WorldWideScience

Sample records for subduction thrust earthquake

  1. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2013-01-01

    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g.

  2. Numerical simulation of earthquake rupture sequences on the Manila thrust fault: Effects of seamount subduction

    Science.gov (United States)

    Yu, H.; Liu, Y.; Ning, J.; He, C.; Zhang, L.

    2015-12-01

    The Manila subduction zone is located at the convergent boundary between the Philippine Sea Plate and the Sunda/Eurasian Plate from offshore Taiwan to northern Luzon of Philippines, where only infrequent M7 earthquakes were observed in modern seismological instrumentation history. The lack of great events (M8+) indicates the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a great earthquake. Here we conduct numerical simulations of earthquake rupture sequences in the framework of rate-state-friction along the 15-19.5ºN segment of the 3D plate boundary with subducted seamounts. Rate-state frictional properties are constrained by laboratory friction experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples from the basaltic basement rock under 100ºC - 600ºC, effective normal stress of 50 MPa and pore pressure of 100 MPa. During the modeled 2000-year period, the maximum magnitude of earthquakes is Mw7. Each sequence repeats every ~200 years and is consisted of three sub-events, event 1 (Mw7) that can overcome the barrier, where dip angle changes most rapidly along the strike, to rupture the entire fault. Events 2 (Mw 6.4) and 3 (Mw 5.7) are of smaller magnitudes and result in north-south segmented rupture pattern. We further quantify the potential of earthquake nucleation by the S-ratio (lower S ratio means the initial stress is closer to peak strength, hence more likely to nucleate an earthquake). The subducted seamount shows higher S-ratios than its surroundings mostly, implying an unlikely nucleate area. Our results are qualitatively similar to 2D subduction earthquake modeling by Herrendörfer et al. (2015, 2-3 events per supercycle and median long-term S is 0.5-1). Finally, we plan to use our coseismic rupture model results as inputs for a tsunami propagation model in SCS. Compared to the kinematic seafloor deformation input, our physics-based earthquake source model and its

  3. Great earthquakes hazard in slow subduction zones

    Science.gov (United States)

    Marcaillou, B.; Gutscher, M.; Westbrook, G. K.

    2008-12-01

    Research on the Sumatra-Andaman earthquake of 2004 has challenged two popular paradigms; that the strongest subduction earthquakes strike in regions of rapid plate convergence and that rupture occurs primarily along the contact between the basement of the overriding plate and the downgoing plate. Subduction zones presenting similar structural and geodynamic characteristics (slow convergence and thick wedges of accreted sediment) may be capable of generating great megathrust earthquakes (M>8.5) despite an absence of thrust type earthquakes over the past 40 years. Existing deep seismic sounding data and hypocenters are used to constrain the geometry of several key slow subduction zones (Antilles, Hellenic, Sumatra). This geometry forms the basis for numerical modelling of fore-arc thermal structure, which is applied to calculate the estimated width of the seismogenic portion of the subduction fault plane. The margins with the thickest accretionary wedges are commonly found to have the widest (predicted) seismogenic zone. Furthermore, for these margins there exists a substantial (20-60 km wide) region above the up-dip limit for which the contribution to tsunami generation is poorly understood. As the rigidity (mu) of these high-porosity sediments is low, co-seismic slip here can be expected to be slow. Accordingly, the contribution to seismic moment will be low, but the contribution to tsunami generation may be very high. Indeed, recent seismological data from Nankai indicate very low frequency shallow-thrust earthquakes beneath this portion of the accretionary wedge, long-considered to be "aseismic". We propose that thick accumulations of sediment on the downgoing plate and the presence of a thick accretionary wedge can increase the maximum size of the potential rupture fault plane in two ways; 1) by thermally insulating the downgoing plate and thereby increasing the total downdip length of the fault which can rupture seismically and 2) by "smoothing out" the

  4. The earthquake cycle in subduction zones

    Science.gov (United States)

    Melosh, H. J.; Fleitout, L.

    1982-01-01

    A simplified model of a subduction zone is presented, which incorporates the mechanical asymmetry induced by the subducted slab to anchor the subducting plate during post-seismic rebound and thus throw most of the coseismic stream release into the overthrust plate. The model predicts that the trench moves with respect to the deep mantle toward the subducting plate at a velocity equal to one-half of the convergence rate. A strong extensional pulse is propagated into the overthrust plate shortly after the earthquake, and although this extension changes into compression before the next earthquake in the cycle, the period of strong extension following the earthquake may be responsible for extensional tectonic features in the back-arc region.

  5. The hidden simplicity of subduction megathrust earthquakes

    Science.gov (United States)

    Meier, M.-A.; Ampuero, J. P.; Heaton, T. H.

    2017-09-01

    The largest observed earthquakes occur on subduction interfaces and frequently cause widespread damage and loss of life. Understanding the rupture behavior of megathrust events is crucial for earthquake rupture physics, as well as for earthquake early-warning systems. However, the large variability in behavior between individual events seemingly defies a description with a simple unifying model. Here we use three source time function (STF) data sets for subduction zone earthquakes, with moment magnitude Mw ≥ 7, and show that such large ruptures share a typical universal behavior. The median STF is scalable between events with different sizes, grows linearly, and is nearly triangular. The deviations from the median behavior are multiplicative and Gaussian—that is, they are proportionally larger for larger events. Our observations suggest that earthquake magnitudes cannot be predicted from the characteristics of rupture onsets.

  6. Subduction zone earthquakes and stress in slabs

    Science.gov (United States)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  7. Earthquake nucleation in weak subducted carbonates

    NARCIS (Netherlands)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Chirstopher J.; Behrmann, Jan H.

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests

  8. The seismic cycle at subduction thrusts: 1. Insights from laboratory models

    KAUST Repository

    Corbi, F.

    2013-04-01

    Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by “quasi-periodic” recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the “coastal area” as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.

  9. Recent Mega-Thrust Tsunamigenic Earthquakes and PTHA

    Science.gov (United States)

    Lorito, S.

    2013-05-01

    The occurrence of several mega-thrust tsunamigenic earthquakes in the last decade, including but not limited to the 2004 Sumatra-Andaman, the 2010 Maule, and 2011 Tohoku earthquakes, has been a dramatic reminder of the limitations in our capability of assessing earthquake and tsunami hazard and risk. However, the increasingly high-quality geophysical observational networks allowed the retrieval of most accurate than ever models of the rupture process of mega-thrust earthquakes, thus paving the way for future improved hazard assessments. Probabilistic Tsunami Hazard Analysis (PTHA) methodology, in particular, is less mature than its seismic counterpart, PSHA. Worldwide recent research efforts of the tsunami science community allowed to start filling this gap, and to define some best practices that are being progressively employed in PTHA for different regions and coasts at threat. In the first part of my talk, I will briefly review some rupture models of recent mega-thrust earthquakes, and highlight some of their surprising features that likely result in bigger error bars associated to PTHA results. More specifically, recent events of unexpected size at a given location, and with unexpected rupture process features, posed first-order open questions which prevent the definition of an heterogeneous rupture probability along a subduction zone, despite of several recent promising results on the subduction zone seismic cycle. In the second part of the talk, I will dig a bit more into a specific ongoing effort for improving PTHA methods, in particular as regards epistemic and aleatory uncertainties determination, and the computational PTHA feasibility when considering the full assumed source variability. Only logic trees are usually explicated in PTHA studies, accounting for different possible assumptions on the source zone properties and behavior. The selection of the earthquakes to be actually modelled is then in general made on a qualitative basis or remains implicit

  10. The seismic cycle at subduction thrusts: Insights from seismo-thermo-mechanical models

    KAUST Repository

    van Dinther, Y.

    2013-12-01

    The underestimation of the size of recent megathrust earthquakes illustrates our limited understanding of their spatiotemporal occurrence and governing physics. To unravel their relation to associated subduction dynamics and long-term deformation, we developed a 2-D continuum viscoelastoplastic model that uses an Eulerian-Lagrangian finite difference framework with similar on- and off-fault physics. We extend the validation of this numerical tool to a realistic subduction zone setting that resembles Southern Chile. The resulting quasi-periodic pattern of quasi-characteristic M8–M9 megathrust events compares quantitatively with observed recurrence and earthquake source parameters, albeit at very slow coseismic speeds. Without any data fitting, surface displacements agree with GPS data recorded before and during the 2010 M8.8 Maule earthquake, including the presence of a second-order flexural bulge. These surface displacements show cycle-to-cycle variations of slip deficits, which overall accommodate ∼5% of permanent internal shortening. We find that thermally (and stress) driven creep governs a spontaneous conditionally stable downdip transition zone between temperatures of ∼350°C and ∼450°C. Ruptures initiate above it (and below the forearc Moho), propagate within it, interspersed by small intermittent events, and arrest below it as ductile shearing relaxes stresses. Ruptures typically propagate upward along lithological boundaries and widen as pressures drop. The main thrust is constrained to be weak due to fluid-induced weakening required to sustain regular subduction and to generate events with natural characteristics (fluid pressures of ∼75–99% of solid pressures). The agreement with a range of seismological, geodetic, and geological observations demonstrates the validity and strength of this physically consistent seismo-thermo-mechanical approach.

  11. What favors the occurrence of subduction mega-earthquakes?

    Science.gov (United States)

    Brizzi, Silvia; Funiciello, Francesca; Corbi, Fabio; Sandri, Laura; van Zelst, Iris; Heuret, Arnauld; Piromallo, Claudia; van Dinther, Ylona

    2017-04-01

    Most of mega-earthquakes (MEqs; Mw > 8.5) occur at shallow depths along the subduction thrust fault (STF). The contribution of each subduction zone to the globally released seismic moment is not homogenous, as well as the maximum recorded magnitude MMax. Highlighting the ingredients likely responsible for MEqs nucleation has great implications for hazard assessment. In this work, we investigate the conditions favoring the occurrence of MEqs with a multi-disciplinary approach based on: i) multivariate statistics, ii) analogue- and iii) numerical modelling. Previous works have investigated the potential dependence between STF seismicity and various subduction zone parameters using simple regression models. Correlations are generally weak due to the limited instrumental seismic record and multi-parameter influence, which make the forecasting of the potential MMax rather difficult. To unravel the multi-parameter influence, we perform a multivariate statistical study (i.e., Pattern Recognition, PR) of the global database on convergent margins (Heuret et al., 2011), which includes seismological, geometrical, kinematic and physical parameters of 62 subduction segments. PR is based on the classification of objects (i.e., subduction segments) belonging to different classes through the identification of possible repetitive patterns. Tests have been performed using different MMax datasets and combination of inputs to indirectly test the stability of the identified patterns. Results show that the trench-parallel width of the subducting slab (Wtrench) and the sediment thickness at the trench (Tsed) are the most recurring parameters for MEqs occurrence. These features are mostly consistent, independently of the MMax dataset and combination of inputs used for the analysis. MEqs thus seem to be promoted for high Wtrench and Tsed, as their combination may potentially favor extreme (i.e., in the order of thousands of km) trench-parallel rupture propagation. To tackle the

  12. Deformation cycles of subduction earthquakes in a viscoelastic Earth.

    Science.gov (United States)

    Wang, Kelin; Hu, Yan; He, Jiangheng

    2012-04-18

    Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic 'snapshots' from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

  13. POTENTIAL OF TSUNAMI GENERATION ALONG THE COLOMBIA/ECUADOR SUBDUCTION MARGIN AND THE DOLORES-GUAYAQUIL MEGA-THRUST

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2012-01-01

    Full Text Available The Colombia/Ecuador subduction zone is a region where high seismic stress is presently accumulating. Statistical probability studies and GPS measurements of crustal deformation indicate that the region has an increased potential to generate in the near future a major or great tsunamigenic earthquake similar to the 1979 or 1906. Although most of the major earthquakes along this margin usually generate local tsunamis, the recurrence of a great mega-thrust, inter-plate earthquake, similar in magnitude and rupture to the 1906 event (Mw=8.8, rupture 600 km., can generate a tsunami with destructive near and far-field impacts. To understand the potential for such destructive tsunami generation in this region, the present study examines and evaluates: a the controlling inter-plate coupling mechanisms of the tectonic regime of the margin – including lithospheric structure deformation, sea-floor relief and the subduction or accretion of highly folded, hydrated sediments along the seismogenic zone of southern Colombia/North Ecuador; b the seismo-dynamics and role in tsunami generation as affected by the Carnegie Ridge’s oblique subduction beneath the South American continent; and c the seismotectonic extensional processes in the vicinity of the Gulf of Guayaquil-Tumbes Basin and how the northwestward movement of the North Andes block away from the South American continent along the Dolores Guayaquil mega-thrust and the resulting strain rotation may cause sudden detachment, décollement and deformation, with the potential for local tsunami generation that may affect the Gulf of Guayaquil and other coastal areas along southern Ecuador.

  14. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    Science.gov (United States)

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This

  15. Slow earthquakes linked along dip in the Nankai subduction zone.

    Science.gov (United States)

    Hirose, Hitoshi; Asano, Youichi; Obara, Kazushige; Kimura, Takeshi; Matsuzawa, Takanori; Tanaka, Sachiko; Maeda, Takuto

    2010-12-10

    We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were triggered by the acceleration of a long-term slow slip event in between. This correlation suggests that the slow slip might extend along-dip between the source areas of deeper and shallower slow earthquakes and thus could modulate the stress buildup on the adjacent megathrust rupture zone.

  16. Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone

    Science.gov (United States)

    Bangs, Nathan L.; McIntosh, Kirk D.; Silver, Eli A.; Kluesner, Jared W.; Ranero, César R.

    2015-01-01

    In 2011 we acquired an 11 × 55 km, 3-D seismic reflection volume across the Costa Rica margin, NW of the Osa Peninsula, to accurately image the subduction thrust in 3-D, to examine fault zone properties, and to infer the hydrogeology that controls fluid accumulation along the thrust. Following processing to remove water column multiples, noise, and acquisition artifacts, we constructed a 3-D seismic velocity model for Kirchhoff prestack depth migration imaging. Images of the plate boundary thrust show high-reflection amplitudes underneath the middle to lower slope that we attribute to fluid-rich, poorly drained portions of the subduction thrust. At 5 km subseafloor, beneath the upper slope, the plate interface abruptly becomes weakly reflective, which we interpret as a transition to a well-drained subduction thrust. Mineral dehydration during diagenesis may also diminish at 5 km subseafloor to reduce fluid production and contribute to the downdip change from high to low amplitude. There is also a layered fabric and systems of both thrust and normal faults within the overriding plate that form a "plumbing system." Faults commonly have fault plane reflections and are presumably fluid charged. The faults and layered fabric form three compartmentalized hydrogeologic zones: (1) a shallow NE dipping zone beneath the slope, (2) a steeply SW dipping zone beneath the shelf slope break, and (3) a NE dipping zone beneath the shelf. The more direct pathway in the middle zone drains the subduction thrust more efficiently and contributes to reduced fluid pressure, elevates effective stress, and creates greater potential for unstable coseismic slip.

  17. Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Carrizo, Daniel

    2011-05-01

    We discuss the earthquake rupture behavior along the Chile-Peru subduction zone in terms of the buoyancy of the subducting high oceanic features (HOF's), and the effect of the interplay between HOF and subduction channel thickness on the degree of interplate coupling. We show a strong relation between subduction of HOF's and earthquake rupture segments along the Chile-Peru margin, elucidating how these subducting features play a key role in seismic segmentation. Within this context, the extra increase of normal stress at the subduction interface is strongly controlled by the buoyancy of HOF's which is likely caused by crustal thickening and mantle serpentinization beneath hotspot ridges and fracture zones, respectively. Buoyancy of HOF's provide an increase in normal stress estimated to be as high as 10-50 MPa. This significant increase of normal stress will enhance seismic coupling across the subduction interface and hence will affect the seismicity. In particular, several large earthquakes (Mw ≥ 7.5) have occurred in regions characterized by subduction of HOF's including fracture zones (e.g., Nazca, Challenger and Mocha), hotspot ridges (e.g., Nazca, Iquique, and Juan Fernández) and the active Nazca-Antarctic spreading center. For instance, the giant 1960 earthquake (Mw = 9.5) is coincident with the linear projections of the Mocha Fracture Zone and the buoyant Chile Rise, while the active seismic gap of north Chile spatially correlates with the subduction of the Iquique Ridge. Further comparison of rupture characteristics of large underthrusting earthquakes and the locations of subducting features provide evidence that HOF's control earthquake rupture acting as both asperities and barriers. This dual behavior can be partially controlled by the subduction channel thickness. A thick subduction channel smooths the degree of coupling caused by the subducted HOF which allows lateral earthquake rupture propagation. This may explain why the 1960 rupture propagates

  18. Crustal Gravitational Potential Energy Change and Subduction Earthquakes

    Science.gov (United States)

    Zhu, P. P.

    2017-05-01

    Crustal gravitational potential energy (GPE) change induced by earthquakes is an important subject in geophysics and seismology. For the past forty years the research on this subject stayed in the stage of qualitative estimate. In recent few years the 3D dynamic faulting theory provided a quantitative solution of this subject. The theory deduced a quantitative calculating formula for the crustal GPE change using the mathematic method of tensor analysis under the principal stresses system. This formula contains only the vertical principal stress, rupture area, slip, dip, and rake; it does not include the horizontal principal stresses. It is just involved in simple mathematical operations and does not hold complicated surface or volume integrals. Moreover, the hanging wall vertical moving (up or down) height has a very simple expression containing only slip, dip, and rake. The above results are significant to investigate crustal GPE change. Commonly, the vertical principal stress is related to the gravitational field, substituting the relationship between the vertical principal stress and gravitational force into the above formula yields an alternative formula of crustal GPE change. The alternative formula indicates that even with lack of in situ borehole measured stress data, scientists can still quantitatively calculate crustal GPE change. The 3D dynamic faulting theory can be used for research on continental fault earthquakes; it also can be applied to investigate subduction earthquakes between oceanic and continental plates. Subduction earthquakes hold three types: (a) crust only on the vertical up side of the rupture area; (b) crust and seawater both on the vertical up side of the rupture area; (c) crust only on the vertical up side of the partial rupture area, and crust and seawater both on the vertical up side of the remaining rupture area. For each type we provide its quantitative formula of the crustal GPE change. We also establish a simplified model (called

  19. Detection of Very Low Frequency Earthquakes in the Mexican Subduction Zone

    Science.gov (United States)

    Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.; Perez-Campos, X.

    2016-12-01

    Tremors have already been detected in three different areas (Jalisco, Guerrero and Oaxaca) of the Mexican subduction zone but their moment tensor is difficult to estimate. However, Very Low Frequency (VLF) earthquakes have been shown to occur at the subduction interface in Guerrero, Mexico at the same time as tremors and their focal mechanisms have been calculated. We try to detect VLF events using the same method in Jalisco and in Oaxaca. With this aim we detect tremors using an envelope correlation method in Oaxaca and use a previously determined tremor catalog in Jalisco [Idehara et al., 2014]. Using the method of Ide and Yabe [2014], we stack waveforms, in the VLF band, at the time of occurrence of tremors. Finally, the stacked waveforms are inverted to better estimate the depth of these events and their moment tensor. This analysis is carried out for different time periods between 2005 and 2015, depending on the deployment of temporary network along the Mexican coast. In addition, permanent broadband stations of the Servicio Sismológico Nacional (Mexico) are used. The tremors detected in Oaxaca area are located farther west than previously known probably because of the more eastern location of stations. Our results show the spatial distribution of moment tensor along the Mexican subduction zone. The VLF sources are located at or close to the plate interface in Oaxaca and Jalisco as is observed in Guerrero. These events have magnitudes of about 3 and very low-angle to low-angle thrust mechanisms in agreement with the varying geometry of the subduction interface. The slip directions of VLF earthquakes are also consistent with the plates convergence vectors. In addition, some clear VLF signals are detected without any stacking using correlation methods. These individual detections confirm the results of our statistical analysis.

  20. Impact of great subduction earthquakes on the long-term forearc morphology, insight from mechanical modelling

    Science.gov (United States)

    Cubas, Nadaya

    2017-04-01

    The surge of great subduction earthquakes during the last fifteen years provided numerous observations requiring revisiting our understanding of large seismic events mechanics. For instance, we now have clear evidence that a significant part of the upper plate deformation is permanently acquired. The link between great earthquakes and long-term deformation offers a new perspective for the relief construction understanding. In addition, a better understanding of these relations could provide us with new constraints on earthquake mechanics. It is also of fundamental importance for seismic risk assessment. In this presentation, I will compile recent results obtained from mechanical modelling linking megathrust ruptures with upper-plate permanent deformation and discuss their impact. We will first show that, in good accordance with lab experiments, aseismic zones are characterized by frictions larger or equal to 0.1 whereas seismic asperities have dynamic frictions lower than 0.05. This difference will control the long-term upper-plate morphology. The larger values along aseismic zones allow the wedge to reach the critical state, and will lead to active thrust systems forming a relief. On the contrary, low dynamic friction along seismic asperities will place the taper in the sub-critical domain impeding any internal deformation. This will lead to the formation of forearc basins inducing negative gravity anomalies. Since aseismic zones have higher friction and larger taper, fully creeping segments will tend to develop peninsulas. On the contrary, fully locked segments with low dynamic friction and very low taper will favor subsiding coasts. The taper variation due to megathrust friction is also expressed through a correlation between coast-to-trench distance and forearc coupling (e.g., Mexican and South-American subduction zones). We will then discuss how variations of frictional properties along the megathrust can induce splay fault activation. For instance, we can

  1. Evidence of Shear Failure at the Subduction Interface by VLF Earthquake Characterization in Guerrero, Mexico

    Science.gov (United States)

    Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.; Perez-Campos, X.

    2015-12-01

    In Guerrero, Mexico, tremors and low frequency earthquakes have been observed to occur simultaneously, in the subduction interface, downdip where large slow slip events occur. To better understand the mechanism of tremors in Guerrero, we focus on the detection and mechanism estimation of very low frequency (VLF) earthquakes. Following the method of Ide and Yabe [2014], we first locate tectonic tremor (TT) by the envelope cross-correlation method [Obara, 2002]. Then, waveforms are stacked, in the VLF band between 0.02 and 0.05 Hz, at the time of occurrence of tremors. Finally, the stacked waveforms are inverted to better estimate the depth of these events and their moment tensor. This analysis is carried out for the periods of 2005-2007 and 2009-2013, at the time where two temporary networks were operating; the MASE and G-GAP network respectively. In addition, permanent broadband stations of the Servicio Seismológico Nacional (Mexico) are used. Our results show that the VLF sources are located at or close to the plate interface. These events have magnitudes of about 3 and very low-angle thrust mechanism in agreement with both the geometry of the nearly horizontal subduction interface and TT location determined with an independent technique, namely the Tremor Energy and Polarization (TREP) method. The slip directions of VLF earthquakes and TT are also consistent with the plates convergence vector. The MASE data from the first time period allows detection of VLF earthquakes in two different locations, the transient zone and "Sweet Spot" [Husker, 2012] but with similar mechanisms while the second dataset (G-GAP) gives more precise location in the main cluster (the "Sweet Spot"). In addition, some clear VLF signals are detected without any stacking. These events occur at the same time and areas as the TT thus suggesting a common origin of the two phenomena.

  2. The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults

    Science.gov (United States)

    Wang, Teng; Wei, Shengji; Shi, Xuhua; Qiu, Qiang; Li, Linlin; Peng, Dongju; Weldon, Ray J.; Barbot, Sylvain

    2018-01-01

    The distribution of slip during an earthquake and how it propagates among faults in the subduction system play a major role in seismic and tsunami hazards, yet they are poorly understood because offshore observations are often lacking. Here we derive the slip distribution and rupture evolution during the 2016 Mw 7.9 Kaikōura (New Zealand) earthquake that reconcile the surface rupture, space geodetic measurements, seismological and tsunami waveform records. We use twelve fault segments, with eleven in the crust and one on the megathrust interface, to model the geodetic data and match the major features of the complex surface ruptures. Our modeling result indicates that a large portion of the moment is distributed on the subduction interface, making a significant contribution to the far field surface deformation and teleseismic body waves. The inclusion of local strong motion and teleseismic waveform data in the joint inversion reveals a unilateral rupture towards northeast with a relatively low averaged rupture speed of ∼1.5 km/s. The first 30 s of the rupture took place on the crustal faults with oblique slip motion and jumped between fault segments that have large differences in strike and dip. The peak moment release occurred at ∼65 s, corresponding to simultaneous rupture of both plate interface and the overlying splay faults with rake angle changes progressively from thrust to strike-slip. The slip on the Papatea fault produced more than 2 m of offshore uplift, making a major contribution to the tsunami at the Kaikōura station, while the northeastern end of the rupture can explain the main features at the Wellington station. Our inversions and simulations illuminate complex up-dip rupture behavior that should be taken into consideration in both seismic and tsunami hazard assessment. The extreme complex rupture behavior also brings new challenges to the earthquake dynamic simulations and understanding the physics of earthquakes.

  3. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes

    Science.gov (United States)

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  4. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  5. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2017-05-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.[Figure not available: see fulltext.

  6. Breaking the oceanic lithosphere of a subducting slab: the 2013 Khash, Iran earthquake

    Science.gov (United States)

    Barnhart, William D.; Hayes, Gavin P.; Samsonov, S.; Fielding, E.; Seidman, L.

    2014-01-01

    [1] Large intermediate depth, intraslab normal faulting earthquakes are a common, dangerous, but poorly understood phenomenon in subduction zones owing to a paucity of near field geophysical observations. Seismological and high quality geodetic observations of the 2013 Mw7.7 Khash, Iran earthquake reveal that at least half of the oceanic lithosphere, including the mantle and entire crust, ruptured in a single earthquake, confirming with unprecedented resolution that large earthquakes can nucleate in and rupture through the oceanic mantle. A rupture width of at least 55 km is required to explain both InSAR observations and teleseismic waveforms, with the majority of slip occurring in the oceanic mantle. Combining our well-constrained earthquake slip distributions with the causative fault orientation and geometry of the local subduction zone, we hypothesize that the Khash earthquake likely occurred as the combined result of slab bending forces and dehydration of hydrous minerals along a preexisting fault formed prior to subduction.

  7. Extensional reactivation of the Chocolate Mountains subduction thrust in the Gavilan Hills of southeastern California

    Science.gov (United States)

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    1997-01-01

    The NE vergent Chocolate Mountains fault of south-eastern California has been interpreted as either a subduction thrust responsible for burial and prograde metamorphism of the ensimatic Orocopia Schist or as a normal fault involved in the exhumation of the schist. Our detailed structural analysis in the Gavilan Hills area provides new evidence to confirm the latter view. A zone of deformation is present at the top of the Orocopia Schist in which lineations are parallel to those in the upper plate of the Chocolate Mountains fault but oblique to ones at relatively deep levels in the schist. Both the Orocopia Schist and upper plate contain several generations of shear zones that show a transition from crystalloblastic through mylonitic to cataclastic textures. These structures formed during retrograde metamorphism and are considered to record the exhumation of the Orocopia Schist during early Tertiary time as a result of subduction return flow. The Gatuna fault, which places low-grade, supracrustal metasediments of the Winterhaven Formation above the gneisses of the upper plate, also seems to have been active at this time. Final unroofing of the Orocopia Schist occurred during early to middle Miocene regional extension and may have involved a second phase of movement on the Gatuna fault. Formation of the Chocolate Mountains fault during exhumation indicates that its top-to-the-NE sense of movement provides no constraint on the polarity of the Orocopia Schist subduction zone. This weakens the case for a previous model involving SW dipping subduction, while providing support for the view that the Orocopia Schist is a correlative of the Franciscan Complex.

  8. Constraints on Subduction Zone Processes from Low Frequency Earthquakes

    Science.gov (United States)

    Bostock, M. G.

    2015-12-01

    The discovery of tectonic tremor and constituent low-frequency earthquakes (LFEs) offers seismologists new opportunities to study both deformational processes and structure within the subduction zone forearc. This assertion is especially true for northern Cascadia where i) regular seismicity is sparse, and ii) a relatively transparent overriding plate inflicts minimal distortion upon direct P and S wave arrivals from LFEs. Despite low signal-to-noise ratios, LFEs are highly repetitive and signal can be enhanced through construction of stacked templates. Studies in both Cascadia and Nankai reveal an association between LFE hypocenters and a high Vp/Vs, low-velocity zone (LVZ) that is inferred to represent overpressured upper oceanic crust. Scattered signals within Vancouver Island templates, interpreted to originate at boundaries of the LVZ, place LFEs within the LVZ and suggest that this structure may define a distributed (several km) zone of deformation. A recent analysis of LFE magnitudes indicates that LFEs exhibit scaling relations distinct from both regular earthquakes and longer period (10's of seconds to days) phenomena associated with slow slip. Regular earthquakes generally obey a scaling of moment proportional to duration cubed consistent with self similarity, whereas long period slow slip phenomena exhibit a linear scaling between moment and duration that can be accommodated through constant slip or constant stress drop models. In contrast, LFE durations are nearly constant suggesting that moment is governed by slip alone and that asperity size remains approximately constant. The implied dimensions (~1 km2), the persistance of LFEs in time and their stationarity in space point to structural heterogeneity, perhaps related to pockets of upper oceanic crust impervious to hydrothermal circulation, as a fundamental control.

  9. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  10. A Computer-Based Subduction-Zone-Earthquake Exercise for Introductory-Geology Classes.

    Science.gov (United States)

    Shea, James Herbert

    1991-01-01

    Describes the author's computer-based program for a subduction-zone-earthquake exercise. Instructions for conducting the activity and obtaining the program from the author are provided. Written in IBM QuickBasic. (PR)

  11. Deep structure and historical earthquakes in the Calabrian subduction zone (Southern Italy): preliminary results from multi-channel seismic reflection profiles

    Science.gov (United States)

    Gallais, F.; Gutscher, M.; Torelli, L.; Polonia, A.; Riminucci, F.

    2009-12-01

    The Calabrian subduction zone is located in the complex Central Mediterranean area. This subduction is characterized by the presence of deep earthquakes under the Tyrrhenian Sea down to 500 km depth. The Tethyan remnant Ionian slab descends towards the NW at a dip of about 70° and is associated with an active volcanic arc (the Aeolian Islands). Recently reported GPS and seismicity studies suggest that the subduction of the Ionian lithosphere beneath the Calabrian Arc may be locally still active, though at very slow rates (thrust earthquakes, characteristic of active subduction zone, suggests that if subduction is active, the fault plane may be locked since the instrumental period. To seek evidence of continuous tectonic activity of the Calabrian system, we present preliminary results from reprocessed 96-channels seismic reflection profiles (French Archimede cruise, 1997) offshore Sicily. This analysis permits to recognize a well-defined stratigraphy in the Ionian Abyssal Plain, this stratigraphy becomes difficult to follow under the deformed Calabrian Prism. But the joint interpretation with the reprocessed PM01 profile (French PRISMED cruise, 1994) helps constrain this interpretation and to image some characteristic structures of an accretionary wedge (fore/back-thrusts, basal decollement...). This study also include interpretation of a more recent Italian seismic cruise (Calamare, 2008) and CROP profiles. This work will help to prepare a future cruise proposal (CIRCEE, to be submitted in January 2010) to study the Calabrian subduction with OBS, MCS seismic, heat-flow measurements and sediment coring. The goals are : 1/ to image the deep structure of this subduction zone, 2/ to characterize its thermal state to deduce a geometry of the seismogenic part of the plate interface and add new constraints on seismic risk linked with the Calabrian subduction.

  12. Great (≥Mw8.0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor

    Science.gov (United States)

    Scholl, David W.; Kirby, Stephe H.; von Huene, Roland; Ryan, Holly F.; Wells, Ray E.; Geist, Eric L.

    2015-01-01

    Using older and in part flawed data, Ruff (1989) suggested that thick sediment entering the subduction zone (SZ) smooths and strengthens the trench-parallel distribution of interplate coupling. This circumstance was conjectured to favor rupture continuation and the generation of high-magnitude (≥Mw8.0) interplate thrust (IPT) earthquakes. Using larger and more accurate compilations of sediment thickness and instrumental (1899 to January 2013) and pre-instrumental era (1700–1898) IPTs (n = 176 and 12, respectively), we tested if a compelling relation existed between where IPT earthquakes ≥Mw7.5 occurred and where thick (≥1.0 km) versus thin (≤1.0 km) sedimentary sections entered the SZ.

  13. Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios

    KAUST Repository

    Goda, Katsuichiro

    2017-02-23

    In this study, earthquake rupture models for future mega-thrust earthquakes in the Nankai–Tonankai subduction zone are developed by incorporating the main characteristics of inverted source models of the 2011 Tohoku earthquake. These scenario ruptures also account for key features of the national tsunami source model for the Nankai–Tonankai earthquake by the Central Disaster Management Council of the Japanese Government. The source models capture a wide range of realistic slip distributions and kinematic rupture processes, reflecting the current best understanding of what may happen due to a future mega-earthquake in the Nankai–Tonankai Trough, and therefore are useful for conducting probabilistic tsunami hazard and risk analysis. A large suite of scenario rupture models is then used to investigate the variability of tsunami effects in coastal areas, such as offshore tsunami wave heights and onshore inundation depths, due to realistic variations in source characteristics. Such investigations are particularly valuable for tsunami hazard mapping and evacuation planning in municipalities along the Nankai–Tonankai coast.

  14. Slip Distribution of Two Recent Large Earthquakes in the Guerrero Segment of the Mexican Subduction Zone, and Their Relation to Previous Earthquakes, Silent Slip Events and Seismic Gaps

    Science.gov (United States)

    Hjorleifsdottir, V.; Ji, C.; Iglesias, A.; Cruz-Atienza, V. M.; Singh, S. K.

    2016-12-01

    In 2012 and 2014 mega-thrust earthquakes occurred approximately 300 km apart, in the state of Guerrero, Mexico. The westernmost half of the segment between them has not had a large earthquake in at least 100 years and most of the easternmost half last broke in 1957. However, down dip of both earthquakes, silent slip events have been reported, as well as in the gap between them (Kostoglodov et al 2003, Graham 2014). There are indications that the westernmost half has different frictional properties than the areas surrounds it. However, the two events at the edges of the zone also seem to behave in different manners, indicating a broad range of frictional properties in this area, with changes occurring over short distances. The 2012/03/20, M7.5 earthquake occurred near the Guerrero-Oaxaca border, between the towns of Ometepec (Gro.) and Pinotepa Nacional (Oax.). This earthquake is noteworthy for breaking the same asperities as two previously recorded earthquakes, the M7.2 1937 and M6.9 1982(a) earthquakes, in very large "repeating earthquakes". Furthermore, the density of repeating smaller events is larger in this zone than in other parts of the subduction zone (Dominguez et al, submitted) and this earthquake has had very many aftershocks for its size (UNAM Seis. group, 2013). The 2012 event may have broken two asperities (UNAM Seis. group, 2013). How the two asperities relate to the previous relatively smaller "large events", to the repeating earthquakes, the high number of aftershocks and to the slow slip event is not clear. The 2014/04/18 M 7.2 earthquake broke a patch on the edge of the Guerrero gap, that previously broke in the 1979 M7.4 earthquake as well as the 1943 M 7.4 earthquake. This earthquake, despite being smaller, had a much larger duration, few aftershocks and clearly ruptured two separate patches (UNAM Seis. group 2015). In this work we estimate the slip distributions for the 2012 and 2014 earthquakes, by combining the data used separately in

  15. Dense Ocean Floor Network for Earthquakes and Tsunamis; DONET/ DONET2, Part2 -Development and data application for the mega thrust earthquakes around the Nankai trough-

    Science.gov (United States)

    Kaneda, Y.; Kawaguchi, K.; Araki, E.; Matsumoto, H.; Nakamura, T.; Nakano, M.; Kamiya, S.; Ariyoshi, K.; Baba, T.; Ohori, M.; Hori, T.; Takahashi, N.; Kaneko, S.; Donet Research; Development Group

    2010-12-01

    Yoshiyuki Kaneda Katsuyoshi Kawaguchi*, Eiichiro Araki*, Shou Kaneko*, Hiroyuki Matsumoto*, Takeshi Nakamura*, Masaru Nakano*, Shinichirou Kamiya*, Keisuke Ariyoshi*, Toshitaka Baba*, Michihiro Ohori*, Narumi Takakahashi*, and Takane Hori** * Earthquake and Tsunami Research Project for Disaster Prevention, Leading Project , Japan Agency for Marine-Earth Science and Technology (JAMSTEC) **Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) DONET (Dense Ocean Floor Network for Earthquakes and Tsunamis) is the real time monitoring system of the Tonankai seismogenic zones around the Nankai trough southwestern Japan. We were starting to develop DONET to perform real time monitoring of crustal activities over there and the advanced early warning system. DONET will provide important and useful data to understand the Nankai trough maga thrust earthquake seismogenic zones and to improve the accuracy of the earthquake recurrence cycle simulation. Details of DONET concept are as follows. 1) Redundancy, Extendable function and advanced maintenance system using the looped cable system, junction boxes and the ROV/AUV. DONET has 20 observatories and incorporated in a double land stations concept. Also, we are developed ROV for the 10km cable extensions and heavy weight operations. 2) Multi kinds of sensors to observe broad band phenomena such as long period tremors, very low frequency earthquakes and strong motions of mega thrust earthquakes over M8: Therefore, sensors such as a broadband seismometer, an accelerometer, a hydrophone, a precise pressure gauge, a differential pressure gauge and a thermometer are equipped with each observatory in DONET. 3) For speedy detections, evaluations and notifications of earthquakes and tsunamis: DONET system will be deployed around the Tonankai seismogenic zone. 4) Provide data of ocean floor crustal deformations derived from pressure sensors: Simultaneously, the development of data

  16. Blueschist facies pseudotachylytes from Corsica: First account of fossil earthquakes from a subduction complex

    Science.gov (United States)

    Andersen, T. B.; Austrheim, H.

    2003-04-01

    Pseudotachylytes (PST) are products of deformation at extreme slip-rates along faults or in impact structures. Fault-plane PSTs are considered to represent fossil earthquakes. Tectonics in subduction zones, generate >80% of the seismic energy. Earthquake rocks should therefore also be common in old subduction complexes. Blueschist terrains are formed in the upper 15 to 50 km by tectonic burial in accreationary complexes and subduction zones. In spite of the very common earthquakes recorded from present-day subduction complexes, we are unaware of previous accounts of fossil earthquakes from exhumed subduction complexes. With a working hypothesis predicting fossil earthquakes to be preserved in subduction complexes, we have re-examined parts of the Alpine blueschist-eclogite terrain in Corsica. Within blueschist facies ophiolite gabbro and peridotite of Cape Corse, we discovered a number of faults decorated with ultra-fine fault rocks including PSTs. Detailed probe and SEM-studies reveal that some of the PSTs have quench textures proving the former presence of a melt. Quenched minerals, including fassaitic pyroxene are found as spherulites and dendrites. Fassaite has previously been described from UHP complexes and from PSTs formed in HP experiments. Other devitrification minerals include glaucophane, barroisite and zoisite as well as pumpellyite and albite. Our hypothesis -- fossil earthquakes in the form of frictional heat generated PST and ultra-cataclasite may be preserved within subduction complexes -- has been confirmed. Whilst most models view the properties of subducted lithosphere as a function of temperature, it is increasingly recognized that the rheological properties of rocks depend on their metamorphic status and importantly on fluids. Fluids from dehydration reactions in subduction complexes may reduce the effective stress to allow rapid brittle failure, which in turn may produce frictional heating and additional dehydration. It is, however, also

  17. Modeling of slow slip events and their interaction with large earthquakes along the subduction interfaces beneath Guerrero and Oaxaca, Mexico

    Science.gov (United States)

    Shibazaki, B.; Cotton, F.; Matsuzawa, T.

    2013-12-01

    Recent high-resolution geodetic observations have revealed the occurrence of slow slip events (SSEs) along the Mexican subduction zone. In the Guerrero gap, large SSEs of around Mw 7.5 repeat every 3-4 years (Lowry et al., 2001; Kostoglodov et al., 2003; Radiguet et al., 2012). The 2006 Guerrero slow slip was analyzed in detail (Radiguet et al., 2011): the average velocity of propagation was 0.8 km/day, and the maximum slip velocity was 1.0E-8 m/s. On the other hand, in the Oaxaca region, SSEs of Mw 7.0-7.3 repeat every 1-2 years and last for 3 months (Brudzinski et al., 2007; Correa-Mora et al., 2008). These SSEs in the Mexican subduction zone are categorized as long-term (long-duration) SSEs; however, their recurrence interval is relatively short. It is important to investigate how SSEs in Mexico can be reproduced using a theoretical model and determine the difference in friction law parameters when compared to SSEs in other subduction zones. An Mw 7.4 subduction earthquake occurred beneath the Oaxaca-Guerrero border on March 20, 2012. The 2012 SSE coincided with this thrust earthquake (Graham et al., 2012). SSEs in Mexico can trigger large earthquakes because their magnitudes are close to that of earthquakes. The interaction between SSEs and large earthquakes is an important problem, which needs to be investigated. We model SSEs and large earthquakes along the subduction interfaces beneath Guerrero and Oaxaca. To reproduce SSEs, we use a rate- and state-dependent friction law with a small cut-off velocity for the evolution effect based on the model proposed by Shibazaki and Shimamoto (2007). We also consider the 3D plate interface, which dips at a very shallow angle at a horizontal distance of 50-150 km from the trench. We set the unstable zone from a depth of 10 to 20 km. By referring to analytical results, we set a Guerrero SSE zone, which extends to the shallow Guerrero gap. Because the maximum slip velocity is around 1.0E-8 m/s, we set the cut-off velocity

  18. The seismic cycle at subduction thrusts: 2. Dynamic implications of geodynamic simulations validated with laboratory models

    KAUST Repository

    van Dinther, Y.

    2013-04-01

    The physics governing the seismic cycle at seismically active subduction zones remains poorly understood due to restricted direct observations in time and space. To investigate subduction zone dynamics and associated interplate seismicity, we validate a continuum, visco-elasto-plastic numerical model with a new laboratory approach (Paper 1). The analogous laboratory setup includes a visco-elastic gelatin wedge underthrusted by a rigid plate with defined velocity-weakening and -strengthening regions. Our geodynamic simulation approach includes velocity-weakening friction to spontaneously generate a series of fast frictional instabilities that correspond to analog earthquakes. A match between numerical and laboratory source parameters is obtained when velocity-strengthening is applied in the aseismic regions to stabilize the rupture. Spontaneous evolution of absolute stresses leads to nucleation by coalescence of neighboring patches, mainly occurring at evolving asperities near the seismogenic zone limits. Consequently, a crack-, or occasionally even pulse-like, rupture propagates toward the opposite side of the seismogenic zone by increasing stresses ahead of its rupture front, until it arrests on a barrier. The resulting surface displacements qualitatively agree with geodetic observations and show landward and, from near the downdip limit, upward interseismic motions. These are rebound and reversed coseismically. This slip increases adjacent stresses, which are relaxed postseismically by afterslip and thereby produce persistent seaward motions. The wide range of observed physical phenomena, including back-propagation and repeated slip, and the agreement with laboratory results demonstrate that visco-elasto-plastic geodynamic models with rate-dependent friction form a new tool that can greatly contribute to our understanding of the seismic cycle at subduction zones.

  19. The long-term seismic cycle at subduction thrusts: benchmarking geodynamic numerical simulations and analogue models

    Science.gov (United States)

    van Dinther, Y.; Gerya, T.; Corbi, F.; Funiciello, F.; Mai, P. M.; Dalguer, L. A.

    2011-12-01

    The physics governing the long-term seismic cycle in subduction zones remains elusive, largely due to its spatial inaccessibility, complex tectonic and geometric setting, and the short observational time span. To improve our understanding of the physics governing this seismic cycle, we benchmark a geodynamic numerical approach with a novel laboratory model. In this work we quantify and compare periodicity and source parameters of slip events (earth-quakes and gel-quakes) as a function of fault rheology (i.e. frictional properties), subduction velocity, slab dip, and seismogenic zone width. Our fluid-dynamic numerical method involves a plane-strain finite-difference scheme with marker-in-cell technique to solve the conservation of momentum, mass, and energy for a visco-elasto-plastic rheology. The simulated gelatin laboratory setup constitutes a triangular, visco-elastic crustal wedge on top of a straight subducting slab that includes a seismogenic zone. Numerical and analogue results show a regular and roughly comparable periodicity of short, rapid wedge velocity reversals. Ruptures nucleating mainly around the bottom of the seismogenic zone, and propagating upward, cause a distinct and rapid drop in stress within the wedge. To mimic the short duration, high speed and regularity of the analogue results, the numerical method requires a form of steady-state velocity-weakening friction for acceleration, and healing. The necessity of including a variable state component into the numerical simulations is subject of ongoing work. Finally, we extend this analysis by observing the role of different friction laws in large-scale, geometrically more realistic models.

  20. Deep postseismic viscoelastic relaxation excited by an intraslab normal fault earthquake in the Chile subduction zone

    Science.gov (United States)

    Bie, Lidong; Ryder, Isabelle; Métois, Marianne

    2017-08-01

    The 2005 Mw 7.8 Tarapaca earthquake was the result of normal faulting on a west-dipping plane at a depth of 90 km within the subducting slab down-dip of the North Chilean gap that partially ruptured in the 2014 M 8.2 Iquique earthquake. We use Envisat observations of nearly four years of postseismic deformation following the earthquake, together with some survey GPS measurements, to investigate the viscoelastic relaxation response of the surrounding upper mantle to the coseismic stress. We constrain the rheological structure by testing various 3D models, taking into account the vertical and lateral heterogeneities in viscosity that one would expect in a subduction zone environment. A viscosity of 4-8 × 1018 Pa s for the continental mantle asthenosphere fits both InSAR line-of-sight (LOS) and GPS horizontal displacements reasonably well. In order to test whether the Tarapaca earthquake and associated postseismic relaxation could have triggered the 2014 Iquique sequence, we computed the Coulomb stress change induced by the co- and postseismic deformation following the Tarapaca earthquake on the megathrust interface and nodal planes of its M 6.7 foreshock. These static stress calculations show that the Tarapaca earthquake may have an indirect influence on the Iquique earthquake, via loading of the M 6.7 preshock positively. We demonstrate the feasibility of using deep intraslab earthquakes to constrain subduction zone rheology. Continuing geodetic observation following the 2014 Iquique earthquake may further validate the rheological parameters obtained here.

  1. Mw 8.6 Sumatran earthquake of 11 April 2012: rare seaward expression of oblique subduction

    Science.gov (United States)

    Ishii, Miaki; Kiser, Eric; Geist, Eric L.

    2013-01-01

    The magnitude 8.6 and 8.2 earthquakes off northwestern Sumatra on 11 April 2012 generated small tsunami waves that were recorded by stations around the Indian Ocean. Combining differential travel-time modeling of tsunami waves with results from back projection of seismic data reveals a complex source with a significant trench-parallel component. The oblique plate convergence indicates that ~20-50 m of trench-parallel displacement could have accumulated since the last megathrust earthquake, only part of which has been taken up by the Great Sumatran fault. This suggests that the remaining trench-parallel motion was released during the magnitude 8.6 earthquake on 11 April 2012 within the subducting plate. The magnitude 8.6 earthquake is interpreted to be a result of oblique subduction as well as a reduction in normal stress due to the occurrence of the Sumatra-Andaman earthquake in 2004.

  2. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    Directory of Open Access Journals (Sweden)

    P. Boncio

    2018-01-01

    Full Text Available The criteria for zoning the surface fault rupture hazard (SFRH along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike–slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9. Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding. For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r and the width of the rupture zone (WRZ were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ∼ 2150 m on the footwall and  ∼  3100 m on the hanging wall. Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( >   ∼  50 % at distances  <   ∼  250 m. The widest WRZ are recorded where sympathetic slip (Sy on distant faults occurs, and/or where bending-moment (B-M or flexural-slip (F-S fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength, are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to

  3. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico.

    Science.gov (United States)

    Song, Teh-Ru Alex; Helmberger, Donald V; Brudzinski, Michael R; Clayton, Robert W; Davis, Paul; Pérez-Campos, Xyoli; Singh, Shri K

    2009-04-24

    Great earthquakes have repeatedly occurred on the plate interface in a few shallow-dipping subduction zones where the subducting and overriding plates are strongly locked. Silent earthquakes (or slow slip events) were recently discovered at the down-dip extension of the locked zone and interact with the earthquake cycle. Here, we show that locally observed converted SP arrivals and teleseismic underside reflections that sample the top of the subducting plate in southern Mexico reveal that the ultra-slow velocity layer (USL) varies spatially (3 to 5 kilometers, with an S-wave velocity of approximately 2.0 to 2.7 kilometers per second). Most slow slip patches coincide with the presence of the USL, and they are bounded by the absence of the USL. The extent of the USL delineates the zone of transitional frictional behavior.

  4. Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence

    Science.gov (United States)

    Wang, Xin; Wei, Shengji; Wu, Wenbo

    2017-09-01

    The 2015Mw 7.8 Gorkha earthquake sequence that unzipped the lower edge of the Main Himalayan Thrust (MHT) in central Nepal provides an exceptional opportunity to understand the fault geometry in this region. However, the limited number of focal mechanisms and the poor horizontal locations and depths of earthquakes in the global catalog impede us from clearly imaging the ruptured MHT. In this study, we generalized the Amplitude Amplification Factor (AAF) method to teleseismic distance that allows us to model the teleseismic P-waves up to 1.5 Hz. We used well-constrained medium-sized earthquakes to establish AAF corrections for teleseismic stations that were later used to invert the high-frequency waveforms of other nearby events. This new approach enables us to invert the focal mechanisms of some early aftershocks, which is challenging by using other long-period methods. With this method, we obtained 12 focal mechanisms more than that in the GCMT catalog. We also modeled the high-frequency teleseismic P-waves and the surface reflection phases (pP and sP) to precisely constrain the depths of the earthquakes. Our results indicate that the uncertainty of the depth estimation is as small as 1-2 km. Finally, we refined the horizontal locations of these aftershocks using carefully hand-picked arrivals. The refined aftershock mechanisms and locations delineate a clear double-ramp geometry of the MHT, with an almost flat décollement sandwiched in between. The flat (dip ∼7 degrees) portion of the MHT is consistent with the coseismic rupture of the mainshock, which has a well-constrained slip distribution. The fault morphology suggests that the ramps, both along the up-dip and down-dip directions, play a significant role in stopping the rupture of the 2015 Gorkha earthquake. Our method can be applied to general subduction zone earthquakes and fault geometry studies.

  5. Transient uplift after a 17th-century earthquake along the Kuril subduction zone.

    Science.gov (United States)

    Sawai, Yuki; Satake, Kenji; Kamataki, Takanobu; Nasu, Hiroo; Shishikura, Masanobu; Atwater, Brian F; Horton, Benjamin P; Kelsey, Harvey M; Nagumo, Tamotsu; Yamaguchi, Masaaki

    2004-12-10

    In eastern Hokkaido, 60 to 80 kilometers above a subducting oceanic plate, tidal mudflats changed into freshwater forests during the first decades after a 17th-century tsunami. The mudflats gradually rose by a meter, as judged from fossil diatom assemblages. Both the tsunami and the ensuing uplift exceeded any in the region's 200 years of written history, and both resulted from a shallow plate-boundary earthquake of unusually large size along the Kuril subduction zone. This earthquake probably induced more creep farther down the plate boundary than did any of the region's historical events.

  6. Bridge seismic retrofit measures considering subduction zone earthquakes.

    Science.gov (United States)

    2015-07-01

    Over the years, earthquakes have exposed the vulnerability of reinforced concrete structures under : seismic loads. The recent occurrence of highly devastating earthquakes near instrumented regions, e.g. 2010 Maule, Chile : and 2011 Tohoku, Japan, ha...

  7. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    Science.gov (United States)

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  8. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan

    Science.gov (United States)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.

    2016-12-01

    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  9. Interactions between strike-slip earthquakes and the subduction interface near the Mendocino Triple Junction

    Science.gov (United States)

    Gong, Jianhua; McGuire, Jeffrey J.

    2018-01-01

    The interactions between the North American, Pacific, and Gorda plates at the Mendocino Triple Junction (MTJ) create one of the most seismically active regions in North America. The earthquakes rupture all three plate boundaries but also include considerable intraplate seismicity reflecting the strong internal deformation of the Gorda plate. Understanding the stress levels that drive these ruptures and estimating the locking state of the subduction interface are especially important topics for regional earthquake hazard assessment. However owing to the lack of offshore seismic and geodetic instruments, the rupture process of only a few large earthquakes near the MTJ have been studied in detail and the locking state of the subduction interface is not well constrained. In this paper, first, we use the second moments inversion method to study the rupture process of the January 28, 2015 Mw 5.7 earthquake on the Mendocino transform fault that was unusually well recorded by both onshore and offshore strong motion instruments. We estimate the rupture dimension to be approximately 6 km by 3 km corresponding to a stress drop of ∼4 MPa for a crack model. Next we investigate the frictional state of the subduction interface by simulating the afterslip that would be expected there as a result of the stress changes from the 2015 earthquake and a 2010 Mw 6.5 intraplate earthquake within the subducted Gorda plate. We simulate afterslip scenarios for a range of depths of the downdip end of the locked zone defined as the transition to velocity strengthening friction and calculate the corresponding surface deformation expected at onshore GPS monuments. We can rule out a very shallow downdip limit owing to the lack of a detectable signal at onshore GPS stations following the 2010 earthquake. Our simulations indicate that the locking depth on the slab surface is at least 14 km, which suggests that the next M8 earthquake rupture will likely reach the coastline and strong shaking

  10. Subduction megathrust segmentation correlated with earthquake swarm locations appears to be caused by increased stress heterogeneity

    Science.gov (United States)

    Holtkamp, S.; Brudzinski, M. R.

