newborn pups by immunohistochemical analysis. Pregnant mice were treated daily with KRN633 (5 mg/kg) either from embryonic day 13.5 (E13.5) to E17.5 or from E13.5 to the day of delivery. The weights of the pups of KRN633-treated mice were lower than those of the pups of vehicle-treated mothers. However, no significant difference in body weight was observed between the vehicle- and KRN633-treated mice. The vascular development in the organs (the pancreas, kidney, and intestine) and intestinal lymphatic formation of the pups of KRN633-treated mothers was markedly impaired. In contrast, the KRN633 treatment showed no significant effect on the vascular beds in the organs, including the labyrinthine zone of the placenta, of the mother mice. These results suggest that blood vessels in fetal organs are likely to be more sensitive to reduced VEGF signaling than those in the mother. A partial loss of VEGF function during pregnancy could suppress vascular growth in the fetus without affecting the vasculature in the mother mouse, thereby increasing the risk of intrauterine growth restriction. © 2013 Wiley Periodicals, Inc.

  4. Pulse pressure and nocturnal fall in blood pressure are predictors of vascular, cardiac and renal target organ damage in hypertensive patients (LOD-RISK study).

    Science.gov (United States)

    García-Ortiz, Luis; Gómez-Marcos, Manuel A; Martín-Moreiras, Javier; González-Elena, Luis J; Recio-Rodriguez, Jose I; Castaño-Sánchez, Yolanda; Grandes, Gonzalo; Martínez-Salgado, Carlos

    2009-08-01

    To analyse the relationship between various parameters derived from ambulatory blood pressure monitoring (ABPM) and vascular, cardiac and renal target organ damage. A cross-sectional, descriptive study. It included 353 patients with short-term or recently diagnosed hypertension. ABPM, carotid intima-media thickness (IMT), Cornell voltage-duration product (Cornell VDP), glomerular filtration rate and albumin/creatinine ratio to assess vascular, cardiac and renal damage. Two hundred and twenty-three patients (63.2%) were males, aged 56.12+/-11.21 years. The nocturnal fall in blood pressure was 11.33+/-8.41, with a dipper pattern in 49.0% (173), nondipper in 30.3% (107), extreme dipper in 12.7% (45) and riser in 7.9% (28). The IMT was lower in the extreme dipper (0.716+/-0.096 mm) and better in the riser pattern (0.794+/-0.122 mm) (P<0.05). The Cornell VDP and albumin/creatinine ratio were higher in the riser pattern (1818.94+/-1798.63 mm/ms and 140.78+/-366.38 mg/g, respectively) than in the other patterns. In the multivariate analysis after adjusting for age, sex and antihypertensive treatment, with IMT as dependent variable the 24-h pulse pressure (beta = 0.003), with Cornell VDP the rest pulse pressure (beta = 12.04), and with the albumin/creatinine ratio the percentage of nocturnal fall in systolic blood pressure (beta = -3.59), the rest heart rate (beta = 1.83) and the standard deviation of 24-h systolic blood pressure (beta = 5.30) remain within the equation. The estimated pulse pressure with ABPM is a predictor of vascular and cardiac organ damage. The nocturnal fall and the standard deviation in 24-h systolic blood pressure measured with the ABPM is a predictor of renal damage.

  5. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    Science.gov (United States)

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  6. Effects of nutritional plane and selenium supply during gestation on visceral organ mass and indices of intestinal growth and vascularity in primiparous ewes at parturition and during early lactation.

    Science.gov (United States)

    Objectives were to investigate effects of nutritional plane and Se supply during gestation on visceral organ mass and intestinal growth and vascularization in ewes at parturition and during early lactation. Primiparous Rambouillet ewes (n = 84) were allocated to 2 × 3 × 2 factorial arrangement of tr...

  7. Early Detection System of Vascular Disease and Its Application Prospect

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2016-01-01

    Full Text Available Markers of imaging, structure, and function reflecting vascular damage, integrating a long time accumulation effect of traditional and unrecognized cardiovascular risk factors, can be regarded as surrogate endpoints of target organ damage before the occurrence of clinical events. Prevention of cardiovascular disease requires risk stratification and treatment of traditional risk factors, such as smoking, hypertension, hyperlipidemia, and diabetes. However, traditional risk stratification is not sufficient to provide accurate assessment of future cardiovascular events. Therefore, vascular injury related parameters obtained by ultrasound or other noninvasive devices, as a surrogate parameter of subclinical cardiovascular disease, can improve cardiovascular risk assessment and optimize the preventive treatment strategy. Thus, we will summarize the research progress and clinical application of early assessment technology of vascular diseases in the present review.

  8. Interplay between coagulation and vascular inflammation in sickle cell disease

    Science.gov (United States)

    Sparkenbaugh, Erica; Pawlinski, Rafal

    2013-01-01

    Sickle cell disease is the most common inherited hematologic disorder that leads to the irreversible damage of multiple organs. Although sickling of red blood cells and vaso-occlusion are central to the pathophysiology of sickle cell disease the importance of hemolytic anemia and vasculopathy has been recently recognized. Hypercoagulation state is another prominent feature of sickle cell disease and is mediated by activation of both intrinsic and extrinsic coagulation pathways. Growing evidence demonstrates that coagulation may not only contribute to the thrombotic complications, but also to vascular inflammation associated with this disease. This article summarizes the role of vascular inflammation and coagulation activation, discusses potential mechanisms responsible for activation of coagulation and reviews recent data demonstrating the crosstalk between coagulation and vascular inflammation in sickle cell disease. PMID:23593937

  9. Pediatric vascular access

    International Nuclear Information System (INIS)

    Donaldson, James S.

    2006-01-01

    Pediatric interventional radiologists are ideally suited to provide vascular access services to children because of inherent safety advantages and higher success from using image-guided techniques. The performance of vascular access procedures has become routine at many adult interventional radiology practices, but this service is not as widely developed at pediatric institutions. Although interventional radiologists at some children's hospitals offer full-service vascular access, there is little or none at others. Developing and maintaining a pediatric vascular access service is a challenge. Interventionalists skilled in performing such procedures are limited at pediatric institutions, and institutional support from clerical staff, nursing staff, and technologists might not be sufficiently available to fulfill the needs of such a service. There must also be a strong commitment by all members of the team to support such a demanding service. There is a slippery slope of expected services that becomes steeper and steeper as the vascular access service grows. This review is intended primarily as general education for pediatric radiologists learning vascular access techniques. Additionally, the pediatric or adult interventional radiologist seeking to expand services might find helpful tips. The article also provides education for the diagnostic radiologist who routinely interprets radiographs containing vascular access devices. (orig.)

  10. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  11. Peculiarities of vascular tunic microstructure of the white rat eyeball under the effect of opioid.

    Science.gov (United States)

    Mateshuk-Vatseba, Lesya; Pidvalna, Uliana; Kost, Andriy

    2015-01-01

    This article deals with determination of changes in the structural organization of vascular tunic of the eyeball under the effect of opioid. The study was carried out on 24 mature white male rats aged 3.0-4.5 months and 170-280 g weight. The research material included histological specimen and semi-thin sections of white rats' eyeball vascular tunic. For the histological study, microscopic sections of the eyeball were stained with Hematoxylin and Eosin, Heidenhain's Azan trichrome. Specimens were studied and photographed with microscope magnification: ×600, ×1000. The first signs of microstructure disorder in all parts of vascular tunic of the eyeball are noticeable after two weeks of nalbuphine injection to the white rats. During the next four weeks of the experiment, the pathological changes increase and are manifested by the swelling and polymorphonuclear infiltration of the iris, ciliary body, choroid and by deep destructive changes of eyeball hemomicrocirculatory bloodstream. Histological and ultramicroscopic studies of the white rats' eyeball vascular tunic after six weeks of nalbuphine injections showed deep destructive changes in the structure of all parts of vascular tunic. Our study demonstrated a negative effect of the prolonged injection of opioid in the experiment on the state of microstructural organization of the eyeball vascular tunic. Development of angiopathy is the triggering for occurrence of destructive changes in the eyeball under the effect of opioid.

  12. Three Cases of Organized Hematoma of the Maxillary Sinus: Clinical Features and Immunohistological Studies for Vascular Endothelial Growth Factor and Vascular Endothelial Growth Factor Receptor 2 Expressions

    Directory of Open Access Journals (Sweden)

    Shoichiro Imayoshi

    2015-01-01

    Full Text Available Objectives. Organized hematoma (OH is a rare, nonneoplastic, hemorrhagic lesion causing mucosal swelling and bone thinning, mainly in the maxillary sinus. We aimed to clarify the clinical presentation and treatment of OH. Methods. Three cases of maxillary sinus OH and a literature review are presented. Results. Three men aged 16–40 years complained of nasal obstruction, frequent epistaxis, and/or headache. Clinical and radiological examinations revealed a maxillary sinus OH. They were cured in a piecemeal fashion via endoscopic middle meatal antrostomy. Furthermore, vascular endothelial growth factor and its receptor were expressed in the lesion. Conclusions. The pathogenesis of OH is unclear and it presents various histological and imaging findings; however, it is not difficult to rule out malignant tumors. Minimally invasive surgery such as endoscopic sinus surgery can cure it completely. Thus, it is important to determine the diagnosis using CT and MRI and to quickly provide surgical treatment.

  13. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes.

    Science.gov (United States)

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Pericytes are pluripotent cells that can be found in the vascular wall of both microvessels and large arteries and veins. They have distinct morphology with long branching processes and form numerous contacts with each other and with endothelial cells, organizing the vascular wall cells into a three-dimensional network. Accumulating evidence demonstrates that pericytes may play a key role in the pathogenesis of vascular disorders, including atherosclerosis. Macrovascular pericytes are able to accumulate lipids and contribute to growth and vascularization of the atherosclerotic plaque. Moreover, they participate in the local inflammatory process and thrombosis, which can lead to fatal consequences. At the same time, pericytes can represent a useful model for studying the atherosclerotic process and for the development of novel therapeutic approaches. In particular, they are suitable for testing various substances' potential for decreasing lipid accumulation induced by the incubation of cells with atherogenic low-density lipoprotein. In this review we will discuss the application of cellular models for studying atherosclerosis and provide several examples of successful application of these models to drug research.

  14. Vascular Access in Children

    International Nuclear Information System (INIS)

    Krishnamurthy, Ganesh; Keller, Marc S.

    2011-01-01

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the “expert procedural pyramid” is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  15. Indication, procedure, and choice of the embolisation material in transcatheteral vascular occlusion

    International Nuclear Information System (INIS)

    Vogel, H.; Niemeier, J.; Hamburg Univ.

    1985-01-01

    If it is planned to effect transcatheteral occlusion of vessels, it must be examined whether the relevant vessel should be occluded permanently or temporarily and whether the occlusion should be located centrally in the vascular trunk or in a major twig, or peripherally in the region of the capillaries, arterioles and small vessels. Temporary occlusion with fibrospum is usually sufficient for treating a haemorrhage. Ethibloc or Bucrylate can be employed to shut off an organ and to achieve partial organ necrosis. Arteriovenous connections with a large vascular lumen can be occluded by means of metal particles. Peripherally occluding substances should not be used for embolisations in the gastrointestinal range because of the risk of local necrosis and possible dangerous infection resulting therefrom. To the present day hardly any indications have been found for the use of absolute alcohol. Bucrylate has the drawback, compared against Ethibloc, that the catheter may adhere to the vascular wall. Vessels with a low flow rate should be occluded either by means of balloon catheter or a coaxial catheter system because of the risk of reflux. (orig.) [de

  16. Floral vascular patterns of the double-flowered and wildtype morphs of Nigella damascena L. (Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Thierry Deroin

    2015-05-01

    Full Text Available The perianth of the double-flowered morph of Nigella damascena L. consists of spirally inserted petaloid sepals and sepal-like organs, similar in shape and colour to the petaloid sepals of the wild-type flower. It is devoid of petals. We compare the vascularization of each organ category of the double flower with that of the wild-type. We show that the vascular patterns of the sepal-like organs and of the petals are identical, and found an inverse relationship between the number of bracts and the number of sepals in the double-flowered morph. These two surprising findings will influence the future evo-devo studies on this plant model.

  17. The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice.

    Science.gov (United States)

    Rezende, Flávia; Moll, Franziska; Walter, Maria; Helfinger, Valeska; Hahner, Fabian; Janetzko, Patrick; Ringel, Christian; Weigert, Andreas; Fleming, Ingrid; Weissmann, Norbert; Kuenne, Carsten; Looso, Mario; Rieger, Michael A; Nawroth, Peter; Fleming, Thomas; Brandes, Ralf P; Schröder, Katrin

    2018-05-01

    NADPH oxidases are important sources of reactive oxygen species (ROS). Several Nox homologues are present together in the vascular system but whether they exhibit crosstalk at the activity level is unknown. To address this, vessel function of knockout mice for the cytosolic Nox organizer proteins p47phox, NoxO1 and a p47phox-NoxO1-double knockout were studied under normal condition and during streptozotocin-induced diabetes. In the mouse aorta, mRNA expression for NoxO1 was predominant in smooth muscle and endothelial cells, whereas p47phox was markedly expressed in adventitial cells comprising leukocytes and tissue resident macrophages. Knockout of either NoxO1 or p47phox resulted in lower basal blood pressure. Deletion of any of the two subunits also prevented diabetes-induced vascular dysfunction. mRNA expression analysis by MACE (Massive Analysis of cDNA ends) identified substantial gene expression differences between the mouse lines and in response to diabetes. Deletion of p47phox induced inflammatory activation with increased markers of myeloid cells and cytokine and chemokine induction. In contrast, deletion of NoxO1 resulted in an attenuated interferon gamma signature and reduced expression of genes related to antigen presentation. This aspect was also reflected by a reduced number of circulating lymphocytes in NoxO1-/- mice. ROS production stimulated by NoxO1 and p47phox limit endothelium-dependent relaxation and maintain blood pressure in mice. However, NoxO1 and p47phox cannot substitute each other despite their similar effect on vascular function. Deletion of NoxO1 induced an anti-inflammatory phenotype, whereas p47phox deletion rather elicited a hyper-inflammatory response. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    Science.gov (United States)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  19. Relaxin as a natural agent for vascular health

    Directory of Open Access Journals (Sweden)

    Daniele Bani

    2008-06-01

    Full Text Available Daniele BaniDepartment of Anatomy, Histology and Forensic Medicine, Sect. Histology, University of Florence, ItalyAbstract: Hypertension, atherothrombosis, myocardial infarction, stroke, peripheral vascular disease, and renal failure are the main manifestations of cardiovascular disease (CVD, the leading cause of death and disability in developed countries. Continuing insight into the pathophysiology of CVD can allow identification of effective therapeutic strategies to reduce the occurrence of death and/or severe disabilities. In this context, a healthy endothelium is deemed crucial to proper functioning and maintenance of anatomical integrity of the vascular system in many organs. Of note, epidemiologic studies indicate that the incidence of CVD in women is very low until menopause and increases sharply thereafter. The loss of protection against CVD in post-menopausal women has been chiefly attributed to ovarian steroid deficiency. However, besides steroids, the ovary also produces the peptide hormone relaxin (RLX, which provides potent vasoactive effects which render it the most likely candidate as the elusive physiological shield against CVD in fertile women. In particular, RLX has a specific relaxant effect on peripheral and coronary vasculature, exerted by the stimulation of endogenous nitric oxide (NO generation by cells of the vascular wall, and can induce angiogenesis. Moreover, RLX inhibits the activation of inflammatory leukocytes and platelets, which play a key role in CVD. Experimental studies performed in vascular and blood cell in vitro and in animal models of vascular dysfunction, as well as pioneer clinical observations, have provided evidence that RLX can prevent and/or improve CVD, thus offering background to clinical trials aimed at exploring the broad therapeutic potential of human recombinant RLX as a new cardiovascular drug.Keywords: relaxin, blood vessels, endothelial cells, vascular smooth muscle, nitric oxide

  20. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Role of vascular smooth muscle cells in vascular calcification].

    Science.gov (United States)

    Kurabayashi, Masahiko

    2015-05-01

    Vascular calcification is commonly seen with aging, chronic kidney disese (CKD), diabetes, and atherosclerosis, and is closely associated with cardiovascular morbidity and mortality. Vascular calcification has long been regarded as the final stage of degeneration and necrosis of arterial wall and a passive, unregulated process. However, it is now known to be an active and tightly regulated process involved with phenotypic transition of vascular smooth muscle cells (VSMC) that resembles bone mineralization. Briefly, calcium deposits of atherosclerotic plaque consist of hydroxyapatite and may appear identical to fully formed lamellar bone. By using a genetic fate mapping strategy, VSMC of the vascular media give rise to the majority of the osteochondrogenic precursor- and chondrocyte-like cells observed in the calcified arterial media of MGP (- / -) mice. Osteogenic differentiation of VSMC is characterized by the expression of bone-related molecules including bone morphogenetic protein (BMP) -2, Msx2 and osteopontin, which are produced by osteoblasts and chondrocytes. Our recent findings are that (i) Runx2 and Notch1 induce osteogenic differentiation, and (ii) advanced glycation end-product (AGE) /receptor for AGE (RAGE) and palmitic acid promote osteogenic differentiation of VSMC. To understand of the molecular mechanisms of vascular calcification is now under intensive research area.

  1. Uterine Vascular Lesions

    Science.gov (United States)

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  2. Loss of Renal Allografts Secondary to Candida Vascular Complications in Two Recipients from the Same Donor

    Directory of Open Access Journals (Sweden)

    Govardhana Rao Yannam

    2012-01-01

    Full Text Available Infections remain a major cause of morbidity and mortality in transplant patients. Organ recipients are also susceptible to donor-derived pathogens and the majority of donor infections are easily treatable. Rarely, some pathogens have produced life-threatening complications by compromising the vascular anastomosis. In this case series we report loss of two kidney allografts secondary to vascular complications due to Candida albicans. Both recipients received grafts from a common donor, in whom Candida bacteremia in the donor was not apparent at the time of organ acceptance but became apparent on delayed cultures.

  3. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The vascular surgery workforce: a survey of consultant vascular surgeons in the UK, 2014.

    Science.gov (United States)

    Harkin, D W; Beard, J D; Shearman, C P; Wyatt, M G

    2015-04-01

    The purpose of this study was to describe the demographics, training, and practice characteristics of consultant vascular surgeons across the UK to provide an assessment of current, and inform future prediction of workforce needs. A questionnaire was developed using a modified Delphi process to generate questionnaire items. The questionnaire was emailed to all consultant vascular surgeons (n = 450) in the UK who were members of the Vascular Society of Great Britain & Ireland. 352 consultant vascular surgeons from 95 hospital trusts across the UK completed the survey (78% response rate). The mean age was 50.6 years old, the majority (62%) were mid-career, but 24% were above the age of 55. Currently, 92% are men and only 8% women. 93% work full-time, with 60% working >50 hours, and 21% working >60 hours per week. The average team was 5 to 6 (range 2-10) vascular surgeons, with 23% working in a large team of ≥8. 17% still work in small teams of ≤3. Over 90% of consultant vascular surgeons perform the major index vascular surgery procedures (aneurysm repair, carotid endarterectomy, infra-inguinal bypass, amputation). While 84% perform standard endovascular abdominal aortic aneurysm repair (EVAR), <50% perform more complex endovascular aortic therapy. The majority of vascular surgeons "like their job" (85%) and are "satisfied" (69%) with their job. 34% of consultant vascular surgeons indicated they were "extremely likely" to retire within the next 10 years. This study provides the first detailed analysis of the new specialty of vascular surgery as practiced in the UK. There is a need to plan for a significant expansion in the consultant vascular surgeon workforce in the UK over the next 10 years to maintain the status quo. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  5. Cues for cellular assembly of vascular elastin networks

    Science.gov (United States)

    Kothapalli, Chandrasekhar R.

    LOX protein synthesis (2.5-fold); these cues also enhanced deposition of mature elastic fibers (˜1 mum diameter) within these cultures. Interestingly, instead of copper salt addition, even release of Cu 2+ ions (˜0.1 M) from copper nanoparticles (400 ng/mL), concurrent with HA oligomers, promoted crosslinking of elastin into mature matrix, with multiple bundles of highly-crosslinked elastin fiber formation observed (diameter ˜200-500 nm). These results strongly attest to the potential individual and combined benefits of these cues to faithful elastin matrix regeneration by healthy, patient-derived cells within tissue-engineered vascular constructs. When these cues (TGF-beta1 and HA oligomers) were added to TNF-alpha-stimulated SMC cultures, model cell culture systems mimicking phenotypically-altered cells within aneurysms, they upregulated elastin matrix production, organized elastin protein into fibers, and simultaneously stabilized this matrix by attenuating production of elastolytic enzymes. Similarly these cues also attenuated inflammatory cytokines release within cells isolated from induced-aortic aneurysms in rats, and significantly upregulated elastin synthesis and matrix formation by upregulating LOX and desmosine protein amounts. The cues were also highly effective in organizing the elastin into fibrous matrix structures mimicking the native elastin deposition process. The outcomes of this study might be of tremendous use in optimizing design of HA constructs to modulate vascular healing and matrix synthesis following revascularization, and in enabling repair of elastin networks within diseased or inflammatory (aneurysmal) adult vascular tissues.

  6. Defibrotide modulates prostaglandin production in the rat mesenteric vascular bed.

    Science.gov (United States)

    Peredo, H A

    2002-10-01

    Defibrotide 1 microM, a polydeoxyribonucleotide extracted from mammalian organs, reduced the contractile responses to noradrenaline (NA) in the rat isolated and perfused mesenteric vascular bed, in intact as well as in de-endothelialized preparations. Defibrotide was without effect on the acetylcholine-induced relaxations of U-46619-precontracted mesenteric vascular beds. Moreover, defibrotide increased 6-keto prostaglandin (PG) F(2alpha) (stable metabolite of prostacyclin) release sixfold in the presence, but not in the absence of the endothelium, with no modification on the release of other prostanoids. Defibrotide also inhibited the NA-induced increase in PGF(2alpha) release, in both intact and de-endothelialized mesenteric vascular beds. In conclusion, the present results show that defibrotide modulates PG production in the mesenteric bed and that the observed inhibition of the contractile responses should be due to the impairment of the NA-induced increase in PGF(2alpha) release.

  7. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    International Nuclear Information System (INIS)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-01-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways

  8. Vascularized nerve grafts: an experimental study.

    Science.gov (United States)

    Donzelli, Renato; Capone, Crescenzo; Sgulò, Francesco Giovanni; Mariniello, Giuseppe; Maiuri, Francesco

    2016-08-01

    The aim of this study is to define an experimental model in order to promote the functional recovery of the nerves using grafts with vascular support (Vascular Nerve Grafts - VNG). The aim of this study is to define, on an experimental model in normal recipient bed, whether the functional recovery with VNG is superior to that obtained non-vascularized graft (NNG). Twenty male rabbits, which underwent dissection of sciatic nerve, were later treated by reinnervation through an autograft. In 10 animals the reconstruction of sciatic nerve was realized with VNG; in 10 control animals the reconstruction of sciatic nerve was realized with NNG. The VNG group showed a better axonal organization and a significantly higher number of regenerated axons in the early phases (after 30 days) than the NNG group, whereas the difference in the axonal number at day 90 was less significant; besides, the axon diameter and the myelin thickness were not significantly improved by VNG group. Our data suggests that the use of VNG leads to a faster regeneration process and a better functional recovery, although the final results are comparable to those of the NNG. VNG improve the quality of the axonal regeneration (axonal diameter and Schwann cells), although the increase in the axonal number is not significant and does not improve the long-term functional outcome.

  9. Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing

    Science.gov (United States)

    Seals, Douglas R.

    2016-01-01

    Abstract Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well‐known benefits of chronic CR, long‐term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular ‘energy‐ and nutrient‐sensing’ mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long‐term CR. PMID:27641062

  10. Computer-aided design of microvasculature systems for use in vascular scaffold production

    International Nuclear Information System (INIS)

    Mondy, William Lafayette; Cameron, Don; Timmermans, Jean-Pierre; De Clerck, Nora; Sasov, Alexander; Casteleyn, Christophe; Piegl, Les A

    2009-01-01

    In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.

  11. Computer-aided design of microvasculature systems for use in vascular scaffold production

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, William Lafayette [Department of Chemical and Biomedical Engineering, University of South Florida, FL (United States); Cameron, Don [Department of Pathology and Cell Biology, College of Medicine, University of South Florida, FL (United States); Timmermans, Jean-Pierre [Department of Veterinary Sciences, University of Antwerp (Belgium); De Clerck, Nora [Department of Biomedical Sciences University of Antwerp (Belgium); Sasov, Alexander [Skyscan (Belgium); Casteleyn, Christophe [College of Veterinary Medicine, Ghent University (Belgium); Piegl, Les A [Department of Computer Science and Engineering, University of South Florida, FL (United States)

    2009-09-15

    In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.

  12. Computer-aided design of microvasculature systems for use in vascular scaffold production.

    Science.gov (United States)

    Mondy, William Lafayette; Cameron, Don; Timmermans, Jean-Pierre; De Clerck, Nora; Sasov, Alexander; Casteleyn, Christophe; Piegl, Les A

    2009-09-01

    In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.

  13. Differential Gene Expression of Primary Cultured Lymphatic and Blood Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Gregory M. Nelson

    2007-12-01

    Full Text Available Blood vascular endothelial cells (BECs and the developmentally related lymphatic endothelial cells (LECs create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs, cytokines, cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, the neuronal growth factor regulator-1 and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1, the poliovirus receptor-related 3 molecule that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.

  14. Effects of vaginal prolapse surgery and ageing on vaginal vascularization

    OpenAIRE

    Weber, M.A.

    2016-01-01

    Ageing affects pelvic floor anatomy and function, resulting in several disorders like pelvic organ prolapse (POP), lower urinary tract symptoms and vaginal atrophy (VA). In this thesis we searched for methods to link the function of pelvic organs to physiological changes. The effects of POP and vaginal prolapse surgery on vaginal vascularization and the influence of ageing and topical oestrogens on pelvic floor disorders were examined. The lack of knowledge regarding the effects of ageing on ...

  15. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  16. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  17. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Hooykaas, Paul J J; Keller, Beat

    2002-01-01

    report that in addition to this leafy petiole phenotype, the size of the vascular bundles is increased in all aerial organs in let as a result of an increase in the number of xylem, phloem (pro)cambial and pericycle cells. This vascular phenotype is caused by activation tagging of the two genes VASCULAR......-promoting factor. The activation tagging of VAS only resulted in a specific increase in phloem (pro)cambial and pericycle cells. We conclude that activation tagging of LEP and VAS results in additive phenotypes. Insertional mutants for LEP and VAS display wild-type vascular development, indicating the relevance...... of activation tagging for functional analysis of novel genes involved in plant development....

  18. [Allogeneic vascularized transplantation in cases of bone and joint defects].

    Science.gov (United States)

    Hofmann, G O; Kirschner, M H; Gonschorek, O; Bühren, V

    1999-06-01

    This paper presents preliminary results of allogeneic vascularized transplantations of three femoral diaphyses and four total human knee joints. Grafts were harvested from multi-organ-donors and immediately transplanted. Osteosyntheses were performed employing intramedullary nails. Vascular pedicles of the grafts were anastomosed in end-to-side technique. Immunosuppression mainly based on Cyclosporine and Azathioprine. Grafts' perfusion was demonstrated by DSA and Duplex-sonograms, bone metabolism by SPECT-scintigraphy. Five months following transplantation osteotomies demonstrated consolidation in conventional X-rays. Biopsies of the grafted bone revealed intact osteocytes and arthroscopy demonstrated intact synovial, chondral and ligamentous structures. From the technical aspect vascularized transplantation of the femoral diaphyses and total knee joints is feasible. The main problems are of immunologic nature. Transplantations were performed respecting the ABO-compatibility but with a large HLA-mismatch. Acute and chronic rejection crises may damage the grafts. At least in synovial joints live-long immunosuppression of the recipients seems to be unavoidable.

  19. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    Science.gov (United States)

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Water deprivation affects serotoninergic system and glycoprotein secretion in the sub-commissural organ of a desert rodent Meriones shawi.

    Science.gov (United States)

    Elgot, Abdeljalil; Ahboucha, Samir; Bouyatas, My Mustapha; Fèvre-Montange, Michèlle; Gamrani, Halima

    2009-11-27

    Water deprivation is a stress that has been associated with activation of several endocrine systems, including circumventricular organs of the central nervous system. The sub-comissural organ (SCO), characterized by its glycoprotein secretion called Reissner's fiber has been suggested to play a role in the regulation of body water balance. Meriones shawi, a semi-desertic rodent characterized by its resistance to long periods of thirst was subjected to water deprivation for 1 and 3 months. Effect of water deprivation was evaluated immunohistochemically on 5-hydroxytryptamine (5-HT; serotonin) system and glycoprotein secretion of the SCO. Our findings demonstrate significant reduction of anti-Reissner's fiber immunoreactive materials within basal and apical parts of the SCO ependymocytes. These changes seem to be the consequence of reduced control by 5-HT fibers reaching the SCO as a concomitant and significant reduction of anti-5-HT immunoreactive fibers are also observed following water deprivation. 5-HT immunoreactive reduction is seen in several regions in the brain including the neurons of origin within the dorsal raphe nucleus and the projecting supra and sub-ependymal fibers reaching the classical ependyma of the third ventricle. The extent of Reissner's fiber and 5-HT immunoreactive changes significantly correlates with the severity of water restriction. We suggest that water deprivation causes changes of the classical ependyma and the specialized ependyma that differentiates into the SCO as well as other cirumventricular organs such as the subfornical organ and the organum vasculosum laminae terminalis known to control drinking behaviors.

  1. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Sevostyanova, V. V., E-mail: sevostyanova.victoria@gmail.com; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo (Russian Federation)

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  2. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy.

    Science.gov (United States)

    Costa, Marina; Cerqueira, Mariana T; Santos, Tírcia C; Sampaio-Marques, Belém; Ludovico, Paula; Marques, Alexandra P; Pirraco, Rogério P; Reis, Rui L

    2017-06-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb

  3. Autoradiographic localization and characterization of atrial natriuretic peptide binding sites in the rat central nervous system and adrenal gland

    International Nuclear Information System (INIS)

    Gibson, T.R.; Wildey, G.M.; Manaker, S.; Glembotski, C.C.

    1986-01-01

    Atrial natriuretic peptides (ANP) have recently been identified in both heart and CNS. These peptides possess potent natriuretic, diuretic, and vasorelaxant activities, and are all apparently derived from a single prohormone. Specific ANP binding sites have been characterized in the adrenal zona glomerulosa and kidney cortex, and one study reported ANP binding sites in the CNS. However, a detailed examination of the localization of ANP binding sites throughout the brain has not been reported. In this study, quantitative autoradiography was employed to examine the distribution of ANP receptors in the rat CNS. The binding of (3- 125 I-iodotyrosyl28) rat ANP-28 to binding sites in the rat CNS was saturable, specific for ANP-related peptides, and displayed high affinity (Kd = 600 pM). When the relative concentrations of ANP binding sites were determined throughout the rat brain, the highest levels of ANP binding were localized to the circumventricular organs, including the area postrema and subfornical organ, and the olfactory apparatus. Moderate levels of ANP binding sites were present throughout the midbrain and brain stem, while low levels were found in the forebrain, diencephalon, basal ganglia, cortex, and cerebellum. The presence of ANP binding sites in the subfornical organ and the area postrema, regions considered to be outside the blood-brain barrier, suggests that peripheral ANP levels may regulate some aspects of CNS control of salt and water balance. The possible functions of ANP binding sites in other regions of the rat brain are not known, but, like many other peptides, ANP may act as a neurotransmitter or neuromodulator at these loci

  4. Harmful effects of the azathioprine metabolite 6-mercaptopurine in vascular cells: induction of mineralization.

    Science.gov (United States)

    Prüfer, Jasmin; Schuchardt, Mirjam; Tölle, Markus; Prüfer, Nicole; Höhne, Matthias; Zidek, Walter; van der Giet, Markus

    2014-01-01

    Vascular mineralization contributes to the high cardiovascular morbidity and mortality in patients who suffer from chronic kidney disease and in individuals who have undergone solid organ transplantation. The immunosuppressive regimen used to treat these patients appears to have an impact on vascular alterations. The effect of 6-mercaptopurine (6-MP) on vascular calcification has not yet been determined. This study investigates the effect of 6-MP on vascular mineralization by the induction of trans-differentiation of rat vascular smooth muscle cells in vitro. 6-MP not only induces the expression of osteo-chondrocyte-like transcription factors and proteins but also activates alkaline phosphatase enzyme activity and produces calcium deposition in in vitro and ex vivo models. These processes are dependent on 6-MP-induced production of reactive oxygen species, intracellular activation of mitogen-activated kinases and phosphorylation of the transcription factor Cbfa1. Furthermore, the metabolic products of 6-MP, 6-thioguanine nucleotides and 6-methyl-thio-inosine monophosphate have major impacts on cellular calcification. These data provide evidence for a possible harmful effect of the immunosuppressive drug 6-MP in vascular diseases, such as arteriosclerosis.

  5. Harmful effects of the azathioprine metabolite 6-mercaptopurine in vascular cells: induction of mineralization.

    Directory of Open Access Journals (Sweden)

    Jasmin Prüfer

    Full Text Available Vascular mineralization contributes to the high cardiovascular morbidity and mortality in patients who suffer from chronic kidney disease and in individuals who have undergone solid organ transplantation. The immunosuppressive regimen used to treat these patients appears to have an impact on vascular alterations. The effect of 6-mercaptopurine (6-MP on vascular calcification has not yet been determined. This study investigates the effect of 6-MP on vascular mineralization by the induction of trans-differentiation of rat vascular smooth muscle cells in vitro. 6-MP not only induces the expression of osteo-chondrocyte-like transcription factors and proteins but also activates alkaline phosphatase enzyme activity and produces calcium deposition in in vitro and ex vivo models. These processes are dependent on 6-MP-induced production of reactive oxygen species, intracellular activation of mitogen-activated kinases and phosphorylation of the transcription factor Cbfa1. Furthermore, the metabolic products of 6-MP, 6-thioguanine nucleotides and 6-methyl-thio-inosine monophosphate have major impacts on cellular calcification. These data provide evidence for a possible harmful effect of the immunosuppressive drug 6-MP in vascular diseases, such as arteriosclerosis.

  6. transplanted organs

    Directory of Open Access Journals (Sweden)

    Rafal Szadujkis-Szadurski

    2014-08-01

    Full Text Available Rho-kinase and GTP-ase Rho are important regulators of vascular tone and blood pressure. The aim of this study was to investigate the role of Rho-kinase in artery reactions induced by angiotensin II (ANG II and the effects of ischemia-reperfusion injury as well as the function of intra- and extracellular calcium in these reactions. Experiments were performed on mesenteric superior arteries procured from cadaveric organ donors and conserved under the same conditions as transplanted kidneys. The vascular contraction in reaction to ANG II was measured in the presence of Rho-kinase inhibitor Y-27632, after ischemia and reperfusion, in Ca2+ and Ca2+-free solution. The maximal response to ANG II was reduced after ischemia, while an increase was observed after reperfusion. Vascular contraction induced by ANG II was decreased by Y-27632. Y-27632 reduced vascular contraction after reperfusion, both in Ca2+ and Ca2+-free solution. Reperfusion augments vascular contraction in reaction to ANG II. The Rho-kinase inhibitor Y-27632 reduces the hypersensitivity to ANG II after reperfusion mediated by both intra- and extracellular calcium. These results confirm the role of Rho-kinase in receptor-independent function of ANG II and in reperfusion-induced hypersensitivity.

  7. Axon guidance molecules in vascular patterning.

    Science.gov (United States)

    Adams, Ralf H; Eichmann, Anne

    2010-05-01

    Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.

  8. Proatherogenic pathways leading to vascular calcification

    International Nuclear Information System (INIS)

    Mazzini, Michael J.; Schulze, P. Christian

    2006-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the western world and atherosclerosis is the major common underlying disease. The pathogenesis of atherosclerosis involves local vascular injury, inflammation and oxidative stress as well as vascular calcification. Vascular calcification has long been regarded as a degenerative process leading to mineral deposition in the vascular wall characteristic for late stages of atherosclerosis. However, recent studies identified vascular calcification in early stages of atherosclerosis and its occurrence has been linked to clinical events in patients with cardiovascular disease. Its degree correlates with local vascular inflammation and with the overall impact and the progression of atherosclerosis. Over the last decade, diverse and highly regulated molecular signaling cascades controlling vascular calcification have been described. Local and circulating molecules such as osteopontin, osteoprogerin, leptin and matrix Gla protein were identified as critical regulators of vascular calcification. We here review the current knowledge on molecular pathways of vascular calcification and their relevance for the progression of cardiovascular disease

  9. Novel Application of Postmortem CT Angiography for Evaluation of the Intracranial Vascular Anatomy in Cadaver Heads.

    Science.gov (United States)

    van Eijk, Ruben P A; van der Zwan, Albert; Bleys, Ronald L A W; Regli, Luca; Esposito, Giuseppe

    2015-12-01

    Postmortem CT angiography is a common procedure used to visualize the entire human vasculature. For visualization of a specific organ's vascular anatomy, casting is the preferred method. Because of the permanent and damaging nature of casting, the organ cannot be further used as an experimental model after angiography. Therefore, there is a need for a minimally traumatic method to visualize organ-specific vascular anatomy. The purpose of this study was to develop and evaluate a contrast enhancement technique that is capable of visualizing the intracranial vascular anatomy while preserving the anatomic integrity in cadaver heads. Seven human heads were used in this study. Heads were prepared by cannulating the vertebral and internal carotid arteries. Contrast agent was injected as a mixture of tap water, polyethylene glycol 600, and an iodinated contrast agent. Postmortem imaging was executed on a 64-MDCT scanner. Primary image review and 3D reconstruction were performed on a CT workstation. Clear visualization of the major cerebral arteries and smaller intracranial branches was achieved. Adequate visualization was obtained for both the anterior and posterior intracranial circulation. The minimally traumatic angiography method preserved the vascular integrity of the cadaver heads. A novel application of postmortem CT angiography is presented here. The technique can be used for radiologic evaluation of the intracranial circulation in cadaver heads. After CT angiography, the specimen can be used for further experimental or laboratory testing and teaching purposes.

  10. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a

  11. Tissue bioengineering and artificial organs.

    Science.gov (United States)

    Llames, Sara; García, Eva; Otero Hernández, Jesús; Meana, Alvaro

    2012-01-01

    The scarcity of organs and tissues for transplant and the need of immunosuppressive drugs to avoid rejection constitute two reasons that justify organ and tissue production in the laboratory. Tissue engineering based tissues (TE) could allow to regenerate the whole organ from a fragment or even to produce several organs from an organ donor for grafting purposes. TE is based in: (1) the ex vivo expansion of cells, (2) the seeding of these expanded cells in tridimensional structures that mimic physiological conditions and, (3) grafting the prototype. In order to graft big structures it is necessary that the organ or tissue produced "ex vivo" bears a vascular tree to ensure the nutrition of its deep layers. At present, no technology has been developed to provide this vascular tree to TE derived products. Thus, these tissues must be thin enough to acquire nutrients during the first days by diffusion from surrounding tissues. This fact constitutes nowadays the greatest limitation of technologies for organ development in the laboratory.In this chapter, all these problems and their possible solutions are commented. Also, the present status of TE techniques in the regeneration of different organ systems is reviewed.

  12. Vascular injuries of the upper extremity Lesões vasculares de membros superiores

    Directory of Open Access Journals (Sweden)

    Raafat Shalabi

    2006-12-01

    Full Text Available OBJECTIVE: This study analyzes the causes of injuries, presentations, surgical approaches, outcome and complications of vascular trauma of the upper limbs, in spite of limited hospital resources. METHODS: A 5-year retrospective analysis. From 01/01/2001 to 31/12/2005, 165 patients were operated for vascular injuries at King Fahd Hospital, Medina, Saudi Arabia. Of all peripheral vascular trauma patients (115, upper limb trauma was present in 58. Diagnosis was made by physical examination and hand-held Doppler alone or in combination with Doppler scan/angiography. Primary vascular repair was performed whenever possible; otherwise, the interposition vein graft was used. Fasciotomy was considered when required. Patients with unsalvageable lower extremity injury requiring primary amputation were excluded from the study. RESULTS: Fifty patients were male (86% and eight were female (14%, aged between 2.5-55 years (mean 23 years. Mean duration of presentation was 8 h after the injury. The most common etiological factor was road traffic accidents, accounting for 50.5% in the blunt trauma group and 33% among all penetrating and stab wound injuries. Incidence of concomitant orthopedic injuries was very high in our study (51%. The brachial artery was the most affected (51%. Interposition vein grafts were used in 53% of the cases. Limb salvage rate was 100%. CONCLUSION: Patients who suffer vascular injuries of the upper extremities should be transferred to vascular surgery centers as soon as possible. Decisive management of peripheral vascular trauma will maximize patient survival and limb salvage. Priorities must be established in the management of associated injuries, and delay must be avoided when ischemic changes are present.OBJETIVO: Este estudo analisa as causas de lesões, apresentação, abordagens cirúrgicas, desfechos e complicações do trauma vascular de membros superiores, apesar de recursos hospitalares limitados. MÉTODOS: An

  13. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  14. Pediatric central nervous system vascular malformations

    International Nuclear Information System (INIS)

    Burch, Ezra A.; Orbach, Darren B.

    2015-01-01

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  15. Meeting report on the Bellagio Conference 'prevention of vascular diseases in the emerging world: An approach to global health equity'.

    Science.gov (United States)

    Dirks, J H; Robinson, S W; Alderman, M; Couser, W G; Grundy, S M; Smith, S C; Remuzzi, G; Unwin, N

    2006-10-01

    Representatives from five international organizations (International Society of Nephrology, World Heart Federation, International Diabetes Federation, International Atherosclerosis Federation, and International Society of Hypertension) participated in a strategic planning workshop in December 2005 in Bellagio, Italy sponsored by the Rockefeller Foundation. There were equal representatives from developed and developing countries. Global perspectives on diabetes and cardiovascular and renal diseases were presented, with special emphasis on China, India, Latin America, and Africa. The rationale and effectiveness of preventive measures were discussed. It was apparent that measures for primary prevention and early intervention for all the chronic vascular diseases are similar. The five organizations agreed that an integrated global approach to chronic vascular diseases is needed. They resolved to collaborate and work towards an integrated approach to chronic vascular diseases with the establishment of a 5-year plan for the prevention and treatment of chronic vascular diseases, including public advocacy, advising international and national agencies, and improving education and the practice of established approaches.

  16. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  17. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    Science.gov (United States)

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  18. Vascular malformations in pediatrics

    International Nuclear Information System (INIS)

    Reith, W.; Shamdeen, M.G.