    2011-12-01

    For each Mw≥8.5 earthquake with a publicly available finite fault rupture model, we find slip is closely bounded along-strike by earthquake swarms, either prior or subsequent. These earthquake swarms tend to have much larger spatial extents than their cumulative moment would suggest, arguing against a static stress triggering mechanism. In Japan, Chile, Sumatra, and Alaska, earthquake swarms correlate with regions of the plate interface that exhibit low interseismic strain accumulation. This low fault coupling could be a result of aseismic slip during swarms or stress heterogeneity that leads to both swarm occurrence and great earthquake termination. Geodetic studies of earthquake swarms are limited but show several cases with no evidence for aseismic slip during swarms. Moreover, the 1964 Alaska and 2010 Maule earthquakes ruptured through regions with lower coupling than where they terminated, arguing that a factor other than small pre-stress controls where large earthquakes terminate. Large variations in coupling over small spatial scales could produce a fragmented set of small asperities conducive for generating a swarm of smaller earthquakes (Figure). Great earthquakes would be unlikely to rupture through that region as homogeneity of fault zone properties seems to be conducive for generating the largest megathrust earthquakes. Earthquake swarms are one of the better proxies for along-strike segmentation of subduction megathrusts, thereby potentially providing an new method for finding margins with the potential for devastating Mw~9 scale earthquakes. Figure: Cartoon illustrating our preferred hypothesis that increased stress heterogeneity causes earthquake swarm activity and stops large earthquake rupture propagation. Stress on the fault is in grayscale with black being high fault pre-stress. In this model, the heterogeneous stress distribution fosters swarm activity by limiting the size to which an earthquake can grow (leading to a high b

  11. THE POTENTIAL OF TSUNAMI GENERATION ALONG THE MAKRAN SUBDUCTION ZONE IN THE NORTHERN ARABIAN SEA. CASE STUDY: THE EARTHQUAKE AND TSUNAMI OF NOVEMBER 28, 1945

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2006-01-01

    Full Text Available Although large earthquakes along the Makran Subduction Zone are infrequent, the potential for the generation of destructive tsunamis in the Northern Arabian Sea cannot be overlooked. It is quite possible that historical tsunamis in this region have not been properly reported or documented. Such past tsunamis must have affected Southern Pakistan, India, Iran, Oman, the Maldives and other countries bordering the Indian Ocean.The best known of the historical tsunamis in the region is the one generated by the great earthquake of November 28, 1945 off Pakistan's Makran Coast (Balochistan in the Northern Arabian Sea. The destructive tsunami killed more than 4,000 people in Southern Pakistan but also caused great loss of life and devastation along the coasts of Western India, Iran, Oman and possibly elsewhere.The seismotectonics of the Makran subduction zone, historical earthquakes in the region, the recent earthquake of October 8, 2005 in Northern Pakistan, and the great tsunamigenic earthquakes of December 26, 2004 and March 28, 2005, are indicative of the active tectonic collision process that is taking place along the entire southern and southeastern boundary of the Eurasian plate as it collides with the Indian plate and adjacent microplates. Tectonic stress transference to other, stress loaded tectonic regions could trigger tsunamigenic earthquakes in the Northern Arabian Sea in the future.The northward movement and subduction of the Oman oceanic lithosphere beneath the Iranian micro-plate at a very shallow angle and at the high rate is responsible for active orogenesis and uplift that has created a belt of highly folded and densely faulted coastal mountain ridges along the coastal region of Makran, in both the Balochistan and Sindh provinces. The same tectonic collision process has created offshore thrust faults. As in the past, large destructive tsunamigenic earthquakes can occur along major faults in the east Makran region, near Karachi, as

  12. Earthquake hazards of active blind-thrust faults under the central Los Angeles basin, California

    Science.gov (United States)

    Shaw, John H.; Suppe, John

    1996-04-01

    We document several blind-thrust faults under the Los Angeles basin that, if active and seismogenic, are capable of generating large earthquakes (M = 6.3 to 7.3). Pliocene to Quaternary growth folds imaged in seismic reflection profiles record the existence, size, and slip rates of these blind faults. The growth structures have shapes characteristic of fault-bend folds above blind thrusts, as demonstrated by balanced kinematic models, geologic cross sections, and axial-surface maps. We interpret the Compton-Los Alamitos trend as a growth fold above the Compton ramp, which extends along strike from west Los Angeles to at least the Santa Ana River. The Compton thrust is part of a larger fault system, including a decollement and ramps beneath the Elysian Park and Palos Verdes trends. The Cienegas and Coyote Hills growth folds overlie additional blind thrusts in the Elysian Park trend that are not closely linked to the Compton ramp. Analysis of folded Pliocene to Quaternary strata yields slip rates of 1.4 ± 0.4 mm/yr on the Compton thrust and 1.7 ± 0.4 mm/yr on a ramp beneath the Elysian Park trend. Assuming that slip is released in large earthquakes, we estimate magnitudes of 6.3 to 6.8 for earthquakes on individual ramp segments based on geometric segment sizes derived from axial surface maps. Multiple-segment ruptures could yield larger earthquakes (M = 6.9 to 7.3). Relations among magnitude, coseismic displacement, and slip rate yield an average recurrence interval of 380 years for single-segment earthquakes and a range of 400 to 1300 years for multiple-segment events. If these newly documented blind thrust faults are active, they will contribute substantially to the seismic hazards in Los Angeles because of their locations directly beneath the metropolitan area.

  13. Towards Estimating the Magnitude of Earthquakes from EM Data Collected from the Subduction Zone

    Science.gov (United States)

    Heraud, J. A.

    2016-12-01

    During the past three years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone. Such evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. The process has been extended in time, only pulses associated with the occurrence of earthquakes and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including an animated data video, are a first approximation towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. During the past three years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone. Such evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. The process has been extended in time, only pulses associated with the occurrence of earthquakes have been used and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including an animated data video, are a first approximation towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone.

  14. Characterizing Mega-Earthquake Related Tsunami on Subduction Zones without Large Historical Events

    Science.gov (United States)

    Williams, C. R.; Lee, R.; Astill, S.; Farahani, R.; Wilson, P. S.; Mohammed, F.

    2014-12-01

    Due to recent large tsunami events (e.g., Chile 2010 and Japan 2011), the insurance industry is very aware of the importance of managing its exposure to tsunami risk. There are currently few tools available to help establish policies for managing and pricing tsunami risk globally. As a starting point and to help address this issue, Risk Management Solutions Inc. (RMS) is developing a global suite of tsunami inundation footprints. This dataset will include both representations of historical events as well as a series of M9 scenarios on subductions zones that have not historical generated mega earthquakes. The latter set is included to address concerns about the completeness of the historical record for mega earthquakes. This concern stems from the fact that the Tohoku Japan earthquake was considerably larger than had been observed in the historical record. Characterizing the source and rupture pattern for the subduction zones without historical events is a poorly constrained process. In many case, the subduction zones can be segmented based on changes in the characteristics of the subducting slab or major ridge systems. For this project, the unit sources from the NOAA propagation database are utilized to leverage the basin wide modeling included in this dataset. The length of the rupture is characterized based on subduction zone segmentation and the slip per unit source can be determined based on the event magnitude (i.e., M9) and moment balancing. As these events have not occurred historically, there is little to constrain the slip distribution. Sensitivity tests on the potential rupture pattern have been undertaken comparing uniform slip to higher shallow slip and tapered slip models. Subduction zones examined include the Makran Trench, the Lesser Antilles and the Hikurangi Trench. The ultimate goal is to create a series of tsunami footprints to help insurers understand their exposures at risk to tsunami inundation around the world.

  15. Structure of the subducted Cocos Plate from locations of intermediate-depth earthquakes

    Science.gov (United States)

    Lomnitz, C.; Rodríguez-Padilla, L. D.; Castaños, H.

    2013-05-01

    Locations of 3,000 earthquakes of 40 to 300 km depth are used to define the 3-D structure of the subducted Cocos Plate under central and southern Mexico. Discrepancies between deep-seated lineaments and surface tectonics are described. Features of particular interest include: (1) a belt of moderate activity at 40 to 80 km depth that parallels the southern boundary of the Mexican Volcanic Plateau; (2) an offset of 150 km across the Isthmus of Tehuantepec where all seismic activity is displaced toward the northeast; (3) three nests of frequent, deep-seated events (80 to 300 km depth) under southern Veracruz, Chiapas and the coast of Mexico-Guatemala. The active subduction process is sharply delimited along a NW-SE lineament from the Yucatan Peninsula, of insignificant earthquake activity. The focal distribution of intermediate-depth earthquakes in south-central Mexico provides evidence of stepwise deepening of the subduction angle along the Trench, starting at 15 degrees under Michoacan-Guerrero to 45 degrees under NW Guatemala. Historical evidence suggests that the hazard to Mexico City from large intermediate-depth earthquakes may have been underestimated.

  16. Effects of deep basins on structural collapse during large subduction earthquakes

    Science.gov (United States)

    Marafi, Nasser A.; Eberhard, Marc O.; Berman, Jeffrey W.; Wirth, Erin A.; Frankel, Arthur

    2017-01-01

    Deep sedimentary basins are known to increase the intensity of ground motions, but this effect is implicitly considered in seismic hazard maps used in U.S. building codes. The basin amplification of ground motions from subduction earthquakes is particularly important in the Pacific Northwest, where the hazard at long periods is dominated by such earthquakes. This paper evaluates the effects of basins on spectral accelerations, ground-motion duration, spectral shape, and structural collapse using subduction earthquake recordings from basins in Japan that have similar depths as the Puget Lowland basin. For three of the Japanese basins and the Puget Lowland basin, the spectral accelerations were amplified by a factor of 2 to 4 for periods above 2.0 s. The long-duration subduction earthquakes and the effects of basins on spectral shape combined, lower the spectral accelerations at collapse for a set of building archetypes relative to other ground motions. For the hypothetical case in which these motions represent the entire hazard, the archetypes would need to increase up to 3.3 times its strength to compensate for these effects.

  17. Source Parameters of Large Magnitude Subduction Zone Earthquakes Along Oaxaca, Mexico

    Science.gov (United States)

    Fannon, M. L.; Bilek, S. L.

    2014-12-01

    Subduction zones are host to temporally and spatially varying seismogenic activity including, megathrust earthquakes, slow slip events (SSE), nonvolcanic tremor (NVT), and ultra-slow velocity layers (USL). We explore these variations by determining source parameters for large earthquakes (M > 5.5) along the Oaxaca segment of the Mexico subduction zone, an area encompasses the wide range of activity noted above. We use waveform data for 36 earthquakes that occurred between January 1, 1990 to June 1, 2014, obtained from the IRIS DMC, generate synthetic Green's functions for the available stations, and deconvolve these from the ­­­observed records to determine a source time function for each event. From these source time functions, we measured rupture durations and scaled these by the cube root to calculate the normalized duration for each event. Within our dataset, four events located updip from the SSE, USL, and NVT areas have longer rupture durations than the other events in this analysis. Two of these four events, along with one other event, are located within the SSE and NVT areas. The results in this study show that large earthquakes just updip from SSE and NVT have slower rupture characteristics than other events along the subduction zone not adjacent to SSE, USL, and NVT zones. Based on our results, we suggest a transitional zone for the seismic behavior rather than a distinct change at a particular depth. This study will help aid in understanding seismogenic behavior that occurs along subduction zones and the rupture characteristics of earthquakes near areas of slow slip processes.

  18. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone.

    Science.gov (United States)

    Moreno, Marcos; Rosenau, Matthias; Oncken, Onno

    2010-09-09

    The magnitude-8.8 Maule (Chile) earthquake of 27 February 2010 ruptured a segment of the Andean subduction zone megathrust that has been suspected to be of high seismic potential. It is the largest earthquake to rupture a mature seismic gap in a subduction zone that has been monitored with a dense space-geodetic network before the event. This provides an image of the pre-seismically locked state of the plate interface of unprecedentedly high resolution, allowing for an assessment of the spatial correlation of interseismic locking with coseismic slip. Pre-seismic locking might be used to anticipate future ruptures in many seismic gaps, given the fundamental assumption that locking and slip are similar. This hypothesis, however, could not be tested without the occurrence of the first gap-filling earthquake. Here we show evidence that the 2010 Maule earthquake slip distribution correlates closely with the patchwork of interseismic locking distribution as derived by inversion of global positioning system (GPS) observations during the previous decade. The earthquake nucleated in a region of high locking gradient and released most of the stresses accumulated in the area since the last major event in 1835. Two regions of high seismic slip (asperities) appeared to be nearly fully locked before the earthquake. Between these asperities, the rupture bridged a zone that was creeping interseismically with consistently low coseismic slip. The rupture stopped in areas that were highly locked before the earthquake but where pre-stress had been significantly reduced by overlapping twentieth-century earthquakes. Our work suggests that coseismic slip heterogeneity at the scale of single asperities should indicate the seismic potential of future great earthquakes, which thus might be anticipated by geodetic observations.

  19. The upliftment in the Mejillones peninsula during 1995-2015 with two subduction earthquakes

    Science.gov (United States)

    Narayan Shrivastava, Mahesh; Gonzalez, Gabriel; Moreno, Marcos

    2017-04-01

    The Mejillones peninsula in northern Chile show the significant Quaternary surface uplift, which contrast with the surrounding coastal areas. The continuous GPS sites in this peninsula have detected significant upliftment during propagation of subduction earthquakes. The Mejillones peninsula region shows the low locking degree [Métois et al., 2013 & Bejar et al., 2014] and acts as a seismic barrier for the last two megathrust earthquakes such as 1995, Mw 8.1 Antofagasta earthquake and the 2007, Mw 7.7 Tocopilla earthquake in the south and north of peninsula. However, significant afterslip has taken place beneath the Mejillones peninsula in both earthquakes. We describe the vertical deformation in the Mejillones peninsula with the megathrust architecture during 1995-2015 with megathrust earthquakes and locking degree. We simulate the vertical displacement with the coseismic slip and 3.3 years afterslip of Antofagasta, 1995 by [Chlieh et al., 2004] and coseismic slip and 3.3 years of afterslip of Tocopilla earthquake 2007 modeled in this present study. With both earthquakes due to coseismic slip and afterslip in 3.3 years, Mejillones peninsula has exhibited 105 cm cumulative upliftment at the JRGN GPS site. The modeled new locking model by additional dataset of continuous and survey GPS from 2012-2015, it shows the low locking degree in the Mejillones peninsula region confirming the previous locking models. Our interseismic model and observation suggest that JRGN Continuous GPS site shows subsidence rate 2.0 mm/year after the Tocopilla earthquake 2007. But in contrast the continuous GPS sites UCNF, PB05 and VLZL show the significant upliftment. By considering the modeled locking degree same during 1995 to 2015, we conclude that Mejillones peninsula would have remained upliftment 98 cm. The vertical tectonic rate fluctuates at various timescale in the subduction zones, the study of elevated shorelines may provide an efficient tool to develop our understanding of long

  20. The Role of Proto-Thrusts in Frontal Accretion and Accommodation of Plate Convergence, Hikurangi Subduction Margin, New Zealand

    Science.gov (United States)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.

    2016-12-01

    Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll

  1. Ground Motion Prediction of Subduction Earthquakes using the Onshore-Offshore Ambient Seismic Field

    Science.gov (United States)

    Viens, L.; Miyake, H.; Koketsu, K.

    2014-12-01

    Seismic waves produced by earthquakes already caused plenty of damages all around the world and are still a real threat to human beings. To reduce seismic risk associated with future earthquakes, accurate ground motion predictions are required, especially for cities located atop sedimentary basins that can trap and amplify these seismic waves. We focus this study on long-period ground motions produced by subduction earthquakes in Japan which have the potential to damage large-scale structures, such as high-rise buildings, bridges, and oil storage tanks. We extracted the impulse response functions from the ambient seismic field recorded by two stations using one as a virtual source, without any preprocessing. This method allows to recover the reliable phases and relative, rather than absolute, amplitudes. To retrieve corresponding Green's functions, the impulse response amplitudes need to be calibrated using observational records of an earthquake which happened close to the virtual source. We show that Green's functions can be extracted between offshore submarine cable-based sea-bottom seismographic observation systems deployed by JMA located atop subduction zones and on-land NIED/Hi-net stations. In contrast with physics-based simulations, this approach has the great advantage to predict ground motions of moderate earthquakes (Mw ~5) at long-periods in highly populated sedimentary basin without the need of any external information about the velocity structure.

  2. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust

    Science.gov (United States)

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  3. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).

    Science.gov (United States)

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-15

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  4. Probabilities of Earthquake Occurrences along the Sumatra-Andaman Subduction Zone

    Directory of Open Access Journals (Sweden)

    Pailoplee Santi

    2017-03-01

    Full Text Available Earthquake activities along the Sumatra-Andaman Subduction Zone (SASZ were clarified using the derived frequency-magnitude distribution in terms of the (i most probable maximum magnitudes, (ii return periods and (iii probabilities of earthquake occurrences. The northern segment of SASZ, along the western coast of Myanmar to southern Nicobar, was found to be capable of generating an earthquake of magnitude 6.1–6.4 Mw in the next 30–50 years, whilst the southern segment of offshore of the northwestern and western parts of Sumatra (defined as a high hazard region had a short recurrence interval of 6-12 and 10-30 years for a 6.0 and 7.0 Mw magnitude earthquake, respectively, compared to the other regions. Throughout the area along the SASZ, there are 70– almost 100% probabilities of the earthquake with Mw up to 6.0 might be generated in the next 50 years whilst the northern segment had less than 50% chance of occurrence of a 7.0 Mw earthquake in the next 50 year. Although Rangoon was defined as the lowest hazard among the major city in the vicinity of SASZ, there is 90% chance of a 6.0 Mw earthquake in the next 50 years. Therefore, the effective mitigation plan of seismic hazard should be contributed.

  5. Electromagnetic Precursors Leading to Triangulation of Future Earthquakes and Imaging of the Subduction Zone

    Science.gov (United States)

    Heraud, J. A.; Centa, V. A.; Bleier, T.

    2015-12-01

    During several sessions in past AGU meetings, reports on the progress of analysis of magnetometer data have been given, as our research moved from a one dimensional geometry, to two and finally to a three dimensional image. In the first case, we learned how to extract one coordinate, azimuth information, on the occurrence of an earthquake based on the processing of mono-polar pulses received at a single station. A two dimensional geometry was implemented through triangulation and we showed the use of this technique to find out where a future epicenter would occur. Recently, we have obtained compelling evidence that the pressure points leading to the determination of future epicenters originate at a plane, inclined with the same angle as the subduction zone, a three-dimensional position of the future hypocenter. Hence, an image of the subduction zone or interface between the Nazca plate and the continental plate in the northern area of Lima, Peru, has been obtained, corresponding to the subduction zone obtained by traditional seismic methods. Our work with magnetometers deployed along part of the Peruvian coast since 2009, has shown that it is possible to measure, with significant precision, the azimuth of electromagnetic pulses propagating from stress points in the earth's crust due to the subduction of tectonic plates, as to be able to determine precisely the origin of the pulses. The occurrence of earthquakes approximately 11 to 18 days after the appearance of the first pulses and the recognition of grouping of such pulses, has allowed us to determine accurately the direction and the timing of future seismic events. Magnetometers, donated by Quakefinder and Telefonica del Peru were then strategically installed in different locations in Peru with the purpose of achieving triangulation. During two years since 2013, about a dozen earthquakes have been associated with future seismic activity in a pre or post occurrence way. Our presentation will be based on animated

  6. Earthquake swarm activity in the Oaxaca segment of Middle American Subduction Zone

    Science.gov (United States)

    Brudzinski, M. R.; Cabral, E.; Arciniega-Ceballos, A.

    2013-05-01

    An outstanding question in geophysics is the degree to which the newly discovered family of slow fault slip behaviors is related to more traditional earthquakes, especially since theoretical predictions indicate slip in the deeper transitional zone promotes failure in the shallower seismogenic zone. The Oaxacan segment of the Middle American Subduction zone is a natural region to pursue detailed studies of the spectrum of fault slip due to the unusually shallow subduction angle and short trench-to-coast distances that bring broad portions of the seismogenic and transitional zones of the plate interface inland. A deployment of broadband seismometers in this region has improved the network coverage to ~70 km station spacing since 2006, providing new opportunities to investigate smaller seismic phenomena. While characterization of tectonic tremor has been a prominent focus of this deployment, the improved network has also revealed productive earthquake swarms, whose sustained periods of similar magnitude earthquakes are also thought to be driven by slow slip. We identify a particularly productive earthquake swarm in July 2006 (~600 similar earthquakes detected), which occurred during a week-long episode of tectonic tremor and geodetically detected slow slip. Using a multi-station "template matching" waveform cross correlation technique, we have been able to detect and locate swarm earthquakes several orders of magnitude smaller than that of traditional processing, particularly during periods of increased background activity, because the detector is finely tuned to events with similar hypocentral location and focal mechanism. When we scan for repeats of the event families detected in the July 2006 sequence throughout the 6+ years since, we find these families were also activated during several other slow slip episodes, which indicates a link between slow slip in the transition zone and earthquakes at the downdip end of the seismogenic portion of the megathrust.

  7. Controls on Earthquake Rupture and Triggering Mechanisms in Subduction Zones

    Science.gov (United States)

    2010-06-01

    volcanic regions where aftershock sequences are often subdued due to high geothermal gradients (Kisslinger and Jones,1991; Ben-Zion and Lyakhovsky, 2006...2003 Colima Mexico earthquake………………………………….25 3.2 The 2006 Java earthquake……………………………………………...26 3.3 The 1995 Chile earthquake...large ruptures tend to stop in regions with positive gravity gradients by estimating a characteristic rupture length and directivity for each

  8. A recent deep earthquake doublet in light of long-term evolution of Nazca subduction.

    Science.gov (United States)

    Zahradník, J; Čížková, H; Bina, C R; Sokos, E; Janský, J; Tavera, H; Carvalho, J

    2017-03-31

    Earthquake faulting at ~600 km depth remains puzzling. Here we present a new kinematic interpretation of two Mw7.6 earthquakes of November 24, 2015. In contrast to teleseismic analysis of this doublet, we use regional seismic data providing robust two-point source models, further validated by regional back-projection and rupture-stop analysis. The doublet represents segmented rupture of a ∼30-year gap in a narrow, deep fault zone, fully consistent with the stress field derived from neighbouring 1976-2015 earthquakes. Seismic observations are interpreted using a geodynamic model of regional subduction, incorporating realistic rheology and major phase transitions, yielding a model slab that is nearly vertical in the deep-earthquake zone but stagnant below 660 km, consistent with tomographic imaging. Geodynamically modelled stresses match the seismically inferred stress field, where the steeply down-dip orientation of compressive stress axes at ∼600 km arises from combined viscous and buoyant forces resisting slab penetration into the lower mantle and deformation associated with slab buckling and stagnation. Observed fault-rupture geometry, demonstrated likelihood of seismic triggering, and high model temperatures in young subducted lithosphere, together favour nanometric crystallisation (and associated grain-boundary sliding) attending high-pressure dehydration as a likely seismogenic mechanism, unless a segment of much older lithosphere is present at depth.

  9. Fractal analysis of the spatial distribution of earthquakes along the Hellenic Subduction Zone

    Science.gov (United States)

    Papadakis, Giorgos; Vallianatos, Filippos; Sammonds, Peter

    2014-05-01

    The Hellenic Subduction Zone (HSZ) is the most seismically active region in Europe. Many destructive earthquakes have taken place along the HSZ in the past. The evolution of such active regions is expressed through seismicity and is characterized by complex phenomenology. The understanding of the tectonic evolution process and the physical state of subducting regimes is crucial in earthquake prediction. In recent years, there is a growing interest concerning an approach to seismicity based on the science of complex systems (Papadakis et al., 2013; Vallianatos et al., 2012). In this study we calculate the fractal dimension of the spatial distribution of earthquakes along the HSZ and we aim to understand the significance of the obtained values to the tectonic and geodynamic evolution of this area. We use the external seismic sources provided by Papaioannou and Papazachos (2000) to create a dataset regarding the subduction zone. According to the aforementioned authors, we define five seismic zones. Then, we structure an earthquake dataset which is based on the updated and extended earthquake catalogue for Greece and the adjacent areas by Makropoulos et al. (2012), covering the period 1976-2009. The fractal dimension of the spatial distribution of earthquakes is calculated for each seismic zone and for the HSZ as a unified system using the box-counting method (Turcotte, 1997; Robertson et al., 1995; Caneva and Smirnov, 2004). Moreover, the variation of the fractal dimension is demonstrated in different time windows. These spatiotemporal variations could be used as an additional index to inform us about the physical state of each seismic zone. As a precursor in earthquake forecasting, the use of the fractal dimension appears to be a very interesting future work. Acknowledgements Giorgos Papadakis wish to acknowledge the Greek State Scholarships Foundation (IKY). References Caneva, A., Smirnov, V., 2004. Using the fractal dimension of earthquake distributions and the

  10. Long-term perspectives on giant earthquakes and tsunamis at subduction zones

    Science.gov (United States)

    Satake, K.; Atwater, B.F.; ,

    2007-01-01

    Histories of earthquakes and tsunamis, inferred from geological evidence, aid in anticipating future catastrophes. This natural warning system now influences building codes and tsunami planning in the United States, Canada, and Japan, particularly where geology demonstrates the past occurrence of earthquakes and tsunamis larger than those known from written and instrumental records. Under favorable circumstances, paleoseismology can thus provide long-term advisories of unusually large tsunamis. The extraordinary Indian Ocean tsunami of 2004 resulted from a fault rupture more than 1000 km in length that included and dwarfed fault patches that had broken historically during lesser shocks. Such variation in rupture mode, known from written history at a few subduction zones, is also characteristic of earthquake histories inferred from geology on the Pacific Rim. Copyright ?? 2007 by Annual Reviews. All rights reserved.

  11. Fast Identification of Near-Trench Earthquakes Along the Mexican Subduction Zone Based on Characteristics of Ground Motion in Mexico City

    Science.gov (United States)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Rodríguez, Q.; Iglesias, A.

    2015-12-01

    The disastrous 1985 Michoacan earthquake gave rise to a seismic alert system for Mexico City which became operational in 1991. Initially limited to earthquakes along the Guerrero coast, the system now has a much wider coverage. Also, the 2004 Sumatra earthquake exposed the need for a tsunami early warning along the Mexican subduction zone. A fast identification of near-trench earthquakes along this zone may be useful in issuing a reliable early tsunami alert. The confusion caused by low PGA for the magnitude of an earthquake, leading to "missed" seismic alert, would be averted if its near-trench origin can be quickly established. It may also help reveal the spatial extent and degree of seismic coupling on the near-trench portion of the plate interface. This would lead to a better understanding of tsunami potential and seismic hazard along the Mexican subduction zone. We explore three methods for quick detection of near-trench earthquakes, testing them on recordings of 65 earthquakes at station CU in Mexico City (4.8 ≤Mw≤8.0; 270≤R≤615 km). The first method is based on the ratio of total to high-frequency energy, ER (Shapiro et al., 1998). The second method is based on parameter Sa*(6) which is the pseudo-acceleration response spectrum with 5% damping, Sa, at 6 s normalized by the PGA. The third parameter is the PGA residual, RESN, at CU, with respect to a newly-derived ground motion prediction equation at CU for coastal shallow-dipping thrust earthquakes following a bayesian approach. Since the near-trench earthquakes are relatively deficient in high-frequency radiation, we expect ER and Sa*(6) to be relatively large and RESN to be negative for such events. Tests on CU recordings show that if ER ≥ 100 and/or Sa*(6) ≥ 0.70, then the earthquake is near trench; for these events RESN ≤ 0. Such an event has greater tsunami potential. Few misidentifications and missed events are most probably a consequence of poor location, although unusual depth and source

  12. Field imaging spectroscopy and inferring a blind thrust earthquake history from secondary faulting: 1944 San Juan Earthquake, Argentina

    Science.gov (United States)

    Ragona, Daniel Eduardo

    The studies presented in this dissertation provide new approaches to extract paleo-earthquake information from the geological record. The first chapter describes the development of Field Imaging Spectroscopy, a new methodology for data acquisition and analysis in paleoseismology. The study shows the steps followed from data acquisition, pre-processing, processing and analysis of high spatial and spectral resolution images obtained from cores and a large sample from a fault zone collected at Hog Lake, San Jacinto Fault, Southern California. The study demonstrate that hyperspectral data can be obtained in the field using portable scanners and that high spatial and spectral resolution in the visible to short wave infrared provide a way to enhance subtle or invisible stratigraphic and structural features. The second chapter focuses on the use of neural networks and naive Bayesian classifiers to automatically classify hyperspectral image data, providing an objective mapping of the structure of cores, samples and field exposures. The results of this study show that a system integrated by a hyperspectral scanner and pattern recognition algorithms can work as an enhanced eye and an objective classifier to provide the geologist with additional information that facilitates the final description, interpretation and correlation of the geology in paleoseismic exposures and cores. The hyperspectral dataset collected together with a spectral library of the materials observed in the excavation provide a new way to archive paleoseismological data for future analysis. Finally, in chapter 3, an innovative approach to study blind thrust faults is presented. The study of the secondary La Laja fault near San Juan, Argentina shows that the earthquake history recorded in a minor fault provides an indirect way to study the occurrence of large M˜7 earthquakes at depth. This investigation also provides the first and perhaps the longest record of the earthquake activity of a blind thrust

  13. Ambient seafloor noise excited by earthquakes in the Nankai subduction zone.

    Science.gov (United States)

    Tonegawa, Takashi; Fukao, Yoshio; Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2015-01-30

    Excitations of seismic background noises are mostly related to fluid disturbances in the atmosphere, ocean and the solid Earth. Earthquakes have not been considered as a stationary excitation source because they occur intermittently. Here we report that acoustic-coupled Rayleigh waves (at 0.7-2.0 Hz) travelling in the ocean and marine sediments, retrieved by correlating ambient noise on a hydrophone array deployed through a shallow to deep seafloor (100-4,800 m) across the Nankai Trough, Japan, are incessantly excited by nearby small earthquakes. The observed cross-correlation functions and 2D numerical simulations for wave propagation through a laterally heterogeneous ocean-crust system show that, in a subduction zone, energetic wave sources are located primarily under the seafloor in directions consistent with nearby seismicity, and secondarily in the ocean. Short-period background noise in the ocean-crust system in the Nankai subduction zone is mainly attributed to ocean-acoustic Rayleigh waves of earthquake origin.

  14. The January 25th, 2014 Kebumen earthquake: A normal faulting in subduction zone of Southern Java

    Science.gov (United States)

    Serhalawan, Yopi Ruben; Sianipar, Dimas; Suardi, Iman

    2017-07-01

    Normal faulting mechanism of earthquake in subduction zone is quite interested to study further. We investigated the Kebumen, January 25, 2014 earthquake sequences by retrieving focal mechanisms using full moment tensor inversion. We used BMKG seismic data from stations in the vicinity of Central Java region for these inversions. Then we correlated the static coulomb stress change by the mainshock to the aftershocks. We found that mainshock is a normal faulting earthquake with nodal plane 1; strike 283, dip 22 and rake -100; nodal plane 2 with strike 113, dip 68 and rake -86. Using distribution analysis of high precision aftershocks after relocated; we considered that the reliable fault plane was nodal plane 1 with strike trending SE-NW. The focal mechanisms provide an estimate of the local stress field in the Wadati-Beniof Zone of Southern Java subduction zone. There is also conclution stating that the mainshock may trigger the aftershocks mainly in three zones, i.e. in continental crustal, upper mantle and on the oceanic slab. This is visually showed that the high quality aftershocks located in positive zones of static coulomb stress change.

  15. Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System

    Science.gov (United States)

    Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.

    2016-12-01

    Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.

  16. Postseismic relocking of the subduction megathrust following the 2007 Pisco, Peru, earthquake

    Science.gov (United States)

    Remy, D.; Perfettini, H.; Cotte, N.; Avouac, J. P.; Chlieh, M.; Bondoux, F.; Sladen, A.; Tavera, H.; Socquet, A.

    2016-05-01

    Characterizing the time evolution of slip over different phases of the seismic cycle is crucial to a better understanding of the factors controlling the occurrence of large earthquakes. In this study, we take advantage of interferometric synthetic aperture radar data and 3.5 years of continuous Global Positioning System (GPS) measurements to determine interseismic, coseismic, and postseismic slip distributions in the region of the 2007, Mw 8.0 Pisco, earthquake, Peru, using the same fault geometry and inversion method. Our interseismic model, based on pre-2007 campaign GPS data, suggests that the 2007 Pisco seismic slip occurred in a region strongly coupled before the earthquake while afterslip occurred in low coupled regions. Large afterslip occurred in the peripheral area of coseismic rupture in agreement with the notion that afterslip is mainly induced by coseismic stress changes. The temporal evolution of the region of maximum afterslip, characterized by a relaxation time of about 2.3 years, is located in the region where the Nazca ridge is subducting, consistent with rate-strengthening friction promoting aseismic slip. We estimate a return period for the Pisco earthquake of about 230 years with an estimated aseismic slip that might account for about 50% of the slip budget in this region over the 0-50 km seismogenic depth range. A major result of this study is that the main asperity that ruptured during the 2007 Pisco earthquake relocked soon after this event.

  17. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    Science.gov (United States)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2017-11-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  18. Numerical modeling of the deformations associated with large subduction earthquakes through the seismic cycle

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Garaud, J.; Vigny, C.; Cailletaud, G.; Simons, W. J.; Satirapod, C.; Shestakov, N.

    2012-12-01

    A 3D finite element code (Zebulon-Zset) is used to model deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes: Sumatra, Japan and Chile. The mesh featuring a broad spherical shell portion with a viscoelastic asthenosphere is refined close to the subduction zones. The model is constrained by 6 years of postseismic data in Sumatra area and over a year of data for Japan and Chile plus preseismic data in the three areas. The coseismic displacements on the subduction plane are inverted from the coseismic displacements using the finite element program and provide the initial stresses. The predicted horizontal postseismic displacements depend upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. Non-dimensionalized by the coseismic displacements, they present an almost uniform value between 500km and 1500km from the trench for elastic plates 80km thick. The time evolution of the velocities is function of the creep law (Maxwell, Burger or power-law creep). Moreover, the forward models predict a sizable far-field subsidence, also with a spatial distribution which varies with the geometry of the asthenosphere and lithosphere. Slip on the subduction interface does not induce such a subsidence. The observed horizontal velocities, divided by the coseismic displacement, present a similar pattern as function of time and distance from trench for the three areas, indicative of similar lithospheric and asthenospheric thicknesses and asthenospheric viscosity. This pattern cannot be fitted with power-law creep in the asthenosphere but indicates a lithosphere 60 to 90km thick and an asthenosphere of thickness of the order of 100km with a burger rheology represented by a Kelvin-Voigt element with a viscosity of 3.1018Pas and μKelvin=μelastic/3. A second Kelvin-Voigt element with very limited amplitude may explain some characteristics of the short time-scale signal. The postseismic subsidence is

  19. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (tsunami (>10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  20. Possible control of subduction zone slow-earthquake periodicity by silica enrichment.

    Science.gov (United States)

    Audet, Pascal; Bürgmann, Roland

    2014-06-19

    Seismic and geodetic observations in subduction zone forearcs indicate that slow earthquakes, including episodic tremor and slip, recur at intervals of less than six months to more than two years. In Cascadia, slow slip is segmented along strike and tremor data show a gradation from large, infrequent slip episodes to small, frequent slip events with increasing depth of the plate interface. Observations and models of slow slip and tremor require the presence of near-lithostatic pore-fluid pressures in slow-earthquake source regions; however, direct evidence of factors controlling the variability in recurrence times is elusive. Here we compile seismic data from subduction zone forearcs exhibiting recurring slow earthquakes and show that the average ratio of compressional (P)-wave velocity to shear (S)-wave velocity (vP/vS) of the overlying forearc crust ranges between 1.6 and 2.0 and is linearly related to the average recurrence time of slow earthquakes. In northern Cascadia, forearc vP/vS values decrease with increasing depth of the plate interface and with decreasing tremor-episode recurrence intervals. Low vP/vS values require a large addition of quartz in a mostly mafic forearc environment. We propose that silica enrichment varying from 5 per cent to 15 per cent by volume from slab-derived fluids and upward mineralization in quartz veins can explain the range of observed vP/vS values as well as the downdip decrease in vP/vS. The solubility of silica depends on temperature, and deposition prevails near the base of the forearc crust. We further propose that the strong temperature dependence of healing and permeability reduction in silica-rich fault gouge via dissolution-precipitation creep can explain the reduction in tremor recurrence time with progressive silica enrichment. Lower gouge permeability at higher temperatures leads to faster fluid overpressure development and low effective fault-normal stress, and therefore shorter recurrence times. Our results also

  1. Loss estimates for a Puente Hills blind-thrust earthquake in Los Angeles, California

    Science.gov (United States)

    Field, E.H.; Seligson, H.A.; Gupta, N.; Gupta, V.; Jordan, T.H.; Campbell, K.W.

    2005-01-01

    Based on OpenSHA and HAZUS-MH, we present loss estimates for an earthquake rupture on the recently identified Puente Hills blind-thrust fault beneath Los Angeles. Given a range of possible magnitudes and ground motion models, and presuming a full fault rupture, we estimate the total economic loss to be between $82 and $252 billion. This range is not only considerably higher than a previous estimate of $69 billion, but also implies the event would be the costliest disaster in U.S. history. The analysis has also provided the following predictions: 3,000-18,000 fatalities, 142,000-735,000 displaced households, 42,000-211,000 in need of short-term public shelter, and 30,000-99,000 tons of debris generated. Finally, we show that the choice of ground motion model can be more influential than the earthquake magnitude, and that reducing this epistemic uncertainty (e.g., via model improvement and/or rejection) could reduce the uncertainty of the loss estimates by up to a factor of two. We note that a full Puente Hills fault rupture is a rare event (once every ???3,000 years), and that other seismic sources pose significant risk as well. ?? 2005, Earthquake Engineering Research Institute.

  2. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New Zealand

    Science.gov (United States)

    Abercrombie, Rachel E.; Poli, Piero; Bannister, Stephen

    2017-12-01

    We develop an approach to calculate earthquake source directivity and rupture velocity for small earthquakes, using the whole source time function rather than just an estimate of the duration. We apply the method to an aftershock sequence within the subducting plate beneath North Island, New Zealand, and investigate its resolution. We use closely located, highly correlated empirical Green's function (EGF) events to obtain source time functions (STFs) for this well-recorded sequence. We stack the STFs from multiple EGFs at each station, to improve the stability of the STFs. Eleven earthquakes (M 3.3-4.5) have sufficient azimuthal coverage, and both P and S STFs, to investigate directivity. The time axis of each STF in turn is stretched to find the maximum correlation between all pairs of stations. We then invert for the orientation and rupture velocity of both unilateral and bilateral line sources that best match the observations. We determine whether they are distinguishable and investigate the effects of limited frequency bandwidth. Rupture orientations are resolvable for eight earthquakes, seven of which are predominantly unilateral, and all are consistent with rupture on planes similar to the main shock fault plane. Purely unilateral rupture is rarely distinguishable from asymmetric bilateral rupture, despite a good station distribution. Synthetic testing shows that rupture velocity is the least well-resolved parameter; estimates decrease with loss of high-frequency energy, and measurements are best considered minimum values. We see no correlation between rupture velocity and stress drop, and spatial stress drop variation cannot be explained as an artifact of varying rupture velocity.

  3. A cross section of the Los Angeles Area: Seismically active fold and thrust belt, The 1987 Whittier Narrows earthquake, and earthquake hazard

    Science.gov (United States)

    Davis, Thomas L.; Namson, Jay; Yerkes, Robert F.

    1989-07-01

    Retrodeformable cross sections across the Los Angeles area interpret the Pliocene to Quaternary deformation to be a developing basement-involved fold and thrust belt. The fold and thrust belt is seismically active as evidenced by the 1987 Whittier Narrows earthquake (ML = 5.9) and the 1971 San Fernando earthquake (MW = 6.6). The structural geology of the Los Angeles area is dominated by three major compressional uplift trends: (1) the Palos Verdes anticlinorium and western shelf, (2) the Santa Monica Mountains anticlinorium, and (3) the Verdugo Mountains-San Rafael Hills and the San Gabriel Mountains. These trends result from major thrust ramps off a detachment(s) at 10-15 km depth. Thrusts of the Verdugo Mountains-San Rafael Hills and the San Gabriel Mountains reach the surface; the other two uplifts are associated with blind thrusts. Compressional seismicity is concentrated along these thrust ramps. The 1987 Whittier Narrows earthquake probably occurred on the Elysian Park thrust which underlies the Santa Monica Mountains anticlinorium. The thrust interpretation accounts for the geometry of the anticlinorium, the seismological characteristics of the earthquake, and the geometry of coseismic uplift. The earthquake and aftershocks occurred within a structurally complex, narrow zone of Miocene and Pliocene northwest trending faults that cross the anticlinorium at a high angle. These northwest trending faults are interpreted to be reactivated faults now behaving as tears in the Elysian Park thrust and not the result of active right-lateral deformation extending into the Whittier Narrows area. Our analysis suggests the Whittier Narrows earthquake sequence occurred within a structurally weakened zone along the Elysian Park thrust. We also suggest that the Whittier fault is not an important Quaternary structure and may not be seismogenic. The regional cross section is a nonunique solution, and other possible solutions are considered. Multiple solutions arise from the

  4. Testing the intraplate origin of mega-earthquakes at subduction margins

    Directory of Open Access Journals (Sweden)

    Prosanta K. Khan

    2012-07-01

    Full Text Available The disastrous Mw 9.3 (seismic moment 1.0×1030 dyn/cm earthquake that struck northwest Sumatra on 26 December 2004 and triggered ∼30 m high tsunami has rejuvenated the quest for identifying the forcing behind subduction related earthquakes around the world. Studies reveal that the strongest part (elastic core of the oceanic lithosphere lie between 20 and 60 km depth beneath the upper (∼7 km thick crustal layer, and compressive stress of GPa order is required to fail the rock-layers within the core zone. Here we present evidences in favor of an intraplate origin of mega-earthquakes right within the strong core part (at the interface of semi-brittle and brittle zone, and propose an alternate model exploring the flexing zone of the descending lithosphere as the nodal area for major stress accumulation. We believe that at high confining pressure and elevated temperature, unidirectional cyclic compressive stress loading in the flexing zone results in an increase of material yield strength through strain hardening, which transforms the rheology of the layer from semi-brittle to near-brittle state. The increased compressive stress field coupled with upward migration of the neutral surface (of zero stress fields under non-coaxial deformation triggers shear crack. The growth of the shear crack is initially confined in the near-brittle domain, and propagates later through the more brittle crustal part of the descending oceanic lithosphere in the form of cataclastic failure.

  5. An Investigation of the Accuracy of Coulomb Stress Changes Inferred From Geodetic Observations Following Subduction Zone Earthquakes

    Science.gov (United States)

    Stressler, Bryan J.; Barnhart, William D.

    2017-09-01

    Earthquake clustering along plate boundaries suggests that earthquakes may interact, and static Coulomb stress change (CSC) is commonly invoked as one possible mechanism for stress transfer between earthquakes and nearby faults. Previous work has addressed the precision of CSC predictions that are influenced by observational noise, inversion regularization, and simplified modeling assumptions. Here we address the accuracy of CSC predictions informed by geodetic observations in subduction zones where inversion model resolution is poor. We conduct synthetic tests to quantify the degree to which the sign and magnitude of CSC can be reliably inferred from slip distributions inverted from various geodetic observations (interferometric synthetic aperture radar (InSAR), GPS, and seafloor observations). We find that in an idealized subduction zone, CSC can only be confidently inferred for receiver faults far (tens of kilometers) from the earthquake source, though this distance shortens with the addition of synthetic seafloor observations. We apply this methodology to the 2010 Mw8.8 Maule earthquake and identify 13 aftershocks from a population of 475 documented events for which we can confidently resolve coseismic stress changes. These results demonstrate that the low model resolution of fault slip inversions in subduction zones limits our ability to address fundamental questions about earthquake sources and stress interactions. Nonetheless, our results highlight that stress change predictions are considerably more accurate after the introduction of seafloor geodetic observations. Additionally, we show that InSAR observations are not required to substantially improve stress change approximations in regions where GPS may be the only viable observation, such as in island arcs settings.

  6. Deep-Sea Turbidites as Guides to Holocene Earthquake History at the Cascadia Subduction Zone—Alternative Views for a Seismic-Hazard Workshop

    Science.gov (United States)

    Atwater, Brian F.; Griggs, Gary B.

    2012-01-01

    This report reviews the geological basis for some recent estimates of earthquake hazards in the Cascadia region between southern British Columbia and northern California. The largest earthquakes to which the region is prone are in the range of magnitude 8-9. The source of these great earthquakes is the fault down which the oceanic Juan de Fuca Plate is being subducted or thrust beneath the North American Plate. Geologic evidence for their occurrence includes sedimentary deposits that have been observed in cores from deep-sea channels and fans. Earthquakes can initiate subaqueous slumps or slides that generate turbidity currents and which produce the sedimentary deposits known as turbidites. The hazard estimates reviewed in this report are derived mainly from deep-sea turbidites that have been interpreted as proxy records of great Cascadia earthquakes. The estimates were first published in 2008. Most of the evidence for them is contained in a monograph now in press. We have reviewed a small part of this evidence, chiefly from Cascadia Channel and its tributaries, all of which head offshore the Pacific coast of Washington State. According to the recent estimates, the Cascadia plate boundary ruptured along its full length in 19 or 20 earthquakes of magnitude 9 in the past 10,000 years; its northern third broke during these giant earthquakes only, and southern segments produced at least 20 additional, lesser earthquakes of Holocene age. The turbidite case for full-length ruptures depends on stratigraphic evidence for simultaneous shaking at the heads of multiple submarine canyons. The simultaneity has been inferred primarily from turbidite counts above a stratigraphic datum, sandy beds likened to strong-motion records, and radiocarbon ages adjusted for turbidity-current erosion. In alternatives proposed here, this turbidite evidence for simultaneous shaking is less sensitive to earthquake size and frequency than previously thought. Turbidites far below a channel

  7. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Silvia R; Romo, Miguel P; Mayoral, Juan M [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    2007-01-15

    An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared. [Spanish] Un analisis exhaustivo de la base de datos mexicana de sismos fuertes se llevo a cabo utilizando tecnicas de computo aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales de la maxima aceleracion horizontal del terreno, PGAh, y la vertical, PGAv, medidas en sitios en roca durante terremotos generados en la zona de subduccion de la Republica Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo neuronal. El fenomeno de atenuacion fue caracterizado en terminos de la magnitud, la distancia epicentral y la profundidad focal. Aproximaciones neuronales fueron utilizadas en lugar de tecnicas de regresion tradicionales por su flexibilidad para tratar con incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que las mostradas por muchas de las relaciones de atenuacion establecidas para la zona de

  8. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    Science.gov (United States)

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  9. Long-period ocean-bottom motions in the source areas of large subduction earthquakes.

    Science.gov (United States)

    Nakamura, Takeshi; Takenaka, Hiroshi; Okamoto, Taro; Ohori, Michihiro; Tsuboi, Seiji

    2015-11-30

    Long-period ground motions in plain and basin areas on land can cause large-scale, severe damage to structures and buildings and have been widely investigated for disaster prevention and mitigation. However, such motions in ocean-bottom areas are poorly studied because of their relative insignificance in uninhabited areas and the lack of ocean-bottom strong-motion data. Here, we report on evidence for the development of long-period (10-20 s) motions using deep ocean-bottom data. The waveforms and spectrograms demonstrate prolonged and amplified motions that are inconsistent with attenuation patterns of ground motions on land. Simulated waveforms reproducing observed ocean-bottom data demonstrate substantial contributions of thick low-velocity sediment layers to development of these motions. This development, which could affect magnitude estimates and finite fault slip modelling because of its critical period ranges on their estimations, may be common in the source areas of subduction earthquakes where thick, low-velocity sediment layers are present.

  10. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand

    Science.gov (United States)

    Koulali, A.; McClusky, S.; Wallace, L.; Allgeyer, S.; Tregoning, P.; D'Anastasio, E.; Benavente, R.

    2017-08-01

    Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck 30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand's continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust.

  11. Earthquake-by-earthquake fold growth above the Puente Hills blind thrust fault, Los Angeles, California: Implications for fold kinematics and seismic hazard

    Science.gov (United States)

    Leon, Lorraine A.; Christofferson, Shari A.; Dolan, James F.; Shaw, John H.; Pratt, Thomas L.

    2007-03-01

    Boreholes and high-resolution seismic reflection data collected across the forelimb growth triangle above the central segment of the Puente Hills thrust fault (PHT) beneath Los Angeles, California, provide a detailed record of incremental fold growth during large earthquakes on this major blind thrust fault. These data document fold growth within a discrete kink band that narrows upward from ˜460 m at the base of the Quaternary section (200-250 m depth) to 82% at 250 m depth) folding and uplift occur within discrete kink bands, thereby enabling us to develop a paleoseismic history of the underlying blind thrust fault. The borehole data reveal that the youngest part of the growth triangle in the uppermost 20 m comprises three stratigraphically discrete growth intervals marked by southward thickening sedimentary strata that are separated by intervals in which sediments do not change thickness across the site. We interpret the intervals of growth as occurring after the formation of now-buried paleofold scarps during three large PHT earthquakes in the past 8 kyr. The intervening intervals of no growth record periods of structural quiescence and deposition at the regional, near-horizontal stream gradient at the study site. Minimum uplift in each of the scarp-forming events, which occurred at 0.2-2.2 ka (event Y), 3.0-6.3 ka (event X), and 6.6-8.1 ka (event W), ranged from ˜1.1 to ˜1.6 m, indicating minimum thrust displacements of ≥2.5 to 4.5 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw > 7). Cumulative, minimum uplift in the past three events was 3.3 to 4.7 m, suggesting cumulative thrust displacement of ≥7 to 10.5 m. These values yield a minimum Holocene slip rate for the PHT of ≥0.9 to 1.6 mm/yr. The borehole and seismic reflection data demonstrate that dip within the kink band is acquired incrementally, such that older strata that have been deformed by more earthquakes dip more steeply than younger strata

  12. Long-term slow slip events along the Nankai trough subduction zone after the 2011 Tohoku earthquake in Japan

    Science.gov (United States)

    Ozawa, Shinzaburo

    2017-04-01

    The global navigation satellite system (GNSS) network in Japan has detected transient crustal deformation in regions along the Nankai trough subduction zone in southwest Japan from approximately 2013, after the 2011 Tohoku earthquake. Using the GNSS data, we estimated the spatiotemporal evolution of long-term aseismic slip along the Nankai trough. The result indicates that aseismic slip has occurred on the plate interface in the Bungo, northern Miyazaki, and southern Miyazaki regions, southwest Japan. The estimated time evolution between October 2013 and April 2015 shows the simultaneous occurrence of northern and southern Miyazaki slow slips with different durations followed by a Bungo slow slip in 2014. A southern Miyazaki slow slip occurred from approximately July 2015, which was followed by a northern Miyazaki slow slip and a Bungo slow slip in 2016. The 2016 Bungo slow slip occurred in a shallow area that did not slip at the time of the 2014 Bungo slow slip. The two different rupture processes from 2013 to 2015 and from 2015 to 2016 may be an important clue toward understanding subduction tectonics in southwest Japan. These interplate slow slip events are changing the stress state in favor of the occurrence of Nankai and Hyuga-nada earthquakes together with Tokai and Kii channel slow slips, which have been occurring since approximately 2013 and 2014, respectively.[Figure not available: see fulltext.

  13. Long-term Ocean Bottom Monitoring for Shallow Slow Earthquakes in the Hyuga-nada, Nankai Subduction Zone

    Science.gov (United States)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Nakahigashi, K.; Shiobara, H.; Mochizuki, K.; Maeda, T.; Obara, K.