    2003-01-01

    Vascular malformations are the cause of nearly all non-traumatic intracranial hemorrhage in children beyond the neonatal stage. Therefore, any child presenting with spontaneous intracranial hemorrhage should be evaluated for child abuse and for vascular malformations. Intracerebral malformations of the cerebral vasculature include vein of Galen malformations, arteriovenous malformation (AVM), cavernomas, dural arteriovenous fistulas, venous anomalies (DVA), and capillary teleangiectasies. Although a few familial vascular malformation have been reported, the majority are sporadic. Clinical symptoms, diagnostic and therapeutic options are discussed. (orig.) [de

  19. Lifelike Vascular Reperfusion of a Thiel-Embalmed Pig Model and Evaluation as a Surgical Training Tool.

    Science.gov (United States)

    Willaert, Wouter; Tozzi, Francesca; Van Hoof, Tom; Ceelen, Wim; Pattyn, Piet; D''Herde, Katharina

    2016-01-01

    Vascular reperfusion of Thiel cadavers can aid surgical and anatomical instruction. This study investigated whether ideal embalming circumstances provide lifelike vascular flow, enabling surgical practice and enhancing anatomical reality. Pressure-controlled pump-driven administration of blue embalming solution was assessed directly postmortem in a pig model (n = 4). Investigation of subsequent pump-driven vascular injection of red paraffinum perliquidum (PP) included assessment of flow parameters, intracorporeal distribution, anatomical alterations, and feasibility for surgical training. The microscopic distribution of PP was analyzed in pump-embalmed pig and gravity-embalmed human small intestines. Embalming lasted 50-105 min, and maximum arterial pressure was 65 mm Hg. During embalming, the following consecutive alterations were observed: arterial filling, organ coloration, venous perfusion, and further tissue coloration during the next weeks. Most organs were adequately preserved. PP generated low arterial pressures (drainage is a prerequisite to prevent anatomical deformation, allowing simulation of various surgeries. In pump-embalmed pig small intestines, PP flowed from artery to vein through the capillaries without extravasation. In contrast, arterioles were blocked in gravity-embalmed human tissues. In a pig model, immediate postmortem pressure-controlled pump embalming generates ideal circumstances for (micro)vascular reperfusion with PP, permitting lifelike anatomy instruction and surgical training. © 2016 S. Karger AG, Basel.

  20. Contemporary vascular smartphone medical applications.

    Science.gov (United States)

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Expression of Vascular Endothelial Growth Factor Receptors in Benign Vascular Lesions of the Orbit: A Case Series.

    Science.gov (United States)

    Atchison, Elizabeth A; Garrity, James A; Castillo, Francisco; Engman, Steven J; Couch, Steven M; Salomão, Diva R

    2016-01-01

    Vascular lesions of the orbit, although not malignant, can cause morbidity because of their location near critical structures in the orbit. For the same reason, they can be challenging to remove surgically. Anti-vascular endothelial growth factor (VEGF) drugs are increasingly being used to treat diseases with prominent angiogenesis. Our study aimed to determine to what extent VEGF receptors and their subtypes are expressed on selected vascular lesions of the orbit. Retrospective case series of all orbital vascular lesions removed by one of the authors (JAG) at the Mayo Clinic. A total of 52 patients who underwent removal of vascular orbital lesions. The pathology specimens from the patients were retrieved, their pathologic diagnosis was confirmed, demographic and clinical information were gathered, and sections from vascular tumors were stained with vascular endothelial growth factor receptor (VEGFR), vascular endothelial growth factor receptor type 1 (VEGFR1), vascular endothelial growth factor receptor type 2 (VEGFR2), and vascular endothelial growth factor receptor type 3 (VEGFR3). The existence and pattern of staining with VEGF and its subtypes on these lesions. There were 28 specimens of venous malformations, 4 capillary hemangiomas, 7 lymphatic malformations, and 6 lymphaticovenous malformations. All samples stained with VEGF, 55% stained with VEGFR1, 98% stained with VEGFR2, and 96% stained with VEGFR3. Most (94%) of the VEGFR2 staining was diffuse. Most orbital vascular lesions express VEGF receptors, which may suggest a future target for nonsurgical treatment. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Sanjana Dayal

    Full Text Available There is an emerging consensus that hyperhomocysteinemia is an independent risk factor for cerebral vascular disease and that homocysteine-lowering therapy protects from ischemic stroke. However, the mechanisms by which hyperhomocysteinemia produces abnormalities of cerebral vascular structure and function remain largely undefined. Our objective in this study was to define the mechanistic role of superoxide in hyperhomocysteinemia-induced cerebral vascular dysfunction and hypertrophy. Unlike previous studies, our experimental design included a genetic approach to alter superoxide levels by using superoxide dismutase 1 (SOD1-deficient mice fed a high methionine/low folate diet to produce hyperhomocysteinemia. In wild-type mice, the hyperhomocysteinemic diet caused elevated superoxide levels and impaired responses to endothelium-dependent vasodilators in cerebral arterioles, and SOD1 deficiency compounded the severity of these effects. The cross-sectional area of the pial arteriolar wall was markedly increased in mice with SOD1 deficiency, and the hyperhomocysteinemic diet sensitized SOD1-deficient mice to this hypertrophic effect. Analysis of individual components of the vascular wall demonstrated a significant increase in the content of smooth muscle and elastin. We conclude that superoxide is a key driver of both cerebral vascular hypertrophy and vasomotor dysfunction in this model of dietary hyperhomocysteinemia. These findings provide insight into the mechanisms by which hyperhomocysteinemia promotes cerebral vascular disease and ischemic stroke.

  3. Nilai Rerata Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio Vascular Pedicle-Thoracic Ratio Orang Dewasa Normal Indonesia Studi di RS dr. Cipto Mangunkusomo

    Directory of Open Access Journals (Sweden)

    Rommy Zunera

    2016-03-01

    Full Text Available Vascular pedicle width (VPW adalah jarak tepi luar vena kava superior ke tepi luar arteri subklavia kiri. Pemeriksaan VPW di foto toraks bersifat non-invasif, cepat dan mudah untuk memprediksi hipervolemia.Penelitian ini bertujuan untuk mengetahui rerata nilai VPW orang dewasa normal Indonesia. VPW diukurdengan dua metode: pertama pengukuran VPW tunggal yang akurasinya terbatas di foto toraks digital karenarelatif tidak dipengaruhi faktor magnifikasi. Metode kedua untuk foto toraks nondigital yaitu pengukuranrasio:vascular pedicle-cardiac ratio (VPCR dan vascular pedicle-thoracic ratio (VPTR. Pengukuran serupadilakukan terhadap  topogram CT scan toraks AP terlentang dan CT scan toraks lalu dibandingkan akurasipengukuran di topogram dengan CT scan  toraks sebagai standar baku. Sampel terdiri atas 104 foto toraksPA subyek normal dan 103 CT scan  toraks subyek terpilih. Pada pemeriksaan toraks PA didapatkan rerata VPW 48,0±5,5mm, rerata VPCR 40,3±4,6%, dan rerata VPTR 17,2±1,7%. Pada pemeriksaan topogram CTscan didapatkan rerata VPW 50,3±6,2mm, rerata VPTR 45±5,1%, dan rerata VPTR 19,8±2,5%. Rerata VPWpada CT scan toraks 50,4±6,1mm. Pengukuran di foto toraks AP 10% lebih besar dibandingkan pada fototoraks PA dan pengukuranVPW di foto toraks terbukti memiliki akurasi  tinggi. Kata kunci: fototoraks, vascular pedicle width, vascular pedicle-cardiac ratio, vascular pedicle-thoracic ratio, hipervolemia.   The Mean Value of Vascular Pedicle Width, Vascular Pedicle-Cardiac Ratio,Vascular Pedicle-Thoracic Ratio of Normal Indonesian Adult Study In dr. Cipto Mangunkusomo Hospital Abstract Vascular pedicle width (VPW is the distance, from a perpendicular line at the takeoff point of the left subclavian artery off the aorta to the point at which the superior vena cava. Measurement of VPW on chestx-ray is relatively non-invasive, fast and easy technique as  hypervolemia predictor. The purpose of thisstudy is to know the mean VPW value of normal

  4. The primary vascular dysregulation syndrome: implications for eye diseases

    Science.gov (United States)

    2013-01-01

    Vascular dysregulation refers to the regulation of blood flow that is not adapted to the needs of the respective tissue. We distinguish primary vascular dysregulation (PVD, formerly called vasospastic syndrome) and secondary vascular dysregulation (SVD). Subjects with PVD tend to have cold extremities, low blood pressure, reduced feeling of thirst, altered drug sensitivity, increased pain sensitivity, prolonged sleep onset time, altered gene expression in the lymphocytes, signs of oxidative stress, slightly increased endothelin-1 plasma level, low body mass index and often diffuse and fluctuating visual field defects. Coldness, emotional or mechanical stress and starving can provoke symptoms. Virtually all organs, particularly the eye, can be involved. In subjects with PVD, retinal vessels are stiffer and more irregular, and both neurovascular coupling and autoregulation capacity are reduced while retinal venous pressure is often increased. Subjects with PVD have increased risk for normal-tension glaucoma, optic nerve compartment syndrome, central serous choroidopathy, Susac syndrome, retinal artery and vein occlusions and anterior ischaemic neuropathy without atherosclerosis. Further characteristics are their weaker blood–brain and blood-retinal barriers and the higher prevalence of optic disc haemorrhages and activated astrocytes. Subjects with PVD tend to suffer more often from tinnitus, muscle cramps, migraine with aura and silent myocardial ischaemic and are at greater risk for altitude sickness. While the main cause of vascular dysregulation is vascular endotheliopathy, dysfunction of the autonomic nervous system is also involved. In contrast, SVD occurs in the context of other diseases such as multiple sclerosis, retrobulbar neuritis, rheumatoid arthritis, fibromyalgia and giant cell arteritis. Taking into consideration the high prevalence of PVD in the population and potentially linked pathologies, in the current article, the authors provide

  5. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  6. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight

    Directory of Open Access Journals (Sweden)

    Candice G. T. Tahimic

    2017-10-01

    Full Text Available Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  7. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight

    Science.gov (United States)

    Tahimic, Candice; Globus, Ruth K.

    2018-01-01

    Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and groundbased models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  8. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis.

    Science.gov (United States)

    Cao, Zhongwei; Ye, Tinghong; Sun, Yue; Ji, Gaili; Shido, Koji; Chen, Yutian; Luo, Lin; Na, Feifei; Li, Xiaoyan; Huang, Zhen; Ko, Jane L; Mittal, Vivek; Qiao, Lina; Chen, Chong; Martinez, Fernando J; Rafii, Shahin; Ding, Bi-Sen

    2017-08-30

    The regenerative capacity of lung and liver is sometimes impaired by chronic or overwhelming injury. Orthotopic transplantation of parenchymal stem cells to damaged organs might reinstate their self-repair ability. However, parenchymal cell engraftment is frequently hampered by the microenvironment in diseased recipient organs. We show that targeting both the vascular niche and perivascular fibroblasts establishes "hospitable soil" to foster the incorporation of "seed," in this case, the engraftment of parenchymal cells in injured organs. Specifically, ectopic induction of endothelial cell (EC)-expressed paracrine/angiocrine hepatocyte growth factor (HGF) and inhibition of perivascular NOX4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 4] synergistically enabled reconstitution of mouse and human parenchymal cells in damaged organs. Reciprocally, genetic knockout of Hgf in mouse ECs ( Hgf iΔEC/iΔEC ) aberrantly up-regulated perivascular NOX4 during liver and lung regeneration. Dysregulated HGF and NOX4 pathways subverted the function of vascular and perivascular cells from an epithelially inductive niche to a microenvironment that inhibited parenchymal reconstitution. Perivascular NOX4 induction in Hgf iΔEC/iΔEC mice recapitulated the phenotype of human and mouse liver and lung fibrosis. Consequently, EC-directed HGF and NOX4 inhibitor GKT137831 stimulated regenerative integration of mouse and human parenchymal cells in chronically injured lung and liver. Our data suggest that targeting dysfunctional perivascular and vascular cells in diseased organs can bypass fibrosis and enable reparative cell engraftment to reinstate lung and liver regeneration. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. PanVascular medicine. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Lanzer, Peter (ed.) [Health Care Center Bitterfeld (Germany). Division of Cardiovascular Disease

    2015-06-01

    Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.

  10. PanVascular medicine. 2. ed.

    International Nuclear Information System (INIS)

    Lanzer, Peter

    2015-01-01

    Vascular management and care has become a truly multidisciplinary enterprise as the number of specialists involved in the treatment of patients with vascular diseases has steadily increased. While in the past, treatments were delivered by individual specialists, in the twenty-first century a team approach is without doubt the most effective strategy. In order to promote professional excellence in this dynamic and rapidly evolving field, a shared knowledge base and interdisciplinary standards need to be established. Pan Vascular Medicine, 2nd edition has been designed to offer such an interdisciplinary platform, providing vascular specialists with state-of-the art descriptive and procedural knowledge. Basic science, diagnostics, and therapy are all comprehensively covered. In a series of succinct, clearly written chapters, renowned specialists introduce and comment on the current international guidelines and present up-to-date reviews of all aspects of vascular care.

  11. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  12. [Immunologic problems in vascular homografts].

    Science.gov (United States)

    D'Addato, M; Mirelli, M

    2001-01-01

    Fresh arterial homografts are immunogenic, inducing in recipient a strong immune response specifically directed against the antigens of the donor graft. The initial immune response seems to be cellular (lymphocytotoxic) and the late reaction humoral (antibody), even if they are strictly correlated. Immunosuppressive therapy reduce the immune reaction, but this response is dose-related. Implanted arterial homografts induce a donor-specific response similar to chronic reaction, which occurs in the recipients of vascularized solid-organ allografts. Therefore, in arterial transplantation, ABO compatibility and negative crossmatch should be respected. Effort should be made to curb the immune response by prospective cross-matching, immunosuppressive therapy and preoperative manipulation of homografts to reduce their antigenicity.

  13. [The future of vascular medicine].

    Science.gov (United States)

    Kroeger, K; Luther, B

    2014-10-01

    In the future vascular medicine will still have a great impact on health of people. It should be noted that the aging of the population does not lead to a dramatic increase in patient numbers, but will be associated with a changing spectrum of co-morbidities. In addition, vascular medical research has to include the intensive care special features of vascular patients, the involvement of vascular medicine in a holistic concept of fast-track surgery, a geriatric-oriented intensive monitoring and early geriatric rehabilitation. For the future acceptance of vascular medicine as a separate subject area under delimitation of cardiology and radiology is important. On the other hand, the subject is so complex and will become more complex in future specialisations that mixing of surgery and angiology is desirable, with the aim to preserve the vascular surgical knowledge and skills on par with the medical and interventional measures and further develop them. Only large, interdisciplinary guided vascular centres will be able to provide timely diagnosis and therapy, to deal with the growing multi-morbidity of the patient, to perform complex therapies even in an acute emergency and due to sufficient number of cases to present with well-trained and experienced teams. These requirements are mandatory to decrease patients' mortality step by step. Georg Thieme Verlag KG Stuttgart · New York.

  14. Vascular neurocognitive disorders and the vascular risk factors

    Directory of Open Access Journals (Sweden)

    Carmen V. Albu

    2018-04-01

    Full Text Available Dementias are clinical neurodegenerative diseases characterized by permanent and progressive transformation of cognitive functions such as memory, learning capacity, attention, thinking, language, passing judgments, calculation or orientation. Dementias represent a relatively frequent pathology, encountered at about 10% of the population of 65-year olds and 20% of the population of 80-year olds. This review presents the main etiological forms of dementia, which include Alzheimer form of dementia, vascular dementia, dementia associated with alpha-synucleionopathies, and mixed forms. Regarding vascular dementia, the risk factors are similar to those for an ischemic or hemorrhagic cerebrovascular accident: arterial hypertension, diabetes mellitus, dyslipidemia, smoking, obesity, age, alcohol consumption, cerebral atherosclerosis/ arteriosclerosis. Several studies show that efficient management of the vascular risk factors can prevent the expression and/ or progression of dementia. Thus, lifestyle changes such as stress reduction, regular physical exercise, decreasing dietary fat, multivitamin supplementation, adequate control of blood pressure and serum cholesterol, and social integration and mental stimulation in the elderly population are important factors in preventing or limiting the symptoms of dementia, a disease with significant individual, social, and economic implications.

  15. [The added value of a structured evaluation of patients with vascular disease

    NARCIS (Netherlands)

    Bredie, S.J.H.; Wollersheim, H.C.H.; Lenders, J.W.M.; Stalenhoef, A.F.H.

    2002-01-01

    In 3 patients, 2 women aged 21 and 34 years and a man aged 56 years, with complaints related to wide-ranging and extensive vascular conditions, an organ-specific diagnostic approach and treatment did not lead to the correct diagnosis of the underlying clinical condition. Hereafter a structured,

  16. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    Science.gov (United States)

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Prospects for Vascular Access Education in Developing Countries: Current Situation in Cambodia.

    Science.gov (United States)

    Naganuma, Toshihide; Takemoto, Yoshiaki

    2017-01-01

    We report our activities training doctors on vascular access procedures at International University (IU) Hospital in Cambodia through a program facilitated by Ubiquitous Blood Purification International, a nonprofit organization that provides medical support to developing countries in the field of dialysis medicine. Six doctors from Japan have been involved in the education of medical personnel at IU, and we have collectively visited Cambodia about 15 times from 2010 to 2016. In these visits, we have performed many operations, including 42 for arteriovenous fistula, 1 arteriovenous graft, and 1 percutaneous transluminal angioplasty. Stable development and management of vascular access is increasingly required in Cambodia due to increased use of dialysis therapy, and training of doctors in this technique is urgently required. However, we have encountered several difficulties that need to be addressed, including (1) the situation of personnel receiving this training, (2) problems with facilities, including medical equipment and drugs, (3) financial limitations, and (4) problems with management of vascular access. © 2017 S. Karger AG, Basel.

  18. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hemothorax in vascular Ehlers-Danlos syndrome.

    Science.gov (United States)

    Álvarez, Kevin; Jordi, López; Jose Angel, Hernández

    2017-10-16

    Vascular Ehlers-Danlos syndrome (EDS IV) is a rare genetic disorder characterized by an alteration in the COL3A1 gene which encodes type III collagen. It is the most common type of collagen in vessels of medium size and certain organs such as the intestines and the uterus. The alteration of this type of collagen produces aneurisms and ruptures of vessels and organs. A high level of clinical suspicion is required for diagnosis. It is a complex disease whose management requires a multidisciplinary team to treat the different complications that may occur. We report the case of a 50-year-old man diagnosed with EDS IV detected incidentally after hemothorax secondary to a coughing spell. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  20. Social media in vascular surgery.

    Science.gov (United States)

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E

    2013-04-01

    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  1. Vascular elastic photoacoustic tomography in humans

    Science.gov (United States)

    Hai, Pengfei; Zhou, Yong; Liang, Jinyang; Li, Chiye; Wang, Lihong V.

    2016-03-01

    Quantification of vascular elasticity can help detect thrombosis and prevent life-threatening conditions such as acute myocardial infarction or stroke. Here, we propose vascular elastic photoacoustic tomography (VE-PAT) to measure vascular elasticity in humans. VE-PAT was developed by incorporating a linear-array-based photoacoustic computed tomography system with a customized compression stage. By measuring the deformation of blood vessels under uniaxial loading, VE-PAT was able to quantify the vascular compliance. We first demonstrated the feasibility of VE-PAT in blood vessel phantoms. In large vessel phantoms, VE-PAT detected a decrease in vascular compliance due to simulated thrombosis, which was validated by a standard compression test. In small blood vessel phantoms embedded 3 mm deep in gelatin, VE-PAT detected elasticity changes at depths that are difficult to image using other elasticity imaging techniques. We then applied VE-PAT to assess vascular compliance in a human subject and detected a decrease in vascular compliance when an occlusion occurred downstream from the measurement point, demonstrating the potential of VE-PAT in clinical applications such as detection of deep venous thrombosis.

  2. Diagnosis and management of vascular diseases

    International Nuclear Information System (INIS)

    Fan Xindong; Zheng Lianzhou

    2011-01-01

    Vascular disorders mainly include hemangiomas and vascular malformations, and constitute some of the most difficult diagnostic and therapeutic enigmas that can be encountered in the clinical practice. The clinical presentations are extremely variable and can range from an asymptomatic birthmark to life-threatening congestive heart failure. Attributing any of these extremely varied symptoms that a patients may present with to a vascular malformation may be a challenge to the most experienced clinical. This problem is compounded by the extreme rarity of these vascular lesions. If a clinician meets such a patient once every few years, it will be extremely difficult for the physicians to gain a steep learning curve. In such circumstances, it is difficult to formulate a standard of diagnosis and treatment for these vascular disorders. This paper aims to make a comprehensive and detailed description of the classification and diagnosis of the vascular disorders, the common used embolization agents, the concepts of interventional diagnosis and management and the therapies of various hemangiomas and vascular malformations. (authors)

  3. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    Science.gov (United States)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  4. Vascular disease in cocaine addiction.

    Science.gov (United States)

    Bachi, Keren; Mani, Venkatesh; Jeyachandran, Devi; Fayad, Zahi A; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-07-01

    Cocaine, a powerful vasoconstrictor, induces immune responses including cytokine elevations. Chronic cocaine use is associated with functional brain impairments potentially mediated by vascular pathology. Although the Crack-Cocaine epidemic has declined, its vascular consequences are increasingly becoming evident among individuals with cocaine use disorder of that period, now aging. Paradoxically, during the period when prevention efforts could make a difference, this population receives psychosocial treatment at best. We review major postmortem and in vitro studies documenting cocaine-induced vascular toxicity. PubMed and Academic Search Complete were used with relevant terms. Findings consist of the major mechanisms of cocaine-induced vasoconstriction, endothelial dysfunction, and accelerated atherosclerosis, emphasizing acute, chronic, and secondary effects of cocaine. The etiology underlying cocaine's acute and chronic vascular effects is multifactorial, spanning hypertension, impaired homeostasis and platelet function, thrombosis, thromboembolism, and alterations in blood flow. Early detection of vascular disease in cocaine addiction by multimodality imaging is discussed. Treatment may be similar to indications in patients with traditional risk-factors, with few exceptions such as enhanced supportive care and use of benzodiazepines and phentolamine for sedation, and avoiding β-blockers. Given the vascular toxicity cocaine induces, further compounded by smoking and alcohol comorbidity, and interacting with aging of the crack generation, there is a public health imperative to identify pre-symptomatic markers of vascular impairments in cocaine addiction and employ preventive treatment to reduce silent disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The vascular pattern in the flower of some Mesembryanthemaceae: Aptenia cordifolia and Dorotheanthus bellidiformis. The effect of an ontogenetical shifting on the vascular pattern and vascular conservatism

    NARCIS (Netherlands)

    Meulen-Bruijns, van der C.

    1976-01-01

    1. The vascular pattern in the flower at various stages of maturity of Aptenia cordifolia and Dorotheanthus bellidiformis is examined. 2. The vascular pattern of Dorotheanthus has been compared with that of Aptenia: typologically, Dorotheanthus is derived from Aptenia. 3. The vascular pattern of

  6. Vascular type Ehlers-Danlos Syndrome with fatal spontaneous rupture of a right common iliac artery dissection: case report and review of literature

    Science.gov (United States)

    Abayazeed, Aly; Hayman, Emily; Moghadamfalahi, Mana; Cain, Darren

    2014-01-01

    Vascular Ehlers-Danlos Syndrome (previously Ehlers-Danlos IV) is a rare autosomal dominant collagen vascular disorder caused by a 2q31 COL3A1 gene mutation encoding pro-alpha1 chain of type III collagen (in contrast to classic Ehlers-Danlos, caused by a COL5A1 mutation). The vascular type accounts for less than 4% of all Ehlers-Danlos cases and usually has a poor prognosis due to life threatening vascular ruptures and difficult, frequently unsuccessful surgical and vascular interventions. In 70% of cases, vascular rupture or dissection, gastrointestinal perforation, or organ rupture is a presenting sign. We present a case of genetically proven vascular Ehlers-Danlos with fatal recurrent retroperitoneal hemorrhages secondary to a ruptured right common iliac artery dissection in a 30-year-old male. This case highlights the need to suspect collagen vascular disorders when a young adult presents with unexplained retroperitoneal hemorrhage, even without family history of such diseases. PMID:24967021

  7. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy.

    Science.gov (United States)

    Barton, Matthias; Husmann, Marc; Meyer, Matthias R

    2016-05-01

    Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  8. Isotopic composition of cellulose from aquatic organisms

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants and animals collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined. The delta 18 O values of cellulose from all the plants and animals were 27 +- 3 parts per thousand more positive than the delta 18 O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The deltaD values of the non-exchangeable hydrogen of cellulose from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200 parts per thousand for different species of algae collected at a single site; the corresponding difference for different species of tunicates and vascular plants was 60 and 20 parts per thousand respectively. The deltaD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60 parts per thousand. The relationship between the deltaD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. (author)

  9. Radiology trainer. Torso, internal organs and vessels. 2. ed.; Radiologie-Trainer. Koerperstamm, innere Organe und Gefaesse

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, Axel [Orthopaedische Klinik Harlaching, Muenchen (Germany). Radiologische Praxis; Erlt-Wagner, Birgit (eds.) [Klinikum der Universitaet Muenchen (Germany). Inst. fuer Klinische Radiologie

    2013-11-01

    The radiology training textbook is based on case studies of the clinical experience, including radiological imaging and differential diagnostic discussion. The scope of this volume covers the torso, internal organs and vessels. The following issues are discussed: lungs, pleura, mediastinum; heart and vascular system; upper abdomen organs; gastrointestinal tract; urogenital system.

  10. Redox processes in the rhizosphere of restored peatlands - The impact of vascular plant species on electrochemical properties of dissolved organic matter

    Science.gov (United States)

    Agethen, Svenja; Wolff, Franziska; Knorr, Klaus-Holger

    2016-04-01

    Restoration of cut over peatlands in Central Europe is challenging in a landscape overused for agriculture. Excess nutrient availability by excess fertilization triggers uncharacteristic vegetation that is one key driver for carbon cycling. Those nutrient rich systems are often dominated by graminoids, and were often found to emit substantial amounts of methane. Plants grown under nutrient rich conditions provide more labile carbon in rhizodeposition and litter that fuels methanogenesis. Such species often have aerenchyma that facilitates direct CH4 emissions to the atmosphere and therefore impair the climate cooling function of bogs. On the other hand, aerenchymatic tissue supplies oxygen to the rhizosphere, which may reduce methanogenesis or stimulate methane oxidation, as methanogenesis is a strictly anaerobic process. Which of the effects prevail is often unclear. Therefore, the aim of this study was to test the impact of different vegetation on rhizospheric redox conditions and methanogenesis, including aerenchymatic vascular plants that are dominant in restored cut over peatlands. As ombrotrophic peat is poor in inorganic electron acceptors (EAs) to suppress methanogenesis, we analyzed the electron acceptor (EACs) and electron donor capacities (EDCs) of dissolved organic matter (DOM) in the rhizosphere to understand the impact of vegetation on anaerobic organic matter degradation. We planted Juncus effusus, Eriophorum vaginatum, Eriophorum angustifolium, Sphagnum (mixture of S. magellanicum, S. papillosum, S. sec. acutifolia, 1/3 each) plus non-vegetated controls; six replicates per batch; in containers with untreated homogenized peat. The plants grow under constant conditions (20° C, 12h diurnal light cycles and 80% RH). Anoxic conditions were achieved by keeping the water table at +10 cm. For monitoring, the rhizosphere is equipped with suction and gas samplers. We measure dissolved CO2 and CH4 concentrations, inorganic EAs (NO3-, Fe(III), and SO42-) and

  11. Vascular burden and brain aging in a senior volunteer cohort: A pilot study

    Directory of Open Access Journals (Sweden)

    Raymond Y Lo

    2017-01-01

    Full Text Available Objective: To test the feasibility of establishing a senior volunteer cohort and describe vascular risks, cognitive function, and brain aging indices in a pilot study. Materials and Methods: We enrolled 40 senior volunteers from the Tzu Chi Foundation and other organizations in Hualien in 2014–2015. We conducted in-person interviews to collect information on demographic features, physical fitness, dietary habits, comorbidities, and narratives of aging. Vascular risks including blood pressure, body mass index (BMI, serum glucose level, and lipid profile were examined. Each participant underwent a comprehensive battery of neuropsychological tests and structural brain magnetic resonance imaging (MRI. Descriptive statistics and tabulation were applied to characterize this pilot cohort. Results: There were more volunteers from the Tzu Chi Foundation (n = 25 than other organizations. The mean age was 66.7 years (standard deviation = 5.1 and there was a female predominance (M:F = 13:27. The mean number of comorbid chronic diseases was 2.1 and the mean BMI was 24.5. Most participants (77.5% engaged in outdoor walking activities every week. Nutrient intake in vegetarians (n = 18 did not differ from nonvegetarians except for lower Vitamin B12 levels (mean = 0.9 μg. All participants but one scored 26 or above in the Mini–Mental State Examination (mean = 28.4. Among the other cognitive tests, only one task related to inhibition and switching abilities was at the low average level. The mean values of vascular risk markers were within the normal ranges. The most common genotype of apolipoprotein E was μ3/μ3 (n = 32. The quality of MRI was sufficient for volumetric analysis. Conclusion: It is feasible to establish a volunteer-based cohort to study brain aging in Taiwan. The senior volunteers were physically active and cognitively healthy. Vascular risks were well distributed among these participants. Future longitudinal study will allow us to observe

  12. Estimation of vascular spaces using radiolabeled erythrocytes

    International Nuclear Information System (INIS)

    Nasseri, K.

    2002-01-01

    Measurement of vascular volume is important in many physiological and pathological studies. For isolated organ preparations, this is usually performed using normal erythrocytes (red blood cell; RBC) and in the whole body studies, labeled RBCs are used. The aim of the present project was to compare the two methods in model organ (the liver) in terms of sensitivity and packed RBCs are suspended in normal saline. 100 u l aliquot is injected into the portal vein of rat. The outflow samples collected, hemo lysed and measured by colorimeter. In the second method, the packed RBCs are incubated with Cr-sodium and then resuspended in normal saline. A bolus of labelled RBCs with known activity is injected into portal vein of rats and the outflow activity is determined by gamma spectrometry. The extend of Cr binding to RBCs was investigated; in all experiments less than 2% of the total radioactivity after washing was extra cellular. Both methods were tested in 30 preparations. The normalized frequency outflow profiles of RBCs counted by two methods were then compared. The standard curves of the two methods were also obtained and the correlation was compared. The shape of the curves and calculated vascular volume obtained from the two methods were similar. A good correlation was observed between the methods of measurement of RBCs. The results indicated the second method is more precise and sensitive to low grade changes while the first method is quicker and better preserves RBCs than the second method. Theses advantages, together with safety considerations, favour the first method when it is applicable

  13. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    Science.gov (United States)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by

  14. Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

    Directory of Open Access Journals (Sweden)

    Haley D O'Brien

    Full Text Available Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica and white-tailed deer (Odocoileus virginianus were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.

  15. Characterization and distribution of receptors for the atrial natriuretic peptides in mammalian brain

    International Nuclear Information System (INIS)

    Quirion, R.; Dalpe, M.; Dam, T.V.

    1986-01-01

    Both rat 125 I-labeled atrial natriuretic polypeptide [ 125 I-ANP or atrial natriuretic factor fragment ANF-(99-126)] and human 125 I-α-ANP or human ANF-(99-126)] bind with high specificity and affinity to an apparent single class of sites in guinea pig brain. Similar results have been reported in peripheral tissues, which indicate that central and peripheral ANP binding sites have fairly similar structural requirements. In vitro receptor autoradiography shows that in the guinea pig brain, 125 I-ANP binding sites are highly concentrated in the external plexiform layer of the olfactory bulb, subfornical organ, various thalamic nuclei, medial geniculate nucleus, and cerebellum. Lower densities are found in the central nucleus of the amygdala, dentate gyrus, hippocampus, and area postrema. Most remaining regions contain much lower densities of sites. In rat brain 125 I-ANP binding sites are differentially distributed, with high densities in the subfornical organ, area postrema, and linings of ventricles but low densities in the thalamus and cerebellum. In monkey brain, 125 I-ANP binding sites are concentrated in the cerebellum. The presence of high densities of 125 I-ANP binding sites in various brain regions strongly suggests the existence of a family of brain-heart peptides, in analogy to the well-known brain-gut peptides. Moreover, the extensive distribution of 125 I-ANP binding sites in mammalian brain suggests that the possible roles of ANP/ANF-like peptides in brain are not restricted to the central regulation of cardiovascular parameters

  16. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  17. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.

    Science.gov (United States)

    Jia, Weitao; Gungor-Ozkerim, P Selcan; Zhang, Yu Shrike; Yue, Kan; Zhu, Kai; Liu, Wanjun; Pi, Qingment; Byambaa, Batzaya; Dokmeci, Mehmet Remzi; Shin, Su Ryon; Khademhosseini, Ali

    2016-11-01

    Despite the significant technological advancement in tissue engineering, challenges still exist towards the development of complex and fully functional tissue constructs that mimic their natural counterparts. To address these challenges, bioprinting has emerged as an enabling technology to create highly organized three-dimensional (3D) vascular networks within engineered tissue constructs to promote the transport of oxygen, nutrients, and waste products, which can hardly be realized using conventional microfabrication techniques. Here, we report the development of a versatile 3D bioprinting strategy that employs biomimetic biomaterials and an advanced extrusion system to deposit perfusable vascular structures with highly ordered arrangements in a single-step process. In particular, a specially designed cell-responsive bioink consisting of gelatin methacryloyl (GelMA), sodium alginate, and 4-arm poly(ethylene glycol)-tetra-acrylate (PEGTA) was used in combination with a multilayered coaxial extrusion system to achieve direct 3D bioprinting. This blend bioink could be first ionically crosslinked by calcium ions followed by covalent photocrosslinking of GelMA and PEGTA to form stable constructs. The rheological properties of the bioink and the mechanical strengths of the resulting constructs were tuned by the introduction of PEGTA, which facilitated the precise deposition of complex multilayered 3D perfusable hollow tubes. This blend bioink also displayed favorable biological characteristics that supported the spreading and proliferation of encapsulated endothelial and stem cells in the bioprinted constructs, leading to the formation of biologically relevant, highly organized, perfusable vessels. These characteristics make this novel 3D bioprinting technique superior to conventional microfabrication or sacrificial templating approaches for fabrication of the perfusable vasculature. We envision that our advanced bioprinting technology and bioink formulation may also

  18. Improved vascularization of planar membrane diffusion devices following continuous infusion of vascular endothelial growth factor.

    Science.gov (United States)

    Trivedi, N; Steil, G M; Colton, C K; Bonner-Weir, S; Weir, G C

    2000-01-01

    Improving blood vessel formation around an immunobarrier device should improve the survival of the encapsulated tissue. In the present study we investigated the formation of new blood vessels around a planar membrane diffusion device (the Baxter Theracyte System) undergoing a continuous infusion of vascular endothelial growth factor through the membranes and into the surrounding tissue. Each device (20 microl) had both an inner immunoisolation membrane and an outer vascularizing membrane. Human recombinant vascular endothelial growth factor-165 was infused at 100 ng/day (low dose: n = 6) and 500 ng/day (high dose: n = 7) for 10 days into devices implanted s.c. in Sprague-Dawley rats; noninfused devices transplanted for an identical period were used as controls (n = 5). Two days following the termination of VEGF infusion, devices were loaded with 20 microl of Lispro insulin (1 U/kg) and the kinetics of insulin release from the lumen of the device was assessed. Devices were then explanted and the number of blood vessels (capillary and noncapillary) was quantified using morphometry. High-dose vascular endothelial growth factor infusion resulted in two- to threefold more blood vessels around the device than that obtained with the noninfused devices and devices infused with low-dose vascular endothelial growth factor. This increase in the number of blood vessels was accompanied by a modest increase in insulin diffusion from the device in the high-dose vascular endothelial growth factor infusion group. We conclude that vascular endothelial growth factor can be used to improve blood vessel formation adjacent to planar membrane diffusion devices.

  19. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  20. Pediatric interventional radiology: vascular interventions

    International Nuclear Information System (INIS)

    Kandasamy, Devasenathipathy; Gamanagatti, Shivanand; Gupta, Arun Kumar

    2016-01-01

    Pediatric interventional radiology (PIR) comprises a range of minimally invasive diagnostic and therapeutic procedures that are performed using image guidance. PIR has emerged as an essential adjunct to various surgical and medical conditions. Over the years, technology has undergone dramatic and continuous evolution, making this speciality grow. In this review, the authors will discuss various vascular interventional procedures undertaken in pediatric patients. It is challenging for the interventional radiologist to accomplish a successful interventional procedure. There are many vascular interventional radiology procedures which are being performed and have changed the way the diseases are managed. Some of the procedures are life saving and have become the treatment of choice in those patients. The future is indeed bright for the practice and practitioners of pediatric vascular and non-vascular interventions. As more and more of the procedures that are currently being performed in adults get gradually adapted for use in the pediatric population, it may be possible to perform safe and successful interventions in many of the pediatric vascular lesions that are otherwise being referred for surgery. (author)

  1. Angiogenesis, Cancer, and Vascular Aging

    Directory of Open Access Journals (Sweden)

    Junji Moriya

    2017-10-01

    Full Text Available Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.

  2. Renal posttransplant's vascular complications

    Directory of Open Access Journals (Sweden)

    Bašić Dragoslav

    2003-01-01

    Full Text Available INTRODUCTION Despite high graft and recipient survival figures worldwide today, a variety of technical complications can threaten the transplant in the postoperative period. Vascular complications are commonly related to technical problems in establishing vascular continuity or to damage that occurs during donor nephrectomy or preservation [13]. AIM The aim of the presenting study is to evaluate counts and rates of vascular complications after renal transplantation and to compare the outcome by donor type. MATERIAL AND METHODS A total of 463 kidneys (319 from living related donor LD and 144 from cadaveric donor - CD were transplanted during the period between June 1975 and December 1998 at the Urology & Nephrology Institute of Clinical Centre of Serbia in Belgrade. Average recipients' age was 33.7 years (15-54 in LD group and 39.8 (19-62 in CD group. Retrospectively, we analyzed medical records of all recipients. Statistical analysis is estimated using Hi-squared test and Fischer's test of exact probability. RESULTS Major vascular complications including vascular anastomosis thrombosis, internal iliac artery stenosis, internal iliac artery rupture obliterant vasculitis and external iliac vein rupture were analyzed. In 25 recipients (5.4% some of major vascular complications were detected. Among these cases, 22 of them were from CD group vs. three from LD group. Relative rate of these complications was higher in CD group vs. LD group (p<0.0001. Among these complications dominant one was vascular anastomosis thrombosis which occurred in 18 recipients (17 from CD vs. one from LD. Of these recipients 16 from CD lost the graft, while the rest of two (one from each group had lethal outcome. DISCUSSION Thrombosis of renal allograft vascular anastomosis site is the most severe complication following renal transplantation. In the literature, renal allograft thrombosis is reported with different incidence rates, from 0.5-4% [14, 15, 16]. Data from the

  3. Overview of vascular disease

    International Nuclear Information System (INIS)

    Bisset, G.S. III

    1998-01-01

    Vascular disease in the pediatric population is a poorly understood process which is often underestimated in its incidence. The common beginnings of such ubiquitous diseases as atherosclerosis manifest themselves at a cellular level shortly after birth. Other common systemic disorders, including congestive heart failure and sepsis, are also intricately associated with dysfunctional vasculature. Progress in the understanding of normal and pathophysiologic processes within the vascular system begins with the 'control center' - the endothelial cell. The purpose of this review is to consolidate a body of knowledge on the processes that occur at the cellular level within the blood vessel wall, and to simplify the understanding of how imbalances in these physiologic parameters result in vascular disease. (orig.)

  4. Locked Nucleic Acid-Based In Situ Hybridization Reveals miR-7a as a Hypothalamus-Enriched MicroRNA with a Distinct Expression Pattern

    DEFF Research Database (Denmark)

    Herzer, S; Silahtaroglu, A; Meister, B

    2012-01-01

    , a part of the brain that controls vital bodily functions, we employed locked nucleic acid (LNA) - fluorescent in situ hybridization (FISH). The expression pattern of the mature miRNAs miR-7a, miR-7b, miR-137 and miR-153 in mouse brain tissue sections was investigated. Whereas all studied miRNAs were......R-7a expression was particularly prominent in the subfornical organ, suprachiasmatic, paraventricular, periventricular, supraoptic, dorsomedial and arcuate nuclei. Identical expression patterns for miR-7a was seen in mouse and rat hypothalamus. By combining LNA-FISH with immunohistochemistry...

  5. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants.

    Science.gov (United States)

    Vera-Sirera, Francisco; De Rybel, Bert; Úrbez, Cristina; Kouklas, Evangelos; Pesquera, Marta; Álvarez-Mahecha, Juan Camilo; Minguet, Eugenio G; Tuominen, Hannele; Carbonell, Juan; Borst, Jan Willem; Weijers, Dolf; Blázquez, Miguel A

    2015-11-23

    Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Transcatheter embolization for high blood flow vascular malformations of oral maxillofacial region

    International Nuclear Information System (INIS)

    Sun Zengtao; Liu Zuoqin; Li Jijun; Tang Jun; Shang Jianqiang; Chen Jie

    2007-01-01

    Objective: To explore the treatment and efficiency of high blood flow vascular malformations of oral maxillofacial region with super-selective arterial embolization. Methods: 18 cases underwent angiography of the head and neck before treatment and then followed by super-selective catheterization with microcatheter to embolize the feeding vessels of the vascular malformations with PVA. 8 cases underwent surgical excision within 72 hours after the embolization and the other 10 cases passed through the arterial radical emboliztion treatment. Results: Technical success ratio reached 100% with no complications causing skin necrosis or incorrect arterial embolization else where in the skull. All 8 cases undergone preoperative embolization showed obviously less bleeding, easier removal of the mass and reduction of operation time. 10 cases with radical arterial embolization manifested reduction of swelling and improvement of organ function within 1 to 24 months after the procedure. 5 patients were cured with only once operation, 4 cases with twice operation and 1 with the thrice. Conclusions: Aterial embolization is a safe and effective method in the treatment of high blood flow vascular malformations of oral maxillofacial region. (authors)

  7. Vascular Anatomy of Kiwi Fruit and its Implications for the origin of carpels

    Directory of Open Access Journals (Sweden)

    Xue-Min eGuo

    2013-10-01

    Full Text Available Kiwi fruit is of great agricultural, botanical, and economic interest. The flower of kiwi fruit has axile placentation, which is typical for Actinidiaceae. Axile placentation is thought derived through fusion of conduplicate carpels with marginal placentation according to the traditional doctrine. Recent progress in angiosperm systematics has refuted this traditional doctrine and placed ANITA clade rather than Magnoliaceae as the basalmost clade. However, the former traditional doctrine stays in the classrooms as the only teachable theory for the origin of carpels. To test the validity of this doctrine, we performed anatomical study on kiwi fruit. Our study indicates that the placenta has a vascular system independent of that of the ovary wall, the ovules/seeds are attached to the placenta that is a continuation of floral axis enclosed by the lateral appendages that constitute the ovary wall, and there are some amphicribral bundles in the center of placenta and numerous amphicribral bundles supplying ovules/seeds in kiwi fruit. The amphicribral vascular bundles supplying the ovules/seeds are comparable to those usually seen in branches, but not comparable to those seen in leaves or their derivatives. This comparison indicates that the placenta in kiwi fruit cannot be derived from the fusion of collateral ventral bundles of conduplicate carpels, as suggested by traditional doctrine. Instead the vascular organization in placenta of kiwi suggests that the placenta is a shoot apex bearing ovules/seeds laterally. This conclusion is in line with the recently raised Unifying Theory, in which the placenta is taken as an ovule-bearing branch independent of the ovary wall (carpel in strict sense. Similar vascular organization in placenta has been seen in numerous isolated taxa besides kiwi fruit. Therefore whether such a pattern is applicable for other angiosperms is an interesting question awaiting answering.

  8. Small GTP-Binding Protein Rac Is an Essential Mediator of Vascular Endothelial Growth Factor-Induced Endothelial Fenestrations and Vascular Permeability

    DEFF Research Database (Denmark)

    Eriksson, A.; Cao, R.; Tritsaris, K.

    2003-01-01

    fenestrated endothelium, a feature linked with increased vascular permeability. A cell-permeable Rac antagonist (TAT-RacN17) converted VEGF-induced, leaky vascular plexuses into well-defined vascular networks. In addition, this Rac mutant blocked formation of VEGF-induced endothelial fenestrations...... in mediation of VEGF-induced vascular permeability but less so in neovascularization. This may have conceptual implications for applying Rac antagonists in treatment and prevention of VEGF-induced vascular leakage and edema in connection with ischemic disorders....

  9. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design.

    Science.gov (United States)

    Cui, Haitao; Zhu, Wei; Nowicki, Margaret; Zhou, Xuan; Khademhosseini, Ali; Zhang, Lijie Grace

    2016-09-01

    A biphasic artificial vascularized bone construct with regional bioactive factors is presented using dual 3D bioprinting platform technique, thereby forming a large functional bone grafts with organized vascular networks. Biocompatible mussel-inspired chemistry and "thiol-ene" click reaction are used to regionally immobilize bioactive factors during construct fabrication for modulating or improving cellular events. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Endothelin-1 Regulation of Exercise-Induced Changes in Flow: Dynamic Regulation of Vascular Tone

    Directory of Open Access Journals (Sweden)

    Robert M. Rapoport

    2017-10-01

    Full Text Available Although endothelin (ET-1 is a highly potent vasoconstrictor with considerable efficacy in numerous vascular beds, the role of endogenous ET-1 in the regulation of vascular tone remains unclear. The perspective that ET-1 plays little role in the on-going regulation of vascular tone at least under physiologic conditions is supported by findings that potential ET-1 constriction is minimized by the release of the vasodilator and ET-1 synthesis inhibitor, nitric oxide (NO. Indeed, ET-1 release and constriction is self-limited by ET-1-induced, endothelial ETB receptor-mediated release of NO. Moreover, even if the balance between ET-1 and NO were reversed as the result of lowered NO activity, as occurs in a number of pathophysiologies associated with endothelial dysfunction, the well-known resistance of ET-1 constriction to reversal (as determined with exogenous ET-1 precludes ET-1 in the dynamic, i.e., moment-to-moment, regulation of vascular tone. On the other hand, and as presently reviewed, findings of ET-1-dependent modulation of organ blood flow with exercise under physiologic conditions demonstrate the dynamic regulation of vascular tone by ET-1. We speculate that this regulation is mediated at least in part through changes in ET-1 synthesis/release caused by pulsatile flow-induced shear stress and NO.

  11. Complicação vascular de osteocondroma: relato de caso Vascular complication of osteochondroma: case report

    Directory of Open Access Journals (Sweden)

    Fábio André Tornquist

    2007-03-01

    Full Text Available Osteocondromas ou exostoses são os tumores benignos mais comuns do tecido ósseo. Eles surgem durante o período de crescimento e, raramente, são responsáveis por complicações vasculares. No presente relato, reportamos um caso de paciente com osteocondroma no membro inferior e complicação vascular provocada pela compressão da artéria poplítea. O paciente apresentava queixas de dor em membro inferior direito quando foi investigado com angiografia e radiografia, que identificaram a lesão vascular e a tumoração óssea. Os tratamentos cirúrgicos simultâneos de ambas as lesões foram realizados com boa evolução pós-operatória.Osteochondromas or exostoses are the most common benign tumors of the bone. They occur during the growth period and are rarely responsible for vascular complications. We report a case of a patient with osteochondroma in the lower limb and vascular complication caused by compression of the popliteal artery. The patient complained of pain at the right lower limb during angiography and radiography screening, which identified the vascular lesion and the bone tumor. A simultaneous surgical treatment of both lesions was performed with good postoperative evolution.

  12. Effects of ouabain on vascular reactivity

    Directory of Open Access Journals (Sweden)

    Vassallo D.V.

    1997-04-01

    Full Text Available Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension

  13. A role of TDIF peptide signaling in vascular cell differentiation is conserved among euphyllophytes

    Directory of Open Access Journals (Sweden)

    Yuki eHirakawa

    2015-11-01

    Full Text Available Peptide signals mediate a variety of cell-to-cell communication crucial for plant growth and development. During Arabidopsis thaliana vascular development, a CLE (CLAVATA3/EMBRYO SURROUNDING REGION-related family peptide hormone, TDIF (tracheary element differentiation inhibitory factor, regulates procambial cell fate by its inhibitory activity on xylem differentiation. To address if this activity is conserved among vascular plants, we performed comparative analyses of TDIF signaling in non-flowering vascular plants (gymnosperms, monilophytes and lycophytes. We identified orthologs of TDIF/CLE as well as its receptor TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH XYLEM in Ginkgo biloba, Adiantum aethiopicum and Selaginella kraussiana by RACE-PCR. The predicted TDIF peptide sequences in seed plants and monilophytes were identical to that of A. thaliana TDIF. We examined the effects of exogenous CLE peptide-motif sequences of TDIF in these species. We found that liquid culturing of dissected leaves or shoots was useful for examining TDIF activity during vascular development. TDIF treatment suppressed xylem/tracheary element differentiation of procambial cells in G. bioloba and A. aethiopicum leaves. In contrast, neither TDIF nor putative endogenous TDIF inhibited xylem differentiation in developing shoots and rhizophores of S. kraussiana. These data suggest that activity of TDIF in vascular development is conserved among extant euphyllophytes. In addition to the conserved function, via liquid culturing of its bulbils, we found a novel inhibitory activity on root growth in the monilophyte Asplenium x lucrosum suggesting lineage-specific co-option of peptide signaling occurred during the evolution of vascular plant organs.

  14. Vascular Response of the Segments Adjacent to the Proximal and Distal Edges of the ABSORB Everolimus-Eluting Bioresorbable Vascular Scaffold

    DEFF Research Database (Denmark)

    Gogas, Bill D; Serruys, Patrick W; Diletti, Roberto

    2012-01-01

    This study sought to investigate in vivo the vascular response at the proximal and distal edges of the second-generation ABSORB everolimus-eluting bioresorbable vascular scaffold (BVS).......This study sought to investigate in vivo the vascular response at the proximal and distal edges of the second-generation ABSORB everolimus-eluting bioresorbable vascular scaffold (BVS)....

  15. Pulsed dye laser application in ablation of vascular ectasias of the larynx: a preliminary animal study

    Science.gov (United States)

    Woo, Peak; Wang, Zhi; Perrault, Donald F., Jr.; McMillan, Kathleen; Pankratov, Michail M.

    1995-05-01

    Vascular ectasias (dilatation) and vascular lesions of the larynx are difficult to treat with exciting modalities. Varix (enlarged vessel) of the vocal folds, vocal fold hemorrhage, vascular polyp, hemangioma, intubation or contact granuloma are common problems which disturb voice. Current applications of CO2 laser and cautery often damage the delicate vocal fold cover. The 585 nm dermatologic pulsed dye laser may be an ideal substitute. Two adult canines were examined under anesthesia via microlaryngoscopy technique. Pulsed dye laser (SPTL-1a, Candela Laser Corp., Wayland, MA) energy was delivered via the micromanipulator with the 3.1-mm spot size in single pulses of 6, 8, and 10 Joules/cm2 and applied to the vessels of the vocal folds, epiglottis, and arytenoid cartilage. Endoscopic examination was carried out immediately after the treatment and at 4 weeks postoperatively. The animals were sacrificed at 3 weeks, larynges excised, and whole organ laryngeal section were prepared for histology. Pulsed dye laser thrombosed vessels of the vocal fold using 6 or 8 Joules/cm2. Vascular break and leakage occurred at 10 Joules/cm2. Follow up examination showed excellent vessel obliteration or thrombosis without scarring or injury to the overlying tissues. Histologic examination shows vascular thrombosis without inflammation and fibrosis in the vocal fold cover. Pulsed dye laser may have promise in treatment of vascular lesions of the larynx and upper airway.

  16. CIRSE Vascular Closure Device Registry

    NARCIS (Netherlands)

    Reekers, Jim A.; Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria

    2011-01-01

    Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. The CIRSE registry of closure devices

  17. The vascular secret of Klotho

    DEFF Research Database (Denmark)

    Lewin, Ewa; Olgaard, Klaus

    2015-01-01

    Klotho is an evolutionarily highly conserved protein related to longevity. Increasing evidence of a vascular protecting effect of the Klotho protein has emerged and might be important for future treatments of uremic vascular calcification. It is still disputed whether Klotho is locally expressed ...

  18. Peripheral and central arterial pressure and its relationship to vascular target organ damage in carotid artery, retina and arterial stiffness. Development and validation of a tool. The Vaso risk study

    Directory of Open Access Journals (Sweden)

    Patino-Alonso Maria C

    2011-04-01

    Full Text Available Abstract Background Ambulatory blood pressure monitoring (ABPM shows a better correlation to target organ damage and cardiovascular morbidity-mortality than office blood pressure. A loss of arterial elasticity and an increase in carotid artery intima-media thickness (IMT has been associated with increased cardiovascular morbidity-mortality. Tools have been developed that allow estimation of the retinal arteriovenous index but not all studies coincide and there are contradictory results in relation to the evolution of the arteriosclerotic lesions and the caliber of the retinal vessels. The purpose of this study is to analyze the relationship between peripheral and central arterial pressure (clinic and ambulatory and vascular structure and function as evaluated by the carotid artery intima-media thickness, retina arteriovenous index, pulse wave velocity (PWV and ankle-brachial index in patients with and without type 2 diabetes. In turn, software is developed and validated for measuring retinal vessel thickness and automatically estimating the arteriovenous index. Methods/Design A cross-sectional study involving a control group will be made, with a posterior 4-year follow-up period in primary care. The study patients will be type 2 diabetics, with a control group of non-diabetic individuals. Consecutive sampling will be used to include 300 patients between 34-75 years of age and no previous cardiovascular disease, one-half being assigned to each group. Main measurements: age, gender, height, weight and abdominal circumference. Lipids, creatinine, microalbuminuria, blood glucose, HbA1c, blood insulin, high sensitivity C-reactive protein and endothelial dysfunction markers. Clinic and ambulatory blood pressure monitoring. Carotid ultrasound to evaluate IMT, and retinography to evaluate the arteriovenous index. ECG to assess left ventricle hypertrophy, ankle-brachial index, and pulse wave analysis (PWA and pulse wave velocity (PWV with the Sphigmocor

  19. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  20. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease.

    Science.gov (United States)

    Kranenburg, Guido; Spiering, Wilko; de Jong, Pim A; Kappelle, L Jaap; de Borst, Gert Jan; Cramer, Maarten J; Visseren, Frank L J; Aboyans, Victor; Westerink, Jan

    2017-10-01

    Inter-arm systolic blood pressure difference (SBPD) is an easily obtained patient characteristic which relates to vascular disease. We aimed to identify determinants of large inter-arm SBPD and to investigate the relation between inter-arm SBPD and vascular events in patients with and without manifest vascular disease. In a cohort of 7344 patients with manifest vascular disease or vascular risk factors alone enrolled in the Second Manifestations of ARTerial disease (SMART) study, single bilateral non-simultaneous blood pressure measurements were performed. Logistic and Cox regression was used to identify determinants of large inter-arm SBPD (≥15mmHg) and to investigate the relation between inter-arm SBPD and vascular events (composite of non-fatal myocardial infarction, stroke, and vascular mortality) and all-cause mortality. In all patients the median inter-arm SBPD was 7mmHg (IQR 3-11) and 1182 (16%) patients had inter-arm SBPD ≥15mmHg. Higher age, higher systolic blood pressure, diabetes mellitus, peripheral artery disease, carotid artery stenosis, higher carotid intima-media thickness, and lower ankle-brachial indices were related to large inter-arm SBPD (≥15mmHg). Each 5mmHg increase in inter-arm SBPD was related to a 12% higher risk of vascular events in patients without manifest vascular disease (HR 1.12; 95% CI 1.00-1.27), whereas no relation was apparent in patients with manifest vascular disease (HR 0.98; 95% CI 0.93-1.04, interaction p-value 0.036). Inter-arm SBPD was not related to all-cause mortality (HR 1.05; 95% CI 0.93-1.19). Inter-arm SBPD relates to a higher risk of vascular events in patients without manifest vascular disease, whereas this relation is not apparent in patients with manifest vascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of affective disorders in patients with vascular dementia

    Directory of Open Access Journals (Sweden)

    D. V. Zakharchenko

    2012-01-01

    Full Text Available The outpatient records of 147 patients followed up for diagnosed vascular dementia were analyzed to assess the relationship between affective disorders and severe cognitive impairments. It was found that 7% of the examinees had a history of depressive states. Estimating the development time for vascular dementia could divide the patients into 2 groups: 1 60% of the patients in whom cognitive impairments began to determine its clinical picture just within the first 2 years after identification of affective disorders and 2 40%, in whom cognitive impairments occurred 10—20 years later. In both groups, mental disorders occurred at an equal age in the presence of depressive disorders; in Group 1, vascular dementia developed nearly twice as often as that in Group 2. At the same time, the occurrence of cognitive impairments in Group 1 patients just in the early disease stages is indicative of the organic genesis of affective disorders, as confirmed by the moderately rapid progression of psychopathological symptoms, such as sharpening of personality traits, increased rigidity of psychic processes, emotional lability, variations in affective symptomatology, inadequate remissions, and the presence of neurological symptoms. Another type of a ratio of depressive to severe cognitive disorders was found in the elderly persons in Group 2. The long existence of affective disorders without signs of cognitive diminution leads one to say that they have recurrent depressive disorder with further addition of a comorbid vascular process. These patients showed a fairly high severity of affective pathology that was responsible for more frequent admissions, as well as a phase course with relatively pure remissions without any clear intellectual-mnestic reduction and a predominance of hysterical character traits.

  2. Adiposity, adipocytokines & microvesicles in the etiology of vascular disease

    NARCIS (Netherlands)

    Kanhai, D.A.N.I.S.

    2013-01-01

    Vascular disease, in this thesis the terms vascular and cardiovascular are used interchangeably, is the number 1 cause of death worldwide. In 2008, 30% of all mortality had a vascular origin. Vascular mortality rates after a first manifestation of vascular disease are decreasing in Western society,

  3. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  4. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  5. [Central blood pressure and vascular damage].

    Science.gov (United States)

    Pérez-Lahiguera, Francisco; Rodilla, Enrique; Costa, José Antonio; Pascual, José María

    2015-07-20

    The aim of this study was to assess the relationship between central blood pressure and vascular damage. This cross-sectional study involved 393 never treated hypertensive patients (166 women). Clinical blood pressure (BP), 24h blood pressure (BP24h) and central blood pressure (CBP) were measured. Vascular organ damage (VOD) was assessed by calculating the albumin/creatinine ratio (ACR), wave pulse pressure velocity and echocardiographic left ventricular mass index (LVMI). Patients with VOD had higher values of BP, BP24h, and CBP than patients without ACR. When comparing several systolic BP, systolic BP24h had a higher linear correlation with CBP (Z Steiger test: 2.26; P=.02) and LVMI (Z Steiger test: 3.23; P=.01) than PAC. In a multiple regression analysis corrected by age, sex and metabolic syndrome, all pressures were related with VOD but systolic BP24h showed the highest correlation. In a logistic regression analysis, having the highest tercile of systolic BP24h was the stronger predictor of VOD (multivariate odds ratio: 3.4; CI 95%: 2.5-5.5, P=.001). CBP does not have more correlation with VOD than other measurements of peripheral BP. Systolic BP24h is the BP measurement that best predicts VOD. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  6. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  7. Dynamic adaption of vascular morphology

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here ...

  8. Dynamics of nephron-vascular network

    DEFF Research Database (Denmark)

    Postnov, Dmitry; Postnov, D E; Marsh, D J

    2012-01-01

    The paper presents a modeling study of the spatial dynamics of a nephro-vascular network consisting of individual nephrons connected via a tree-like vascular branching structure. We focus on the effects of nonlinear mechanisms that are responsible for the formation of synchronous patterns in order...

  9. Diagnostic criteria for vascular dementia

    NARCIS (Netherlands)

    Scheltens, P.; Hijdra, A. H.

    1998-01-01

    The term vascular dementia implies the presence of a clinical syndrome (dementia) caused by, or at least assumed to be caused by, a specific disorder (cerebrovascular disease). In this review, the various sets of criteria used to define vascular dementia are outlined. The various sets of criteria

  10. 3D bioprinting for vascularized tissue fabrication

    Science.gov (United States)

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  11. Diabetes and Retinal Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    2014-01-01

    Full Text Available Diabetes predominantly affects the microvascular circulation of the retina resulting in a range of structural changes unique to this tissue. These changes ultimately lead to altered permeability, hyperproliferation of endothelial cells and edema, and abnormal vascularization of the retina with resulting loss of vision. Enhanced production of inflammatory mediators and oxidative stress are primary insults with significant contribution to the pathogenesis of diabetic retinopathy (DR. We have determined the identity of the retinal vascular cells affected by hyperglycemia, and have delineated the cell autonomous impact of high glucose on function of these cells. We discuss some of the high glucose specific changes in retinal vascular cells and their contribution to retinal vascular dysfunction. This knowledge provides novel insight into the molecular and cellular defects contributing to the development and progression of diabetic retinopathy, and will aid in the development of innovative, as well as target specific therapeutic approaches for prevention and treatment of DR.

  12. Image Quality in Vascular Radiology

    International Nuclear Information System (INIS)

    Vanhavere, F.; Struelens, L.

    2005-01-01

    In vascular radiology, the radiologists use the radiological image to diagnose or treat a specific vascular structure. From literature, we know that related doses are high and that large dose variability exists between different hospitals. The application of the optimization principle is therefore necessary and is obliged by the new legislation. So far, very little fieldwork has been performed and no practical instructions are available to do the necessary work. It's indisputable that obtaining quantitative data is of great interest for optimization purposes. In order to gain insight into these doses and the possible measures for dose reduction, we performed a comparative study in 7 hospitals. Patient doses will be measured and calculated for specific procedures in vascular radiology and evaluated against their most influencing parameters. In view of optimization purposes, a protocol for dose audit will be set-up. From the results and conclusions in this study, experimentally based guidelines will be proposed, in order to improve clinical practice in vascular radiology

  13. VEGETATIVE COMPATIBILITY GROUPS OF FUSARIUM OXYSPORUM, THE CAUSAL ORGANISM OF VASCULAR WILT ON ROSELLE IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    K.H. Ooi

    1999-01-01

    Full Text Available Forty strains of Fusarium oxysporvm isolated from roselle (Hibiscus sabdariffa var. sabdariffa showing vascular wilt symptoms in three states (Terengganu, Penang and Ipoh in the northern Malaysian Peninsula were used to investigate the vegetative co mpatibility. Nitrate-nonutilizing (nil mutants were recovered from all the strains tested and subsequently used to study vegetative compatibility groups (VCG within the population by nit mutants pairings on minimal medium. Thirteen VCGs were found and none were vegetatively compatible with those of other formae speciales (f. spp. such as asparagi and cubense, and non-pathogenic strains from paddy and oil palm. The results indicate that there is substantial genetic diversity in F. oxysporum that causes vascular wilt disease on roselle as reflected by multiple VCGs, but the distribution of strains into the VCGs is not even as there are 26 representatives in VCG-1001M, two in VCG-1003M and VCG-1013M and only one in the other VCGs. This study may provide new insight into the establishment of a new forma specialis off. oxysporum.

  14. Landscape scale controls on the vascular plant component of dissolved organic carbon across a freshwater delta

    Science.gov (United States)

    Eckard, Robert S.; Hernes, Peter J.; Bergamaschi, Brian A.; Stepanauskas, Ramunas; Kendall, Carol

    2007-01-01

    Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L-1 within the Sacramento River to 39.9 mg L-1 at the outfall from an island drain (median 3.0 mg L-1), while lignin concentrations ranged from 3.0 μL-1 within the Sacramento River to 111 μL-1 at the outfall from an island drain (median 11.6 μL-1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)-1 at an island drain to 0.84 mg (100 mg OC)-1 for a wetland (median 0.36 mg (100 mg OC)-1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized

  15. Progenitor cells in pulmonary vascular remodeling

    Science.gov (United States)

    Yeager, Michael E.; Frid, Maria G.; Stenmark, Kurt R.

    2011-01-01

    Pulmonary hypertension is characterized by cellular and structural changes in the walls of pulmonary arteries. Intimal thickening and fibrosis, medial hypertrophy and fibroproliferative changes in the adventitia are commonly observed, as is the extension of smooth muscle into the previously non-muscularized vessels. A majority of these changes are associated with the enhanced presence of α-SM-actin+ cells and inflammatory cells. Atypical abundances of functionally distinct endothelial cells, particularly in the intima (plexiform lesions), and also in the perivascular regions, are also described. At present, neither the origin(s) of these cells nor the molecular mechanisms responsible for their accumulation, in any of the three compartments of the vessel wall, have been fully elucidated. The possibility that they arise from either resident vascular progenitors or bone marrow–derived progenitor cells is now well established. Resident vascular progenitor cells have been demonstrated to exist within the vessel wall, and in response to certain stimuli, to expand and express myofibroblastic, endothelial or even hematopoietic markers. Bone marrow–derived or circulating progenitor cells have also been shown to be recruited to sites of vascular injury and to assume both endothelial and SM-like phenotypes. Here, we review the data supporting the contributory role of vascular progenitors (including endothelial progenitor cells, smooth muscle progenitor cells, pericytes, and fibrocytes) in vascular remodeling. A more complete understanding of the processes by which progenitor cells modulate pulmonary vascular remodeling will undoubtedly herald a renaissance of therapies extending beyond the control of vascular tonicity and reduction of pulmonary artery pressure. PMID:22034593

  16. Congenital vascular malformations in scintigraphic evaluation

    International Nuclear Information System (INIS)

    Pilecki, Stanisław; Gierach, Marcin; Gierach, Joanna; Świętaszczyk, Cyprian; Junik, Roman; Lasek, Władysław

    2014-01-01

    Congenital vascular malformations are tumour-like, non-neoplastic lesions caused by disorders of vascular tissue morphogenesis. They are characterised by a normal cell replacement cycle throughout all growth phases and do not undergo spontaneous involution. Here we present a scintigraphic image of familial congenital vascular malformations in two sisters. A 17-years-old young woman with a history of multiple hospitalisations for foci of vascular anomalies appearing progressively in the upper and lower right limbs, chest wall and spleen. A Parkes Weber syndrome was diagnosed based on the clinical picture. Due to the occurrence of new foci of malformations, a whole-body scintigraphic examination was performed. A 12-years-old girl reported a lump in the right lower limb present for approximately 2 years, which was clinically identified as a vascular lesion in the area of calcaneus and talus. Phleboscintigraphy visualized normal radiomarker outflow from the feet via the deep venous system, also observed in the superficial venous system once the tourniquets were released. In static and whole-body examinations vascular malformations were visualised in the area of the medial cuneiform, navicular and talus bones of the left foot, as well as in the projection of right calcaneus and above the right talocrural joint. People with undiagnosed disorders related to the presence of vascular malformations should undergo periodic follow-up to identify lesions that may be the cause of potentially serious complications and to assess the results of treatment. Presented scintigraphic methods may be used for both diagnosing and monitoring of disease progression

  17. Open abdominal surgical training differences experienced by integrated vascular and general surgery residents.

    Science.gov (United States)

    Tanious, Adam; Wooster, Mathew; Jung, Andrew; Nelson, Peter R; Armstrong, Paul A; Shames, Murray L

    2017-10-01

    As the integrated vascular residency program reaches almost a decade of maturity, a common area of concern among trainees is the adequacy of open abdominal surgical training. It is our belief that although their overall exposure to open abdominal procedures has decreased, integrated vascular residents have an adequate and focused exposure to open aortic surgery during training. National operative case log data supplied by the Accreditation Council for Graduate Medical Education were compiled for both graduating integrated vascular surgery residents (IVSRs) and graduating categorical general surgery residents (GSRs) for the years 2012 to 2014. Mean total and open abdominal case numbers were compared between the IVSRs and GSRs, with more in-depth exploration into open abdominal procedures by organ system. Overall, the mean total 5-year case volume of IVSRs was 1168 compared with 980 for GSRs during the same time frame (P surgery, representing 57% of all open abdominal cases. GSRs completed an average of 116 open alimentary tract surgeries during their training. Open abdominal surgery represented an average of 7.1% of the total vascular case volume for the vascular residents, whereas open abdominal surgery represented 21% of a GSR's total surgical experience. IVSRs reported almost double the number of total cases during their training, with double chief-level cases. Sixty-five percent of open abdominal surgeries performed by IVSRs involved the aorta or its renovisceral branches. Whereas open abdominal surgery represented 7.1% of an IVSR's surgical training, GSRs had a far broader scope of open abdominal procedures, completing nearly double those of IVSRs. The differences in open abdominal procedures pertain to the differing diseases treated by GSRs and IVSRs. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  18. Vascular associated gene variants in patients with preeclampsia

    DEFF Research Database (Denmark)

    Lykke, Jacob A; Bare, Lance A; Olsen, Jørn

    2012-01-01

    Preeclampsia has been linked to subsequent vascular disease with many shared predisposing factors. We investigated the association between severe preeclampsia, and its subtypes, and specific vascular-related polymorphisms.......Preeclampsia has been linked to subsequent vascular disease with many shared predisposing factors. We investigated the association between severe preeclampsia, and its subtypes, and specific vascular-related polymorphisms....

  19. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  20. Vascular access surveillance: case study of a false paradigm.

    Science.gov (United States)

    Paulson, William D; Moist, Louise; Lok, Charmaine E

    2013-01-01

    The hemodialysis vascular access surveillance controversy provides a case study of how enthusiasm for a new test or treatment can lead to adoption of a false paradigm. Paradigms are the beliefs and assumptions shared by those in a field of knowledge, and are commonly included in clinical practice guidelines. The guidelines of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative recommend that arteriovenous vascular accesses undergo routine surveillance for detection and correction of stenosis. This recommendation is based on the paradigm that surveillance of access blood flow or dialysis venous pressure combined with correction of stenosis improves access outcomes. However, the quality of evidence that supports this paradigm has been widely criticized. We tested the validity of the surveillance paradigm by applying World Health Organization (WHO) criteria for evaluating screening tests to a literature review of published vascular access studies. These criteria include four components: undesired condition, screening test, intervention, and desired outcome. The WHO criteria show that surveillance as currently practiced fails all four components and provides little or no significant benefit, suggesting that surveillance is a false paradigm. Once a paradigm is established, however, challenges to its validity are usually resisted even as new evidence indicates the paradigm is not valid. Thus, it is paramount to apply rigorous criteria when developing guidelines. Regulators may help promote needed changes in paradigms when cost and safety considerations coincide. © 2013 Wiley Periodicals, Inc.

  1. Estimation of genetic risk and detriment in radiological vascular examinations in Malaga (Spain)

    International Nuclear Information System (INIS)

    Ruiz Cruces, R.; Perez Martinez, M.; Fernandez Vazquez, M.I.; Diez de los Rios Delgado, A.

    1997-01-01

    The objective of the study is to estimate the population undergoing procedures of interventional vascular radiology. The values of genetically significant dose, somatically significant dose and damage are presented. The determinations refer to the population of Malaga and calculate the values of the dose-area product, dose in organs and effective doses. At first glance, these complex explorations seem to provide dose rates which are much higher than those for simple examinations. However, our values demonstrate the contrary. The numbers contrast with the values obtained from simple examinations by the population. Although the reasons are multifactorial, the root cause is the average age of the patients which undergo interventional vascular radiology: they are much older than patients who undergo simple explorations

  2. Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Raouf A. Khalil

    2013-03-01

    Full Text Available Blood pressure (BP is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN. In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca2+ concentration ([Ca2+]i, which forms a complex with calmodulin, activates myosin light chain (MLC kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC. PKC is a family of Ca2+-dependent and Ca2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK and MAPK kinase (MEK, a pathway that ultimately increases the myofilament force sensitivity to [Ca2+]i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in

  3. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change.

    Science.gov (United States)

    Gavazov, Konstantin; Albrecht, Remy; Buttler, Alexandre; Dorrepaal, Ellen; Garnett, Mark H; Gogo, Sebastien; Hagedorn, Frank; Mills, Robert T E; Robroek, Bjorn J M; Bragazza, Luca

    2018-03-23

    Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO 2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO 2 radiocarbon (bomb- 14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change. © 2018 John Wiley & Sons Ltd.

  4. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies

  5. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  6. Insulin resistance: vascular function and exercise

    Directory of Open Access Journals (Sweden)

    Moon-Hyon Hwang

    2016-09-01

    Full Text Available Insulin resistance associated with metabolic syndrome and Type 2 diabetes mellitus is an epidemic metabolic disorder, which increases the risk of cardiovascular complications. Impaired vascular endothelial function is an early marker for atherosclerosis, which causes cardiovascular complications. Both experimental and clinical studies indicate that endothelial dysfunction in vasculatures occurs with insulin resistance. The associated physiological mechanisms are not fully appreciated yet, however, it seems that augmented oxidative stress, a physiological imbalance between oxidants and antioxidants, in vascular cells is a possible mechanism involved in various vascular beds with insulin resistance and hyperglycemia. Regardless of the inclusion of resistance exercise, aerobic exercise seems to be beneficial for vascular endothelial function in both large conduit and small resistance vessels in both clinical and experimental studies with insulin resistance. In clinical cases, aerobic exercise over 8 weeks with higher intensity seems more beneficial than the cases with shorter duration and lower intensity. However, more studies are needed in the future to elucidate the physiological mechanisms by which vascular endothelial function is impaired in insulin resistance and improved with aerobic exercise.

  7. Vascular complications following 1500 consecutive living and cadaveric donor renal transplantations: A single center study

    International Nuclear Information System (INIS)

    Salehipour, Mehdi; Salahi, Heshmatollah; Jalaeian, Hamed; Bahador, Ali; Nikeghbalian, Saman; Barzideh, Ehsan; Ariafar, Ali; Malek-Hosseini, Seyed Ali

    2009-01-01

    The aim of this study was to document vascular complications that occurred following cadaveric and living donor kidney transplants in order to assess the overall incidence of these complications at our center as well as to identify possible risk factors. In a retrospective cohort study, 1500 consecutive renal transplant recipients who received a living or cadaveric donor kidney between December 1988 and July 2006 were evaluated. The study was performed at the Nemazee Hospital, Shiraz, Iran. The assessment of the anatomy and number of renal arteries as well as the incidence of vascular complications was made by color doppler ultrasonography, angiography, and/or surgical exploration. Clinically apparent vascular complications were seen in 8.86% of all study patients (n = 133) with the most frequent being hemorrhage (n = 91; 6.1%) followed by allograft renal artery stenosis (n = 26; 1.7%), renal artery thrombosis (n = 9; 0.6%), and renal vein thrombosis (n = 7; 0.5%). Vascular complications were more frequent in recipients of cadaveric organs than recipients of allografts from living donors (12.5% vs. 7.97%; P0.017). The occurrence of vascular complications was significantly more frequent among recipients of renal allografts with multiple arteries when compared with recipients of kidneys with single artery (12.3% vs. 8.2%; P0.033). The same was true to venous complications as well (25.4% vs. 8.2%; P< 0.001). Our study shows that vascular complications were more frequent in allografts with multiple renal blood vessels. Also, the complications were much less frequent in recipients of living donor transplants. (author)

  8. Retinal vascular segmentation using superpixel-based line operator and its application to vascular topology estimation.

    Science.gov (United States)

    Na, Tong; Xie, Jianyang; Zhao, Yitian; Zhao, Yifan; Liu, Yue; Wang, Yongtian; Liu, Jiang

    2018-05-09

    Automatic methods of analyzing of retinal vascular networks, such as retinal blood vessel detection, vascular network topology estimation, and arteries/veins classification are of great assistance to the ophthalmologist in terms of diagnosis and treatment of a wide spectrum of diseases. We propose a new framework for precisely segmenting retinal vasculatures, constructing retinal vascular network topology, and separating the arteries and veins. A nonlocal total variation inspired Retinex model is employed to remove the image intensity inhomogeneities and relatively poor contrast. For better generalizability and segmentation performance, a superpixel-based line operator is proposed as to distinguish between lines and the edges, thus allowing more tolerance in the position of the respective contours. The concept of dominant sets clustering is adopted to estimate retinal vessel topology and classify the vessel network into arteries and veins. The proposed segmentation method yields competitive results on three public data sets (STARE, DRIVE, and IOSTAR), and it has superior performance when compared with unsupervised segmentation methods, with accuracy of 0.954, 0.957, and 0.964, respectively. The topology estimation approach has been applied to five public databases (DRIVE,STARE, INSPIRE, IOSTAR, and VICAVR) and achieved high accuracy of 0.830, 0.910, 0.915, 0.928, and 0.889, respectively. The accuracies of arteries/veins classification based on the estimated vascular topology on three public databases (INSPIRE, DRIVE and VICAVR) are 0.90.9, 0.910, and 0.907, respectively. The experimental results show that the proposed framework has effectively addressed crossover problem, a bottleneck issue in segmentation and vascular topology reconstruction. The vascular topology information significantly improves the accuracy on arteries/veins classification. © 2018 American Association of Physicists in Medicine.

  9. The preventing recurrent vascular events and neurological worsening through intensive organized case-management (PREVENTION trial protocol [clinicaltrials.gov identifier: NCT00931788

    Directory of Open Access Journals (Sweden)

    Tsuyuki Ross

    2010-04-01

    Full Text Available Abstract Background Survivors of transient ischemic attack (TIA or stroke are at high risk for recurrent vascular events and aggressive treatment of vascular risk factors can reduce this risk. However, vascular risk factors, especially hypertension and high cholesterol, are not managed optimally even in those patients seen in specialized clinics. This gap between the evidence for secondary prevention of stroke and the clinical reality leads to suboptimal patient outcomes. In this study, we will be testing a pharmacist case manager for delivery of stroke prevention services. We hypothesize this new structure will improve processes of care which in turn should lead to improved outcomes. Methods We will conduct a prospective, randomized, controlled open-label with blinded ascertainment of outcomes (PROBE trial. Treatment allocation will be concealed from the study personnel, and all outcomes will be collected in an independent and blinded manner by observers who have not been involved in the patient's clinical care or trial participation and who are masked to baseline measurements. Patients will be randomized to control or a pharmacist case manager treating vascular risk factors to guideline-recommended target levels. Eligible patients will include all adult patients seen at stroke prevention clinics in Edmonton, Alberta after an ischemic stroke or TIA who have uncontrolled hypertension (defined as systolic blood pressure (BP > 140 mm Hg or dyslipidemia (fasting LDL-cholesterol > 2.00 mmol/L and who are not cognitively impaired or institutionalized. The primary outcome will be the proportion of subjects who attain 'optimal BP and lipid control'(defined as systolic BP Conclusions Nearly one-quarter of those who survive a TIA or minor stroke suffer another vascular event within a year. If our intervention improves the provision of secondary prevention therapies in these patients, the clinical (and financial implications will be enormous.

  10. Postoperative radiographic evaluation of vascularized fibular grafts

    International Nuclear Information System (INIS)

    Manaster, B.J.; Coleman, D.A.; Bell, D.A.

    1989-01-01

    This paper reports on thirty-five patients with free vascularized fibular grafts examined postoperatively with plain radiography. Early graft incorporation is seen as a fuzziness of the cortex at the site of its insertion into the host bone. Causes of failure in grafting for bone defects include graft fracture, hardware failure, and infection. A high percentage of complications or at least delayed unions occurred when vascularized fibular grafts were used to fill defects in the lower extremity. Conversely, upper extremity defects bridged by vascularized grafts heal quickly and hypertrophy. Vascularized grafts placed in the femoral head and neck for a vascular necrosis incorporate early on their superior aspect. The osseous tunnel in which they are placed is normally wider than the graft and often becomes sclerotic; this appearance does not represent nonunion

  11. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    Science.gov (United States)

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  12. Sirtuins, Cell Senescence, and Vascular Aging.

    Science.gov (United States)

    Kida, Yujiro; Goligorsky, Michael S

    2016-05-01

    The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  13. [Vascular aging, arterial hypertension and physical activity].

    Science.gov (United States)

    Schmidt-Trucksäss, A; Weisser, B

    2011-11-01

    The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Pulmonary vascular imaging

    International Nuclear Information System (INIS)

    Fedullo, P.F.; Shure, D.

    1987-01-01

    A wide range of pulmonary vascular imaging techniques are available for the diagnostic evaluation of patients with suspected pulmonary vascular disease. The characteristics of any ideal technique would include high sensitivity and specificity, safety, simplicity, and sequential applicability. To date, no single technique meets these ideal characteristics. Conventional pulmonary angiography remains the gold standard for the diagnosis of acute thromboembolic disease despite the introduction of newer techniques such as digital subtraction angiography and magnetic resonance imaging. Improved noninvasive lower extremity venous testing methods, particularly impedance plethysmography, and ventilation-perfusion scanning can play significant roles in the noninvasive diagnosis of acute pulmonary emboli when properly applied. Ventilation-perfusion scanning may also be useful as a screening test to differentiate possible primary pulmonary hypertension from chronic thromboembolic pulmonary hypertension. And, finally, angioscopy may be a useful adjunctive technique to detect chronic thromboembolic disease and determine operability. Optimal clinical decision-making, however, will continue to require the proper interpretation of adjunctive information obtained from the less-invasive techniques, applied with an understanding of the natural history of the various forms of pulmonary vascular disease and with a knowledge of the capabilities and shortcomings of the individual techniques

  15. 14CO2 labeling. A reliable technique for rapid measurement of total root exudation capacity and vascular sap flow in crop plants

    International Nuclear Information System (INIS)

    Bhupinder Singh; Sumedha Ahuja; Renu Pandey; Singhal, R.K.

    2014-01-01

    Root release of organic compounds and rate of the vascular sap flow are important for understanding the nutrient and the source-sink dynamics in plants, however, their determination is procedurally cumbersome and time consuming. We report here a simple method involving 14 C labeling for rapid and reliable measurement of root exudates and vascular sap flow rate in a variable groundnut population developed through seed gamma irradiation using a cobalt source ( 60 Co). An experimental hypothesis that a higher 14 C level in the vascular sap would indicate a higher root release of carbon by the roots into the rhizosphere was verified. (author)

  16. [Vascular access guidelines for hemodialysis].

    Science.gov (United States)

    Rodríguez Hernández, J A; González Parra, E; Julián Gutiérrez, J M; Segarra Medrano, A; Almirante, B; Martínez, M T; Arrieta, J; Fernández Rivera, C; Galera, A; Gallego Beuter, J; Górriz, J L; Herrero, J A; López Menchero, R; Ochando, A; Pérez Bañasco, V; Polo, J R; Pueyo, J; Ruiz, Camps I; Segura Iglesias, R

    2005-01-01

    Quality of vascular access (VA) has a remarkable influence in hemodialysis patients outcomes. Dysfunction of VA represents a capital cause of morbi-mortality of these patients as well an increase in economical. Spanish Society of Neprhology, aware of the problem, has decided to carry out a revision of the issue with the aim of providing help in comprehensión and treatment related with VA problems, and achieving an homogenization of practices in three mayor aspects: to increase arteriovenous fistula utilization as first vascular access, to increment vascular access monitoring practice and rationalise central catheters use. We present a consensus document elaborated by a multidisciplinar group composed by nephrologists, vascular surgeons, interventional radiologysts, infectious diseases specialists and nephrological nurses. Along six chapters that cover patient education, creation of VA, care, monitoring, complications and central catheters, we present the state of the art and propose guidelines for the best practice, according different evidence based degrees, with the intention to provide help at the professionals in order to make aproppiate decissions. Several quality standars are also included.

  17. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  18. Revascularization of diaphyseal bone segments by vascular bundle implantation.

    Science.gov (United States)

    Nagi, O N

    2005-11-01

    Vascularized bone transfer is an effective, established treatment for avascular necrosis and atrophic or infected nonunions. However, limited donor sites and technical difficulty limit its application. Vascular bundle transplantation may provide an alternative. However, even if vascular ingrowth is presumed to occur in such situations, its extent in aiding revascularization for ultimate graft incorporation is not well understood. A rabbit tibia model was used to study and compare vascularized, segmental, diaphyseal, nonvascularized conventional, and vascular bundle-implanted grafts with a combination of angiographic, radiographic, histopathologic, and bone scanning techniques. Complete graft incorporation in conventional grafts was observed at 6 months, whereas it was 8 to 12 weeks with either of the vascularized grafts. The pattern of radionuclide uptake and the duration of graft incorporation between vascular segmental bone grafts (with intact endosteal blood supply) and vascular bundle-implanted segmental grafts were similar. A vascular bundle implanted in the recipient bone was found to anastomose extensively with the intraosseous circulation at 6 weeks. Effective revascularization of bone could be seen when a simple vascular bundle was introduced into a segment of bone deprived of its normal blood supply. This simple technique offers promise for improvement of bone graft survival in clinical circumstances.

  19. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    International Nuclear Information System (INIS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-01-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds. (paper)

  20. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    Science.gov (United States)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  1. Adiposity, adipocytokines & microvesicles in the etiology of vascular disease

    OpenAIRE

    Kanhai, D.A.N.I.S.

    2013-01-01

    Vascular disease, in this thesis the terms vascular and cardiovascular are used interchangeably, is the number 1 cause of death worldwide. In 2008, 30% of all mortality had a vascular origin. Vascular mortality rates after a first manifestation of vascular disease are decreasing in Western society, which is attributable to better disease awareness, better preventive strategies and better healthcare systems. As mortality rates are decreasing, the number of patients surviving their first vascul...

  2. Subclinical hypothyroidism after vascular complicated pregnancy

    NARCIS (Netherlands)

    Zanden, M. van der; Hop-de Groot, R.J.; Sweep, F.C.; Ross, H.A.; Heijer, M. den; Spaanderman, M.E.A.