    2015-12-01

    The Hyuga-nada region, nearby the western end of the Nankai Trough in Japan, is one of the most active areas of shallow slow earthquakes in the world. Recently, ocean-bottom observation of offshore seismicity near the trench succeeded in detecting shallow tremor. The observed traces contained a complete episode lasting for one month exhibiting similar migration property of deep tremor [Yamashita et al., 2015]. This activity was associated with shallow very-low-frequency earthquake (VLFE) activity documented by land-based broadband seismic network. The coincidence between tremor and VLFE activities and similarity of their migration pattern show strong resemblance with the episodic tremor and slip episodes; this similarity suggests that the tremor activity in the shallow plate boundary may also be coupled with VLFE and short-term slow slip events in this area. It is important clarifying the seismicity including slow earthquakes to understand the slip behavior at a shallow plate boundary, and to improve assessments of the possibility of tsunamigenic megathrust earthquake that is anticipated to occur at the Nankai Trough. Motivated by these issues, we started long-term ocean-bottom monitoring in this area from May 2014 using 3 broadband and 7 short-period seismometers. In January 2015, we replaced the instruments and obtained the first data which includes minor shallow tremor and VLFE activity on June 1-3, 2014. Preliminary results of data processing show that the shallow tremor activity occurred at the northwestern part of the 2013 activity. The location corresponds the point where the tremors stopped migrating to further north direction and turned sharply eastward in the 2013 activity. On the other hand, clear tremor migration was not found in the 2014 activity. This local activity may imply that regional/small-scale heterogeneous structures such as a subducting sea mount affect the activity pattern. During the 2014 observation, many ordinary earthquakes also

  14. Improving automatic earthquake locations in subduction zones: a case study for GEOFON catalog of Tonga-Fiji region

    Science.gov (United States)

    Nooshiri, Nima; Heimann, Sebastian; Saul, Joachim; Tilmann, Frederik; Dahm, Torsten

    2015-04-01

    Automatic earthquake locations are sometimes associated with very large residuals up to 10 s even for clear arrivals, especially for regional stations in subduction zones because of their strongly heterogeneous velocity structure associated. Although these residuals are most likely not related to measurement errors but unmodelled velocity heterogeneity, these stations are usually removed from or down-weighted in the location procedure. While this is possible for large events, it may not be useful if the earthquake is weak. In this case, implementation of travel-time station corrections may significantly improve the automatic locations. Here, the shrinking box source-specific station term method (SSST) [Lin and Shearer, 2005] has been applied to improve relative location accuracy of 1678 events that occurred in the Tonga subduction zone between 2010 and mid-2014. Picks were obtained from the GEOFON earthquake bulletin for all available station networks. We calculated a set of timing corrections for each station which vary as a function of source position. A separate time correction was computed for each source-receiver path at the given station by smoothing the residual field over nearby events. We begin with a very large smoothing radius essentially encompassing the whole event set and iterate by progressively shrinking the smoothing radius. In this way, we attempted to correct for the systematic errors, that are introduced into the locations by the inaccuracies in the assumed velocity structure, without solving for a new velocity model itself. One of the advantages of the SSST technique is that the event location part of the calculation is separate from the station term calculation and can be performed using any single event location method. In this study, we applied a non-linear, probabilistic, global-search earthquake location method using the software package NonLinLoc [Lomax et al., 2000]. The non-linear location algorithm implemented in NonLinLoc is less

  15. Peru Subduction Experiment (PERUSE) Preliminary results of Gravity measurements, Earthquake locations and Regional Seismicity in Southern Peru

    Science.gov (United States)

    Foote, E. J.; Davis, P. M.; Guy, R.; Lukac, M. L.; Feng, H. S.; Clayton, R. W.; Phillips, K. E.; Skinner, S.; Audin, L.; Tavera, H.; Aguilar, V.

    2009-12-01

    The Peru Subduction Experiment (PERUSE) is a collaborative project developed by UCLA, Caltech, French L’Institut de Recherche pour le Développement (IRD) and Instituto Geofisico del Peru (IGP) to improve geophysical models of the Andean Orogenic Belt and to image the subduction process in Southern Peru. One area of particular interest is where the Nazca Plate transitions from a normally subducting slab at an angle of about 30 degrees to a shallow subducting slab beneath the South American Plate. The PERUSE project, which started in the summer of 2008, consists of a linear array of 50 broadband seismic stations that are evenly spaced about 6 kilometers apart. They are aligned perpendicular to the coast of Peru, from Mollendo to Juliaca. Caltech will deploy 50 more stations by the end of 2009. Their line will run perpendicular to the current line, from Juliaca to Cusco. By the end of 2010, a third linear array will be installed north of and perpendicular to Caltech’s line in the Altiplano. Preliminary results from gravity measurements indicate that the crustal root of the Andes dips approximately 20 degrees on both sides of the range, and extends to a depth of approximately 70km. This also agrees well with the receiver function results, which show that the crust thickens from the coast of Mollendo through the Altiplano to Juliaca to a depth about 70km (Phillips et al, Fall AGU 2009). Teleseismic studies also indicate that the crustal thickness varies laterally below southern Peru. We are developing a heterogeneous model from the topographic and gravity data, teleseismic events, and the receiver function results to accurately locate earthquakes in the area of interest and to provide a better crustal model of the region.

  16. Tectonic Significance of Intraoceanic Thrusts in the Nankai Trough

    Science.gov (United States)

    Tsuji, T.; Kodaira, S.; Park, J.; Ashi, J.; Fukao, Y.; Moore, G. F.; Matsuoka, T.

    2009-12-01

    The Nankai Trough is a convergent margin where the Philippine Sea plate is subducting beneath southwest Japan. Because this subduction zone has repeatedly generated great earthquakes with Mw>8, seismic reflection studies have been intensively carried out in the whole Nankai Trough region. However, the role of oceanic crust in plate convergent margins was not well understood. Recently, Tsuji et al. [2009] identified intraoceanic thrusts developed as imbricate structures within the subducting Philippine Sea plate off the Kii Peninsula in central Japan manifesting as strong-amplitude reflections observed in an industry-standard 3D seismic reflection data set. In this study, we use other 2D and 3D seismic reflection data acquired in the whole Nankai Trough region and extract geometries of (1) intraoceanic thrusts, (2) surface of oceanic crust and (3) Moho in order to discuss characteristics of intraoceanic thrusts distributed in the whole Nankai Trough region. We mainly use seismic reflection data acquired by JAMSTEC. Seismic profiles demonstrate that intraoceanic faults are densely distributed eastern side of the Cape Shionomisaki (southern edge of the Kii Peninsula). Large displacements of a few major intraoceanic thrusts elevate the crust surface, and the offset due to cumulative displacements reaches >1 km at the sediment-igneous crust interface. A part of Kashinozaki-Knoll is also uplifted by the thrust displacement. These imbricate intraoceanic thrusts cut through the oceanic crust as a discontinuous thrust plane. The intraoceanic thrusts strike nearly parallel to the trend of the trough axis. However the fault traces are bending at the western termination; the fault planes extend upward from side edges of the underlying intraoceanic thrusts and work as lateral faults. The deformation within oceanic crust may have continued until recently with subduction, because the shallow sediment as well as the seafloor is deformed due to the thrust displacement [Kodaira et

  17. Mantle Viscosity in the Kuril Subduction Zone from Postseismic GPS Monitoring of Great 2006/2007 Earthquakes

    Science.gov (United States)

    Kogan, M. G.; Vasilenko, N. F.; Frolov, D. I.; Freymueller, J. T.; Steblov, G. M.; Ekstrom, G.; Prytkov, A. S.

    2016-12-01

    This study is based on 10 years of ongoing GPS measurements of postseismic deformation following a pair of great earthquakes in the Kuril subduction zone. The study area is one of only a handful to capture a magnitude >8 signal and its postseismic signature with continuous GPS. The Kuril GPS Array was installed a few months prior to a 2006/2007 earthquake doublet and has been recording postseismic displacements in the near and far fields since that time. For a decade, the near field stations are moving trenchward, towards the seismic source at a speed of several tens of millimeters per year initially and an order of magnitude slower currently. Our modeling of viscoelastic relaxation explores realistic 3D subduction structures accounting for the dipping slab and for a low-viscosity mantle wedge above it (software RELAX of S. Barbot). We test linear (Maxwell) and nonlinear (power-law) rheologies of the asthenosphere, assuming that the viscoelastic relaxation is the dominant signal compared to afterslip after a year since the earthquakes. The data are best fit by the Maxwell asthenospheric viscosity 1 × 1018 Pa s for an interval 2007.5-2016.5. This viscosity is about ten times smaller than for two M9 events (Chile 1960 and Alaska 1964) from postseismic GPS displacements observed several decades later. This suggests a power-law rheology predicting the growth of apparent viscosity with time. From laboratory experiments with olivine, two alternative power-law mechanisms are possible: dislocation creep (stress power-law exponent n = 3.4-4.5) or diffusion creep (n = 0.9-1.5). Our numerical tests spanned the expected range of n, as well as a range of values of the initial apparent viscosity. The data are best fit by diffusion creep with n = 1.2 although the fit is not as good as for the Maxwell model.

  18. M9.1 Cascadia Subduction Zone Earthquake Tsunami Inundation Modeling of Sequim Bay and Lopez Island, Washington

    Science.gov (United States)

    Lee, C. J.; Cakir, R.; Walsh, T. J.; LeVeque, R. J.; Adams, L. M.; Gonzalez, F. I.

    2016-12-01

    The Strait of Juan de Fuca and adjacent coastal zone are prone to tsunami hazard triggered by a M9+ Cascadia Subduction Zone (CSZ) earthquake. In addition to the numerous tsunami deposits observed on the outer coast, there is geological evidence for nine sandy or muddy tsunami layers deposited in last 2500-year period in a tidal marsh area of Discovery Bay, Northeastern Olympic Peninsula, Washington (Williams et al., 2005, The Holocene, v. 15, no. 1). Thus, it is important to assess the potential tsunami hazard due to a future M9+ CSZ earthquake event that may impact local communities in and near Discovery Bay area . In this study, we conducted tsunami simulations using Clawpack-GeoClaw and the earthquake source scenario M9.1 CSZ, designated as "L1" (Witter et al., 2011, Oregon DOGAMI Special Paper 43). A fine-resolution (1/3 arc-second) NOAA digital elevation model (DEM) was used to provide a high resolution tsunami inundation simulation in Sequim Bay (about 5 miles west of Discovery Bay), Clallam county and Lopez Island, San Juan County. The test gauges, set around major infrastructures and properties, provided estimates of wave height, wave velocity, and wave arrival time. The results will contribute to further improving mitigation planning and emergency response efforts of the counties.

  19. Nonlinear Responses of High-rise Buildings in Seattle for Simulated Ground Motions From Giant Cascadia Subduction Earthquakes (Mw 9.2)

    Science.gov (United States)

    Yang, J.; Heaton, T. H.

    2008-12-01

    With the exception of the 2003 Tokachi-oki earthquake, strong ground recordings from large subduction earthquakes (Mw > 8.0) are meager. Furthermore there are no strong motion recordings of giant earthquakes. However, there is a growing set of high-quality broadband teleseismic recordings of large and giant earthquakes. In this poster, we use recordings from the 2003 Tokachi-oki (Mw 8.3) earthquake as empirical Green's functions to simulate the rock and soil ground motions from a scenario Mw 9.2 subduction earthquake on Cascadia subduction zone in the frequency band of interest to flexible and large- scale buildings (0.075 to 1 Hz). The effect of amplification by the Seattle basin is considered by using a basin response Green's function which is derived from deconvolving the teleseismic waves recorded at rock sites from soil sites at the SHIP02 experiment. These strong ground motions are used to excite simulation of the fully nonlinear seismic responses of 20-story and 6-story steel moment-frame buildings designed according to both the U.S. 1994 UBC and also the Japanese building code published in 1987. We consider several realizations of the hypothetical subduction earthquake; the down-dip limit of rupture is of particular importance to the simulated ground motions in Seattle. If slip is assumed to be limited to offshore regions, then the building simulations indicate that the building responses are mostly in the linear range. However, our simulation shows that buildings with brittle welds would collapse for rupture models where rupture extends beneath the Olympic Mountains. The ground motions all have very long durations (more than 4 minutes), and our building simulations should be considered as a minimum estimate since we have used a very simple model of degradation of the structure.

  20. Stratigraphic and microfossil evidence for a 4500-year history of Cascadia subduction zone earthquakes and tsunamis at Yaquina River estuary, Oregon, USA

    Science.gov (United States)

    Graehl, Nicholas A; Kelsey, Harvey M.; Witter, Robert C.; Hemphill-Haley, Eileen; Engelhart, Simon E.

    2015-01-01

    The Sallys Bend swamp and marsh area on the central Oregon coast onshore of the Cascadia subduction zone contains a sequence of buried coastal wetland soils that extends back ∼4500 yr B.P. The upper 10 of the 12 soils are represented in multiple cores. Each soil is abruptly overlain by a sandy deposit and then, in most cases, by greater than 10 cm of mud. For eight of the 10 buried soils, times of soil burial are constrained through radiocarbon ages on fine, delicate detritus from the top of the buried soil; for two of the buried soils, diatom and foraminifera data constrain paleoenvironment at the time of soil burial.We infer that each buried soil represents a Cascadia subduction zone earthquake because the soils are laterally extensive and abruptly overlain by sandy deposits and mud. Preservation of coseismically buried soils occurred from 4500 yr ago until ∼500–600 yr ago, after which preservation was compromised by cessation of gradual relative sea-level rise, which in turn precluded drowning of marsh soils during instances of coseismic subsidence. Based on grain-size and microfossil data, sandy deposits overlying buried soils accumulated immediately after a subduction zone earthquake, during tsunami incursion into Sallys Bend. The possibility that the sandy deposits were sourced directly from landslides triggered upstream in the Yaquina River basin by seismic shaking was discounted based on sedimentologic, microfossil, and depositional site characteristics of the sandy deposits, which were inconsistent with a fluvial origin. Biostratigraphic analyses of sediment above two buried soils—in the case of two earthquakes, one occurring shortly after 1541–1708 cal. yr B.P. and the other occurring shortly after 3227–3444 cal. yr B.P.—provide estimates that coseismic subsidence was a minimum of 0.4 m. The average recurrence interval of subduction zone earthquakes is 420–580 yr, based on an ∼3750–4050-yr-long record and seven to nine interearthquake

  1. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    Science.gov (United States)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  2. Mapping fluids to subduction megathrust locking and slip behavior

    Science.gov (United States)

    Saffer, Demian M.

    2017-09-01

    In subduction zones, high fluid content and pore pressure are thought to promote aseismic creep, whereas well-drained conditions are thought to promote locking and failure in earthquakes. However, observations directly linking fluid content and seismic coupling remain elusive. Heise et al. (2017) use a magnetotelluric survey to image the electrical resistivity structure of the northern Hikurangi subduction thrust to 30 km depth, as an indicator of interconnected fluid content. The authors document a clear correlation between high resistivity and a distinct geodetically locked patch and between conductive areas and weak coupling. Their study, together with other recent geophysical investigations, provides new evidence for the role of fluids in governing subduction thrust locking.

  3. On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya

    Science.gov (United States)

    Rajendran, C. P.; John, Biju; Anandasabari, K.; Sanwal, Jaishri; Rajendran, Kusala; Kumar, Pankaj; Chopra, Sundeep

    2018-01-01

    The foothills of the Himalaya bordered by the Main Frontal Thrust (MFT) continue to be a locus of paleoseismological studies. One of such recent studies of trench stratigraphy near the central (Indian) Himalayan foothills (Malik et al., (2016) has reported multiple ruptures dated at 467-570, 1294-1587 and 1750-1932 CE. The last offset has been attributed to the Uttarkashi earthquake of 1803 and the penultimate faulting, with lesser confidence to an earthquake in 1505 CE. We tested these claims by logging an adjacent section on a shared scarp, and the new trench site, however, revealed a stratigraphic configuration partially in variance with from what has been reported in the earlier study. Our findings do not support the previous interpretation of the trench stratigraphy that suggested multiple displacements cutting across a varied set of deformed stratigraphic units leading up to the 1803 rupture. The current interpretation posits a single episode of a low-angle displacement at this site occurred between 1266 CE and 1636. Our results suggest a single medieval earthquake, conforming to what was reported from the previously studied neighboring sites to the east and west. The present study while reiterating a great medieval earthquake questions the assumption that the 1803 earthquake ruptured the MFT. Although a décollement earthquake, the 1803 rupture may have been arrested midway on the basal flat, and fell short of reaching the MFT, somewhat comparable to a suite of blind thrust earthquakes like the1905 Kangra and the 1833 Nepal earthquakes.

  4. Rheology of Asthenosphere in the Kuril-Kamchatka Subduction Zone from Postseismic GPS Observations after Great 2006-2007 Earthquakes

    Science.gov (United States)

    Kogan, M. G.; Vasilenko, N. F.; Frolov, D. I.; Freymueller, J. T.; Steblov, G. M.; Ekstrom, G.; Prytkov, A. S.

    2015-12-01

    The 1,200-km-long Kuril subduction zone is one of the most seismically active regions on the Earth. It was the last major subduction zone totally unexplored by methods of space geodesy. The Kuril GPS Array was installed in summer 2006. Several months later, a doublet of great (MW > 8) earthquakes ruptured the central segment of the Kuril arc where events of such size had not occurred for about a century. We test mechanisms of viscoelastic relaxation with both Maxwell and power-law rheologies to explain the postseismic motion for 8 years following the earthquake doublet. For the period after summer 2007, we have assumed that the contributions from afterslip are negligible. We model viscoelastic relaxation caused by coseismic slip using the open-source software package RELAX of S. Barbot. It allows us to consider the three-dimensional rheology, including a dipping elastic slab and a low-viscosity mantle above the slab. In 2007-2008, the observed postseismic movement was at a speed of several tens of millimeters per year and directed trenchward. Seven years later, the speed was reduced by an order of magnitude and still directed trenchward. Viscoelastic relaxation with the Maxwell viscosity of about 1 × 1018 Pa s reasonably explains the observed deformation for initial 3-5 years with a tendency to an increase in apparent viscosity. However, the question arises: will the apparent viscosity continue to grow with post-earthquake time? A power-law rheology would predict such growth over the decades following an earthquake. According to laboratory experiments, a power-law rheology of olivine is associated with dislocation creep (stress exponent n = 3.4-4.5) or diffusional creep (n = 0.9-1.5). We modeled deformation for a range of values of n and of apparent initial viscosity. We found the power-law models that agree well with the observed postseismic deformation, showing a significantly better fit in later years (2012-2015) than a Maxwell rheology with viscosity 1 × 1018

  5. Geodetic displacements and aftershocks following the 2001 Mw = 8.4 Peru earthquake: Implications for the mechanics of the earthquake cycle along subduction zones

    Science.gov (United States)

    Perfettini, H.; Avouac, J.-P.; Ruegg, J.-C.

    2005-09-01

    We analyzed aftershocks and postseismic deformation recorded by the continuous GPS station AREQ following the Mw = 8.4, 23 June 2001 Peru earthquake. This station moved by 50 cm trenchward, in a N235°E direction during the coseismic phase, and continued to move in the same direction for an additional 15 cm over the next 2 years. We compare observations with the prediction of a simple one-dimensional (1-D) system of springs, sliders, and dashpot loaded by a constant force, meant to simulate stress transfer during the seismic cycle. The model incorporates a seismogenic fault zone, obeying rate-weakening friction, a zone of deep afterslip, the brittle creep fault zone (BCFZ) obeying rate-strengthening friction, and a zone of viscous flow at depth, the ductile fault zone (DFZ). This simple model captures the main features of the temporal evolution of seismicity and deformation. Our results imply that crustal strain associated with stress accumulation during the interseismic period is probably not stationary over most of the interseismic period. The BCFZ appears to control the early postseismic response (afterslip and aftershocks), although an immediate increase, by a factor of about 1.77, of ductile shear rate is required, placing constraints on the effective viscosity of the DFZ. Following a large subduction earthquake, displacement of inland sites is trenchward in the early phase of the seismic cycle and reverse to landward after a time ti for which an analytical expression is given. This study adds support to the view that the decay rate of aftershocks may be controlled by reloading due to deep afterslip. Given the ratio of preseismic to postseismic viscous creep, we deduce that frictional stresses along the subduction interface account for probably 70% of the force transmitted along the plate interface.

  6. High resolution earthquake source mechanisms in a subduction zone: 3-D waveform simulations of aftershocks from the 2010 Mw 8.8 Chile rupture

    Science.gov (United States)

    Hicks, Stephen; Rietbrock, Andreas

    2015-04-01

    The earthquake rupture process is extremely heterogeneous. For subduction zone earthquakes in particular, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood (e.g. Hayes et al., 2012); however, the nature of slip style along any finer-scale structures remains elusive. Regional earthquake moment tensor (RMT) inversion can shed light on faulting mechanisms. However, many traditional regional moment tensor inversions use simplified (1-D) Earth models (e.g. Agurto et al., 2012; Hayes et al., 2013) that only use the lowest frequency parts of the waveform, which may mask source complexity. As a result, we may have to take care when making small-scale interpretations about the causative fault and its slip style. This situation is compounded further by strong lateral variations in subsurface geology, as well as poor station coverage for recording offshore subduction earthquakes. A formal assessment of the resolving capability of RMT inversions in subduction zones is challenging and the application of 3-D waveform simulation techniques in highly heterogeneous media is needed. We generate 3-D waveform simulations of aftershocks from a large earthquake that struck Chile in 2010. The Mw 8.8 Maule earthquake is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best observed aftershock sequences to date. We therefore have a unique opportunity to compare recorded waveforms with simulated waveforms for many earthquakes, shedding light on the effect of 3-D heterogeneity on source imaging. We perform forward simulations using the spectral element wave propagation code, SPEFEM3D (e.g. Komatitsch et al., 2010) for a set of moderate-sized aftershocks (Mw 4.0-5.5). A detailed knowledge of velocity structure

  7. Frictional properties of JFAST core samples and implications for slow earthquakes at the Tohoku subduction zone

    Science.gov (United States)

    Sawai, Michiyo; Niemeijer, André R.; Hirose, Takehiro; Spiers, Christopher J.

    2017-09-01

    Slow earthquakes occur in the shallow (Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). The plate boundary fault material exhibits a transition from velocity-strengthening to velocity-weakening behavior at temperatures between 50 and 150°C, which, in the framework of rate-and-state friction laws, is a necessary condition for the generation of slow earthquakes, whereas the footwall sample mainly shows velocity-strengthening behavior except at temperatures of <50°C. The downdip temperature limit of slow earthquakes in the Japan Trench also lies between 100 and 150°C. Our results suggest that the frictional properties of the plate boundary fault may play a key role in controlling the locations of observed slow earthquakes.

  8. Near-continuous tremor and low-frequency earthquake activities in the Alaska-Aleutian subduction zone revealed by a mini seismic array

    Science.gov (United States)

    Li, Bo; Ghosh, Abhijit

    2017-06-01

    Tectonic tremor and low-frequency earthquakes (LFEs) are relatively poorly studied in the Alaska-Aleutian subduction zone due to the limited data availability, difficult logistics, and rugged terrain. Using 2 months of continuous data recorded by a mini seismic array in the Akutan Island, we detect near-continuous tremor activity with an average of 1.3 h of tectonic tremor per day using a beam backprojection method. Tremor sources are clustered in two patches with an 25 km gap in between them. In addition, we visually identify three low-frequency earthquakes, and using them as templates, we detect 1300 additional LFEs applying a matched-filter method. Tremor and LFE activities agree well in space and time, and LFEs show a much smaller recurrence interval during tremor than during non-tremor time periods. Tremor sources propagate both along the strike and dip directions of the subduction fault with velocities ranging between 13 and 110 km/h. Prolific patchy tremor and LFE activities suggest lateral heterogeneity in the locked to freely slipping transition zone, indicating that slow earthquakes may play an important role in the earthquake cycles in this subduction zone.

  9. Crustal Deformation in Southcentral Alaska: The 1964 Prince William Sound Earthquake Subduction Zone

    Science.gov (United States)

    Cohen, Steven C.; Freymueller, Jeffrey T.

    2003-01-01

    This article, for Advances in Geophysics, is a summary of crustal deformation studies in southcentral Alaska. In 1964, southcentral Alaska was struck by the largest earthquake (moment magnitude 9.2) occurring in historical times in North America and the second largest earthquake occurring in the world during the past century. Conventional and space-based geodetic measurements have revealed a complex temporal-spatial pattern of crustal movement. Numerical models suggest that ongoing convergence between the North America and Pacific Plates, viscoelastic rebound, aseismic creep along the tectonic plate interface, and variable plate coupling all play important roles in controlling both the surface and subsurface movements. The geodetic data sets include tide-gauge observations that in some cases provide records back to the decades preceding the earthquake, leveling data that span a few decades around the earthquake, VLBI data from the late 1980s, and GPS data since the mid-1990s. Geologic data provide additional estimates of vertical movements and a chronology of large seismic events. Some of the important features that are revealed by the ensemble of studies that are reviewed in this paper include: (1) Crustal uplift in the region that subsided by up 2 m at the time of the earthquake is as much as 1 m since the earthquake. In the Turnagain Arm and Kenai Peninsula regions of southcentral Alaska, uplift rates in the immediate aftermath of the earthquake reached 150 mm/yr , but this rapid uplift decayed rapidly after the first few years following the earthquake. (2) At some other locales, notably those away the middle of the coseismic rupture zone, postseismic uplift rates were initially slower but the rates decay over a longer time interval. At Kodiak Island, for example, the uplift rates have been decreasing at a rate of about 7mm/yr per decade. At yet other locations, the uplift rates have shown little time dependence so far, but are thought not to be sustainable

  10. A morphologic proxy for debris flow erosion with application to the earthquake deformation cycle, Cascadia Subduction Zone, USA

    Science.gov (United States)

    Penserini, Brian D.; Roering, Joshua J.; Streig, Ashley

    2017-04-01

    In unglaciated steeplands, valley reaches dominated by debris flow scour and incision set landscape form as they often account for > 80% of valley network length and relief. While hillslope and fluvial process models have frequently been combined with digital topography to develop morphologic proxies for erosion rate and drainage divide migration, debris-flow-dominated networks, despite their ubiquity, have not been exploited for this purpose. Here, we applied an empirical function that describes how slope-area data systematically deviate from so-called fluvial power-law behavior at small drainage areas. Using airborne LiDAR data for 83 small ( 1 km2) catchments in the western Oregon Coast Range, we quantified variation in model parameters and observed that the curvature of the power-law scaling deviation varies with catchment-averaged erosion rate estimated from cosmogenic nuclides in stream sediments. Given consistent climate and lithology across our study area and assuming steady erosion, we used this calibrated denudation-morphology relationship to map spatial patterns of long-term uplift for our study catchments. By combining our predicted pattern of long-term uplift rate with paleoseismic and geodetic (tide gauge, GPS, and leveling) data, we estimated the spatial distribution of coseismic subsidence experienced during megathrust earthquakes along the Cascadia Subduction Zone. Our estimates of coseismic subsidence near the coast (0.4 to 0.7 m for earthquake recurrence intervals of 300 to 500 years) agree with field measurements from numerous stratigraphic studies. Our results also demonstrate that coseismic subsidence decreases inland to negligible values > 25 km from the coast, reflecting the diminishing influence of the earthquake deformation cycle on vertical changes of the interior coastal ranges. More generally, our results demonstrate that debris flow valley networks serve as highly localized, yet broadly distributed indicators of erosion (and rock

  11. Tsunamigenic earthquake simulations using experimentally derived friction laws

    Science.gov (United States)

    Murphy, S.; Di Toro, G.; Romano, F.; Scala, A.; Lorito, S.; Spagnuolo, E.; Aretusini, S.; Festa, G.; Piatanesi, A.; Nielsen, S.

    2018-03-01

    Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like subduction zone cross-section. Subduction zone fault rocks are dominantly incohesive and clay-rich near the surface, transitioning to cohesive and more crystalline at depth. By randomly shifting along fault dip the location of the high shear stress regions ("asperities"), moderate to great thrust earthquakes and tsunami earthquakes are produced that are quite consistent with seismological, geodetic, and tsunami observations. As an effect of depth-dependent friction in our model, slip is confined to the high stress asperity at depth; near the surface rupture is impeded by the rock-clay transition constraining slip to the clay-rich layer. However, when the high stress asperity is located in the clay-to-crystalline rock transition, great thrust earthquakes can be generated similar to the Mw 9 Tohoku (2011) earthquake.

  12. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake

    Science.gov (United States)

    Lin, J.; Stein, R.S.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S.

    2011-01-01

    The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ~2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ~0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ~2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.

  13. “PLAFKER RULE OF THUMB” RELOADED: EXPERIMENTAL INSIGHTS INTO THE SCALING AND VARIABILITY OF LOCAL TSUNAMIS TRIGGERED BY GREAT SUBDUCTION MEGATHRUST EARTHQUAKES

    Science.gov (United States)

    Rosenau, M.; Nerlich, R.; Brune, S.; Oncken, O.

    2009-12-01

    Great subduction megathrust earthquakes pose a significant tsunami risk in coastal regions. In order to constrain natural tsunamigenic source heterogeneity and its effect on tsunami variability in different subduction settings (accretive, erosive), we here analyze a sequence of experimentally simulated great megathrust earthquakes. We use an elastoplastic wedge overlying a rate- and state-dependent frictional interface as an analog model of the subduction forearc overlying a seismogenic megathrust. Near-field (local) tsunami heights are derived by means of analytical versus numerical hydrodynamic calculations from the surface deformation of the analog model in comparison to predictions of an elastic dislocation model. The cumulative slip distribution over the simulated earthquake sequence resembles widely used skewed parameterizations supporting their use in worst case scenarios. Due to body forces and strain localization, tsunamis predicted by the analog model are enriched in kinetic energy compared to EDM predictions. The tsunami height-to-slip-ratio (“Plafker rule of thumb”) and its variance scale inversely to forearc slope according to a power law from ~ 1 at accretionary to ~ 1/4 in erosive settings (Cv ~ 0.6). Tsunami height scales exponentially with earthquake magnitude, has a power-law dependence on forearc slope and a variability characterized by Cv ~ 0.5 (see Figure). In terms of predicting tsunami scale and variability the analog model outperforms the elastic dislocation model which tends to overestimate local tsunami height and underscore its variability when tested against empirical data. Based on the experimentally derived earthquake-tsunami scaling law we infer the distribution of tsunami hazard on a global scale. Because of the exponential scaling of tsunamis with earthquake magnitude, its sensitivity to forearc slope and the possible non-linear kinetic enrichment of tsunamis triggered by giant earthquakes, disaster hotspots occur preferentially

  14. Links between clay transformation and earthquakes along the Costa Rican subduction margin

    Science.gov (United States)

    Lauer, Rachel M.; Saffer, Demian M.; Harris, Robert N.

    2017-08-01

    We investigate the depth distribution of smectite clay transformation and its along-strike variability at the Middle America Trench offshore Costa Rica. We take advantage of recent well-constrained thermal models that refine our understanding of the margin's thermal structure and which capture significant along-strike variability. Using these thermal models, together with sediment compositions defined by drilling, we compute the distribution of smectite transformation and associated fluid production. We show that the hypocenters of large (M > 6.9) well-located megathrust earthquakes lie consistently downdip of peak fluid production. We suggest that silica cementation associated with smectite transformation promotes lithification and slip-weakening behavior that, in combination with declining fluid pressures, facilitate the initiation of unstable slip. The earthquake ruptures extend updip into the region of peak reaction, possibly due to excess pore pressures that facilitate their propagation. These results are consistent with the hypothesis that smectite transformation contributes to the onset of stick-slip behavior and acts as an important control on earthquake nucleation and propagation.

  15. Estimation of slip scenarios of mega-thrust earthquakes and strong motion simulations for Central Andes, Peru

    Science.gov (United States)

    Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.

    2012-12-01

    We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for

  16. Distribution of very low frequency earthquakes in the Nankai accretionary prism influenced by a subducting-ridge

    Science.gov (United States)

    Toh, Akiko; Obana, Koichiro; Araki, Eiichiro

    2018-01-01

    We investigated the distribution of very low frequency earthquakes (VLFEs) that occurred in the shallow accretionary prism of the eastern Nankai trough during one week of VLFE activity in October 2015. They were recorded very close from the sources by an array of broadband ocean bottom seismometers (BBOBSs) equipped in Dense Oceanfloor Network system for Earthquakes and Tsunamis 1 (DONET1). The locations of VLFEs estimated using a conventional envelope correlation method appeared to have a large scatter, likely due to effects of 3D structures near the seafloor and/or sources that the method could not handle properly. Therefore, we assessed their relative locations by introducing a hierarchal clustering analysis based on patterns of relative peak times of envelopes within the array measured for each VLFE. The results suggest that, in the northeastern side of the network, all the detected VLFEs occur 30-40 km landward of the trench axis, near the intersection of a splay fault with the seafloor. Some likely occurred along the splay fault. On the other hand, many VLFEs occur closer to the trench axis in the southwestern side, likely along the plate boundary, and the VLFE activity in the shallow splay fault appears less intense, compared to the northeastern side. Although this could be a snap-shot of activity that becomes more uniform over longer-term, the obtained distribution can be reasonably explained by the change in shear stresses and pore pressures caused by a subducting-ridge below the northeastern side of DONET1. The change in stress state along the strike of the plate boundary, inferred from the obtained VLFE distribution, should be an important indicator of the strain release pattern and localised variations in the tsunamigenic potential of this region.

  17. Three-dimensional Geometry of Buried Fold Scarps Associated With Ancient Earthquakes on the Puente Hills Blind Thrust Fault

    Science.gov (United States)

    Leon, L. A.; Dolan, J. F.; Hoeft, J. S.; Shaw, J. H.; Hartleb, R. D.

    2003-12-01

    The Puente Hills thrust fault (PHT) is a large blind thrust fault that extends east-west beneath the heart of the metropolitan Los Angeles region (Shaw and Shearer, 1999; Shaw et al., 2003). Christofferson (2002; in prep.) and Dolan et al. (2003) identified four buried fold scarps associated with large (Mw greater than or equal to 7), ancient earthquakes on the PHT beneath the City of Bellflower, in northern Orange County. One of the major outstanding questions regarding this research concerns the subsurface, three-dimensional geometry of these buried scarps. Specifically, we want to determine the extent to which the subsurface geometry of these scarps is controlled by tectonic versus fluvial processes. In order to begin addressing these questions, we drilled a north-south transect of hollow-stem, continuously cored boreholes across the buried fold scarps. This new borehole transect, which comprises six, 20-m-deep boreholes, was drilled parallel to, and ˜ 100 m west of, the original Carfax Avenue transect of Christofferson (2002) and Dolan et al. (2003). The overall pattern of progressive southward thickening of sedimentary units observed in the Carfax borehole transect extends westward to the new transect. Moreover, several key sedimentary contacts that are traceable laterally between the two transects occur at approximately the same depths at all locations along both transects. This three-dimensional data set thus defines several buried fold scarps that extend east-west beneath the study site. These observations confirm that the buried scarps are primarily tectonic, rather than fluvial features.

  18. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    Science.gov (United States)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  19. The 2008 Nura Mw6.7 earthquake: A shallow rupture on the Main Pamir Thrust revealed by GPS and InSAR

    Directory of Open Access Journals (Sweden)

    Xuejun Qiao

    2015-03-01

    Full Text Available The 2008 Nura Mw6.7 earthquake occurred in front of the Trans-Alai Range, central Asia. We present Interferometric Synthetic Aperture Radar (InSAR measurements of its coseismic ground deformation that are available for a major earthquake in the region. Analysis of the InSAR data shows that the earthquake ruptured a secondary fault of the Main Pamir Thrust for about 20 km. The fault plane striking N46°E and dipping 48°SE is dominated by thrust slip up to 3 m, most of which is confined to the uppermost 2–5 km of the crust, similar to the nearby 1974 Mw7.0 Markansu earthquake. The elastic model of interseismic deformation constrained by GPS measurements suggests that the two earthquakes may have resulted from the failures of two high-angle reverse faults that are about 10 km apart and rooted in a locked décollement at depths of 5–6 km. The elastic strain is built up by a freely creeping décollement at about 16 mm/a.

  20. Recurrent Holocene movement on the Susitna Glacier Thrust Fault: The structure that initiated the Mw 7.9 Denali Fault earthquake, central Alaska

    Science.gov (United States)

    Personius, Stephen; Crone, Anthony J.; Burns, Patricia A.; Reitman, Nadine G.

    2017-01-01

    We conducted a trench investigation and analyzed pre‐ and postearthquake topography to determine the timing and size of prehistoric surface ruptures on the Susitna Glacier fault (SGF), the thrust fault that initiated the 2002 Mw 7.9 Denali fault earthquake sequence in central Alaska. In two of our three hand‐excavated trenches, we found clear evidence for a single pre‐2002 earthquake (penultimate earthquake [PE]) and determined an age of 2210±420  cal. B.P. (2σ) for this event. We used structure‐from‐motion software to create a pre‐2002‐earthquake digital surface model (DSM) from 1:62,800‐scale aerial photography taken in 1980 and compared this DSM with postearthquake 5‐m/pixel Interferometric Synthetic Aperature Radar topography taken in 2010. Topographic profiles measured from the pre‐earthquake DSM show features that we interpret as fault and fold scarps. These landforms were about the same size as those formed in 2002, so we infer that the PE was similar in size to the initial (Mw 7.2) subevent of the 2002 sequence. A recurrence interval of 2270 yrs and dip slip of ∼4.8  m yield a single‐interval slip rate of ∼1.8  mm/yr. The lack of evidence for pre‐PE deformation indicates probable episodic (clustering) behavior on the SGF that may be related to strain migration among other similarly oriented thrust faults that together accommodate shortening south of the Denali fault. We suspect that slip‐partitioned thrust‐triggered earthquakes may be a common occurrence on the Denali fault system, but documenting the frequency of such events will be very difficult, given the lack of long‐term paleoseismic records, the number of potential thrust‐earthquake sources, and the pervasive glacial erosion in the region.

  1. Accommodation space, relative sea level, and the archiving of paleo-earthquakes along subduction zones

    Science.gov (United States)

    Kelsey, Harvey M.; Engelhart, Simon E.; Pilarczyk, Jessica E.; Horton, Benjamin P.; Rubin, Charles; Daryono, Mudrik; Ismail, Nazli; Hawkes, Andrea D.; Bernhardt, Christopher E.; Cahill, Niamh

    2015-01-01

    The spatial variability of Holocene relative sea-level (RSL) change influences the capacities of coastal environments to accommodate a sedimentary record of paleoenvironmental change. In this study we couch a specific investigation in more general terms in order to demonstrate the applicability of the relative sea-level history approach to paleoseismic investigations. Using subsidence stratigraphy, we trace the different modes of coastal sedimentation over the course of time in the eastern Indian Ocean where RSL change evolved from rapidly rising to static from 8000 yr ago to present. Initially, the coastal sites from the Aceh, Sumatra, coastal plain, which are subject to repeated great earthquakes and tsunamis, built up a sedimentary sequence in response to a RSL rise of 1.4 mm/yr. The sequence found at 2 sites 8 km apart contained 3 soils of a mangrove origin (Rhizophora,Bruguiera/Ceriops, Avicennia pollen, and/or intertidal foraminifera) buried by sudden submergence related to coseismic subsidence and 6 tsunami sands that contain pristine subtidal and planktic foraminifera. After 3800 cal yr B.P. (years before A.D. 1950), sea level stabilized and remained such to the present. The stable relative sea level reduced accommodation space in the late Holocene, suggesting that the continued aggradation of the coastal plain was a consequence of periodic coastal inundation by tsunamis.

  2. Small repeating earthquake activity, interplate quasi-static slip, and interplate coupling in the Hyuga-nada, southwestern Japan subduction zone

    Science.gov (United States)

    Yamashita, Yusuke; Shimizu, Hiroshi; Goto, Kazuhiko

    2012-04-01

    Small repeating earthquake (RE) analysis is a useful method for estimating interplate quasi-static slip, which is a good indicator of interplate coupling. We detected 170 continual-type interplate RE groups and then estimated the spatial variation in quasi-static slip in the Hyuga-nada over the past 17 years. The RE activity in this region has different characteristics compared with that in the northeast Japan subduction zone, presumably reflecting differences in the subduction properties. Our results revealed that interplate coupling spatially changes along the trench-axis and dip-direction—a phenomenon that cannot be resolved by land-based Global Positioning System (GPS) analysis. By comparing seismicity, the low-slip-rate areas correspond with the location of hypocenters and asperities for large- and moderate-sized interplate earthquakes, suggesting strong interplate coupling at these sites. These results indicate that the slip rate distribution estimated from RE activity is reliable and useful for assessing the potential of future large earthquakes.

  3. Modeling the effects of source and path heterogeneity on ground motions of great earthquakes on the Cascadia Subduction Zone Using 3D simulations

    Science.gov (United States)

    Delorey, Andrew; Frankel, Arthur; Liu, Pengcheng; Stephenson, William J.

    2014-01-01

    We ran finite‐difference earthquake simulations for great subduction zone earthquakes in Cascadia to model the effects of source and path heterogeneity for the purpose of improving strong‐motion predictions. We developed a rupture model for large subduction zone earthquakes based on a k−2 slip spectrum and scale‐dependent rise times by representing the slip distribution as the sum of normal modes of a vibrating membrane.Finite source and path effects were important in determining the distribution of strong motions through the locations of the hypocenter, subevents, and crustal structures like sedimentary basins. Some regions in Cascadia appear to be at greater risk than others during an event due to the geometry of the Cascadia fault zone relative to the coast and populated regions. The southern Oregon coast appears to have increased risk because it is closer to the locked zone of the Cascadia fault than other coastal areas and is also in the path of directivity amplification from any rupture propagating north to south in that part of the subduction zone, and the basins in the Puget Sound area are efficiently amplified by both north and south propagating ruptures off the coast of western Washington. We find that the median spectral accelerations at 5 s period from the simulations are similar to that of the Zhao et al. (2006) ground‐motion prediction equation, although our simulations predict higher amplitudes near the region of greatest slip and in the sedimentary basins, such as the Seattle basin.

  4. An exploratory study for rapid estimation of critical source parameters of great subduction-zone earthquakes in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. K; Perez-Campos, X, Iglesias, A; Pacheco, J. F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    2008-10-15

    The rapid and reliable estimation of moment magnitude M{sub w}, location, and size of rupture area, and radiated energy E{sub s} of great Mexican subduction zone earthquakes is critical for a quick assessment of tsunami and/or damage potential of the event and for issuing an early tsunami alert. To accomplish this goal, the Mexican broadband seismic network needs to be supplemented by permanent GPS stations along the Pacific coast, spaced about 65 km apart or less. The data from the GPS network must be transmitted to a central location and processed in near-real time to track the position of the stations. Assuming that this can be implemented, we develop a procedure for near-real time estimation of the critical source parameters. We demonstrate the viability of the procedure by processing near-source GPS data and regional seismograms for the earthquakes of Colima-Jalisco in 1995 (M{sub w}=8.0) and Sumatra-Andaman in 2004 (M{sub w}=9.0-9.3). The procedure yields estimates of M{sub w} and E{sub s} in excellent agreement with those reported from earlier solutions. In the case of the Colima-Jalisco earthquake, the estimated location and size of rupture area agree with that mapped from aftershock locations. Presently, there are 13 permanent GPS stations along the Pacific coast of Mexico with an average spacing of {approx}200 km which operate in an autonomous mode. It is urgent to increase the number of stations to {>=}28 thus decreasing the spacing of stations to {<=}65 km. Data must be transmitted in near-real time to a central station to track the position of the stations, preferably every second. [Spanish] Para una estimacion oportuna del potencial de dano y tsunami asociado a los grandes temblores de subduccion en Mexico, resulta critica la determinacion rapida y confiable de parametros sismologicos como lo son la magnitud de momento (M{sub w}), la energia sismica radiada (E{sub s}) y la localizacion y el tamano de la ruptura. Para alcanzar este objetivo, la red

  5. Source characteristics of moderate size events using empirical Green funclions: an application to some Guerrero (Mexico subduction zone earthquakes

    Directory of Open Access Journals (Sweden)

    S. K. Singh

    1994-06-01

    Full Text Available The records of an aftershock (M ~ 4 of a moderate size event (M = 5.9 which occurred along the subduction zone of Guerrero (Mexico, are used as empirical Green functions (EGF to determine the source characteristics of the mainshock and of its smaller size (M = 5.5 foreshock. The data consist of accelerograms recorded by the Guerrero Accelerograph Array, a high dynamic range strong motion array. The three events appear to be located close to each other at distances much smaller than the source to receiver distances. The fault mechanism of the mainshock is computed by non-linear inversion of P polarity readings and S wave polarizations determined at two near source stations. The foreshock and aftershock fault mechanisms are similar to that of the mainshock as inferred from long period data and shear wave polarization analysis. The maximum likelihood solution is well constrained, indicating a typical shallow dipping thrust fault mechanism, with the P-axis approximately oriented in a SSW direction. The source time functions (STFs of the mainshock and foreshock events are determined using a new method of deconvolution of the EGF records at three strong motion sites. In this method the STF of the large event is approximated by a superposition of pseudo triangular pulses whose parameters are determined by a non-linear inversion in frequency domain. The source time function of the mainshock shows the presence of two separate pulses, which can be related to multiple rupture episodes. The relative location of mainshock sub-events is done by using plots of isochrones computed from measurementes of the time delay between pulses on the STF records at each station. The first sub-event is located no more than 2.5-3 km away from the other along the fault strike. The STF retrieved from foreshock records shows single pulse waveforms. The computed STFs are used to estimate seismic moments, source radii and stress release of the events assuming a circular fault

  6. Five Earthquakes In The Last 50 Ka In The Northwestern Yakima Fold And Thrust Belt, Central Washington

    Science.gov (United States)

    Sherrod, B. L.; Blakely, R. J.; Barnett, E. A.; Foit, F. F.; Weaver, C. S.

    2011-12-01

    Stratigraphic and structural relationships revealed in paleoseismic trenches suggest at least five earthquakes occurred in the last 50 ka along two prominent anticlines of the Yakima fold and thrust belt (YFTB). The YFTB is a series of northwest- and west-trending anticlinal ridges and synclinal valleys formed during and after emplacement of Miocene flood basalts of the Columbia River Basalt Group (CRBG). Here we focus on scarps along Umtanum and Boylston Ridges. Air photos and LiDAR show an E-W trending, up-to-the-north scarp (~8 m high, ~11 km long) lying at the base of the southern limb of the Umtanum Ridge anticline at Wenas Valley, near the city of Yakima. A trench across the scarp exposed volcaniclastic deposits overlain by buried soils and colluvial deposits. Electron microprobe analysis of tephra from the uppermost volcaniclastic layers indicates correlation with Mt. St. Helens Set C (possibly Cy), erupted ~47 ka. Eight normal faults and one possible reverse fault deform the tephra, buried soils, and colluvial deposits above the tephra. Cross cutting relations require at least three earthquakes over the last ~47 ka. We infer bending moment deformation above a buried reverse fault as the most likely cause of surface faulting observed along the Wenas Valley scarp. LiDAR images at Boylston Ridge east of Ellensburg, WA reveal a ~4-km-long, NE-trending, up-to-the-west scarp. Trenches across this scarp showed Miocene basalt overlain by a thin, cobble-rich, colluvial soil at the surface. A single high-angle reverse fault offsets the basalt, and a fissure filled with colluvium separates the fault blocks. Older colluvium and a soil formed in the colluvium are both offset by the fault, suggesting at least two episodes of movement. Inclined striae on the fault plane hint at right-lateral oblique offset. About 1 km to the NE, a 700-m-long stretch of stream floodplain is incised as much as 7 m. Electron microprobe analysis of a tephra layer in the incised floodplain

  7. Direct evidence of frontal rupture during the 2010 Mentawai earthquake, offshore Central Sumatra

    Science.gov (United States)

    Hananto, Nugroho D.; Singh, Satish C.; Qin, Yanfang; Leclerc, Frederique; Beunaiche, Bertrand; Linlin, Li; Avianto, Praditya; Carton, Helene D.; Tapponnier, Paul; Sieh, Kerry

    2017-04-01

    Until very recently, it was commonly accepted that the frontal portions of subduction systems slip aseismically, incapable of rupturing in large or great earthquakes - a paradigm that was challenged during the 2011 Mw=9.0 Tohoku earthquake where up to 70 m of slip occurred near the subduction front (but no faults were imaged on the seafloor). Furthermore, tsunami earthquakes have been suggested to deform the frontal section of subduction zones anelastically, without faulting. Using high-resolution bathymetry, seafloor back-scatter imagery and seismic reflection data, here we report the discovery of a seafloor trace of the 2010 Mentawai earthquake (Mw=7.8), which produced a very large tsunami on Pagai Island, offshore Central Sumatra, and is classified as a tsunami earthquake. This seafloor trace of the rupture coincides with the landward vergent thrust fault (backthrust) of the frontal pop-up (bi-vergent) anticline and can be followed for about 24 km along the subduction front. Although slip on these backthrusts is small (rupture the frontal section of the subduction front, creating steeply dipping pop-up structures that subsequently uplift the water column in the deep trench, thus producing a large localized tsunami. The presence of pop-up structures near the subduction front could be used as a proxy for the tsunamigenic nature of the subduction zone, helping to mitigate tsunami risks.

  8. Ductile shearing to brittle thrusting along the Nepal Himalaya: Linking Miocene channel flow and critical wedge tectonics to 25th April 2015 Gorkha earthquake

    Science.gov (United States)

    Searle, Mike; Avouac, Jean-Philippe; Elliott, John; Dyck, Brendan

    2017-09-01

    The 25th April 2015 magnitude 7.8 Gorkha earthquake in Nepal ruptured the Main Himalayan thrust (MHT) for 140 km east-west and 50 km across strike. The earthquake nucleated at a depth of 15-18 km approximating to the brittle-ductile transition and propagated east along the MHT but did not rupture to the surface, leaving half of the fault extent still locked beneath the Siwalik hills. Coseismic slip shows that motion is confined to the ramp-flat geometry of the MHT and there was no out-of-sequence movement along the Main Central Thrust (MCT). Below 20 km depth, the MHT is a creeping, aseismic ductile shear zone. Cumulated deformation over geological time has exhumed the deeper part of the Himalayan orogen which is now exposed in the Greater Himalaya revealing a tectonic history quite different from presently active tectonics. There, early Miocene structures, including the MCT, are almost entirely ductile, with deformation occurring at temperatures higher than 400 °C, and were active between 22-16 Ma. Kyanite and sillimanite-grade gneisses and migmatites approximately 5-20 km thick in the core of the Greater Himalayan Sequence (GHS) together with leucogranite intrusions along the top of the GHS were extruded southward between 22-15 Ma, concomitant with ages of partial melting. Thermobarometric constraints show that ductile extrusion of the GHS during the Miocene occurred at muscovite-dehydration temperatures 650-775 °C, and thus brittle thrusting and critical taper models for GHS deformation are unrealistic. As partial melting and channel flow ceased at 15 Ma, brittle thrusting and underplating associated with duplex formation occurred along the Lesser Himalaya passively uplifting the GHS.

  9. Rupture area analysis of the Ecuador (Musine Mw = 7.8 thrust earthquake on April 16, 2016, using GOCE derived gradients

    Directory of Open Access Journals (Sweden)

    Orlando Álvarez

    2017-01-01

    Full Text Available The Ecuador Mw = 7.8 earthquake on April 16, 2016, ruptured a nearly 200 km long zone along the plate interface between Nazca and South American plates which is coincident with a seismic gap since 1942, when a Mw = 7.8 earthquake happened. This earthquake occurred at a margin characterized by moderately big to giant earthquakes such as the 1906 (Mw = 8.8. A heavily sedimented trench explains the abnormal lengths of the rupture zones in this system as inhibits the role of natural barriers on the propagation of rupture zones. High amount of sediment thickness is associated with tropical climates, high erosion rates and eastward Pacific dominant winds that provoke orographic rainfalls over the Pacific slope of the Ecuatorian Andes. Offshore sediment dispersion off the oceanic trench is controlled by a close arrangement of two aseismic ridges that hit the Costa Rica and South Ecuador margin respectively and a mid ocean ridge that separates the Cocos and Nazca plate trapping sediments. Gravity field and Ocean Circulation Explorer (GOCE satellite data are used in this work to test the possible relationship between gravity signal and earthquake rupture structure as well as registered aftershock seismic activity. Reduced vertical gravity gradient shows a good correlation with rupture structure for certain degrees of the harmonic expansion and related depth of the causative mass; indicating, such as in other analyzed cases along the subduction margin, that fore-arc structure derived from density heterogeneities explains at a certain extent propagation of the rupture zones. In this analysis the rupture zone of the April 2016 Ecuador earthquake developed through a relatively low density zone of the fore-arc sliver. Finally, aftershock sequence nucleated around the area of maximum slips in the rupture zone, suggesting that heterogeneous density structure of the fore-arc determined from gravity data could be used in forecasting potential damaged zones

  10. Tensile overpressure compartments on low-angle thrust faults

    Science.gov (United States)

    Sibson, Richard H.

    2017-08-01

    Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.

  11. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface.

    Science.gov (United States)

    Nedimović, Mladen R; Hyndman, Roy D; Ramachandran, Kumar; Spence, George D

    2003-07-24

    At the northern Cascadia margin, the Juan de Fuca plate is underthrusting North America at about 45 mm x yr(-1) (ref. 1), resulting in the potential for destructive great earthquakes. The downdip extent of coupling between the two plates is difficult to determine because the most recent such earthquake (thought to have been in 1700) occurred before instrumental recording. Thermal and deformation studies indicate that, off southern Vancouver Island, the interplate interface is presently fully locked for a distance of approximately 60 km downdip from the deformation front. Great thrust earthquakes on this section of the interface (with magnitudes of up to 9) have been estimated to occur at an average interval of about 590 yr (ref. 3). Further downdip there is a transition from fully locked behaviour to aseismic sliding (where high temperatures allow ductile deformation), with the deep aseismic zone exhibiting slow-slip thrust events. Here we show that there is a change in the reflection character on seismic images from a thin sharp reflection where the subduction thrust is inferred to be locked, to a broad reflection band at greater depth where aseismic slip is thought to be occurring. This change in reflection character may provide a new technique to map the landward extent of rupture in great earthquakes and improve the characterization of seismic hazards in subduction zones.

  12. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    Science.gov (United States)

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  13. Structures of Active Blind Thrusts Beneath Tokyo Metropolitan Area

    Science.gov (United States)

    Ishiyama, T.; Sato, H.; Kato, N.; Nakayama, T.; Iwasaki, T.; Abe, S.