    2013-01-01

    OBJECTIVE: Women with a history of vascular complicated pregnancy are at risk for developing remote cardiovascular disease. It is associated with underlying cardiovascular risk factors both jeopardizing trophoblast and vascular function. Subclinical hypothyroidism may relate to both conditions.

  3. Self-Replenishing Vascularized Fouling-Release Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Howell, C; Vu, TL; Lin, JJ; Kolle, S; Juthani, N; Watson, E; Weaver, JC; Alvarenga, J; Aizenberg, J

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella sauna, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.

  4. Temporal deconvolution of vascular plant signatures delivered to coastal sediments

    Science.gov (United States)

    Vonk, J.; Drenzek, N. J.; Hughen, K. A.; Stanley, R.; Montluçon, D. B.; McIntyre, C.; Southon, J. R.; Santos, G.; Andersson, A.; Sköld, M.; Eglinton, T. I.

    2017-12-01

    Presently, relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record. It is clear that there are multiple potential intermediate storage pools and transport trajectories that vascular plant carbon may experience, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here we use molecular-level radiocarbon (14C) analysis to develop down-core 14C profiles for higher plant leaf wax-derived fatty acids isolated from sediments from three sites across a 60-degrees latitudinal gradient (Cariaco Basin, Saanich Inlet, and Mackenzie Delta). The sediment profiles were used as a direct measure of the storage and transport times experienced by these biomolecular tracer compounds. Residence times are evaluated by comparing these records to the 14C history of atmospheric CO2. Using a modeling framework, we conclude that there is, in addition to a variable "young" pool, a millennial pool of compounds that consists of 49-78 % of the fractional contribution of organic carbon (OC) that exhibits variable ages for the different depositional settings. For the Mackenzie Delta sediments, we find a mean age of the millennial pool of 28 ky, suggesting pre-aging in permafrost soils, whereas the millennial pool in Saanich Inlet and Cariaco Basin sediments is younger with 7.9 and 2.4-3.2 ky, respectively, suggesting limited storage in terrestrial reservoirs. The "young" pool, conditionally defined as vascular plant C in deltaic and marine settings undergoes pre-aging in terrestrial reservoirs. The age distribution, reflecting storage and transport times, depends on landscape-specific factors such as local topography, hydrographic characteristics, and degree of soil build-up and preservation.

  5. Vascular lesions following radiation

    International Nuclear Information System (INIS)

    Fajardo, L.F.; Berthrong, M.

    1988-01-01

    The special radiation sensitivity of the vascular system is mainly linked to that of endothelial cells, which are perhaps the most radiation-vulnerable elements of mesenchymal tissues. Within the vascular tree, radiation injures most often capillaries, sinusoids, and small arteries, in that order. Lesions of veins are observed less often, but in certain tissues the veins are regularly damaged (e.g., intestine) or are the most affected structures (i.e., liver). Large arteries do suffer the least; however, when significant damage does occur in an elastic artery (e.g., thrombosis or rupture), it tends to be clinically significant and even fatal. Although not always demonstrable in human tissues, radiation vasculopathy generally is dose and time dependent. Like other radiation-induced lesions, the morphology in the vessels is not specific, but it is characteristic enough to be often recognizable. Vascular injury, especially by therapeutic radiation is not just a morphologic marker. It is a mediator of tissue damage; perhaps the most consistent pathogenetic mechanism in delayed radiation injury

  6. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.

    2013-12-31

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  7. Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots

    KAUST Repository

    Muraro, D.; Mellor, N.; Pound, M. P.; Help, H.; Lucas, M.; Chopard, J.; Byrne, H. M.; Godin, C.; Hodgman, T. C.; King, J. R.; Pridmore, T. P.; Helariutta, Y.; Bennett, M. J.; Bishopp, A.

    2013-01-01

    As multicellular organisms grow, positional information is continually needed to regulate the pattern in which cells are arranged. In the Arabidopsis root, most cell types are organized in a radially symmetric pattern; however, a symmetry-breaking event generates bisymmetric auxin and cytokinin signaling domains in the stele. Bidirectional cross-talk between the stele and the surrounding tissues involving a mobile transcription factor, SHORT ROOT (SHR), and mobile microRNA species also determines vascular pattern, but it is currently unclear how these signals integrate. We use a multicellular model to determine a minimal set of components necessary for maintaining a stable vascular pattern. Simulations perturbing the signaling network show that, in addition to the mutually inhibitory interaction between auxin and cytokinin, signaling through SHR, microRNA165/6, and PHABULOSA is required to maintain a stable bisymmetric pattern. We have verified this prediction by observing loss of bisymmetry in shr mutants. The model reveals the importance of several features of the network, namely the mutual degradation of microRNA165/6 and PHABULOSA and the existence of an additional negative regulator of cytokinin signaling. These components form a plausible mechanism capable of patterning vascular tissues in the absence of positional inputs provided by the transport of hormones from the shoot.

  8. Vascular Disorders

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields ...

  9. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  10. Patterns of peripheral vascular diseases at Muhimbili National hospital

    African Journals Online (AJOL)

    diseases) and HIV- vasculitis. A total of 97 patients (63%) were surgically treated. Conclusion: Shortage of vascular surgeons and facilities in our. Country needs to be sorted out to save life to these patients with vascular disorders. Key Words: Peripheral Vascular Diseases, and Shortage of Vascular Services in Tanzania.

  11. World Federation of Vascular Societies: presidential address

    DEFF Research Database (Denmark)

    Sillesen, Henrik Hegaard

    2010-01-01

    The presidential address describes briefly the history of the World Federation for Vascular Societies (WFVS) and its objectives. Vascular Surgery today includes interventional procedures (open surgical and endovascular) in addition to risk factor reduction and medical treatment. It is equally imp...... throughout the world. In addition, for introduction of new treatments, training issues and dissemination of science a global organisation like the WFVS is needed.......The presidential address describes briefly the history of the World Federation for Vascular Societies (WFVS) and its objectives. Vascular Surgery today includes interventional procedures (open surgical and endovascular) in addition to risk factor reduction and medical treatment. It is equally...

  12. Management of vascular anomalies: Review of institutional management algorithm

    Directory of Open Access Journals (Sweden)

    Lalit K Makhija

    2017-01-01

    Full Text Available Introduction: Vascular anomalies are congenital lesions broadly categorised into vascular tumour (haemangiomas and vascular dysmorphogenesis (vascular malformation. The management of these difficult problems has lately been simplified by the biological classification and multidisciplinary approach. To standardise the treatment protocol, an algorithm has been devised. The study aims to validate the algorithm in terms of its utility and presents our experience in managing vascular anomalies. Materials and Methods: The biological classification of Mulliken and Glowacki was followed. A detailed algorithm for management of vascular anomalies has been devised in the department. The protocol is being practiced by us since the past two decades. The data regarding the types of lesions and treatment modality used were maintained. Results and Conclusion: This study was conducted from 2002 to 2012. A total of 784 cases of vascular anomalies were included in the study of which 196 were haemangiomas and 588 were vascular malformations. The algorithmic approach has brought an element of much-needed objectivity in the management of vascular anomalies. This has helped us to define the management of particular lesion considering its pathology, extent and aesthetic and functional consequences of ablation to a certain extent.

  13. THE INFLUENCE OF SELECTED ORGANIC MICROPOLLUTANTS ON WATER ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Edyta Anna Kudlek

    2017-06-01

    Full Text Available The paper presents a literature review in terms of the impact of selected micropollutants from the group of pharmaceutical compounds, food preservatives, pesticides and organic UV filters on various plants and animals species, which inhabit the water ecosystems. During own studies the impact of concentrations of micropollutants in the water environment on selected indicator organisms was evaluated. The study was conducted using saltwater Aliivibrio fischer bacteria, freshwater Daphnia magna and saltwater Artemia fanciscana crustaceans, as well as vascular plants Lemna minor. It was shown that the test organisms are characterized by a different sensitivity for the presence of micropollutants. For all applied tests an increase in the response of indicator organisms with the increasing compound concentration was observed. It demonstrates the growing toxic impact of micropollutants. The solution of benzophenone-3 at a concentration of 5 mg/dm3 was characterized by the highest toxic effects against both bacteria, crustaceans and vascular plants.

  14. 269. Veinte años de experiencia con homoinjertos vasculares criopreservados en la infección vascular

    Directory of Open Access Journals (Sweden)

    E. Quintana

    2012-04-01

    Conclusiones: Este estudio a largo plazo contribuye a mantener la indicación para el implante de homoinjertos vasculares criopreservados en las infecciones vasculares. Los resultados demuestran un comportamiento satisfactorio en esta población multimórbida.

  15. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene.

    Science.gov (United States)

    Seandel, Marco; Butler, Jason M; Kobayashi, Hideki; Hooper, Andrea T; White, Ian A; Zhang, Fan; Vertes, Eva L; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V; Hackett, Neil R; Rabbany, Sina; Boyer, Julie L; Rafii, Shahin

    2008-12-09

    Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1(+) ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1(+) ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1(+) ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1(+) ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1(+) ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-kappaB pathways. Therefore, E4ORF1(+) ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis.

  16. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene

    Science.gov (United States)

    Seandel, Marco; Butler, Jason M.; Kobayashi, Hideki; Hooper, Andrea T.; White, Ian A.; Zhang, Fan; Vertes, Eva L.; Kobayashi, Mariko; Zhang, Yan; Shmelkov, Sergey V.; Hackett, Neil R.; Rabbany, Sina; Boyer, Julie L.; Rafii, Shahin

    2008-01-01

    Vascular cells contribute to organogenesis and tumorigenesis by producing unknown factors. Primary endothelial cells (PECs) provide an instructive platform for identifying factors that support stem cell and tumor homeostasis. However, long-term maintenance of PECs requires stimulation with cytokines and serum, resulting in loss of their angiogenic properties. To circumvent this hurdle, we have discovered that the adenoviral E4ORF1 gene product maintains long-term survival and facilitates organ-specific purification of PECs, while preserving their vascular repertoire for months, in serum/cytokine-free cultures. Lentiviral introduction of E4ORF1 into human PECs (E4ORF1+ ECs) increased the long-term survival of these cells in serum/cytokine-free conditions, while preserving their in vivo angiogenic potential for tubulogenesis and sprouting. Although E4ORF1, in the absence of mitogenic signals, does not induce proliferation of ECs, stimulation with VEGF-A and/or FGF-2 induced expansion of E4ORF1+ ECs in a contact-inhibited manner. Indeed, VEGF-A-induced phospho MAPK activation of E4ORF1+ ECs is comparable with that of naive PECs, suggesting that the VEGF receptors remain functional upon E4ORF1 introduction. E4ORF1+ ECs inoculated in implanted Matrigel plugs formed functional, patent, humanized microvessels that connected to the murine circulation. E4ORF1+ ECs also incorporated into neo-vessels of human tumor xenotransplants and supported serum/cytokine-free expansion of leukemic and embryonal carcinoma cells. E4ORF1 augments survival of PECs in part by maintaining FGF-2/FGF-R1 signaling and through tonic Ser-473 phosphorylation of Akt, thereby activating the mTOR and NF-κB pathways. Therefore, E4ORF1+ ECs establish an Akt-dependent durable vascular niche not only for expanding stem and tumor cells but also for interrogating the roles of vascular cells in regulating organ-specific vascularization and tumor neo-angiogenesis. PMID:19036927

  17. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Science.gov (United States)

    Huda, Kazi Md Kamrul; Banu, Mst Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Plasma membrane Ca(2+)ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+)) from the cell, hence regulating Ca(2+) level within cells. Though plant Ca(2+)ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. The 1478 bp promoter sequence of rice plasma membrane Ca(2+)ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+)ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. The rice plasma membrane Ca(2+)ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible nature of this

  18. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Directory of Open Access Journals (Sweden)

    Kazi Md Kamrul Huda

    Full Text Available Plasma membrane Ca(2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+ from the cell, hence regulating Ca(2+ level within cells. Though plant Ca(2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied.The 1478 bp promoter sequence of rice plasma membrane Ca(2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs.The rice plasma membrane Ca(2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity and inducible

  19. [A new specialty is born: Vascular medicine].

    Science.gov (United States)

    Laroche, J-P

    2016-05-01

    On the 4th of December 2015, the French authorities officially recognized the birth of a specialty in vascular medicine entitled CO-DES cardiology-vascular/vascular Medicine. France is the 7th country to obtain this specialty after Switzerland, Germany, Austria, Czech Republic, Slovakia and Slovenia, six countries in the EEC. It has taken years to achieve a long but exciting experience: we went from hopes to disappointments, sometimes with the blues, but lobbying helping… with sustained confidence. This article tells the story of 30 years of struggle to achieve this vascular medicine specialty. Gaston Bachelard wrote: "Nothing is obvious, nothing is given, all is built." For the construction of vascular medicine, we had to overcome many obstacles, nothing was given to us, everything was conquered. Beware "The specialist is one who knows more and more things about an increasingly restricted field, up to 'knowing everything about nothing"' recalled Ralph Barton Ferry, philosopher; so there is room for modesty and humility but also convictions. The physical examination will remain the basis of our exercise. But let us recall the contributions of all those vascular physicians who practiced in the past, together with those currently active, who built day after day, year after year, a vascular medicine of quality. It is because of the trust of our colleagues and our patients that we can occupy the place that is ours today. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Brain Vascular Malformation Consortium: Overview, Progress and Future Directions.

    Science.gov (United States)

    Akers, Amy L; Ball, Karen L; Clancy, Marianne; Comi, Anne M; Faughnan, Marie E; Gopal-Srivastava, Rashmi; Jacobs, Thomas P; Kim, Helen; Krischer, Jeffrey; Marchuk, Douglas A; McCulloch, Charles E; Morrison, Leslie; Moses, Marsha; Moy, Claudia S; Pawlikowska, Ludmilla; Young, William L

    2013-04-01

    Brain vascular malformations are resource-intensive to manage effectively, are associated with serious neurological morbidity, lack specific medical therapies, and have no validated biomarkers for disease severity and progression. Investigators have tended to work in "research silos" with suboptimal cross-communication. We present here a paradigm for interdisciplinary collaboration to facilitate rare disease research. The Brain Vascular Malformation Consortium (BVMC) is a multidisciplinary, inter-institutional group of investigators, one of 17 consortia in the Office of Rare Disease Research Rare Disease Clinical Research Network (RDCRN). The diseases under study are: familial Cerebral Cavernous Malformations type 1, common Hispanic mutation (CCM1-CHM); Sturge-Weber Syndrome (SWS); and brain arteriovenous malformation in hereditary hemorrhagic telangiectasia (HHT). Each project is developing biomarkers for disease progression and severity, and has established scalable, relational databases for observational and longitudinal studies that are stored centrally by the RDCRN Data Management and Coordinating Center. Patient Support Organizations (PSOs) are a key RDCRN component in the recruitment and support of participants. The BVMC PSOs include Angioma Alliance, Sturge Weber Foundation , and HHT Foundation International . Our networks of clinical centers of excellence in SWS and HHT, as well as our PSOs, have enhanced BVMC patient recruitment. The BVMC provides unique and valuable resources to the clinical neurovascular community, and recently reported findings are reviewed. Future planned studies will apply successful approaches and insights across the three projects to leverage the combined resources of the BVMC and RDCRN in advancing new biomarkers and treatment strategies for patients with vascular malformations.

  1. Proangiogenic hematopoietic cells of monocytic origin: roles in vascular regeneration and pathogenic processes of systemic sclerosis.

    Science.gov (United States)

    Yamaguchi, Yukie; Kuwana, Masataka

    2013-02-01

    New blood vessel formation is critical, not only for organ development and tissue regeneration, but also for various pathologic processes, such as tumor development and vasculopathy. The maintenance of the postnatal vascular system requires constant remodeling, which occurs through angiogenesis, vasculogenesis, and arteriogenesis. Vasculogenesis is mediated by the de novo differentiation of mature endothelial cells from endothelial progenitor cells (EPCs). Early studies provided evidence that bone marrow-derived CD14⁺ monocytes can serve as a subset of EPCs because of their expression of endothelial markers and ability to promote neovascularization in vitro and in vivo. However, the current consensus is that monocytic cells do not give rise to endothelial cells in vivo, but function as support cells, by promoting vascular formation and repair through their immediate recruitment to the site of vascular injury, secretion of proangiogenic factors, and differentiation into mural cells. These monocytes that function in a supporting role in vascular repair are now termed monocytic pro-angiogenic hematopoietic cells (PHCs). Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by excessive fibrosis and microvasculopathy, along with poor vascular formation and repair. We recently showed that in patients with SSc, circulating monocytic PHCs increase dramatically and have enhanced angiogenic potency. These effects may be induced in response to defective vascular repair machinery. Since CD14⁺ monocytes can also differentiate into fibroblast-like cells that produce extracellular matrix proteins, here we propose a new hypothesis that aberrant monocytic PHCs, once mobilized into circulation, may also contribute to the fibrotic process of SSc.

  2. VASCULAR INJURIES IN TEHRAN: A REVIEW OF 123 CASES

    Directory of Open Access Journals (Sweden)

    M. Karbakhsh M. R. Zarei

    2006-09-01

    Full Text Available Abstract- Studies of the epidemiology of civilian vascular trauma in developing countries are rather few. This is a prospective study of our experience with vascular trauma in a referral university hospital in Tehran, Iran. The aim was to study the etiology, pattern of injuries and the mortality and morbidity rates due to vascular trauma in our population. In this cross-sectional study, all trauma patients suspicious of having vascular injuries who were admitted to Sina Hospital between March 2002 and May 2003 were included. Among 123 studied cases, there were 109 males and 14 females.Blunt injuries were more common than penetrating ones (56.1% vs. 43.9%. The most common anatomical site of vascular injuries had been knee and lower leg. In fact, cases with lower extremities vascular trauma were twice as common as those with vascular trauma in upper limbs (59.1% vs. 27.3%. The commonest injured vessels were popliteal artery followed by femoral artery. Arterial repair with graft interposition was done in 23 cases and bypass graft in 13 cases. Procedures on veins were performed in 24 cases. Five patients (4.06% died and in 3 cases the patients died because of non-vascular reasons. The present study allows an understanding of the epidemiology of vascular trauma in the one of the major trauma centers in the metropolitan city of Tehran. The majority of our cases were young males sustaining vascular injuries due to road traffic accidents or being stabbed with knives. It also has important implications for vascular injury prevention in our community.

  3. Three-dimensional vascular mapping of the breast by using contrast-enhanced MRI: association of unilateral increased vascularity with ipsilateral breast cancer.

    Science.gov (United States)

    Orgüç, Şebnem; Başara, Işıl; Coşkun, Teoman; Pekindil, Gökhan

    2012-01-01

    We aimed to retrospectively compare three-dimensional vascular maps of both breasts obtained by dynamic magnetic resonance imaging (MRI) and determine the association of one-sided vascular prominence with ipsilateral breast cancer. MRI was performed using gadolinium in 194 cases. Two readers scored vascular density using maximum intensity projections (MIPs). Dynamic fat-saturated T1-weighted gradientecho MIPs were acquired. Two readers evaluated the MIPs, and vessels greater than 2 mm in diameter and longer than 3 cm were counted. The difference in vessel numbers detected in the two breasts determined the score. A total of 54 patients had malignant lesions (prevalence, 28%), including invasive ductal carcinoma (n=40), invasive mixed ductal-lobular carcinoma (n=5), invasive lobular carcinoma (n=3), ductal carcinoma in situ (n=3), mucinous carcinoma (n=1), medullary carcinoma (n=1), and leukemic metastasis (n=1). In 62 patients, there were benign lesions (fibroadenomas, fibrocysts), and four patients had inflammation (granulomatous mastitis in two patients, breast tuberculosis in two patients). There were 78 normal cases. When a difference of at least two vessels was scored as vascular asymmetry, the sensitivity, specificity, positive likelihood ratio (+LR), and negative (-LR) of unilaterally increased vascularity associated with ipsilateral malignancy were 69%, 92%, 8.72, and 0.34, respectively. When four infection and three post-operative cases with vascular asymmetry were excluded; prevalence, specificity, and +LR increased to 29%, 97%, and 22.8, respectively, with the same sensitivity and -LR. Differences in mean vascularity scores were evaluated with regard to tumor size. T1 and T2 tumors were not significantly different from each other. The mean score of T3 tumors differed significantly from T1 and T2 tumors. MRI vascular mapping is an effective method for determining breast tissue vascularization. Ipsilateral increased vascularity was commonly associated with

  4. 3D-Printed Biodegradable Polymeric Vascular Grafts.

    Science.gov (United States)

    Melchiorri, A J; Hibino, N; Best, C A; Yi, T; Lee, Y U; Kraynak, C A; Kimerer, L K; Krieger, A; Kim, P; Breuer, C K; Fisher, J P

    2016-02-04

    Congenital heart defect interventions may benefit from the fabrication of patient-specific vascular grafts because of the wide array of anatomies present in children with cardiovascular defects. 3D printing is used to establish a platform for the production of custom vascular grafts, which are biodegradable, mechanically compatible with vascular tissues, and support neotissue formation and growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Facial vascular malformations in children

    International Nuclear Information System (INIS)

    Brunelle, F.O.; Lallemand, D.; Chaumont, P.; Teillac, D.; Manach, Y.

    1988-01-01

    The authors present their experience with conventional and digital angiography of vascular malformations of the head and neck in children. 22 hemangioendotheliomas, 8 venous angiomas, and 3 arteriovenous fistula were studied. 22 patients were embolised. DSA offers many advantages during the diagnostic as well as during the therapeutic phase of angiography. Embolization appears to have a major role in treatment of such vascular malformations. (orig.)

  6. Exploring ischemia-induced vascular lesions and potential pharmacological intervention strategies.

    Science.gov (United States)

    Aliev, G; Obrenovich, M E; Seyidova, D; de la Torre, J C

    2005-01-01

    Structural changes in vessels under the influence of ischemia play an important role in the pathogenesis of many diseases, most important of which are stroke and myocardial infarction or myocardial insult. Over the years, information has been gathered, which implicate a role for ischemic vascular changes in the pathogenesis of crush-syndrome, atherosclerosis and other vascular diseases. When blood vessels are damaged they become unresponsive to a stimulus, which normally elicits vasodilatation and can lead to intraluminal thrombosis and ischemic events. The aim of this review is to explore the structural changes seen in vessels affected by ischemia reperfusion injury. With ischemia, the development of observable changes to vascular structure is multifactorial. One key factor is reperfusion ischemic injury. Moreover, the duration of the ischemic event is an important factor when determining both the prognosis and the type of morphological change that is observable in affected vessel walls. In this regard, the deleterious progression of blood flow impairment and its severity depends on the specific organ involved and the type of tissue affected. Further, there are regional differences within affected tissues and the degree of microvascular injury is well correlated with differences in the nature and severity of the ischemic event. Any method aimed at preventing and treating ischemic reperfusion injuries in vessels, based on these investigations, should likewise be able to decrease the early signs of brain, cerebrovascular and heart injury and preserve normal cellular architecture.

  7. Imaging evaluation of fetal vascular anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Calvo-Garcia, Maria A.; Kline-Fath, Beth M.; Koch, Bernadette L.; Laor, Tal [MLC 5031 Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Adams, Denise M. [Cincinnati Children' s Hospital Medical Center, Department of Pediatrics and Hemangioma and Vascular Malformation Center, Cincinnati, OH (United States); Gupta, Anita [Cincinnati Children' s Hospital Medical Center, Department of Pathology, Cincinnati, OH (United States); Lim, Foong-Yen [Cincinnati Children' s Hospital Medical Center, Pediatric Surgery and Fetal Center of Cincinnati, Cincinnati, OH (United States)

    2015-08-15

    Vascular anomalies can be detected in utero and should be considered in the setting of solid, mixed or cystic lesions in the fetus. Evaluation of the gray-scale and color Doppler US and MRI characteristics can guide diagnosis. We present a case-based pictorial essay to illustrate the prenatal imaging characteristics in 11 pregnancies with vascular malformations (5 lymphatic malformations, 2 Klippel-Trenaunay syndrome, 1 venous-lymphatic malformation, 1 Parkes-Weber syndrome) and vascular tumors (1 congenital hemangioma, 1 kaposiform hemangioendothelioma). Concordance between prenatal and postnatal diagnoses is analyzed, with further discussion regarding potential pitfalls in identification. (orig.)

  8. Imaging evaluation of fetal vascular anomalies

    International Nuclear Information System (INIS)

    Calvo-Garcia, Maria A.; Kline-Fath, Beth M.; Koch, Bernadette L.; Laor, Tal; Adams, Denise M.; Gupta, Anita; Lim, Foong-Yen

    2015-01-01

    Vascular anomalies can be detected in utero and should be considered in the setting of solid, mixed or cystic lesions in the fetus. Evaluation of the gray-scale and color Doppler US and MRI characteristics can guide diagnosis. We present a case-based pictorial essay to illustrate the prenatal imaging characteristics in 11 pregnancies with vascular malformations (5 lymphatic malformations, 2 Klippel-Trenaunay syndrome, 1 venous-lymphatic malformation, 1 Parkes-Weber syndrome) and vascular tumors (1 congenital hemangioma, 1 kaposiform hemangioendothelioma). Concordance between prenatal and postnatal diagnoses is analyzed, with further discussion regarding potential pitfalls in identification. (orig.)

  9. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk.

    Science.gov (United States)

    Yinon, Yoav; Kingdom, John C P; Odutayo, Ayodele; Moineddin, Rahim; Drewlo, Sascha; Lai, Vesta; Cherney, David Z I; Hladunewich, Michelle A

    2010-11-02

    Women with a history of placental disease are at increased risk for the future development of vascular disease. It is unknown whether preexisting endothelial dysfunction underlies both the predisposition to placental disease and the later development of vascular disease. The aim of this study was to assess vascular function in postpartum women and to determine whether differences emerged depending on the presentation of placental disease. Women with a history of early-onset preeclampsia (n=15), late-onset preeclampsia (n=9), intrauterine growth restriction without preeclampsia (n=9), and prior normal pregnancy (n=16) were studied 6 to 24 months postpartum. Flow-mediated vasodilatation and flow-independent (glyceryl trinitrate-induced) vasodilatation were studied through the use of high-resolution vascular ultrasound examination of the brachial artery. Arterial stiffness was assessed by pulse-wave analysis (augmentation index). Laboratory assessment included circulating angiogenic factors (vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin). Flow-mediated vasodilatation was significantly reduced in women with previous early-onset preeclampsia and intrauterine growth restriction compared with women with previous late-onset preeclampsia and control subjects (3.2±2.7% and 2.1±1.2% versus 7.9±3.8% and 9.1±3.5%, respectively; Pwomen with previous early-onset preeclampsia and intrauterine growth restriction, but not among late preeclamptic women and control subjects (P=0.0105). Circulating angiogenic factors were similar in all groups. Only women with a history of early-onset preeclampsia or intrauterine growth restriction without preeclampsia exhibit impaired vascular function, which might explain their predisposition to placental disease and their higher risk of future vascular disease.

  10. FGF-dependent metabolic control of vascular development

    Science.gov (United States)

    Yu, Pengchun; Alves, Tiago C.; Fang, Jennifer S.; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G.; Hirschi, Karen K.; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W.; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-01-01

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are of importance to these processes1. While much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism2,3, little is understood about the role of fibroblast growth factors (FGFs) in this context4. Here we identify FGF receptor (FGFR) signaling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signaling inputs results in decreased glycolysis leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/r3 double mutant mice while HK2 overexpression partially rescues the defects caused by suppression of FGF signaling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development. PMID:28467822

  11. Vascular complications of prosthetic inter-vertebral discs

    OpenAIRE

    Daly, Kevin J.; Ross, E. Raymond S.; Norris, Heather; McCollum, Charles N.

    2006-01-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had e...

  12. Convergent evolution of vascular optimization in kelp (Laminariales).

    Science.gov (United States)

    Drobnitch, Sarah Tepler; Jensen, Kaare H; Prentice, Paige; Pittermann, Jarmila

    2015-10-07

    Terrestrial plants and mammals, although separated by a great evolutionary distance, have each arrived at a highly conserved body plan in which universal allometric scaling relationships govern the anatomy of vascular networks and key functional metabolic traits. The universality of allometric scaling suggests that these phyla have each evolved an 'optimal' transport strategy that has been overwhelmingly adopted by extant species. To truly evaluate the dominance and universality of vascular optimization, however, it is critical to examine other, lesser-known, vascularized phyla. The brown algae (Phaeophyceae) are one such group--as distantly related to plants as mammals, they have convergently evolved a plant-like body plan and a specialized phloem-like transport network. To evaluate possible scaling and optimization in the kelp vascular system, we developed a model of optimized transport anatomy and tested it with measurements of the giant kelp, Macrocystis pyrifera, which is among the largest and most successful of macroalgae. We also evaluated three classical allometric relationships pertaining to plant vascular tissues with a diverse sampling of kelp species. Macrocystis pyrifera displays strong scaling relationships between all tested vascular parameters and agrees with our model; other species within the Laminariales display weak or inconsistent vascular allometries. The lack of universal scaling in the kelps and the presence of optimized transport anatomy in M. pyrifera raises important questions about the evolution of optimization and the possible competitive advantage conferred by optimized vascular systems to multicellular phyla. © 2015 The Author(s).

  13. Lower limb vascular dysfunction in cyclists

    Directory of Open Access Journals (Sweden)

    Thiago Ayala Melo Di Alencar

    2013-06-01

    Full Text Available Sports-related vascular insufficiency affecting the lower limbs is uncommon, and early signs and symptoms can be confused with musculoskeletal injuries. This is also the case among professional cyclists, who are always at the threshold between endurance and excess training. The aim of this review was to analyze the occurrence of vascular disorders in the lower limbs of cyclists and to discuss possible etiologies. Eighty-five texts, including papers and books, published from 1950 to 2012, were used. According to the literature reviewed, some cyclists receive a late diagnosis of vascular dysfunction due to a lack of familiarity of the medical team with this type of dysfunction. Data revealed that a reduced blood flow in the external iliac artery, especially on the left, is much more common than in the femoral and popliteal arteries, and that vascular impairment is responsible for the occurrence of early fatigue and reduced performance in cycling.

  14. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  15. Radiology trainer. Torso, internal organs and vessels. 2. ed.

    International Nuclear Information System (INIS)

    Staebler, Axel; Erlt-Wagner, Birgit

    2013-01-01

    The radiology training textbook is based on case studies of the clinical experience, including radiological imaging and differential diagnostic discussion. The scope of this volume covers the torso, internal organs and vessels. The following issues are discussed: lungs, pleura, mediastinum; heart and vascular system; upper abdomen organs; gastrointestinal tract; urogenital system.

  16. Endoscopic Management of Vascular Sinonasal Tumors, Including Angiofibroma.

    Science.gov (United States)

    Snyderman, Carl H; Pant, Harshita

    2016-06-01

    The greatest challenge in the surgical treatment of angiofibromas is dealing with the hypervascularity of these tumors. Staging systems that take into account the vascularity of the tumor may be more prognostic. A variety of treatment strategies are used to deal with the vascularity of angiofibromas, including preoperative embolization, segmentation of the tumor into vascular territories, use of hemostatic tools, and staging of surgery. Even large angiofibromas with intracranial extension and residual vascularity can be successfully managed by a skull base team using endoscopic techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression.

    Directory of Open Access Journals (Sweden)

    Nicholas S Kirkby

    Full Text Available There are two schools of thought regarding the cyclooxygenase (COX isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.

  18. Vascular graft infections with Mycoplasma

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Skov Jensen, J; Prag, J

    1995-01-01

    laboratory techniques, the percentage of culture-negative yet grossly infected vascular grafts seems to be increasing and is not adequately explained by the prior use of antibiotics. We have recently reported the first case of aortic graft infection with Mycoplasma. We therefore suggest the hypothesis...... that the large number of culture-negative yet grossly infected vascular grafts may be due to Mycoplasma infection not detected with conventional laboratory technique....

  19. Limb vascular function in women

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Gliemann, Lasse

    2018-01-01

    Throughout life, women are subjected to both acute fluctuations in sex hormones, associated with the menstrual cycle, and chronic changes following the onset of menopause. Female sex hormones, and in particular estrogen, strongly influence cardiovascular function such as the regulation of vascular...... studies. Physical activity should be recommended for women of all ages, but the most essential timing for maintenance of vascular health may be from menopause and onwards....

  20. Childhood Vascular Tumors Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood vascular tumors form from cells that make blood vessels or lymph vessels. They can be benign (not cancer) or malignant (cancer). Get information about the symptoms, tests to diagnose, prognosis, and treatment of the most common type of vascular tumor, infantile hemangioma, and other vascular tumors in this expert-reviewed summary.

  1. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Directory of Open Access Journals (Sweden)

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  2. Reconstructive vascular surgery below the knee

    DEFF Research Database (Denmark)

    Rasmussen, L B; Jelnes, R; Sager, P

    1986-01-01

    In a series of 38 consecutive patients with advanced peripheral vascular disease (i.e. rest pain) reconstructive vascular surgery was performed with the distal anastomosis below the knee. Ankle/arm pressure index (AAI) was 0.28 (0.11-0.47) preoperatively; accumulated graft patency rate was 0.47 (SD...

  3. Audit of the Danish national vascular database

    DEFF Research Database (Denmark)

    Levi-Mazloum, Niels Donald; Jensen, L P; Schroeder, T V

    1996-01-01

    The accuracy of data contained in the Danish vascular database was compared with the case notes. A total of 100 case notes were reviewed for 11 pertinent variables in the database. A high error rate ranging from 2 to 34% was found. Also, approximately 10% of patients had never been entered into t...... into the vascular database. Further improvement of the Danish vascular database is necessary for its use as basis for reporting results.......The accuracy of data contained in the Danish vascular database was compared with the case notes. A total of 100 case notes were reviewed for 11 pertinent variables in the database. A high error rate ranging from 2 to 34% was found. Also, approximately 10% of patients had never been entered...

  4. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats.

    Science.gov (United States)

    Ximenes, Carolina Falcão; Rodrigues, Samya Mere Lima; Podratz, Priscila Lang; Merlo, Eduardo; de Araújo, Julia Fernandez Puñal; Rodrigues, Lívia Carla Melo; Coitinho, Juliana Barbosa; Vassallo, Dalton Valentim; Graceli, Jones Bernardes; Stefanon, Ivanita

    2017-11-01

    Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g -1 . The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to N G -nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E 2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5

  5. Vacuum assisted closure in vascular surgery.

    Science.gov (United States)

    Beno, M; Martin, J; Sager, P

    2011-01-01

    Vacuum assisted closure (VAC-therapy) is a well established method in nearly all surgical disciplines. The aim is to present the efficiency of vacuum assisted closure in the treatment of acute and chronic wounds in patients admitted in the department of vascular surgery. Within the year 2008 there were 59 patients (44 men, 15 women) treated with VAC therapy in our Department of Vascular surgery (Landshut, Germany). VAC was used 22x (37.28 %) in therapy of ulcus cruris (venous, arterial, mixed genesis), 15x (25.42%) in patients with diabetic foot syndrome, 12x (20.33%) in secondary healing wounds and infected wounds, 5x (8.47%) in wounds after several injuries and soft skin tissue infections and 5x (8.47%) in wound infections connected with vascular graft infections after vascular revascularization. VAC therapy seems to be very effective in the management of patients with venous ulcers, especially after a proper surgical treatment (100%), patients with soft skin tissue infections (100%) and secondary healing wounds (100%) especially in combination with MESH-Grafting. In patients with diabetic foot syndrome (80%) and peripheral arterial occlusive disease (72.7%), an evaluation of peripheral blood perfusion and revascularization prior to VAC therapy is often necessary. Although VAC was used 5x in the therapy of infected vascular grafts, successful preservation of infected graft material was observed in only one case (infection of PTFE femoro-popliteal bypass graft). Vacuum assisted closure in vascular surgery proved to be simple and efficient method in therapy of acute and chronic wounds. The efficiency of VAC systems in therapy of infected graft material after revascularization needs further studies (Tab. 3, Ref. 10).

  6. ESRD QIP - Vascular Access - Payment Year 2018

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes facility details, performance rates, vascular access topic measure score, and the state and national average measure scores for the vascular...

  7. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  8. Vascular Alterations Underlie Developmental Problems Manifested in Cloned Cattle before or after Birth

    Science.gov (United States)

    Favaron, Phelipe Oliveira; dos Santos, Caio Rodrigues; Alberto, Miryan Lanca; Meirelles, Flavio Vieira; Miglino, Maria Angelica

    2015-01-01

    Although assisted reproductive techniques are commonly applied in humans and animals, they are frequently associated with major developmental deficits and reduced viability. To explore abnormalities associated with cloning or nuclear transfer (NT) as the most invasive of these methods, we used a bovine model to characterize abnormalities. Detailed necropsy examinations were done on 13 calves that died soon after birth; in addition, we included data from embryos and fetuses (produced by NT) that terminated prematurely. Bovine clones that survived until the neonatal period differed quantitatively and qualitatively from in-vivo-derived cattle. Although alterations affected a variety of organs (e.g. heart, lung and liver), there was a clear association with abberant vascular developmental during the early intrauterine phase. Therefore, we concluded that vascular problems were key alterations induced by cloning (presumably via epigenetic modifications). PMID:25584533

  9. Clinical application of the amplatzer vascular plug in the embolization of vascular malformations associated with congenital heart diseasee

    International Nuclear Information System (INIS)

    Pan Xin; Wang Cheng; Lu Jing; Wu Weihua; Fang Weiyi

    2009-01-01

    Objective: To evaluate the clinical efficacy of percutaneous transcatheter embolization by using Amplatzer vascular plug (AVP) for the treatment of vascular malformations associated with congenital heart diseases. Methods: During the period of June 2006-June 2008, 12 patients with congenital heart disease accompanied by vascular malformations received transcatheter occlusion of the anomalous vessels with AVP. The vascular malformations included solitary or multiple saccular pulmonary arteriovenous malformation (n = 7), coronary artery fistula (n = 2) and major aortopulmonary collaterals concomitant with severe Fallot' s tetralogy (n = 3). All patients were screened with transthoracic echocardiography (TTE) and thoracic CT angiography (CTA), and all the diagnoses were confirmed by routine cardioangiography. Results: Transcatheter occlusion of vascular malformations with AVP was successfully accomplished in all 12 patients. An angiographic check immediately after the procedure showed that complete occlusion was obtained in all patients and no embolism,migration or residual shunt were seen. Sixteen anomalous vessels were occluded. The mean internal diameter of these vessels was (5.2 ± 1.9) mm,while the mean diameter of AVP used was (9.2 ± 2.4) mm. After the operation (mean 3 months), the follow-up echocardiography and/or thoracic CT angiography showed that in all patients the occlusion remained in satisfactory condition and no residual shunt was found. Conclusions: Percutaneous transcatheter closure of congenital vascular malformations with AVP is technically feasible and clinically effective, this treatment can markedly improve patient's living quality and it is well worth extending its clinical application. (authors)

  10. PET/CT and vascular disease: Current concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti Filho, Jose Leite Gondim; Souza Leao Lima, Ronaldo de [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil); Souza Machado Neto, Luiz de [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Kayat Bittencourt, Leonardo, E-mail: lkayat@terra.com.br [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil); Cortes Domingues, Romeu [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Fonseca, Lea Mirian Barbosa da [CDPI and Multi-Imagem Clinics, Rio de Janeiro (Brazil); Department of Radiology, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro (Brazil)

    2011-10-15

    Since its introduction in 2001, positron emission tomography associated to computed tomography (PET/CT) has been established as a standard tool in cancer evaluation. Being a multimodality imaging method, it combines in a single session the sensitivity granted by PET for detection of molecular targets within the picomolar range, with an underlying submilimetric resolution inherent to CT, that can precisely localize the PET findings. In this last decade, there have been new insights regarding the pathophysiology of atherosclerosis, particularly about plaque rupture and vascular remodeling. This has increased the interest for research on PET/CT in vascular diseases as a potential new diagnostic tool, since some PET molecular targets could identify diseases before the manifestation of gross anatomic features. In this review, we will describe the current applications of PET/CT in vascular diseases, emphasizing its usefulness in the settings of vasculitis, aneurysms, vascular graft infection, aortic dissection, and atherosclerosis/plaque vulnerability. Although not being properly peripheral vascular conditions, ischemic cardiovascular disease and cerebrovascular disease will be briefly addressed as well, due to their widespread prevalence and importance.

  11. Arteriographic evaluation, in the perispheric vascular trauma

    International Nuclear Information System (INIS)

    Patino, Jairo Hernando; Granados, Ana Maria; Lopera B, Jorge; Prada W, Angela Maria

    1993-01-01

    136 patients were angiographically studied under the suspicion of perispheric vascular lesion submitted to the radiology department of the San Vicente de Paul University Hospital (H.U.S.VP.) Medellin Colombia. The majority of the patients were young with wounds caused by gunshots (79.4%). the must frequent angiographic indication was the proximity of the wound to a vascular path (44.5%). 63% of the patients with angiography indicative of abnormality needed surgery from which 21% were because of the proximity of the wound to a vascular path and 76% because of the mayor findings when admitted to the hospital. the possible complications as a result of the angiographic procedure were revised only find inc two mayor reactions to the contrast media. there were no late complications. Angiography is highlighting sensitive (100%) specific (98.5%) and secure in the evaluation of patients with perispheric vascular trauma. Due to the high number of false negatives when the physical examination is performed, every patient with a wound near a vascular path must be evaluated angiographically

  12. Vascular complications of prosthetic inter-vertebral discs.

    Science.gov (United States)

    Daly, Kevin J; Ross, E Raymond S; Norris, Heather; McCollum, Charles N

    2006-10-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had eroded into the bifurcation of the inferior vena cava and the left common iliac vein. In three cases the aortic bifurcation was also involved. The fibrosis was so severe that dissecting out the arteries and veins to provide access to the relevant disc proved impossible. Formal division of the left common iliac vein and artery with subsequent repair was our solution. Anterior inter-vertebral disc displacement was associated with severe vascular injury. Preventing anterior disc displacement is essential in disc design. In the event of anterior displacement, disc removal should be planned with a Vascular Surgeon.

  13. Anatomy and arterial vascularization of female genital system of margay (Leopardus weidii

    Directory of Open Access Journals (Sweden)

    Andrezza Braga Soares Silva

    2016-02-01

    Full Text Available The margay (Leopardus wiedii belongs to Carnivora order and present’s nocturnal habits. There are few studies using this specie, whereas it is between feline species vulnerable to extinction. Thus, we propose a descriptive study about female genital system and behavior of the arteries responsible for the blood supply to these organs in margay. It used one exemplary victim of poaching that to death. The animal was stored in freezer. Subsequent to defrost at room temperature, it proceeded with the solution injection Leoprene Latex ‘650’ colored in red for better identification of vessels before the adjacent strutures. The specimen was fixed using an aqueous 10% formaldehyde with subsequent immersion in the same fixative solution. The genital system were dissected and the organs and arterial branches were identified and photodocumented. The female genital system of margay consists of a pair of ovaries, uterus with a pair of uterine horns, vagina and vulva. The arterial distribution of female system have a common vessel to iliac artery which branches and leads to internal pudendal artery sends a branch along the pudendal nerve pathway, urogenital artery. This, we performed divided into two branches, cranial and caudal. The cranial branch irrigates laterally cervix and uterine horns and caudal branch, vagina and vulva. The ovarian arteries, peers, originate from abdominal aorta only vascularization the ovaries. The female genital system and vascularization of the genitals organs of margay resembles of domestic carnivores including cats and some wild felines like the ocelot and find differences with the same description held in other domestic and wild species.