    2011-12-01

    We show structural models of active blind thrust faults beneath Tokyo metropolitan area, based on actively deforming landforms, Quaternary stratigraphy, and deep to shallow high-resolution seismic reflection data tied with these stratigraphic constraints, resolving seismic hazards from otherwise elusive active structures beneath highly urbanized areas. At the leading edge of the subducting Philippine Sea plate beneath the Kanto region, most significant active structures are recognized as folding and/or faulting of late Pleistocene and Holocene fluvial and marine deposits. Newly obtained seismic reflection profile and reprocessed sections indicate that these active structures are surface manifestations of emergent splay thrust faults extending from a subduction megathrust that generated the A.D.1923 Kanto earthquake (M7.9). Much slower rates of slip along these structures (~ 4.2 mm/yr) than slip deficits (~ 30 mm/yr) indicate that slip partitioning might have occurred between the subduction megathrust and splay faults. In contrast to these megathrust-related structures, steeply dipping blind thrusts are distributed beneath the Kanto plain underlain by several thousand meters thick Neogene forearc basin and shallow marine to terrestrial sediments (Kazusa and Shimousa Group). Deep seismic reflection profiles corroborate that these blind thrusts are reactivated normal faults originally formed due to early to middle Miocene extensional tectonics. While rates of slip along these structures are commonly slow (~0.1 mm/yr) based on offsets of late Pleistocene terrace deposits, their proximity to the metropolitan area urges more intense efforts to identify their potential seismic hazards including locations, sizes, rates of slip, and geometries of blind thrusts.

  14. On the initiation of subduction

    Science.gov (United States)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  15. Anatomy of a subduction zone - seismicity structure of the northern Chilean forearc from >100,000 double-difference relocated earthquake hypocenters

    Science.gov (United States)

    Sippl, Christian; Schurr, Bernd

    2017-04-01

    We present a catalog of >100k well-located earthquake hypocenters for the northern Chilean forearc region, between the latitudes of 18.5°S and 24°S. The detected events cover the timespan 2007-2014 and were extracted from the IPOC permanent station network dataset. Previously published earthquake catalogs for the region contain significantly fewer earthquakes. Using this new, high-resolution set of hypocenters, we can outline the slab structure in unprecedented detail, allowing e.g. the determination of along-strike changes in slab dip angle or the resolution of structures inside the zone of intermediate-depth seismicity. For the compilation of the catalog, we relied on an automated multi-step process for event detection, association and phase picking. Thus retrieved earthquake hypocenters were then relocated in a 2.5D velocity model for the Northern Chile forearc region with a probabilistic approach that also allows the determination of uncertainties. In a final step, double-difference re-location incorporating cross-correlation lag times was performed, which sharpened event clusters through relative location. We estimate that the completeness magnitude of the catalog is around 3. The majority of all >100k earthquakes are located at intermediate depths (between 80 and 140 km) inside the subducted slab. This area of pervasive activity extends along the entire strike of the investigated area, but shows a clear offset at 21°S, which may hint at a slab tear at this location. Events of comparable hypocentral depths to the south of this offset are located further east than the ones to the north of it. Further updip, a triple seismic zone at depths between 40 and around 80 km is visible, which grades into the highly active event cluster at intermediate depths: below the plate interface, which is clearly delineated by seismic activity, a second parallel band of hypocenters only about 5 km below likely corresponds to earthquakes occurring within the oceanic crust or

  16. Application of real‐time GPS to earthquake early warning in subduction and strike‐slip environments

    National Research Council Canada - National Science Library

    Colombelli, Simona; Allen, Richard M; Zollo, Aldo

    2013-01-01

    We explore the application of GPS data to earthquake early warning and investigate whether the coseismic ground deformation can be used to provide fast and reliable magnitude estimations and ground shaking predictions...

  17. Neotectonics of a subduction/strike-slip transition: the northeastern Dominican Republic

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, M.A.; McCann, W.R.

    1985-01-01

    The Septentrional fault system in the northeastern Dominican Republic marks the zone where the North American-Carribean plate boundary is evolving from subduction to strike-slip motion, and where terranes appear to be forming and migrating laterally in a subduction complex/forearc region. On the Island of Hispaniola, slip vectors are oblique to the strike of the Puerto Rico trench, and oblique subduction thrusts the upper plate over normal seafloor. The offshore geology and seismicity of the northern Caribbean suggest that uplift, broad crustal warping, thrusting, and strike-slip faulting (ie. collisional tectonics) should be present in the northern part of the Dominican Republic. The high topography (>1000m), high levels of seismicity, and large earthquakes support the hypothesis of contemporary deformation in Hispaniola. In this region, the subduction regime dies out toward the west, and deformation is transferred to onshore, oblique-slip faults. As this change in tectonic style has occurred in Neogene to Recent times, we are investigating the modern evolution of a plate boundary. We have already documented: (1) the presence of a strike-slip faulting in the northeastern Dominican Republic; (2) an anomalous push-up structure; and (3) a region of numerous splay faults. In conclusion, recent seismicity suggest a wide zone of deformation and variations in interplate motions near Hispaniola. This island lies at the western limit of active underthrusting and at the eastern limit of onshore faulting, i.e., at an important transition from a subduction to strike-slip regime.

  18. Tohoku earthquake: a surprise?

    CERN Document Server

    Kagan, Yan Y

    2011-01-01

    We consider three issues related to the 2011 Tohoku mega-earthquake: (1) how to evaluate the earthquake maximum size in subduction zones, (2) what is the repeat time for the largest earthquakes in Tohoku area, and (3) what are the possibilities of short-term forecasts during the 2011 sequence. There are two quantitative methods which can be applied to estimate the maximum earthquake size: a statistical analysis of the available earthquake record and the moment conservation principle. The latter technique studies how much of the tectonic deformation rate is released by earthquakes. For the subduction zones, the seismic or historical record is not sufficient to provide a reliable statistical measure of the maximum earthquake. The moment conservation principle yields consistent estimates of maximum earthquake size: for all the subduction zones the magnitude is of the order 9.0--9.7, and for major subduction zones the maximum earthquake size is statistically indistinguishable. Starting in 1999 we have carried out...

  19. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  20. Geodetic Observations of Interseismic Strain Segmentation at the Sumatra Subduction Zone

    Science.gov (United States)

    Prawirodirdjo, L.; Bock, Y.; McCaffrey, R.; Genrich, J.; Calais, E.; Puntodewo, S. S. O.; Subarya, C.; Rais, J.; Zwick, P.; Fauzi

    1997-01-01

    Deformation above the Sumatra subduction zone, revealed by Global Positioning System (GPS) geodetic surveys, shows nearly complete coupling of the forearc to the subducting plate south of 0.5 deg S and half as much to north. The abrupt change in plate coupling coincides with the boundary between the rupture zones of the 1833 and 1861 (Mw greater than 8) thrust earthquakes. The rupture boundary appears as an abrupt change in strain accumulation well into the interseismic cycle, suggesting that seismic segmentation is controlled by properties of the plate interface that persist occupied through more than one earthquake cycle. Structural evidence indicates that differences in basal shear stress may be related to elevated pore pressure in the north.

  1. Thermal State, Slab Metamorphism, and Interface Seismicity in the Cascadia Subduction Zone Based On 3-D Modeling

    Science.gov (United States)

    Ji, Yingfeng; Yoshioka, Shoichi; Banay, Yuval A.

    2017-09-01

    Giant earthquakes have repeatedly ruptured the Cascadia subduction zone, and similar earthquakes will likely also occur there in the near future. We employ a 3-D time-dependent thermomechanical model that incorporates an up-to-date description of the slab geometry to study the Cascadia subduction thrust. Results show a distinct band of 3-D slab dehydration that extends from Vancouver Island to the Seattle Basin and farther southward to the Klamath Mountains in northern California, where episodic tremors cluster. This distribution appears to include a region of increased dehydration in northern Cascadia. The phenomenon of heterogeneous megathrust seismicity associated with oblique subduction suggests that the presence of fluid-rich interfaces generated by slab dehydration favors megathrust seismogenesis in the northern part of this zone. The thin, relatively weakly metamorphosed Explorer, Juan de Fuca, and Gorda Plates are associated with an anomalous lack of thrust earthquakes, and metamorphism that occurs at temperatures of 500-700°C near the Moho discontinuity may represent a key factor in explaining the presence of the associated episodic tremor and slip (ETS), which requires a young oceanic plate to subduct at a small dip angle, as is the case in Cascadia and southwestern Japan. The 3-D intraslab dehydration distribution suggests that the metamorphosed plate environment is more complex than had previously been believed, despite the existence of channeling vein networks. Slab amphibolization and eclogitization near the continental Moho depth is thus inferred to account for the resultant overpressurization at the interface, facilitating the generation of ETS and the occurrence of small to medium thrust earthquakes beneath Cascadia.

  2. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, Daniel E.; Yeck, William; Barnhart, William D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, Amod; Hough, S.E.; Benz, Harley M.; Earle, Paul

    2017-01-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard.Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a ~ 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10–15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  3. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  4. Evaluating a kinematic method for generating broadband ground motions for great subduction zone earthquakes: Application to the 2003 Mw 8.3 Tokachi‐Oki earthquake

    Science.gov (United States)

    Wirth, Erin A.; Frankel, Arthur; Vidale, John E.

    2017-01-01

    We compare broadband synthetic seismograms with recordings of the 2003 Mw">MwMw 8.3 Tokachi‐Oki earthquake to evaluate a compound rupture model, in which slip on the fault consists of multiple high‐stress‐drop asperities superimposed on a background slip distribution with longer rise times. Low‐frequency synthetics (1  Hz">>1  Hz>1  Hz) stochastic synthetics using a matched filter at 1 Hz. We show that this compound rupture model and overall approach accurately reproduces waveform envelopes and observed response spectral accelerations (SAs) from the Tokachi‐Oki event. We find that sufficiently short subfault rise times (i.e., ∼1  Hz∼1  Hz. This is achieved by either (1) including distinct subevents with short rise times, as may be suggested by the Tokachi‐Oki data, or (2) imposing a fast‐slip velocity over the entire rupture area. We also include a systematic study on the effects of varying several kinematic rupture parameters. We find that simulated strong ground motions are sensitive to the average rupture velocity and coherence of the rupture front, with more coherent ruptures yielding higher response SAs. We also assess the effects of varying the average slip velocity and the character (i.e., area, magnitude, and location) of high‐stress‐drop subevents. Even in the absence of precise constraints on these kinematic rupture parameters, our simulations still reproduce major features in the Tokachi‐Oki earthquake data, supporting its accuracy in modeling future large earthquakes.

  5. Seafloor Geodesy usi­ng Wave Gliders to study Earthquake and Tsunami Hazards at Subduction Zones

    Science.gov (United States)

    Sathiakumar, S.; Barbot, S.; Hill, E.; Peng, D.; Zerucha, J.; Suhaimee, S.; Chia, G.; Salamena, G. G.; Syahailatua, A.

    2016-12-01

    Land-based GNSS networks are now in place to monitor most subduction zones of the world. These provide valuable information about the amount of­ geodetic strain accumulated in the region, which in turn gives insight into the seismic potential. However, it is usually impossible to resolve activity on the megathrust near the trench using land-based GNSS data alone, given typical signal-to-noise ratios. Ship-based seafloor geodesy is being used today to fill this observation gap. However, surveys using ships are very expensive, tedious and impractical due to the large areas to be covered. Instead of discrete missions using ships, continuous monitoring of the seafloor using autonomous marine robots would aid in understanding the tectonic setting of the seafloor better at a potentially lower cost, as well as help in designing better warning systems. Thus, we are developing seafloor geodesy capabilities using Wave Gliders, a new class of wave-propelled, persistent marine autonomous vehicle using a combination of acoustic and GNSS technologies. We use GNSS/INS to position the platform, and acoustic ranging to locate the seafloor. The GNSS/INS system to be integrated with the Wave Gliders has stringent requirements of low power, light weight, and high accuracy. All these factors are equally important due to limited power and space in the Wave Gliders and the need for highly accurate and precise measurements. With this hardware setup, a limiting factor is the accuracy of measurement of the sound velocity in the water column. We plan to obtain precise positioning of seafloor by exploring a measurement setup that minimizes uncertainties in sound velocity. This will be achieved by making fine-resolution measurements of the two-way travel time of the acoustic waves underwater using the Wave Gliders, and performing statistical signal processing on this data to obtain more reliable sound velocity measurement. This enhanced seafloor geodetic technique using Wave Gliders should

  6. Possible shallow slow slip events in Hyuga-nada, Nankai subduction zone, inferred from migration of very low frequency earthquakes

    Science.gov (United States)

    Asano, Youichi; Obara, Kazushige; Matsuzawa, Takanori; Hirose, Hitoshi; Ito, Yoshihiro

    2015-01-01

    investigated the spatiotemporal evolution of a shallow very low frequency earthquake (sVLFE) swarm linked to the 2009/2010 long-term slow slip event (SSE) in the Bungo channel, southwestern Japan. Broadband seismograms were analyzed using a cross-correlation technique to detect sVLFEs having similar waveforms to template sVLFEs, and their relative locations were estimated. The sVLFEs exhibit clear migration over a distance of 150 km along the Nankai trough, similar to nonvolcanic tremors and deep very low frequency earthquakes (dVLFEs) accompanied by short-term SSEs on the downward extension of the seismogenic zone. This similarity between sVLFEs and dVLFEs suggests that SSEs occur in both deeper and shallower extensions of the seismogenic zone. The analyzed sVLFEs were likely caused by a shallow SSE that occurred from January to March 2010 following the initiation and acceleration of the long-term SSE. This temporal evolution may be caused by stress interaction between the shallow SSE and the long-term SSE.

  7. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Directory of Open Access Journals (Sweden)

    J. E. Johnson

    2003-06-01

    Full Text Available New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822. The third event and fourth event

  8. Modeling the seismic cycle in subduction zones: The role and spatiotemporal occurrence of off-megathrust earthquakes

    KAUST Repository

    van Dinther, Y.

    2014-02-28

    Shallow off-megathrust subduction events are important in terms of hazard assessment and coseismic energy budget. Their role and spatiotemporal occurrence, however, remain poorly understood. We simulate their spontaneous activation and propagation using a newly developed 2-D, physically consistent, continuum, viscoelastoplastic seismo-thermo-mechanical modeling approach. The characteristics of simulated normal events within the outer rise and splay and normal antithetic events within the wedge resemble seismic and seismological observations in terms of location, geometry, and timing. Their occurrence agrees reasonably well with both long-term analytical predictions based on dynamic Coulomb wedge theory and short-term quasi-static stress changes resulting from the typically triggering megathrust event. The impact of off-megathrust faulting on the megathrust cycle is distinct, as more both shallower and slower megathrust events arise due to occasional off-megathrust triggering and increased updip locking. This also enhances tsunami hazards, which are amplified due to the steeply dipping fault planes of especially outer rise events.

  9. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  10. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  11. Kinematics and paleoseismology of the Vernon Fault, Marlborough Fault System, New Zealand: Implications for contractional fault bend deformation, earthquake triggering, and the record of Hikurangi subduction earthquakes

    Science.gov (United States)

    Bartholomew, Timothy D.; Little, Timothy A.; Clark, Kate J.; Van Dissen, Russ; Barnes, Philip M.

    2014-07-01

    The ~40 km long Vernon Fault, in the Marlborough Fault System of New Zealand, is characterized by dextral slip with subordinate reverse slip and exhibits abrupt variations in strike of up to 90°. Onshore fieldwork, paleoseismic trenching, and offshore high-frequency seismic reflection data are integrated together to identify the kinematics and paleoseismic history of three sections of the fault: (1) the NNE striking Vernon Hills section which branches off from the Awatere Fault; (2) the NE striking Big Lagoon section which borders Big Lagoon to the south and extends ~9 km offshore to the east; and (3) the E-W striking Wairau Basin section, which is entirely submarine. The Vernon Fault can be shown to have a dextral slip rate of 0.8-4.9 mm/yr with a preferred estimate of 0.9 mm/yr (on the Big Lagoon section). We infer that a further unrecognized 3-4 mm/yr of dextral slip has been accommodated off fault as a result of accumulated slip on small and/or blind reverse faults adjacent to a 6 km wide restraining bend in the main fault. The onshore and offshore paleoseismic records are in good agreement. These indicate three to five events at eight sites and a mean recurrence interval of 3.9 ± 1.2 ka over the past ~16 kyr, with the last event taking place at ~3.3 ka. Earthquakes on the Vernon Fault are responsible for Holocene subsidence rate of Big Lagoon over the last ~13 ka. Most of the subsidence of this lagoon has been the result of surface deformation related with southern Hikurangi megathrust earthquakes.

  12. Comparative Study Of Focal Mechanisms In South Central Chile Before And After The 2010 Maule Earthquake

    Science.gov (United States)

    Agurto, H.; Rietbrock, A.; Ryder, I. M.; Haberland, C. A.

    2011-12-01

    On 27 February 2010, a Mw=8.8 earthquake occurred off the coast of south central Chile rupturing nearly 500 km of the subduction zone plate interface. The earthquake also generated a tsunami and caused more than 500 fatalities. The largest earthquakes recorded have taken place along subduction margins (e.g. Chile 1960, 2010, Andaman-Sumatra 2004, Japan 2011) and understanding their rupture mechanisms and deformation regimes is therefore of vital importance. From November 2004 to October 2005, the TIPTEQ project ("From The Incoming Plate to megaThrust EarthQuake"; Rietbrock et al., 2007; Haberland et al., 2009) maintained a network of 120 seismic stations inland and 10 stations at sea between 37 and 39° lat. S., continuously-recording and monitoring the seismicity occurring in the area before the 2010 Maule earthquake. By using first motion polarities and moment tensor inversion we have computed and analyzed focal mechanisms for a subset of data from these records. We found thrust faulting along the subduction interface down to a depth of ~30 km, followed by a gap in the seismicity and then deeper earthquakes showing diverse faulting mechanisms more sparsely distributed within the subducting plate. We also see strike-slip crustal faulting occurring down to ~12 km depth within the area of the Lanalhue fault. The most striking observation is the presence of deep (40 km) normal faulting seismicity in the fore-arc, close to the trench. We have now started to analyze the International Maule Aftershocks Dataset (IMAD) of the 2010 earthquake in the southern rupture region. Again we observe thrust faulting in the subduction interface and a seismic gap between an upper and lower zone of seismicity along the interface. By comparison of the pre- and post-earthquake datasets we are investigating whether the Maule earthquake caused any changes in the style of deformation in this part of Chile. References Haberland, C., A. Rietbrock, D. Lange, K. Bataille, and T. Dahm (2009

  13. Seismotectonics of the southern boundary of Anatolia, Eastern Mediterranean region: subduction, collision, and arc jumping

    Energy Technology Data Exchange (ETDEWEB)

    Rotstein, Y.; Kafka, A.L.

    1982-09-10

    The pattern of seismicity and fault plane solutions of earthquakes are used to outline the tectonic features of the southern boundary of Anatolia in the eastern Mediterranean and southeastern Turkey. The results of this study show that this boundary is composed of two distinct parts. One, in southeastern Turkey and Syria, is a wide and complex zone of continental collision. The other, in the Levantine basin of the eastern Mediterranean, is a zone of oceanic subduction. In the region of continental collision three zones of seismicity are observed. Most of the seismic activity in this region follows the Bitlis zone and is associated with a zone of thrusting and mountain building. This appears to be the zone of most active deformation and plate consumption in the plate boundary region between Arabia and Turkey. A less active zone of seismicity to the north of the Bitlis zone is interpreted to have been more active in the past whereas another active zone of seismicity to the south is interpreted to be a zone which may be more active in the future as the main zone of plate consumption jumps to the south. In the subduction zone of the eastern Mediterranean the depth of the subducted slab and the rate of seismicity generally increease from east to west. The zone of present-day convergence between Africa and Turkey in the Levantine basin can be best outlined by the northern edge of the Mediterranean ridge. Deep seismic activity near the Gulf of Antalya is associated with a detached subducted slab north of the Anaximander Mountains that is distinctly different from the seismic trend which is associated with present-day active subduction. Most of the focal mechanisms of the earthquakes along the entire southern boundary of Anatolia indicate that N to NNW thrusting is the dominant mode of seismic deformation.

  14. Seismicity and the subduction process

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1980-01-01

    There is considerable variation between subduction zones in the largest characteristic earthquake within each zone. Assuming that coupling between downgoing and upper plates is directly related to characteristic earthquake size, tests for correlations between variation in coupling and other physical features of subduction zones are conducted: the lateral extent and penetration depth of Benioff zones, age of subducting lithosphere, convergence rate, and back-arc spreading. Using linear multivariate regression, coupling is correlated with two variables: convergence rate and lithosphere age. Secondary correlations within the data set are penetration depth versus lithosphere age, and lateral extent versus convergence rate. Taken together, the observed correlations suggest a simple qualitative model where convergence rate and lithosphere age determine the horizontal and sinking rates, respectively, of slabs: these parameters influence the seismic coupling in the subduction zone. In the limit of a fast sinking rate and slow convergence rate, back-arc spreading occurs and thereby appears to be a passive process.

  15. Earthquakes

    Science.gov (United States)

    ... earthquake occurs in a populated area, it may cause property damage, injuries, and even deaths. If you live in a coastal area, there is the possibility of a tsunami. Damage from earthquakes can also lead to floods or fires. Although there are no guarantees of ...

  16. Earthquakes

    Science.gov (United States)

    Shedlock, Kaye M.; Pakiser, Louis Charles

    1998-01-01

    One of the most frightening and destructive phenomena of nature is a severe earthquake and its terrible aftereffects. An earthquake is a sudden movement of the Earth, caused by the abrupt release of strain that has accumulated over a long time. For hundreds of millions of years, the forces of plate tectonics have shaped the Earth as the huge plates that form the Earth's surface slowly move over, under, and past each other. Sometimes the movement is gradual. At other times, the plates are locked together, unable to release the accumulating energy. When the accumulated energy grows strong enough, the plates break free. If the earthquake occurs in a populated area, it may cause many deaths and injuries and extensive property damage. Today we are challenging the assumption that earthquakes must present an uncontrollable and unpredictable hazard to life and property. Scientists have begun to estimate the locations and likelihoods of future damaging earthquakes. Sites of greatest hazard are being identified, and definite progress is being made in designing structures that will withstand the effects of earthquakes.

  17. Tsunami inundation variability from stochastic rupture scenarios: Application to multiple inversions of the 2011 Tohoku, Japan earthquake

    KAUST Repository

    Mori, Nobuhito

    2017-06-28

    We develop a framework for assessing the sensitivity and variability of tsunami inundation characteristics for stochastic physics-based scenarios of mega-thrust subduction earthquakes. The method is applied to the 2011 Tohoku, Japan earthquake, and tested against observed inundation maps at several locations along the Tohoku coast, using 11 different, previously published, rupture models for this devastating tsunamgenic earthquake. The earthquake rupture models differ in fault dimension (length and width), geometry (dip, strike and top-edge depth), as well as asperity characteristics (slip heterogeneity on the fault plane). The resulting source variability allows exploring a wide range of tsunami scenarios for an Mw9 mega-thrust subduction earthquake in the Tohoku region to conduct thorough sensitivity analyses and to quantify the inundation variability. The numerical results indicate a strong influence of the reference source models on inundation variability, and demonstrate significant sensitivity of inundation to the details of the rupture realization. Therefore, relying on a single particular earthquake rupture model as a representative case when varying earthquake source characteristics may lead to under-representation of the variability of potential scenarios. Moreover, the proposed framework facilitates the rigorous development of critical scenarios for tsunami hazard and risk assessments, which are particularly useful for tsunami hazard mapping and disaster preparedness planning.

  18. Slab1.0: A three-dimensional model of global subduction zone geometries

    Science.gov (United States)

    Hayes, G.P.; Wald, D.J.; Johnson, R.L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/ d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of average active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested. Copyright 2011 by the American Geophysical Union.

  19. Paleoseismologic evidence for large-magnitude (Mw 7.5-8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California

    Science.gov (United States)

    McAuliffe, Lee J.; Dolan, James F.; Rhodes, Edward J.; Hubbard, Judith; Shaw, John H.; Pratt, Thomas L.

    2015-01-01

    Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ∼6 m for the most recent earthquake(s) and ∼5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of Mw7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.

  20. The South Sandwich "Forgotten" Subduction Zone and Tsunami Hazard in the South Atlantic

    Science.gov (United States)

    Okal, E. A.; Hartnady, C. J. H.; Synolakis, C. E.

    2009-04-01

    While no large interplate thrust earthquakes are know at the "forgotten" South Sandwich subduction zone, historical catalogues include a number of events with reported magnitudes 7 or more. A detailed seismological study of the largest event (27 June 1929; M (G&R) = 8.3) is presented. The earthquake relocates 80 km North of the Northwestern corner of the arc and its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg. respectively). The seismic moment of 1.7*10**28 dyn*cm supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. This event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations were performed using the MOST method [Titov and Synolakis, 1997]. Computed deep-water tsunami amplitudes of 30cm and 20cm were found off the coast of Brazil and along the Gulf of Guinea (Ivory Coast, Ghana) respectively. The 1929 moment was assigned to the geometries of other know earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. Tsunami hydrodynamic simulation of these scenarios revealed strong focusing of tsunami wave energy by the SAR, the SWIOR and the Agulhas Rise, in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.

  1. Seismotectonics in the Pamir: An oblique transpressional shear and south-directed deep-subduction model

    Directory of Open Access Journals (Sweden)

    Jiasheng Zhang

    2011-01-01

    Full Text Available The 3-D geometry of the seismicity in Hindu Kush–Pamir–western China region has been defined by seismic records for 1975–1999 from the National Earthquake Information Center, the U.S. Geological Survey, and over 16,000 relocated earthquakes since 1975 recorded by the Xinjiang seismic network of China. The results show that most Ms ≥ 5.0 hypocenters in the area are confined to a major intracontinental seismic shear zone (MSSZ. The MSSZ, which dips southwards in Pamir has a north-dipping counterpart in the Hindu Kush to the west; the two tectonic realms are separated by the sinistral Chaman transform fault of the India–Asia collisional zone. We demonstrate that the MSSZ constitutes the upper boundary of a south-dipping, actively subducting Pamir continental plate. Three seismic concentrations are recognized just above the Pamir MSSZ at depths between 45–65 km, 95–120 km, and 180–220 km, suggesting different structural relationships where each occurs. Results from focal mechanism solutions in all three seismological concentrations show orientations of the principal maximum stress to be nearly horizontal in an NNW–SSE direction. The south-dipping Pamir subduction slab is wedge-shaped with a wide upper top and a narrow deeper bottom; the slab has a gentle angle of dip in the upper part and steeper dips in the lower part below an elbow depth of ca. 80–120 km. Most of the deformation related to the earthquakes occurs within the hanging wall of the subducting Pamir slab. Published geologic data and repeated GPS measurements in the Pamir document a broad supra-subduction, upper crustal zone of evolving antithetic (i.e. north-dipping back-thrusts that contribute to north-south crustal shortening and are responsible for exhumation of some ultrahigh-pressure rocks formed during earlier Tethyan plate convergence. An alternating occurrence in activity of Pamir and Chaman seismic zones indicates that there is interaction between

  2. Subduction Zone Concepts and the 2010 Chile Earthqake (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    von Huene, Roland

    2010-05-01

    Knowledge of convergent margin systems evolved from hypothesis testing with marine geophysical technology that improved over decades. Wegener's drift hypothesis, Holmes mantle convection, and marine magnetic anomaly patterns were integrated into an ocean spreading concept that won wide acceptance after ocean drilling confirmed the crustal younging trend toward the Mid-Atlantic ridge. In contrast, the necessary disposal of oceanic and trench sediment at convergent margins remained largely hypothetical. Fresh interpretations of some coastal mountains as exposing ancient convergent margin rock assemblages and the seismologist's "Wadati-Benioff" zone were combined into a widely-accepted hypothesis. A convergent margin upper plate was pictured as an imbricate fan of ocean sediment thrust slices detached from the lower plate. During the 1980s ocean drilling to test the hypothesis revealed what then were counter-intuitive processes of sediment subduction and subduction erosion. Rather than the proposed seaward growth by accretion, many margins had lost material from erosion. In current concepts, individual margins are shaped by the net consequences of subduction accretion, sediment subduction, and subduction erosion. Similarly, recently acquired age data from ancient subduction complexes reveal periods dominated by accretion separated by periods dominated by tectonic erosion. Globally, the recycling of continental crustal material at subduction zones appears largely balanced by magmatic addition at volcanic arcs. The longevity of the original imbricate fan model in text books confirms its pictorial simplicity, because geophysical images and drill core evidence show that it commonly applies to only a relatively small frontal prism. A better understanding of convergent margin dynamics is of urgent societal importance as coastal populations increase rapidly and as recent disastrous earthquakes and tsunamis verify. The shift in convergent margin concepts has developed through

  3. Building a Subduction Zone Observatory

    Science.gov (United States)

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; Gonzalez, Frank; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  4. Structural characteristics around the frontal thrust along the Nankai Trough revealed by bathymetric and seismic reflection survey

    Science.gov (United States)

    Yamashita, M.; Nakanishi, A.; Moore, G. F.; Kodaira, S.; Nakamura, Y.; Miura, S.; Kaneda, Y.

    2016-12-01

    Great earthquakes with tsunamis with recurrence intervals of 100-200 years have occurred along the Nankai Trough near central Japan where the Shikoku Basin is subducting with thick sediments on the Philippine Sea plate. To predict the exact height of the tsunami on the coast region generated by these large ruptures, it is important to estimate the vertical deformation that occurs on the seaward end of the rupture area. Recent drilling results have also yielded evidence not only of splay faults that generate tsunamigenic rupture, but also new evidence of tsunamigenic rupture along the frontal thrust at the trench axis in the Nankai Trough. In order to understand the deformation around the frontal thrust at the trench axis, we conducted a dense high-resolution seismic reflection survey with 10-20 km spacing over 1500 km of line length during 2013 and 2014. Clear seismic reflection images of frontal thrusts in the accretionary prism and subducting Shikoku Basin, image deformation along the trench axis between off Muroto Cape and off Ashizuri Cape. The cumulative displacement along the frontal thrust and second thrust are measured from picked distinct reflectors in depth-converted profiles. The average value of cumulative displacement of the frontal thrust is more than 100 m within 2 km depth beneath the seafloor. The location of highest displacement of 300 m displacement agree with the seaward end of slip distribution of the 1946 Nankai event calculated by numerical simulations. We also evaluate the seaward structure for understanding the future rupture distribution. The protothrust zone (PTZ) consisting of many incipient thrusts is identifiable in the portion of trough-fill sediments seaward of the frontal thrust. In order to emphasize the characteristics of frontal thrust and PTZ, we construct the detailed relief image for focusing on the lineated slope of the PTZ at the trough axis. Although our surveys covered a part of Nankai seismogenic zone, it is important to

  5. Seismotectonics of the southern boundary of Anatolia, eastern Mediterranean region: Subduction, collision, and arc jumping

    Science.gov (United States)

    Rotstein, Yair; Kafka, Alan L.

    1982-09-01

    The pattern of seismicity and fault plane solutions of earthquakes are used to outline the tectonic features of the southern boundary of Anatolia in the eastern Mediterranean and southeastern Turkey. The results of this study show that this boundary is composed of two distinct parts. One, in southeastern Turkey and Syria, is a wide and complex zone of continental collision. The other, in the Levantine basin of the eastern Mediterranean, is a zone of oceanic subduction. In the region of continental collision three zones of seismicity are observed. Most of the seismic activity in this region follows the Bitlis zone and is associated with a zone of thrusting and mountain building. This appears to be the zone of most active deformation and plate consumption in the plate boundary region between Arabia and Turkey. A less active zone of seismicity to the north of the Bitlis zone is interpreted to have been more active in the past whereas another active zone of seismicity to the south is interpreted to be a zone which may be more active in the future as the main zone of plate consumption jumps to the south. In the subduction zone of the eastern Mediterranean the depth of the subducted slab and the rate of seismicity generally increase from east to west. The zone of present-day convergence between Africa and Turkey in the Levantine basin can be best outlined by the northern edge of the Mediterranean ridge. The subduction zone in this area sequentially jumps to the south as small continental fragments collide with existing zones of subduction. Deep seismic activity near the Gulf of Antalya is associated with a detached subducted slab north of the Anaximander Mountains that is distinctly different from the seismic trend which is associated with present-day active subduction. The plate boundary between Africa and Turkey at the center of the Levantine basin appears to have shifted to the south of the Anaximander Mountains and Florence rise. Most of the focal mechanisms of the

  6. New Attenuation Relationship for Peak Ground and Pseudo-Spectral Acceleration of Normal-Faulting Earthquakes in Offshore Northeast Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ju Wang

    2016-02-01

    Full Text Available Ground motions from normal-faulting earthquakes are generally considered to be smaller than those of strike-slip and thrust events. On 11 April 2011 a crustal normal-faulting earthquake [the Fukushima earthquake (Mw 6.6] occurred in Eastern Japan. The peak ground acceleration (PGA observed was considerably higher than the predictions of several ground-motion prediction equations (GMPEs, which were derived mainly from thrust or strike-slip earthquakes. In northeast Taiwan, the tectonic structure of the Ryukyu Arc and the Okinawa Trough typically entail normal-faulting earthquakes. Because of the normal-faulting earthquakes relevance to ground motions and nuclear power plant sites in northeast Taiwan, we evaluated the impact of the ground motion of normal-faulting earthquakes in offshore northeast Taiwan using a newly constructed attenuation relationship for PGA and pseudo-spectral acceleration (Sa. We collected 832 records from 13 normal-faulting earthquakes with focal depths of less than 50 km. The moment magnitude (Mw of the 13 events was between 4 - 6. The Sa and PGA of normal-faulting earthquakes offshore northeast Taiwan determined with the newly constructed attenuation relationship were higher and lower, respectively, than those obtained using attenuation equations commonly used in the Taiwan subduction zone.

  7. Forearc structure from legacy multichannel seismic data linked to mechanical variability and rupture segmentation on the central Alaska-Aleutian subduction zone

    Science.gov (United States)

    Roland, E. C.; von Huene, R.; Miller, J.; Haeussler, P. J.; Scholl, D. W.; Ryan, H. F.; Kirby, S. H.

    2012-12-01

    The historical earthquake record, geodetic observations, and modern interseismic seismicity patterns indicate along-strike variability in the mechanical behavior of the subduction zone extending from the central Alaska peninsula west to the eastern Aleutian Islands. This region spans the rupture areas of several historical megathrust earthquakes, including the 1938 M8.3 Semidi Islands event, the 1946 M8.5 earthquake near Unimak Pass, and the 1957 M8.6 Andreanof Islands earthquake. Each of these events produced tsunamis that affected Alaska and/or far-field coastal regions in Hawaii and the mainland U.S. The '38 and '46 rupture areas are separated by a segment of the subduction zone in the vicinity of the Shumagin Islands where, based on plate velocities from GPS, plate coupling decreases from nearly fully locked in the east, to very low coupling in the western Shumagins, indicating an important change in seismic style along-strike. Changes in the degree of interseismic coupling are often attributed to variability in the mechanical strength of the thrust interface, influenced by heterogeneity in the material properties and subducted topographic relief. Furthermore, the expression of forearc structural features along the margin may indicate the width and up-dip limit of the locked zone. We explore structural characteristics of the shallow portion of the subduction system related to variations in the mechanical properties of the megathrust and interseismic coupling using legacy multichannel seismic (MCS) data from several segments along the Alaska-Aleutian subduction zone. Critical images were reprocessed with modern seismic processing systems. We characterize structural features of the downgoing plate and forearc, including the variation in thickness and character of subducted sediment, the geometry of the upper plate wedge, the distribution of imbricate thrust faults, the transition from outer prism to margin rock framework and extensional faulting. These

  8. A first step in constructing a long multi-lake paleoseismic record in Southern Alaska for revealing the recurrence rate of megathrust earthquakes along the Alaskan-Aleutian subduction zone

    Science.gov (United States)

    Praet, Nore; Moernaut, Jasper; Van Daele, Maarten; Kempf, Philipp; Haeussler, Peter; Strupler, Michael; De Batist, Marc

    2014-05-01

    On March 27, 1964, the "Good Friday" Earthquake ruptured an 800 km-long segment of the Alaskan-Aleutian megathrust, representing the largest measured earthquake in North America (Mw 9.2). Recurrence rates of such megathrust earthquakes are typically in the order of hundreds of years. The development of a reliable assessment of seismic hazards evidently requires statistically much more robust earthquake recurrence data. For this, high-quality paleoseismological records are necessary, which are able to extend the historical evidence much further back in time. The current knowledge of the paleoseismicity along the megathrust segment around Prince William Sound is inferred from records of abrupt changes in coastal elevation. Lake sediments can also produce excellent paleoseismological records. Seismically induced subaquatic landslides generate distinct resedimentation deposits that are interbedded in between the background sediments. During a reconnaissance survey in 2012, we collected short cores and high-resolution seismic data in several glacial lakes in Southern Alaska. The short gravity cores reveal a clear sedimentary imprint of the 1964 Earthquake in different sub-basins of the investigated lakes, and the seismic profiles show the presence of older mass-wasting deposits with similar large volumes. Multiple landslide deposits and associated turbidites at several stratigraphic levels imply that these deposits were also triggered by strong earthquake shaking. The length (i.e. entire Holocene) and high-resolution chronology (i.e. Pb/Cs data reveal that the core laminations represent varves) of the lacustrine record will allow to generate a unique, high-quality dataset of megathrust earthquake recurrences along the Prince William Sound segment of the Alaskan-Aleutian subduction zone. In winter of 2014, long cores (ca. 15 meters) will be taken at key locations in Skilak Lake, Eklutna Lake and possibly Kenai Lake. Analyzing and dating these sediment cores will make it

  9. Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone

    Science.gov (United States)

    Abbott, Elizabeth R.; Brudzinski, Michael R.

    2015-11-01

    This study characterizes subduction related seismicity with local deployments along the northwestern section of the Mexico Subduction Zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. It has been proposed that the subducted boundary between the Cocos and Rivera plates occurs beneath this region, as indicated by inland volcanic activity, a gap in tectonic tremor, and the Manzanillo Trough and Colima Graben, which are depressions thought to be associated with the splitting of the two plates after subduction. Data from 50 broadband stations that comprised the MARS seismic array, deployed from January 2006 to June 2007, were processed with the software program Antelope and its generalized source location algorithm, genloc, to detect and locate earthquakes within the network. Slab surface depth contours from the resulting catalog indicate a change in subduction trajectory between the Rivera and Cocos plates. The earthquake locations are spatially anti-correlated with tectonic tremor, supporting the idea that they represent different types of fault slip. Hypocentral patterns also reveal areas of more intense seismic activity (clusters) that appear to be associated with the 2003 and 1973 megathrust rupture regions. Seismicity concentrated inland of the 2003 rupture is consistent with slip on a shallowly dipping trajectory for the Rivera plate interface as opposed to crustal faulting in the overriding North American plate. A prominent cluster of seismicity within the suspected 1973 rupture zone appears to be a commonly active portion of the megathrust as it has been active during three previous deployments. We support these interpretations by determining focal mechanisms and detailed relocations of the largest events within the 1973 and inland 2003 clusters, which indicate primarily thrust mechanisms near the plate interface.

  10. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.

    2013-12-01

    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  11. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand.

    Science.gov (United States)

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke

    2009-08-06

    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models.

  12. Seismicity, topography, and free-air gravity of the Aleutian-Alaska subduction zone

    Science.gov (United States)

    Wells, R. E.; Blakely, R. J.; Scholl, D. W.; Ryan, H. F.

    2011-12-01

    The Aleutian-Alaska subduction zone, extending 3400 km from the Queen Charlotte Fault to Kamchatka, has been the source of six great megathrust earthquakes in the 20th Century. Four earthquakes have ruptured the 2000-km-long Aleutian segment, where the Cenozoic Aleutian arc overlies the subducting Pacific plate. These include the 1946 M 8.6 earthquake off Unimak Is., the 1957 M 8.6 and 1986 M 8.0 earthquakes off the Andreanoff Is., and the 1965 M 8.7 Rat Is. earthquake. The source regions of these earthquakes inferred from waveform inversions underlie the well-defined Aleutian deep-sea terrace. The deep-sea terrace is about 4 km deep and is underlain by Eocene arc framework rocks, which extend nearly to the trench. It is bounded on its seaward and landward margins by strong topographic and fee-air gravity gradients. The main asperities (areas of largest slip) for the great earthquakes and nearly all of the Aleutian thrust CMT solutions lie beneath the Aleutian terrace, between the maximum gradients. Similar deep-sea terraces are characteristic of non-accretionary convergent margins globally (75% of subduction zones), and, where sampled by drilling (e.g., Japan, Peru, Tonga, Central America), are undergoing sustained subsidence. Sustained subsidence requires removal of arc crust beneath the terrace by basal subduction erosion (BSE). BSE is in part linked to the seismic cycle, as it occurs in the same location as the megathrust earthquakes. Along the eastern 1400 km of the Alaskan subduction zone, the Pacific plate subducts beneath the North American continent. The boundary between the Aleutian segment and the continent is well defined in free-air gravity, and the distinctive deep-sea terrace observed along the Aleutian segment is absent. Instead, the Alaskan margin consists of exhumed, underplated accretionary complexes forming outer arc gravity highs. Superimposed on them are broad topographic highs and lows forming forearc basins (Shumagin, Stevenson) and islands

  13. Empirical Assessment of Nonlinear Seismic Demand of Mainshock-Aftershock Ground Motion Sequences for Japanese Earthquakes

    Directory of Open Access Journals (Sweden)

    Katsuichiro eGoda

    2015-06-01

    Full Text Available This study investigates the effects of earthquake types, magnitudes, and hysteretic behavior on the peak and residual ductility demands of inelastic single-degree-of-freedom systems and evaluates the effects of major aftershocks on the nonlinear structural responses. An extensive dataset of real mainshock-aftershock sequences for Japanese earthquakes is developed. The constructed dataset is large, compared with previous datasets of similar kinds, and includes numerous sequences from the 2011 Tohoku earthquake, facilitating an investigation of spatial aspects of the aftershock effects. The empirical assessment of peak and residual ductility demands of numerous inelastic systems having different vibration periods, yield strengths, and hysteretic characteristics indicates that the increase in seismic demand measures due to aftershocks occurs rarely but can be significant. For a large mega-thrust subduction earthquake, a critical factor for major aftershock damage is the spatial occurrence process of aftershocks.

  14. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface

    Science.gov (United States)

    Angiboust, Samuel; Kirsch, Josephine; Oncken, Onno; Glodny, Johannes; Monié, Patrick; Rybacki, Erik

    2015-06-01

    The transition zone at the downdip end of seismic coupling along subduction interfaces is often the site of megathrust earthquake nucleation and concentrated postseismic afterslip, as well as the focus site of episodic tremor and slip features. Exhumed remnants of the former Alpine subduction zone found in the Swiss Alps allow analyzing fluid and deformation processes near the transition zone region (30-40 km paleodepth). The Dent Blanche Thrust (DBT) is a lower blueschist-facies shear zone interpreted as a fossilized subduction interface where granitic mylonites overlie a metamorphosed accretionary wedge. We report field observations from the DBT region where multiple, several tens of meters thick foliated cataclastic networks are interlayered within the basal DBT mylonites. Petrological results and microstructural observations indicate that the various cataclasis events took place at near-peak metamorphic conditions (400-500°C, 1.1-1.3 GPa) during subduction of the Tethyan seafloor in Eocene times (42-48 Ma). Some of these networks exhibit mutual crosscutting relationships between mylonites, foliated cataclasites, and vein systems indicating mutual overprinting between brittle deformation and ductile creep. Whole-rock chemical compositions, in situ 40Ar-39Ar age data of recrystallized phengite, and Sr isotopic signatures reveal that DBT rocks also underwent multiple hydrofracturing and metasomatic events via the infiltration of fluids mainly derived from the oceanic metasediments underneath the DBT. From the rock fabrics, we infer strain rate fluctuations of several orders of magnitude beyond subduction strain rates (˜10-12 s-1) accompanied by fluctuation of supralithostatic and quasi-lithostatic fluid pressures (1 ≥ λ > 0.95). DBT brittle-plastic deformation switches highlight the diversity of deformation processes and fluid-rock interactions in the transition zone region of the subduction interface.

  15. Recurrence Times of Earthquakes in Oaxaca, México

    Science.gov (United States)

    Nunez-Cornu, F. J.

    2012-12-01

    Oaxaca is the most seismic active region in Mexico with 68 larger events, (mb > 6.5; Ms> 7.0) from 1542 to 1989, which implies roughly a large earthquake every 6.5 years; including an earthquake with M=8.5 which generate the most important historical tsunami in Mexico. It is also the most studied from a seismic point of view. Three types of earthquakes take place in the region: low angle thrust fault (associated to the subduction process) with a depth between 15 to 25 km; normal fault with a depth between 65 and 120 km with epicenters north of Oaxaca City (17°N); normal fault with a depth between 25 to 40 km with epicenters between the coast and Oaxaca City. A seismogenic zoning based in seismic, tectonic and historical seismicity studies zones was proposed in 1989; eight zones were defined, two zone along the coast, one for the isthmus and rest inland. For most of them a characteristic earthquake (from the earthquakes occurred in the previous 61 years) was assigned and several models of recurrence times for the different zones were proposed, in some cases this values ( 94, 80, 68 and 13 years) have a standard deviation error of 20%. 23 Years later, 4 larger earthquake have occurred in the region that seems agreed with the recurrence models proposed. Here the models are revised using the information from the recent earthquakes and new studies in the region

  16. Seismic coupling and uncoupling at subduction zones

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  17. The first since 1960: A large event in the Valdivia segment of the Chilean Subduction Zone, the 2016 M7.6 Melinka earthquake

    Science.gov (United States)

    Melgar, Diego; Riquelme, Sebastian; Xu, Xiaohua; Baez, Juan Carlos; Geng, Jianghui; Moreno, Marcos

    2017-09-01

    We present results for joint kinematic inversion of high-rate GPS, strong motion and InSAR data for the 2016 M7.6 Melinka earthquake. We show that the source is a compact 35 s long rupture with 5.0 ± 0.15 m of peak slip. We find the Melinka earthquake occurs inside the slip region for the 1960 M9.5 Valdivia earthquake and within the highly locked portion of the megathrust inferred from inter-seismic velocity analysis. We show that there is very modest post-seismic deformation at a nearby GPS site QLLN and argue that this indicates the Melinka earthquake ruptures within the intermediate portion of the megathrust and is an isolated asperity surrounded by locked velocity weakening material. Further we find that the peak slip observed during this earthquake is larger than what has been accumulated in the intervening 57 years since the 1960 rupture and conclude that, at least in the area of the Melinka earthquake, this is indicates that the 1960 Valdivia event might not have used all the slip deficit available on the megathrust.

  18. Subduction of the Caribbean Plate and Basement Uplifts in the Overriding South American Plate

    Science.gov (United States)

    Kellogg, J. N.; Bonini, W. E.

    1982-06-01

    The new tectonic interpretations presented in this paper are based on geologic field mapping and gravity data supplemented by well logs, seismic profiles, and radiometric and earthquake data. The present Caribbean-South American plate boundary is the South Caribbean marginal fault, where subduction is indicated by folding and thrusting in the deformed belt and a seismic zone that dips 30° to the southeast and terminates 200 km below the Maracaibo Basin. The Caribbean-South American convergence rate is estimated as 1.9 ± 0.3 cm/yr on the basis of the 390-km length of the seismic zone and a thermal equilibration time of 10 m.y. The Caribbean-South American convergence has produced a northwest-southeast maximum principal stress direction σ1 in the overriding South American plate. The mean σ1 direction for the Maracaibo-Santa Marta block is 310° ± 10° based on earthquake focal mechanism determinations, and structural and gravity data. On the overriding South American plate, basement blocks have been uplifted 7-12 km in the last 10 m.y. to form the Venezuelan Andes, Sierra de Perija, and the Colombian Santa Marta massif. Crystalline basement of the Venezuelan Andes has been thrust to the northwest over Tertiary sediments on a fault dipping about 25° and extending to the mantle. In the Sierra de Perija, Mesozoic sediments have been thrust 16-26 km to the northwest over Tertiary sandstones along the Cerrejon fault. A thrust fault dipping 15° ± 10° to the southeast is consistent with field mapping, and gravity and density data. The Santa Marta massif has been uplifted 12 km in the last 10 m.y. by northwest thrusting over sediments. The basement block overthrusts of the Perijas, Venezuelan Andes, and the Santa Marta massif are Pliocene-Pleistocene analogs for Laramide orogenic structures in the middle and southern Rocky Mountains of the United States. The nonmagmatic basement block uplifts along low-angle thrust faults reveal horizontal compression in the

  19. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  20. Long-period analysis of the 2016 Kaikoura earthquake

    Science.gov (United States)

    Duputel, Z.; Rivera, L.

    2017-04-01

    The recent Mw = 7.8 Kaikoura (New Zealand) earthquake involved a remarkably complex rupture propagating in an intricate network of faults at the transition between the Alpine fault in the South Island and the Kermadec-Tonga subduction zone. We investigate the main features of this complicated rupture process using long-period seismological observations. Apparent Rayleigh-wave moment-rate functions reveal a clear northeastward directivity with an unusually weak rupture initiation during 60 s followed by a major 20 s burst of moment rate. To further explore the rupture process, we perform a Bayesian exploration of multiple point-source parameters in a 3-D Earth model. The results show that the rupture initiated as a small strike-slip rupture and propagated to the northeast, triggering large slip on both strike-slip and thrust faults. The Kaikoura earthquake is thus a rare instance in which slip on intraplate faults trigger extensive interplate thrust faulting. This clearly outlines the importance of accounting for secondary faults when assessing seismic and tsunami hazard in subduction zones.

  1. Coherent tilt signals observed in the Shumagin seismic gap Detection of time-dependent subduction at depth?

    Science.gov (United States)

    Beavan, J.; Bilham, R.; Hurst, K.

    1984-01-01

    Repeated surveys of short level lines in the Shumagin Islands, Alaska, reveal coherent tilt signals associated with subduction of the Pacific plate beneath the North American plate in the Shumagin seismic gap. Ten years of steady tilt down toward the trench is interrupted during 1978-1980 by a rapid episode of reverse tilt. The 'normal' tilt represents surface deformation as subduction occurs, with the plate boundary locked to at least 60 km depth. Using all available tilt, sea level, and seismic data, the tilt reversal is interpreted as due to an episodic reverse slip of about 80 cm magnitude on the plate boundary between about 70 km and 20 km depth, downdip from the main seismogenic zone, which remains locked. This event causes an increase of stress on the locked main thrust zone. It is speculated that such events may be a regular process at subduction zones, that great plate boundary earthquakes may be more common during their occurrence, and that their onset may be detectable early enough to give warning of an increase in probability for the occurrence of a great earthquake.

  2. Along-Strike Variations in Focal Mechanisms of Central Andean Crustal Earthquakes: Northern Peru through the Argentina Sierras Pampeanas

    Science.gov (United States)

    Devlin, S.; Isacks, B. L.

    2003-12-01

    120 shallow focal mechanisms in the crust above the subducted Nazca plate were assembled from the Harvard CMT catalog and published studies covering over 40 years of seismicity. The study area included the Andes crust above three major segments of the subducted plate, the Peruvian and Argentinean flat-slab segments and the intervening segment where the subducted Nazca plate dips more steeply. The most seismically active regions continue to be the thick-skinned foreland thrust belts in the eastern Andes of Peru and the Sierras Pampeanas. The earthquakes there are clearly associated with youthful tectonic structures with strong topographic signatures as revealed by the new 90 m SRTM digital elevation models. The mechanisms are dominantly of the thrust type but include a minority of strike-slip orientations. However the P axes remain consistent. The thin-skinned thrust belts east of the central Andean Plateau show significant activity only near Santa Cruz, Bolivia and northern Argentina; most of the Sub-Andean thrust belt of Bolivia and southern Peru remains aseismic. The central Andean plateau itself also remains aseismic except for the region of southern Peru and two earthquakes in the Puna. The crustal seismicity in southern Peru is largely concentrated on the western side of the plateau. The focal mechanisms show a strong grouping of T axes in a horizontal, north-south orientation. Both normal and strike-slip mechanisms occur in this region, with no obvious correlation with elevation or surface structures. Remarkably, with the exception of one normal fault type mechanism near the Cusco basin, the earthquakes occur in regions of the western parts of the Altiplano that do not exhibit topographic evidence of substantial crustal deformation. These results are consistent with a model in which the Altiplano of southern Peru, with a trend most oblique to the overall direction of convergence, manifests a left-lateral shearing component across the orogen.

  3. Mapping subduction interface coupling using magnetotellurics: Hikurangi margin, New Zealand

    Science.gov (United States)

    Heise, W.; Caldwell, T. G.; Bannister, S.; Bertrand, E. A.; Ogawa, Y.; Bennie, S. L.; Ichihara, H.

    2017-09-01

    The observation of slow-slip, seismic tremor, and low-frequency earthquakes at subduction margins has provided new insight into the mechanisms by which stress accumulates between large subduction (megathrust) earthquakes. However, the relationship between the physical properties of the subduction interface and the nature of the controls on interplate seismic coupling is not fully understood. Using magnetotelluric data, we show in situ that an electrically resistive patch on the Hikurangi subduction interface corresponds with an area of increased coupling inferred from geodetic data. This resistive patch must reflect a decrease in the fluid or sediment content of the interface shear zone. Together, the magnetotelluric and geodetic data suggest that the frictional coupling of this part on the Hikurangi margin may be controlled by the interface fluid and sediment content: the resistive patch marking a fluid- and sediment-starved area with an increased density of small, seismogenic-asperities, and therefore a greater likelihood of subduction earthquake nucleation.

  4. Chance findings about early holocene tidal marshes of Grays Harbor, Washington, in relation to rapidly rising seas and great subduction earthquakes

    Science.gov (United States)

    Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.

    2015-06-18

    Tidal marshes commonly build upward apace with gradual rise in the level of the sea. It is expected, however, that few tidal marshes will keep up with accelerated sea-level rise later in this century. Tidal marshes have been drowned, moreover, after subsiding during earthquakes.

  5. Earthquake occurrence along the Java trench in front of the onset of the Wadati-Benioff zone: Beginning of a new subduction cycle?

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2007-01-01

    Roč. 26, č. 1 (2007), TC1005/1-TC1005/16 ISSN 0278-7407 R&D Projects: GA AV ČR IAA3012303 Institutional research plan: CEZ:AV0Z30120515 Keywords : Wadati-Benioff zone * earthquake occurrence * Java trench Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.398, year: 2007

  6. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  7. The Ferrara thrust earthquakes of May-June 2012: preliminary site response analysis at the sites of the OGS temporary network

    Directory of Open Access Journals (Sweden)

    Enrico Priolo

    2012-10-01

    Full Text Available Following the Ml 5.9 earthquake that struck the Emilia area in northern Italy on May 20, 2012, at 02:03:53 UTC, and in co-operation with the personnel of the Municipality of Ferrara and the University of Ferrara, a team of seismologists of the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS; National Institute of Oceanography and Experimental Geophysics deployed a temporary seismographic network. This consisted of eight portable seismological stations, to record the local earthquakes that occurred during the seismic sequence. The OGS intervention was integrated into the broader action of the emergency response to the earthquake sequence, which was promoted by the National Department of Civil Protection and the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology [Moretti et al. 2012, this volume]. The aim of the OGS intervention was on the one hand to extend the seismic monitoring area towards the East, to include Ferrara and its surroundings, to be ready in case of migration of the seismicity in that direction, and on the other hand to evaluate the seismic response at the instrumented sites. Some days later, another team of researchers coordinated by the University of Potenza carried out some investigations at a number of sites, and in particular at three of the sites instrumented by the OGS temporary network. […] 

  8. The August 1st, 2014 ( M w 5.3) Moderate Earthquake: Evidence for an Active Thrust Fault in the Bay of Algiers (Algeria)

    Science.gov (United States)

    Benfedda, A.; Abbes, K.; Bouziane, D.; Bouhadad, Y.; Slimani, A.; Larbes, S.; Haddouche, D.; Bezzeghoud, M.

    2017-03-01

    On August 1st, 2014, a moderate-sized earthquake struck the capital city of Algiers at 05:11:17.6 (GMT+1). The earthquake caused the death of six peoples and injured 420, mainly following a panic movement among the population. Following the main shock, we surveyed the aftershock activity using a portable seismological network (short period), installed from August 2nd, 2014 to August 21st, 2015. In this work, first, we determined the main shock epicenter using the accelerograms recorded by the Algerian accelerograph network (under the coordination of the National Center of Applied Research in Earthquake Engineering-CGS). We calculated the focal mechanism of the main shock, using the inversion of the accelerograph waveforms in displacement that provides a reverse fault with a slight right-lateral component of slip and a compression axis striking NNW-SSE. The obtained scalar seismic moment ( M o = 1.25 × 1017 Nm) corresponds to a moment magnitude of M w = 5.3. Second, the analysis of the obtained aftershock swarm, of the survey, suggests an offshore ENE-WSW, trending and NNW dipping, causative active fault in the bay of Algiers, which may likely correspond to an offshore unknown segment of the Sahel active fault.

  9. Oceanic-style Subduction Controls Late Cenozoic Deformation of the Northern Pamir and Alai

    Science.gov (United States)

    Sobel, E. R.; Chen, J.; Schoenbohm, L. M.; Thiede, R. C.; Stockli, D. F.; Sudo, M.; Strecker, M. R.

    2012-12-01

    The Pamir - Alai represents the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundary because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent continent-continent collision and erosion processes. In the Pamir, at least 300 km of convergence has apparently occurred between the North Pamir and the South Tien Shan. Published P-wave tomography and earthquake epicenters suggest subduction of a ~300 km-long slab. The MPT and Pamir Frontal Thrusts (PFT) correspond to the updip projection of this subduction zone. We have compiled ca. 260 published and 18 new apatite and zircon (U-Th)/He and fission track, and biotite and muscovite Argon cooling ages from basement samples as well as several detrital samples from key areas in the Pamir region. Our synopsis shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. This is incompatible with a model of a huge overthrust such as the Himalayan Main Central Thrust. Rather, the bulk of the convergence is apparently accommodated by underthrusting. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to slab rollback and intracontinental subduction. Our model relates late Oligocene - early Miocene

  10. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone

    Science.gov (United States)

    Yamamoto, Yojiro; Obana, Koichiro; Takahashi, Tsutomu; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-03-01

    We performed 3D seismic tomography of the Hyuga-nada region, western Nankai subduction zone, to investigate the relationship of the subducted part of Kyushu-Palau Ridge (KPR) to coseismic rupture propagation, seismicity, and shallow very low frequency earthquakes. Combining active-source and passive-source data recorded both onshore and offshore, we imaged the deep slab from near the trough axis to the coastal area. Our results show the subducted KPR as a low-velocity belt oriented NW-SE extending down the plate boundary to around 30 km depth. At this depth, we suggest that the subducted KPR detaches from the slab and becomes underplated on the overriding continental plate. As the coseismic slip areas of past large earthquakes do not extend into the subducted KPR, we suggest that it may inhibit rupture propagation. The interior of the subducted KPR shows active intraslab seismicity with a wide depth distribution. Shallow very low frequency earthquakes are continuously active above the location of the subducted KPR, whereas they are intermittent to the northeast of the subducted KPR. Thus, the subducted KPR appears to be an important factor in coseismic rupture propagation and seismic phenomena in this region.

  11. Energy-Based Seismic Risk Evaluation of Tall Reinforced Concrete Building in Vancouver, BC, Canada, under Mw9 Megathrust Subduction Earthquakes and Aftershocks

    Directory of Open Access Journals (Sweden)

    Solomon Tesfamariam

    2017-05-01

    Full Text Available This article presents a seismic performance evaluation framework for reinforced concrete (RC buildings, comprising shear walls and gravity frames. The evaluation is undertaken within a performance-based earthquake engineering framework by considering regional seismicity and site-specific ground motion selection. Different engineering demand parameters (EDPs, i.e., maximum interstory drift ratio (MaxISDR and energy-based damage index, are considered as performance indicators. Various prediction models of EDPs are developed by considering four ground motion intensity measures (IMs, i.e., spectral acceleration at the fundamental period, Arias intensity, cumulative absolute velocity (CAV, and significant duration of ground motion. For this study, a 15-story RC building, located in Vancouver, BC, Canada, is considered as a case study. By using 50 mainshock and 50 mainshock–aftershock (MS-AS earthquake records (2 horizontal components per record and bidirectional loading, non-linear dynamic analyses are performed. Subsequently, the calculated MaxISDRs and damage indices are correlated with suitable IMs using cloud analysis, and the most efficient IM-EDP prediction models are selected by comparing standard deviations (SDs of the regression errors. The MaxISDR of the shear walls is less than 1% for the mainshock and MS-AS records. The energy-based damage index shows sensitivity to delineate impact of earthquake types and aftershocks. The CAV is showed to be the most efficient IM for the energy-based damage index.

  12. Education for Earthquake Disaster Prevention in the Tokyo Metropolitan Area

    Science.gov (United States)

    Oki, S.; Tsuji, H.; Koketsu, K.; Yazaki, Y.

    2008-12-01

    Japan frequently suffers from all types of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. In the first half of this year, we already had three big earthquakes and heavy rainfall, which killed more than 30 people. This is not just for Japan but Asia is the most disaster-afflicted region in the world, accounting for about 90% of all those affected by disasters, and more than 50% of the total fatalities and economic losses. One of the most essential ways to reduce the damage of natural disasters is to educate the general public to let them understand what is going on during those desasters. This leads individual to make the sound decision on what to do to prevent or reduce the damage. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools, and ERI, the Earthquake Research Institute, is qualified to develop education for earthquake disaster prevention in the Tokyo metropolitan area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1703 Genroku earthquake (M 8.0) and the 1923 Kanto earthquake (M 7.9) which had 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global economic repercussion. To better understand earthquakes in this region, "Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area" has been conducted mainly by ERI. It is a 4-year

  13. Source parameters of the Bay of Bengal earthquake of 21 May 2014 and related seismotectonics of 85°E and 90°E ridges

    Science.gov (United States)

    Prakash, Rajesh; Prajapati, Sanjay Kumar; Srivastava, Hari Narain

    2018-01-01

    Source parameters of the Bay of Bengal earthquake of 21 May 2014 have been studied using full waveform inversion. Its source mechanism thus determined the orientation of the strike slip faulting as NW-SE/NE-SW. The occurrence of past earthquakes along the NE-SW nodal plane suggested its preference as the main fault which could result from the transmission of stresses from the Indian plate boundary. High stress drop of this earthquake (216 bar) is attributed to its location in the intraplate region, strike slip faulting and focus in the colder upper mantle. Comparison of the stress drop of deeper focus Hindukush earthquakes with that of the Bay of Bengal earthquake showed a smaller felt radius due to fractured lithosphere in the Himalayas vis-a-vis more efficient propagation of seismic waves in the peninsular region from the source region of this recent earthquake. The seismological evidence presented for the 85°E and 90°E ridges shows the predominance of strike slip faulting with thrusting on both the ridges. Integrating their source mechanism with that of the May 2014 earthquake, it could be inferred that the Bay of Bengal region (excluding Andaman Sumatra subduction zone) is characterised predominantly by strike slip faulting in the region north of latitude 20°N and strike slip with thrusting in the remaining portion.

  14. P- and S-wave velocity models incorporating the Cascadia subduction zone for 3D earthquake ground motion simulations—Update for Open-File Report 2007–1348

    Science.gov (United States)

    Stephenson, William J.; Reitman, Nadine G.; Angster, Stephen J.

    2017-12-20

    In support of earthquake hazards studies and ground motion simulations in the Pacific Northwest, threedimensional (3D) P- and S-wave velocity (VP and VS , respectively) models incorporating the Cascadia subduction zone were previously developed for the region encompassed from about 40.2°N. to 50°N. latitude, and from about 122°W. to 129°W. longitude (fig. 1). This report describes updates to the Cascadia velocity property volumes of model version 1.3 ([V1.3]; Stephenson, 2007), herein called model version 1.6 (V1.6). As in model V1.3, the updated V1.6 model volume includes depths from 0 kilometers (km) (mean sea level) to 60 km, and it is intended to be a reference for researchers who have used, or are planning to use, this model in their earth science investigations. To this end, it is intended that the VP and VS property volumes of model V1.6 will be considered a template for a community velocity model of the Cascadia region as additional results become available. With the recent and ongoing development of the National Crustal Model (NCM; Boyd and Shah, 2016), we envision any future versions of this model will be directly integrated with that effort

  15. Imaging the Ionian Sea subducting slab panels and faults to control present day motion in the Hellenic-Aegean region

    Science.gov (United States)

    Sachpazi, Maria

    2017-04-01

    The Hellenic-Mediterranean subduction system characterized by its fast overriding upper plate, fast trench retreat and its most rapidly extending Corinth Rift has been the target of several conceptual models on slab dynamics and lithosphere extension. Using teleseismic waves conversions on a dense 2-D seismic array -installed in the frame of Thales Was Right project- from Crete to the North Aegean coast through central Greece, a high-resolution imaging of the Hellenic slab and the overlying Aegean plate lithospheric mantle has been acquired. The subducting slab top appears segmented into panels 30- 50km wide by SW-NE along dip faults to at least 100km depth. Intermediate-depth Mw>6 earthquakes are located on those faults which implies that they are seismically active at 70 km depth. Smaller magnitude earthquakes of the upper Benioff zone commonly related to dehydration processes of the descending slab, are also resolved to be clustered along these faults. These faults are likely inherited structures of the oceanic lithosphere and sites of preferred hydration. Their revealed relation with this specific seismicity provides high-resolution insight validating dehydration embrittlement. RF imaging on 4 OBS sites has allowed to resolve the depth and geometry of the updip offshore part of the slab, the thrust interplate boundary. The observations support a trenchward continuation of the slab faults and correlation with the similarly segmented thrusting contact of the Mediterranean Ridge accretionary wedge over the upper plate. The slab faults may control the location and size of major historical megathrust earthquakes a hypothesis that has been strengthened by the study of the Mw 6.8 14.02.2008 earthquake, the first large instrumental interplate earthquake offshore SW Peloponnesus. New high-resolution imaging resolves the Aegean plate lithospheric mantle and shows the presence of a significant heterogeneity on top of the presently subducting slab, never imaged before. It

  16. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    Science.gov (United States)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits

  17. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Science.gov (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.

    2017-06-01

    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  18. Early history and reactivation of the rand thrust, southern California

    Science.gov (United States)

    Postlethwaite, Clay E.; Jacobson, Carl E.

    The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.

  19. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared W.

    2016-01-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  20. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli A.; Kluesner, Jared W.

    2016-06-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a "depositionary forearc," a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  1. Depth-dependent rupture mode along the Ecuador-Colombia subduction zone

    Science.gov (United States)

    Yoshimoto, Masahiro; Kumagai, Hiroyuki; Acero, Wilson; Ponce, Gabriela; Vásconez, Freddy; Arrais, Santiago; Ruiz, Mario; Alvarado, Alexandra; Pedraza García, Patricia; Dionicio, Viviana; Chamorro, Orlando; Maeda, Yuta; Nakano, Masaru

    2017-03-01

    A large earthquake (Mw 7.7) occurred on 16 April 2016 within the source region of the 1906 earthquake in the Ecuador-Colombia subduction zone. The 1906 event has been interpreted as a megathrust earthquake (Mw 8.8) that ruptured the source regions of smaller earthquakes in 1942, 1958, and 1979 in this subduction. Our seismic analysis indicated that the spatial distribution of the 2016 earthquake and its aftershocks correlated with patches of high interplate coupling strength and was similar to those of the 1942 earthquake and its aftershocks, suggesting that the 2016 and 1942 earthquakes ruptured the same asperity. Our analysis of tsunami waveforms of the 1906 event indicated Mw around 8.4 and showed that large slip occurred near the trench off the source regions of the above three historical and the 2016 earthquakes, suggesting that a depth-dependent complex rupture mode exists along this subduction zone.

  2. An integrated approach to the seismic activity and structure of the central Lesser Antilles subduction megathrust seismogenic zone

    Science.gov (United States)

    Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria

    2010-05-01

    In order to increase the understanding of plate boundaries that show currently low seismic activity, as was the Sumatra-Andaman subduction before the major earthquake in 2004, a cluster of surveys and cruises has been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project on the Lesser Antilles subduction zone of the Carribean-America plate boundary. A segment of the corresponding transform boundary just tragically ruptured in the 2010 January 12, Haïti earthquake. This cluster is composed by the German cruise TRAIL with the vessel F/S M. A. MERIAN, the French cruise SISMANTILLES II with the IFREMER vessel N/O ATALANTE), and French cruise OBSANTILLES with the IRD vessel N/O ANTEA. During these cruises and surveys, 80 OBS, Ocean Bottom Seismometers, 64 of which with 3-components seismometers and hydrophones, and 20 OBH with hydrophones have been brought together from several pools (Geoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven), with up to 30 land stations (CSIC Barcelona, IPG Paris, INSU-RLBM and -Lithoscope, ETH Zurich). The deployment of all these instruments has been supported principally in addition by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT. The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the

  3. Slip in Great Megathrust Earthquakes and its Relation to Crustal Structure as Revealed by Satellite Free-air Gravity

    Science.gov (United States)

    Wells, R. E.; Blakely, R. J.; Scholl, D.

    2007-12-01

    In 2003, Song and Simons and Wells et al. showed that approximately 70% of the moment released during past large, shallow subduction zone thrust earthquakes occurred beneath trench-parallel, free-air gravity lows outlining the deep-sea slope terrace and its basins. The authors suggested that the basin-centered, fore-arc gravity lows might be good predictors of high seismic slip in future earthquakes. Since 2001, ten megathrust earthquakes have occurred with magnitudes greater than Mw 7.7, including the giant, Mw 9.17 Sumatra earthquake of 2004. These earthquakes provide a robust test of the idea that seismic slip is focused beneath basin-centered gravity lows, and also the related ideas that the landward maximum gravity gradient marks the effective down-dip limit of large coseismic slip, and that intrabasin, transverse gravity highs are areas of lower slip. A compilation of seismic and geodetic slip inversions for the post-2001 earthquakes and new analyses of slip for the great Antofagasta, Jalisco, and Peru events in 1995 and 1996 indicate that more than 80% of the high-slip areas occur beneath deep-sea terrace gravity lows (DSTL), and that half of the earthquake asperities lie beneath fore-arc basins or local gravity lows. The maximum gravity gradient along the landward margin of the deep-sea terrace may mark the point where thicker overlying crust and higher temperatures on the megathrust limit the down dip extent of stick-slip behavior. Onland analogues are the mountain front of the Himalaya, which approximately marks the down-dip limit of large coseismic slip along the Main Frontal Thrust, and the front of the Taiwan Central Ranges, which coincides with the limit of slip during the 1999 Chi-Chi earthquake (Mw 7.6). In the up dip direction, coseismic slip may be partitioned onto splay faults in the wedge, as occurred in the 1964 Alaska earthquake. The observed pattern of greater slip at depth beneath fore arc basins is consistent with partitioning of slip up

  4. Stress orientations in subduction zones and the strength of subduction megathrust faults.

    Science.gov (United States)

    Hardebeck, Jeanne L

    2015-09-11

    Subduction zone megathrust faults produce most of the world's largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making an angle of 45° to 60° with respect to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface. Copyright © 2015, American Association for the Advancement of Science.

  5. Stress orientations in subduction zones and the strength of subduction megathrust faults

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2015-01-01

    Subduction zone megathrust faults produce most of the world’s largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making a 45°-60° angle to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface.

  6. Dynamic Rupture Simulations Based on the Characterized Source Model of the 2011 Tohoku Earthquake

    Science.gov (United States)

    Tsuda, Kenichi; Iwase, Satoshi; Uratani, Hiroaki; Ogawa, Sachio; Watanabe, Takahide; Miyakoshi, Jun'ichi; Ampuero, Jean Paul

    2017-09-01

    The 2011 Off the Pacific Coast of Tohoku earthquake (Tohoku earthquake, M w 9.0) occurred on the Japan Trench and caused a devastating tsunami. Studies of this earthquake have revealed complex features of its rupture process. In particular, the shallow parts of the fault (near the trench) hosted large slip and long period seismic wave radiation, whereas the deep parts of the rupture (near the coast) hosted smaller slip and strong radiation of short period seismic waves. Understanding such depth-dependent feature of the rupture process of the Tohoku earthquake is necessary as it may occur during future mega-thrust earthquakes in this and other regions. In this study, we investigate the "characterized source model" of the Tohoku earthquake through dynamic rupture simulations. This source model divides the fault plane into several parts characterized by different size and frictional strength (main asperity, background area, etc.) and is widely used in Japan for the prediction of strong ground motion and tsunami through kinematic rupture simulations. Our characterized source model of the Tohoku earthquake comprises a large shallow asperity with moderate frictional strength, small deep asperities with high frictional strength, a background area with low frictional strength, and an area with dynamic weakening close to the trench (low dynamic friction coefficient as arising from, e.g., thermal pressurization). The results of our dynamic rupture simulation reproduce the main depth-dependent feature of the rupture process of the Tohoku earthquake. We also find that the width of the area close to the trench (equal to the distance from the trench to the shallow asperity, interpreted as the size of the accretionary prism) and the presence of dynamic weakening in this area have a significant influence on the final slip distribution. These results are useful to construct characterized source models for other subduction zones with different scale of the accretionary prism, such

  7. Offshore deformation in the Calabrian accretionary wedge and implications for the 1693 Catania earthquake and tsunami (Eastern Sicily)

    Science.gov (United States)

    Gallais, F.; Gutscher, M.; Graindorge, D.; Polonia, A.

    2008-12-01

    Southern Italy has been struck repeatedly by very strong historical earthquakes as in 1169, 1693, 1783, 1905, 1908, often associated with destructive tsunami. While certain events (like 1908 Messina or 1783 Calabria) are associated with known crustal normal faults, which produced observed surface ruptures, the source of the strongest earthquake in the Italian catalog, the Catania earthquake of 1693 is still unknown. It may have been generated by the NW dipping subduction zone beneath Calabria and Eastern Sicily. Identifying its origin will have a major impact on the hazard assessment and our understanding of modern day tectonics in this region. The 1693 earthquake, struck E Sicily with intensities of X - XI and killed up to 60,000 people, destroying Catania, Syracuse and Augusta. It also generated a 5-10 m high tsunami which swept these cities. The 1169 earthquake had similar intensities (X to XI) and a similar isoseismal pattern, suggesting a similar source. Because of the tsunami generated in 1693 and because the isoseismals are open to the sea, the majority of the source region appears to be offshore. The nearby subduction fault plane is thus a strong candidate for both events. However, a lack of instrumentally recorded thrust earthquakes suggests that if subduction is active, the fault plane is locked (like Cascadia or Nankai). Reported GPS motions from the region are ambiguous, and thus the current activity of the Calabrian subduction remains a matter of debate. The offshore accretionary wedge is known from seismic and bathymetric investigations to include compressional anticlines and recently mud volcanoes have been discovered on the upper wedge. We present preliminary results from reprocessed 96-channel seismic reflection data from the 1997 French cruise Archimede (R/V Le Nadir) crossing the deformation front at the toe of the Calabrian prism, the Ionian abyssal plain and the deformation front of the Mediterranean Ridge (Hellenic subduction system). A more

  8. Aftershock mechanisms from the 2010 Mw 8.8 Maule, Chile earthquake: detailed analysis using full waveform inversion

    Science.gov (United States)

    Rietbrock, A.; Hicks, S. P.; Chagas, B.; Detzel, H. A.

    2014-12-01

    Since the earthquake rupture process is extremely heterogeneous, it is vital to understand how structural variations in the overriding plate and downgoing slab may control slip style along the subduction megathrust. The large-scale 3-D geometry of subduction plate boundaries is rapidly becoming well understood; however, the nature of any finer-scale structure along the plate interface remains elusive. A detailed study of earthquake source mechanisms along a megathrust region can shed light on the nature of fine-scale structures along the megathrust. The Mw 8.8 Maule earthquake that struck central Chile in 2010 is the sixth largest earthquake ever recorded. Following the earthquake, there was an international deployment of seismic stations in the rupture area, making this one of the best datasets of an aftershock sequence following a large earthquake. This dataset provides a unique opportunity to perform a detailed study of megathrust earthquake source mechanisms. Based on a high-resolution 3-D velocity model and robust earthquake locations [Hicks et al., 2014], we calculate regional moment tensors using the ISOLA software package [Sokos & Zahradnik, 2008]. We incorporate accelerometer recordings, important for constraining solutions of large earthquakes in the overriding plate. We also validate the robustness of our solutions by assessing the consistency of mechanisms with P-wave polarities observed at both onshore and offshore seismic stations, and compare them to already published solutions. We find that accurate earthquake locations are vital for the fine-scale interpretation of focal mechanisms, particularly for offshore events. Our results show that most moment tensor solutions with thrusting mechanisms have a nodal plane dipping parallel to the subducting plate interface. Interestingly, we also find earthquakes with normal faulting mechanisms lying along to the megathrust plate interface in the south of the rupture area. This finding suggests that megathrust

  9. The Southern Tyrrhenian subduction system: recent evolution and neotectonic implications

    Directory of Open Access Journals (Sweden)

    A. Argnani

    2000-06-01

    Full Text Available Geological and geophysical data have been integrated with the aim of presenting a new evolutionary model for the Southern Tyrrhenian and adjacent regions. The Southern Tyrrhenian backarc basin opened within a plate convergence regime because of sinking and rollback of the oceanic Ionian lithosphere. On the basis of seismological observations, I infer that the sinking slab was torn apart on either side in the last 2 Ma and this process controlled the neotectonics of the Southern Apennines - Tyrrhenian region. On the north-eastern side the slab broke off from NW to SE and this process triggered volcanism and NW-SE extension along the Eastern Tyrrhenian margin, and strike-slip tectonics along NW-SE trending faults in Northern Calabria. On the south-western side the slab broke off from W to E along the Aeolian Island alignment, although the tear has currently been reoriented along the NNW-SSE Malta escarpment. During its sinking the subducted slab also detached from the overriding plate, favouring the wedging of the asthenosphere between the two plates and the regional uplift of the Calabrian arc and surroundings. This regional uplift promoted gravitational instability within the orogenic wedge, particularly towards low topography areas; the large-scale sliding of the Calabrian arc towards the Ionian basin can be the cause of CW rotation and graben formation in Calabria. Also the E-dipping extensional faults of the Southern Apennines can be related to accommodation of vertical motions within the fold-and-thrust belt. The pattern of recent seismicity reflects this neotectonics where crustal-scale gravity deformation within the orogenic wedge is responsible for extensional earthquakes in Calabria and the Southern Apennines, whereas Africa plate convergence can account for compressional earthquakes in Sicily.

  10. Finite-fault slip model of the 2016 Mw 7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data

    Science.gov (United States)

    Xu, Wenbin

    2017-05-01

    Subduction earthquakes have been widely studied in the Chilean subduction zone, but earthquakes occurring in its southern part have attracted less research interest primarily due to its lower rate of seismic activity. Here I use Sentinel-1 interferometric synthetic aperture radar (InSAR) data and range offset measurements to generate coseismic crustal deformation maps of the 2016 Mw 7.5 Chiloé earthquake in southern Chile. I find a concentrated crustal deformation with ground displacement of approximately 50 cm in the southern part of the Chiloé island. The best fitting fault model shows a pure thrust-fault motion on a shallow dipping plane orienting 4° NNE. The InSAR-determined moment is 2.4 × 1020 Nm with a shear modulus of 30 GPa, equivalent to Mw 7.56, which is slightly lower than the seismic moment. The model shows that the slip did not reach the trench, and it reruptured part of the fault that ruptured in the 1960 Mw 9.5 earthquake. The 2016 event has only released a small portion of the accumulated strain energy on the 1960 rupture zone, suggesting that the seismic hazard of future great earthquakes in southern Chile is high.

  11. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system

    Science.gov (United States)

    Riccio, Steven J.; Fitzgerald, Paul G.; Benowitz, Jeff A.; Roeske, Sarah M.

    2014-11-01

    Horizontal-slip along restraining bends of strike-slip faults is often partitioned into a vertical component via splay faults. The active Susitna Glacier Thrust Fault (SGTF), as shown by its initiation of the 2002 M7.9 Denali Fault earthquake, lies south of, and intersects the dextral strike-slip Denali Fault. Geochronology and thermochronology data from samples across the SGTF constrain the region's tectonic history and the role of thrusting in the formation of the eastern Alaska Range south of the Denali fault. U-Pb zircon ages indicate intrusion of plutons in the footwall (~57 Ma) and hanging wall (~98 Ma). These U-Pb zircon ages correlate to those from the Ruby Batholith/Kluane Terrane ~400 km east along the Denali Fault, supporting geologic correlations and hence constraints on long-term slip rates. 40Ar/39Ar mica and K-feldspar data from footwall and hanging wall samples (~54 to ~46 Ma) reflect cooling following magmatism and/or regional Eocene metamorphism related to ridge subduction. Combined with apatite fission track data (ages 43-28 Ma) and thermal models, both sides of the SGTF acted as a coherent block during the Eocene and early Oligocene. Contrasting apatite (U-Th)/He ages across the Susitna Glacier (~25 Ma footwall, ~15 Ma hanging wall) suggest initiation of faulting during the middle Miocene. Episodic cooling and exhumation is related to thrusting on known or hypothesized faults that progressively activate due to varying partition of strain along the Denali Fault associated with changing kinematics and plate interaction (Yakutat microplate collision, flat-slab subduction and relative plate motion change) at the southern Alaskan plate margin.

  12. Seismic Structure of the Subducted Cocos Plate

    Science.gov (United States)

    Clayton, R. W.; Davis, P. M.; Perez-Campos, X.

    2007-05-01

    The Meso-American Subduction Experiment (MASE) was designed to determine the critical parameters to necessary to simulate the subduction process in Central Mexico . A preliminary analysis of the data shows a 200km section of the slab that is subhorizontal and to within the resolution of the receiver functions it underplates the continental crust with no intervening asthenosphere. This is an interesting situation because the short-term (GPS) and long-term (geologic) strain measurements show almost no compressive strain in this region. This would imply that the crust is decoupled from the subducting slab. Near the coast, the receiver functions show that the slab cuts through the crust at an approximately a 15-degree angle, and under the Trans-Mexican Volcanic Belt the slab becomes detached from the crust, but its geometry at depth is not yet determined from the receiver functions, but a well-developed mantle wedge is apparent from the attenuation of regional earthquakes.

  13. Developing framework to constrain the geometry of the seismic rupture plane on subduction interfaces a priori - A probabilistic approach

    Science.gov (United States)

    Hayes, G.P.; Wald, D.J.

    2009-01-01

    A key step in many earthquake source inversions requires knowledge of the geometry of the fault surface on which the earthquake occurred. Our knowledge of this surface is often uncertain, however, and as a result fault geometry misinterpretation can map into significant error in the final temporal and spatial slip patterns of these inversions. Relying solely on an initial hypocentre and CMT mechanism can be problematic when establishing rupture characteristics needed for rapid tsunami and ground shaking estimates. Here, we attempt to improve the quality of fast finite-fault inversion results by combining several independent and complementary data sets to more accurately constrain the geometry of the seismic rupture plane of subducting slabs. Unlike previous analyses aimed at defining the general form of the plate interface, we require mechanisms and locations of the seismicity considered in our inversions to be consistent with their occurrence on the plate interface, by limiting events to those with well-constrained depths and with CMT solutions indicative of shallow-dip thrust faulting. We construct probability density functions about each location based on formal assumptions of their depth uncertainty and use these constraints to solve for the ‘most-likely’ fault plane. Examples are shown for the trench in the source region of the Mw 8.6 Southern Sumatra earthquake of March 2005, and for the Northern Chile Trench in the source region of the November 2007 Antofagasta earthquake. We also show examples using only the historic catalogues in regions without recent great earthquakes, such as the Japan and Kamchatka Trenches. In most cases, this method produces a fault plane that is more consistent with all of the data available than is the plane implied by the initial hypocentre and CMT mechanism. Using the aggregated data sets, we have developed an algorithm to rapidly determine more accurate initial fault plane geometries for source inversions of future

  14. Metallogeny of subduction zones

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2017-03-01

    Full Text Available The paper deals with the multistage mechanism of the Earth's crust enrichment in ore elements in underthrust zones. The processes of metamorphism and the formation of hydrothermal solutions at pulling of the watered oceanic lithospheric plate into the subduction zone have been described. Some physical and chemical transformation regularities of structural-material complexes in these areas and mechanisms of the formation of ore deposits have been discussed. Spatio-temporal patterns of the localization of a number of endogenetic and exogenetic deposits have been described using metallogeny of the Ural and the Verkhoyansk-Kolyma Fold Belts as an example. It has been shown that in nature there are several effective mechanisms of the enrichment of the crust in ore minerals. One of them is the process of pulling into subduction zone of metalliferous sediments and ferromanganese crusts as well as seabed nodules, their metamorphic transformation, partial melting and transition of ore components into magmatic melts and mineralized fluids. In the future this leads to the release of ore material by magmas and hydrothermal solutions into the folded formations of island-arc and Andean types and the formation of igneous, metasomatic and hydrothermal deposits. Another, yet no less powerful natural mechanism of a conveyor enrichment of the crust in ore elements is the process of destruction and sedimentation of mineral deposits formed in the folded areas as well as the formation of placers and their transfer to the marginal parts of the continent. Later, during the collision of active and passive margins of two lithospheric plates, such as the collision of the Kolyma Massif with the eastern part of the Siberian craton in the middle of the Mesozoic there was a thrusting of a younger lithospheric plate over a more ancient one. As a result, the sedimentary sequences of the passive margin of the Siberian plate were submerged and partially melted by the basic magmas

  15. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    Science.gov (United States)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global

  16. Båth's law and its relation to the tectonic environment: A case study for earthquakes in Mexico

    Science.gov (United States)

    Rodríguez-Pérez, Q.; Zúñiga, F. R.

    2016-09-01

    We studied 66 mainshocks and their largest aftershocks in the Mexican subduction zone and in the Gulf of California with magnitudes in the range of 5.2 earthquakes were analyzed: shallow thrust interplate, intermediate-depth inslab and transform strike-slip earthquakes (26, 19 and 21 events, respectively). We focus on observational aspects of the Båth's law. By studying the magnitude difference, energy ratios and energy partitioning of the mainshock-largest aftershock sequences, we analyze the physics of the mainshock-largest aftershock relationship (Båth's law). The partitioning of energy during a mainshock-aftershock sequence shows that about 96-97% of the energy dissipated in a sequence is associated with the mainshock and the rest is due to aftershocks. Our results for radiated seismic energy and energy-to-moment ratio are partially in agreement with worldwide studies supporting the observation of mechanism dependence of radiated seismic energy. The statistical tests indicate that the only significant difference is for shallow thrust and strike-slip events for these parameters. The statistical comparison of stress drop of shallow thrust versus that of inslab events shows a strongly significant difference with a confidence better than 99%. The comparison of stress drop of shallow thrust events with that of strike-slip events, also indicates a strongly significant difference. We see no dependence of stress drop with magnitude, which is strong evidence of earthquake self-similarity. We do not observe a systematic depth dependence of stress drop. The results also reveal differences in the earthquake rupture among the events. The magnitude difference between the mainshock and the largest aftershock for inslab events is larger than interplate and strike-slip events suggesting focal mechanism dependence of Båth's law. For the case of this parameter, only that for inslab and strike-slip events present a significant difference with 95% confidence.

  17. Seafloor seismometers monitor northern Cascadia earthquakes

    National Research Council Canada - National Science Library

    Scherwath, Martin; Spence, George; Obana, Koichiro; Kodaira, Shuichi; Wang, Kelin; Riedel, Michael; McGuire, Jeff; Collins, John

    2011-01-01

    The M w = 9.0 earthquake of 11 March 2011 at the Japan Trench and its devastating tsunami underscore the importance of understanding seismogenic behavior of subduction faults and realistically estimating...

  18. Seafloor seismometers monitor northern Cascadia earthquakes

    National Research Council Canada - National Science Library

    Scherwath, M; Spence, G; Obana, K; Kodaira, S; Wang, K; Riedel, M; McGuire, J; Collins, J

    2011-01-01

    The Mw = 9.0 earthquake of 11 March 2011at the Japan Trench and its devastating tsunami underscore the importance of understanding seismogenic behavior of subduction faults and realistically estimating...

  19. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra.

    Science.gov (United States)

    Hüpers, Andre; Torres, Marta E; Owari, Satoko; McNeill, Lisa C; Dugan, Brandon; Henstock, Timothy J; Milliken, Kitty L; Petronotis, Katerina E; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A; Frederik, Marina C G; Guèrin, Gilles; Hamahashi, Mari; House, Brian M; Jeppson, Tamara N; Kachovich, Sarah; Kenigsberg, Abby R; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T; Pouderoux, Hugo F A; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J; Yang, Tao; Zhao, Xixi

    2017-05-26

    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records. Copyright © 2017, American Association for the Advancement of Science.

  20. Recent Intermediate Depth Earthquakes in El Salvador, Central Mexico, Cascadia and South-West Japan

    Science.gov (United States)

    Lemoine, A.; Gardi, A.; Gutscher, M.; Madariaga, R.

    2001-12-01

    We studied occurence and source parameters of several recent intermediate depth earthquakes. We concentrated on the Mw=7.7 salvadorian earthquake which took place on January 13, 2001. It was a good example of the high seismic risk associated to such kind of events which occur closer to the coast than the interplate thrust events. The Salvadorian earthquake was an intermediate depth downdip extensional event which occured inside the downgoing Cocos plate, next to the downdip flexure where the dip increases sharply before the slab sinks more steeply. This location corresponds closely to the position of the Mw=5.7 1996 and Mw=7.3 1982 downdip extensional events. Several recent intermediate depth earthquakes occured in subduction zones exhibiting a ``flat slab'' geometry with three distinct flexural bends where flexural stress may be enhanced. The Mw=6.7 Geiyo event showed a downdip extensional mechanism with N-S striking nodal planes. This trend was highly oblique to the trench (Nankai Trough), yet consistent with westward steepening at the SW lateral termination of the SW Japan flat slab. The Mw=6.8 Olympia earthquake in the Cascadia subduction zone occured at the downdip termination of the Juan de Fuca slab, where plate dip increases from about 5o to over 30o. The N-S orientation of the focal planes, parallel to the trench indicated downdip extension. The location at the downdip flexure corresponds closely to the estimated positions of the 1949 M7.1 Olympia and 1965 M6.5 Seattle-Tacoma events. Between 1994 and 1999, in Central Mexico, an unusually high intermediate depth seismicity occured where several authors proposed a flat geometry for the Cocos plate. Seven events of magnitude between Mw=5.9 and Mw=7.1 occured. Three of them were downdip compressional and four where down-dip extensional. We can explain these earthquakes by flexural stresses at down-dip and lateral terminations of the supposed flat segment. Even if intermediate depth earthquakes occurence could

  1. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  2. Frictional behaviour of megathrust fault gouges under in-situ subduction zone conditions

    NARCIS (Netherlands)

    den Hartog, S.A.M.

    2013-01-01

    Subduction zone megathrusts generate the largest earthquakes and tsunamis known. Understanding and modelling “seismogenesis” on such faults requires an understanding of the frictional processes that control nucleation and propagation of seismic slip. However, experimental data on the frictional

  3. Plume-induced subduction

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  4. Earthquakes in the Pamplona zone, Yakutat block, south central Alaska

    Science.gov (United States)

    Doser, Diane I.; Pelton, John R.; Veilleux, Annette M.

    1997-11-01

    The Pamplona zone is a region of complex deformation and moderate seismicity located within the Yakutat block, a region that has been relatively aseismic since a series of large (M>7.8) earthquakes in 1899. In 1970 a sequence of moderate to large sized earthquakes occurred within the Pamplona zone (largest event of Mw=6.7). Together with a Mw=6.1 event in 1958, these events are the only M≥5.5 events known to have occurred in the Pamplona region since 1900. Thus these events give important information on internal deformational processes within the Yakutat block. Waveform modeling of three earthquakes in April 1970, showed rupture complexity along low angle, thrust faults. Focal depths indicate that two of the events occurred above the Wrangell-Aleutian megathrust, while the largest event may have occurred on the megathrust. Events in 1958 and February 1970 indicate that deformation within the western Pamplona zone is occurring along high angle (>60°) faults with reverse-oblique motion. We believe the Pamplona spur, the easternmost part of the Pamplona zone, may have behaved as an asperity during the 1899 sequence. The location of the spur may be influenced by a north-south trending fault zone in the subducting Pacific plate that appears to be responsible for the 1987-1992 Gulf of Alaska sequence, occurring 50 to 200 km south of the Pamplona zone.

  5. The Calabrian subduction zone (Ionian Sea): Historical seismicity and a new review of the system from multi-channel seismic data

    Science.gov (United States)

    Gallais, Flora; Gutscher, Marc-Andre; Torelli, Luigi; Polonia, Alina; Graindorge, David

    2010-05-01

    The Calabrian subduction zone is included in the long W-E elongated compressive South Mediterranean belt. This subduction is located in the complex Central Mediterranean area and accommodates the African/Eurasian convergence at very slow rates (thrusts events characteristic of active subduction have been recorded during the instrumental era. However, the South Calabrian/East Sicilian region is well-known to have been affected by strong historical seismicity with Mercalli intensities reaching XI. The sources of these events is often linked to the activity of crustal, normal faults in the Calabrian region: 1638, 1783, 1905. Furthermore, important details of the Messina 1908 earthquake (72000 killed) and tsunami remain unresolved, in particular the origin of the tsunami (fault induced or submarine landslide). Moreover, the origin of two of the most destructive earthquakes (1169 and 1693) remains enigmatic. For the 1169 and 1693 (60000 killed and 5 to 10 m tsunami wave) Catania earthquakes, the source faults are the subject of debate and linked alternatively to the activity of the Malta escarpment or of the subduction fault plane (because the isoseismals are open to the sea). In this case, the 1169 earthquake which had similar intensities and a comparable isoseismal pattern, is suggested to have the same source and so the fault plane may have be locked between these two events. To better understand the origins of the 1169 and 1693 major events and seek evidence of activity of Calabrian system, we present new results from reprocessed 96-channels seismic reflection profiles (French Archimede cruise, 1997) offshore Sicily. Interpretation of the seismic dataset is based on correlations with published seismic data and with ESP results and allows us to identify the following thick sedimentary cover (>5km) in the Ionian Abyssal Plain overlying an oceanic crust: Mesozoic (1400 to 1800m) and Tertiary (~1800m) sequences, a Messinian unit (1400m) and the Plio-Quaternary deposits

  6. The Run-Up of Subduction Zones

    Science.gov (United States)

    Riquelme, S.; Bravo, F. J.; Fuentes, M.; Matias, M.; Medina, M.

    2016-12-01

    Large earthquakes in subduction zones are liable to produce tsunamis that can cause destruction and fatalities. The Run-up is a geophysical parameter that quantifies damage and if critical facilities or population are exposed to. Here we use the coupling for certain subduction regions measured by different techniques (Potency and GPS observations) to define areas where large earthquakes can occur. Taking the slab 1.0 from the United States Geological Survey (USGS), we can define the geometry of the area including its tsunamigenic potential. By using stochastic earthquakes sources for each area with its maximum tsunamigenic potential, we calculate the numerical and analytical run-up for each case. Then, we perform a statistical analysis and calculate the envelope for both methods. Furthermore, we build an index of risk using: the closest slope to the shore in a piecewise linear approach (last slopecriteria) and the outputsfrom tsunami modeling. Results show that there are areas prone to produce higher run-up than others based on the size of the earthquake, geometrical constraints of the source, tectonic setting and the coast last slope. Based on these results, there are zones that have low risk index which can define escape routes or secure coastal areas for tsunami early warning, urban and planning purposes when detailed data is available.

  7. Friction and stress coupling on the subduction interfaces

    Science.gov (United States)

    Tan, E.; Lavier, L.; van Avendonk, H.

    2011-12-01

    At a subduction zone, the down-going oceanic plate slides underneath the overriding plate. The frictional resistance to the relative motion between the plates generates great earthquakes along the subduction interface, which can cause tremendous damage in the civil life and property. There is a strong incentive to understand the frictional strength of the subduction interface. One fundamental question of mechanics of subuction is the degree of coupling between the plates, which is linked to the size of earthquakes. It has been noted that the trench-parallel (along-strike) gravity variation correlates positively with the trench-parallel topography anomaly and negatively with the activity of great earthquake (Song and Simons, 2003). Regions with a negative trench-parallel gravity anomaly are more likely to have great earthquakes. The interpretation of such correlation is that strong coupling along subduction interface will drag down the for-arc region of the overriding plate, which generates the gravity and topography anomalies, and could store more strain energy to be released during a great earthquake. We developed a 2D numerical thermo-mechanical code for modeling subduction. The numerical method is based on an explicit finite element method similar to the Fast Lagrangian Analysis of Continua (FLAC) technique. The constitutive law is visco-elasti-plastic with strain weakening. The cohesion and friction angle are reduced with increasing plastic strain after yielding. To track different petrologic phases, Lagrangian particles are distributed in the domain. Basalt-eclogite, sediment-schist and peridotite-serpentinite phase changes are included in the model. Our numerical models show that the degree of coupling negatively correlates with the coefficient of friction. In the low friction case, the subduction interface has very shallow dipping angle, which helps to elastically couple the downing plate with the overriding plate. The topography and gravity anomalies of the

  8. Subduction of oceanic plate irregularities and seismicity distribution along the Mexican Subduction Zone

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Gerya, Taras; Wong, Raul-Valenzuela; Radulian, Mircea

    2017-04-01

    It is known that oceanic plates morphology is not a simple one, but rather complicated by a series of irregularities as seamounts, fracture zones and mid-ocean ridges. These features present on the oceanic floor form part of the fabric of oceanic crust, and once formed they move together with the oceanic plates until eventually enter a subduction zone. Offshore Mexico the oceanic Cocos plate seafloor is littered with relatively small but numerous seamounts and seamount chains, and also large fracture zones. In this study we investigate the relationship between these oceanic irregularities located in the vicinity of the trench in Mexico and the distribution of subduction seismicity, including the rupture history of large subduction zone earthquakes. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Our preliminary study shows a direct relationship between the presence of seamounts chains on the incoming oceanic plate and the subduction seismicity distribution. We also found a clear relationship between the subduction of the Tehuantepec fracture zone (TFZ) and the low seismic activity in the region where this fracture zone intersects the trench. This region is also long term conspicuously quiet and considered a seismic gap where no significant large earthquake has occurred in more than 100 years. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Cocos plate in the region of TFZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy. The presence of serpentinite in the fore arc apparently lowers the degree of interseismic locking, producing a seismic gap in southern Mexico.

  9. Trench-breaching afterslip following deeper coseismic slip of the 2012 Mw 7.6 Costa Rica earthquake constrained by near-trench pressure and land-based geodetic observations

    Science.gov (United States)

    Sun, Tianhaozhe; Davis, Earl E.; Wang, Kelin; Jiang, Yan

    2017-12-01

    Large rupture of the shallowest portion of subduction thrust faults (megathrusts), such as during the 2011 moment magnitude (Mw) 9.0 Tohoku-oki earthquake, can generate the most devastating tsunamis. However, it remains unclear whether such trench-breaching rupture is typical of other subduction earthquakes. The main difficulty in answering this question is the common lack of near-trench geodetic monitoring in subduction zones worldwide. Seafloor and sub-seafloor fluid pressure measurements at two closely located borehole observatories in the Middle America trench have provided clear evidence for the absence of trench-breaching rupture during the 2012 Mw 7.6 Costa Rica earthquake, and for the presence of substantial trench-breaching afterslip at slow rates after the rupture (Davis et al., 2015). In this study, we compare postseismic seafloor pressure change at the trench with coastal Global Navigation Satellite System (GNSS) displacements. The same temporal characteristics of the deformation at the trench and coastal sites indicate that both offshore and onshore deformation were the consequence of afterslip that occurred over a wide spatial range updip of the rupture. By determining the co- and post-seismic slip distributions and inferring the associated shear stress changes on the megathrust, we show that the mechanical behaviour varies in the dip direction. The slip behaviour of the shallow megathrust at Costa Rica is consistent with conventional conceptual models, and contrasts with the behaviour of the shallowest megathrust during the Tohoku-oki event.

  10. Assessing the Applicability of Earthquake Early Warning in Nicaragua.

    Science.gov (United States)

    Massin, F.; Clinton, J. F.; Behr, Y.; Strauch, W.; Cauzzi, C.; Boese, M.; Talavera, E.; Tenorio, V.; Ramirez, J.

    2016-12-01

    Nicaragua, like much of Central America, suffers from frequent damaging earthquakes (6 M7+ earthquakes occurred in the last 100 years). Thrust events occur at the Middle America Trench where the Cocos plate subducts by 72-81 mm/yr eastward beneath the Caribbean plate. Shallow crustal events occur on-shore, with potential extensive damage as demonstrated in 1972 by a M6.2 earthquake, 5 km beneath Managua. This seismotectonic setting is challenging for Earthquake Early Warning (EEW) because the target events derive from both the offshore seismicity, with potentially large lead times but uncertain locations, and shallow seismicity in close proximity to densely urbanized areas, where an early warning would be short if available at all. Nevertheless, EEW could reduce Nicaragua's earthquake exposure. The Swiss Development and Cooperation Fund and the Nicaraguan Government have funded a collaboration between the Swiss Seismological Service (SED) at ETH Zurich and the Nicaraguan Geosciences Institute (INETER) in Managua to investigate and build a prototype EEW system for Nicaragua and the wider region. In this contribution, we present the potential of EEW to effectively alert Nicaragua and the neighbouring regions. We model alert time delays using all available seismic stations (existing and planned) in the region, as well as communication and processing delays (observed and optimal) to estimate current and potential performances of EEW alerts. Theoretical results are verified with the output from the Virtual Seismologist in SeisComP3 (VS(SC3)). VS(SC3) is implemented in the INETER SeisComP3 system for real-time operation and as an offline instance, that simulates real-time operation, to record processing delays of playback events. We compare our results with similar studies for Europe, California and New Zealand. We further highlight current capabilities and challenges for providing EEW alerts in Nicaragua. We also discuss how combining different algorithms, like e.g. VS

  11. SSI-bridge : soil bridge interaction during long-duration earthquake motions.

    Science.gov (United States)

    2014-09-01

    The seismic response of a complete soil-bridge system during shallow, crustal and subduction zone earthquakes is the topic of this report. Specifically, the effects of earthquake duration on the seismic performance of soil-bridge systems are examined...

  12. Volcanism and Subduction: The Kamchatka Region

    Science.gov (United States)

    Eichelberger, John; Gordeev, Evgenii; Izbekov, Pavel; Kasahara, Minoru; Lees, Jonathan

    The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

  13. A Silent Slip Event on the Deeper Cascadia Subduction Interface

    Science.gov (United States)

    Dragert, Herb; Wang, Kelin; James, Thomas S.

    2001-05-01

    Continuous Global Positioning System sites in southwestern British Columbia, Canada, and northwestern Washington state, USA, have been moving landward as a result of the locked state of the Cascadia subduction fault offshore. In the summer of 1999, a cluster of seven sites briefly reversed their direction of motion. No seismicity was associated with this event. The sudden displacements are best explained by ~2 centimeters of aseismic slip over a 50-kilometer-by-300-kilometer area on the subduction interface downdip from the seismogenic zone, a rupture equivalent to an earthquake of moment magnitude 6.7. This provides evidence that slip of the hotter, plastic part of the subduction interface, and hence stress loading of the megathrust earthquake zone, can occur in discrete pulses.

  14. A silent slip event on the deeper Cascadia subduction interface.

    Science.gov (United States)

    Dragert, G; Wang, K; James, T S

    2001-05-25

    Continuous Global Positioning System sites in southwestern British Columbia, Canada, and northwestern Washington state, USA, have been moving landward as a result of the locked state of the Cascadia subduction fault offshore. In the summer of 1999, a cluster of seven sites briefly reversed their direction of motion. No seismicity was associated with this event. The sudden displacements are best explained by approximately 2 centimeters of aseismic slip over a 50-kilometer-by-300-kilometer area on the subduction interface downdip from the seismogenic zone, a rupture equivalent to an earthquake of moment magnitude 6.7. This provides evidence that slip of the hotter, plastic part of the subduction interface, and hence stress loading of the megathrust earthquake zone, can occur in discrete pulses.

  15. Large submarine earthquakes that occurred worldwide in a 1-year period (June 2013 to June 2014) - a contribution to the understanding of tsunamigenic potential

    Science.gov (United States)

    Omira, R.; Vales, D.; Marreiros, C.; Carrilho, F.

    2015-10-01

    This paper is a contribution to a better understanding of the tsunamigenic potential of large submarine earthquakes. Here, we analyze the tsunamigenic potential of large earthquakes which have occurred worldwide with magnitudes around Mw = 7.0 and greater during a period of 1 year, from June 2013 to June 2014. The analysis involves earthquake model evaluation, tsunami numerical modeling, and sensors' records analysis in order to confirm the generation of a tsunami (or lack thereof) following the occurrence of an earthquake. We also investigate and discuss the sensitivity of tsunami generation to the earthquake parameters recognized to control tsunami occurrence, including the earthquake location, magnitude, focal mechanism and fault rupture depth. Through this analysis, we attempt to understand why some earthquakes trigger tsunamis and others do not, and how the earthquake source parameters are related to the potential of tsunami generation. We further discuss the performance of tsunami warning systems in detecting tsunamis and disseminating the alerts. A total of 23 events, with magnitudes ranging from Mw = 6.7 to Mw = 8.1, have been analyzed. This study shows that about 39 % of the analyzed earthquakes caused tsunamis that were recorded by different sensors with wave amplitudes varying from a few centimeters to about 2 m. Tsunami numerical modeling shows good agreement between simulated waveforms and recorded waveforms, for some events. On the other hand, simulations of tsunami generation predict that some of the events, considered as non-tsunamigenic, caused small tsunamis. We find that most generated tsunamis were caused by shallow earthquakes (depth < 30 km) and thrust faults that took place on/near the subduction zones. The results of this study can help the development of modified and improved versions of tsunami decision matrixes for various oceanic domains.

  16. The 2007 Bengkulu earthquake, its rupture model and implications ...

    Indian Academy of Sciences (India)

    Thus, despite its great magnitude, this earthquake did not generate a major tsunami. Further, we suggest that the occurrence of great earthquakes in the subduction zone on either side of the Siberut Island region, might have led to the increase in static stress in the region, where the last great earthquake occurred in 1797 ...

  17. Subduction, back-arc spreading and global mantle flow

    Science.gov (United States)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  18. Variable thrust cartridge

    Science.gov (United States)

    Taleyarkhan, Rusi P.

    2000-11-07

    The present invention is a variable thrust cartridge comprising a water-molten aluminum reaction chamber from which a slug is propelled. The cartridge comprises a firing system that initiates a controlled explosion from the reaction chamber. The explosive force provides a thrust to a slug, preferably contained within the cartridge.