  14. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  15. Brain Arterial Diameters as a Risk Factor for Vascular Events.

    Science.gov (United States)

    Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V

    2015-08-06

    Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score -2 and 2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  16. Peritoneal vascular density assessment using narrow-band imaging and vascular analysis software, and cytokine analysis in women with and without endometriosis.

    Science.gov (United States)

    Kuroda, Keiji; Kitade, Mari; Kikuchi, Iwaho; Kumakiri, Jun; Matsuoka, Shozo; Kuroda, Masako; Takeda, Satoru

    2010-01-01

    The development and onset of endometriosis is associated with angiogenesis and angiogenic factors including cytokines. We analyzed intrapelvic conditions in women with endometriosis via vascular density assessment of grossly normal peritoneum and determination of cytokine levels in peritoneal fluid. Seventy-three patients underwent laparoscopic surgery because of gynecologic disease including endometriosis in our department using a narrow-band imaging system. Each patient was analyzed for peritoneal vascular density using commercially available vascular analysis software (SolemioENDO ProStudy; Olympus Corp, Tokyo, Japan). Each patient was also subjected to analysis of interleukin 6 (IL-6), IL-8, tumor necrosis factor-alpha, and vascular endothelial growth factor concentrations in peritoneal fluid. We defined 4 groups as follows: group 1, endometriosis: gonadotropin-releasing hormone (GnRH) agonist administration group (n=27); group 2, endometriosis: GnRH agonist nonadministration group (n=15); group 3, no endometriosis: GnRH agonist administration group (n=18); and group 4, no endometriosis: GnRH agonist nonadministration group (n=13). No significant differences in peritoneal vascular density between the 4 groups were found under conventional light; however, under narrow-band light, vascular density in the endometriosis groups (groups 1 and 2) was significantly higher. Cytokine analysis of the 4 groups determined that IL-6 and IL-8 concentrations were significantly higher compared with the no endometriosis groups (groups 3 and 4). Tumor necrosis factor-alpha and vascular endothelial growth factor concentrations were not significantly different between groups. In endometriosis, peritoneal vascular density was significantly higher as assessed using the narrow-band imaging system and SolemioENDO ProStudy, whereas GnRH agonist did not obviously decrease vascular density but IL-6 concentration was lower in the GnRH agonist administration group. Copyright (c) 2010 AAGL

  17. Clinical signs and organ pathology in rats exposed to graded doses ...

    African Journals Online (AJOL)

    haemorrhages, vasculitis and thrombosis in many organs, and Kuppfer and intestinal goblet cells hyperplasia. The severity of the lesions was dose and time dependent. The lesions observed suggest interference with tissue energy metabolism and widespread vascular damage and multi-organ degeneration and necrosis.

  18. Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Soon-Youn Choi

    Full Text Available Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22phox and NOX4. The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3 and decreased the expression of dickkopf-related protein-1 (DKK-1 in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (α-SMA and SM22α and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

  19. CHRONIC OBSTRUCTIVE PULMONARY DISEASE AND ARTERIAL HYPERTENSION: VASCULAR WALL AS THE TARGET ORGAN IN COMORBID PATIENTS

    Directory of Open Access Journals (Sweden)

    N. A. Karoli

    2017-01-01

    Full Text Available Studies of endothelial dysfunction in patients with respiratory diseases have become relevant in recent years. Perhaps endothelial dysfunction and high arterial stiffness bind bronchopulmonary and cardiovascular diseases.Aim. To reveal features of disturbances of arterial wall vasoregulatory function in patients with chronic obstructive pulmonary disease (COPD in the presence and absence of arterial hypertension (HT.Material and methods. The study included 50 patients with COPD with normal blood pressure (BP and 85 patients with COPD and HT. Control group was presented by 20 practically healthy men comparable in age with COPD patients. Tests with reactive hyperemia (endothelium-dependent dilation and nitroglycerin (endothelium-independent dilation were performed in order to evaluate endothelium function. The number of desquamated endotheliocytes in the blood was determined.Results. In patients with COPD and HT in comparison with COPD patients without HT and healthy individuals more pronounced damages of the vascular wall, endothelium vasoregulatory function disturbances and a tendency to the reduction in endothelium-dependent vasodilation were determined both during COPD exacerbation and remission. These differences were most pronounced during the COPD exacerbation. In patients with COPD and HT in comparison with COPD patients without HT the damage of the vascular wall was more pronounced during the remission and endothelium-dependent dilatation disorder – during the exacerbation. The revealed disorders in patients with COPD and HT were associated with smoking status (r=0.61, p<0.01, severity of bronchial obstruction (r=-0.49, p<0.05, and hypoxemia (r=-0.76, p<0.01. We noted relationships between the parameters of 24-hour BP monitoring and remodeling of the brachial artery (r=0.34, p<0.05, endothelium lesion (r=0.25, p<0.05, and impairment of its vasoregulating function (r=-0.58, p<0.05. At that, the following parameters were important: the

  20. Vascular function in health, hypertension, and diabetes

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Gliemann, Lasse; Hellsten, Ylva

    2015-01-01

    muscle, which can affect muscle function. Central aspects in the vascular impairments are alterations in the formation of prostacyclin, the bioavailability of NO and an increased formation of vasoconstrictors and reactive oxygen species (ROS). Regular physical activity effectively improves vascular......, the increase in muscle blood flow required for oxygen supply during exercise is achieved through a substantial increase in vasodilators locally formed in the active muscle tissue that overcome the vasoconstrictor signals. Most of the vasodilator signals are mediated via endothelial cells, which lead...... to the formation of vasodilators such as nitric oxide (NO) and prostacyclin. In essential hypertension and type II diabetes, the endothelial function and regulation of vascular tone is impaired with consequent increases in peripheral vascular resistance and inadequate regulation of oxygen supply to the skeletal...

  1. [Localized purpura revealing vascular prosthetic graft infection].

    Science.gov (United States)

    Boureau, A S; Lescalie, F; Cassagnau, E; Clairand, R; Connault, J

    2013-07-01

    Prosthetic graft infection after vascular reconstruction is a rare but serious complication. We report a case of infection occurring late after implantation of an iliofemoral prosthetic vascular graft. The Staphylococcus aureus infection was revealed by vascular purpura localized on the right leg 7 years after implantation of a vascular prosthesis. This case illustrates an uncommonly late clinical manifestation presenting as an acute infection 7 years after the primary operation. In this situation, the presentation differs from early infection, which generally occurs within the first four postoperative months. Diagnosis and treatment remain a difficult challenge because prosthetic graft infection is a potentially life-threatening complication. Morbidity and mortality rates are high. Here we detail specific aspects of the clinical and radiological presentation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Anti-Inflammatory Effects of Interleukin-19 in Vascular Disease

    Directory of Open Access Journals (Sweden)

    Ross N. England

    2012-01-01

    Full Text Available Despite aggressive dietary modification, lipid-lowering medications, and other interventional medical therapy, vascular disease continues to be a leading cause of mortality in the western world. It is a significant medical and socioeconomic problem contributing to mortality of multiple diseases including myocardial infarction, stroke, renal failure, and peripheral vascular disease. Morbidity and mortality of vascular disease are expected to worsen with the increasing number of patients with comorbid conditions such as obesity, metabolic syndrome, and diabetes mellitus type 2. Vascular diseases such as atherosclerosis, restenosis, and allograft vasculopathy are recognized to be driven by inflammation, and as such, cytokines which mediate inflammation not only represent important targets of rational therapy, but also can be considered as possible therapeutic modalities themselves. In this paper, we will examine the role of inflammatory cytokines and lymphocyte Th1/Th2 polarity in vascular inflammation, with a focus on atherosclerotic vascular disease. We will then introduce a recently described Th2 interleukin, interleukin-19 (IL-19, as a previously unrecognized mediator of vascular inflammatory disorders. We will review our current understanding of this interleukin in health and disease and present the possibility that IL-19 could represent a potential therapeutic to combat vascular inflammatory disease.

  3. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  4. Vascular neurology nurse practitioner provision of telemedicine consultations.

    Science.gov (United States)

    Demaerschalk, Bart M; Kiernan, Terri-Ellen J; Investigators, Starr

    2010-01-01

    Objective. The objective was to define and evaluate a role for the Vascular Neurology-Nurse Practitioner (VN-NP) in the delivery of telemedicine consultations in partnership with a vascular neurologist. Methods. Prospective stroke alert patients at participating hospitals underwent a two-way audio video telemedicine consultation with a VN-NP at a remotely located stroke center in partnership with a vascular neurologist. Demographic information, National Institutes of Health Stroke Scale (NIHSS) scores, diagnoses, CT contraindications to thrombolysis, thrombolysis eligibility, and time interval data were collected. The inter-rater agreement between VN-NP and vascular neurologist assessments was calculated. Results. Ten patients were evaluated. Four were determined to have ischemic stroke, one had a transient ischemic attack, two had intracerebral hemorrhages, and three were stroke mimics. Overall, three patients received thrombolysis. The inter-rater agreement between VN-NP and vascular neurologist assessments were excellent, ranging from 0.9 to 1.0. The duration of VN-NP consultation was 53.2 +/- 9.0 minutes, which included the vascular neurologist supervisory evaluation time of 12.0 +/- 9.6 minutes. Conclusion. This study illustrated that a stroke center VN-NP, in partnership with a vascular neurologist, could deliver timely telemedicine consultations, accurate diagnoses, and correct treatments in acute stroke patients who presented to remotely located rural emergency departments within a hub and spoke network. VN-NPs may fulfill the role of a telestroke provider.

  5. Structural and functional imaging for vascular targeted photodynamic therapy

    Science.gov (United States)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  6. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy

    OpenAIRE

    Costa, M.; Cerqueira, Mariana Teixeira; Santos, T. C.; Marques, Belém Sampaio; Ludovico, Paula; Marques, A. P.; Pirraco, Rogério P.; Reis, R. L.

    2017-01-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditi...

  7. Vascular inflammatory cells in hypertension

    Directory of Open Access Journals (Sweden)

    David G. Harrison

    2012-05-01

    Full Text Available Hypertension is a common disorder with uncertain etiology. In the last several years, it has become evident that components of both the innate and adaptive immune system play an essential role in hypertension. Macrophages and T cells accumulate in the perivascular fat, the heart and the kidney of hypertensive patients and in animals with experimental hypertension. Various immunosuppressive agents lower blood pressure and prevent end-organ damage. Mice lacking lymphocytes are protected against hypertension, and adoptive transfer of T cells, but not B cells in the animals restores their blood pressure response to stimuli such as angiotensin II or high salt. Recent studies have shown that mice lacking macrophages have blunted hypertension in response to angiotensin II and that genetic deletion of macrophages markedly reduces experimental hypertension. Dendritic cells have also been implicated in this disease. Many hypertensive stimuli have triggering effects on the central nervous system and signals arising from the circumventricular organ seem to promote inflammation. Studies have suggested that central signals activate macrophages and T cells, which home to the kidney and vasculature and release cytokines, including IL-6 and IL-17, which in turn cause renal and vascular dysfunction and lead to blood pressure elevation. These recent discoveries provide a new understanding of hypertension and provide novel therapeutic opportunities for treatment of this serious disease.

  8. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    Science.gov (United States)

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension. © 2015 American Heart Association, Inc.

  9. Genetic Regulation of Vascular Development: Building the Zebrafish Vascular Tree

    NARCIS (Netherlands)

    R.L.J.M. Herpers (Robert)

    2010-01-01

    textabstractThe extensive networks of blood and lymphatic vessels within the vertebrate body are essential for the transport and delivery of fluids, gases, macromolecules and cells, and play important roles in facilitating immune responses. The development of the vascular tree requires a highly

  10. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-01-01

    Full Text Available Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II- induced proliferation and migration of vascular smooth muscle cells (VSMCs. Dichlorofluorescein diacetate (DCFH-DA staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

  11. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    Science.gov (United States)

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.

  12. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat.

    Science.gov (United States)

    Han, Su Young; Bouwer, Gregory T; Seymour, Alexander J; Korpal, Aaron K; Schwenke, Daryl O; Brown, Colin H

    2015-11-01

    Vasopressin secretion from the posterior pituitary gland is determined by action potential discharge of hypothalamic magnocellular neurosecretory cells. Vasopressin is a potent vasoconstrictor, but vasopressin levels are paradoxically elevated in some patients with established hypertension. To determine whether vasopressin neurons are excited in hypertension, extracellular single-unit recordings of vasopressin neurons from urethane-anaesthetized Cyp1a1-Ren2 rats with inducible angiotensin-dependent hypertension were made. The basal firing rate of vasopressin neurons was higher in hypertensive Cyp1a1-Ren2 rats than in non-hypertensive Cyp1a1-Ren2 rats. The increase in firing rate was specific to vasopressin neurons because oxytocin neuron firing rate was unaffected by the induction of hypertension. Intravenous injection of the α1-adrenoreceptor agonist, phenylephrine (2.5 μg/kg), transiently increased mean arterial blood pressure to cause a baroreflex-induced inhibition of heart rate and vasopressin neuron firing rate (by 52 ± 9%) in non-hypertensive rats. By contrast, intravenous phenylephrine did not inhibit vasopressin neurons in hypertensive rats, despite a similar increase in mean arterial blood pressure and inhibition of heart rate. Circulating angiotensin II can excite vasopressin neurons via activation of afferent inputs from the subfornical organ. However, the increase in vasopressin neuron firing rate and the loss of inhibition by intravenous phenylephrine were not blocked by intra-subfornical organ infusion of the angiotensin AT1 receptor antagonist, losartan. It can be concluded that increased vasopressin neuron activity at the onset of hypertension is driven, at least in part, by reduced baroreflex inhibition of vasopressin neurons and that this might exacerbate the increase in blood pressure at the onset of hypertension. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    Science.gov (United States)

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  14. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development

    Directory of Open Access Journals (Sweden)

    Samuel Sances

    2018-04-01

    Full Text Available Summary: Human stem cell-derived models of development and neurodegenerative diseases are challenged by cellular immaturity in vitro. Microengineered organ-on-chip (or Organ-Chip systems are designed to emulate microvolume cytoarchitecture and enable co-culture of distinct cell types. Brain microvascular endothelial cells (BMECs share common signaling pathways with neurons early in development, but their contribution to human neuronal maturation is largely unknown. To study this interaction and influence of microculture, we derived both spinal motor neurons and BMECs from human induced pluripotent stem cells and observed increased calcium transient function and Chip-specific gene expression in Organ-Chips compared with 96-well plates. Seeding BMECs in the Organ-Chip led to vascular-neural interaction and specific gene activation that further enhanced neuronal function and in vivo-like signatures. The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition. : Sances et al. combine Organ-Chip technology with human induced pluripotent stem cell-derived spinal motor neurons to study the maturation effects of Organ-Chip culture. By including microvascular cells also derived from the same patient line, the authors show enhancement of neuronal function, reproduction of vascular-neuron pathways, and specific gene activation that resembles in vivo spinal cord development. Keywords: organ-on-chip, spinal cord, iPSC, disease modeling, amyotrophic lateral sclerosis, microphysiological system, brain microvascular endothelial cells, spinal motor neurons, vasculature, microfluidic device

  15. Vascular ring complicates accidental button battery ingestion.

    Science.gov (United States)

    Mercer, Ronald W; Schwartz, Matthew C; Stephany, Joshua; Donnelly, Lane F; Franciosi, James P; Epelman, Monica

    2015-01-01

    Button battery ingestion can lead to dangerous complications, including vasculoesophageal fistula formation. The presence of a vascular ring may complicate battery ingestion if the battery lodges at the level of the ring and its important vascular structures. We report a 4-year-old boy with trisomy 21 who was diagnosed with a vascular ring at the time of button battery ingestion and died 9 days after presentation due to massive upper gastrointestinal bleeding from esophageal erosion and vasculoesophageal fistula formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Magnetic resonance imaging of pediatric soft-tissue vascular anomalies

    International Nuclear Information System (INIS)

    Navarro, Oscar M.

    2016-01-01

    Magnetic resonance (MR) imaging can be used in the management of pediatric soft-tissue vascular anomalies for diagnosing and assessing extent of lesions and for evaluating response to therapy. MR imaging studies often involve a combination of T1- and T2-weighted images in addition to MR angiography and fat-suppressed post-contrast sequences. The MR imaging features of these vascular anomalies when combined with clinical findings can aid in diagnosis. In cases of complex vascular malformations and syndromes associated with vascular anomalies, MR imaging can be used to evaluate accompanying soft-tissue and bone anomalies. This article reviews the MR imaging protocols and appearances of the most common pediatric soft-tissue vascular anomalies. (orig.)

  17. Transcatheter aortic valve replacement and vascular complications definitions.

    Science.gov (United States)

    Van Mieghem, Nicolas M; Généreux, Philippe; van der Boon, Robert M A; Kodali, Susheel; Head, Stuart; Williams, Matthew; Daneault, Benoit; Kappetein, Arie-Pieter; de Jaegere, Peter P; Leon, Martin B; Serruys, Patrick W

    2014-03-20

    Transcatheter aortic valve replacement (TAVR) requires large calibre catheters and is therefore associated with increased vascular complications. The aim of this study was to illustrate the impact of the different definitions of major vascular complications on their incidence and to underscore the importance of uniform reporting. We pooled dedicated databases of consecutive patients undergoing TAVR from two tertiary care facilities and looked for the incidence of major vascular complications using various previously reported definitions. The level of agreement (Kappa statistic) between the respective definitions and the Valve Academic Research Consortium (VARC) consensus definition of vascular complications was assessed. A total of 345 consecutive patients underwent transfemoral TAVR and were included in this analysis. A completely percutaneous access and closure technique was applied in 96% of cases. Arterial sheath size ranged between 18 and 24 Fr, the majority being 18 Fr (60%). Procedural success was reached in 94.5%. Depending on the definition used, major vascular complications occurred in 5.2-15.9% of patients. According to the VARC definitions, the rate of major and minor vascular complications was 9.0% and 9.6%, respectively. Major vascular complications according to VARC criteria demonstrated at least a substantial level of agreement with the SOURCE registry (k 0.80), the UK registry (k 0.82) the Italian registry (k 0.72) and "FRANCE" registry (k 0.70) definitions, compared to a moderate level of agreement with the definitions used in the German registry ( 0.47) and the 18 Fr Safety and Efficacy study (k 0.42). Minor complications according to VARC demonstrated a moderate agreement only with vascular complications using the German registry definition (k 0.54). Non-uniformity in how vascular complications are defined precludes any reliable comparison between previously reported TAVR registries. The VARC consensus document offers standardised endpoint

  18. VASCULAR SURGERY

    African Journals Online (AJOL)

    2016-06-02

    Jun 2, 2016 ... with the literature from South Africa over the last four decades, and reflects the high rate of interpersonal violence in the country.14,15 As expected, cervical ... via the intact circle of Willis in young patients is the most likely explanation for the lack of strokes. Five patients were referred to the Durban vascular ...

  19. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  20. Vascular Neurology Nurse Practitioner Provision of Telemedicine Consultations

    Directory of Open Access Journals (Sweden)

    Bart M. Demaerschalk

    2010-01-01

    Full Text Available Objective. The objective was to define and evaluate a role for the Vascular Neurology-Nurse Practitioner (VN-NP in the delivery of telemedicine consultations in partnership with a vascular neurologist. Methods. Prospective stroke alert patients at participating hospitals underwent a two-way audio video telemedicine consultation with a VN-NP at a remotely located stroke center in partnership with a vascular neurologist. Demographic information, National Institutes of Health Stroke Scale (NIHSS scores, diagnoses, CT contraindications to thrombolysis, thrombolysis eligibility, and time interval data were collected. The inter-rater agreement between VN-NP and vascular neurologist assessments was calculated. Results. Ten patients were evaluated. Four were determined to have ischemic stroke, one had a transient ischemic attack, two had intracerebral hemorrhages, and three were stroke mimics. Overall, three patients received thrombolysis. The inter-rater agreement between VN-NP and vascular neurologist assessments were excellent, ranging from 0.9 to 1.0. The duration of VN-NP consultation was 53.2±9.0 minutes, which included the vascular neurologist supervisory evaluation time of 12.0±9.6 minutes. Conclusion. This study illustrated that a stroke center VN-NP, in partnership with a vascular neurologist, could deliver timely telemedicine consultations, accurate diagnoses, and correct treatments in acute stroke patients who presented to remotely located rural emergency departments within a hub and spoke network. VN-NPs may fulfill the role of a telestroke provider.

  1. Pathophysiological Consequences of a Break in S1P1-Dependent Homeostasis of Vascular Permeability Revealed by S1P1 Competitive Antagonism.

    Science.gov (United States)

    Bigaud, Marc; Dincer, Zuhal; Bollbuck, Birgit; Dawson, Janet; Beckmann, Nicolau; Beerli, Christian; Fishli-Cavelti, Gina; Nahler, Michaela; Angst, Daniela; Janser, Philipp; Otto, Heike; Rosner, Elisabeth; Hersperger, Rene; Bruns, Christian; Quancard, Jean

    2016-01-01

    Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist. NIBR-0213 was tolerated at the efficacious oral dose of 30 mg/kg BID in the rat adjuvant-induced arthritis (AiA) model, with no sign of labored breathing. However, it induced dose-dependent acute vascular pulmonary leakage and pleural effusion that fully resolved within 3-4 days, as evidenced by MRI monitoring. At the supra-maximal oral dose of 300 mg/kg QD, NIBR-0213 impaired lung function (with increased breathing rate and reduced tidal volume) within the first 24 hrs. Two weeks of NIBR-0213 oral dosing at 30, 100 and 300 mg/kg QD induced moderate pulmonary changes, characterized by alveolar wall thickening, macrophage accumulation, fibrosis, micro-hemorrhage, edema and necrosis. In addition to this picture of chronic inflammation, perivascular edema and myofiber degeneration observed in the heart were also indicative of vascular leakage and its consequences. Overall, these observations suggest that, in the rat, the lung is the main target organ for the S1P1 competitive antagonism-induced acute vascular leakage, which appears first as transient and asymptomatic but could lead, upon chronic dosing, to lung remodeling with functional impairments. Hence, this not only raises the question of organ specificity in the homeostasis of vascular barriers, but also provides insight into the pre-clinical evaluation of a potential safety window for S1P1 competitive antagonists as drug candidates.

  2. Beta-blocker use and clinical outcomes after primary vascular surgery

    DEFF Research Database (Denmark)

    Høgh, A.; Lindholt, J.S.; Nielsen, Henrik

    2013-01-01

    To explore the associations between beta-blocker use and clinical outcomes (death, hospitalisation with myocardial infarction (MI) or stroke, major amputation and recurrent vascular surgery) after primary vascular reconstruction.......To explore the associations between beta-blocker use and clinical outcomes (death, hospitalisation with myocardial infarction (MI) or stroke, major amputation and recurrent vascular surgery) after primary vascular reconstruction....

  3. The vascular basement membrane in the healthy and pathological brain.

    Science.gov (United States)

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  4. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2008-06-01

    The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.

  5. S.E. Mitchell Vascular Anomalies Flow Chart (SEMVAFC): A visual pathway combining clinical and imaging findings for classification of soft-tissue vascular anomalies

    International Nuclear Information System (INIS)

    Tekes, A.; Koshy, J.; Kalayci, T.O.; Puttgen, K.; Cohen, B.; Redett, R.; Mitchell, S.E.

    2014-01-01

    Classification of vascular anomalies (VAs) is challenging due to overlapping clinical symptoms, confusing terminology in the literature and unfamiliarity with this complex entity. It is important to recognize that VAs include two distinct entities, vascular tumours (VTs) and vascular malformations (VaMs). In this article, we describe SE Mitchell Vascular Anomalies Flow Chart (SEMVAFC), which arises from a multidisciplinary approach that incorporates clinical symptoms, physical examination and magnetic resonance imaging (MRI) findings to establish International Society for the Study of Vascular Anomalies (ISSVA)-based classification of the VAs. SEMVAFC provides a clear visual pathway for physicians to accurately diagnose Vas, which is important as treatment, management, and prognosis differ between VTs and VaMs

  6. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability

    Science.gov (United States)

    Li, Shuoran; Nih, Lina R.; Bachman, Haylee; Fei, Peng; Li, Yilei; Nam, Eunwoo; Dimatteo, Robert; Carmichael, S. Thomas; Barker, Thomas H.; Segura, Tatiana

    2017-09-01

    Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.

  7. [Thrombosis in vascular accesses for haemodialysis: rescue treatment using invasive vascular radiological techniques].

    Science.gov (United States)

    García Medina, J; Lacasa Pérez, N; Muray Cases, S; Pérez Garrido, I; García Medina, V

    2009-01-01

    The purpose of this paper is to communicate our experience in the salvage of thrombosed haemodialysis vascular accesses using interventional radiology techniques. In the last four years, we have treated, by radiological means, 101 thrombosed haemodialysis vascular accesses. There were 44 autologous arteriovenous fistulas (43.56%) and 57 PTFE grafts (56.44%). There were 69 men (68.3%) and 32 women (31.7%). The mean age was 67.73 years (range 33-84). The mean vascular access age was 23.79 months (range 1-132). Manual catheter-directed aspiration was used. Fragmented, triturated or pushed the thrombus against the pulmonary circulation was avoided in all cases. 78 accesses were salvaged (77.2%). Autologous fistulas average and PTFE grafts success rate were 84.44% and 71.42% respectively. Angioplasty in one or more lesions after thromboaspiration was performed in all accesses, except six (5.9%). Metallic endoprostheses were implanted in 14 accesses (13.9%). Mean follow-up was 9 months (range 0-44). Primary patency was 42.3% +/- 5 at 6 months and 32% +/- 4 at one year. Autologous fistulas patency was better than PTFE grafts patency (p better than PTFE grafts. This justifies interventional radiology techniques in these situations.

  8. Imaging of the peripheral vascular system

    International Nuclear Information System (INIS)

    Gould, S.A.; Pond, G.D.; Pinsky, S.; Moss, G.S.; Srikantaswamy, S.; Ryo, U.Y.

    1984-01-01

    This book is limited neither to the peripheral vascular system nor to diagnostic imaging techniques. Its 18 chapters cover nonimaging blood-flow techniques (Doppler ultrasound, plethysmography) as well as noninvasive and invasive imaging techniques (ultrasound, computed tomography, radionuclide digital-subtraction angiography, and contrast angiography). These are applied not only to the peripheral vascular system but also to the aorta and vena cava

  9. Gastroschisis, destructive brain lesions, and placental infarction in the second trimester suggest a vascular pathogenesis.

    Science.gov (United States)

    Folkerth, Rebecca D; Habbe, Donald M; Boyd, Theonia K; McMillan, Kristin; Gromer, Jessica; Sens, Mary Ann; Elliott, Amy J

    2013-01-01

    The cause and pathogenesis of gastroschisis are uncertain. We report the autopsy and placental pathology of a stillbirth at 20 gestational weeks, in which gastroschisis was accompanied by destructive lesions in the cerebral cortex and brainstem, as well as cardiac calcification, consistent with ischemic injury during the 2nd trimester. An important potential underlying mechanism explaining the fetal abnormalities is the presence of infarcts in the placenta, indicative at this gestational age of maternal vascular underperfusion. The association of gastroschisis with ischemic lesions in the brain, heart, and placenta in this case supports the concept that gastroschisis, at least in some instances, may result from vascular event(s) causing disruption of the fetal abdominal wall and resulting in the extrusion of the abdominal organs, as well as hypoxic-ischemic brain and cardiac injury.

  10. Detection and Quantification of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases in Primary Human Endothelial Cells.

    Science.gov (United States)

    Fearnley, Gareth W; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-01-01

    Proteins differ widely in their pattern of expression depending on organism, tissue, and regulation in response to changing conditions. In the mammalian vasculature, the endothelium responds to vascular endothelial growth factors (VEGFs) via membrane-bound receptor tyrosine kinases (VEGFRs) to modulate many aspects of vascular physiology including vasculogenesis, angiogenesis, and blood pressure. Studies on VEGFR biology are thus dependent on detecting expression levels in different cell types and evaluating how changes in protein levels correlate with changing conditions including circulating VEGF levels. Here, we present a robust immunoblot-based protocol for detecting and quantifying VEGFRs in human endothelial cells. Using internal and external standards, we can rapidly evaluate receptor copy number and assess how this is altered in response to the cellular environment.

  11. Effects of PPARγ ligands on vascular tone.

    Science.gov (United States)

    Salomone, Salvatore; Drago, Filippo

    2012-06-01

    Peroxisome Proliferator-Activated Receptor γ (PPARγ), originally described as a transcription factor for genes of carbohydrate and lipid metabolism, has been more recently studied in the context of cardiovascular pathophysiology. Here, we review the available data on PPARγ ligands as modulator of vascular tone. PPARγ ligands include: thiazolidinediones (used in the treatment of type 2 diabetes mellitus), glitazars (bind and activate both PPARγ and PPARα), and other experimental drugs (still in development) that exploit the chemistry of thiazolidinediones as a scaffold for PPARγ-independent pharmacological properties. In this review, we examine both short (mostly from in vitro data)- and long (mostly from in vivo data)-term effects of PPARγ ligands that extend from PPARγ-independent vascular effects to PPARγ-dependent gene expression. Because endothelium is a master regulator of vascular tone, we have attempted to differentiate between endothelium-dependent and endothelium-independent effects of PPARγ ligands. Based on available data, we conclude that PPARγ ligands appear to influence vascular tone in different experimental paradigms, most often in terms of vasodilatation (potentially increasing blood flow to some tissues). These effects on vascular tone, although potentially beneficial, must be weighed against specific cardiovascular warnings that may apply to some drugs, such as rosiglitazone.

  12. Endothelial dysfunction in metabolic and vascular disorders.

    Science.gov (United States)

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  13. Nanomedicine approaches in vascular disease: a review.

    Science.gov (United States)

    Gupta, Anirban Sen

    2011-12-01

    Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Evaluating Peripheral Vascular Injuries: Is Color Doppler Enough for Diagnosis?

    Directory of Open Access Journals (Sweden)

    Mohd Lateef Wani

    2014-03-01

    Full Text Available Background:: Vascular injury poses a serious threat to limb and life. Thus, diagnosis should be made immediately with minimally invasive methods. Doppler is a good aid in diagnosis of vascular injury. Methods:: The present prospective study was conducted on 150 patients who presented with soft signs (the signs which are suggestive but not confirmatory of vascular injury. They were subjected to color Doppler examination before exploration. The patients with the features of vascular injury on color Doppler were subjected to exploration. On the other hand, those who had normal Doppler were subjected to CT- angiography. Then, the findings of the exploration were matched with those of color Doppler. The data were analyzed using the SPSS statistical software. Results:: Out of the 150 Doppler examinations, 110 (73.33% were reported as positive, while 40 were reported as negative for vascular injury. These were subjected to CT-angiography and seven of them had the features of vascular injury on CT-angiography. All the patients with positive Doppler or CT angiography findings were subjected to exploration. Doppler had a sensitivity of 94% and specificity of 82.5% in diagnosis of vascular injury using Binary classification test. Conclusions:: Color Doppler is an easily available, reliable, and handy method of diagnosing a vascular injury. It has a very high sensitivity and specificity in diagnosis of vascular injuries.

  15. Joint Global War on Terror (GWOT) Vascular Injury Study 2

    Science.gov (United States)

    2017-02-01

    acquired in Iraq and Afghanistan, Society for Trauma Nurse, 2-4 April 2014, poster presentation o Vascular discharge education and follow-up care...eventual quality of limb and psychological recovery or well-being. 15. SUBJECT TERMS extremity vascular injury, extremity, vascular injury, vascular... psychological recovery or well-being. Finally, this program aims to characterize and compare the physical and emotional burden in large cohorts of US

  16. Vascular gastric anomalies as a cause of relapsing bleeding

    Directory of Open Access Journals (Sweden)

    Golubović Gradimir

    2008-01-01

    Full Text Available Background. Although relatively rare, gastric vascular anomalies can be recognized as a source of both chronic and acute blood loss, most often presenting as long term iron deficiency anemia, rarely as severe acute gastrointestinal bleeding. Case report. We present five patients with various gastric vascular anomalies, diagnosed during the year of 2003. in the Clinical Hospital Center Zemun. The diagnosis was based on endoscopic appearances, clinical history and characteristic histological findings. Gastric vascular anomalies presented in our review were: portal hypertensive gastropathy, gastric antral vascular ectasia, angiodysplasia, hereditary hemorrhagic telangiectasia and Dieulafoy lesion. The used treatment modalities included surgery and various endoscopic techniques (schlerotherapy, argon plasma coagulation. Conclusion. Patients presented with chronic iron deficiency anemia or acute and recurrent gastrointestinal hemorrhage should be considered as having one of gastric vascular anomalies.

  17. Vascular lesions of head and neck: A literature review

    Directory of Open Access Journals (Sweden)

    Nazia Masoom Syed

    2016-01-01

    Full Text Available Vascular lesions are among the most common congenital and neonatal abnormalities. These anomalies can occur throughout the whole body, with 60%, however, being located in the head and neck region probably due to its intricate vascular anatomy of region. There is a significant confusion in the literature because of the use of confusing descriptive terminology for the same vascular entity and eponyms. Correct naming of lesion, appropriate classification, and clinical appearance of vascular lesions have a direct impact on understanding of etiologies of these complex lesions, diagnosis, and in treating patients. Thus, the aim of this article is to provide comprehensive knowledge about classifications and to have an insight of various important vascular lesions affecting head and neck region based on its pathogenesis, clinical presentation, and management.

  18. Vascular effects of a single high salt meal

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel Kader Abdel Wahab

    2016-09-01

    Conclusion: High salt intake may acutely impair vascular function in different vascular beds independent of the increase of blood pressure. Plasma sodium increase may be one of the underlying mechanisms.

  19. Viral haemorrhagic fever and vascular alterations.

    Science.gov (United States)

    Aleksandrowicz, P; Wolf, K; Falzarano, D; Feldmann, H; Seebach, J; Schnittler, H

    2008-02-01

    Pathogenesis of viral haemorrhagic fever (VHF) is closely associated with alterations of the vascular system. Among the virus families causing VHF, filoviruses (Marburg and Ebola) are the most fatal, and will be focused on here. After entering the body, Ebola primarily targets monocytes/macrophages and dendritic cells. Infected dendritic cells are largely impaired in their activation potency, likely contributing to the immune suppression that occurs during filovirus infection. Monocytes/macrophages, however, immediately activate after viral contact and release reasonable amounts of cytokines that target the vascular system, particularly the endothelial cells. Some underlying molecular mechanisms such as alteration of the vascular endothelial cadherin/catenin complex, tyrosine phosphorylation, expression of cell adhesion molecules, tissue factor and the effect of soluble viral proteins released from infected cells to the blood stream will be discussed.

  20. Atrial fibrillation and vascular disease-a bad combination

    DEFF Research Database (Denmark)

    Bjerring Olesen, Jonas; Gislason, Gunnar Hilmar; Torp-Pedersen, Christian

    2012-01-01

    This article provides an overview of (i) the risk of stroke associated with vascular disease (acute coronary syndromes and peripheral artery disease) in patients with atrial fibrillation, (ii) the frequent coexistence of vascular disease in patients with atrial fibrillation and, (iii...... fibrillation. Indeed, patients with atrial fibrillation often had coexisting vascular disease (around 18%), and the combination of the two diseases substantially increases the risk of future cardiovascular events. The increased risk associated with peripheral artery disease in atrial fibrillation is even more...... pronounced. Patients with atrial fibrillation and stable vascular disease should be treated with oral anticoagulation only, although when these patients present with acute coronary syndrome and/or undergo coronary stenting, concomitant treatment with antiplatelet drugs is indicated. To guide antithrombotic...

  1. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    Science.gov (United States)

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Vascular Risk Factors and Clinical Progression in Spinocerebellar Ataxias

    Directory of Open Access Journals (Sweden)

    Raymond Y. Lo

    2015-02-01

    Full Text Available Background: The contributions of vascular risk factors to spinocerebellar ataxia (SCA are not known.Methods: We studied 319 participants with SCA 1, 2, 3, and 6 and repeatedly measured clinical severity using the Scale for Assessment and Rating of Ataxia (SARA for 2 years. Vascular risk factors were summarized by CHA2DS2-VASc scores as the vascular risk factor index. We employed regression models to study the effects of vascular risk factors on ataxia onset and progression after adjusting for age, sex, and pathological CAG repeats. Our secondary analyses took hyperlipidemia into account.Results: Nearly 60% of SCA participants were at low vascular risks with CHA2DS2-VASc = 0, and 31% scored 2 or greater. Higher CHA2DS2-VASc scores were not associated with either earlier onset or faster progression of ataxia. These findings were not altered after accounting for hyperlipidemia. Discussion: Vascular risks are not common in SCAs and are not associated with earlier onset or faster ataxia progression.

  3. Body Mass Index and Operating Times in Vascular Procedures

    Directory of Open Access Journals (Sweden)

    M. Durup-Dickenson

    Full Text Available : Introduction: The influence of body mass index (BMI on operating times in central and peripheral vascular surgical procedures was investigated. Report: A national cohort of Danish patients who underwent a vascular procedure between 1983 and 2012 was used for analysis. Data were analysed with pairwise comparisons of BMI groups for operating times using the independent samples Kruskall–Wallis test. Discussion: A total of 3,255 carotid endarterectomies; 6,885 central vascular procedures; and 4,488 peripheral bypasses were included for the analysis. Median operating times for carotid endarterectomy and central vascular procedures were, respectively, 5 and 15 minutes longer in obese patients than in normal weight patients. This represents a 7% and 10% increase in median operating times, respectively. Linear and multi-adjusted linear regressions were conducted adjusting for confounders, showing a significant correlation between BMI and operating time. Obesity significantly increased the operating times in carotid endarterectomy and central vascular procedures. These may have ramifications for the individual operative stress but not necessarily on logistical operation planning. Keywords: Body mass index (BMI, Obesity, Operating time, Surgery, Vascular surgical procedures

  4. Endovascular Management of Vascular Injury during Transsphenoidal Surgery

    OpenAIRE

    Çinar, C.; Bozkaya, H.; Parildar, M.; Oran, I.

    2013-01-01

    Vascular injury is an unusual and serious complication of transsphenoidal surgery. We aimed to define the role of angiography and endovascular treatment in patients with vascular injuries occurring during transsphenoidal surgery.

  5. Vascular malforma- tions part 1 — normal and abnormal vascular ...

    African Journals Online (AJOL)

    Enrique

    to form the primitive vascular plexus. Angiogenesis is the formation of new vessels by sprouting or splitting of ... The differentiation of primitive vessels into arteries, veins or capillaries is determined by flow patterns .... identify, but it is probable that as time progresses further specific genetic defects related to the development ...

  6. Vascular dementia | Connor | African Journal of Psychiatry

    African Journals Online (AJOL)

    Vascular dementia (VaD) is a common but heterogeneous condition in which there is a clear temporal relationship between the dementia and vascular disease. It may result from multiple large or small vessel strokes or a single strategic stroke. Subcortical ischaemic VaD includes multiple lacunes and subcortical ...

  7. Vascular tissue engineering by computer-aided laser micromachining.

    Science.gov (United States)

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  8. The pathology and pathophysiology of vascular dementia.

    Science.gov (United States)

    Kalaria, Raj N

    2017-12-19

    Vascular dementia (VaD) is widely recognised as the second most common type of dementia. Consensus and accurate diagnosis of clinically suspected VaD relies on wide-ranging clinical, neuropsychological and neuroimaging measures in life but more importantly pathological confirmation. Factors defining subtypes of VaD include the nature and extent of vascular pathologies, degree of involvement of extra and intracranial vessels and the anatomical location of tissue changes as well as time after the initial vascular event. Atherosclerotic and cardioembolic diseases combined appear the most common subtypes of vascular brain injury. In recent years, cerebral small vessel disease (SVD) has gained prominence worldwide as an important substrate of cognitive impairment. SVD is characterised by arteriolosclerosis, lacunar infarcts and cortical and subcortical microinfarcts and diffuse white matter changes, which involve myelin loss and axonal abnormalities. Global brain atrophy and focal degeneration of the cerebrum including medial temporal lobe atrophy are also features of VaD similar to Alzheimer's disease. Hereditary arteriopathies have provided insights into the mechanisms of dementia particularly how arteriolosclerosis, a major contributor of SVD promotes cognitive impairment. Recently developed and validated neuropathology guidelines indicated that the best predictors of vascular cognitive impairment were small or lacunar infarcts, microinfarcts, perivascular space dilation, myelin loss, arteriolosclerosis and leptomeningeal cerebral amyloid angiopathy. While these substrates do not suggest high specificity, VaD is likely defined by key neuronal and dendro-synaptic changes resulting in executive dysfunction and related cognitive deficits. Greater understanding of the molecular pathology is needed to clearly define microvascular disease and vascular substrates of dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evolutionary morphology of the hemolymph vascular system of basal araneomorph spiders (Araneae: Araneomorphae).

    Science.gov (United States)

    Huckstorf, Katarina; Michalik, Peter; Ramírez, Martín; Wirkner, Christian S

    2015-11-01

    The superfamily Austrochiloidea (Austrochilidae and Gradungulidae) take a pivotal position in araneomorph spider phylogeny. In this discussion crevice weaver spiders (Filistatidae) are of equal interest. Especially data from these phylogenetically uncertain yet basal off branching groups can enlighten our understanding on the evolution of organ systems. In the course of a survey on the evolutionary morphology of the circulatory system in spiders we therefore investigated the hemolymph vascular system in two austrochiloid and one filistatid species. Additionally some data on a hypochilid and a gradungulid species are included. Using up-to-date morphological methods, the vascular systems in these spiders are visualized three dimensionally. Ground pattern features of the circulatory systems in austrochiloid spiders are presented and the data discussed along recent lines of phylogenetic hypotheses. Special topics highlighted are the intraspecific variability of the origins of some prosomal arteries and the evolutionary correlation of respiratory and circulatory systems in spiders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Robotic vascular resections during Whipple procedure.

    Science.gov (United States)

    Allan, Bassan J; Novak, Stephanie M; Hogg, Melissa E; Zeh, Herbert J

    2018-01-01

    Indications for resection of pancreatic cancers have evolved to include selected patients with involvement of peri-pancreatic vascular structures. Open Whipple procedures have been the standard approach for patients requiring reconstruction of the portal vein (PV) or superior mesenteric vein (SMV). Recently, high-volume centers are performing minimally invasive Whipple procedures with portovenous resections. Our institution has performed seventy robotic Whipple procedures with concomitant vascular resections. This report outlines our technique.