  19. Postseismic Gravity Change After the 2006-2007 Great Earthquake Doublet and Constraints on the Asthenosphere Structure in the Central Kuril Islands

    Science.gov (United States)

    Shin-Chan, Han; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of approximately 4 micro-Gal, observed consistently from various GRACE solutions around the epicentral area during 2007-2015, is interpreted as resulting from gradual seafloor uplift by (is) approximately 6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25-35 km for the elastic thickness and approximately 10(exp 18) Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  20. Depositionary Margins: The Destruction and Renovation of Subduction Forearcs

    Science.gov (United States)

    Vannucchi, P.; Morgan, J. P.; Silver, E. A.; Kluesner, J.

    2016-12-01

    A depositionary margin is a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  1. Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope

    Science.gov (United States)

    Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.

    2010-12-01

    Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat

  2. Early Cenozoic Multiple Thrust in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Zhenhan Wu

    2013-01-01

    Full Text Available Recently completed regional geological mapping at a scale of 1 : 250,000 or larger across all of the Tibetan Plateau coupled with deep seismic surveys reveals for the first time a comprehensive depiction of the major early Cenozoic thrust systems resulting from the northward subduction of the Indian Continental Plate. These systems define a series of overlapping north-dipping thrust sheets that thickened the Tibetan crust and lead to the rise of the plateau. The few south-dipping thrusts present apparently developed within a sheet when the back moved faster than the toe. Many of the thrusts are shown to extend to the middle-lower crustal depths by seismic data. The regional thrust systems are the Main Central, Renbu-Zedong, Gangdese, Central Gangdese, North Gangdese, Bangoin-Nujiang, Qiangtang, Hohxil, and South Kunlun Thrusts. The minimal southward displacements of the South Kunlun, Hohxil, South Qiangtang, and Central Gangdese Thrusts are estimated to be 30 km, 25 km, 150 km and 50 km, respectively. Deep thrusting began in the Himalaya-Tibetan region soon after India-Eurasia continental collision and led to crustal thickening and subsequent uplift of the Tibetan Plateau during Late Eocene-Early Miocene when the systems were mainly active. The major thrust systems ceased moving in Early Miocene and many were soon covered by lacustrine strata. This activity succeeded in the late Cenozoic to crustal extension and strike-slip movement in the central Tibetan Plateau. The revelation of the full array of the early Cenozoic thrust systems provides a much more complete understanding of the tectonic framework of the Tibetan Plateau.

  3. Development of the Global Earthquake Model’s neotectonic fault database

    Science.gov (United States)

    Christophersen, Annemarie; Litchfield, Nicola; Berryman, Kelvin; Thomas, Richard; Basili, Roberto; Wallace, Laura; Ries, William; Hayes, Gavin P.; Haller, Kathleen M.; Yoshioka, Toshikazu; Koehler, Richard D.; Clark, Dan; Wolfson-Schwehr, Monica; Boettcher, Margaret S.; Villamor, Pilar; Horspool, Nick; Ornthammarath, Teraphan; Zuñiga, Ramon; Langridge, Robert M.; Stirling, Mark W.; Goded, Tatiana; Costa, Carlos; Yeats, Robert

    2015-01-01

    The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault observations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally.

  4. Near field earthquake sources scenarios and related tsunamis on the French-Italian Riviera (Western Mediterranean

    Science.gov (United States)

    Larroque, Christophe; Ioualalen, Mansour; Scotti, Oona

    2014-05-01

    suggest that the wave impact is mostly local considering the relatively moderate size of the rupture planes compared to large subduction earthquake induced tsunamis. The studied scenarios show that for such events specific localities along the French-Italian Riviera (San Remo, Cipressa, Imperia, Diano Marina, Nice) may experience very significant MWH (in the range of 3 to 10 m depending of the co-seismic slip and magnitude) related to the shallow focal depth tested for such scenarios. We may reasonably conclude that the tsunami threat is relatively significant and uniform along the Italian side of the Riviera (from Ventimiglia to Imperia) while it is more localized along the French side from Ventimiglia to Antibes with however higher local level of inundation, e.g., Nice city center, in case of a complete rupture of the Ligurian thrust faults system.

  5. Tensor-guided fitting of subduction slab depths

    Science.gov (United States)

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  6. Subducted oceanic relief locks the shallow megathrust in central Ecuador

    Science.gov (United States)

    Collot, Jean-Yves; Sanclemente, Eddy; Nocquet, Jean-Mathieu; Leprêtre, Angélique; Ribodetti, Alessandra; Jarrin, Paul; Chlieh, Mohamed; Graindorge, David; Charvis, Philippe

    2017-05-01

    Whether subducted oceanic reliefs such as seamounts promote seismic rupture or aseismic slip remains controversial. Here we use swath bathymetry, prestack depth-migrated multichannel seismic reflection lines, and wide-angle seismic data collected across the central Ecuador subduction segment to reveal a broad 55 km × 50 km, 1.5-2.0 km high, low height-to-width ratio, multipeaked, sediment-bare, shallow subducted oceanic relief. Owing to La Plata Island and the coastline being located, respectively, 35 km and 50-60 km from the trench, GPS measurements allow us to demonstrate that the subducted oceanic relief spatially correlates to a shallow, 80 km × 55 km locked interplate asperity within a dominantly creeping subduction segment. The oceanic relief geometrical anomaly together with its highly jagged topography, the absence of a subduction channel, and a stiff erosive oceanic margin are found to be long-term geological characteristics associated with the shallow locking of the megathrust. Although the size and level of locking observed at the subducted relief scale could produce an Mw >7+ event, no large earthquakes are known to have happened for several centuries. On the contrary, frequent slow slip events have been recorded since 2010 within the locked patch, and regular seismic swarms have occurred in this area during the last 40 years. These transient processes, together with the rough subducted oceanic topography, suggest that interplate friction might actually be heterogeneous within the locked patch. Additionally, we find that the subducted relief undergoes internal shearing and produces a permanent flexural bulge of the margin, which uplifted La Plata Island.

  7. IODP Expedition 333: Return to Nankai Trough Subduction Inputs Sites and Coring of Mass Transport Deposits

    Directory of Open Access Journals (Sweden)

    Michael Strasser

    2012-09-01

    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 333 returned to two sites drilled during IODP Expedition 322 on the ocean side of the Nankai Trough to pursue the characterization of the inputs to the Nankai subduction and seismogenic zone, as part of the Nankai Trough Seismogenic Experiment (NanTroSEIZE multi-expedition project. SiteC0011 is located at the seaward edge of the trench and Site C0012 on a basement high, Kashinozaki Knoll (Fig. 1. The main objectives of drilling again at these sites were to fill coring gaps in the upper part (<350 m of the sedimentary sequence, to measure heat flow, and to core the oceanic basement to a greater depth on the Knoll. New results include the observation of a diagenetic boundary within the Shikoku Basin sediments that may be compared to one documented further west by ODP Legs 131, 190 and 196 but occurs here at a lower temperature. Borehole heat flow measurements confirm spatial variations in the Shikoku Basin that were indicated by short probe surveys. Heat flow variations between topographic highs and lows may be related to fluid convection within the basement. This expedition also included the objectives of the Nankai Trough Submarine LandSLIDEhistory (NanTroSLIDE Ancillary Project Letter (APL and cored at Site C0018 a pile of mass transport deposits on the footwall of the megasplay fault, a major out of sequence thrust that presumably slips coseismically during large subduction earthquakes. This brought newinsight on the timing of these mass wasting events and on the deformation within the sliding slope sediments.

  8. Quantitative Study of Seismogenic Potential Along Manila Trench: Effects of Scaborough Seamount Chain Subduction

    Science.gov (United States)

    Yu, H.; Liu, Y.; Li, D.; Ning, J.; Matsuzawa, T.; Shibazaki, B.; Hsu, Y. J.

    2014-12-01

    Modern seismicity record along the Manila Trench shows only infrequent Mw7 earthquakes, the lack of great earthquakes may indicate the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a megathrust earthquake. We conduct numerical simulations of the plate coupling, earthquake nucleation and dynamic rupture propagation processes along the Manila subduction fault (15-19.5ºN), taking into consideration the effects of plate geometry (including subducted seamounts), fault strength, rate-state frictional properties and pore pressure variations. Specifically, we use the bathymetry to depict the outline of Manila trench along its strike, 2681 background seismicity (1970/02/13 to 2013/09/06) from Chinese Earthquake Network Center and 540 focal mechanism solutions (1976/01/01 to 2013/01/27) from Global CMT project to constrain the geometry of the subducting Sunda/Eurasian slab. The compilation of seismicity and focal mechanism indicates the plate dipping angle gradually changes from 28º (south of the Scaborough Seamount Chain) to 12º (north of it). This geometric anomaly may due to the subducted part of the seamount chain. Preliminary modeling results using gabbro gouge friction data show that the Scaborough Seamount Chain could be a barrier to earthquake rupture propagation. Only earthquakes larger than Mw7 can overcome the barrier to rupture the entire Manila trench. Smaller earthquakes would cease rupturing when it encounters the seamount chain. Moreover, we propose that Manila trench subduction zone has the potential of rupturing in a Mw8 megathrust earthquake, if the simulation period is long enough for an Mw8 earthquake cycle and dynamic rupture overcomes the subducted Scaborough Seamount Chain. Our model parameters will be further constrained by laboratory rock mechanics experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples (work in progress at China Earthquake Administration

  9. Cascadia subduction tremor muted by crustal faults

    Science.gov (United States)

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  10. Experimental Investigation of Thrust Fault Rupture Mechanics

    Science.gov (United States)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  11. Splay fault branching along the Nankai subduction zone.

    Science.gov (United States)

    Park, Jin-Oh; Tsuru, Tetsuro; Kodaira, Shuichi; Cummins, Phil R; Kaneda, Yoshiyuki

    2002-08-16

    Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.

  12. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  13. Regional differences in subduction ground motions

    CERN Document Server

    Beauval, Céline; Abrahamson, N; Theodulidis, N; Delavaud, E; Rodriguez, L; Scherbaum, F; Haendel, A

    2012-01-01

    A few ground-motion prediction models have been published in the last years, for predicting ground motions produced by interface and intraslab earthquakes. When one must carry out a probabilistic seismic hazard analysis in a region including a subduction zone, GMPEs must be selected to feed a logic tree. In the present study, the aim is to identify which models provide the best fit to the dataset M6+, global or local models. The subduction regions considered are Japan, Taiwan, Central and South America, and Greece. Most of the data comes from the database built to develop the new BCHydro subduction global GMPE (Abrahamson et al., submitted). We show that this model is among best-fitting models in all cases, followed closely by Zhao et al. (2006), whereas the local Lin and Lee (2008) is well predicting the data in Taiwan and also in Greece. The Scherbaum et al. (2009) LLH method prove to be efficient in providing one number quantifying the overall fit, but additional analysis on the between-event and within-ev...

  14. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    Science.gov (United States)

    ten Brink, Uri S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  15. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older

  16. Reconstruction of coseismic slip from the 2015 Illapel earthquake using combined geodetic and tsunami waveform data

    Science.gov (United States)

    Williamson, Amy; Newman, Andrew; Cummins, Phil

    2017-03-01

    On 16 September 2015, a moment magnitude (Mw) 8.3 earthquake struck off the coast of central Chile, generating a large tsunami with nearby coastal wave heights observed on tide gauges in Chile and Peru of up to 4.7 m and distal observations of over 40 cm in the Kuril Islands across the Pacific Ocean. Through a transcoastal geodetic study, including tsunami time series recorded at open ocean pressure gauges, subaerial deformation observed through interferometric synthetic aperture radar from the Sentinel-1 A satellite and continuous GPS, we identify the location and extent of coseismic slip. We find that most coseismic slip was concentrated in a patch immediately offshore, with little modeled slip near the trench. This result satisfies the tsunami waveforms measured in the deep ocean north of the rupture area, with wave heights up to 10 cm. While the event exhibits some features of a slow tsunami earthquake (moderately large tsunami and possible slow second-stage rupture), our inversion results do not require substantial near-trench rupture. However, the prevalence of large and shallow thrust along subduction megathrusts along central Chile raises the question of the likelihood of future such events and the implications for future hazardous tsunamigenic earthquakes.

  17. The signature of the 2011 Tohoku mega earthquake on the geomagnetic field measurements in Japan

    Directory of Open Access Journals (Sweden)

    E.M. Takla

    2013-12-01

    Full Text Available On 11 March 2011 at 05:46:23 UTC, a mega earthquake (EQ with magnitude (Mw 9.0 [The 2011 Tohoku Earthquake] occurred at a depth of about 24 km near the East coast of Honshu Island, Japan as a result of a thrust faulting on or near the subduction plate boundary between the Pacific and North American plates. Geomagnetic data from MAGDAS and Geospatial Information Authority of Japan (GSI networks have been analyzed to examine the signature of the 2011 Tohoku earthquake on the geomagnetic field measurements in Japan. Results of data analysis indicate about 5 nT increase in the total geomagnetic field intensity in the vicinity of the epicenter of 2011Tohoku EQ compared with other reference stations. Moreover, the annual range of the Z-component daily variations tends to decrease near the epicenter before the occurrence of the Tohoku EQ. Concerning the ULF emissions; the Pc 3 amplitude ratio (ZPc3/HPc3 near the epicenter at the Onagawa [ONW] station showed a good correlation with other remote reference stations before the Tohoku EQ but it started to decrease with no correlation to other stations a few weeks before the 2011 Tohoku EQ. On the other hand, the Pc 3 amplitude ratio at ONW station showed a clear anti-correlation compared with reference stations after the 2011 Tohoku EQ.

  18. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996)

    Science.gov (United States)

    Beauval, Celine; Yepes, Hugo; Bakun, William H.; Egred, Jose; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-01-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (∼2.5 millions inhabitants). A total population of ∼6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587–1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mwbetween 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity ≥VI) and 117 (Riobamba, 1797, Intensity ≥III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (±1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  19. Rock uplift above the subduction megathrust at Montague and Hinchinbrook Islands, Prince William Sound, Alaska

    Science.gov (United States)

    Ferguson, Kelly M.

    Deformation related to the transition from strike-slip to convergent slip during flat-slab subduction of the Yakutat microplate has resulted in regions of focused rock uplift and exhumation. In the St. Elias and Chugach Mountains, faulting related to transpressional processes and bending of fault systems coupled with enhanced glacial erosion causes rapid exhumation. Underplating below the syntaxial bend farther west in the Chugach Mountains and central Prince William Sound causes focused, but less rapid, exhumation. Farther south in the Prince William Sound, plate boundary deformation transitions from strike-slip to nearly full convergence in the Montague Island and Hinchinbrook Island region, which is ˜20 km above the megathrust between the Yakutat microplate and overriding North American Plate. Montague and Hinchinbrook Islands are narrow, elongate, and steep, with a structural grain formed by several megathrust fault splays, some of which slipped during the 1964 M9.2 earthquake. Presented here are 32 new apatite (U-Th)/He (AHe) and 28 new apatite fission-track (AFT) ages from the Montague and Hinchinbrook Island regions. Most AHe ages are Hanning Bay and Patton Bay faults during the 1964 earthquake. AFT ages range from ˜5 Ma to ˜20 Ma and are also younger at the SW end of Montague Island. These ages and corresponding exhumation rates indicate that the Montague and Hinchinbrook Island region is a narrow zone of intense deformation probably related to duplex thrusting along one or more megathrust fault splays. I interpret the rates of rock uplift and exhumation to have increased in the last ˜5 My, especially at the southwest end of the island system and farthest from the region dominated by strike-slip and transpressional deformation to the northeast. The narrow band of deformation along these islands likely represents the northwestern edge of a broader swath of plate boundary deformation between the Montague-Hinchinbrook Island region and the Kayak Island

  20. Bridging the gap between science and practice in seismology -Lessons from the 2011 Tohoku-oki earthquake-

    Science.gov (United States)

    Kanamori, H.

    2011-12-01

    The 2011 Tohoku-oki earthquake (Mw=9.0) caught most seismologists by surprise mainly because no great earthquake was known to have occurred in the region for several hundred years. Also, occurrence of great earthquakes is considered less likely here where an old plate is subducting. The 1933 Sanriku earthquake (Mw=8.4 to 8.6), the largest outer-rise earthquake ever recorded, is considered a manifestation of weak plate coupling. This concept led to the idea that the Sanriku is a transitional zone from Kuril (strong coupling) in the north to the Bonin-Marianas to the south (weak coupling), and is characterized by a patchy distribution of asperities. Corollary to this are relatively large aseismic slip, tsunami earthquake, repeating earthquakes, and infrequent great earthquakes in the region. Recent GPS studies indicated, however, strongly coupled zones, suggesting the potential for large mega-thrust earthquakes. However, it was inevitably difficult to constrain the EW-wise locations of the strongly coupled zones with the land-based GPS network. Also, studies of historical and old earthquakes suggest evidence of large earthquakes in the offshore region of Tohoku and elsewhere with a similar geophysical environment (e.g. Sumatra). While seismologists were pondering on the implications of all these findings, the 2011 Tohoku-oki earthquake occurred with the devastating consequence. With the extensive networks of seismographs, GPS, tsunami gauges, and other ocean-bottom instruments, scientific results came out very quickly. In less than 30 min after the occurrence, it became clear that the event was a mega-thrust with Mw~9 located close to the Japan trench. This information alone was good enough to recognize that this was an extraordinary event with extremely grave tsunami hazard that would require immediate action to minimize its impact. Within a few weeks, the overall character of the event became clear. The most unusual was a large slip, over 30m, in a zone, 100x50km2

  1. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction.

    Science.gov (United States)

    Hilairet, Nadege; Reynard, Bruno; Wang, Yanbin; Daniel, Isabelle; Merkel, Sebastien; Nishiyama, Norimasa; Petitgirard, Sylvain

    2007-12-21

    The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.

  2. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    Science.gov (United States)

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  3. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  4. The Terminal Stage of Subduction: the Hindu Kush Slab Break-off

    Science.gov (United States)

    Kufner, S. K.; Schurr, B.; Sippl, C.; Yuan, X.; Ratschbacher, L.; Akbar, A. S. M.; Ischuk, A.; Murodkulov, S.; Schneider, F.; Mechie, J.; Tilmann, F. J.

    2016-12-01

    The terminal stage of subduction arrives when the ocean basin is closed and the continental margin arrives at the trench. The opposite forces of the sinking slab and buoyant continent ultimately leads to break-off of the subducted slab. This process, although common in geological history, is rarely observed, because it is short-lived. Here we report new precise earthquake hypocenters, detailed tomographic images and earthquake source mechanisms from the Hindu Kush region in Central Asia, which hint at continental subduction and plate necking. Our images provide a rare glimpse at the ephemeral process of slab break-off: the Hindu Kush slablet in its uppermost section is thinned or already severed and that intermediate depth earthquakes cluster at the neck connecting it to the deeper slab. From a strain rate analysis, we deduce that the deep portion of the slab is in the process of detaching from the shallower fragment at much higher rates than the current convergence rate at the surface. The increased strain rate might arise as the buoyant continental crust, which is dragged into the subduction system in its terminal stage, resists subduction, whereas the earlier subducted mantle lithosphere pulls from underneath.

  5. Boosting of Nonvolcanic Tremor by Regional Earthquakes 2011-2012 in Guerrero, Mexico

    Science.gov (United States)

    Real, J. A.; Kostoglodov, V.; Husker, A. L.; Payero, J. S.; G-GAP Research Team

    2013-05-01

    Sistematic observation of nonvolcanic tremor (NVT) in Guerrero, Mexico started in 2005 after the installation of MASE broadband seismic network. Since 2008 the new "G-GAP" network of 10 seismic mini-arrays provides the data for the NVT detailed studies together with the broadband stations of the Servicio Seimologogico Nacional (SSN). Most of the NVT recorded in the central Guerrero area are of so called ambient type, which in most cases are related with the occurrence of aseismic slow slip events (SSE). While the locations of NVT are estimated relatively well, their depths are not reliable but distributed close to the subduction plate interface. The ambient NVT activity increases periodically every 3-4 months and is strongly modulated by large SSE. Another type of tremor has been observed in Guerrero during and after several large teleseismic events, such as Mw=8.8, 2010 Maule, Chile earthquake. This NVT was triggered by the surface waves when they traveled across the tremor-generating area. Large teleseismic events may also activate a noticeable post-seismic NVT activity. In subduction zones, triggering of the NVT and its post-seismic activation by the regional and local earthquakes have not yet been observed. We tried to detect the NVT triggered or boosting of post-seismic tremor activity by two recent large earthquakes that occurred in Guerrero: December 11, 2011, Mw=6.5 Zumpango, and March 20, 2012, Mw=7.4 Ometepec. The first earthquake was of the intraplate type, with normal focal mechanism, at the depth of 58 km, and the second was the shallow interplate event of the thrust type, at the depth of ~15 km. It is technically difficult to separate the NVT signal in its characteristic 1-10 Hz frequency range from the high frequency input from the regional earthquake. The Zumpango event, which is located closer to the NVT area, produced a noticeable boosting of post-seismic NVT activity to the North of its epicenter. Meanwhile the larger magnitude Ometepec

  6. Tectonic Origin of the 1899 Yakutat Bay Earthquakes, Alaska, and Insights into Future Hazards

    Science.gov (United States)

    Gulick, S. S.; LeVoir, M. A.; Haeussler, P. J.; Saustrup, S.

    2012-12-01

    On September 10th the largest of four earthquakes (Mw 8.2) that occurred in southeast Alaska on 1899 produced a 6 m tsunami and may have produced as much as 14 m of co-seismic uplift. This earthquake had an epicenter somewhere near Yakutat or Disenchantment Bays. These bays lie at the transition between the Fairweather Fault (the Pacific-North American strike-slip plate boundary), and the Yakutat Terrane-North American subduction zone. The deformation front of this subduction zone is thought to include the eastern fault in the Pamplona Zone offshore, the Malaspina Fault onshore, and the Esker Creek Fault near Yakutat Bay. The 10 September 1899 event could have taken place on a Yakutat-North American megathrust that daylights in Yakutat or Disenchantment Bay. Alternatively, the 10 September 1899 earthquake could have originated from the Fairweather-Boundary and Yakutat faults, transpressive components of the Fairweather strike-slip system present in the Yakutat Bay region, or from thrusting along the Yakutat and Otemaloi Faults on the southeast flank of Yakutat Bay. Characterizing fault slip during the Alaskan earthquakes of 1899 is vital to assessing both subduction zone structure and seismic hazards in the Yakutat Bay area. Each possible fault model has a different implication for modern hazards. These results will be used to update seismic hazard and fault maps and assess future risk to the Yakutat Bay and surrounding communities. During Aug. 6-17th, we anticipate acquiring high-resolution, marine multichannel seismic data aboard the USGS vessel Alaskan Gyre in Yakutat and Disenchantment Bays to search for evidence of recent faulting and directly test these competing theories for the 10 September 1899 event. This survey uses the University of Texas Institute for Geophysics' mini-GI gun, 24-channel seismic streamer, portable seismic compressor system, and associated gun control and data acquisition system to acquire the data. The profiles have a nominal common

  7. Recommended Practices in Thrust Measurements

    Science.gov (United States)

    2013-10-01

    thruster is an important measurement parameter. For instance, the thrusters for the ST7/ LISA Pathfinder mission had to demonstrate a thrust noise level...Ceccanti, F., Priami, L., and Paita, L., “Direct Thrust and Thrust Noise Measurements on the LISA Pathfinder Field Emission Thruster IEPC-2009-183

  8. Strength of stick-slip and creeping subduction megathrusts from heat flow observations.

    Science.gov (United States)

    Gao, Xiang; Wang, Kelin

    2014-08-29

    Subduction faults, called megathrusts, can generate large and hazardous earthquakes. The mode of slip and seismicity of a megathrust is controlled by the structural complexity of the fault zone. However, the relative strength of a megathrust based on the mode of slip is far from clear. The fault strength affects surface heat flow by frictional heating during slip. We model heat-flow data for a number of subduction zones to determine the fault strength. We find that smooth megathrusts that produce great earthquakes tend to be weaker and therefore dissipate less heat than geometrically rough megathrusts that slip mainly by creeping. Copyright © 2014, American Association for the Advancement of Science.

  9. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    Science.gov (United States)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  10. Subduction processes related to the Sea of Okhotsk

    Science.gov (United States)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  11. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  12. Mechanical power, thrust power

    OpenAIRE

    Gatta, Giorgio; Cortesi, Matteo; Swaine, Ian; Zamparo, Paola

    2017-01-01

    The purpose of this study was to explore the relationships between mechanical power, thrust power, propelling efficiency and sprint performance in elite swimmers. Mechanical power was measured in 12 elite sprint male swimmers: i) in the laboratory, by using a whole body swimming ergometer (W’TOT); and ii) in the pool, by measuring full tethered swimming force (FT) and maximal swimming velocity (Vmax): W’T = FT .Vmax. Propelling efficiency ( P) was estimated based on the “paddle wheel model“ a...

  13. Migration of teleseismically triggered tremor in southwestern Japan subduction zone

    Science.gov (United States)

    Kurihara, R.; Obara, K.; Maeda, T.; Takeo, A.

    2016-12-01

    Deep low frequency tremor in subduction zone is sometimes triggered by surface waves from teleseismic earthquakes. In southwestern Japan, a sequence of triggered tremor was reported for the 2004 Sumatra-Andaman earthquake (Miyazawa and Mori, 2006). Such triggered tremor was observed in the ambient tremor zone where the short-term slow slip events episodically occur. However, the triggered tremor is not distributed in the entire source area of ambient tremor, but is concentrated in several fixed spots. In this study, we tried to reveal accurate location of triggered tremor and investigate the spatiotemporal characteristics for understandings of condition and occurrence mechanism of triggered tremor. We detected low frequency earthquakes in tremor sequence triggered by teleseismic wave by using matched filter technique. The data were obtained at 10 NIED Hi-net stations. We used low frequency earthquakes occurred in 2014 detected by JMA as template events. Time duration of the templates is five seconds. We analyzed continuous waveform data for one hour from the origin times of 2004 Sumatra, 2008 Wenchuan, 2012 Sumatra and 2015 Nepal earthquakes. In western Shikoku, detected triggered tremor is concentrated at distant fixed two spots with an average separation of 20 km for analyzed four teleseismic events. Particularly, southwestern spot has a streak-like distribution along the dip direction of the subducting plate. In this spot, we detected along-dip migration of triggered tremor. The migration speed is about 300 km/h for 2008 Wenchuan earthquake and about 20 km/h for 2015 Nepal earthquake. Shelly et al. (2007) reported similar along-dip migration of ambient tremor at velocity from 25 to 150 km/h. Therefore, migrations of triggered tremor detected in this study suggest that the triggered tremor is also associated by slow slip event like as ambient tremor.

  14. IODP expedition 334: An investigation of the sedimentary record, fluid flow and state of stress on top of the seismogenic zone of an erosive subduction margin

    Digital Repository Service at National Institute of Oceanography (India)

    Vannucchi, P.; Ujiie, K.; Stroncik, N.; IODP Exp. 334 Scientific Party; Yatheesh, V.

    The Costa Rica Seismogenesis Project (CRISP) is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP) Expedition 334 by R...

  15. Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W. [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth and Atmospheric Sciences; Fleming, R.W. [Geological Survey, Denver, CO (United States); Cruikshank, K.M. [Portland State Univ., OR (United States). Dept. of Geology; Martosudarmo, S.Y. [BPP Technologi, Jakarta (Indonesia)

    1997-12-31

    The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.

  16. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment

    Science.gov (United States)

    Schaefer, Andreas; Wenzel, Friedemann

    2017-04-01

    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept

  17. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    Science.gov (United States)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides

  18. The Nankai Trough earthquake tsunamis in Korea: Numerical studies of the 1707 Hoei earthquake and physics-based scenarios

    Science.gov (United States)

    Kim, S.; Saito, T.; Fukuyama, E.; Kang, T. S.

    2016-12-01

    Historical documents in Korea and China report abnormal waves in the sea and rivers close to the date of the 1707 Hoei earthquake, which occurred in the Nankai Trough, off southwestern Japan. This indicates that the tsunami caused by the Hoei earthquake might have reached Korea and China, which suggests a potential hazard in Korea from large earthquakes in the Nankai Trough. We conducted tsunami simulations to study the details of tsunamis in Korea caused by large earthquakes. We employed the 1707 Hoei earthquake source model and physics-based scenarios of anticipated earthquake in the Nankai subduction zone. We also considered the effect of horizontal displacement on tsunami generation. Our simulation results from the Hoei earthquake model and the anticipated earthquake models showed that the maximum tsunami height along the Korean coast was less than 0.5 m. Even though the tsunami is not life-threatening, the effect of larger earthquakes should be still considered.

  19. From subduction to arc-continent collision: Geodynamic modeling of strain partitioning and mountain building in the Indonesia Archipelago

    Science.gov (United States)

    Yang, Y.; Liu, M.; Harris, R.

    2006-12-01

    The arc-continental collision in the eastern Indonesia archipelago began 3-5 million years ago. This process has been continuously building one of the youngest orogenic belts on Earth. Both GPS measurement and geological observation indicated westward weakening of crustal shortening in this region, correlating with the transition from continent-arc collision in the Timor trough to oceanic slab-arc convergence in the Java trench. We have developed a finite element model to investigate how the continent-ocean floor transition on the subducting Australian plate and rheologic heterogeneity of the Sunda region have controlled strain partitioning and mountain building in the overriding plate. To simulate the progressive oblique collision between the Indo- Australian plate and Southeast Asian plate, we constructed the model in 3D with nonlinear viscous rheology that also includes fault zones and rheological heterogeneity in both horizontal and vertical direction. Topographic loading is considered, and tectonic loading is calculated from the velocity boundary condition based on either Nuvel-1A or GPS measurements. Our model showed direct link between plate coupling and crustal shortening in the upper plate. When the coupling is weak, deformation concentrates near the trench. As coupling increases, more plate convergence is accommodated by crustal shorting in the upper plate. The initiation of the continent-arc collision in the eastern Timor could explain the cease of oceanic floor spreading in the south Banda basin and the development of back arc thrust. Slipping of the back arc thrusts played a critical role in uplift and tilting of the upper plate in the double-vergent Timor islands. Within a reasonable range of rheological parameters, our model is able to predict surface velocity, uplift rate, and stress states consistent with the GPS data, geological observation and earthquake mechanism solutions. Results of this model provide some useful insights into the evolution of

  20. Counter-intuitive Behavior of Subduction Zones: Weak Faults Rupture, Strong Faults Creep

    Science.gov (United States)

    Wang, K.; Gao, X.; Bilek, S. L.; Brown, L. N.

    2014-12-01

    Subduction interfaces that produce great earthquakes are often said to be "strongly coupled", and those that creep are said to be "weakly coupled". However, the relation between the strength and seismogenic behavior of subduction faults is far from clear. Seismological and geodetic observations of earthquake rupture usually provide information only on stress change, not fault strength. In this study, we infer fault strength by calculating frictional heating along megathrusts and comparing results with heat flow measurements. We find that stick-slip megathrusts that have produced great earthquakes such as at Japan Trench and northern Sumatra have very low apparent friction coefficients (~ 0.02 - 0.03), but megathrusts that creep such as at Northern Hikurangi and Manila Trench have higher values (up to ~0.13). The differnce cannot be explained by coseismic dynamic weakening of the stick-slip megathrusts, because the average stress drop in great earthquakes is usually less than 5 MPa, equivalent to a coseismic reduction of apparent friction coefficient by less than ~0.01. Therefore our results indicate differences in the static strength of different subduction faults. Why are the creeping faults stronger? We think it is related to their creeping mechanism. Very rugged subducting seafloor tends to cause creep and hinder great earthquake rupture (Wang and Bilek, 2014). In contrast, all giant earthquakes have occurred at subduction zones with relatively smooth subducting seafloor. Large geometrical irregularities such as seamounts generate heterogeneous structure and stresses that promote numerous small and medium size earthquakes and aseismic creep. The creeping is a process of breaking and wearing of geometrical irregularities in a deformation zone and is expected to be against relatively large resistance (strong creep). This is different from the creeping of smooth faults due to the presence of weak fault gouge (weak creep) such as along the creeping segment of the

  1. Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction

    Science.gov (United States)

    Kufner, Sofia-Katerina; Schurr, Bernd; Haberland, Christian; Zhang, Yong; Saul, Joachim; Ischuk, Anatoly; Oimahmadov, Ilhomjon

    2017-03-01

    The terminal stage of subduction sets in when the continental margin arrives at the trench and the opposite forces of the sinking slab and buoyant continent extend and ultimately sever the subducted lithosphere. This process, although common in geological history, is short-lived, and therefore rarely observed. The deep seismicity under the Hindu Kush (Central Asia), including the 2015 Mw 7.5 event, is a rare case that testifies to this process. Here, we use new seismological data to create a high resolution picture of slab break-off and infer its dynamics. High precision earthquake locations and tomographic images show subduction of continental crust down to ∼180 km. A large dataset of source mechanisms indicates sub-vertical extension in the entire slab but a strain rate analysis showed that the deeper seismogenic portion of the slab, below the subducted crust, extends at higher rates (∼40 km/Ma). Most Mw > 7 earthquakes between 1983-2015, relocated relative to our new well-constrained earthquake catalog, cluster in a small volume below 180 km, and indicate shearing on an overturned interface. A slip model for the latest 2015 Mw 7.5 event suggests that it ruptured into a seismic gap on this interface. From this configuration we conclude that a horizontal slab tear develops along-strike of the Hindu Kush seismic zone at the base of the subducted continental crust. Below the subducted crust, the deepest and also largest earthquakes (180-265 km) are likely associated with deformation in the mantle lithosphere. From the seismicity distribution and the rupture mechanisms we further deduce that the dominant deformation mechanism in this deeper portion of the slab changes along-strike from simple to pure shear. The fastest detachment rates and largest earthquakes occur during the simple shear dominated stage. Earthquakes in the upper part (60-180 km), above the rapidly extending slab, might be triggered by processes related to the subduction of crustal rocks.

  2. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    Science.gov (United States)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  3. A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan

    Science.gov (United States)

    Wang, Zhi

    2017-04-01

    In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing

  4. Imaging deformation in submarine thrust belts using seismic attributes

    Science.gov (United States)

    Iacopini, David; Butler, Robert W. H.

    2011-02-01

    Uncertainty exists as to the patterns of deformation that develop within submarine thrust belts. This case study uses a large-scale gravity-driven fold-thrust structure as an analogue for submarine fold thrust systems in general. Seismic attribute analysis and mapping provide ways of identifying complex fault patterns and associated deformation that are otherwise unresolved in conventional amplitude displays. These methods are developed and applied to a 3D dataset and used to investigate the geometry, internal architecture and the nature of the low signal/noise incoherency and discontinuities observed on the km-scale. Semblance (coherency), curvatures and spectral decomposition were all computed and used as attributes. Collectively these define volumes within the seismic data where the signal is greatly reduced — features termed here "disturbance geobodies". The study shows that thrust faults that, on conventional amplitude displays appear to be simple and continuous, are likely to consist of complex arrays of anastamosing fault strands. Adjacent to these composite fault zones are greater volumes of deformed rocks (disturbance geobodies) across which there are only minor stratal offsets. Similarly volumes of high stratal curvature coincide with disturbance geobodies, again interpreted as zones of weak, distributed deformation. These relationships between narrow thrust faults and broader zones of deformation are broadly comparable to those observed in outcrops within exhumed thrust systems. Application of the seismic imaging techniques developed here will improve the understanding of the localization of deformation in sedimentary successions with important implications for predicting fluid flow within other deep water structures such as subduction accretion complexes.

  5. Depth varying rupture properties during the 2015 Mw 7.8 Gorkha (Nepal) earthquake

    Science.gov (United States)

    Yue, Han; Simons, Mark; Duputel, Zacharie; Jiang, Junle; Fielding, Eric; Liang, Cunren; Owen, Susan; Moore, Angelyn; Riel, Bryan; Ampuero, Jean Paul; Samsonov, Sergey V.

    2017-09-01

    On April 25th 2015, the Mw 7.8 Gorkha (Nepal) earthquake ruptured a portion of the Main Himalayan Thrust underlying Kathmandu and surrounding regions. We develop kinematic slip models of the Gorkha earthquake using both a regularized multi-time-window (MTW) approach and an unsmoothed Bayesian formulation, constrained by static and high rate GPS observations, synthetic aperture radar (SAR) offset images, interferometric SAR (InSAR), and teleseismic body wave records. These models indicate that Kathmandu is located near the updip limit of fault slip and approximately 20 km south of the centroid of fault slip. Fault slip propagated unilaterally along-strike in an ESE direction for approximately 140 km with a 60 km cross-strike extent. The deeper portions of the fault are characterized by a larger ratio of high frequency (0.03-0.2 Hz) to low frequency slip than the shallower portions. From both the MTW and Bayesian results, we can resolve depth variations in slip characteristics, with higher slip roughness, higher rupture velocity, longer rise time and higher complexity of subfault source time functions in the deeper extents of the rupture. The depth varying nature of rupture characteristics suggests that the up-dip portions are characterized by relatively continuous rupture, while the down-dip portions may be better characterized by a cascaded rupture. The rupture behavior and the tectonic setting indicate that the earthquake may have ruptured both fully seismically locked and a deeper transitional portions of the collision interface, analogous to what has been seen in major subduction zone earthquakes.

  6. Lateral dampers for thrust bearings

    Science.gov (United States)

    Hibner, D. H.; Szafir, D. R.

    1985-01-01

    The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face.

  7. Earthquakes in British Columbia

    National Research Council Canada - National Science Library

    1991-01-01

    This pamphlet provides information about the causes of earthquakes, where earthquakes occur, British Columbia plate techtonics, earthquake patterns, earthquake intensity, geology and earthquake impact...

  8. Thrust modeling for hypersonic engines

    Science.gov (United States)

    Riggins, D. W.; Mcclinton, C. R.

    1995-01-01

    Expressions for the thrust losses of a scramjet engine are developed in terms of irreversible entropy increases and the degree of incomplete combustion. A method is developed which allows the calculation of the lost vehicle thrust due to different loss mechanisms within a given flow-field. This analysis demonstrates clearly the trade-off between mixing enhancement and resultant increased flow losses in scramjet combustors. An engine effectiveness parameter is defined in terms of thrust loss. Exergy and the thrust-potential method are related and compared.

  9. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    Science.gov (United States)

    Yoshida, Masaki

    2017-07-01

    compressed above the upwelling flow. The reason for this is that the strong lateral mantle flow originating from the upwelling flow generates resistance drag force at the base of the overriding plates. This situation may apply to a case of East Asia, under which the typical morphology of sub-horizontal slabs can be seen by seismic tomography. The strong lateral velocity observed in the shallower mantle wedge in the present numerical simulation may account for both the compressional subduction tectonics and back arc compression in the Japan-Kuril-Kamchatka, Aleutian, and South Chile trenches, as well as for weak plate-slab coupling, strong seismic coupling, and the possibility of great earthquakes along these trenches.

  10. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults

    NARCIS (Netherlands)

    den Hartog, S.A.M.; Spiers, C.J.

    2013-01-01

    To understand the temperature/depth distribution of destructive earthquakes in subduction megathrusts, and the mechanisms of nucleation of these events, data on the frictional behaviour of phyllosilicate/quartz-rich megathrust fault gouges under in-situ conditions are needed. We performed rotary

  11. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone

    Science.gov (United States)

    Penney, Camilla; Tavakoli, Farokh; Saadat, Abdolreza; Nankali, Hamid Reza; Sedighi, Morteza; Khorrami, Fateme; Sobouti, Farhad; Rafi, Zahid; Copley, Alex; Jackson, James; Priestley, Keith

    2017-06-01

    We study the Makran subduction zone, along the southern coasts of Iran and Pakistan, to gain insights into the kinematics and dynamics of accretionary prism deformation. By combining techniques from seismology, geodesy and geomorphology, we are able to put constraints on the shape of the subduction interface and the style of strain across the prism. We also address the long-standing tectonic problem of how the right-lateral shear taken up by strike-slip faulting in the Sistan Suture Zone in eastern Iran is accommodated at the zone's southern end. We find that the subduction interface in the western Makran may be locked, accumulating elastic strain, and move in megathrust earthquakes. Such earthquakes, and associated tsunamis, present a significant hazard to populations around the Arabian Sea. The time-dependent strain within the accretionary prism, resulting from the megathrust earthquake cycle, may play an important role in the deformation of the Makran region. By considering the kinematics of the 2013 Balochistan and Minab earthquakes, we infer that the local gravitational and far-field compressive forces in the Makran accretionary prism are in balance. This force balance allows us to calculate the mean shear stress and effective coefficient of friction on the Makran megathrust, which we find to be 5-35 MPa and 0.01-0.03, respectively. These values are similar to those found in other subduction zones, showing that the abnormally high sediment thickness in the offshore Makran does not significantly reduce the shear stress on the megathrust.

  12. Rupture process of the 2016 Mw 7.8 Ecuador earthquake from joint inversion of InSAR data and teleseismic P waveforms

    Science.gov (United States)

    Yi, Lei; Xu, Caijun; Wen, Yangmao; Zhang, Xu; Jiang, Guoyan

    2018-01-01

    The 2016 Ecuador earthquake ruptured the Ecuador-Colombia subduction interface where several historic megathrust earthquakes had occurred. In order to determine a detailed rupture model, Interferometric Synthetic Aperture Radar (InSAR) images and teleseismic data sets were objectively weighted by using a modified Akaika's Bayesian Information Criterion (ABIC) method to jointly invert for the rupture process of the earthquake. In modeling the rupture process, a constrained waveform length method, unlike the traditional subjective selected waveform length method, was used since the lengths of inverted waveforms were strictly constrained by the rupture velocity and rise time (the slip duration time). The optimal rupture velocity and rise time of the earthquake were estimated from grid search, which were determined to be 2.0 km/s and 20 s, respectively. The inverted model shows that the event is dominated by thrust movement and the released moment is 5.75 × 1020 Nm (Mw 7.77). The slip distribution extends southward along the Ecuador coast line in an elongated stripe at a depth between 10 and 25 km. The slip model is composed of two asperities and slipped over 4 m. The source time function is approximate 80 s that separated into two segments corresponding to the two asperities. The small magnitude of the slip occurred in the updip section of the fault plane resulted in small tsunami waves that were verified by observations near the coast. We suggest a possible situation that the rupture zone of the 2016 earthquake is likely not overlapped with that of the 1942 earthquake.

  13. Parameterization of 18th January 2011 earthquake in Dalbadin Region, Southwest Pakistan

    Directory of Open Access Journals (Sweden)

    Shafiq-Ur-Rehman

    2013-12-01

    In the present study the earthquake was relocated using the technique of travel time residuals. Relocated coordinates and depth were utilized to calculate the focal mechanism solution with outcome of a dominant strike slip mechanism, which is contrary to normal faulting. Relocated coordinates and resulting mechanism are more reliable than many reporting agencies as evaluation in this study is augmented by data from local seismic monitoring network of Pakistan. The tectonics in the area is governed by active subduction along the Makran Subduction Zone. This particular earthquake has strike slip mechanism due to breaking of subducting oceanic plate. This earthquake is located where oceanic lithosphere is subducting along with relative movements between Lut and Helmand blocks. Magnitude of this event i.e. Mw = 7.3, re evaluated depth and a previous study of mechanism of earthquake in same region (Shafiq et al., 2011 also supports the strike slip movement.

  14. The Himalayan Seismogenic Zone: A New Frontier for Earthquake Research

    Science.gov (United States)

    Brown, Larry; Hubbard, Judith; Karplus, Marianne; Klemperer, Simon; Sato, Hiroshi

    2016-04-01

    The Mw 7.8 Gorkha, Nepal, earthquake that occurred on April 25 of this year was a dramatic reminder that great earthquakes are not restricted to the large seismogenic zones associated with subduction of oceanic lithosphere. Not only does Himalayan seismogenesis represents important scientific and societal issues in its own right, it constitutes a reference for evaluating general models of the earthquake cycle derived from the studies of the oceanic subduction systems. This presentation reports results of a Mini-Workshop sponsored by the GeoPrisms project that was held in conjunction with the American Geophysical Union on December 15, 2015, designed to organize a new initiative to study the great Himalaya earthquake machine. The Himalayan seismogenic zone shares with its oceanic counterparts a number of fundamental questions, including: a) What controls the updip and downdip limits of rupture? b) What controls the lateral segmentation of rupture zones (and hence magnitude)? c) What is the role of fluids in facilitating slip and or rupture? d) What nucleates rupture (e..g. asperities?)? e) What physical properties can be monitored as precursors to future events? f) How effectively can the radiation pattern of future events be modeled? g) How can a better understanding of Himalayan rupture be translated into more cost effective preparations for the next major event in this region? However the underthrusting of continental, as opposed to oceanic, lithosphere in the Himalayas frames these questions in a very different context: h) How does the greater thickness and weaker rheology of continental crust/lithosphere affect locking of the seismogenic zone? i) How does the different thermal structure of continental vs oceanic crust affect earthquake geodynamics? j) Are fluids a significant factor in intercontinental thrusting? k) How does the basement morphology of underthrust continental crust affect locking/creep, and how does it differ from the oceanic case? l) What is the

  15. Pulses of earthquake activity in the mantle wedge track the route of slab fluid ascent

    Science.gov (United States)

    White, Lloyd; Rawlinson, Nicholas; Lister, Gordon; Tanner, Dominique; Macpherson, Colin; Morgan, Jason

    2016-04-01

    Earthquakes typically record the brittle failure of part of the Earth at a point in space and time. These almost invariably occur within the crust or where the upper surface of subducting lithosphere interacts with the overriding mantle. However, there are also reports of rare, enigmatic earthquakes beneath rifts, above mantle plumes or very deep in the mantle. Here we report another type of mantle earthquake and present three locations where earthquake clusters occur in the mantle wedge overlying active subduction zones. These earthquake clusters define broadly circular to ellipsoidal columns that are 50 km or greater in diameter from depths between ~150 km and the surface. We interpret these rare pulses of earthquakes as evidence of near vertical transport of fluids (and associated flux-melts) from the subducted lithosphere through the mantle wedge. Detailed temporal analysis shows that most of these earthquakes occur over two-year periods, with the majority of events occurring in discrete month-long flurries of activity. As the time and location of each earthquake is recorded, pulses of seismic activity may provide information about the rate of magma ascent from the dehydrated subducted slab to sub-arc/backarc crust. This work indicates that fluids are not transported through the mantle wedge by diapirism, but through sub-vertical pathways facilitated by fracture networks and dykes on monthly to yearly time scales. These rare features move us toward solving what has until now represented a missing component of the subduction factory.

  16. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  17. Large paleoearthquake timing and displacement near Damak in eastern Nepal on the Himalayan Frontal Thrust

    Science.gov (United States)

    Wesnousky, Steven G.; Kumahara, Yasuhiro; Chamlagain, Deepak; Pierce, Ian K.; Reedy, Tabor; Angster, Stephen J.; Giri, Bibek

    2017-08-01

    An excavation across the Himalayan Frontal Thrust near Damak in eastern Nepal shows displacement on a fault plane dipping 22° has produced vertical separation across a scarp equal to 5.5 m. Stratigraphic, structural, geometrical, and radiocarbon observations are interpreted to indicate that the displacement is the result of a single earthquake of 11.3 ± 3.5 m of dip-slip displacement that occurred 1146-1256 A.D. Empirical scaling laws indicate that thrust earthquakes characterized by average displacements of this size may produce rupture lengths of 450 to >800 km and moment magnitudes Mw of 8.6 to >9. Sufficient strain has accumulated along this portion of the Himalayan arc during the roughly 800 years since the 1146-1256 A.D. earthquake to produce another earthquake displacement of similar size.

  18. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  19. Rupture Velocities of Intermediate- and Deep-Focus Earthquakes

    Science.gov (United States)

    Warren, L. M.

    2014-12-01

    The rupture velocities of intermediate- and deep-focus earthquakes --- how they vary between subduction zones, how they vary with depth, and what their maximum values are --- may help constrain the mechanism(s) of the earthquakes. As part of a global study of intermediate- and deep-focus earthquakes, I have used rupture directivity to estimate the rupture vector (speed and orientation) for 422 earthquakes >70 km depth with MW ≥5.7 since 1990. I estimate the rupture velocity relative to the local P-wave velocity (vr/α). Since the same method is used for all earthquakes, the results can be readily compared across study areas. The study areas --- Middle America, South America, Tonga-Kermadec, Izu-Bonin-Marianas, and Japan-Kurils-Kamchatka --- include some of the warmest and coldest subduction zones: subducting plate ages range from 9-150 Myr and descent rates range from 1-13 cm/yr. Across all subduction zones and depth ranges, for the 193 earthquakes with observable directivity and well-constrained rupture vectors, most earthquakes rupture on the more horizontal of the two possible nodal planes. However, the rupture vectors appear to be randomly-oriented relative to the slip vector, so the earthquakes span the continuum from Mode II (i.e., parallel slip and rupture vectors) to Mode III rupture (i.e., perpendicular slip and rupture vectors). For this earthquake population, the mean rupture velocity is 0.43 vr/α ± 0.14 vr/α. The mean earthquake rupture velocities are similar between all subduction zones. Since the local seismic wavespeed is faster in colder subduction zones, absolute rupture velocities are faster in colder subduction zones. Overall, the fastest rupture velocities exceed the local S-wave speed. The supershear ruptures are associated with earthquakes closer to Mode II than Mode III faulting. This is consistent with theoretical calculations, which limit the rupture velocity to the S-wave speed for Mode III rupture but the P-wave speed for Mode II

  20. The ADN project : an integrated seismic monitoring of the northern Ecuadorian subduction

    Science.gov (United States)

    Nocquet, Jean-Mathieu; Yepes, Hugo; Vallee, Martin; Mothes, Patricia; Regnier, Marc; Segovia, Monica; Font, Yvonne; Vaca, Sandro; Bethoux, Nicole; Ramos, Cristina

    2010-05-01

    The subduction of the Nazca plate beneath South America has caused one of the largest megathrust earthquake sequence during the XXth century with three M>7.7 earthquakes that followed the great 1906 (Mw = 8.8) event. Better understanding the processes leading to the occurrence of large subduction earthquakes requires to monitor the ground motion over a large range of frequencies. We present a new network (ADN) developed under a collaboration between the IRD-GeoAzur (Nice, France) and the IG-EPN (Quito, Ecuador). Each station of the ADN network includes a GPS recording at 5 Hz, an accelerometer and a broadband seismometer. CGPS data will quantify the secular deformation induced by elastic locking along the subduction interface, enabling a detailed modelling of the coupling distribution. CGPS will be used to monitor any transient deformation induced by Episodic Slip Event along the subduction, together with broadband seismometers that can detect any tremors or seismic signatures that may accompany them. In case of any significant earthquake, 5 Hz GPS and accelerometer will provide near field data for earthquake source detailed study. Finally, the broadband seismometers will be used for study of the microseismicity and structure of the subduction zone. The network includes 9 stations, operating since 2008 and covering the coastal area from latitude 1.5°S to the Colombian border. In this poster, we will present preliminary assessment of the data, first hypocenters location, magnitude and focal mechanism determination, as well as results about an episodic slip event detected in winter 2008.

  1. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  2. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  3. Numerical Modelling of Subduction Plate Interface, Technical Advances for Outstanding Questions

    Science.gov (United States)

    Le Pourhiet, L.; Ruh, J.; Pranger, C. C.; Zheng, L.; van Dinther, Y.; May, D.; Gerya, T.; Burov, E. B.

    2015-12-01

    The subduction zone interface is the place of the largest earthquakes on earth. Compared to the size of a subduction zone itself, it constitutes a very thin zone (few kilometers) with effective rheological behaviour that varies as a function of pressure, temperature, loading, nature of the material locally embedded within the interface as well as the amount of water, melts and CO2. Capturing the behaviour of this interface and its evolution in time is crucial, yet modelling it is not an easy task. In the last decade, thermo-mechanical models of subduction zone have flourished in the literature. They mostly focused on the long-term dynamics of the subduction; e.g. flat subduction, slab detachment or exhumation. The models were validated models against PTt path of exhumed material as well as topography. The models that could reproduce the data all included a mechanically weak subduction channel made of extremely weak and non cohesive material. While this subduction channel model is very convenient at large scale and might apply to some real subduction zones, it does not capture the many geological field evidences that point out the exhumation of very large slice of almost pristine oceanic crust along localised shear zone. Moreover, modelling of sismological and geodetic data using short term tectonic modelling approach also point out that large localised patches rupture within the subduction interface, which is in accordance with geological data but not with large-scale long-term tectonic models. I will present how high resolution models permit to produce slicing at the subduction interface and give clues on how the plate coupling and effective location of the plate interface vary over a few millions of year time scale. I will then discuss the implication of these new high-resolution long-term models of subduction zone on earthquake generation, report progress in the development of self-consistent thermomechanical codes which can handle large strain, high resolution

  4. Geophysics. Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface.

    Science.gov (United States)

    Yamashita, Y; Yakiwara, H; Asano, Y; Shimizu, H; Uchida, K; Hirano, S; Umakoshi, K; Miyamachi, H; Nakamoto, M; Fukui, M; Kamizono, M; Kanehara, H; Yamada, T; Shinohara, M; Obara, K

    2015-05-08

    Detection of shallow slow earthquakes offers insight into the near-trench part of the subduction interface, an important region in the development of great earthquake ruptures and tsunami generation. Ocean-bottom monitoring of offshore seismicity off southern Kyushu, Japan, recorded a complete episode of low-frequency tremor, lasting for 1 month, that was associated with very-low-frequency earthquake (VLFE) activity in the shallow plate interface. The shallow tremor episode exhibited two migration modes reminiscent of deep tremor down-dip of the seismogenic zone in some other subduction zones: a large-scale slower propagation mode and a rapid reversal mode. These similarities in migration properties and the association with VLFEs strongly suggest that both the shallow and deep tremor and VLFE may be triggered by the migration of episodic slow slip events. Copyright © 2015, American Association for the Advancement of Science.