  11. Spanish Clinical Guidelines on Vascular Access for Haemodialysis.

    Science.gov (United States)

    Ibeas, José; Roca-Tey, Ramon; Vallespín, Joaquín; Moreno, Teresa; Moñux, Guillermo; Martí-Monrós, Anna; Del Pozo, José Luis; Gruss, Enrique; Ramírez de Arellano, Manel; Fontseré, Néstor; Arenas, María Dolores; Merino, José Luis; García-Revillo, José; Caro, Pilar; López-Espada, Cristina; Giménez-Gaibar, Antonio; Fernández-Lucas, Milagros; Valdés, Pablo; Fernández-Quesada, Fidel; de la Fuente, Natalia; Hernán, David; Arribas, Patricia; Sánchez de la Nieta, María Dolores; Martínez, María Teresa; Barba, Ángel

    2017-11-01

    Vascular access for haemodialysis is key in renal patients both due to its associated morbidity and mortality and due to its impact on quality of life. The process, from the creation and maintenance of vascular access to the treatment of its complications, represents a challenge when it comes to decision-making, due to the complexity of the existing disease and the diversity of the specialities involved. With a view to finding a common approach, the Spanish Multidisciplinary Group on Vascular Access (GEMAV), which includes experts from the five scientific societies involved (nephrology [S.E.N.], vascular surgery [SEACV], vascular and interventional radiology [SERAM-SERVEI], infectious diseases [SEIMC] and nephrology nursing [SEDEN]), along with the methodological support of the Cochrane Center, has updated the Guidelines on Vascular Access for Haemodialysis, published in 2005. These guidelines maintain a similar structure, in that they review the evidence without compromising the educational aspects. However, on one hand, they provide an update to methodology development following the guidelines of the GRADE system in order to translate this systematic review of evidence into recommendations that facilitate decision-making in routine clinical practice, and, on the other hand, the guidelines establish quality indicators which make it possible to monitor the quality of healthcare. Copyright © 2017 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Vascular and valvular calcifications in chronic hemodialysis patients

    Directory of Open Access Journals (Sweden)

    María Elena Bruzzone

    2014-12-01

    Full Text Available Introduction: Vascular and valvular calcifications are a frequent complication in dialyzed patients and are connected to an increased morbi-mortality. Many radiological methods (TAC multiple slices and with electrons emission have been used to investigate the presence of vascular calcifications in this population, but only few works have been focused on simple radiology. Objectives: The objectives of this work are to evaluate vascular calcifications by means of Kauppila index in hemodialysis prevalent patients, identify linked risk factors and determine their association with heart valves calcification. Methods: 95 stable patients under hemodialysis were surveyed during a period of 6 months longer. Abdominal Rx simple profile were performed on all patients to evaluate calcification of abdominal aorta by Kauppila index and twodimensional echocardiogram to detect valvular calcifications. Data were collected about sex, age, diabetes, Hypertension, tabaquism, dislipemia and bone-mineral metabolism. Results: 64.5% of the patients showed vascular calcifications. Average Kauppila index was 6.25. Age and time on dialysis correlated with vascular calcifications. In 31.6 % of individuals valvular calcifications were found, which presented significant association with diabetes and Kauppila Index. Conclusions: Vascular and valvular calcifications were frequent in the surveyed population. Kauppila index correlated with age, time on dialysis and valvular calcifications. Heart valves calcification was associated with diabetes.

  13. Terror attacks increases the risk of vascular injuries

    Directory of Open Access Journals (Sweden)

    Eitan eHeldenberg

    2014-05-01

    Full Text Available Objectives: Extensive literature exists about military trauma as opposed to the very limited literature regarding terror-related civilian trauma. However, terror-related vascular trauma (VT, as a unique type of injury, is yet to be addressed.Methods: A retrospective analysis of the Israeli National Trauma Registry was performed. All patients in the registry from 09/2000 to 12/2005 were included. The subgroup of patients with documented vascular trauma (VT (N=1,545 was analyzedand further subdivided into those suffering from Terror-related Vascular Trauma (TVT and Non-Terror related Vascular Trauma (NTVT. Both groups were analyzed according to mechanism of trauma, type and severity of injury and treatment.Results: Out of 2,446 terror related trauma admissions 243 sustained TVT (9.9% compared to 1302 VT patients from Non Terror trauma (1.1%. TVT injuries tend to be more complex and most patients were operated on. ICU admissions and hospitallength of stay was higher in the TVT group. Penetrating trauma was the prominent cause of injury among the TVT group. TVT group had a higher proportion of patients with severe injuries (ISS>16 and mortality. Thorax injuries were more frequent in the TVT group. Extremity injuries were the most prevalent vascular injuries in both groups; however NTVT group had more upper extremity injuries, while the TVT group had significantly more lower extremity injuries.Conclusion: Vascular injuries are remarkably more common among terror attack victims than among non-terror trauma victims and the injuries of terror casualties tend to be more complex. The presence of a vascular surgeon will ensure a comprehensive clinical care.

  14. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    Science.gov (United States)

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All

  15. Pathophysiology of Headaches with a Prominent Vascular Component

    Directory of Open Access Journals (Sweden)

    Juan A Pareja

    1996-01-01

    Full Text Available Vascular changes, whether preliminary or secondary, seem to accompany most headaches. The literature concerning pathophysiological mechanisms in headaches where vascular phenomena are a major, integral part, ie, migraine and cluster headache syndrome, is reviewed and the most common forms of headache associated with cerebrovascular disease are discussed. Emphasis is placed on the vascular phenomena and on the abundant hypotheses and theories regarding headache mechanisms. This review also presents alternative explanatory models, and compares the available anatomical, physiological and biochemical results.

  16. Uncoupling Protein 2: A Key Player and a Potential Therapeutic Target in Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Giorgia Pierelli

    2017-01-01

    Full Text Available Uncoupling protein 2 (UCP2 is an inner mitochondrial membrane protein that belongs to the uncoupling protein family and plays an important role in lowering mitochondrial membrane potential and dissipating metabolic energy with prevention of oxidative stress accumulation. In the present article, we will review the evidence that UCP2, as a consequence of its roles within the mitochondria, represents a critical player in the predisposition to vascular disease development in both animal models and in humans, particularly in relation to obesity, diabetes, and hypertension. The deletion of the UCP2 gene contributes to atherosclerosis lesion development in the knockout mice, also showing significantly shorter lifespan. The UCP2 gene downregulation is a key determinant of higher predisposition to renal and cerebrovascular damage in an animal model of spontaneous hypertension and stroke. In contrast, UCP2 overexpression improves both hyperglycemia- and high-salt diet-induced endothelial dysfunction and ameliorates hypertensive target organ damage in SHRSP. Moreover, drugs (fenofibrate and sitagliptin and several vegetable compounds (extracts from Brassicaceae, berberine, curcumin, and capsaicin are able to induce UCP2 expression level and to exert beneficial effects on the occurrence of vascular damage. As a consequence, UCP2 becomes an interesting therapeutic target for the treatment of common human vascular diseases.

  17. Ghrelin improves vascular autophagy in rats with vascular calcification.

    Science.gov (United States)

    Xu, Mingming; Liu, Lin; Song, Chenfang; Chen, Wei; Gui, Shuyan

    2017-06-15

    This study aimed to investigate whether ghrelin ameliorated vascular calcification (VC) through improving autophagy. VC model was induced by nicotine plus vitamin D 3 in rats and β-glycerophosphate in vascular smooth muscle cell (VSMC). Calcium deposition was detected by von Kossa staining or alizarin red S staining. ALP activity was also detected. Western blot was used to assess the protein expression. Ghrelin treatment attenuated the elevation of calcium deposition and ALP activity in VC model both in vivo and in vitro. Interesting, the protein levels of autophagy markers, LC3 and beclin1 were significantly upregulated by ghrelin in VC model. An autophagy inhibitor, 3-methyladenine blocks the ameliorative effect of ghrelin on VC. Furthermore, protein expressions of phosphate-AMPK were increased by ghrelin treatment both in calcified aorta and VSMC. The effect of ghrelin on autophagy induction and VC attenuation was prevented by AMPK inhibitor, compound C. Our results suggested that ghrelin improved autophagy through AMPK activation, which was resulted in VC amelioration. These data maybe throw light on prevention and therapy of VC. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Vascular trauma: selected historical reflections from the

    Directory of Open Access Journals (Sweden)

    Rich Norman M

    2011-04-01

    Full Text Available 【Abstract】In the spirit of international exchanges of knowledge with colleagues from all over the world, who are interested in the care and treatment of vascular trauma, we offer selected historical reflections from the western world on vascular trauma. Whereas there are a number of key individuals and a variety of events that are important to us in our writing, we know essentially nothing about what is written by other cultures and, particularly, the Chinese. It is well recognized around the world that Chinese surgeons are among the first to be highly successful in re-plantation of severed extremities, repairing both injured arteries and veins. Also, we recognize that there are contributions in other parts of the world, which are not well known to us collectively. Contributions from the Arabic speaking part of the world come to mind because there is periodic brief reference. We offer our perspective hoping that there will be one or more Chinese surgeons who will offer us the benefit of sharing their perspective on important historical contributions to the managing of vascular trauma outside of the western world, and, particularly, the English speaking literature. Once again, we encourage our colleagues in the Arabic speaking world to provide us with their perspective of the development and management of vascular trauma. Key words: Vascular system injuries; History; Western world; International educational exchange

  19. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    Science.gov (United States)

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  20. Sugar-sweetened beverages, vascular risk factors and events

    DEFF Research Database (Denmark)

    Keller, Amelie; Heitmann, Berit L; Olsen, Nanna

    2015-01-01

    , while two of three studies, including both men and women, found direct associations between SSB consumption and stroke; however, the association was significant among women only. All included studies examining vascular risk factors found direct associations between SSB consumption and change in blood...... pressure, blood lipid or blood sugar. CONCLUSIONS: The reviewed studies generally showed that SSB intake was related to vascular risk factors, whereas associations with vascular events were less consistent. Due to a limited number of published papers, especially regarding vascular events, the strength......OBJECTIVE: A high intake of sugar-sweetened beverages (SSB) has been linked to weight gain, obesity and type 2 diabetes; however, the influence on CVD risk remains unclear. Therefore, our objective was to summarize current evidence for an association between SSB consumption and cardiovascular risk...

  1. Daptomycin treatment in Gram-positive vascular graft infections

    Directory of Open Access Journals (Sweden)

    Francisco Arnaiz de las Revillas

    2018-03-01

    Full Text Available Background: Daptomycin is a bactericidal antibiotic approved for the treatment of skin and soft tissue infections and right-side endocarditis. However, there is a lack of published data outlining its usefulness in vascular graft infections (VGI. The aim of this study was to describe the clinical experience of daptomycin use in the treatment of VGI caused by Gram-positive bacteria. Methods: This was a retrospective cohort study of patients diagnosed with VGI receiving daptomycin at a tertiary care hospital during the period January 2010 to December 2012. Results: Of a total 1066 consecutive patients who had undergone vascular grafts (VG, 25 were diagnosed with VGI. Fifteen of these patients (11 prosthetic VG, three autologous VG, one both types received daptomycin (median dose 6.7 mg/kg/day, range 4.1–7.1 mg/kg/day; median age 69 years, range 45–83 years; 80% male. The infected bypass was removed in 13 cases. The most common reason for selecting daptomycin was kidney failure (53%. The Gram-positive organisms isolated were coagulase-negative Staphylococcus (n = 10, Staphylococcus aureus (n = 3 (two methicillin-resistant S. aureus, Enterococcus faecium (n = 2, and Enterococcus faecalis (n = 1. The mean follow-up was 69 months (interquartile range 48–72 months. Ten patients (66.7% achieved complete healing of the VGI. A recurrence of the infection was observed in 100% of patients in whom the bypass was not removed. Among patients who did not achieve complete healing, one needed a supracondylar amputation and one died as a consequence of infection. Five patients received treatment with rifampicin in addition to daptomycin and they were all cured. Conclusions: The use of daptomycin and surgery for Gram-positive VGI was effective and well tolerated, and this may be a good alternative for the treatment of VGI in patients with peripheral arterial disease in whom renal insufficiency is common. Keywords: Daptomycin, Gram-positive, Vascular

  2. Association Between Retinal Vascular Calibre and Blindness in Young Patients With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Rasmussen, Malin Lundberg; Lundberg, Lars Kristian; Frydkjær-Olsen, Ulrik

    retinopathy ranged between no retinopathy (20 eyes, 55.6%), mild NPDR (15 eyes, 41.6%) and moderate NPDR (1 eye, 2.8%). From baseline retinal photos, central retinal artery and vein equivalent (CRAE and CRVE) was calculated in the validated semi-automated computer program IVAN using the Big6 method. Two eyes......Association Between Retinal Vascular Calibre and Blindness in Young Patients With Type 1 Diabetes Purpose To examine the association between retinal vascular calibre and incident blindness caused by diabetic retinopathy in young patients with type 1 diabetes. Methods A case-control study of 6...... years. Incident blindness was defined for patients who registered between 1995 and 2010 in the Danish Association of the Blind, which is a voluntary organization open for patients with a visual acuity at or below 6/60 (0.1) in the best eye. Each blind patient was matched with 3 controls regarding age...

  3. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention.

    Science.gov (United States)

    Nilsson, Peter M; Boutouyrie, Pierre; Cunha, Pedro; Kotsis, Vasilios; Narkiewicz, Krzysztof; Parati, Gianfranco; Rietzschel, Ernst; Scuteri, Angelo; Laurent, Stephane

    2013-08-01

    The ageing of the vascular tree is a fundamental reflection of biological ageing in general and a determinant of organ function. In the arterial wall this is characterized by a reduction in the elastin content, as well as by an increased content of collagen and its cross-linkages, leading to increased arterial stiffness and elevated central as well as brachial blood pressure, accompanied by increased SBP variability. In recent years a better understanding of these processes have led to the proposal of a condition named early vascular ageing (EVA) in patients with increased arterial stiffness for their age and sex. This is a condition that could increase cardiovascular risk and is associated with various degrees of cognitive dysfunction, as well as other features of biological ageing. This brief review aims to give an update on EVA and how the concept can be used in clinical practice.

  4. Intraoperative digital angiography: Peripheral vascular applications

    International Nuclear Information System (INIS)

    Bell, K.; Reifsteck, J.E.; Binet, E.F.; Fleisher, H.J.

    1986-01-01

    Intraoperative digital angiography is the procedure of choice for the peripheral vascular surgeon who wishes to evaluate his results before terminating anesthesia. Two operating suites at the John L. McClellan Memorial Veterans Hospital are equipped with permanent ceiling-mounted Philips C-arm fluoroscopes and share an ADAC 4100 digital angiographic system. In the last 18 months, 40 peripheral vascular intraoperative digital angiographic procedures have been performed, in all but two cases using direct arterial puncture. In 65% of cases, the intraoperative study showed no significant abnormality. In 12.5%, minor abnormalities not requiring reoperation were seen. In 22.5% of cases, the intraoperative digital angiogram revealed a significant abnormality requiring immediate operative revision. None of the patients who underwent reoperation experienced postoperative sequelae. Intraoperative digital angiography is useful in identifying complications of peripheral vascular operations

  5. Vascular Surgery and Robotics

    Directory of Open Access Journals (Sweden)

    Indrani Sen

    2016-01-01

    Full Text Available The application of robotics to Vascular surgery has not progressed as rapidly as of endovascular technology, but this is changing with the amalgamation of these two fields. The advent of Endovascular robotics is an exciting field which overcomes many of the limitations of endovascular therapy like vessel tortuosity and operator fatigue. This has much clinical appeal for the surgeon and hold significant promise of better patient outcomes. As with most newer technological advances, it is still limited by cost and availability. However, this field has seen some rapid progress in the last decade with the technology moving into the clinical realm. This review details the development of robotics, applications, outcomes, advantages, disadvantages and current advances focussing on Vascular and Endovascular robotics

  6. Evaluation of the relationship between renal function and renal volume-vascular indices using 3D power Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cansu, Aysegul, E-mail: drcansu@gmail.com; Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Ozturk, Mehmet Halil; Dinc, Hasan

    2014-07-15

    Purpose: To investigate the relationship between renal function and total renal volume-vascular indices using 3D power Doppler ultrasound (3DPDUS). Materials and methods: One hundred six patients with hypertensive proteinuric nephropathy (HPN) (49 male, 57 female) and 65 healthy controls (32 male, 33 female) were evaluated prospectively using 3DPDUS. Total renal volume (RV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL). The estimated glomerular filtration rates (GFRs) of the patients with HPN and the control group were calculated. The patients with HPN were divided into two groups on the basis of GFR, normal (≥90) or reduced (<90). Differences between groups were compared using ANOVA. Correlations between GFR, renal volume and vascular indices were analyzed using Pearson's correlation analysis. Significance was set at p < 0.05. Results: The mean total RV, VI, FI and VFI values in the reduced GFR, normal GFR and control groups were RV (ml): 234.7, 280.7 and 294.6; VI: 17.6, 27.6 and 46.8; FI: 79.1, 88.7 and 93.9 and VFI: 7.1, 12.7 and 23.8. There were statistically significant differences between the groups (p < 0.001). Total RVs and vascular indices exhibited significant correlations with estimated GFR (r = 0.53–0.59, p < 0.001) Conclusion: Three-dimensional power Doppler ultrasound is a reliable predictive technique in renal function analysis.

  7. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    Science.gov (United States)

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Histological and three dimensional organizations of lymphoid tubules in normal lymphoid organ of Penaeus monodon.

    Science.gov (United States)

    Duangsuwan, Pornsawan; Phoungpetchara, Ittipon; Tinikul, Yotsawan; Poljaroen, Jaruwan; Wanichanon, Chaitip; Sobhon, Prasert

    2008-04-01

    The normal lymphoid organ of Penaeus monodon (which tested negative for WSSV and YHV) was composed of two parts: lymphoid tubules and interstitial spaces, which were permeated with haemal sinuses filled with large numbers of haemocytes. There were three permanent types of cells present in the wall of lymphoid tubules: endothelial, stromal and capsular cells. Haemocytes penetrated the endothelium of the lymphoid tubule's wall to reside among the fixed cells. The outermost layer of the lymphoid tubule was covered by a network of fibers embedded in a PAS-positive extracellular matrix, which corresponded to a basket-like network that covered all the lymphoid tubules as visualized by a scanning electron microscope (SEM). Argyrophilic reticular fibers surrounded haemal sinuses and lymphoid tubules. Together they formed the scaffold that supported the lymphoid tubule. Using vascular cast and SEM, the three dimensional structure of the subgastric artery that supplies each lobe of the lymphoid organ was reconstructed. This artery branched into highly convoluted and blind-ending terminal capillaries, each forming the lumen of a lymphoid tubule around which haemocytes and other cells aggregated to form a cuff-like wall. Stromal cells which form part of the tubular scaffold were immunostained for vimentin. Examination of the whole-mounted lymphoid organ, immunostained for vimentin, by confocal microscopy exhibited the highly branching and convoluted lymphoid tubules matching the pattern of the vascular cast observed in SEM.

  9. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    Science.gov (United States)

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  10. Clinical applications of robotic technology in vascular and endovascular surgery.

    Science.gov (United States)

    Antoniou, George A; Riga, Celia V; Mayer, Erik K; Cheshire, Nicholas J W; Bicknell, Colin D

    2011-02-01

    Emerging robotic technologies are increasingly being used by surgical disciplines to facilitate and improve performance of minimally invasive surgery. Robot-assisted intervention has recently been introduced into the field of vascular surgery to potentially enhance laparoscopic vascular and endovascular capabilities. The objective of this study was to review the current status of clinical robotic applications in vascular surgery. A systematic literature search was performed in order to identify all published clinical studies related to robotic implementation in vascular intervention. Web-based search engines were searched using the keywords "surgical robotics," "robotic surgery," "robotics," "computer assisted surgery," and "vascular surgery" or "endovascular" for articles published between January 1990 and November 2009. An evaluation and critical overview of these studies is reported. In addition, an analysis and discussion of supporting evidence for robotic computer-enhanced telemanipulation systems in relation to their applications in laparoscopic vascular and endovascular surgery was undertaken. Seventeen articles reporting on clinical applications of robotics in laparoscopic vascular and endovascular surgery were detected. They were either case reports or retrospective patient series and prospective studies reporting laparoscopic vascular and endovascular treatments for patients using robotic technology. Minimal comparative clinical evidence to evaluate the advantages of robot-assisted vascular procedures was identified. Robot-assisted laparoscopic aortic procedures have been reported by several studies with satisfactory results. Furthermore, the use of robotic technology as a sole modality for abdominal aortic aneurysm repair and expansion of its applications to splenic and renal artery aneurysm reconstruction have been described. Robotically steerable endovascular catheter systems have potential advantages over conventional catheterization systems

  11. Reimbursement in hospital-based vascular surgery: Physician and practice perspective.

    Science.gov (United States)

    Perri, Jennifer L; Zwolak, Robert M; Goodney, Philip P; Rutherford, Gretchen A; Powell, Richard J

    2017-07-01

    The purpose of this study was to determine change in value of a vascular surgery division to the health care system during 6 years at a hospital-based academic practice and to compare physician vs hospital revenue earned during this period. Total revenue generated by the vascular surgery service line at an academic medical center from 2010 through 2015 was evaluated. Total revenue was measured as the sum of physician (professional) and hospital (technical) net revenue for all vascular-related patient care. Adjustments were made for work performed, case complexity, and inflation. To reflect the effect of these variables, net revenue was indexed to work relative value units (wRVUs), case mix index, and consumer price index, which adjusted for work, case complexity, and inflation, respectively. Differences in physician and hospital net revenue were compared over time. Physician work, measured in RVUs per year, increased by 4%; case complexity, assessed with case mix index, increased by 10% for the 6-year measurement period. Despite stability in payer mix at 64% to 69% Medicare, both physician and hospital vascular-related revenue/wRVU decreased during this period. Unadjusted professional revenue/wRVU declined by 14.1% (P = .09); when considering case complexity, physician revenue/wRVU declined by 20.6% (P = .09). Taking into account both case complexity and inflation, physician revenue declined by 27.0% (P = .04). Comparatively, hospital revenue for vascular surgery services decreased by 13.8% (P = .07) when adjusting for unit work, complexity, and inflation. At medical centers where vascular surgeons are hospital based, vascular care reimbursement decreased substantially from 2010 to 2015 when case complexity and inflation were considered. Physician reimbursement (professional fees) decreased at a significantly greater rate than hospital reimbursement for vascular care. This trend has significant implications for salaried vascular surgeons in hospital

  12. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    Paine, N.J.; Ring, C.; Bosch, J.A.; Drayson, M.T.; Aldred, S.; Veldhuijzen van Zanten, J.J.C.S.

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  13. Vascular diagnostics for Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Dinsdale G

    2014-10-01

    Full Text Available Graham Dinsdale, Ariane L Herrick Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK Abstract: Raynaud's phenomenon (RP is common, and in most patients is primary (idiopathic when due to reversible vasospasm and does not progress to irreversible tissue injury. However, in those patients for whom RP is secondary to an underlying disease (eg, systemic sclerosis or atherosclerosis, progression to digital ulceration or critical ischemia can occur. Therefore, the key question for the clinician is “Why does this patient have RP?” Vascular diagnostics play a key role in answering this. In this review, we firstly discuss the different vascular investigations relevant to clinical practice: nail fold capillaroscopy (including the different methodologies for examining the nail fold capillaries, and the role of capillaroscopy in helping to differentiate between primary and systemic sclerosis-related RP, thermography (available in specialist centers, and evaluation of large vessel disease (for example, due to atherosclerosis. We then discuss research tools, mainly laser Doppler methods, including laser Doppler imaging and laser speckle contrast imaging. These are commercially available as complete imaging systems and are (relatively easy to use. The main current goal in vascular imaging research is to validate these novel state-of-the-art techniques as outcome measures of digital vascular disease, and then apply them in early and later phase studies of new treatment approaches, thus facilitating drug development programs. Keywords: Raynaud's phenomenon, systemic sclerosis, nail fold capillaroscopy, thermography, laser Doppler, angiography

  14. Biomimicry, vascular restenosis and coronary stents.

    Science.gov (United States)

    Schwartz, R S; van der Giessen, W J; Holmes, D R

    1998-01-01

    Biomimicry is in its earliest stages and is being considered in the realm of tissue engineering. If arterial implants are to limit neointimal thickening, purely passive structures cannot succeed. Bioactivity must be present, either by pharmacologic intervention or by fabricating a 'living stent' that contains active cellular material. As tissue engineering evolves, useful solutions will emerge from applying this knowledge directly to vascular biologic problems resulting from angioplasty, stenting, and vascular prosthesis research.

  15. The current role of vascular stents.

    Science.gov (United States)

    Busquet, J

    1993-09-01

    The limitations of percutaneous balloon angioplasty have favoured the development and the use of vascular endoprostheses or stents. These thin-walled metal devices maintain after expansion, an optimal and constant diameter for the vascular lumen. Restenosis, dissection, abrupt closure, residual stenosis or re-opened total occlusion represent appropriate indications for stenting. A large experience with non-coronary application of stents is currently available in iliac, femoro-popliteal and renal arteries, aorta, large veins.

  16. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    Science.gov (United States)

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    Science.gov (United States)

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  18. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    Science.gov (United States)

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Matrix ageing and vascular impacts: focus on elastin fragmentation.

    Science.gov (United States)

    Duca, Laurent; Blaise, Sébastien; Romier, Béatrice; Laffargue, Muriel; Gayral, Stéphanie; El Btaouri, Hassan; Kawecki, Charlotte; Guillot, Alexandre; Martiny, Laurent; Debelle, Laurent; Maurice, Pascal

    2016-06-01

    Cardiovascular diseases (CVDs) are the leading cause of death worldwide and represent a major problem of public health. Over the years, life expectancy has considerably increased throughout the world, and the prevalence of CVD is inevitably rising with the growing ageing of the population. The normal process of ageing is associated with progressive deterioration in structure and function of the vasculature, commonly called vascular ageing. At the vascular level, extracellular matrix (ECM) ageing leads to molecular alterations in long half-life proteins, such as elastin and collagen, and have critical effects on vascular diseases. This review highlights ECM alterations occurring during vascular ageing with a specific focus on elastin fragmentation and also the contribution of elastin-derived peptides (EDP) in age-related vascular complications. Moreover, current and new pharmacological strategies aiming at minimizing elastin degradation, EDP generation, and associated biological effects are discussed. These strategies may be of major relevance for preventing and/or delaying vascular ageing and its complications. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  20. Diverse Imaging characteristics of a mandibular intraosseous vascular lesion

    International Nuclear Information System (INIS)

    Handa, Hina; Naidu, Giridhar S.; Dara, Balaji Gandhi Babu; Deshpande, Ashwini; Raghavendra, Raju

    2014-01-01

    Intraosseous vascular lesions of the maxillofacial region are rare, and the differential diagnosis of intraosseous vascular malformations from other jaw lesions can be challenging. In the present case, magnetic resonance imaging and three-dimensional computed tomographic angiography (CTA) was used for diagnosis, and the lesion was treated with surgical excision. Diverse characteristics such as the 'honeycomb' and 'sunburst' radiographic appearances and the absence of major peripheral feeder vessels in the CTA were noted. Intraosseous vascular malformations have a varied radiographic appearance, and the nomenclature of these lesions is equally diverse, with several overlapping terms. Pathologists do not generally differentiate among intraosseous vascular lesions on the basis of histopathology, although these lesions may present with contrasting immunohistochemical and clinical behaviors requiring varied treatment strategies. This case report highlights the need for multiple imaging modalities to differentiate among vascular lesions, as well as to better understand the behaviors of these unique lesions.

  1. Generation of a vascularized organoid using skeletal muscle as the inductive source.

    LENUS (Irish Health Repository)

    Messina, Aurora

    2005-09-01

    The technology required for creating an in vivo microenvironment and a neovasculature that can grow with and service new tissue is lacking, precluding the possibility of engineering complex three-dimensional organs. We have shown that when an arterio-venous (AV) loop is constructed in vivo in the rat groin, and placed inside a semisealed chamber, an extensive functional vasculature is generated. To test whether this unusually angiogenic environment supports the survival and growth of implanted tissue or cells, we inserted various preparations of rat and human skeletal muscle. We show that after 6 weeks incubation of muscle tissue, the chamber filled with predominantly well-vascularized recipient-derived adipose tissue, but some new donor-derived skeletal muscle and connective tissue were also evident. When primary cultured myoblasts were inserted into the chamber with the AV loop, they converted to mature striated muscle fibers. Furthermore, we identify novel adipogenesis-inducing properties of skeletal muscle. This represents the first report of a specific three-dimensional tissue grown on its own vascular supply.

  2. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    International Nuclear Information System (INIS)

    Erlbacher, K M T; Minnich, B

    2015-01-01

    The present study focuses on the effects of Δ 9 -tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ 9 -THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ 9 -tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ 9 -THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry. (paper)

  3. The effects of Δ9-Tetrahydrocannabinole treatment on gonadal micro-vascularization and affected fertility examined by SEM and 3D-morphometry

    Science.gov (United States)

    Erlbacher, K. M. T.; Minnich, B.

    2015-10-01

    The present study focuses on the effects of Δ9-tetrahydrocannabinol (THC) on the reproductive system in nude rats with special emphasis on how Δ9-THC impacts the vascularization of testes which in turn indirectly influences fertility. Basically, Δ9-tetrahydrocannabinol (THC) causes not only negative (psychoactive) effects in the human body as cannabinole administration in medical use (dose-dependent) offers multiple new treatment opportunities such as pain relief or containment of various cancers. Concerning the reproductive system it strongly influences CB-receptors along the hypothalamic-pituitary-gonadal axis resulting in reduced plasma testosterone levels. There is also altered sperm quality parameters reported such as sperm motility or sperm count. On the other hand Δ9-THC effects endothelial growth factors (VEGF, Ang-1 etc.) respectively acts on their specific receptors which in turn modify angiogenesis and vascularization of tissues and organs (e.g. tumorous tissues). This leads to new therapeutical strategies in the suppression of various cancers by inhibiting (neo-)vascularization and in turn famishment of tumorous tissues (lack of nutrition supply). Here we studied the micro-vascularization of gonads in a long-term THC-treated nude rat model by vascular corrosion casting, SEM and 3D-morphometry.

  4. EUS-Guided Vascular Procedures: A Literature Review

    Directory of Open Access Journals (Sweden)

    Tomislav Bokun

    2013-01-01

    Full Text Available Endoscopic ultrasound (EUS is continuously stepping into the therapeutic arena, simultaneously evolving in different directions, such as the management of pancreatic and biliary diseases, celiac neurolysis, delivering local intratumoral therapy, and EUS-guided endosurgery. EUS-guided vascular procedures are also challenging, considering the variety of vascular pathology, proximity of the vascular structures to the GI tract wall, high resolution, and real-time guidance offering an attractive access route and precise delivery of the intervention. The literature on vascular therapeutic EUS demonstrates techniques for the management of upper GI variceal and nonvariceal bleeding, pseudoaneurysms, and coiling and embolization procedures, as well as the creation of intrahepatic portosystemic shunts. The paucity of studies, diversity of study designs, and the number of animal model studies hamper a systematic approach to the conclusion and decision making important to clinicians and healthcare policy makers. Nevertheless, theoretical benefits and findings up to date concerning technical feasibility, efficacy, and safety of the procedures drive further research and development in this rather young therapeutic arena.

  5. Hearts and minds: linking vascular rigidity and aerobic fitness with cognitive aging.

    Science.gov (United States)

    Gauthier, Claudine Joëlle; Lefort, Muriel; Mekary, Saïd; Desjardins-Crépeau, Laurence; Skimminge, Arnold; Iversen, Pernille; Madjar, Cécile; Desjardins, Michèle; Lesage, Frédéric; Garde, Ellen; Frouin, Frédérique; Bherer, Louis; Hoge, Richard D

    2015-01-01

    Human aging is accompanied by both vascular and cognitive changes. Although arteries throughout the body are known to become stiffer with age, this vessel hardening is believed to start at the level of the aorta and progress to other organs, including the brain. Progression of this vascular impairment may contribute to cognitive changes that arise with a similar time course during aging. Conversely, it has been proposed that regular exercise plays a protective role, attenuating the impact of age on vascular and metabolic physiology. Here, the impact of vascular degradation in the absence of disease was investigated within 2 groups of healthy younger and older adults. Age-related changes in executive function, elasticity of the aortic arch, cardiorespiratory fitness, and cerebrovascular reactivity were quantified, as well as the association between these parameters within the older group. In the cohort studied, older adults exhibited a decline in executive functions, measured as a slower performance in a modified Stroop task (1247.90 ± 204.50 vs. 898.20 ± 211.10 ms on the inhibition and/or switching component, respectively) than younger adults. Older participants also showed higher aortic pulse wave velocity (8.98 ± 3.56 vs. 3.95 ± 0.82 m/s, respectively) and lower VO₂ max (29.04 ± 6.92 vs. 42.32 ± 7.31 mL O2/kg/min, respectively) than younger adults. Within the older group, faster performance of the modified Stroop task was associated with preserved aortic elasticity (lower aortic pulse wave velocity; p = 0.046) and higher cardiorespiratory fitness (VO₂ max; p = 0.036). Furthermore, VO₂ max was found to be negatively associated with blood oxygenation level dependent cerebrovascular reactivity to CO₂ in frontal regions involved in the task (p = 0.038) but positively associated with cerebrovascular reactivity in periventricular watershed regions and within the postcentral gyrus. Overall, the results of this study support the hypothesis that cognitive

  6. Evaluation of ultrasound-guided vascular access in dogs.

    Science.gov (United States)

    Chamberlin, Scott C; Sullivan, Lauren A; Morley, Paul S; Boscan, Pedro

    2013-01-01

    To describe the technique and determine the feasibility, success rate, perceived difficulty, and time to vascular access using ultrasound guidance for jugular vein catheterization in a cardiac arrest dog model. Prospective descriptive study. University teaching hospital. Nine Walker hounds. A total of 27 jugular catheterizations were performed postcardiac arrest using ultrasound guidance. Catheterizations were recorded based on the order in which they were performed and presence/absence of a hematoma around the vein. Time (minutes) until successful vascular access and perceived difficulty in achieving vascular access (scale of 1 = easy to 10 = difficult) were recorded for each catheterization. Mean time to vascular access was 1.9 minutes (95% confidence interval, 1.1-3.4 min) for catheterizations without hematoma, versus 4.3 minutes (1.8-10.1 min) for catheterizations with hematoma (P = 0.1). Median perceived difficulty was 2 of 10 (range 1-7) for catheterizations without hematoma, versus 2 of 10 (range 1-8) for catheterizations with hematoma (P = 0.3). A learning curve was evaluated by comparing mean time to vascular access and perceived difficulty in initial versus subsequent catheterizations. Mean time to vascular access was 2.5 minutes (1.0-6.4 min) in the initial 13 catheterizations versus 3.3 minutes (1.5-7.5 min) in the subsequent 14 catheterizations (P = 0.6). Median perceived difficulty in the first 13 catheterizations (3, range 1-8) was significantly greater (P = 0.049) than median perceived difficulty in the subsequent 14 catheterizations (2, range 1-6). Ultrasound-guided jugular catheterization is associated with a learning curve but is successful in obtaining rapid vascular access in dogs. Further prospective studies are warranted to confirm the utility of this technique in a clinical setting. © Veterinary Emergency and Critical Care Society 2013.

  7. Vascular pathology: Cause or effect in Alzheimer disease?

    Science.gov (United States)

    Rius-Pérez, S; Tormos, A M; Pérez, S; Taléns-Visconti, R

    2018-03-01

    Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead to neuronal damage and dementia. Destruction of the organisation of the blood brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context would thus be responsible for any subsequent neuronal damage since these factors promote aggregation of β-amyloid peptide in the brain. The link between neurodegeneration and vascular dysfunction pathways has provided new drug targets and therapeutic approaches that will add to the treatments for AD. It is difficult to determine whether the vascular component in AD is the cause or the effect of the disease, but there is no doubt that vascular pathology has an important relationship with AD. Vascular dysfunction is likely to act synergistically with neurodegenerative changes in a cycle that exacerbates the cognitive impairment found in AD. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Radiological findings and interventions for iatrogenic vascular injuries

    International Nuclear Information System (INIS)

    Lee, Kyoung Ho; Chung, Jin Wook; Kim, Tae Kyoung; Han, Sang Wook; Lee, Jong Seog; Park, Jae Hyung; Kim, Jong Hyo; Han, Man Chung

    1998-01-01

    The purpose of this study is to evaluate the radiological findings and effectiveness of radiological interventions in patients with iatrogenic vascular injuries. We analyzed 50 patients with iatrogenic vascular injuries treated with radiological intervention. The causes of injuries were surgery (n=20), cardiovascular intervention (n=15), non-cardiovascular radiological intervention (n=14), and endoscopic intervention (n=1). The injury had resulted in hemorrhage in 35 cases. The iliac and/or femoral, hepatic, and renal vessels were commonly injured. Angiography, ultrasonography with Doppler examination, CT, and CT angiography were performed to diagnose vascular injuries and guide the radiological intervention. The mean follow-up period was 23 months and in 16 cases was more than one year. the major radiological findings were extravasation, pseudoaneurysm, arteriovenous shunt, or vascular obstruction. To control these lesions, radiological interventions such as embolization (n=36), local urokinase administration, stent insertion, foreign body removal, ultrasonography-guided compression, or stent-graft insertion were performed. The clinical problems were immediately controlled by the single trials of radiological interventions and did not recur in 40 cases (80%). Radiological examinations and interventions are useful in cases with iatrogenic vascular injuries. (author). 14 refs., 4 figs

  9. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.; Byrne, H. M.; Chen, T.; Estrella, V.; Alarcó n, T.; Lapin, A.; Gatenby, R. A.; Gillies, R. J.; Lloyd, M. C.; Maini, P. K.; Reuss, M.; Owen, M. R.

    2012-01-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  10. 3D Multiscale Modelling of Angiogenesis and Vascular Tumour Growth

    KAUST Repository

    Perfahl, H.

    2012-11-01

    We present a three-dimensional, multiscale model of vascular tumour growth, which couples nutrient/growth factor transport, blood flow, angiogenesis, vascular remodelling, movement of and interactions between normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. We present computational simulations which show how a vascular network may evolve and interact with tumour and healthy cells. We also demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.

  11. Review of gestational diabetes mellitus effects on vascular structure and function.

    Science.gov (United States)

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.

  12. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Retinal artery occlusion and associated recurrent vascular risk with underlying etiologies.

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Hong

    Full Text Available RAO is caused by various etiologies and subsequent vascular events may be associated with underlying etiologies. Our aim is to investigate the etiologies of RAO, the occurrence of subsequent vascular events and their association in patients with RAO.We analyzed data from 151 consecutive patients presenting with acute non-arteritic RAO between 2003 and 2013 in a single tertiary-care hospital. The primary outcome was the occurrence of a vascular event defined as stroke, myocardial infarction, and vascular death within 365 days of the RAO onset. The Kaplan-Meier survival analysis and Cox proportional hazard model were used to estimate the hazard ratio of the vascular events.Large artery atherosclerosis (LAA was the etiology more frequently associated with of RAO (41.1%, 62/151. During the one year follow-up, ischemic stroke and vascular events occurred in 8.6% and 9.9% of patients, respectively. Ten vascular events occurred in RAO patients attributed to LAA and 4 occurred in undetermined etiology. RAO patients with LAA had a nearly four times higher risk of vascular events compared to those without LAA (hazard ratio 3.94, 95% confidence interval 1.21-12.81. More than a half of all events occurred within one month and over three fourths of ischemic strokes occurred ipsilateral to the RAO.After occurrence of RAO, there is a high risk of a subsequent vascular event, particularly ipsilateral stroke, within one month. LAA is an independent factor for the occurrence of a subsequent vascular event. Management for the prevention of secondary vascular events is necessary in patients with RAO especially with LAA. Large clinical trials are needed to confirm these findings.

  14. Cutaneous vascular anomalies associated with neural tube defects: nomenclature and pathology revisited.

    Science.gov (United States)

    Maugans, Todd; Sheridan, Rachel M; Adams, Denise; Gupta, Anita

    2011-07-01

    Lumbosacral cutaneous vascular anomalies associated with neural tube defects are frequently described in the literature as "hemangiomas." The classification system for pediatric vascular anomalies developed by the International Society for the Study of Vascular Anomalies provides a framework to accurately diagnose these lesions. To apply this classification to vascular cutaneous anomalies overlying myelodysplasias. A retrospective analysis of patients with neural tube defects and lumbosacral cutaneous vascular lesions was performed. All eligible patients had detailed histopathologic analysis of skin and spinal cord/placode lesions. Clinical and radiologic features were analyzed. Conventional histology and GLUT-1 immunostaining were performed to differentiate infantile capillary hemangiomas from capillary vascular malformations. Ten cases with cutaneous lesions associated with neural tube defects were reviewed. Five lesions were diagnosed as infantile capillary hemangiomas based upon histology and positive GLUT-1 endothelial reactivity. These lesions had a strong association with dermal sinus tracts. No reoperations were required for residual intraspinal vascular lesions, and overlying cutaneous vascular anomalies involuted with time. The remaining 5 lesions were diagnosed as capillary malformations. These occurred with both open and closed neural tube defects, did not involute, and demonstrated enlargement and darkening due to vascular congestion. The International Society for the Study of Vascular Anomalies scheme should be used to describe the cutaneous vascular lesions associated with neural tube defects: infantile capillary hemangiomas and capillary malformations. We advocate that these lesions be described as "vascular anomalies" or "stains" pending accurate diagnosis by clinical, histological, and immunohistochemical evaluations.

  15. Major lipids, apolipoproteins, and risk of vascular disease

    DEFF Research Database (Denmark)

    Collaboration, Emerging Risk Factors; Di Angelantonio, Emanuele; Sarwar, Nadeem

    2009-01-01

    CONTEXT: Associations of major lipids and apolipoproteins with the risk of vascular disease have not been reliably quantified. OBJECTIVE: To assess major lipids and apolipoproteins in vascular risk. DESIGN, SETTING, AND PARTICIPANTS: Individual records were supplied on 302,430 people without...

  16. Individualized Vascular Disease Prevention in High-Risk Patients

    NARCIS (Netherlands)

    Kaasenbrood, L

    2016-01-01

    In the pharmacologic prevention of vascular events, clinicians need to translate average effects from a clinical trial to the individual patient. Prediction models can contribute to individualized vascular disease prevention by selecting patients for treatment based on estimated risk or expected

  17. REDUCED THROMBOGENICITY OF VASCULAR PROSTHESES BY COATING WITH ADP-ASE

    NARCIS (Netherlands)

    VANDERLEI, B; ROBINSON, PH; BAKKER, WW; Bartels, H.