  5. Co- and post-seismic slip associated with the Mw 7.7 2007 Tocopilla earthquake (North Chile): first results from InSAR and GPS data.

    Science.gov (United States)

    Béjar-Pizarro, M.; Carrizo, D.; Socquet, A.; Armijo, R.; de Chabalier, J. B.; Nercessian, A.; Charade, A.; Ruegg, J. C.; Barrientos, S.; Campos, J.

    2009-04-01

    The November 2007 Tocopilla (Mw 7.7) earthquake occurred in the seismic gap of North Chile, a region where there has been no major thrust event in the last 130 years. A network of continuous GPS stations operated by IPGP, Caltech, DGF and IRD measured the coseismic displacement associated with this earthquake, as well as the subsequent post seismic deformation. By combining the cGPS data with co-seismic interferograms we could retrieve the geometry and slip distribution of the rupture on the subduction interface. The earthquake initiated in the vicinity of Tocopilla city and vanished ~150km south, below the Mejillones Peninsula, a geomorphic singularity that appears to act as a barrier arresting large earthquakes (1877, 1995 and 2007 events). Tocopilla earthquake broke the deep part of the seismogenic zone down to the transition zone (35-50 km depth) and did not reach the surface. The slip distribution is characterized by two main slip asperities occurring 30 km apart, consistent with the first results from seismology (Peyrat et al., 2008, Delouis et al. 2008). We also study the early postseimic deformation using our GPS displacements collected during the months following the main shock and Envisat ASAR interferograms spanning the same period. Our preliminary results show that most of the postseismic slip occurred within the first 10 days after the main shock, and was mostly concentrated at the southern end of the rupture. We attempt to answer the next questions in relation to the postseismic deformation: Where was the postseismic slip located with respect to the coseismic slip? Can we distinguish different mechanisms of post-seismic deformation following the Tocopilla earthquake (afterslip, viscoelastic relaxation)? If yes, where (near field, far field) and when (temporal and spatial evolution of each mechanism)? What amount of afterslip experienced the subduction interface after the earthquake? How much does it represent compared to the seismic moment released by

  6. Lower Miocene coeval thrusting and strike-slip faulting in the Western Betics

    Science.gov (United States)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre

    2015-04-01

    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper subduction plate deformation since 30 Ma. The western end of the system shows an arcuate geometry across the Gibraltar arc, the Betico-Rifean belt, in which the relationship between slab dynamics and onshore tectonics is poorly constrained. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1/ the Alboran Front limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts involving the Mesozoic cover of the Iberian margin (Subbetics Domain); 2/ the Alboran Internal Thrust allows the juxtaposition of a strongly attenuated lithosphere section, containing the large Ronda subcontinental mantle bodies, on top of crustal rocks. New structural data show that two major E-W strike-slip corridors controlled the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. The Alozaina piggy-back Basin, mainly formed by olistotromic deposits of Lower Miocene age, provides an age estimate for the continuous westward translation of the Alboran Domain, with reference to Iberia, that is accommodated mainly by an E-W lateral strike-slip ramp and a N60° frontal thrust ramp. In this context, a thrust sequence led to the piling up of thrust units in the Western Betics and to the crustal emplacement of the Ronda Peridotites bodies.

  7. The 3 May 2006 (Mw 8.0) and 19 March 2009 (Mw 7.6) Tonga earthquakes: Intraslab compressional faulting below the megathrust

    Science.gov (United States)

    Meng, Qingjun; Heeszel, David S.; Ye, Lingling; Lay, Thorne; Wiens, Douglas A.; Jia, Minghai; Cummins, Phil R.

    2015-09-01

    The Tonga subduction zone is among the most seismically active regions and has the highest plate convergence rate in the world. However, recorded thrust events confidently located on the plate boundary have not exceeded Mw 8.0, and the historic record suggests low seismic coupling along the arc. We analyze two major thrust fault earthquakes that occurred in central Tonga in 2006 and 2009. The 3 May 2006 Mw 8.0 event has a focal mechanism consistent with interplate thrusting, was located west of the trench, and caused a moderate regional tsunami. However, long-period seismic wave inversions and finite-fault modeling by joint inversion of teleseismic body waves and local GPS static offsets indicate a slip distribution centered ~65 km deep, about 30 km deeper than the plate boundary revealed by locations of aftershocks, demonstrating that this was an intraslab event. The aftershock locations were obtained using data from seven temporary seismic stations deployed shortly after the main shock, and most lie on the plate boundary, not on either nodal plane of the deeper main shock. The fault plane is ambiguous, and investigation of compound rupture involving coseismic slip along the megathrust does not provide a better fit, although activation of megathrust faulting is responsible for the aftershocks. The 19 March 2009 Mw 7.6 compressional faulting event occurred below the trench; finite-fault and W-phase inversions indicate an intraslab, ~50 km deep centroid, with ambiguous fault plane. This event also triggered small megathrust faulting. There continues to be a paucity of large megathrust earthquakes in Tonga.

  8. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    Science.gov (United States)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  9. Linking Oceanic Tsunamis and Geodetic Gravity Changes of Large Earthquakes

    Science.gov (United States)

    Fu, Yuning; Song, Y. Tony; Gross, Richard S.

    2017-08-01

    Large earthquakes at subduction zones usually generate tsunamis and coseismic gravity changes. These two independent oceanic and geodetic signatures of earthquakes can be observed individually by modern geophysical observational networks. The Gravity Recovery and Climate Experiment twin satellites can detect gravity changes induced by large earthquakes, while altimetry satellites and Deep-Ocean Assessment and Reporting of Tsunamis buoys can observe resultant tsunamis. In this study, we introduce a method to connect the oceanic tsunami measurements with the geodetic gravity observations, and apply it to the 2004 Sumatra Mw 9.2 earthquake, the 2010 Maule Mw 8.8 earthquake and the 2011 Tohoku Mw 9.0 earthquake. Our results indicate consistent agreement between these two independent measurements. Since seafloor displacement is still the largest puzzle in assessing tsunami hazards and its formation mechanism, our study demonstrates a new approach to utilizing these two kinds of measurements for better understanding of large earthquakes and tsunamis.

  10. Aircraft Horizontal Thrust Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is designed to support the DoD mission by providing unique air vehicle installed engine performance (thrust output) measurements. This system consists...

  11. Nowcasting Earthquakes

    Science.gov (United States)

    Rundle, J. B.; Donnellan, A.; Grant Ludwig, L.; Turcotte, D. L.; Luginbuhl, M.; Gail, G.

    2016-12-01

    Nowcasting is a term originating from economics and finance. It refers to the process of determining the uncertain state of the economy or markets at the current time by indirect means. We apply this idea to seismically active regions, where the goal is to determine the current state of the fault system, and its current level of progress through the earthquake cycle. In our implementation of this idea, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. Our method does not involve any model other than the idea of an earthquake cycle. Rather, we define a specific region and a specific large earthquake magnitude of interest, ensuring that we have enough data to span at least 20 or more large earthquake cycles in the region. We then compute the earthquake potential score (EPS) which is defined as the cumulative probability distribution P(nearthquakes in the region. From the count of small earthquakes since the last large earthquake, we determine the value of EPS = P(nearthquake cycle in the defined region at the current time.

  12. A discussion of numerical subduction initiation

    Science.gov (United States)

    Buiter, Susanne; Ellis, Susan

    2016-04-01

    In nature, subduction can initiate in various ways: Shortening can localise at oceanic transform faults, extinct spreading centres, or inherited passive margin faults; or, alternatively, subduction can be triggered from existing subduction systems by along-strike trench propagation, polarity reversals, or trench jumps. Numerical studies that specifically address subduction initiation have highlighted the roles of sediment loading, rheological strength contrasts, strain softening, and continental topographic gradients, among others. Usually, however, numerical models that aim to investigate subduction dynamics prefer to bypass the subduction initiation phase and its complexities, and focus instead on the stages during which the slab is descending into the mantle. However, even in these models, subduction still needs to begin. It is disturbingly easy to define initial model geometries that do not result in subduction. The specific combination of initial model geometries and values for rheological parameters that successfully initiates subduction has even been referred to as 'the sweet spot' in model space. One cause of subduction initiation failure is when the subducting and overriding plates lock, resulting in either indentation or severe dragging downwards of the overriding plate. This may point to a difficulty in maintaining a weak subduction interface during model evolution. A second factor that may cause difficulties is that initial model geometry and stresses need to balance, as otherwise the first model stages may show spurious deformation associated with reaching equilibrium. A third requirement that may cause problems is that the surface needs to have sufficient displacement freedom to allow the overriding plate to overthrust the subducting plate. That also implies an exclusion of sharp corners in the subduction interface near the surface. It is the interplay of subduction interface geometry, interface strength and subducting plate rheology that determines

  13. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  14. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    Science.gov (United States)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  15. Large scale dynamic rupture scenario of the 2004 Sumatra-Andaman megathrust earthquake

    Science.gov (United States)

    Ulrich, Thomas; Madden, Elizabeth H.; Wollherr, Stephanie; Gabriel, Alice A.

    2016-04-01

    The Great Sumatra-Andaman earthquake of 26 December 2004 is one of the strongest and most devastating earthquakes in recent history. Most of the damage and the ~230,000 fatalities were caused by the tsunami generated by the Mw 9.1-9.3 event. Various finite-source models of the earthquake have been proposed, but poor near-field observational coverage has led to distinct differences in source characterization. Even the fault dip angle and depth extent are subject to debate. We present a physically realistic dynamic rupture scenario of the earthquake using state-of-the-art numerical methods and seismotectonic data. Due to the lack of near-field observations, our setup is constrained by the overall characteristics of the rupture, including the magnitude, propagation speed, and extent along strike. In addition, we incorporate the detailed geometry of the subducting fault using Slab1.0 to the south and aftershock locations to the north, combined with high-resolution topography and bathymetry data.The possibility of inhomogeneous background stress, resulting from the curved shape of the slab along strike and the large fault dimensions, is discussed. The possible activation of thrust faults splaying off the megathrust in the vicinity of the hypocenter is also investigated. Dynamic simulation of this 1300 to 1500 km rupture is a computational and geophysical challenge. In addition to capturing the large-scale rupture, the simulation must resolve the process zone at the rupture tip, whose characteristic length is comparable to smaller earthquakes and which shrinks with propagation distance. Thus, the fault must be finely discretised. Moreover, previously published inversions agree on a rupture duration of ~8 to 10 minutes, suggesting an overall slow rupture speed. Hence, both long temporal scales and large spatial dimensions must be captured. We use SeisSol, a software package based on an ADER-DG scheme solving the spontaneous dynamic earthquake rupture problem with high

  16. Exhuming retroarc fold-and-thrust belts: a comparison between the southern Patagonian Andes and the Argentine Precordillera

    Science.gov (United States)

    Fosdick, J. C.

    2014-12-01

    Detailed constraints on erosional flux are critical for understanding how exhumational processes control and respond to tectonic events in orogenic belts. This work compares the thermochronologic record and erosional behavior of retroarc thrust belts at two latitudes in the Andes with contrasting Cenozoic climate and deformational records: the glaciated southern Patagonian Andes and the semiarid Argentine Precordillera of the Central Andes. Both regions have undergone crustal shortening during Andean growth and have been affected by thermotectonic processes associated with subduction of oceanic ridges; the Chile Ridge spreading center and Juan Fernández Ridge, respectively. In Patagonia, deep erosion occurred during Miocene retroarc deformation. Zircon He thermochronology documents regional cooling and unroofing of the thrust belt ~22-17 Ma. This behavior likely reflects an upper plate manifestation of incipient subduction of the Chile Ridge spreading center and enhanced unroofing during thermally driven regional uplift. Late Cenozoic expansion of the Patagonian icesheet led to further excavation of the thrust belt, indicating a strong climatic overprinting on thrust belt erosional behavior. In contrast, less overall Cenozoic exhumation is observed in the Argentine Precordillera, despite high strain and crustal thickening. Pre-Jurassic zircon He dates from the Paleozoic strata within thrust sheets suggest Cenozoic Andean deformation was insufficient to exhume rocks from beneath the zircon He closure depth. The apatite He record shows a close correlation between thrust faulting and locus of erosion, and document eastward in-sequence rock cooling from 16 to 2 Ma across the Precordillera tracking with the progressive faulting of the Blanca, San Roque, and Niquivil thrust faults during this time. Pliocene apatite He dates located along the external margins of the Precordillera suggest that the most recent cooling and unroofing is associated with both out

  17. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake.

    Science.gov (United States)

    Donnellan, Andrea; Grant Ludwig, Lisa; Parker, Jay W; Rundle, John B; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-09-01

    Tectonic motion across the Los Angeles region is distributed across an intricate network of strike-slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike-slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north-south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still-locked deeper structures. A future M6.1-6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping.

  18. Potential for a large earthquake near Los Angeles inferred from the 2014 La Habra earthquake

    Science.gov (United States)

    Grant Ludwig, Lisa; Parker, Jay W.; Rundle, John B.; Wang, Jun; Pierce, Marlon; Blewitt, Geoffrey; Hensley, Scott

    2015-01-01

    Abstract Tectonic motion across the Los Angeles region is distributed across an intricate network of strike‐slip and thrust faults that will be released in destructive earthquakes similar to or larger than the 1933 M6.4 Long Beach and 1994 M6.7 Northridge events. Here we show that Los Angeles regional thrust, strike‐slip, and oblique faults are connected and move concurrently with measurable surface deformation, even in moderate magnitude earthquakes, as part of a fault system that accommodates north‐south shortening and westerly tectonic escape of northern Los Angeles. The 28 March 2014 M5.1 La Habra earthquake occurred on a northeast striking, northwest dipping left‐lateral oblique thrust fault northeast of Los Angeles. We present crustal deformation observation spanning the earthquake showing that concurrent deformation occurred on several structures in the shallow crust. The seismic moment of the earthquake is 82% of the total geodetic moment released. Slip within the unconsolidated upper sedimentary layer may reflect shallow release of accumulated strain on still‐locked deeper structures. A future M6.1–6.3 earthquake would account for the accumulated strain. Such an event could occur on any one or several of these faults, which may not have been identified by geologic surface mapping. PMID:27981074

  19. Subduction zone slip variability during the last millennium, south-central Chile

    Science.gov (United States)

    Dura, Tina; Horton, Benjamin P.; Cisternas, Macro; Ely, Lisa L; Hong, Isabel; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica E.; Parnell, Andrew C.; Nikitina, Daria

    2017-01-01

    The Arauco Peninsula (37°-38°S) in south-central Chile has been proposed as a possible barrier to the along-strike propagation of megathrust ruptures, separating historical earthquakes to the south (1960 AD 1837, 1737, and 1575) and north (2010 AD, 1835, 1751, 1657, and 1570) of the peninsula. However, the 2010 (Mw 8.8) earthquake propagated into the Arauco Peninsula, re-rupturing part of the megathrust that had ruptured only 50 years earlier during the largest subduction zone earthquake in the instrumental record (Mw 9.5). To better understand long-term slip variability in the Arauco Peninsula region, we analyzed four coastal sedimentary sections from two sites (Tirúa, 38.3°S and Quidico, 38.1°S) located within the overlap of the 2010 and 1960 ruptures to reconstruct a ∼600-year record of coseismic land-level change and tsunami inundation. Stratigraphic, lithologic, and diatom results show variable coseismic land-level change coincident with tsunami inundation of the Tirúa and Quidico marshes that is consistent with regional historical accounts of coseismic subsidence during earthquakes along the Valdivia portion of the subduction zone (1960 AD and 1575) and coseismic uplift during earthquakes along the Maule portion of the subduction zone (2010 AD, 1835, 1751). In addition, we document variable coseismic land-level change associated with three new prehistoric earthquakes and accompanying tsunamis in 1470–1570 AD, 1425–1455, and 270–410. The mixed record of coseismic subsidence and uplift that we document illustrates the variability of down-dip and lateral slip distribution at the overlap of the 2010 and 1960 ruptures, showing that ruptures have repeatedly propagated into, but not through the Arauco Peninsula and suggesting the area has persisted as a long-term impediment to slip through at least seven of the last megathrust earthquakes (∼600 years).

  20. Cenozoic structural evolution, thermal history, and erosion of the Ukrainian Carpathians fold-thrust belt

    Science.gov (United States)

    Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar

    2018-01-01

    The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.

  1. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro

    2014-09-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  2. Slab2 - Updated subduction zone geometries and modeling tools

    Science.gov (United States)

    Portner, D. E.; Hayes, G. P.; Furtney, M.; Moore, G.; Flamme, H. E.; Hearne, M. G.

    2016-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0) combines a variety of geophysical data sets (earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow subduction zone, bathymetry, trench locations, and sediment thickness information) to image the shape of subducting slabs in three dimensions, at approximately 85% of the world's convergent margins. The database is used extensively for a variety of purposes from earthquake source imaging to magnetotelluric modeling. Gaps in Slab1.0 exist where input data are sparse and/or where slabs are geometrically complex (and difficult to image with an automated approach). Slab1.0 also does not include information on the uncertainty in the modeled geometrical parameters, or the input data used to image them, and provides no means for others to reproduce the models it describes. Now near completion, Slab2 will update and replace Slab1.0 by: (1) extending modeled slab geometries to the full extent of all known global subduction zones; (2) incorporating regional data sets (e.g., tomography models) that may describe slab geometry more comprehensively than do previously used teleseismic data; (3) providing information on the uncertainties in each modeled slab surface; (4) modifying our modeling approach to a fully-three dimensional data interpolation, rather than following the 2-D to 3-D steps of Slab1.0; (5) adding further layers to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling; (6) migrating the slab modeling code base to a more universally distributable language, Python; and (7) providing the code base and input data we use to create our models, such that the community can both reproduce the slab geometries, and add their own data sets to ours to further improve upon those models in the future. In this presentation we will describe our progress made in creating Slab2, and provide information on

  3. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    Science.gov (United States)

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  4. Processes and consequences of deep subduction

    NARCIS (Netherlands)

    Rubie, David C.; Hilst, R.D. van der

    2001-01-01

    Subduction of slabs of oceanic lithosphere into the deep mantle involves a wide range of geophysical and geochemical processes and is of major importance for the physical and chemical evolution of the Earth. For example, subduction and subduction-related volcanism are major processes through

  5. The 1985 México earthquake The 1985 México earthquake

    Directory of Open Access Journals (Sweden)

    Moreno Murillo Juan Manuel

    1995-10-01

    Full Text Available

    This paper includes a bibliographic review with the description of the various aspects about the (Ms = 8.1 Michoacan, Mexico earthquake, which comprised of three events. The main shock of the September 19, 1985 earthquake occurred on Thursday at 7h. 17m. 46.6s. local time in Mexico City, and had (Ms = 8.1. The focus of the event was a depth of approximately 18 km. A second shock occurred on Friday evening 21 September at 7h. 38m. p.m. local time. The last aftershock occurred on 30 April of 1986 (Ms = 7.0. A prior event occurred to the September 1985 earthquake, occurred on 28 May, 1985 (mb = 5.2 and is described too. This event, was a terrible natural disaster for that country, at least 9,500 people were killed, about 30,000 were injured, more that 100,000 were left homeless and severe damage occurred in many parts of Mexico City and several states of central Mexico. According to some sources, It is estimated that the earthquake seriously affected an area of approximately 825,000 square kilometers. This paper describes a summary of the global tectonic setting, genesis and location of the epicenter, an interpretation of the source mechanism and a analyses at these results from some stations that recorded this earthquake and at the same time, a comparison between the two largest earthquake of 1985. Moreover, this paper describes the principal damage resulting and a description of effects from tsunami produced from earthquake. The 1985 Mexico earthquake occurred as a result of slipping in the subduction process between the Cocos and American plates. This was a shallow interplate thrust type event which occurred in the intersection of the Orozco fracture with the Middle American trench.

  6. Tectonics of the IndoBurma Oblique Subduction Zone

    Science.gov (United States)

    Steckler, M. S.; Seeber, L.; Akhter, S. H.; Betka, P. M.; Cai, Y.; Grall, C.; Mondal, D. R.; Gahalaut, V. K.; Gaherty, J. B.; Maung Maung, P.; Ni, J.; Persaud, P.; Sandvol, E. A.; Tun, S. T.

    2016-12-01

    The Ganges-Brahmaputra Delta (GBD) is obliquely colliding with the IndoBurma subduction zone. Most of the 42 mm/y of arc-parallel motion is absorbed in a set of dextral to dextral-convergent faults, the Sagaing, Kabaw and Churachandpur-Mao Faults. The 13-17 mm/y of convergence with the delta has built a 250-km wide active accretionary prism. The upper part of the 19-km sediment thickness consists of a shallowing-up stack of prograding strata that has shifted the shelf edge 3-400 km since the Himalayan orogeny at 50 Ma. The upper 3-5 km sandy shelf to fluvial strata are deformed into a broad fold and thrust belt above an overpressured décollement. It forms a flat shallow roof thrust in the frontal accretionary prism. The structure of the deeper part of the accretionary prism, which must transfer the incoming sediments to the upper plate, is unknown. GPS indicates the downdip end of the megathrust locked zone is 25 km at 92.5°E. The deformation front, marked by nascent detachment folds above the shallow décollement reaches the megacity of Dhaka in the middle of the GBD. The seismogenic potential of this portion of the prism is unknown. Arc volcanism in Myanmar, 500 km east of the deformation front, is sparse. Limited geochemical data on the arc volcanics are consistent with hot slab conditions. One possibility is that the deep GBD slab and basement are metamorphosed and dewatered early in the subduction process whereby most of the fluids are transferred to the growing prism by buoyancy driven migration or accretion of fluid-rich strata. Since it is entirely subaerial this little-studied region crossing Bangladesh, India and Myanmar provides an opportunity for a detailed multidisciplinary geophysical and geological investigation. It has the potential to highlight the role of fluids in subduction zones, the tectonics of extreme accretion and their seismic hazards, and the interplay between driving and resistance forces of a subduction zone during a soft collision.

  7. Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake

    Science.gov (United States)

    Bakun, W.H.

    2005-01-01

    Japan Meteorological Agency (JMA) intensity assignments IJMA are used to derive intensity attenuation models suitable for estimating the location and an intensity magnitude Mjma for historical earthquakes in Japan. The intensity for shallow crustal earthquakes on Honshu is equal to -1.89 + 1.42MJMA - 0.00887?? h - 1.66log??h, where MJMA is the JMA magnitude, ??h = (??2 + h2)1/2, and ?? and h are epicentral distance and focal depth (km), respectively. Four earthquakes located near the Japan Trench were used to develop a subducting plate intensity attenuation model where intensity is equal to -8.33 + 2.19MJMA -0.00550??h - 1.14 log ?? h. The IJMA assignments for the MJMA7.9 great 1923 Kanto earthquake on the Philippine Sea-Eurasian plate interface are consistent with the subducting plate model; Using the subducting plate model and 226 IJMA IV-VI assignments, the location of the intensity center is 25 km north of the epicenter, Mjma is 7.7, and MJMA is 7.3-8.0 at the 1?? confidence level. Intensity assignments and reported aftershock activity for the enigmatic 11 November 1855 Ansei Edo earthquake are consistent with an MJMA 7.2 Philippine Sea-Eurasian interplate source or Philippine Sea intraslab source at about 30 km depth. If the 1855 earthquake was a Philippine Sea-Eurasian interplate event, the intensity center was adjacent to and downdip of the rupture area of the great 1923 Kanto earthquake, suggesting that the 1855 and 1923 events ruptured adjoining sections of the Philippine Sea-Eurasian plate interface.

  8. The Seismic Sources of the 2009 Samoa Earthquake from Tsunami Simulation

    Science.gov (United States)

    Lai, P.-Y.; Chao, B. F.; Chang, E. T.-Y.; Wu, T.-R.

    2012-04-01

    A big earthquake occurred in the Samoa-Tonga region on September 29, 2009, as the Pacific plate subducts westward beneath the Australia plate along the Tonga trench. The earthquake was recognized as a multiple-source event, but two distinct sets of rupture solutions have been presented: Deducing only from the seismic data, Lay et al. (2010) resolved this instance as an initiation of an intraplate normal faulting (Mw8.1) triggering the two underthrusting subevents (both in Mw7.8); whereas Beaven et al. (2010) presented that the normal fault (Mw7.9) was triggered by the slow thrusting of the interplate motion (Mw8.0), determined from various types of data including tsunami waves. Here, we explore whether and how much the simulations of tsunamis can help discriminating the seismic source solutions. The program COMCOT is used to model the tsunami waves and propagation. The simulated waveforms are compared with the actual observations from three ocean bottom pressure recorders of DART project (Deep-ocean Assessment Reporting of Tsunamis, developed by NOAA). We apply the two afore-mentioned rupture models to determine the respective initial conditions and the radial spreading of the tsunami waves. According to the tsunami waveform simulation, the tsunami waves are the sea-surface perturbation provoked by the large normal fault and the relatively minor thrusts, but in varied weightings of normal-to-thrust mechanism at different DART stations. Simulating with two rupture models for the normal fault provided by Lay et al., it favors the geometry of the normal fault of dipping to northeast, reverse to the commonly thought trench-ward image. This is consistent with the one determined by Beaven et al. Based on our experience, a detailed rupture description can draw a better approximation in tsunami simulation. However, the tsunami simulation cannot discriminate the variation of source mechanisms in the sense that the seismic source time functions processing within one or two

  9. Scale independence of décollement thrusting

    Science.gov (United States)

    McBride, John H.; Pugin, Andre J.M.; Hatcher, Robert D.

    2007-01-01

    . Subduction-related accretionary complexes also produce thrust systems with similar geometries in semi- to unconsolidated materials.

  10. Subducting characteristic of the Pacific slab beneath northeast China

    Science.gov (United States)

    Jiang, G.; Zhang, G.; Xu, Y.

    2012-12-01

    The volcanoes locating in northeast China are very active. Some researchers consider that the origin of volcanoes is closely related to the subducting western Pacific plate and the upwelling asthenosphere. The thickness and the existing range of the subducted plate are not clear as far although the seismic tomography results obviously show that the Pacific plate exists below the volcano region. Therefore, in this study, we adopted the method combining the teleseismic tomography with travel time forward modeling to further study the velocity structure beneath northeast China, especially the precise model of subducted Pacific plate. Our results show that (1) the average thickness and velocity perturbation of slab is 85 km and 1%, respectively, and the slab has not been thickened compared with the previous result of the Japan Sea; (2) the Pacific plate subducted into the mantle transition zone with a shallow dip angle, and changed horizontally when it touched the bottom of mantle transition zone, and extended westward to Longitude 127°E and then stops over there; (3) the horizontal slab locates right below the volcano region. These above features help people understand the origin of intraplate volcanoes and the geodynamical process better. (a) Tomographic result along 43°N. Red and blue colors represent the high and low velocity anomalies, respectively, and the scale is shown at the right-bottom; The profile line is shown in (b); The black triangles represent the volcanoes locating near the profile; The black solid and dashed lines show the depths of upper and lower boundaries of Pacific plate, respectively. The red dots represent the deep earthquakes around the profile. (b) Location of profile AA' along 43°N. Black triangles denote volcanoes; White squares represent the stations; Blue contours denote the depth of upper boundary of Pacific plate; Black and red dots represent the deep epicenters.

  11. Thermal buoyancy on Venus - Underthrusting vs subduction

    Science.gov (United States)

    Burt, Jeffrey D.; Head, James W.

    1992-01-01

    The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.

  12. Aftershock seismicity of the 2010 Maule Mw=8.8 Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution?

    Science.gov (United States)

    Rietbrock, A.; Ryder, I.; Hayes, G.; Haberland, C.; Comte, D.; Roecker, S.

    2012-01-01

    The 27 February 2010 Maule, Chile (Mw=8.8) earthquake is one of the best instrumentally observed subduction zone megathrust events. Here we present locations, magnitudes and cumulative equivalent moment of the first -2 months of aftershocks, recorded on a temporary network deployed within 2 weeks of the occurrence of the mainshock. Using automatically-determined onset times and a back projection approach for event association, we are able to detect over 30,000 events in the time period analyzed. To further increase the location accuracy, we systematically searched for potential S-wave arrivals and events were located in a regional 2D velocity model. Additionally, we calculated regional moment tensors to gain insight into the deformation history of the aftershock sequence. We find that the aftershock seismicity is concentrated between 40 and 140 km distance from the trench over a depth range of 10 to 35 km. Focal mechanisms indicate a predominance of thrust faulting, with occasional normal faulting events. Increased activity is seen in the outer-rise region of the Nazca plate, predominantly in the northern part of the rupture area. Further down-dip, a second band of clustered seismicity, showing mainly thrust motion, is located at depths of 40–45 km. By comparing recent published mainshock source inversions with our aftershock distribution, we discriminate slip models based on the assumption that aftershocks occur in areas of rapid transition between high and low slip, surrounding high-slip regions of the mainshock.

  13. Slab-Forearc Density Structure and Rigidity Controlling the Seismogenic Behaviour Along the Peru-Chile Subduction Zone

    Science.gov (United States)

    Tassara, A.; Hackney, R.; Legrand, D.

    2007-12-01

    The rupture area and recurrence time of historical earthquakes along the Peru-Chile subduction zone and seismicity recorded by modern networks show a distinctive spatiotemporal distribution defining a characteristic segmentation of the seismogenic zone. It is unclear what factors control this segmentation. Knowledge about this topic is urgent to understand the processes generating devastating subduction earthquakes and to improve its hazard assessment. We are studying this problem for the Peru-Chile subduction zone from two perspectives. First, we applied a wavelet-based spectral isostatic analysis of topography and gravity to compute a high resolution map of the flexural rigidity along the subduction zone. This parameter is a function of the thermo- mechanical structure of both converging plates and the frictional properties of the subduction channel between them. Spatial variations on this map show correlation with the seismogenic segmentation, suggesting that rigidity and the associated physical factors play a fundamental role for the seismogenic behaviour along the margin. Second, we used an existing 3D density model to derive a map of vertical stress acting on the subducting slab below the forearc. This stress is a function of the thickness and density structure of the forearc resulting from long-term geological processes, and is the main component of the normal stress that regulates the magnitude of shear stresses to be released during earthquakes. The spatial variations of vertical stresses show significant correlations with the seismogenic segmentation, implying that the geologically-inherited density structure of the forearc is an important parameter for sustaining a time-persistent seismic segmentation. Of particular interest is the analysis of the giant (Mw 9.5) 1960 Valdivia earthquake, which nucleated in a region of high rigidity and high vertical stress and propagated southward into a region of very low rigidity and vertical stress. This could have

  14. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    Science.gov (United States)

    Foix, Oceane; Crawford, Wayne; Pelletier, Bernard; Regnier, Marc; Garaebiti, Esline; Koulakov, Ivan

    2017-04-01

    The 1400-km long Vanuatu subduction zone results from subduction of the oceanic Australian plate (OAP) beneath the North-Fijian microplate (NFM). Seismic and volcanic activity are both high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the large forearc islands of Santo and Malekula. This collision coincides with a strongly decreased local convergence velocity rate - 35 mm/yr compared to 120-160 mm/yr to the north and south - and significant uplift on the overriding plate, indicating a high degree of deformation. The close proximity of large uplifted forearc islands to the trench provides excellent coverage of the megathrust seismogenic zone for a seismological study. We used 10 months of seismological data collected using the 30-instrument land and sea ARC-VANUATU seismology network to construct a 3D velocity model — using the LOTOS joint location/model inversion software — and locate 11655 earthquakes using the NonLinLoc software suite. The 3-D model reveals low P and S velocities in the first tens of kilometers beneath both islands, probably due to water infiltration in the heavily faulted upper plate. The model also suggests the presence of a subducted seamount beneath south Santo. The earthquake locations reveal a complex interaction of faults and stress zones related to high and highly variable deformation. Both brittle deformation and the seismogenic zone depth limits vary along-slab and earthquake clusters are identified beneath central and south Santo, at about 10-30 km of depth, and southwest of Malekula island between 10-20 km depth.

  15. Three-dimensional thermal structure and seismogenesis in the Tohoku and Hokkaido subduction system

    Science.gov (United States)

    van Keken, P. E.; Kita, S.; Nakajima, J.; Bengtson, A. K.; Hacker, B. R.; Abers, G. A.

    2010-12-01

    The Northern Japan arc is characterized by fast subduction of old oceanic lithosphere. The high density instrumentation and high seismicity make this an ideal natural laboratory to study the interplay between subduction zone dynamics, dehydration, migration of fluids, and seismogenesis. In this study we use high resolution finite element models to predict the thermal structure of the subduction slab below Tohoku (Northern Honshu) and Hokkaido. These models allow us to predict the pressure, temperature and mineralogy of the subducted crust and mantle. We use these models to predict the (p,T) conditions of earthquakes that are relocated with a precision of around 1 km by double difference techniques. Below Northern Hokkaido and Tohoku we find that the earthquake activity is strong in crust and the uppermost mantle for temperatures seismic moment. The strongest 3D variations in this arc occur below southern Hokkaido. This 200 km wide region is characterized by a change in trench geometry, anomalously low heatflow and an anomalous velocity structure in the mantle wedge. Tomographic imaging suggest that continental crust is subducted to significant depth, thereby insulating the subducting slab from the hot mantle wedge at least at intermediate depths. The thermal insulation is also suggested by the deepening of the earthquakes in the slab (Kita et al., EPSL, 2010). This region may be characterized by active crustal erosion which would lead to a further blanketing of the crust by a sedimentary layer. Further modifications in thermal structure are possible due to the 3D wedge flow that is generated by the along-arc variations in trench geometry. We quantitatively verify the relative importance of these processes using 2D and 3D dynamical models. Without the seismically imaged crustal structure the earthquake temperatures are significantly elevated compared to the Tohoku and (northern) Hokkaido sections. If we take the modified crustal structure into account we find a (p

  16. Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake

    NARCIS (Netherlands)

    Herman, Matthew W.; Nealy, Jennifer L.; Yeck, William L.; Barnhart, William D.; Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.

    2017-01-01

    On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0–7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for

  17. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  18. Seismicity, shear failure and modes of deformation in deep subduction zones

    Science.gov (United States)

    Lundgren, Paul R.; Giardini, Domenico

    1992-01-01

    The joint hypocentral determination method is used to relocate deep seismicity reported in the International Seismological Center catalog for earthquakes deeper than 400 km in the Honshu, Bonin, Mariannas, Java, Banda, and South America subduction zones. Each deep seismic zone is found to display planar features of seismicity parallel to the Harvard centroid-moment tensor nodal planes, which are identified as planes of shear failure. The sense of displacement on these planes is one of resistance to deeper penetration.

  19. Testing Spatial Correlation of Subduction Interplate Coupling and Forearc Morpho-Tectonics

    Science.gov (United States)

    Goldfinger, Chris; Meigs, Andrew; Meigs, Andrew; Kaye, Grant D.; VanLaningham, Sam

    2005-01-01

    Subduction zones that are capable of generating great (Mw greater than 8) earthquakes appear to have a common assemblage of forearc morphologic elements. Although details vary, each have (from the trench landward), an accretionary prism, outer arc high, outer forearc basin, an inner forean: basin, and volcanic arc. This pattern is common in spite of great variation in forearc architecture. Because interseismic strain is known to be associated with a locked seismogenic plate interface, we infer that this common forearc morphology is related, in an unknown way, to the process of interseismic Strain accumulation and release in great earthquakes. To date, however, no clear relationship between the subduction process and the common elements of upper plate form has emerged. Whereas certain elements of the system, i.e. the outer arc high, are reasonably well- understood in a structural context, there is little understanding of the structural or topographic evolution of the other key elements like the inner arc and inner forearc basin, particularly with respect to the coupled zone of earthquake generation. This project developed a model of the seismologic, topographic, and uplift/denudation linkages between forearc topography and the subduction system by: 1) comparing geophysical, geodetic, and topographic data from subduction margins that generate large earthquakes; 2) using existing GPS, seismicity, and other data to model the relationship between seismic cycles involving a locked interface and upper-plate topographic development; and 3) using new GPS data and a range-scale topographic, uplift, and denudation analysis of the presently aseismic Cascadia margin to constrain topographic/plate coupling relationships at this poorly understood margin.

  20. Stress and Strength of Seismogenic and Creeping Subduction Faults (Invited)

    Science.gov (United States)

    Wang, K.; Bilek, S. L.; Wada, I.; Gao, X.; Brown, L.

    2013-12-01

    Force balance studies of subduction zone forearcs constrained by earthquake focal mechanisms, active faulting, and topography suggest very weak subduction megathrusts. If represented by an effective coefficient of friction μ', the ratio of shear to normal stress at failure, the average μ' value of most megathrusts is about 0.03, seldom exceeding 0.06, an order of magnitude lower than fault strengths predicted by the Byerlee's law with hydrostatic pore fluid pressure. The μ' value required to explain heat flow observations using megathrust frictional heating modeling is usually also about 0.03, regardless of whether the megathrust is seismogenic or creeping. The mechanism for the weakness is not fully understood, although it must be a combined consequence of fault zone material, fault zone fabric, and pore fluid pressure. Prior to March 11, 2011, the Japan Trench was a rare exception where pervasive margin-normal compression of the upper plate made it difficult to infer megathrust strength. But wholesale stress reversal in much of the forearc due to the M 9 Tohoku earthquake dramatically verified the low-strength (μ' = 0.03) prediction of Wang and Suyehiro (1999, GRL 26(35), 2307-2310). This value translates to depth-dependant shear strength of roughly 10 MPa at 10 km and 30 MPa at 30 km. With regard to how fault strength and stress affect earthquake processes, several issues deserve special attention. (1) There is little doubt that no megathrust is 'strongly' locked, but creeping megathrusts can be either weaker or stronger than locked faults. In fact, subduction of extremely rugged seafloor causes creeping, despite strong resistance caused by geometrical incompatibilities. Physical meanings of regarding locked and creeping faults as 'strongly coupled' and 'weakly coupled', respectively, are in serious question. (2) A μ' value of 0.03-0.05 is a spatial average. For a smooth fault, even small changes in pore fluid pressure alone can cause local deviations from

  1. Deterministic and Nondeterministic Behavior of Earthquakes and Hazard Mitigation Strategy

    Science.gov (United States)

    Kanamori, H.

    2014-12-01

    Earthquakes exhibit both deterministic and nondeterministic behavior. Deterministic behavior is controlled by length and time scales such as the dimension of seismogenic zones and plate-motion speed. Nondeterministic behavior is controlled by the interaction of many elements, such as asperities, in the system. Some subduction zones have strong deterministic elements which allow forecasts of future seismicity. For example, the forecasts of the 2010 Mw=8.8 Maule, Chile, earthquake and the 2012 Mw=7.6, Costa Rica, earthquake are good examples in which useful forecasts were made within a solid scientific framework using GPS. However, even in these cases, because of the nondeterministic elements uncertainties are difficult to quantify. In some subduction zones, nondeterministic behavior dominates because of complex plate boundary structures and defies useful forecasts. The 2011 Mw=9.0 Tohoku-Oki earthquake may be an example in which the physical framework was reasonably well understood, but complex interactions of asperities and insufficient knowledge about the subduction-zone structures led to the unexpected tragic consequence. Despite these difficulties, broadband seismology, GPS, and rapid data processing-telemetry technology can contribute to effective hazard mitigation through scenario earthquake approach and real-time warning. A scale-independent relation between M0 (seismic moment) and the source duration, t, can be used for the design of average scenario earthquakes. However, outliers caused by the variation of stress drop, radiation efficiency, and aspect ratio of the rupture plane are often the most hazardous and need to be included in scenario earthquakes. The recent development in real-time technology would help seismologists to cope with, and prepare for, devastating tsunamis and earthquakes. Combining a better understanding of earthquake diversity and modern technology is the key to effective and comprehensive hazard mitigation practices.

  2. Analysis of Tsunamigenic Coastal Rock Slope Failures Triggered by the 2007 Earthquake in the Chilean Fjordland

    Science.gov (United States)

    Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.

    2011-12-01

    The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure

  3. Analog earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, R.B. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.

  4. Dynamic source inversion of the M6.5 intermediate-depth Zumpango earthquake in central Mexico: A parallel genetic algorithm

    Science.gov (United States)

    Díaz-Mojica, John; Cruz-Atienza, Víctor M.; Madariaga, Raúl; Singh, Shri K.; Tago, Josué; Iglesias, Arturo

    2014-10-01

    We introduce a method for imaging the earthquake source dynamics from the inversion of ground motion records based on a parallel genetic algorithm. The source model follows an elliptical patch approach and uses the staggered-grid split-node method to simulate the earthquake dynamics. A statistical analysis is used to estimate errors in both inverted and derived source parameters. Synthetic inversion tests reveal that the average rupture speed (Vr), the rupture area, and the stress drop (Δτ) may be determined with formal errors of ~30%, ~12%, and ~10%, respectively. In contrast, derived parameters such as the radiated energy (Er), the radiation efficiency (ηr), and the fracture energy (G) have larger errors, around ~70%, ~40%, and ~25%, respectively. We applied the method to the Mw 6.5 intermediate-depth (62 km) normal-faulting earthquake of 11 December 2011 in Guerrero, Mexico. Inferred values of Δτ = 29.2 ± 6.2 MPa and ηr = 0.26 ± 0.1 are significantly higher and lower, respectively, than those of typical subduction thrust events. Fracture energy is large so that more than 73% of the available potential energy for the dynamic process of faulting was deposited in the focal region (i.e., G = (14.4 ± 3.5) × 1014J), producing a slow rupture process (Vr/VS = 0.47 ± 0.09) despite the relatively high energy radiation (Er = (0.54 ± 0.31) × 1015 J) and energy-moment ratio (Er/M0 = 5.7 × 10- 5). It is interesting to point out that such a slow and inefficient rupture along with the large stress drop in a small focal region are features also observed in both the 1994 deep Bolivian earthquake and the seismicity of the intermediate-depth Bucaramanga nest.

  5. Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake

    Science.gov (United States)

    Herman, Matthew W.; Nealy, Jennifer; Yeck, William; Barnhart, William; Hayes, Gavin; Furlong, Kevin P.; Benz, Harley M.

    2017-01-01

    On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0–7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for the mainshock, one using teleseismic broadband waveforms and the other using static GPS and InSAR surface displacements, which indicate high slip north of the epicenter and west-northwest of the epicenter near the oceanic trench. These models and slip distributions published in other studies suggest spatial slip uncertainties of ~25 km and have peak slip values that vary by a factor of 2. We relocate aftershock hypocenters using a Bayesian multiple-event relocation algorithm, revealing a cluster of aftershocks under the Chilean coast associated with deep (20–45 km depth) mainshock slip. Less vigorous aftershock activity also occurred near the trench and along strike of the main aftershock region. Most aftershocks are thrust-faulting events, except for normal-faulting events near the trench. Coulomb failure stress change amplitudes and signs are uncertain for aftershocks collocated with deeper mainshock slip; other aftershocks are more clearly associated with loading from the mainshock. These observations reveal a frictionally heterogeneous interface that ruptured in patches at seismogenic depths (associated with many aftershocks) and with homogeneous slip (and few aftershocks) up to the trench. This event likely triggered seismicity separate from the main slip region, including along-strike events on the megathrust and intraplate extensional events.

  6. Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake

    Science.gov (United States)

    Herman, Matthew W.; Nealy, Jennifer L.; Yeck, William L.; Barnhart, William D.; Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.

    2017-06-01

    On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0-7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for the mainshock, one using teleseismic broadband waveforms and the other using static GPS and InSAR surface displacements, which indicate high slip north of the epicenter and west-northwest of the epicenter near the oceanic trench. These models and slip distributions published in other studies suggest spatial slip uncertainties of 25 km and have peak slip values that vary by a factor of 2. We relocate aftershock hypocenters using a Bayesian multiple-event relocation algorithm, revealing a cluster of aftershocks under the Chilean coast associated with deep (20-45 km depth) mainshock slip. Less vigorous aftershock activity also occurred near the trench and along strike of the main aftershock region. Most aftershocks are thrust-faulting events, except for normal-faulting events near the trench. Coulomb failure stress change amplitudes and signs are uncertain for aftershocks collocated with deeper mainshock slip; other aftershocks are more clearly associated with loading from the mainshock. These observations reveal a frictionally heterogeneous interface that ruptured in patches at seismogenic depths (associated with many aftershocks) and with homogeneous slip (and few aftershocks) up to the trench. This event likely triggered seismicity separate from the main slip region, including along-strike events on the megathrust and intraplate extensional events.

  7. High Thrust-Density Electrostaic Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — These issues are addressable by: increasing the thrust, power, and thrust-to-power ratio capability of EP systems; reducing the non-recurring engineering systems...

  8. Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands

    Science.gov (United States)

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2016-01-01

    Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in Gravity Recovery and Climate Experiment (GRACE) but without a discernible coseismic gravity change. The gravity increase of ~4 μGal, observed consistently from various GRACE solutions around the epicentral area during 2007–2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25–35 km for the elastic thickness and ~1018 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.

  9. The Nankai Trough earthquake tsunamis in Korea: numerical studies of the 1707 Hoei earthquake and physics-based scenarios

    Science.gov (United States)

    Kim, SatByul; Saito, Tatsuhiko; Fukuyama, Eiichi; Kang, Tae-Seob

    2016-04-01

    Historical documents in Korea and China report abnormal waves in the sea and rivers close to the date of the 1707 Hoei earthquake, which occurred in the Nankai Trough, off southwestern Japan. This indicates that the tsunami caused by the Hoei earthquake might have reached Korea and China, which suggests a potential hazard in Korea from large earthquakes in the Nankai Trough. We conducted tsunami simulations to study the details of tsunamis in Korea caused by large earthquakes. Our results showed that the Hoei earthquake (Mw 8.8) tsunami reached the Korean Peninsula about 200 min after the earthquake occurred. The maximum tsunami height was ~0.5 m along the Korean coast. The model of the Hoei earthquake predicted a long-lasting tsunami whose highest peak arrived 600 min later after the first arrival near the coastline of Jeju Island. In addition, we conducted tsunami simulations using physics-based scenarios of anticipated earthquakes in the Nankai subduction zone. The maximum tsunami height in the scenarios (Mw 8.5-8.6) was ~0.4 m along the Korean coast. As a simple evaluation of larger possible tsunamis, we increased the amount of stress released by the earthquake by a factor of two and three, resulting in scenarios for Mw 8.8 and 8.9 earthquakes, respectively. The tsunami height increased by 0.1-0.4 m compared to that estimated by the Hoei earthquake.

  10. Horizontal mantle flow controls subduction dynamics.

    Science.gov (United States)

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  11. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    Science.gov (United States)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located

  12. Introduction to mathematical modeling of earthquakes

    Science.gov (United States)

    Ito, H. M.; Kuroki, H.; Yoshida, A.

    2001-06-01

    We first overview statistics and kinematics, necessities in modeling of earthquakes. In statistics, size-frequency distributions of earthquakes and temporal changes of aftershock activities are main subjects. We pay attention not only to power-law behaviors but to non-power-law behaviors as well. In particular, comparison of the two size-frequency distributions, the one by Gutenberg-Richter and the other based on the characteristic earthquake scheme which assumes periodic generation of earthquakes similar in size, is important from a viewpoint of earthquake prediction. Kinematically, a framework is presented which treats earthquakes as generation of dislocations, discontinuities in the displacement over fault surfaces. As static models, we discuss percolation models on a tree and a two-dimensional square lattice. Here the size-frequency generally decays exponentially or stretched exponentially as earthquakes become large, and does algebraically (Gutenberg-Richter law) only at the critical point. Time dependent problem is discussed using cellular automaton models. One of the main concerns here is whether power laws in size-frequency distribution are realized at stationary states. We observe this property, self-organized criticality, is shown only by models close the original sand pile model by Bak et al. Physical processes are included by using elements of blocks and springs. Power laws as well as non-power laws are allowed as stationary size-frequency distributions. In order to account for decay of aftershock activities, it is necessary to introduce some relaxation mechanisms. To take into full account the kinematics of earthquakes, the dislocation picture, we need to stack springs and blocks three-dimensionally. A continuum version is presented to study a case of a subducting plate, where earthquakes occur following a characteristic earthquake scheme.

  13. Nonlinear dynamics of a vectored thrust aircraft

    DEFF Research Database (Denmark)

    Sørensen, C.B; Mosekilde, Erik

    1996-01-01

    With realistic relations for the aerodynamic coefficients, numerical simulations are applied to study the longitudional dynamics of a thrust vectored aircraft. As function of the thrust magnitude and the thrust vectoring angle the equilibrium state exhibits two saddle-node bifurcations and three...

  14. Late Quaternary slip rates of two active thrust faults at the front of the Andean Precordillera, Mendoza, Argentina

    Science.gov (United States)

    Hetzel, R.; Schmidt, S.; Ramos, V. A.; Mingorance, F.

    2010-12-01

    Several destructive earthquakes occurred in the last several hundred years along the active mountain front of the Andean Precordillera between 30°S and 33°S (Siame et al., 2002). However, slip rates of active reverse faults remain largely unknown and the seismic hazard related to these faults is still poorly constrained. Here we report slip rates for two active thrusts located north of Mendoza, the Penas and Cal thrusts, which offset Late Pleistocene to Holocene terraces and form well preserved fault scarps. At the Penas thrust three terraces (T1, T2 and T3) are displaced vertically by 0.9, 2 and 11 m, respectively. 10Be and 14C age constraints yield a vertical slip rate of ~0.9 mm/a for the Penas thrust fault. Combined with the dip angle of the fault of ~25°, this leads to a horizontal shortening rate of about 2 mm/a. At the Cal thrust the highest terrace, which has a maximum 10Be age of 12 ka, is displaced by ~7.5 m. This translates into a minimum horizontal shortening rate of about 1 mm/a. Comparison with short-term GPS data (Brooks et al., 2003) suggests that both the Penas and Cal thrusts accomodate a significant portion of the present-day E-W shortening rate in the eastern Andes. The vertical surface displacements derived from the smallest scarps is 0.9 m for both thrusts. Hence, given their length (Penas thrust: 40 km, Cal thrust: 31 km), these faults are capable of producing magnitude 7 earthquakes (Wells & Coppersmith, 1994), which is confirmed by a Ms = 7.0 earthquake on the Cal thrust that destroyed the city of Mendoza in 1861. Assuming characteristic earthquakes for both faults suggests average reccurence intervals of 1000 to 1500 years during the Holocene. References Brooks, B.A., Bevis, M., Smalley, R., Kendrick, E., Manceda, R., Lauria, E., Maturana, R., Araujo, M., 2003. Crustal motion in the Southern Andes (26°-36°S): Do the Andes behave like a microplate? Geochemistry Geophysics Geosystems 4, doi: 10.1029/2003GC000505. Siame, L.L., Bellier, O

  15. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    Science.gov (United States)

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  16. Time-dependent geoid anomalies at subduction zones due to the seismic cycle

    Science.gov (United States)

    Cambiotti, G.; Sabadini, R.; Yuen, D. A.

    2018-01-01

    We model the geoid anomalies excited during a megathrust earthquake cycle at subduction zones, including the interseismic phase and the contribution from the infinite series of previous earthquakes, within the frame of self-gravitating, spherically symmetric, compressible, viscoelastic Earth models. The fault cuts the whole 50 km lithosphere, dips 20°, and the slip amplitude, together with the length of the fault, are chosen in order to simulate an Mw = 9.0 earthquake, while the viscosity of the 170 km thick asthenosphere ranges from 1017 to 1020 Pa s. On the basis of a new analysis from the Correspondence Principle, we show that the geoid anomaly is characterized by a periodic anomaly due to the elastic and viscous contribution from past earthquakes and to the back-slip of the interseismic phase, and by a smaller static contribution from the steady-state response to the previous infinite earthquake cycles. For asthenospheric viscosities from 1017-1018 to 1019-1020 Pa s, the characteristic relaxation times of the Earth model change from shorter to longer timescales compared to the 400 yr earthquake recurrence time, which dampen the geoid anomaly for the higher asthenospheric viscosities, since the slower relaxation cannot contribute its whole strength within the interseismic cycle. The geoid anomaly pattern is characterized by a global, time-dependent positive upwarping of the geoid topography, involving the whole hanging wall and partially the footwall compared to the sharper elastic contribution, attaining, for a moment magnitude Mw = 9.0, amplitudes as high as 6.6 cm for the lowermost asthenospheric viscosities during the viscoelastic response compared to the elastic maximum of 3.8 cm. The geoid anomaly vanishes due to the back-slip of the interseismic phase, leading to its disappearance at the end of the cycle before the next earthquake. Our results are of importance for understanding the post-seismic and interseismic geoid patterns at subduction zones.

  17. Thrust sensing for small UAVs

    Science.gov (United States)

    Marchman, Christopher Scott

    Unmanned aerial vehicles (UAVs) have become prevalent in both military and civilian applications. UAVs have many size categories from large-scale aircraft to micro air vehicles. The performance, health, and efficiency for UAVs of smaller sizes can be difficult to assess and few associated instrumentation systems have been developed. Thrust measurements on the ground can characterize systems especially when combined with simultaneous motor power measurements. This thesis demonstrates the use of strain measurements to measure the thrust produced by motor/propeller combinations for such small UAVs. A full-bridge Wheatstone circuit and electrical resistance strain gauges were used in conjunction with constant-stress cantilever beams for static tests and dynamic wind tunnel tests. An associated instrumentation module monitored power from the electric motor. Monitoring the thrust data over time can provide insights into optimal propeller and motor selection and early detection of problems such as component failure. The approach provides a system for laboratory or field measurements that can be scaled for a wide range of small UAVs.