    1992-01-01

    In this pilot study ADP-ase coated polyurethane (PL) vascular prostheses and noncoated (control) PU vascular prostheses (all vascular prostheses: ID 1.5 mm, length 1,5 cm) were implanted into the carotid artery of the rabbit to test wheter ADP-ase might function as an adequate anti-thrombogenic

  18. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter

    Science.gov (United States)

    Dantzler, William H.; Pannabecker, Thomas L.

    2012-01-01

    We extended a region-based mathematical model of the renal medulla of the rat kidney, previously developed by us, to represent new anatomic findings on the vascular architecture in the rat inner medulla (IM). In the outer medulla (OM), tubules and vessels are organized around tightly packed vascular bundles; in the IM, the organization is centered around collecting duct clusters. In particular, the model represents the separation of descending vasa recta from the descending limbs of loops of Henle, and the model represents a papillary segment of the descending thin limb that is water impermeable and highly urea permeable. Model results suggest that, despite the compartmentalization of IM blood flow, IM interstitial fluid composition is substantially more homogeneous compared with OM. We used the model to study medullary blood flow in antidiuresis and the effects of vascular countercurrent exchange. We also hypothesize that the terminal aquaporin-1 null segment of the long descending thin limbs may express a urea-Na+ or urea-Cl− cotransporter. As urea diffuses from the urea-rich papillary interstitium into the descending thin limb luminal fluid, NaCl is secreted via the cotransporter against its concentration gradient. That NaCl is then reabsorbed near the loop bend, raising the interstitial fluid osmolality and promoting water reabsorption from the IM collecting ducts. Indeed, the model predicts that the presence of the urea-Na+ or urea- Cl− cotransporter facilitates the cycling of NaCl within the IM and yields a loop-bend fluid composition consistent with experimental data. PMID:22088433

  19. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  20. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    Science.gov (United States)

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  1. Dianthus chinensis L.: The Structural Difference between Vascular Bundles in the Placenta and Ovary Wall Suggests Their Different Origin.

    Science.gov (United States)

    Guo, Xue-Min; Yu, Ying-Ying; Bai, Lan; Gao, Rong-Fu

    2017-01-01

    Dianthus chinensis is a perennial herbaceous plant with great ornamental, botanical, ecological, and medicinal value. The pistil of D. chinensis is composed of two fused carpels with free central placenta and two separate styles. The placenta is a columnar structure extending about two-thirds the length of the maturing fruit, which is typical of the Caryophyllaceous. Traditionally, free central placenta is thought to have evolved from axial placenta by septal disappearance, and axial placenta to have occurred through fusion of conduplicate carpels with marginal placenta. However, the traditional opinion is becoming more and more inconsistent with the new data gained in recent research of angiosperm systematics. To clarify the origin of D. chinensis pistil, the present anatomical study was carried out. The results show that the vascular system of placenta is independent to that of the ovary wall in D. chinensis . Moreover, in the central part of placenta there are one or two amphicribral bundles, and correspondingly numerous ones in the pistil which supply the ovules/seeds. It is obvious that the central amphicribral bundles in placenta are comparable to the counterparts in branches but not to those in leaves or their derivatives. Therefore, it is reasonable to deduce that the placenta of D. chinensis was not derived from conduplicate carpels through fusion of collateral vascular bundles, and actually a floral axis with ovules/seeds laterally adhering. On the contrary, the ovary wall was the lateral appendages of the floral axis. The result of the present study is completely in agreement with Unifying Theory, in which the placenta is taken as an ovule-bearing branch. Except for D. chinensis , the similar vascular organization has been observed in placenta of numerous isolated taxa. But till now, it is uncertain that whether this vascular organization pattern is popular in the whole angiosperms or not. More intensive and extensive investigations are needed.

  2. The impact of various scaffold components on vascularized bone constructs.

    Science.gov (United States)

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct

  3. [Relevance of Vascular Trauma in Trauma Care - Impact on Clinical Course and Mortality].

    Science.gov (United States)

    Lech, L; Jerkku, T; Kanz, K-G; Wierer, M; Mutschler, W; Koeppel, T A; Lefering, R; Banafsche, R

    2016-10-01

    There is a lack of evidence as to the relevance of vascular trauma (VT) in patients with severe injuries. Therefore, we reviewed registry data in the present study in order to systematically objectify the effect of VT in these patients. This study aimed to provide an adequate picture of the relevance of vascular trauma and to identify adverse prognostic factors. In a retrospective analysis of records from the TraumaRegister DGU® (TR-DGU) in two subgroups with moderate and severe VT, we examined the records for differences in terms of morbidity, mortality, follow-up and prognostic parameters compared to patients without VT with the same ISS. From a total of 42,326 patients, 2,961 (7 %) had a VT, and in 2,437 cases a severe VT (AIS ≥ 3) was diagnosed (5.8 %). In addition to a higher incidence of shock and a 2 to 3-fold increase in fluid replacement and erythrocyte transfusion, patients with severe VT had a 60 % higher rate of multiple organ failure, and in-hospital mortality was twice as high (33.8 %). The massively increased early mortality (8.0 vs. 25.2 %) clearly illustrates how severely injured patients are placed at risk by the presence of a relevant VT with a comparable ISS. In our opinion, due to an unexpected poor prognosis in the TR-DGU data for vascular injuries, increased attention is required in the care of severely injured patients. Based on our comprehensive analysis of negative prognostic factors, a further adjustment to the standards of vascular medicine could be advisable. The influence of the level of care provided by the admitting hospital and the relevance of a further hospital transfer to prognosis and clinical outcome is currently being analysed. Georg Thieme Verlag KG Stuttgart · New York.

  4. Permanent vascular access in patients with end-stage renal disease, Brazil Acceso vascular permanente en pacientes renales crónicos terminales en Brasil Acesso vascular permanente em pacientes renais crônicos terminais no Brasil

    Directory of Open Access Journals (Sweden)

    Gisele Macedo da Silva

    2011-04-01

    Full Text Available OBJECTIVE: To assess factors associated with the establishment of permanent vascular access for patients with end-stage renal disease. METHODS: Cross-sectional study conducted in a nationally representative sample of Brazilian end-stage renal disease patients in dialysis and transplant centers during 2007. The sample comprised only patients who received hemodialysis as a primary therapy modality and reported the type of vascular access for their primary hemodialysis treatment (N=2,276. Data were from the TRS Project - "Economic and Epidemiologic Evaluation of Modalities of Renal Replacement Therapy in Brazil". Multiple logistic regression analysis was used to assess factors associated with the establishment of permanent vascular access in these patients. RESULTS: About 30% of the patients studied had an arteriovenous vascular access. The following factors were associated with a lower likelihood of having an arteriovenous vascular access as a primary type of access: time of hemodialysis start since the diagnosis of chronic renal failure OBJETIVO: Analizar factores asociados a la provisión de acceso vascular arteriovenoso en Brasil. MÉTODOS: Estudio transversal, nacionalmente representativo, con pacientes con enfermedad renal crónica terminal acompañados en servicios de diálisis o en centros transplantadores en el año de 2007. La muestra incluyó pacientes que tuvieron la hemodiálisis como primera modalidad de tratamiento y que sabían con que tipo de acceso vascular habían iniciado el tratamiento (N=2.276. Los datos son oriundos del Proyecto TRS - "Evaluación económica-epidemiológica de las modalidades de Terapia renal Sustitutiva en Brasil". Fue utilizada la regresión logística múltiple. RESULTADOS: Aproximadamente 30% de los pacientes tenían acceso vascular arteriovenoso. Los factores asociados a la baja probabilidad de tener acceso vascular arteriovenoso como primer tipo de acceso fueron: tiempo de diagnóstico de enfermedad

  5. Radiological study of cerebro-vascular accidents

    International Nuclear Information System (INIS)

    Misri, H.T.; Kabawe, Bassam

    1991-01-01

    The role of computerized tomography scanner in studying the cerebro-vascular accidents has been discussed. One hundred fifty patients with cerebro-vascular accidents were studied at Aleppo University Hospital between 1989-1990. Clinical history and physical examination were recorded, as well as, computerized tomography scanning in all cases without using the contrast media mostly. Relationship between the density of the lesion (inforctionor hemorrhage) and the time has been found. This relationship can help in forensic medicine. (author). 29 refs., 5 tabs., 2 figs

  6. Vascular training and endovascular practice in Europe

    DEFF Research Database (Denmark)

    Liapis, C.D.; Avgerinos, E.D.; Sillesen, H.

    2009-01-01

    specialties was distributed to a VS educator within 14 European countries. European Vascular and Endovascular Monitor (EVEM) data also were processed to correlate endovascular practice with training models. RESULTS: Fourteen questionnaires were gathered. Vascular training in Europe appears in 3 models: 1....... Mono-specialty (independence): 7 countries, 2. Subspecialty: 5 countries, 3. An existing specialty within general surgery: 2 countries. Independent compared to non-independent certification shortens overall training length (5.9 vs 7.9 years, p=0.006), while increasing overall training devoted......% respectively. Countries with independent vascular certification, despite their lower average endovascular index (procedures per 100,000 population), reported a higher growth rate of aortic endovascular procedures (VS independent 132% vs VS non-independent 87%), within a four-year period (2003-2007). Peripheral...

  7. The adventitia: Essential role in pulmonary vascular remodeling.

    Science.gov (United States)

    Stenmark, Kurt R; Nozik-Grayck, Eva; Gerasimovskaya, Evgenia; Anwar, Adil; Li, Min; Riddle, Suzette; Frid, Maria

    2011-01-01

    A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in "sensing" vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the "outside in." © 2011 American Physiological Society.

  8. Sensing of Vascular Permeability in Inflamed Vessel of Live Animal

    Directory of Open Access Journals (Sweden)

    Sang A Park

    2018-01-01

    Full Text Available Increase in vascular permeability is a conclusive response in the progress of inflammation. Under controlled conditions, leukocytes are known to migrate across the vascular barriers to the sites of inflammation without severe vascular rupture. However, when inflammatory state becomes excessive, the leakage of blood components may occur and can be lethal. Basically, vascular permeability can be analyzed based on the intensity of blood outflow. To evaluate the amount and rate of leakage in live mice, we performed cremaster muscle exteriorization to visualize blood flow and neutrophil migration. Using two-photon intravital microscopy of the exteriorized cremaster muscle venules, we found that vascular barrier function is transiently and locally disrupted in the early stage of inflammatory condition induced by N-formylmethionyl-leucyl-phenylalanine (fMLP. Measurement of the concentration of intravenously (i.v. injected Texas Red dextran inside and outside the vessels resulted in clear visualization of real-time increases in transient and local vascular permeability increase in real-time manner. We successfully demonstrated repeated leakage from a target site on a blood vessel in association with increasing severity of inflammation. Therefore, compared to other methods, two-photon intravital microscopy more accurately visualizes and quantifies vascular permeability even in a small part of blood vessels in live animals in real time.

  9. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    Science.gov (United States)

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  10. The evolution of development of vascular cambia and secondary growth

    Science.gov (United States)

    Andrew Groover; Rachel Spicer

    2010-01-01

    Secondary growth from vascular cambia results in radial, woody growth of stems. The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, woody lianas. We present examples of the extensive phylogenetic variation in secondary vascular growth and discuss current...

  11. Database of Vascular Plants of Canada (VASCAN): a community contributed taxonomic checklist of all vascular plants of Canada, Saint Pierre and Miquelon, and Greenland.

    Science.gov (United States)

    Desmet, Peter; Brouillet, Luc

    2013-01-01

    The Database of Vascular Plants of Canada or VASCAN (http://data.canadensys.net/vascan) is a comprehensive and curated checklist of all vascular plants reported in Canada, Greenland (Denmark), and Saint Pierre and Miquelon (France). VASCAN was developed at the Université de Montréal Biodiversity Centre and is maintained by a group of editors and contributors. For every core taxon in the checklist (species, subspecies, or variety), VASCAN provides the accepted scientific name, the accepted French and English vernacular names, and their synonyms/alternatives in Canada, as well as the distribution status (native, introduced, ephemeral, excluded, extirpated, doubtful or absent) of the plant for each province or territory, and the habit (tree, shrub, herb and/or vine) of the plant in Canada. For reported hybrids (nothotaxa or hybrid formulas) VASCAN also provides the hybrid parents, except if the parents of the hybrid do not occur in Canada. All taxa are linked to a classification. VASCAN refers to a source for all name, classification and distribution information. All data have been released to the public domain under a CC0 waiver and are available through Canadensys and the Global Biodiversity Information Facility (GBIF). VASCAN is a service to the scientific community and the general public, including administrations, companies, and non-governmental organizations.

  12. A consonant construction of the hyaloid and retinal vascular systems by the angiogenic process.

    Science.gov (United States)

    Gergely, K; Gerinec, A

    2011-01-01

    There has been much debate as to whether the retinal vasculature forms by angiogenesis or vasculogenesis, thus angiogenesis is now accepted. We suppose that signals necessary for proper localization and development of the hyaloid and retinal vascular systems are already in place prior to the time at which these systems are developed. The remarkable conservation of vascular patterning suggests that specific genetic programs coordinate its formation. Evidence for a genetic program comes particularly from the characterization of gene-targeted mice and mutational analysis in zebrafish, but the exact genetic pathways remain poorly defined. Considering all the things from the aspect of angiogenesis significant differences exist between the mentioned vascular systems only in their lifetime (a) and location (b): (a) The hyaloid vasculature is a complex of transient intraocular vessels, while the retinal vessels are adapted for the whole life. (b) The hyaloid system fills the interior of the optic cup and this way "occupies" three-dimensional space while the distribution of the retinal vessels is relatively planar (two-dimensional) in the retina. We assume that retinal vessels are "built" in the same manner as the hyaloid vasculature and the outcomes at the embryological, histological, cellular and molecular levels confirm it. We show a consonant construction of both systems. The human organism does not have any rational reason to build up one system (i.e. the hyaloid vasculature) by angiogenesis and practically the same system (i.e. the retinal vessels) by another, de novo process, in the eye. It would be a waste of energy and various essential molecules. Thus, it seems that the retinal vascular system is an advanced copy of the hyaloid vessels (Tab. 1, Ref. 143).

  13. Experience of vascular trauma in a tertiary care hospital

    International Nuclear Information System (INIS)

    Imtiaz, N.

    2010-01-01

    To highlight the presentation and management of various vascular injuries and their outcome. Thirty nine cases of vascular trauma were referred to vascular surgeon CMH Rawalpindi, in the above mentioned period. These cases were evaluated for mechanism of injury, age, gender and time of presentation. Out of these, only thirty cases were found suitable for surgical intervention. These thirty cases were evaluated for site of vascular injury, associated injuries, type of surgery performed and the outcome. Blunt trauma was the predominant cause of vascular injuries in our study 16/39 (41%). Fourteen cases (35.8%) had gun shot wounds. Only thirty patients (76.9 %) underwent various surgical procedures. Primary end to end anastomosis was possible in only 5/30 cases (16.6%) while reversed venous graft was used in 13/30 cases (43.3%). Wound infection occurred in 2/30(6.6%) cases out of which 1 case (3.3%) ultimately had an amputation. The time period between injury and surgical intervention ranged between 1 to 20 hours for most of the vascular injuries while delayed presentation in the form of traumatic arteriovenous fistula or pseudoaneurysm was between 48 hours to 3 months. There are reasonable numbers of vascular trauma cases being referred to a tertiary care hospital. Most of these cases reach us quite late due to unnecessary investigations, delayed referral and transportation. Early intervention and revascularization definitely reduces amputation and complication rate. All gunshot wounds not only require thorough surrounding soft tissue debridement but also liberal excision of traumatised vessel itself, resulting in interposition graft repair. (author)

  14. Neuropsychiatric symptoms in Vascular Cognitive Impairment: A systematic review

    Directory of Open Access Journals (Sweden)

    Chan Tiel

    Full Text Available Neuropsychiatric symptoms or Behavioral and Psychological Symptoms of Dementia (BPSD are common and invariably appear at some point during the course of the disease, mediated both by cerebrovascular disease and neurodegenerative processes. Few studies have compared the profiles of BPSD in Vascular Cognitive Impairment (VCI of different subtypes (subcortical or cortical and clinical stages (Vascular Cognitive Impairment No Dementia [VaCIND] and Vascular Dementia [VaD].Objective:To review the BPSD associated with different subtypes and stages of VCI using the Neuropsychiatric Inventory (NPI.Methods:Medline, Scielo and Lilacs databases were searched for the period January 2000 to December 2014, with the key words: "BPSD AND Vascular Dementia, "NPI AND Vascular Dementia" and "NPI AND VCI. Qualitative analysis was performed on studies evaluating BPSD in VCI, using the Neuropsychiatric Inventory (NPI.Results:A total of 82 studies were retrieved of which 13 were eligible and thus included. Among the articles selected, 4 compared BPSD in Subcortical Vascular Dementia (SVaD versus Cortical-Subcortical Vascular Dementia (CSVaD, 3 involved comparisons between SVaD and VaCIND, 1 study analyzed differences between CSVaD and VaCIND, while 5 studies assessed BPSD in CSVaD. Subcortical and Cortical-Subcortical VaD were associated predominantly with Apathy and Depression. VaCIND may present fewer behavioral symptoms than VaD.Conclusion:The profile of BPSD differs for different stages of VCI. Determining the most prevalent BPSD in VCI subtypes might be helpful for improving early diagnosis and management of these symptoms.

  15. Arborescent vascular dilatation mimicking Lichtenberg figures from lightning.

    Science.gov (United States)

    Tempark, Therdpong; Iwasaki, Julie; Shwayder, Tor

    2014-01-01

    The clinical presentation of arborizing vascular dilatation can resemble Lichtenberg figures from lightning. Both have a feather-like or ferning pattern. We report an interesting case of pressure-induced vasodilatation (PIV) caused by temporary vascular occlusion from jeans buttons. © 2014 Wiley Periodicals, Inc.

  16. Diagnosis and treatment of vascular damage in dementia

    NARCIS (Netherlands)

    Biessels, GJ

    2016-01-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain

  17. Vascular injuries after bear attacks: Incidence, surgical challenges and outcome.

    Science.gov (United States)

    Wani, Mohd Lateef; Ahangar, Abdul Gani; Lone, Gh Nabi; Lone, Reyaz Ahmad; Ashraf, Hakeem Zubair; Dar, Abdul Majeed; Bhat, M A; Singh, Shyam; Bijli, Akram Hussain; Irshad, Ifat

    2011-01-01

    Bear mauling is rarely reported in medical literature due to its rare occurrence. Present study was undertaken to describe the pattern and management of bear maul vascular injuries in Kashmir. Study of patients with bear maul vascular injury from 1(st) Jan 2004 to 31(st) Dec. 2008. Fifteen patients with bear maul vascular injury were studied. All patients of bear maul without vascular injury were excluded from the study. Most of the patients were treated by reverse saphenous vein graft or end to end anastomosis. Most common complication was wound infection (20%) followed by graft occlusion (13.33%). There was no operative death. Bear attacks are very common in Kashmir. Vascular injury due to bear maul needs prompt resuscitation and revascularization. Results are very good provided timely intervention for revascularization is done.

  18. VASCULAR REMODELING IN HYPERTENSION: ANGIOGENESIS FEATURES

    Directory of Open Access Journals (Sweden)

    L. A. Haisheva

    2014-07-01

    Full Text Available Aim — cross-sectional study of changes in various segments of the vascular bed in arterial hypertension (AH, defining the role of inducers and inhibitors of angiogenesis in these processes.Materials and methods. The study included 99 patients with arterial hypertension of I–II degree, average age of 63.2 ± 2.6 years, diseaseduration 9.2 ± 7.2 years.Results. It was found that patients with arterial hypertension have disorders in all segments of vascular bed: endothelial dysfunction (highvWF, microcirculatory disorders, and increased pulse wave velocity (PWV of elastic-type vessels. The level of angioginesis factors doesnot depend on such parameters as gender, age, body mass index. Smoking and duration of hypertension influence on vascular endothelialgrowth factor raise and endostatin levels are higher in patients with family history of cardiovascular diseases. Duration of disease is directlycorrelated with microcirculatory disorders and the PWV, correlation between microcirculatory disorders and pulse wave velocity indicatetheir common processes.

  19. Vascular nitric oxide: Beyond eNOS

    Directory of Open Access Journals (Sweden)

    Yingzi Zhao

    2015-10-01

    Full Text Available As the first discovered gaseous signaling molecule, nitric oxide (NO affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC to produce cyclic guanosine monophosphate (cGMP, although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA or production of cyclic inosine monophosphate (cIMP] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  20. Vascular complications associated with transcatheter aortic valve replacement.

    Science.gov (United States)

    Sardar, M Rizwan; Goldsweig, Andrew M; Abbott, J Dawn; Sharaf, Barry L; Gordon, Paul C; Ehsan, Afshin; Aronow, Herbert D

    2017-06-01

    Transcatheter aortic valve replacement (TAVR) is now an accepted pathway for aortic valve replacement for patients who are at prohibitive, severe and intermediate risk for traditional aortic valve surgery. However, with this rising uptrend and adaptation of this new technology, vascular complications and their management remain an Achilles heel for percutaneous aortic valve replacement. The vascular complications are an independent predictor of mortality for patients undergoing TAVR. Early recognition of these complications and appropriate management is paramount. In this article, we review the most commonly encountered vascular complications associated with currently approved TAVR devices and their optimal percutaneous management techniques.

  1. Spontaneous Splenic Rupture in Vascular Ehlers-Danlos Syndrome.

    Science.gov (United States)

    Batagini, Nayara Cioffi; Gornik, Heather; Kirksey, Lee

    2015-01-01

    Vascular Ehlers-Danlos Syndrome (VEDS) is a rare autosomal dominant collagen vascular disorder. Different from other Ehler-Danlos Syndrome subtypes, VEDS has poor prognosis due to severe fragility of connective tissues and association with life-threatening vascular and gastrointestinal complications. Spontaneous splenic rupture is a rare but hazardous complication related to this syndrome. To date, only 2 cases have been reported in the literature. Here we present another case of this uncommon complication, occurring in a 54-year-old woman in clinical follow-up for VEDS who presented with sudden onset of abdominal pain and hypotension. © The Author(s) 2015.

  2. Clostridium sordellii lethal toxin kills mice by inducing a major increase in lung vascular permeability.

    Science.gov (United States)

    Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R

    2007-03-01

    When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.

  3. Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging

    Directory of Open Access Journals (Sweden)

    Euicheol C. Jeong

    2017-05-01

    Full Text Available The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as ‘supercharging’ and ‘turbocharging,’ have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging, and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging. The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.

  4. Vascular Augmentation in Renal Transplantation: Supercharging and Turbocharging.

    Science.gov (United States)

    Jeong, Euicheol C; Hwang, Seung Hwan; Eo, Su Rak

    2017-05-01

    The most common anatomic variant seen in donor kidneys for renal transplantation is the presence of multiple renal arteries, which can cause an increased risk of complications. Accessory renal arteries should be anastomosed to the proper source arteries to improve renal perfusion via the appropriate vascular reconstruction techniques. In microsurgery, 2 kinds of vascular augmentation methods, known as 'supercharging' and 'turbocharging,' have been introduced to ensure vascular perfusion in the transferred flap. Supercharging uses a distant source of the vessels, while turbocharging uses vascular sources within the same flap territory. These technical concepts can also be applied in renal transplantation, and in this report, we describe 2 patients who underwent procedures using supercharging and turbocharging. In one case, the ipsilateral deep inferior epigastric artery was transposed to the accessory renal artery (supercharging), and in the other case, the accessory renal artery was anastomosed to the corresponding main renal artery with a vascular graft (turbocharging). The transplanted kidneys showed good perfusion and proper function. No cases of renal failure, hypertension, rejection, or urologic complications were observed. These microsurgical techniques can be safely utilized for renal transplantation with donor kidneys that have multiple arteries with a lower complication rate and better outcome.

  5. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  6. Vascular risk factors, cognitve decline, and dementia

    Directory of Open Access Journals (Sweden)

    E Duron

    2008-04-01

    Full Text Available E Duron, Olivier HanonBroca Hospital, Paris, FranceAbstract: Dementia is one of the most important neurological disorders in the elderly. Aging is associated with a large increase in the prevalence and incidence of degenerative (Alzheimer’s disease and vascular dementia, leading to a devastating loss of autonomy. In view of the increasing longevity of populations worldwide, prevention of dementia has turned into a major public health challenge. In the past decade, several vascular risk factors have been found to be associated with vascular dementia but also Alzheimer’s disease. Some longitudinal studies, have found significant associations between hypertension, diabetus mellitus, and metabolic syndrome, assessed at middle age, and dementia. Studies assessing the link between hypercholesterolemia, atrial fibrillation, smoking, and dementia have given more conflicting results. Furthermore, some studies have highlighted the possible protective effect of antihypertensive therapy on cognition and some trials are evaluating the effects of statins and treatments for insulin resistance. Vascular risk factors and their treatments are a promising avenue of research for prevention of dementia, and further long-term, placebo-controlled, randomized studies, need to be performed.Keywords: dementia, hypertension, diabetus mellitus, hypercholesterolemia, metabolic syndrome

  7. New options for vascularized bone reconstruction in the upper extremity.

    Science.gov (United States)

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Nanos, George P; Moran, Steven L

    2015-02-01

    Originally described in the 1970s, vascularized bone grafting has become a critical component in the treatment of bony defects and non-unions. Although well established in the lower extremity, recent years have seen many novel techniques described to treat a variety of challenging upper extremity pathologies. Here the authors review the use of different techniques of vascularized bone grafts for the upper extremity bone pathologies. The vascularized fibula remains the gold standard for the treatment of large bone defects of the humerus and forearm, while also playing a role in carpal reconstruction; however, two other important options for larger defects include the vascularized scapula graft and the Capanna technique. Smaller upper extremity bone defects and non-unions can be treated with the medial femoral condyle (MFC) free flap or a vascularized rib transfer. In carpal non-unions, both pedicled distal radius flaps and free MFC flaps are viable options. Finally, in skeletally immature patients, vascularized fibular head epiphyseal transfer can provide growth potential in addition to skeletal reconstruction.

  8. Bioprinting toward organ fabrication: challenges and future trends.

    Science.gov (United States)

    Ozbolat, Ibrahim T; Yu, Yin

    2013-03-01

    Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3-D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3-D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3-D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends toward fabricating living organs for transplant in the near future.

  9. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    Directory of Open Access Journals (Sweden)

    Daniel J Sobczynski

    Full Text Available The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid (PLGA spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases.

  10. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  11. [Fistulae or catheter for elderly who start hemodialysis without permanent vascular access?].

    Science.gov (United States)

    García Cortés, Ma J; Viedma, G; Sánchez Perales, M C; Borrego, F J; Borrego, J; Pérez del Barrio, P; Gil Cunquero, J M; Liébana, A; Pérez Bañasco, V

    2005-01-01

    Autologous access is the best vascular access for dialysis also in older patients and it should be mature when patient needs hemodialysis. It is not always possible. Surgeon availability and demographic characteristics of patients (age, diabetes, vascular disease...) are factors that determine primary vascular access. To analyse outcome and vascular access complications in elderly who start hemodialysis without vascular access. All patients older than 75 years who initiated hemodialysis without vascular access between January 2000 and June 2002 were included, They were divided en two groups depending on primary vascular access. GI: arterio-venous fistulae. GIIl: Tunnelled cuffed catheter. Epidemiological and analytical data, vascular access complications related, as well as patient and first permanent vascular access survival from their inclusion in dialysis up to December 2002 were analysed and compared in both groups. 32 patients were studied. GI: n = 17 (4 men) and GIIl: n =1 5 (8 men), age: 79.9 +/- 3.8 and 81.7 +/- 4 years respectively (ns). There were no differences in sex and comorbidity (diabetes, ischemic heart disease, peripheral vascular disease and hypertension). It took GI 3 months to get a permanent vascular access suitable for using, while it took GIIl 1.3 months (p catheters was higher in GI (3.35 vs 1.87 p central venous thrombosis happen in GI (I: 25 CVT/100 patients-year) vs 30% in GIIl (I = 14.4/100 patients-year) (ns). No significant differences neither in bleeding (66.7% vs 33.3%) nor ischemia (75% vs 25%) were found. Dialysis dose (Kt/V) as well as anaemia degree were similar in both groups. Permanent vascular access survival after 2 years was 45.8% in GI and 24% in GII (ns). Patient survival was similar in GI and GII (72% vs 51% ns). Elderly who start hemodialysis without vascular access took longer to get a suitable permanent vascular access when arterio-venous fistulae is placed than with a tunnelled cuffed hemodialysis catheter. As a

  12. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease

    NARCIS (Netherlands)

    Kranenburg, Guido; Spiering, Wilko; de Jong, Pim A.; Kappelle, L. Jaap; de Borst, Gert Jan; Cramer, Maarten J.; Visseren, Frank L.J.; Aboyans, Victor; Westerink, Jan

    2017-01-01

    Background Inter-arm systolic blood pressure difference (SBPD) is an easily obtained patient characteristic which relates to vascular disease. We aimed to identify determinants of large inter-arm SBPD and to investigate the relation between inter-arm SBPD and vascular events in patients with and

  13. HMGB1 in vascular diseases : Its role in vascular inflammation and atherosclerosis

    NARCIS (Netherlands)

    de Souza, A. W. S.; Westra, J.; Limburg, P. C.; Bijl, M.; Kallenberg, C. G. M.

    2012-01-01

    The nuclear protein high mobility group box 1 (HMGB1) has been suggested to be involved in the pathogenesis of several vascular diseases such as systemic vasculitis and atherosclerosis. In systemic vasculitides including ANCA-associated vasculitis and Kawasaki disease, serum HMGB1 levels are higher

  14. Anatomical and histochemical analysis of vegetative organs of ...

    African Journals Online (AJOL)

    Samples of V. ferruginea vegetative organs were collected and submitted to the usual plant anatomy and histochemical techniques. The leaves are anfihipoestomática with anomocytic stomata; have tector and glandular trichomes that store essential oils. The stem has collateral-type vascular bundles arranged in a eustele ...

  15. Relational databases for rare disease study: application to vascular anomalies.

    Science.gov (United States)

    Perkins, Jonathan A; Coltrera, Marc D

    2008-01-01

    To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.

  16. Perioperative smoking cessation in vascular surgery

    DEFF Research Database (Denmark)

    Kehlet, M.; Heesemann, Sabine; Tonnesen, H.

    2015-01-01

    Background: The effect of intensive smoking cessation programs on postoperative complications has never before been assessed in soft tissue surgery when smoking cessation is initiated on the day of surgery. Methods: A single-blinded randomized clinical trial conducted at two vascular surgery...... departments in Denmark. The intervention group was offered the Gold Standard Program (GSP) for smoking cessation intervention. The control group was offered the departments' standard care. Inclusion criteria were patients with planned open peripheral vascular surgery and who were daily smokers. According...

  17. Biomaterial-mediated strategies targeting vascularization for bone repair.

    Science.gov (United States)

    García, José R; García, Andrés J

    2016-04-01

    Repair of non-healing bone defects through tissue engineering strategies remains a challenging feat in the clinic due to the aversive microenvironment surrounding the injured tissue. The vascular damage that occurs following a bone injury causes extreme ischemia and a loss of circulating cells that contribute to regeneration. Tissue-engineered constructs aimed at regenerating the injured bone suffer from complications based on the slow progression of endogenous vascular repair and often fail at bridging the bone defect. To that end, various strategies have been explored to increase blood vessel regeneration within defects to facilitate both tissue-engineered and natural repair processes. Developments that induce robust vascularization will need to consolidate various parameters including optimization of embedded therapeutics, scaffold characteristics, and successful integration between the construct and the biological tissue. This review provides an overview of current strategies as well as new developments in engineering biomaterials to induce reparation of a functional vascular supply in the context of bone repair.

  18. Vascular endothelial dysfunction in β-thalassemia occurs despite increased eNOS expression and preserved vascular smooth muscle cell reactivity to NO.

    Directory of Open Access Journals (Sweden)

    Ekatherina Stoyanova

    Full Text Available The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments.Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO. While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall.A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression.

  19. Identification and characterization of novel smoothelin isoforms in vascular smooth muscle.

    Science.gov (United States)

    Krämer, J; Quensel, C; Meding, J; Cardoso, M C; Leonhardt, H

    2001-01-01

    Smoothelin is a cytoskeletal protein specifically expressed in differentiated smooth muscle cells and has been shown to colocalize with smooth muscle alpha actin. In addition to the small smoothelin isoform of 59 kD, we recently identified a large smoothelin isoform of 117 kD. The aim of this study was to identify and characterize novel smoothelin isoforms. The genomic structure and sequence of the smoothelin gene were determined by genomic PCR, RT-PCR and DNA sequencing. Comparison of the cDNA and genomic sequences shows that the small smoothelin isoform is generated by transcription initiation 10 kb downstream of the start site of the large isoform. In addition to the known smoothelin cDNA (c1 isoform) we identified two novel cDNA variants (c2 and c3 isoform) that are generated by alternative splicing within a region, which shows similarity to the spectrin family of F-actin cross-linking proteins. Visceral organs express the c1 form, while the c2 form prevails in well-vascularized tissue as analyzed by RT-PCR. We then generated specific antibodies against the major smoothelin isoforms and could show by Western blotting and immunohistochemistry that the large isoform is specifically expressed in vascular smooth muscle cells, while the small isoform is abundant in visceral smooth muscle. These results strongly suggest that the smoothelin gene contains a vascular and a visceral smooth muscle promoter. The cell-type-specific expression of smoothelin isoforms that are associated with actin filaments may play a role in the modulation of the contractile properties of different smooth muscle cell types. Copyright 2001 S. Karger AG, Basel

  20. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    Science.gov (United States)

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Imaging findings and therapeutic alternatives for peripheral vascular malformations

    International Nuclear Information System (INIS)

    Monsignore, Lucas Moretti; Nakiri, Guilherme Seizem; Santos, Daniela dos; Abud, Thiago Giansante; Abud, Daniel Giansante

    2010-01-01

    Peripheral vascular malformations represent a spectrum of lesions that appear through the lifetime and can be found in the whole body. Such lesions are uncommon and are frequently confounded with infantile hemangioma, a common benign neoplastic lesion. In the presence of such lesions, the correlation between the clinical and radiological findings is extremely important to achieve a correct diagnosis, which will guide the best therapeutic approach. The most recent classifications for peripheral vascular malformations are based on the blood flow (low or high) and on the main vascular components (arterial, capillary, lymphatic or venous). Peripheral vascular malformations represent a diagnostic and therapeutic challenge, and complementary methods such as computed tomography, Doppler ultrasonography and magnetic resonance imaging, in association with clinical findings can provide information regarding blood flow characteristics and lesions extent. Arteriography and venography confirm the diagnosis, evaluate the lesions extent and guide the therapeutic decision making. Generally, low flow vascular malformations are percutaneously treated with sclerosing agents injection, while in high flow lesions the approach is endovascular, with permanent liquid or solid embolization agents. (author)

  2. LASER TREATMENT OF BENIGN CUTANEOUS VASCULAR LESIONS

    Directory of Open Access Journals (Sweden)

    Uroš Ahčan

    2004-07-01

    Full Text Available Background. Congenital and acquired vascular lesions of the skin and subcutis are a common health problem from aesthetic and also from psycho-social point of view. However, recent advances in laser technology have enabled an efficient and safe treatment. This study presents our experience with treatment of cutaneous vascular lesions using modern laser systems. Most common benign cutaneous vascular lesions are described.Patients and methods. In years 2002 and 2003, 109 patients, 4 to 80 (mean 39 years old, Fitzpatrick skin type 1–4, with 210 benign cutaneous vascular lesions were treated using the Dualis VP® laser system (Fotona, Slovenia which incorporates the KTP and Nd:YAG lasers. Vascular lesions in the upper layers of the skin with diameter up to 1 mm were treated with the KTP laser (wavelength 532 nm. For larger vessels in deeper layer we used the Nd:YAG laser (wavelength 1064 nm. Patients graded the pain during treatment on a scale of 1–10. Clinical outcomes were evaluated 1–3 months after the last treatment: according to the percentage of clearance of the lesion compared to the adjacent normal skin and for the presence of adverse effects. According to these criteria each lesion was assigned a score: poor (0–25%, fair (26–50%, good (51–75%, excellent (76–100%.Results. Immediate response after application of a laser beam with proper characteristics was whitish-grey discoloration of treated area. Treatment results after 1–3 months were excellent in 48.1%, good 40.9%, fair in 8.6% and poor in 2.4%. Patients without prior anaesthesia graded pain during treatment from 1 to 8 (mean 4.0 and patients with EMLA® anaesthesia from 1 to 6 (mean 2.6. Side effects were frequent but minimal and transient. Erythema disappeared in several days after treatment while crusting persisted for 14 days. 3 permanent hyperpigmentations, 2 permanent hypopigmentations, 2 hypertrophic scars and 1 beam sized atrophic scar were detected at last follow

  3. Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves

    Directory of Open Access Journals (Sweden)

    Wei-ling Cui

    2016-01-01

    Full Text Available Vascularization of acellular nerves has been shown to contribute to nerve bridging. In this study, we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves. The rat nerve defects were treated with acellular nerve grafting (control group alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein (experimental group. As shown through two-dimensional imaging, the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation, and gradually covered the entire graft at day 21. The vascular density, vascular area, and the velocity of revascularization in the experimental group were all higher than those in the control group. These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves.

  4. In vitro model of vascularized bone: synergizing vascular development and osteogenesis.

    Directory of Open Access Journals (Sweden)

    Cristina Correia

    Full Text Available Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs and human mesenchymal stem cells (MSCs under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1:1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM and osteogenic medium (OM. It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1:1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i vascular development needs to be induced prior to osteogenesis, and (ii the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell-osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that

  5. Arterial vascularization patterns of the splenium: An anatomical study.

    Science.gov (United States)

    Kahilogullari, G; Comert, A; Ozdemir, M; Brohi, R A; Ozgural, O; Esmer, A F; Egemen, N; Karahan, S T

    2013-09-01

    The aim of this study was to provide detailed information about the arterial vascularization of the splenium of the corpus callosum (CC). The splenium is unique in that it is part of the largest commissural tract in the brain and a region in which pathologies are seen frequently. An exact description of the arterial vascularization of this part of the CC remains under debate. Thirty adult human brains (60 hemispheres) were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. Then, the brains were fixed in formaldehyde, and dissections were performed using a surgical microscope. The diameter of the arterial branches supplying the splenium of the CC at their origin was investigated, and the vascularization patterns of these branches were observed. Vascular supply to the splenium was provided by the anterior pericallosal artery (40%) from the anterior circulation and by the posterior pericallosal artery (88%) and posterior accessory pericallosal artery (50%) from the posterior circulation. The vascularization pattern of the splenium differs in each hemisphere and is usually supplied by multiple branches. The arterial vascularization of the splenium of the CC was studied comprehensively considering the ongoing debate and the inadequacy of the studies on this issue currently available in the literature. This anatomical knowledge is essential during the treatment of pathologies in this region and especially for splenial arteriovenous malformations.

  6. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    Science.gov (United States)

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  7. Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract

    DEFF Research Database (Denmark)

    Steenstrup, B R; Ottesen, B; Jørgensen, M

    1994-01-01

    In vitro effects of two bioactive forms of pituitary adenylate cyclase activating polypeptide (PACAP): PACAP-38 and PACAP-27 were studied on rabbit vascular and non-vascular smooth muscle. Segments of the ovarian artery and muscle strips from the fallopian tube were used. Two series of experiment...

  8. Detection and three-dimensional reconstruction of a vascular network from serial sections

    Energy Technology Data Exchange (ETDEWEB)

    Ip, H H.S.

    1983-07-01

    The process of three-dimensional reconstruction from serial sections includes aligning adjacent sections, segmenting the desired objects and constructing a computer internal model of the reconstructed object. Computational methodologies taking advantage of the parallel processing facilities of CLIP4 are presented for automating these tasks. The author is interested in the detailed structure of the carotid body which is a highly vascularized organ with the largest blood flow rate of any tissue in the body (Biscoe (1971), Seidl (1975), Lubbers et al. (1977), Clarke and Daly (1982)). It plays an important role in monitoring the chemical composition of arterial blood (p(o/sub 2/), p(co/sub 2/), ph). The aim of the investigation in the paper is to reconstruct the total vasculature of the organ and to make an analytical study of the geometrical configuration of its vessels. 15 references.

  9. Magnetic resonance vascular imaging

    International Nuclear Information System (INIS)

    Axel, L

    1989-01-01

    The basis principles of MRI are reviewed in order to understand how blood flow effects arise in conventional imaging. Then some of the ways these effects have ben used in MRI techniques specifically designed for vascular imaging, are considered. (author)

  10. Vascularized bone transplant chimerism mediated by vascular endothelial growth factor.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2015-01-01

    Vascular endothelial growth factor (VEGF) induces angiogenesis and osteogenesis in bone allotransplants. We aim to determine whether bone remodeling in VEGF-treated bone allotransplants results from repopulation with circulation-derived autogenous cells or survival of allogenic transplant-derived cells. Vascularized femoral bone transplants were transplanted from female Dark Agouti rats (DA;RT1(a) ) to male Piebald Viral Glaxo (PVG;RT1(c) ). Arteriovenous bundle implantation and short-term immunosuppression were used to maintain cellular viability. VEGF was encapsulated in biodegradable microspheres and delivered intramedullary in the experimental group (n = 22). In the control group (n = 22), no VEGF was delivered. Rats were sacrificed at 4 or 18 weeks. Laser capture microdissection of bone remodeling areas was performed at the inner and outer cortex. Sex-mismatched genes were quantified with reverse transcription-polymerase chain reaction to determine the amount of male cells to total cells, defined as the relative expression ratio (rER). At 4 weeks, rER was significantly higher at the inner cortex in VEGF-treated transplants as compared to untreated transplants (0.622 ± 0.225 vs. 0.362 ± 0.081, P = 0.043). At 4 weeks, the outer cortex in the control group had a significantly higher rER (P = 0.038), whereas in the VEGF group, the inner cortex had a higher rER (P = 0.015). Over time, in the outer cortex the rER significantly increased to 0.634 ± 0.106 at 18 weeks in VEGF-treated rats (P = 0.049). At 18 weeks, the rER was >0.5 at all cortical areas in both groups. These in vivo findings suggest a chemotactic effect of intramedullary applied VEGF on recipient-derived bone and could imply that more rapid angiogenesis of vascularized allotransplants can be established with microencapsulated VEGF. © 2014 Wiley Periodicals, Inc.

  11. Vascular Complications of Pancreatitis: Role of Interventional Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Barge, Jaideep U.; Lopera, Jorge E. [University of Texas Health Science Center, San Antonio (United States)

    2012-02-15

    Major vascular complications related to pancreatitis can cause life-threatening hemorrhage and have to be dealt with as an emergency, utilizing a multidisciplinary approach of angiography, endoscopy or surgery. These may occur secondary to direct vascular injuries, which result in the formation of splanchnic pseudoaneurysms, gastrointestinal etiologies such as peptic ulcer disease and gastroesophageal varices, and post-operative bleeding related to pancreatic surgery. In this review article, we discuss the pathophysiologic mechanisms, diagnostic modalities, and treatment of pancreatic vascular complications, with a focus on the role of minimally-invasive interventional therapies such as angioembolization, endovascular stenting, and ultrasound-guided percutaneous thrombin injection in their management.

  12. Genealogy of training in vascular neurosurgery.

    Science.gov (United States)

    Chowdhry, Shakeel A; Spetzler, Robert F

    2014-02-01

    Remarkable advances and changes in the landscape of neurovascular disease have occurred recently. Concurrently, a paradigm shift in training and resident education is underway. This crossroad of unique opportunities and pressures necessitates creative change in the training of future vascular neurosurgeons to allow incorporation of surgical advances, new technology, and supplementary treatment modalities in a setting of reduced work hours and increased public scrutiny. This article discusses the changing landscape in neurovascular disease treatment, followed by the recent changes in resident training, and concludes with our view of the future of training in vascular neurosurgery.

  13. Vascular access complications and risk factors in hemodialysis ...

    African Journals Online (AJOL)

    Vascular access complications and risk factors in hemodialysis patients: A single center study. ... Stenosis was the most common risk factor for vascular failure as it occurred in (29%) of patients. ... Other risk factors for dialysis CRBSI include older age, low serum albumin, high BUN and decreasing the duration of dialysis.

  14. Angiocrine functions of organ-specific endothelial cells

    Science.gov (United States)

    Rafii, Shahin; Butler, Jason M; Ding, Bi-Sen

    2016-01-01

    Preface Endothelial cells lining blood vessel capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establish specialized vascular niches that deploy specific sets of growth factors, known as angiocrine factors, which actively participate in inducing, specifying, patterning, and guiding organ regeneration and maintaining homeostasis and metabolism. Angiocrine factors upregulated in response to injury orchestrates self-renewal and differentiation of tissue-specific repopulating resident stem and progenitor cells into functional organs. Uncovering the precise mechanisms whereby physiological-levels of angiocrine factors are spatially and temporally produced, and distributed by organotypic endothelium to repopulating cells, will lay the foundation for driving organ repair without scarring. PMID:26791722

  15. The splenomegaly of myeloproliferative and lymphoproliferative disorders: splenic cellularity and vascularity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B (Capital Hospital, Peking University Medical College, Beijing (China)); Lewis, S.M. (Department of Haematology, Royal Postgraduate Medical School, London (UK))

    1989-01-01

    Employing radionuclide scanning, the volume of the spleen, its red cell pool and plasma pool have been measured in vivo, and the relative proportions of cellularity and vascularity of the spleen have been calcualted in 51 patients with myeloproliferactive and lymphoproliferative disorders. In primary proliferative polycythaemia (polycythaemia vera), the increase of spleen size was attributed mainly to the increase of splenic vascularity; in myelofibrosis and in hairy cell leukaemia, the increase of spleen size was associated with increase in both splenic vascularity and cellularity, whilst in size was associated with increase in both splenic vascularity and cellularity, whilst in CGL and CLL the increase was attributed more to cellularity than to vascularity. (author).

  16. Vascular Trauma Operative Experience is Inadequate in General Surgery Programs.

    Science.gov (United States)

    Yan, Huan; Maximus, Steven; Koopmann, Matthew; Keeley, Jessica; Smith, Brian; Virgilio, Christian de; Kim, Dennis Y

    2016-05-01

    Vascular injuries may be challenging, particularly for surgeons who have not received formal vascular surgery fellowship training. Lack of experience and improper technique can result in significant complications. The objective of this study was to examine changes in resident experience with operative vascular trauma over time. A retrospective review was performed using Accreditation Council for Graduate Medical Education (ACGME) case logs of general surgery residents graduating between 2004 and 2014 at 2 academic, university-affiliated institutions associated with level 1 trauma centers. The primary outcome was number of reported vascular trauma operations, stratified by year of graduation and institution. A total of 112 residents graduated in the study period with a median 7 (interquartile range 4.5-13.5) vascular trauma cases per resident. Fasciotomy and exposure and/or repair of peripheral vessels constituted the bulk of the operative volume. Linear regression showed no significant trend in cases with respect to year of graduation (P = 0.266). Residents from program A (n = 53) reported a significantly higher number of vascular trauma cases when compared with program B (n = 59): 12.0 vs. 5.0 cases, respectively (P < 0.001). Level 1 trauma center verification does not guarantee sufficient exposure to vascular trauma. The operative exposure in program B is reflective of the national average of 4.0 cases per resident as reported by the ACGME, and this trend is unlikely to change in the near future. Fellowship training may be critical for surgeons who plan to work in a trauma setting, particularly in areas lacking vascular surgeons. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Diagnosis and treatment of vascular damage in dementia.

    Science.gov (United States)

    Biessels, Geert Jan

    2016-05-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain imaging, especially MRI. Yet in daily practice, it is often challenging to establish the diagnosis, particularly in patients where there is no evident temporal relation between a cerebrovascular event and cognitive dysfunction. Because vascular damage is such a common cause of cognitive dysfunction, it provides an obvious target for treatment. In patients whose cognitive dysfunction follows directly after a stroke, the etiological classification of this stroke will direct treatment. In many patients however, VCI develops due to so-called "silent vascular damage," without evident cerebrovascular events. In these patients, small vessel diseases (SVDs) are the most common cause. Yet no SVD-specific treatments currently exist, which is due to incomplete understanding of the pathophysiology. This review addresses developments in this field. It offers a framework to translate diagnostic criteria to daily practice, addresses treatment, and highlights some future perspectives. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau, and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Initial Clinical Experience Using the Amplatzer Vascular Plug

    International Nuclear Information System (INIS)

    Tuite, David J.; Kessel, David O.; Nicholson, Anthony A.; Patel, Jai V.; McPherson, Simon J.; Shaw, David R.

    2007-01-01

    Background and purpose. The Amplatzer Vascular Plug (AVP) is a self-expanding nitinol wire mesh vascular embolization device derived from the Amplatz septal occluder. We assessed the results of vascular embolization obtained using the AVP. Methods. A retrospective review was carried out of 23 consecutive cases of vascular embolization using the AVP in a variety of different clinical settings. The AVP was chosen to have a diameter approximately 30-50% greater than the target vessel. The device was delivered via an appropriately sized guide catheter and was released when satisfactorily positioned. Additional embolic agents were used in some cases. Results. All target vessels were successfully occluded with no device malpositioning or malfunction. In 14 (61%) patients the AVP was the sole embolic material. In the remaining patients additional agents were used, particularly in preoperative embolization of highly vascular renal tumors. The AVP does not cause instantaneous thrombosis and in high-flow situations thrombosis typically takes up to 15 min. Conclusion. The AVP is a safe, effective embolization device that provides a useful adjunct to the therapeutic armamentarium. It is particularly suited to the treatment of short high-flow vessels where coil migration and catheter dislodgment might occur. In the majority of cases no additional embolic agents are necessary but it may take up to 15 min for complete thrombosis to occur

  19. Escleroterapia con bleomicina en malformaciones vasculares de bajo flujo: Experiencia y revisión del tema Bleomycin sclerotherapy for low-flow vascular malformations: our experience and literature review

    Directory of Open Access Journals (Sweden)

    F. Lobo Bailón

    2012-12-01

    Full Text Available Las anomalías vasculares son lesiones típicas de los pacientes pediátricos y se dividen en dos categorías: tumores vasculares y malformaciones vasculares de alto y bajo flujo. Estas últimas pueden tratarse de diversos modos: laserterapia, drenaje, aspiración, cirugía o escleroterapia, dependiendo del tipo de lesión y de su localización. Entre los agentes esclerosantes utilizados, la bleomicina ha demostrado tener buenos resultados en el tratamiento de estas lesiones. En este artículo presentamos nuestra experiencia en el tratamiento de las malformaciones vasculares de bajo flujo mediante escleroterapia con bleomicina intralesional. Desarrollamos un estudio descriptivo retrospectivo sobre 30 pacientes que presentaban malformación vascular de bajo flujo y fueron tratados con bleomicina intralesional. Los resultados fueron buenos o excelentes en 22 pacientes y regulares o malos en los 8 restantes. De acuerdo a nuestra casuística y a la literatura revisada, la escleroterapia con bleomicina es una alternativa terapéutica eficaz y segura en el tratamiento de las malformaciones vasculares de bajo flujo.Vascular anomalies are common in children and can be divided into two categories, vascular tumours and vascular malformations: high-flow or low-flow. The latter can be treated in different ways such as lasertherapy, drainage, aspiration, surgery or sclerotherapy depending on the type and location of the lesion. Among the accepted sclerosing agents, bleomycin has proven good results in the treatment of this condition. Herein we present our experience in the treatment of low-flow vascular malformations with intralesional bleomycin injection. This is a retrospective, descriptive study with 30 patients presenting a low-flow vascular malformation treated with intralesional bleomycin injection. Our results are good or excellent in 22 patients and poor in the other 8. According to our case series and the consulted literature, sclerotherapy with

  20. Antiphospholipid syndrome, antiphospholipid antibodies and solid organ transplantation.

    Science.gov (United States)

    González-Moreno, J; Callejas-Rubio, J L; Ríos-Fernández, R; Ortego-Centeno, N

    2015-11-01

    Antiphospholipid syndrome is considered a high risk factor for any kind of surgery. Considering that all solid organ transplants are critically dependent on the patency of vascular anastomosis, there is much concern about the consequences this pro-thrombotic condition may have on transplantation. Relatively little information is available in the literature assessing the real risk that antiphospholipid syndrome or the presence of antiphospholipid antibodies represent in solid organ transplantation. The aim of this article is to review the literature related to transplantation of solid organs in patients diagnosed with antiphospholipid syndrome or patients with positive antiphospholipid antibodies. © The Author(s) 2015.

  1. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts.

    Science.gov (United States)

    Jakobsson, Lars; van Meeteren, Laurens A

    2013-05-15

    Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 99mTc-leukocyte scintigraphy in prosthetic vascular graft infections

    International Nuclear Information System (INIS)

    Vorne, M.; Laitinen, J.; Lehtonen, J.; Toivio, I.; Mokka, R.; Soini, I.

    1989-01-01

    The aim of this study was to determine the diagnostic value of scintigraphy with 99m Tc-HMPAO-labelled leukocytes for the detection of prosthetic vascular graft infection. 51 scans were recorded in 19 patients with suspected vascular graft infection and 8 control patients. Three-phase scanning was used at 0.5, 3-6 and 18-24 h. 13 vascular graft infections (10 early, 3 late) were found. 12 of these healed with antibiotics and only one patient with late infection had to be reoperated. None of them died during the follow-up period. The sensitivity was 100% and the specificity 96%. 99m Tc-leukocyte scintigraphy seems a useful tool to detect vascular graft infection and to differentiate it from infections elsewhere. The results suggest that the incidence of vascular graft infection may be greater, and the mortality rate lower, than supposed before. (orig.) [de

  3. Vascular surgery research in the Gulf Cooperation Council countries

    Directory of Open Access Journals (Sweden)

    Ali Jawas

    2014-04-01

    Conclusion: The quality and quantity of vascular surgery research in the GCC countries should be improved to answer important local questions related to vascular diseases. This needs better strategic planning and more collaboration between various institutions.

  4. Characterization of midrib vascular bundles of selected medicinal species in Rubiaceae

    Science.gov (United States)

    Nurul-Syahirah, M.; Noraini, T.; Latiff, A.

    2016-11-01

    An anatomical study was carried out on mature leaves of five selected medicinal species of Rubiaceae from Peninsular Malaysia. The chosen medicinal species were Aidia densiflora, Aidia racemosa, Chasallia chartacea, Hedyotis auricularia and Ixora grandifolia. The objective of this study is to determine the taxonomic value of midrib anatomical characteristics. Leaves samples were collected from Taman Paku Pakis, Universiti Kebangsaan Malaysia, Bangi, Selangor and Kledang Saiong Forest Reserve, Perak, Malaysia. Leaves samples then were fixed in spirit and acetic acid (3:1), the midrib parts then were sectioned using sliding microtome, cleared using Clorox, stained in Safranin and Alcian blue, mounted in Euparal and were observed under light microscope. Findings in this study have shown all species have collateral bundles. The midrib vascular bundles characteristics that can be used as tool to differentiate between species or genus are vascular bundles system (opened or closed), shape and arrangement of main vascular bundles, presence of both additional and medullary vascular bundles, position of additional vascular bundles, shape of medullary vascular bundles, presence of sclerenchyma cells ensheathed the vascular bundles. As a conclusion, midrib anatomical characteristics can be used to identify and discriminate medicinal plants species studied in the Rubiaceae.

  5. A decade of civilian vascular trauma in Kosovo

    Directory of Open Access Journals (Sweden)

    Jaha Luan

    2012-07-01

    Full Text Available Abstract Purpose We sought to analyze the results of arterial injury management in a busy metropolitan vascular unit and risk factors associated with mortality and morbidity. Patients and methods We analyzed 120 patient with arterial injury treated between year 2000 and 2010 at the University Clinical Center of Kosovo. Seven of these years were prospective and three retrospective study. Results The mechanism of arterial injury was stabbing 46.66%, gunshot wounds in 31.66%, blunt in 13.33%, and landmine in 8.33%. The most frequently injured vessel was the superficial femoral artery (25%, followed by the brachial artery (20.9%, crural arteries (13.1%, forearm arteries (14.3%, iliac arteries (7.5%, abdominal aorta (3.3%, common femoral artery (3.3% and popliteal artery (3.3%. Associated injuries including bone, nerve and remote injury (affecting the head, chest, or abdomen were present in 24.2% of patients. The decision to operate was made based on the presence of “hard signs” of vascular trauma. Arterial reconstruction was performed in 90.8% of patients, 5.8% of patients underwent primary amputation and 3.2% died on the operation table. Overall survival rate was 95.8%. Conclusion Injuries to the arteries are associated with significant mortality and morbidity. Mechanism of injury (blunt, gunshot, landmine or stub, hemodynamic stability at the admission, localization of injury, time from injury to flow restitution, associated injuries to the structures in the region and remote organs are critical factors influencing outcome.

  6. Inferior vena cava leiomyosarcoma: vascular reconstruction is not ...

    African Journals Online (AJOL)

    ... vena cava is a rare and aggressive tumor, arising from the smooth muscle cells in the vessel wall. A large complete surgical resection is the essential treatment. The need of vascular reconstruction is not always mandatory. It's above all to understand the place of the reconstruction with artificial vascular patch prosthetics of ...

  7. A biodegradable vascularizing membrane: a feasibility study.

    Science.gov (United States)

    Kaushiva, Anchal; Turzhitsky, Vladimir M; Darmoc, Marissa; Backman, Vadim; Ameer, Guillermo A

    2007-09-01

    Regenerative medicine and in vivo biosensor applications require the formation of mature vascular networks for long-term success. This study investigated whether biodegradable porous membranes could induce the formation of a vascularized fibrous capsule and, if so, the effect of degradation kinetics on neovascularization. Poly(l-lactic acid) (PLLA) and poly(dl-lactic-co-glycolic) acid (PLGA) membranes were created by a solvent casting/salt leaching method. Specifically, PLLA, PLGA 75:25 and PLGA 50:50 polymers were used to vary degradation kinetics. The membranes were designed to have an average 60mum pore diameter, as this pore size has been shown to be optimal for inducing blood vessel formation around nondegradable polymer materials. Membrane samples were imaged by scanning electron microscopy at several time points during in vitro degradation to assess any changes in pore structure. The in vivo performance of the membranes was assessed in Sprague-Dawley rats by measuring vascularization within the fibrous capsule that forms adjacent to implants. The vascular density within 100microm of the membranes was compared with that seen in normal tissue, and to that surrounding the commercially available vascularizing membrane TheraCyte. The hemoglobin content of tissue containing the membranes was measured by four-dimensional elastic light scattering as a novel method to assess tissue perfusion. Results from this study show that slow-degrading membranes induce greater amounts of neovascularization and a thinner fibrous capsule relative to fast degrading membranes. These results may be due both to an initially increased number of macrophages surrounding the slower degrading membranes and to the maintenance of their initial pore structure.

  8. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study

    Directory of Open Access Journals (Sweden)

    Anastasiia I. Evkaikina

    2014-02-01

    Full Text Available Plasmodesmata (PD serve for the exchange of information in form of miRNA, proteins and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis PD, which can connect any adjacent cells, contrary to primary PD which form during cytokinesis and link only cells of the same lineage, appeared in the evolution of higher plants at least twice: in seed plants and in some representatives of the Lycopodiophyta. The (inability to form secondary PD is manifested in the symplastic organization of the shoot apical meristem (SAM which in most taxa of seedless vascular plants differs dramatically from that in seed plants. Lycopodiophyta appear to be suitable models to analyze the transport of developmental regulators via PD in SAMs with symplastic organization both different from, as well as analogous to, that in angiosperms, and to understand the evolutionary aspects of the role of this transport in the morphogenesis of vascular plant taxa.

  9. Gastric antral vascular ectasia causing severe anemia.

    Science.gov (United States)

    Toyota, M; Hinoda, Y; Nakagawa, N; Arimura, Y; Tokuchi, S; Takaoka, A; Kitagawa, S; Usuki, T; Yabana, T; Yachi, A; Imai, K

    1996-10-01

    Gastric antral vascular ectasia (GAVE) that caused continuous gastrointestinal bleeding is reported in a 76-year-old woman who had been treated with repeated blood transfusions because of severe anemia. Endoscopic examination was performed and diffuse speckled telangiectasia of the entire antrum was observed. Laboratory data showed SGOT > SGPT, decreased chE level and the increased levels of serum gastrin and ICG at 15 min. Anti-HCV antibody was positive. Image examination revealed splenomegaly. There was no family history of telangiectasia, and no telangiectasia was found in other organs. The diagnosis was established as GAVE with liver cirrhosis. Surgical resection of the distal stomach resulted in termination of the bleeding, and the cirrhotic changes of the surface of the liver were revealed at that time, providing further evidence of liver cirrhosis. Although the pathogenesis of GAVE is unknown, liver cirrhosis and hypergastrinemia are thought to be associated with the condition. Importantly, this condition is a cause of severe gastrointestinal bleeding in elderly patients.

  10. Arterial spin-labeling assessment of normalized vascular intratumoral signal intensity as a predictor of histologic grade of astrocytic neoplasms.

    Science.gov (United States)

    Furtner, J; Schöpf, V; Schewzow, K; Kasprian, G; Weber, M; Woitek, R; Asenbaum, U; Preusser, M; Marosi, C; Hainfellner, J A; Widhalm, G; Wolfsberger, S; Prayer, D

    2014-03-01

    Pulsed arterial spin-labeling is a noninvasive MR imaging perfusion method performed with the use of water in the arterial blood as an endogenous contrast agent. The purpose of this study was to determine the inversion time with the largest difference in normalized intratumoral signal intensity between high-grade and low-grade astrocytomas. Thirty-three patients with gliomas, histologically classified as low-grade (n = 7) or high-grade astrocytomas (n = 26) according to the World Health Organization brain tumor classification, were included. A 3T MR scanner was used to perform pulsed arterial spin-labeling measurements at 8 different inversion times (370 ms, 614 ms, 864 ms, 1114 ms, 1364 ms, 1614 ms, 1864 ms, and 2114 ms). Normalized intratumoral signal intensity was calculated, which was defined by the signal intensity ratio of the tumor and the contralateral normal brain tissue for all fixed inversion times. A 3-way mixed ANOVA was used to reveal potential differences in the normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas. The difference in normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas obtained the most statistically significant results at 370 ms (P = .003, other P values ranged from .012-.955). The inversion time by which to differentiate high-grade and low-grade astrocytomas by use of normalized vascular intratumoral signal intensity was 370 ms in our study. The normalized vascular intratumoral signal intensity values at this inversion time mainly reflect the labeled intra-arterial blood bolus and therefore could be referred to as normalized vascular intratumoral signal intensity. Our data indicate that the use of normalized vascular intratumoral signal intensity values allows differentiation between low-grade and high-grade astrocytomas and thus may serve as a new, noninvasive marker for astrocytoma grading.

  11. The influence of perivascular adipose tissue on vascular homeostasis

    Directory of Open Access Journals (Sweden)

    Szasz T

    2013-03-01

    Full Text Available Theodora Szasz,1 Gisele Facholi Bomfim,2 R Clinton Webb1 1Department of Physiology, Georgia Regents University, Augusta, USA; 2Department of Pharmacology, University of São Paulo, São Paulo, Brazil Abstract: The perivascular adipose tissue (PVAT is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT. Keywords: adipokines

  12. Arterial vascularization of the pineal gland.

    Science.gov (United States)

    Kahilogullari, Gokmen; Ugur, Hasan Caglar; Comert, Ayhan; Brohi, Recep Ali; Ozgural, Onur; Ozdemir, Mevci; Karahan, Suleyman Tuna

    2013-10-01

    The arterial vascularization of the pineal gland (PG) remains a debatable subject. This study aims to provide detailed information about the arterial vascularization of the PG. Thirty adult human brains were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. The dissections were carried out using a surgical microscope. The diameters of the branches supplying the PG at their origin and vascularization areas of the branches of the arteries were investigated. The main artery of the PG was the lateral pineal artery, and it originated from the posterior circulation. The other arteries included the medial pineal artery from the posterior circulation and the rostral pineal artery mainly from the anterior circulation. Posteromedial choroidal artery was an important artery that branched to the PG. The arterial supply to the PG was studied comprehensively considering the debate and inadequacy of previously published studies on this issue available in the literature. This anatomical knowledge may be helpful for surgical treatment of pathologies of the PG, especially in children who develop more pathology in this region than adults.

  13. Is Pseudoexfoliation Syndrome a Risk Factor for Cerebro Vascular Disease?

    Science.gov (United States)

    Kan, Emrah; Yılmaz, Ahmet; Demirağ, Mehmet Derya; Çalık, Murat

    2017-01-01

    To determine the relationship between cerebro vascular disease and pseudoexfoliation syndrome. This cross-sectional case control study consisted of 50 patients with ischemic-type cerebro vascular disease and 50 control subjects. All subjects were investigated for diabetes mellitus and hypertension status and underwent a detailed ophthalmic examination. A diagnosis of pseudoexfoliation syndrome was made if characteristic greyish particulate matter was found on the anterior lens capsule after pupillary dilatation by slit-lamp examination. All subjects were compared in terms of pseudoexfoliation syndrome, diabetes mellitus, and hypertension. Pearson Chi Square and Student's t test were used for statistical analysis. Logistic regression analyses of the risk factors between groups were also made. The presence of pseudoexfoliation syndrome was significantly higher in patients with cerebro vascular disease when compared to the control subjects (p = 0.02). The frequency of diabetes mellitus was similar between the two groups. Arterial hypertension was significantly more frequent in the patient group when compared to the control subjects (p cerebro vascular disease. In the present study, we found that pseudoexfoliation syndrome frequency was found to be higher in patients with cerebro vascular disease than in control subjects. A slit-lamp examination of the eye could be an important marker that indicates the risk of cerebro vascular disease. We recommend an evaluation of all subjects with pseudoexfoliation syndrome for the presence of cerebro vascular disease. Longitudinal studies with larger populations are needed to confirm this relationship.

  14. Disruptive technological advances in vascular access for dialysis: an overview.

    Science.gov (United States)

    Yeo, Wee-Song; Ng, Qin Xiang

    2017-11-29

    End-stage kidney disease (ESKD), one of the most prevalent diseases in the world and with increasing incidence, is associated with significant morbidity and mortality. Current available modes of renal replacement therapy (RRT) include dialysis and renal transplantation. Though renal transplantation is the preferred and ideal mode of RRT, this modality may not be available to all patients with ESKD. Moreover, renal transplant recipients are constantly at risk of complications associated with immunosuppression and immunosuppressant use, and posttransplant lymphoproliferative disorder. Dialysis may be the only available modality in certain patients. However, dialysis has its limitations, which include issues associated with lack of vascular access, risks of infections and vascular thrombosis, decreased quality of life, and absence of biosynthetic functions of the kidney. In particular, the creation and maintenance of hemodialysis vascular access in children poses a unique set of challenges to the pediatric nephrologist owing to the smaller vessel diameters and vascular hyperreactivity compared with adult patients. Vascular access issues continue to be one of the major limiting factors prohibiting the delivery of adequate dialysis in ESKD patients and is the Achilles' heel of hemodialysis. This review aims to provide a critical overview of disruptive technological advances and innovations for vascular access. Novel strategies in preventing neointimal hyperplasia, novel bioengineered products, grafts and devices for vascular access will be discussed. The potential impact of these solutions on improving the morbidity encountered by dialysis patients will also be examined.

  15. Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia

    International Nuclear Information System (INIS)

    Bouder, T.G.; Huffman, L.J.; Hedge, G.A.

    1988-01-01

    In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injections ( 141 Ce-MS/ 85 Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP

  16. The influence of perivascular adipose tissue on vascular homeostasis.

    Science.gov (United States)

    Szasz, Theodora; Bomfim, Gisele Facholi; Webb, R Clinton

    2013-01-01

    The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

  17. Risk stratification for the development of respiratory adverse events following vascular surgery using the Society of Vascular Surgery's Vascular Quality Initiative.

    Science.gov (United States)

    Genovese, Elizabeth A; Fish, Larry; Chaer, Rabih A; Makaroun, Michel S; Baril, Donald T

    2017-02-01

    Postoperative respiratory adverse events (RAEs) are associated with high rates of morbidity and mortality in general surgery, however, little is known about these complications in the vascular surgery population, a frail subset with multiple comorbidities. The objective of this study was to describe the contemporary incidence of RAEs in vascular surgery patients, the risk factors for this complication, and the overall impact of RAEs on patient outcomes. The Vascular Quality Initiative was queried (2003-2014) for patients who underwent endovascular abdominal aortic repair, open abdominal aortic aneurysm repair, thoracic endovascular aortic repair, suprainguinal bypass, or infrainguinal bypass. A mixed-effects logistic regression model determined the independent risk factors for RAEs. Using a random 85% of the cohort, a risk prediction score for RAEs was created, and the score was validated using the remaining 15% of the cohort, comparing the predicted to the actual incidence of RAE and determining the area under the receiver operating characteristic curve. The independent risk of in-hospital mortality and discharge to a nursing facility associated with RAEs was determined using a mixed-effects logistic regression to control for baseline patient characteristics, operative variables, and other postoperative adverse events. The cohort consisted of 52,562 patients, with a 5.4% incidence of RAEs. The highest rates of RAEs were seen in current smokers (6.1%), recent acute myocardial infarction (10.1%), symptomatic congestive heart failure (9.9%), chronic obstructive pulmonary disease requiring oxygen therapy (11.0%), urgent and emergent procedures (6.4% and 25.9%, respectively), open abdominal aortic aneurysm repairs (17.6%), in situ suprainguinal bypasses (9.68%), and thoracic endovascular aortic repairs (9.6%). The variables included in the risk prediction score were age, body mass index, smoking status, congestive heart failure severity, chronic obstructive pulmonary

  18. Subclinical hypothyroidism ups the risk of vascular complications in ...

    African Journals Online (AJOL)

    Subclinical hypothyroidism ups the risk of vascular complications in type 2 diabetes. ... hypothyroidism (SCH) and vascular complications of type 2 diabetes. ... However, gender (p = 0.076), BMI (p = 0.092), and smoking (P = 0.715) were not ...

  19. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Directory of Open Access Journals (Sweden)

    Westerholm Roger

    2010-07-01

    Full Text Available Abstract Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3 or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin and endothelial-independent (sodium nitroprusside and verapamil vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel

  20. Anatomy of the vegetative organs at Syngonium podophyllum Schott.

    Directory of Open Access Journals (Sweden)

    Monica SIPOS

    2009-11-01

    Full Text Available This article has as an objective establishing the structure of the vegetative organs at Syngonium podophyllum. The structure is specific for herbaceous monocotyledonous: root has a primary structure, the stem primary structure is an intermediary form between an aerial stem and a rhizome (the presence in a fundamental parenchyma of the colaterally closed vascular bundles and the leptocentric ones. The leaf petiole has the suberified epidermis. It is characterised by the colaterally closed vascular bundles disposed peripherically and extremely well protected by the sclerenchyma and in the centre of the petiole, in the fundamental parenchyma, the same type of fascicles are placed. The middrib has a structure similar to that of the petiole. The leaf mesophyll is homogenous. The parenchyma of aerial vegetative organs of this species is crossed by aeripherous channels and their cells contain calcium oxalate crystals. The leaf is amphistomatic, the stomatic complexes are an amarilidaceous type, tetracitic or hexacitic.

  1. Vascular Stiffness and Increased Pulse Pressure in the Aging Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Jochen Steppan

    2011-01-01

    Full Text Available Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.

  2. Initial evaluation of vascular ingrowth into superporous hydrogels.

    Science.gov (United States)

    Keskar, Vandana; Gandhi, Milind; Gemeinhart, Ernest J; Gemeinhart, Richard A

    2009-08-01

    There is a need for new materials and architectures for tissue engineering and regenerative medicine. Based upon our recent results developing novel scaffold architecture, we hypothesized that this new architecture would foster vascularization, a particular need for tissue engineering. We report on the potential of superporous hydrogel (SPH) scaffolds for in vivo cellular infiltration and vascularization. Poly(ethylene glycol) diacrylate (PEGDA) SPH scaffolds were implanted in the dorsum of severe combined immunodeficient (SCID) mice and harvested after 4 weeks of in vivo implantation. The SPHs were visibly red and vascularized, as apparent when compared to the non-porous hydrogel controls, which were macroscopically avascular. Host cell infiltration was observed throughout the SPHs. Blood cells and vascular structures, confirmed through staining for CD34 and smooth muscle alpha-actin, were observed throughout the scaffolds. This novel soft material may be utilized for cell transplantation, tissue engineering and in combination with cell therapies. The neovasularization and limited fibrotic response suggest that the architecture may be conducive to cell survival and rapid vessel development.

  3. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  4. Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling

    Directory of Open Access Journals (Sweden)

    Qishan Chen

    2013-01-01

    Full Text Available Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs, and vascular smooth muscle cells (VSMCs and its interaction with extracellular matrix (ECM play a critical role in the processes. Matrix metalloproteinases (MMPs, well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.

  5. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  6. Vascular Contributions to Cognitive Impairment and Dementia

    Science.gov (United States)

    Gorelick, Philip B.; Scuteri, Angelo; Black, Sandra E.; DeCarli, Charles; Greenberg, Steven M.; Iadecola, Costantino; Launer, Lenore J.; Laurent, Stephane; Lopez, Oscar L.; Nyenhuis, David; Petersen, Ronald C.; Schneider, Julie A.; Tzourio, Christophe; Arnett, Donna K.; Bennett, David A.; Chui, Helena C.; Higashida, Randall T.; Lindquist, Ruth; Nilsson, Peter M.; Roman, Gustavo C.; Sellke, Frank W.; Seshadri, Sudha

    2013-01-01

    Background and Purpose This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Methods Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. Results The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury—not solely stroke—ranging from mild cognitive impairment through fully developed

  7. Radiation-induced vascular lesions of the skin: an overview

    NARCIS (Netherlands)

    Flucke, U.E.; Requena, L.; Mentzel, T.

    2013-01-01

    Radiation-induced cutaneous vascular neoplasms occur infrequently and comprise benign, so-called atypical vascular lesions (AVL) and angiosarcomas (AS), often being high-grade malignant tumors. Both arise most frequently within previously irradiated skin in breast-conserving-treated mammary cancer

  8. Validation of the Society for Vascular Surgery's objective performance goals for critical limb ischemia in everyday vascular surgery practice.

    Science.gov (United States)

    Goodney, Philip P; Schanzer, Andres; Demartino, Randall R; Nolan, Brian W; Hevelone, Nathanael D; Conte, Michael S; Powell, Richard J; Cronenwett, Jack L

    2011-07-01

    To develop standardized metrics for expected outcomes in lower extremity revascularization for critical limb ischemia (CLI), the Society for Vascular Surgery (SVS) has developed objective performance goals (OPGs) based on aggregate data from randomized trials of lower extremity bypass (LEB). It remains unknown, however, if these targets can be achieved in everyday vascular surgery practice. We applied SVS OPG criteria to 1039 patients undergoing 1039 LEB operations for CLI with autogenous vein (excluding patients on dialysis) within the Vascular Study Group of New England (VSGNE). Each of the individual OPGs was calculated within the VSGNE dataset, along with its surrounding 95% confidence intervals (CIs) and compared to published SVS OPGs using χ(2) comparisons and survival analysis. Across most risk strata, patients in the VSGNE and SVS OPG cohorts were similar (clinical high-risk [age >80 years and tissue loss]: 15.3% VSGNE; 16.2% SVS OPG; P = .58; anatomic high risk [infrapopliteal target artery]: 57.8% VSGNE; 60.2% SVS OPG; P = .32). However, the proportion of VSGNE patients designated as conduit high-risk (lack of single-segment great saphenous vein) was lower (10.2% VSGNE; 26.9% SVS OPG;P Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  9. Presentation of an experimental method to induce in vitro ("organ chambers") respiratory acidosis and its effect on vascular reactivity.

    Science.gov (United States)

    Nadai, Tales Rubens de; Silveira, Ana Paula Cassiano; Monteiro, Ariadne Santana e Neves; Campos, Debora Ribeiro; Carvalho, Marco Tulio Rezende de; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Evora, Paulo Roberto Barbosa

    2014-11-01

    To create in vitro a model to generate acidosis by CO2 bubbling "organ chambers", which would be useful for researchers that aim to study the effects of acid-base disturbs on the endothelium-dependent vascular reactivity. Eighteen male Wistar rats (230-280 g) were housed, before the experiments, under standard laboratory conditions (12h light/dark cycle at 21°C), with free access to food and water. The protocol for promoting in vitro respiratory acidosis was carried out by bubbling increased concentrations of CO2. The target was to achieve an ideal way to decrease the pH gradually to a value of approximately 6.6.It was used, initially, a gas blender varying concentrations of the carbogenic mixture (95% O2 + 5% CO2) and pure CO2. 1) 100% CO2, pH variation very fast, pH minimum 6.0; 2) 90%CO2 pH variation bit slower, pH minimum 6.31; 3) 70%CO2, pH variation slower, pH minimum 6.32; 4) 50% CO2, pH variation slower, pH minimum 6:42; 5) 40 %CO2, Adequate record, pH minimum 6.61, and; 6) 30 %CO2 could not reach values below pH minimum 7.03. Based on these data the gas mixture (O2 60% + CO2 40%) was adopted. This gas mixture (O2 60% + CO2 40%) was effective in inducing respiratory acidosis at a speed that made, possible the recording of isometric force.

  10. [Vascular depression in the elderly. Does inflammation play a role?].

    Science.gov (United States)

    Viscogliosi, Giovanni; Andreozzi, Paola; Chiriac, Iulia Maria; Ettorre, Evaristo; Vulcano, Achiropita; Servello, Adriana; Marigliano, Benedetta; Marigliano, Vincenzo

    2011-06-01

    Vascular depression in the elderly. Does inflammation play a role?Depression is the most common comorbidity in the elderly, and it is a major determinant of disability. The late-onset depression in highly associated to cardiovascular disease. Depressive symptoms may follow vascular brain damage, especially when mood regulating areas are affected. However depression is strongly associated to vascular disease even when there is no manifest brain damage. Recently great attention has been given to chronic inflammation, both related to depression and vascular disease. Both experimental and clinical evidence shows that a rise in the concentrations of proinflammatory cytokines and glucocorticoids in depressed patients is associated with defect in serotonergic function. Chronic inflammation may underlie many forms of depression associated with vascular disease and metabolic syndrome. The importance of the inflammation hypothesis of depression lies is that psychotropic drugs may have central anti-inflammatory action, and that new generation of central anti-inflammatory drugs may be useful in depression treatment.

  11. Lifestyle and metabolic approaches to maximizing erectile and vascular health.

    Science.gov (United States)

    Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J

    2012-01-01

    Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient

  12. A neurodegenerative vascular burden index and the impact on cognition

    Directory of Open Access Journals (Sweden)

    Sebastian eHeinzel

    2014-07-01

    Full Text Available A wide range of vascular burden factors have been identified to impact vascular function and structure as indicated by carotid intima-media thickness (IMT. On the basis of their impact on IMT, vascular factors may be selected and clustered in a vascular burden index (VBI. Since many vascular factors increase the risk of Alzheimer's disease (AD, a multifactorial neurodegenerative VBI may be related to early pathological processes in AD and cognitive decline in its preclinical stages.We investigated an elderly cohort at risk for neurodegeneration (TREND study, n = 1102 for the multifactorial influence of vascular burden factors on IMT measured by ultrasound. To create a VBI for this cohort, vascular factors and their definitions (considering medical history, medication and/or blood marker data were selected based on their statistical effects on IMT in multiple regressions including age and sex. The impact of the VBI on cognitive performance was assessed using the Trail-Making Test (TMT and the CERAD neuropsychological battery.IMT was significantly predicted by age (standardized β = .26, sex (.09; males > females and the factors included in the VBI: obesity (.18, hypertension (.14, smoking (.08, diabetes (.07, and atherosclerosis (.05, whereas other cardiovascular diseases or hypercholesterolemia were not significant. Individuals with 2 or more VBI factors compared to individuals without had an odds ratio of 3.17 regarding overly increased IMT (≥1.0 mm. The VBI showed an impact on executive control (log(TMT B-A, p = .047 and a trend towards decreased global cognitive function (CERAD total score, p = .057 independent of age, sex and education.A VBI established on the basis of IMT may help to identify individuals with overly increased vascular burden linked to decreased cognitive function indicating neurodegenerative processes. The longitudinal study of this risk cohort will reveal the value of the VBI as prodromal marker for cognitive decline and

  13. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    Science.gov (United States)

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    Science.gov (United States)

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  15. How do bryophytes govern generative recruitment of vascular plants?

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Graae, B.J.; Douma, J.C.; Grau, O.; Milbau, A.; Shevtsova, A.; Wolters, L.; Cornelissen, J.H.C.

    2011-01-01

    Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific

  16. Diffuse corpus callosum infarction - Rare vascular entity with differing etiology.

    Science.gov (United States)

    Mahale, Rohan; Mehta, Anish; Buddaraju, Kiran; John, Aju Abraham; Javali, Mahendra; Srinivasa, Rangasetty

    2016-01-15

    Infarctions of the corpus callosum are rare vascular events. It is relatively immune to vascular insult because of its rich vascular supply from anterior and posterior circulations of brain. Report of 3 patients with largely diffuse acute corpus callosum infarction. 3 patients with largely diffuse acute corpus callosum infarction were studied and each of these 3 patients had 3 different aetiologies. The 3 different aetiologies of largely diffuse acute corpus callosum infarction were cardioembolism, tuberculous arteritis and takayasu arteritis. Diffuse corpus callosum infarcts are rare events. This case series narrates the three different aetiologies of diffuse acute corpus callosum infarction which is a rare vascular event. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A multifaceted approach to maximize erectile function and vascular health.

    Science.gov (United States)

    Meldrum, David R; Gambone, Joseph C; Morris, Marge A; Ignarro, Louis J

    2010-12-01

    To review the role of various factors influencing vascular nitric oxide (NO) and cyclic GMP, and consequently, erectile function and vascular health. Pertinent publications are reviewed. Daily moderate exercise stimulates vascular NO production. Maintenance of normal body weight and waist/hip ratio allows NO stimulation by insulin. Decreased intake of fat, sugar, and simple carbohydrates rapidly converted to sugar reduces the adverse effects of fatty acids and sugar on endothelial NO production. Omega-3 fatty acids stimulate endothelial NO release. Antioxidants boost NO production and prevent NO breakdown. Folic acid, calcium, vitamin C, and vitamin E support the biochemical pathways leading to NO release. Cessation of smoking and avoidance of excessive alcohol preserve normal endothelial function. Moderate use of alcohol and certain proprietary supplements may favorably influence erectile and vascular function. Treatment of any remaining testosterone deficit will both increase erectile function and reduce any associated metabolic syndrome. After production of NO and cyclic GMP are improved, use of phosphodiesterase-5 inhibitors should result in greater success in treating remaining erectile dysfunction. Recent studies have also suggested positive effects of phosphodiesterase-5 inhibitors on vascular function. A multifaceted approach will maximize both erectile function and vascular health. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Pioglitazone Attenuates Vascular Fibrosis in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Dengfeng Gao

    2012-01-01

    Full Text Available Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males were randomly divided into 3 groups (n=8 each for treatment: pioglitazone (10 mg/kg/day, hydralazine (25 mg/kg/day, or saline. Normal male Wistar Kyoto (WKY rats (n=8 served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson’s trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF and transforming growth factor-β (TGF-β expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson’s trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism.

  19. Vascular endothelial growth factors and angiogenesis in eye disease

    NARCIS (Netherlands)

    Witmer, A. N.; Vrensen, G. F. J. M.; van Noorden, C. J. F.; Schlingemann, R. O.

    2003-01-01

    The vascular endothelial growth factor (VEGF) family of growth factors controls pathological angiogenesis and increased vascular permeability in important eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). The purpose of this review is to develop new insights

  20. Coexistence of pheochromocytoma with uncommon vascular lesions

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2012-01-01

    Full Text Available Background: Pheochromocytoma/paragangliomas have been described to be associated with rare vascular abnormalities like renal artery stenosis. Coexistence of physiologically significant renal artery lesions is a compounding factor that alters management and prognosis of pheochromocytoma patients. Apart from individual case reports, data on such association in Indian population is not available. The aim of this study is to find the nature and prevalence of associated vascular abnormalities. Materials and Methods: From 1990 to 2010, a total of 50 patients were diagnosed with pheochromocytoma/paragangliomas. Hospital charts of these patients were reviewed retrospectively to identify those with unusual vascular abnormalities. Available literature was also reviewed. Results: Of the 50 patients with pheochromocytoma, 7 (14% had coexisting vascular lesions including renal artery stenosis in 4, aortoarteritis in 1, aortic aneurysm in 1 and inferior vena cava thrombosis in 1. Pheochromocytoma was adrenal in 42 and extra adrenal in 8. Laparoscopic adrenalectomy was done in the patients. One patient with renal artery stenosis due to intimal fibrosis was subjected to percutaneous balloon angioplasty; the other three improved after adrenalectomy and lysis of fibrous adhesive bands. The patient with aortoarteritos was treated with oral steroids. Inferior vena cava thrombosis was reversed with anticoagulants. The patient with abdominal aortic aneurysm was advised for annual follow-up on account of its size of 4.5 cm and asymptomatic presentation. Conclusion: There are multiple mechanisms that can lead to renal artery stenosis and other vascular abnormalities in a case of pheochromocytoma. A high index of suspicion is necessary to enable both entities to be diagnosed preoperatively and allow proper planning of surgical therapy. Incomplete diagnosis may lead to persistent hypertension postoperatively in a case of associated renal artery stenosis.