  18. Earthquake rate and magnitude distributions of great earthquakes for use in global forecasts

    Science.gov (United States)

    Kagan, Yan Y.; Jackson, David D.

    2016-07-01

    We have obtained new results in the statistical analysis of global earthquake catalogues with special attention to the largest earthquakes, and we examined the statistical behaviour of earthquake rate variations. These results can serve as an input for updating our recent earthquake forecast, known as the `Global Earthquake Activity Rate 1' model (GEAR1), which is based on past earthquakes and geodetic strain rates. The GEAR1 forecast is expressed as the rate density of all earthquakes above magnitude 5.8 within 70 km of sea level everywhere on earth at 0.1 × 0.1 degree resolution, and it is currently being tested by the Collaboratory for Study of Earthquake Predictability. The seismic component of the present model is based on a smoothed version of the Global Centroid Moment Tensor (GCMT) catalogue from 1977 through 2013. The tectonic component is based on the Global Strain Rate Map, a `General Earthquake Model' (GEM) product. The forecast was optimized to fit the GCMT data from 2005 through 2012, but it also fit well the earthquake locations from 1918 to 1976 reported in the International Seismological Centre-Global Earthquake Model (ISC-GEM) global catalogue of instrumental and pre-instrumental magnitude determinations. We have improved the recent forecast by optimizing the treatment of larger magnitudes and including a longer duration (1918-2011) ISC-GEM catalogue of large earthquakes to estimate smoothed seismicity. We revised our estimates of upper magnitude limits, described as corner magnitudes, based on the massive earthquakes since 2004 and the seismic moment conservation principle. The new corner magnitude estimates are somewhat larger than but consistent with our previous estimates. For major subduction zones we find the best estimates of corner magnitude to be in the range 8.9 to 9.6 and consistent with a uniform average of 9.35. Statistical estimates tend to grow with time as larger earthquakes occur. However, by using the moment conservation

  19. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  20. Dynamic Subsidence across the Late Cretaceous Western Interior Basin in Response to Farallon Slab Subduction

    Science.gov (United States)

    Liu, S.; Nummedal, D.; Liu, L.

    2015-12-01

    The United States Cretaceous Western Interior Basin has long been considered a foreland basin, driven by the Sevier thrust and associated basin sediment loads. However, flexural studies demonstrate that this effect exists only within a narrow band in front of the thrust belt. Most of the basin appears to be due to mantle flow-induced dynamic subsidence associated with Farallon plate subduction. Here we show how the components of evolving long-wavelength dynamic subsidence and flexural subsidence created the accommodation space and controlled the stratigraphy across the western United Sates, based on the correlated stratigraphic sections across central Utah-Colorado and southern Wyoming.These backstripped subsidence data reveal a component of continuously evolving long-wavelength dynamic subsidence, in addition to subsidence driven by the Sevier thrust belt and associated sediment loads. The loci of maximum rates of this dynamic subsidence moved eastward from ~98 to 74 Ma in phase with the west-to-east passage of the Farallon slab, as reconstructed from tomography based on quantitative inverse models. These subsidence data allow testing of existing subduction models and confirm the dynamic-topography driven nature of the Western Interior Basin. The results seem to support that the depocenters track the trough of dynamic subsidence with ca.18 Myr cycles through time and space and the stratigraphic patterns of large-scale progradation, eastward migration of depocenter, and regional clinoform-like downlap are related with the dynamic subsidence. Interpretation of these data also provides more insights into the repeated, ca.2 to 6 Myr cycles of thrust-induced subsidence in front of the thrust belt, which control the local eastward progradation of the sand bodies from the thrust belt. The dynamic, flexural subsidence and eustatic sea level changes interacted and controlled the timing and distribution of unconformities. Our work shows how the stratigraphy precisely

  1. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  2. Earthquake Facts

    Science.gov (United States)

    ... to the Atlantic Ocean, around Africa, Asia, and Australia, and under the Pacific Ocean to the west ... are similar to earthquakes, but occur within the ice sheet itself instead of the land underneath the ...

  3. Intermediate-depth earthquakes facilitated by eclogitization-related stresses

    Science.gov (United States)

    Nakajima, Junichi; Uchida, Naoki; Shiina, Takahiro; Hasegawa, Akira; Hacker, Bradley R.; Kirby, Stephen H.

    2013-01-01

    Eclogitization of the basaltic and gabbroic layer in the oceanic crust involves a volume reduction of 10%–15%. One consequence of the negative volume change is the formation of a paired stress field as a result of strain compatibility across the reaction front. Here we use waveform analysis of a tiny seismic cluster in the lower crust of the downgoing Pacific plate and reveal new evidence in favor of this mechanism: tensional earthquakes lying 1 km above compressional earthquakes, and earthquakes with highly similar waveforms lying on well-defined planes with complementary rupture areas. The tensional stress is interpreted to be caused by the dimensional mismatch between crust transformed to eclogite and underlying untransformed crust, and the earthquakes are probably facilitated by reactivation of fossil faults extant in the subducting plate. These observations provide seismic evidence for the role of volume change–related stresses and, possibly, fluid-related embrittlement as viable processes for nucleating earthquakes in downgoing oceanic lithosphere.

  4. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    Science.gov (United States)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike

  5. The Influence of Frontal and Lateral Ramps in Fold Thrust Belts on Structural Architecture and Erosion

    Science.gov (United States)

    Robinson, D. M.; McQuarrie, N.

    2016-12-01

    In fold thrust belts, horizontal and vertical motions (or flow) define the path that a particular rock or mineral takes to the surface of the Earth, which is dictated by the location of frontal and lateral ramps. Horizontal flow occurs between ramp locations while the vertical component of motion (or flow) dominates when rocks are traveling over the ramps. Frontal ramps are common features near the front (foreland) of a fold thrust belt. Foreland frontal ramps are the easiest to obtain data for, and from these data predict ramp geometry, because they are shallow and the ramp geometry is commonly expressed as changes in the dip of strata in the mapped geology. Less constrainable are the frontal ramps at depth in the hinterland of a fold thrust belt. However, these deep frontal ramps control the architecture of a fold thrust belt, influence the mapped surface geology, control active uplift and thus, are locations of focused erosion. We show kinematic models from Nepal that illustrate how the architecture (geometry of structures, dips of strata) changes in the fold thrust belt when the location of a frontal ramp is moved and how both thermochronologic data and accurate mapping limit the possibilities for the location of these hinterland frontal ramps. Lateral ramps at depth provide limits on the width of horizontal flow paths and encourage vertical flow paths that have orientations strongly oblique to the strike of the orogen. A challenge in fold thrust belts is to determine the most logical location for lateral ramps. We use examples from Nepal that highlight characteristics that can be used to define the location of lateral ramps. Both lateral and frontal ramps produce significant structural elevation and changes in topographic elevation and thus, are locations of focused erosion through time. Additionally, because material is moving both laterally and vertically in a brittle fold thrust belt, frontal and lateral ramps can control the origin of earthquakes as well

  6. Origin of active blind-thrust faults in the southern Inner California Borderlands

    Science.gov (United States)

    Rivero-Ramirez, Carlos Alberto

    This dissertation describes the origins, three-dimensional geometry, slip history and present activity of a regional system of blind-thrust faults located in the Inner California Borderlands, and analyses the new earthquake scenarios they imply for the nearby coastal region of southern California. Chapter 1 is an overview of the main observations and inferences derived from geophysical data (seismic reflection profiles, well information, and seismicity) and coastal tectonics studies that are used to document the reactivation of two regional, low-angle Miocene detachments---the Oceanside and the Thirtymile faults. These active blind-thrusts comprise the Inner California Blind-Thrust System. The paper is co-authored by Prof. John H. Shaw (Harvard University) and Prof. Karl Muller (University of Colorado), and was published in the journal Geology. In this paper we associate the 1986 (ML 5.3) Oceanside earthquake and uplift of coastal marine terraces with activity on these blind-thrust faults, demonstrating their current activity and earthquake potential. We also describe the structural interactions of the blind-thrust system with regional strike-slip fault zones, and propose new earthquake hazards scenarios for the Inner California Borderlands based on these interactions. Chapter 2 presents a methodology used to generate regional 3D velocity models that allows converting seismic reflection data and derived geological surfaces into the depth domain. This chapter is co-authored with Dr. Peter Suss (University of Tubingen) and Prof. John H. Shaw (Harvard University), who developed aspects of the methodology used here in their velocity modeling of the Los Angeles basin. In our study, geologic constraints are employed to guide the interpolation of velocity structure in the Inner California Borderlands, yielding a comprehensive 3D velocity model that is consistent with the structural and stratigraphic architectures of the offshore basins. The need to properly scale time

  7. The 2011 Tohoku-oki earthquake: a hint for structural control on the rupture process?

    Science.gov (United States)

    Fabrizio, R.; Trasatti, E.; Lorito, S.; Piromallo, C.; Ito, Y.; Piatanesi, A.; Zhao, D.; Lanucara, P.; Hirata, K.; Cocco, M.

    2013-05-01

    The Great 2011 Tohoku-oki earthquake, due to the exceptional amount of data and the unexpected rupture features characterizing this event, represents a great opportunity for the scientific community to better understand the physical processes underlying the genesis of mega-thrust earthquakes and try to provide future guidelines useful for mitigate the tsunami risk. Actually, this event has been extensively studied by using an unprecedented collection of high-quality geophysical data. In particular, different source models have been published by modeling seismological, geodetic and tsunami data with a resulting general agreement about the main features of the rupture process (a patch of nearly 50 meters of slip located around and up-dip from the hypocenter), while the slip pattern at shallow depths near the trench exhibits some variability among these models, likely due to the different resolving power of distinct data sets and to the adopted fault geometry. However, these features, particularly the very concentrated rupture area (with respect to the magnitude 9) and the very high slip in a zone typically considered aseismic, due to their unexpected nature are still under investigation. Here we use a 3-D structural model to account for the effects of both the geometrical variations of the plate interface and the elastic contrasts between the subducting plate and the continental lithosphere, within a 3-D Finite Element (FE) model of the Tohoku-oki area. We infer the slip distribution of the 2011 earthquake by performing a joint inversion of geodetic (GPS and seafloor observations) and tsunami (ocean bottom pressure sensors, DART and GPS buoys) data. We find a pattern of slip mainly extending up-dip from the hypocenter and reaching the trench, with maximum slip of about 52 meters. We observe that the resulting rupture image of the Tohoku event exhibits a striking correlation with the distribution of lateral heterogeneities in seismic wave velocities around the plate

  8. Tsunami Hazard Posed to New Zealand by the Kermadec and Southern New Hebrides Subduction Margins: An Assessment Based on Plate Boundary Kinematics, Interseismic Coupling, and Historical Seismicity

    Science.gov (United States)

    Power, William; Wallace, Laura; Wang, Xiaoming; Reyners, Martin

    2012-01-01

    We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150 years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth's subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake ( M w ≳8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude-frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.

  9. Earthquakes for Kids

    Science.gov (United States)

    ... dug across a fault to learn about past earthquakes. Science Fair Projects A GPS instrument measures slow movements of the ground. Become an Earthquake Scientist Cool Earthquake Facts Today in Earthquake History ...

  10. Earthquake Hazards Program: Earthquake Scenarios

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A scenario represents one realization of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture geometry and estimating...

  11. Dehydration-induced instabilities at intermediate depths in subduction zones

    Science.gov (United States)

    Brantut, Nicolas; Stefanou, Ioannis; Sulem, Jean

    2017-08-01

    We formulate a model for coupled deformation and dehydration of antigorite, based on a porosity-dependent yield criterion and including shear-enhanced compaction. A pore pressure and compaction instability can develop when the net volume change associated with the reaction is negative, i.e., at intermediate depth in subduction zones. The instability criterion is derived in terms of the dependence of the yield criterion on porosity: if that dependence is strong, instabilities are more likely to occur. We also find that the instability is associated with strain localization, over characteristic length scales determined by the hydraulic diffusivity, the elasto-plastic parameters of the rock, and the reaction rate. Typical lower bounds for the localization length are of the order of 10 to 100 for antigorite dehydration and deformation at 3 GPa. The fluid pressure and deformation instability is expected to induce stress buildup in the surrounding rocks forming the subducted slab, which provides a mechanism for the nucleation and propagation of intermediate-depth earthquakes.

  12. Recognition of Paleoearthquakes on the Puente Hills Blind Thrust Fault, California

    Science.gov (United States)

    Dolan, James F.; Christofferson, Shari A.; Shaw, John H.

    2003-04-01

    Borehole data from young sediments folded above the Puente Hills blind thrust fault beneath Los Angeles reveal that the folding extends to the surface as a discrete zone (-145 meters wide). Buried fold scarps within an upward- narrowing zone of deformation, which extends from the upward termination of the thrust ramp at 3 kilometers depth to the surface, document the occurrence of at least four large (moment-magnitude 7.2 to 7.5) earthquakes on this fault during the past 11,000 years. Future events of this type pose a seismic hazard to metropolitan Los Angeles. Moreover, the methods developed in this study can be used to refine seismic hazard assessments of blind thrusts in other metropolitan regions.

  13. Breaking the shell: Initiating plate tectonic-like subduction on Europa

    Science.gov (United States)

    Bland, Michael T.; McKinnon, William B.

    2017-10-01

    Europa’s prominent bands have been proposed to form by a seafloor-spreading-like mechanism involving complete separation of Europa’s lithosphere and the emplacement of fresh ice from below [Prockter et al. 2002]. This formation mechanism poses a challenge for Europa’s strain balance: extensional rifting at bands must be offset by lithospheric shortening elsewhere, yet few obvious contractional features have been observed. Kattenhorn and Prockter [2014] suggested that extension on Europa is accommodated by subduction of the lithosphere at linear, tabular zones termed subsumption bands. Subduction of Europa’s lithosphere implicitly requires that lithospheric-scale thrust faults can develop. This contrasts with previous numerical modeling, which found that lithospheric shortening is instead primarily accommodated by folding or passive thickening [Bland and McKinnon 2012, 2013]. Here we reevaluate the conditions required to form large-scale thrust faults using a numerical model of lithospheric shortening on Europa that includes realistic localization of brittle failure (non-associated plasticity). In the absence of strain weakening (wherein brittle failure decreases the subsequent yield strength) essentially all shortening results in folding or thickening, consistent with previous results. With moderate strain weakening, deformation becomes localized within fault-like zones for surface temperatures ≤100 K; however, the resulting surface deformation suggests a complex interplay between folding and faulting. Only if the ice shell weakens very easily does faulting dominate. Large-scale faults preferentially form at cold surface temperatures and high heat fluxes. Cold temperatures promote faulting (as opposed to folding), and high heat fluxes result in a thinner lithosphere, which is more easily subducted. The subsumption bands identified by Kattenhorn and Prockter [2014] are at a relatively high latitude (cold temperature), and are associated with putative

  14. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  15. Subduction dynamics: Constraints from gravity field observations

    Science.gov (United States)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  16. Rapid characterisation of large earthquakes by multiple seismic broadband arrays

    Directory of Open Access Journals (Sweden)

    D. Roessler

    2010-04-01

    Full Text Available An automatic procedure is presented to retrieve rupture parameters for large earthquakes along the Sunda arc subduction zone. The method is based on standard array analysis and broadband seismograms registered within 30°–100° epicentral distance. No assumptions on source mechanism are required. By means of semblance the coherency of P waveforms is analysed at separate large-aperture arrays. Waveforms are migrated to a 10°×10° wide source region to study the spatio-temporal evolution of earthquakes at each array. The multiplication of the semblance source maps resulting at each array increases resolution. Start, duration, extent, direction, and propagation velocity are obtained and published within 25 min after the onset of the event. First preliminary results can be obtained even within 16 min. Their rapid determination may improve the mitigation of the earthquake and tsunami hazard. Real-time application will provide rupture parameters to the GITEWS project (German Indonesian Tsunami Early Warning System. The method is applied to the two M8.0 Sumatra earthquakes on 12 September 2007, to the M7.4 Java earthquake on 2 September 2009, and to major subduction earthquakes that have occurred along Sumatra and Java since 2000. Obtained rupture parameters are most robust for the largest earthquakes with magnitudes M≥8. The results indicate that almost the entire seismogenic part of the subduction zone off the coast of Sumatra has been ruptured. Only the great Sumatra event in 2004 and the M7.7 Java event on 17 July 2006 could reach to or close to the surface at the trench. Otherwise, the rupturing was apparently confined to depths below 25 km. Major seismic gaps seem to remain off the coast of Padang and the southern tip of Sumatra.

  17. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  18. Thrust augmentation for a small turbojet engine

    OpenAIRE

    Hackaday, Gary L.

    1999-01-01

    Approved for public release; distribution is unlimited A Sophia J450 (nine pounds of thrust) gas turbine engine was used first to examine the thrust augmentation generated using an ejector shroud. Experimental results obtained with and without the ejector were compared with performance predicted using an engine code and a one-dimensional ejector analysis. The engine code was revised to incorporate a radial turbine and the correct compressor map. Thrust augmentation of 3-10% was measured an...

  19. Shear wave splitting and the dynamics of the hydrated mantle wedge in subduction regions constrained by the example of the Ryukyu subduction zone

    Science.gov (United States)

    Nagaya, T.; Walker, A.; Wookey, J. M.; Wallis, S.; Ishii, K.; Kendall, J. M.

    2016-12-01

    H2O-rich subduction fluids are a key component of convergent plate margin dynamics, essential to earthquake initiation and magma formation. These fluids in the wedge mantle are dominantly derived from antigorite dragged down by plate motion. However, the accurate distribution of antigorite-rich serpentinite related to the fluid transport in subduction zones has thus far been difficult to determine. Our approach is to model the S-wave splitting of the Ryukyu arc in order to constrain the distribution, amount and orientation of antigorite, while taking into account the geometry of seismic ray paths and the elastic anisotropy of deformed antigorite-bearing mantle. We have also carried out a full assessment of uncertainties associated with our analysis including time delay estimates from the seismic waves themselves, crustal anisotropy, averaging schemes for CPO, and the strength of antigorite CPO patterns. The results suggest the presence of a large-scale flow in the hydrous mantle with a low viscosity and more than 54% of this domain consists of antigorite. Other geophysical observations in the forearc mantle including the low seismic velocity and gravity anomaly are also compatible with our inference of the presence of induced flow in an antigorite-rich, hydrated mantle wedge in the Ryukyu arc. We have also constructed a geodynamic model to examine flow patterns in the hydrated shallow wedge mantle using the distribution and proportion of serpentinite derived from our seismic model and subduction parameters that are close to those of the arc. The results clearly show that convection occurs in the serpentinized mantle wedge and that this domain is associated with a low surface heat flow. S-wave splitting observations in other subduction zones implies this large-scale serpentinization and hydrous mantle flow is likely to be more widespread than generally recognized and the view that the forearc mantle of cold subduction zones lacks significant zones of hydration needs

  20. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  1. Numerical tsunami simulations in the western Pacific Ocean and East China Sea from hypothetical M 9 earthquakes along the Nankai trough

    Science.gov (United States)

    Harada, Tomoya; Satake, Kenji; Furumura, Takashi

    2017-04-01

    We carried out tsunami numerical simulations in the western Pacific Ocean and East China Sea in order to examine the behavior of massive tsunami outside Japan from the hypothetical M 9 tsunami source models along the Nankai Trough proposed by the Cabinet Office of Japanese government (2012). The distribution of MTHs (maximum tsunami heights for 24 h after the earthquakes) on the east coast of China, the east coast of the Philippine Islands, and north coast of the New Guinea Island show peaks with approximately 1.0-1.7 m,4.0-7.0 m,4.0-5.0 m, respectively. They are significantly higher than that from the 1707 Ho'ei earthquake (M 8.7), the largest earthquake along the Nankai trough in recent Japanese history. Moreover, the MTH distributions vary with the location of the huge slip(s) in the tsunami source models although the three coasts are far from the Nankai trough. Huge slip(s) in the Nankai segment mainly contributes to the MTHs, while huge slip(s) or splay faulting in the Tokai segment hardly affects the MTHs. The tsunami source model was developed for responding to the unexpected occurrence of the 2011 Tohoku Earthquake, with 11 models along the Nanakai trough, and simulated MTHs along the Pacific coasts of the western Japan from these models exceed 10 m, with a maximum height of 34.4 m. Tsunami propagation was computed by the finite-difference method of the non-liner long-wave equations with the Corioli's force and bottom friction (Satake, 1995) in the area of 115-155 ° E and 8° S-40° N. Because water depth of the East China Sea is shallower than 200 m, the tsunami propagation is likely to be affected by the ocean bottom fiction. The 30 arc-seconds gridded bathymetry data provided by the General Bathymetric Chart of the Oceans (GEBCO-2014) are used. For long propagation of tsunami we simulated tsunamis for 24 hours after the earthquakes. This study was supported by the"New disaster mitigation research project on Mega thrust earthquakes around Nankai

  2. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  3. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    Science.gov (United States)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity

  4. Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature

    Science.gov (United States)

    Sladen, Anthony; Trevisan, Jenny

    2018-02-01

    For some megathrust earthquakes, the rupture extends to the solid Earth's surface, at the ocean floor. This unexpected behaviour holds strong implications for the tsunami potential of subduction zones and for the physical conditions governing earthquakes, but such ruptures occur in underwater areas which are hard to observe, even with current instrumentation and imaging techniques. Here, we evidence that aftershocks occurring ocean-ward from the trench are conditioned by near-surface rupture of the megathrust fault. Comparison to well constrained earthquake slip models further reveals that for each event the number of aftershocks is proportional to the amount of shallow slip, a link likely related to static stress transfer. Hence, the spatial distribution of these specific aftershock sequences could provide independent constrains on the coseismic shallow slip of future events. It also offers the prospect to be able to reassess the rupture of many large subduction earthquakes back to the beginning of the instrumental era.

  5. Extreme Magnitude Earthquakes and their Economical Consequences

    Science.gov (United States)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.

    2011-12-01

    The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.

  6. Dynamics of intraoceanic subduction initiation: 2D thermomechanical modeling

    Science.gov (United States)

    Zhou, X.; Gerya, T.; LI, Z.; Stern, R. J.

    2016-12-01

    Intraoceanic subduction initiation occurs in previous weak zones which could be transform faults or old fracture zones, and concurrents with the change of plate motions. It is an important process to understand the beginning of plate tectonics. However, the dynamic process during (after) subduction initiation remain obscure. The process of suducting slabs move from down to downdip is also not revealed clearly. In order to obtain better understanding of the transitional process of subducting slab motion, we use finite difference and marker-in-cell methods to establish a series of self-sustainable subduction initiation models and explore many visco-plastic parameters to qualify the dynamical process of subduction initiation. The following parameters are systematic tested: (1) the age of the subducting slab; (2) friction coefficient of the mantle material; (3) the mantle potential temperature; (4) the age of the overriding slab. We find out the critical age of the oceanic lithosphere which can produce subduction initiation. And the age of subducting slab plays important roles during subduction initiation. The young subducting slab induces fast trench retreat and then trench begin to advance. For the old subducting slab, it induces relative slower trench retreat and then stop moving. The age of overriding slabs impacts coupling with the subducting slab. The friction coefficient of lithosphere also impacts the backarc spreading and subduction velocity. Stronger subducted plate gives lower subduction velocity and faster trench retreat velocity. The mantle potential temperature changes the critical age of subducted slabs.

  7. Unstable fault slip induced by lawsonite dehydration in blueschist: Implication for the seismicity in the subducting oceanic crusts

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2015-12-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the subducting mantle In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Moho. These observations have stimulated interest in potential relationships between blueschist-facies metamorphism and seismicity, particularly through the dehydration reactions involving lawsonite. The rheology of these high-pressure and low-temperature metamorphic minerals is largely unknown. We conducted experiments on lawsonite accompanied by monitoring of acoustic emission (AE) in a Griggs-type deformation apparatus. Deformation was started at the confining pressure of 1.0 GPa, the temperature of 300 ˚C, and constant displacement rates of 0.16 to 0.016 μm/s, that correspond to equivalent strain rates (ɛ) of 9 × 10-5 to 9 × 10-6 1/s. In these experiments, temperature was increased at the temperature ramp rate of 0.5 to 0.05˚C/s above the thermal stability of lawsonite (600˚C) while the sample was deforming to test whether the dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (i.e., stick-slip) occurred during dehydration reactions in the lawsonite gouge layer, and AE signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shear), and the fault surface shows mirror-like slickensides. The unloading slope (i.e., rate of stress drop as a function of slip) during the unstable slip follows the stiffness of the apparatus at all experimental conditions regardless of the strain rate and temperature ramping rate. A thermal-mechanical scaling factor in the experiments covers the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers to induce seismicity in cold subduction zones.

  8. 3-D imaging of two episodes of Hikurangi Plateau subduction in the southern South Island of New Zealand

    Science.gov (United States)

    Eberhart-Phillips, D. M.; Reyners, M.; Upton, P.; Gubbins, D.

    2016-12-01

    The Hikurangi Plateau (originally part of the Ontong Java large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 108-105 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We have investigated the southern limit of this subducted plateau by supplementing the sparse GeoNet permanent seismograph network in the southeastern South Island with a forty-station broadband portable seismograph network. We have then used local earthquake tomography to determine detailed 3-D Vp and Vp/Vs structure in the southern South Island. We track a region of Vp 8.5 km/s (which has previously been associated with an eclogite layer at the base of the Hikurangi Plateau from studies in the North Island) across most of the southwestern South Island. Its southeastern edge runs diagonally from near Christchurch to northern Fiordland. It dips both to the northwest and the southwest, and impacts the subducted Australian plate in northern Fiordland, where it currently bends the subducted Australian slab to vertical. The plateau and its leading oceanic crust are distinguished by low Vp/Vs, consistent with extensive dehydration of the thick (ca. 35 km), buoyant plateau during ca. 500 km of flat subduction at the Gondwana margin. The plateau is also revealed by dipping zones of relocated earthquakes. The backstop of Gondwana subduction appears to be the ophiolitic Maitai terrane, which extends through the crust and forms the trenchward boundary of the ca. 60-65 km-thick Median Batholith. We image the low Vp crustal root associated with orogeny at the Gondwana margin in the southeastern South Island, as well as the crustal root resulting from the current convergent episode in the western South Island. The shapes of both crustal roots are controlled by the Hikurangi Plateau.

  9. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  10. Two-dimensional Numerical Models of Accretionary Wedges Deformation in Response to Subduction and Obduction: Evidence from the Middle Part of the Manila Trench

    Science.gov (United States)

    Ma, L.; Ding, W.; Chen, L.; Gerya, T.

    2016-12-01

    The Manila Trench is located at the eastern boundary of the South China Sea (SCS). It was created by the subduction of the South China Sea Plate beneath the Philippine Sea Plate since the early Neogene, and also influenced by the northwestern movement of the Philippine Sea Plate. There is wide discussion whether the dual-subduction and widespread seamounts in the South China Sea would have play important roles in the 'S-shaped' geometry and the different diving angle along the Manila Trench. Multi-beam tectono-geomorphological studies on the accretionary wedges have suggested that: (1) the stress direction of the subduction along the middle part of the Manila Trench, between 17o and 18 o N, is NW55 o; (2) The Manila Trench is actually caused by obduction due to the northwestern movement of the Philippine Sea Plate. Although the NW 55 o stress direction has been supported by detailed analysis on the trend of the folds, thrust faults, extension fractures and large sea-floor canyon, its obduction-origin is purely based on regional structure. Here we use 2D numerical modeling experiments to investigate the deformation style of accretionary wedge in response to the seamounts subduction and obduction, and provide new insights into the mechanism responsible for the Luzon obduction along the Manila Trench. Our preliminary results show that: (1) the accretionary wedge is eroded faster in subduction model; (2) the velocity field direction of the slab differs in two models at the beginning of seamount subduction, which is vertical in obduction model, but oblique in subduction model; (3) both sides of the accretionary wedge deform strongly in subduction model, whereas in obduction model only the leading edge shows intensive deformation. Further modelling will focus on other parts of the Manila Trench with different slab age and subduction velocity to see their tectonic influences on the accretionary wedges.

  11. Topographic form of the Coast Ranges of the Cascadia Margin in relation ot coastal uplift rates and plate subduction

    Science.gov (United States)

    Kelsey, Harvey M.; Engebretson, David C.; Mitchell, Clifton E.; Ticknor, Robert L.

    1994-01-01

    The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the

  12. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NARCIS (Netherlands)

    Schellart, W. P.

    2011-01-01

    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (v S⊥) at the surface into its subducting plate motion component (vSP⊥) and trench migration component (vT⊥). Geodynamic models of progressive subduction

  13. Rheological property of mafic schist and geological interpretation to the subduction dynamics

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2013-12-01

    To understand the spatial and temporal distribution of deformation (e.g., underplating and exhumation of metamorphic rocks) and earthquakes in subduction zones, it is important to constrain the rheological properties of metamorphic rocks (i.e., altered oceanic crust and sediments), and how they evolve during metamorphic reactions following hydration, carbonation and dehydration of the down-going slab. Metamorphism of oceanic crust has stimulated hypotheses on the relationship between intra-slab earthquakes and slab-wedge coupling along plate boundaries in subduction zone. While it is well known that metamorphisms have important effects on material circulation and arc volcanisms at subduction system, it remains unclear how the formation of metamorphic minerals followed by fluid release on the subduction dynamics influences rheology. Past experimental studies on mafic metamorphic rocks were mostly concentrated on phase equilibrium of mineral, thus there are very few reports on the mechanical data for these metamorphic rocks. We conducted triaxial deformation experiments on a mafic greenschist using Griggs-type solid pressure-medium apparatus installed in Brown University. Mafic schist (chlorite - amphibole - epidote - albite schist) containing calcite and quartz veins from Sambagawa metamorphic belt (Japan), which is metamorphosed at the condition of nearly the corner of mantle wedge in hot subduction (1 GPa of pressure and 520C of temperature), was used as experimental samples for typical metamorphic rocks composing oceanic crust in warm subduction zones. Constant strain rete experiments and strain rate step experiment were conducted at 1.0 GPa of confining pressure, 400 ~ 500C of temperature and 10-5 ~ 5×10-7 1/s of strain rate. At stable conditions of samples (1 GPa of confining pressure and 400 and 500C of temperature), differential stresses were higher than 1 GPa. Microstructure of recovered samples showed backing and several localized shear zones. Although

  14. Organic matter cracking: A source of fluid overpressure in subducting sediments

    Science.gov (United States)

    Raimbourg, Hugues; Thiéry, Régis; Vacelet, Maxime; Famin, Vincent; Ramboz, Claire; Boussafir, Mohammed; Disnar, Jean-Robert; Yamaguchi, Asuka

    2017-11-01

    The pressure of deep fluids in subduction zones is a major control on plate boundary strength and earthquake genesis. The record, by methane-rich fluid inclusions, of large ( 50-100 MPa) and instantaneous pressure variations in the Shimanto Belt (Japan) points to the presence of large fluid overpressure at depth (300-500 MPa, 250 °C). To further analyze the connection between methane and fluid overpressure, we determined with Rock-Eval the potential for a worldwide selection of deep seafloor sediments to produce methane as a result of organic matter (OM) cracking due to temperature increase during subduction. The principal factor controlling the methanogenesis potential of sediments is OM proportion, while OM nature is only a subordinate factor. In turn, OM proportion is mainly controlled by the organic terrigenous input. Considering a typical sediment from ocean-continent subduction zones, containing 0.5 wt% of type III OM, cracking of OM has two major consequences: (1) Methane is produced in sufficient concentration as to oversaturate the pore-filling water. The deep fluid in accretionary prisms is therefore a mechanical mixture of water-rich and methane-rich phases; (2) CH4 production can generate large fluid overpressure, of the order of several tens of MPa, The conditions for these large overpressure are a low permeability of the upper plate (z > 10 km) where OM thermal cracking occurs. At these depths, OM thermal cracking appears as a source of overpressure larger than the last increments of smectite-to-illite reaction. Such large overpressures play potentially a role in facilitating slip along the plate interface. Conversely, the scarcity of earthquakes in ocean-ocean subduction zones such as Marianna or Barbados may be related to the low influx of detrital OM and the limited methane/overpressure generation at depth.

  15. Multi-scale seismic reflection imaging of active fold-and-thrust belts in Niigata backarc basin in central Japan

    Science.gov (United States)

    Ishiyama, T.; Kato, N.; Sato, H.; Takeda, T.; Abe, S.

    2012-04-01

    Structural characters of en echelon, active fold and thrust structures in backarc, thick sedimentary basins and their structural links to deeper structures are commonly complicated, depending on inherited structural and mechanical factors including their kinematic histories, present and past sedimentary environments, volcanisms, fault reactivation, and thermal and/or dynamic subsidence. In this study we present multi-scale seismic reflection profiles across active fold-and-thrust belts in Niigata backarc basin in central Japan to analyze their structures from shallow to otherwise inaccessible deeper levels. Niigata basin is underlain by ca. 8-km-thick Neogene sediments, which are deformed by highly active fold-and-thrust belts, where large devastating earthquakes have occurred in these several hundred years. Deep seismic reflection profile (2010 Mishima-Higashiyama Line) across the 2007 Chuetsu-oki earthquake (M6.8) source region illuminates highly complicated fold-and-thrust structures. Pairs of west-dipping thrusts merge into a shallow, easterly dipping thrust fault, on which the mainshock of the 2007 earthquake was located. In addition, decollement folding enhanced by over-pressured Miocene mudstone on the hangingwall of the deeper thrust also complicates styles of deformation at higher structural levels. In spite of these structural complexities, tight structural and stratigraphic constraints on the seismic reflection profile by rich dataset of industrial boreholes provide west-dipping thrust trajectories sole into the deeper thrust at depth of ca. 10 km. We also collected and processed shallow high-resolution seismic reflection data in order to resolve shallow structures and to understand structural linkage between active faults and folds recognized at ground surface and deeper, complicated fold and thrust structures. We deployed 200 seismic channels, 10-Hz geophones, and mini-vibrator as a seismic source along about 7-km-long seismic line. Common midpoint

  16. Unusual geologic evidence of coeval seismic shaking and tsunamis shows variability in earthquake size and recurrence in the area of the giant 1960 Chile earthquake

    Science.gov (United States)

    Cisternas, M.; Garrett, E; Wesson, Robert L.; Dura, T.; Ely, L. L

    2017-01-01

    An uncommon coastal sedimentary record combines evidence for seismic shaking and coincident tsunami inundation since AD 1000 in the region of the largest earthquake recorded instrumentally: the giant 1960 southern Chile earthquake (Mw 9.5). The record reveals significant variability in the size and recurrence of megathrust earthquakes and ensuing tsunamis along this part of the Nazca-South American plate boundary. A 500-m long coastal outcrop on Isla Chiloé, midway along the 1960 rupture, provides continuous exposure of soil horizons buried locally by debris-flow diamicts and extensively by tsunami sand sheets. The diamicts flattened plants that yield geologically precise ages to correlate with well-dated evidence elsewhere. The 1960 event was preceded by three earthquakes that probably resembled it in their effects, in AD 898 - 1128, 1300 - 1398 and 1575, and by five relatively smaller intervening earthquakes. Earthquakes and tsunamis recurred exceptionally often between AD 1300 and 1575. Their average recurrence interval of 85 years only slightly exceeds the time already elapsed since 1960. This inference is of serious concern because no earthquake has been anticipated in the region so soon after the 1960 event, and current plate locking suggests that some segments of the boundary are already capable of producing large earthquakes. This long-term earthquake and tsunami history of one of the world's most seismically active subduction zones provides an example of variable rupture mode, in which earthquake size and recurrence interval vary from one earthquake to the next.

  17. Seismotectonics and Neotectonics of the Gulfs of Gökova-Kuşadasi-Siǧacik and Surrounding Regions (SW Turkey): Earthquake Mechanisms, Source Rupture Modeling, Tsunami Hazard and Geodynamic Implications

    Science.gov (United States)

    Yolsal-Cevikbilen, Seda; Karaoglu, Özgür; Taymaz, Tuncay; Helvaci, Cahit

    2013-04-01

    The mechanical behavior of the continental lithosphere for the Aegean region is one of the foremost interesting geological disputes in earth sciences. The Aegean region provides complex tectonic events which produced a strong heterogeneity in the crust (i.e. large thrusts and exhumation shear zones or extensional detachments) as such in among most continental regions. In order to investigate mechanical reasons of the ongoing lithospheric-scale extension within the region, we must tackle all of the existing kinematic and dynamic agents: (1) roll back of the subduction slab and back arc extension; (2) westward extrusion of the Anatolian micro-plate; (3) block rotations of the Aegean region and western Anatolia; and (4) transtensional transform faults. Furthermore, seismological studies, particularly earthquake source mechanisms and rupture modeling, play important roles on deciphering the ongoing deformation and seismotectonic characteristics of the region. Recently, many moderate earthquakes occurred in the Gulfs of Gökova, Kuşadası, Sıǧacık and surroundings. In the present study, we examined source mechanisms and rupture histories of those earthquakes with Mw > 5.0 in order to retrieve the geometry of active faulting, source characteristics, kinematic and dynamic source parameters and current deformations of the region by using teleseismic body-waveform inversion of long-period P- and SH-waves, and broad-band P-waveforms recorded by GDSN and FDSN stations. We also checked first motion polarities of P- waveforms recorded at regional and teleseismic stations and applied several uncertainty tests to find the error limits of minimum misfit solutions. Inversion results revealed E-W directed normal faulting mechanisms with small amount of left lateral strike slip components in the Gulf of Gökova and NE-SW oriented right lateral strike slip faulting mechanisms in the Gulf of Sıǧacık. Earthquakes mostly have N-S and NW-SE directed T- axes directions which are

  18. A numerical reference model for themomechanical subduction

    DEFF Research Database (Denmark)

    Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola

    2010-01-01

    response to systematic variations in input parameters, numerical studies often start from a 'reference' subduction model. However, the reference model often varies between different numerical studies, making it difficult to compare results directly. We aim therefore to define a numerical reference model......, and initial temperature distribution. We will show results of the evolution and dynamics of the subduction reference model using different numerical codes: a finite element code, SULEC, and two finite difference codes, YACC and FDcon....

  19. Zagros blueschists: Episodic underplating and long-lived cooling of a subduction zone

    Science.gov (United States)

    Angiboust, Samuel; Agard, Philippe; Glodny, Johannes; Omrani, Jafar; Oncken, Onno

    2016-06-01

    Pressure-temperature-time (P- T- t) trajectories of high-pressure rocks provide important constraints to understand the tectonic evolution of convergent margins. New field observations and P- T- t constraints for the evolution of the only known blueschist-facies exposure along the Zagros suture zone in Southern Iran are reported here. These blueschists, now exposed in tectonic windows under the Sanandaj-Sirjan zone (upper plate), constitute accreted fragments of the Tethyan domain during N-directed Cretaceous subduction. Three units were identified in the field: from top to bottom, the Ashin unit (mafic and felsic gneisses), the Seghin complex (mafic tuffs and ultramafics) and the Siah Kuh massif (coherent volcanic edifice). Microstructural observations, P- T estimates and Rb-Sr deformation ages indicate that the Ashin unit possibly underwent burial down to 30-35 km and 550 °C along a relatively warm P- T gradient (c. 17°/km) and was ultimately deformed between 85 and 100 Ma. The Seghin complex exhibits remarkably well-preserved HP-LT assemblages comprising lawsonite, glaucophane, aragonite, omphacite and garnet. P- T- t reconstruction indicates that this slice was subducted down to c. 50 km at temperatures of c. 500 °C along a very cold subduction gradient (c. 7°/km). Deformation in the Seghin complex stopped at around 65 Ma, close to peak metamorphic conditions. Field relationships and estimates of the P- T trajectory followed by the Siah Kuh volcanic edifice indicate that this massif was lately subducted down to 15 km depth along the same very cold gradient. This slice-stack represents a well-preserved field example (i) highlighting the existence of transient underplating processes juxtaposing pluri-kilometric tectonic slices along the subduction channel and (ii) imaging the discontinuous down-stepping of the active main subduction thrust with ongoing accretion. The Zagros blueschists also record an apparent cooling of the Zagros subduction zone between 90

  20. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  1. Low thrust chemical rocket technology

    Science.gov (United States)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  2. Southern Perú coseismic subsidence: 23 June 2001 8.4-Mw earthquake

    OpenAIRE

    L. Ocola

    2008-01-01

    International audience; The 23-June-2001 8.4-Mw magnitude earthquake partially filled the 1868-seismic-gap in southern Perú. This earthquake produced a thrust faulting dislocation with a rupture that started at about ~200 km SE from the 1996's Nazca earthquake epicenter, and stopped near Ilo, at about 300 km from the epicenter, near a positive gravity anomaly offshore Ilo. The 23-June-2001-earthquake dislocation zone is under the Arequipa sedimentary Basin. Pre- and post-seismic GPS measureme...

  3. Two successive crustal melting events resulting from extensional exhumation and then thrusting of the Ronda Peridotites (South Spain)

    Science.gov (United States)

    Frasca, Gianluca; Gueydan, Frédéric; Poujol, Marc; Brun, Jean-Pierre; Parat, Fleurice; Monié, Patrick; Pichat, Alexandre; Maziers, Sophie

    2017-04-01

    The Alboran Domain, situated at the western end of the Mediterranean subduction system, is characterized by the Ronda Peridotites, one of the world largest exposures of sub-continental mantle. Using U-Pb (LA-ICP-MS) and Ar-Ar dating, we precisely dated two tectonic events associated with the Tertiary exhumation of the Ronda Peridotites. First, shearing along the Crust-Mantle Extensional Shear Zone caused, at ca. 22.5 Ma, mantle exhumation, local partial melting in the deep crust and coeval cooling in the upper crust. Second, the Ronda Peridotites Thrust triggered the final crustal emplacement of the peridotites onto the continental crust at ca. 21 Ma, as testified by granitic intrusions in the thrust hanging-wall. The tectonic evolution of the western Alboran Domain is therefore characterized by a fast switch from a continental lithosphere extension in a backarc setting, with sub-continental mantle exhumation, to a rift inversion by thrusting driven by shortening of the subduction upper plate.

  4. Pulsed Ejector Thrust Amplification Tested and Modeled

    Science.gov (United States)

    Wilson, Jack

    2004-01-01

    There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.

  5. Large trench-parallel gravity variations predict seismogenic behavior in subduction zones.

    Science.gov (United States)

    Song, Teh-Ru Alex; Simons, Mark

    2003-08-01

    We demonstrate that great earthquakes occur predominantly in regions with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA are relatively aseismic. These observations suggest that, over time scales up to at least 1 million years, spatial variations of seismogenic behavior within a given subduction zone are stationary and linked to the geological structure of the fore-arc. The correlations we observe are consistent with a model in which spatial variations in frictional properties on the plate interface control trench-parellel variations in fore-arc topography, gravity, and seismogenic behavior.

  6. Metastability of Subducted Slabs in the Mantle Transition Zone: A Collaborative Geodynamic, Petrologic, and Seismological Approach

    Science.gov (United States)

    Garber, J. M.; Billen, M. I.; Duncan, M. S.; Roy, C.; Ibourichene, A. S.; Olugboji, T.; Celine, C.; Rodríguez-González, J.; Grand, S. P.; Madrigal, P.; Sandiford, D.; Valencia-Cardona, J. J.

    2016-12-01

    Subducted slabs exhibit a range of geometries in the mantle transition zone. Studies of this phenomenon suggest that olivine and/or pyroxene metastability may profoundly alter the slab density profile, leading to slab flattening (e.g., King et al., 2015) and potentially yielding a resolvable seismological signature (e.g., Kawakatsu and Yoshioka, 2011; Yoshioka et al., 2015). Such metastability may also be critical for deep earthquake generation. Geodynamic modelling of this process is typically done with a simplified petrologic model of the downgoing slab, whereas petrologic studies of phase assemblages in subducted slabs typically impose an idealized geodynamic model with an unrealistic thermal structure. Connecting these two approaches should lead to a better understanding of the consequences of metastable assemblages on subducting slabs. Here, we present a new methodology that combines geodynamic, seismic and petrologic approaches to assess the impact of mineral metastability on dynamic subduction models, developed in a collaborative effort begun at the 2016 NSF CIDER summer program in Santa Barbara, CA. We use two parallel approaches to extrapolate equilibrium rock properties to metastable regions and impose these data on extracted time-slices from robust thermo-mechanical geodynamic models, allowing us to quantify the density and buoyancy changes in the slab that result from considering metastable phase assemblages. Our preliminary results suggest that metastable assemblages can yield a 10-30% density decrease over the subducted slab relative to an equilibrium reference model. We then generate a seismic velocity profile of the slab, and compute waveforms based on the 2D finite-difference method (e.g., Vidale & Helmberger, 1987) to determine whether metastable phases could reasonably be detected by different seismic approaches. Continuing analyses will be aimed at coupling the evolution of geodynamic models with phase metastability to model the feedback between

  7. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by

  8. Possible correlation between annual gravity change and shallow background seismicity rate at subduction zone by surface load

    Science.gov (United States)

    Mitsui, Yuta; Yamada, Kyohei

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.

  9. Seamount subduction at the North-Ecuadorian convergent margin: Effects on structures, inter-seismic coupling and seismogenesis

    Science.gov (United States)

    Marcaillou, Boris; Collot, Jean-Yves; Ribodetti, Alessandra; d'Acremont, Elia; Mahamat, Ammy-Adoum; Alvarado, Alexandra

    2016-01-01

    At the North-Ecuadorian convergent margin (1°S-1.5°N), the subduction of the rough Nazca oceanic plate leads to tectonic erosion of the upper plate and complex seismogenic behavior of the megathrust. We used three selected pre-stack depth migrated, multi-channel seismic reflection lines collected during the SISTEUR cruise to investigate the margin structure and decipher the impact of the subducted Atacames seamounts on tectonic erosion, interseismic coupling, and seismogenesis in the region of the 1942 Mw7.8 earthquake. This dataset highlights a subducted ∼ 30 × 40 km, double-peak seamount that belongs to the Atacames seamount chain and that is associated with a deep morphologic re-entrant containing mass transport deposits. The seamount subduction uplifted the margin basement by ∼1.6 km and pervasively broke the margin by deep and intense reverse faulting ahead of the seamount, a process that is likely to weaken considerably the margin. In the seamount wake, the basement reverse fault system rotated counter-clockwise. This faulted basement is overlain with slope sediment sliding along listric normal faults that sole out onto the BSR. This superposition of deep tectonic contraction within the basement and shallow gravitational extension deformation within the sediment highlights the key role of gas hydrate on outer slope erosion. In addition to long-term regional basal erosion, the margin basement has thinned locally by an extra 0.8-1 km in response to the subduction of the Atacames seamount chain and hydrofracturing by overpressured fluids at the margin toe. This pervasively and deeply fractured margin segment is associated with a seismically quiet and GPS-modeled low interseismic coupling corridor that terminates downdip near the 1942 epicenter and locked zone. We suggest that the deeply buried double-peak Atacames seamount triggered the 1942 earthquake ahead of its leading flank. This result supports previous studies proposing that subducted seamounts

  10. Seismotectonics of the 6 February 2012 Mw 6.7 Negros Earthquake, central Philippines

    Science.gov (United States)

    Aurelio, M. A.; Dianala, J. D. B.; Taguibao, K. J. L.; Pastoriza, L. R.; Reyes, K.; Sarande, R.; Lucero, A.

    2017-07-01

    At 03:49 UTC on the 6th of February 2012, Negros Island in the Visayan region of central Philippines was struck by a magnitude Mw 6.7 earthquake causing deaths of over 50 people and tremendous infrastructure damage leaving hundreds of families homeless. The epicenter was located in the vicinity of the eastern coastal towns of La Libertad and Tayasan of the Province of Negros Oriental. Earthquake-induced surface deformation was mostly in the form of landslides, liquefaction, ground settlement, subsidence and lateral spread. There were no clear indications of a fault surface rupture. The earthquake was triggered by a fault that has not been previously recognized. Earthquake data, including epicentral and hypocentral distributions of main shock and aftershocks, and focal mechanism solutions of the main shock and major aftershocks, indicate a northeast striking, northwest dipping nodal plane with a reverse fault mechanism. Offshore seismic profiles in the Tañon Strait between the islands of Negros and Cebu show a northwest dipping reverse fault consistent in location, geometry and mechanism with the nodal plane calculated from earthquake data. The earthquake generator is here proposed to be named the Negros Oriental Thrust (NOT). Geologic transects established from structural traverses across the earthquake region reveal an east-verging fold-thrust system. In the latitude of Guihulngan, this fold-thrust system is represented by the Razor Back Anticline - Negros Oriental Thrust pair, and by the Pamplona Anticline - Yupisan Thrust pair in the latitude of Dumaguete to the south. Together, these active fold-thrust systems are causing active deformation of the western section of the Visayan Sea Basin under a compressional tectonic regime. This finding contradicts previous tectonic models that interpret the Tañon Strait as a graben, bounded on both sides by normal faults supposedly operating under an extensional regime. The Negros Earthquake and the active fold-thrust

  11. Seismogeodesy for rapid earthquake and tsunami characterization

    Science.gov (United States)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  12. Kinematics of subduction and subduction-induced flow in the upper mantle

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    Results of fluid dynamical experiments are presented to model the kinematics of lithospheric subduction in the upper mantle. The experiments model a dense highviscosity plate (subducting lithosphere) overlying a less dense low-viscosity layer (upper mantle). The overriding lithosphere is not

  13. High Performance Methane Thrust Chamber (HPMTC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  14. Long-Term Interactions Between Intermediate Depth and Shallow Seismicity in North Chile Subduction Zone

    Science.gov (United States)

    Jara, Jorge; Socquet, Anne; Marsan, David; Bouchon, Michel

    2017-09-01

    We document interactions between intermediate depth and interplate seismicity in the North Chile subduction zone, over a 25 year period (1990-2015). We show that the 2005 Mw 7.8 Tarapaca slab-pull earthquake was followed by 9 years of enhanced deep and shallow seismicity, together with the decrease of eastward average GPS velocities and associated interplate coupling, eventually leading to the 2014 Mw 8.1 Iquique megathrust earthquake. In contrast, megathrust ruptures (e.g., Mw 8.0 Antofagasta in 1995, or Mw 8.1 Iquique in 2014) initiate several years of silent background seismicity in the studied area, both at shallow and intermediate depths. The plunge of a rigid slab into a viscous asthenospheric mantle could explain the observed synchronization between deep and shallow seismicity and their long-term interactions.

  15. Episodic tremor and slip in Northern Sumatra subduction zone

    Science.gov (United States)

    Sianipar, Dimas; Subakti, Hendri

    2017-07-01

    The first reported observation of non-volcanic tremor in Sunda Arc in Sumbawa, Indonesia open a possibility of discovery of episodic tremor and slip (ETS) from out of Pacific Rim. Non-volcanic tremor gives some important information about dynamic of plate boundaries. The characteristics of these tremors are visually as non-impulsive, high frequency, long-duration and low-amplitude signals. Tectonic tremor occurred in a transition part of brittle-ductile of a fault and frequently associated with the shearing mechanism of slow slip. Tectonic tremor is a seismic case that also very interested, because it shows strong sensitivity to stress changes. Deep non-volcanic tremor is usually associated with episodic slow-slip events. Tectonic tremor is found in close association with geodetically observed slow-slip events (SSE) in subduction zones. One research found that there is possibility of SSE occurrence on Banyak Islands, North Sumatra revealed from coral observation. The SSE occurred on the Banyak Islands portion of the megathrust at 30-55 km depth, within the downdip transition zone. We do a systematic search of episodic tremor and its possible relationship with slow-slip phenomena in Northern Sumatra subduction zone. The spectrogram analysis is done to analyze the potential tremor signals. We use three component broadband seismic stations with 20, 25, and 50 sampling per second (BH* and SH* channels). We apply a butterworth 5 Hz highpass filter to separate the signal as local tremor and teleseismic/regional earthquakes. Before computing spectrogram to avoid high-frequency artifacts to remote triggering, we apply a 0.5 Hz filter. We also convert the binary seismic data into sound waves to make sure that these events meet the tectonic tremor criterion. We successfully examine 3 seismic stations with good recording i.e. GSI, SNSI and KCSI. We find there are many evidences of high frequency episodic tremor like signals. This include an analysis of potential triggered

  16. The earthquake and tsunami of 1865 November 17: evidence for far-field tsunami hazard from Tonga

    Science.gov (United States)

    Okal, Emile A.; Borrero, José; Synolakis, Costas E.

    2004-04-01

    Historical reports of an earthquake in Tonga in 1865 November identify it as the only event from that subduction zone which generated a far-field tsunami observable without instruments. Run-up heights reached 2 m in Rarotonga and 80 cm in the Marquesas Islands. Hydrodynamic simulations require a moment of 4 × 1028 dyn cm, a value significantly larger than previous estimates of the maximum size of earthquake to be expected at the Tonga subduction zone. This warrants an upwards re-evaluation of the tsunami risk from Tonga to the Cook Islands and the various Polynesian chains, which had hitherto been regarded as minor.

  17. Optimal low thrust-based rendezvous maneuvers

    OpenAIRE

    Gonzalo Gomez, Juan Luis; Bombardelli, Claudio

    2015-01-01

    The minimum-time, low-constant-thrust, same circular orbit rendezvous problem is studied using a relative motion description of the system dynamics. The resulting Optimal Control Problem in the thrust orientation angle is formulated using both the Direct and Indirect methods. An extensive set of test cases is numerically solved with the former, while perturbation techniques applied to the later allow to obtain several approximate solutions and provide a greater insight on the underlying physi...

  18. Hidden Earthquake Potential in Plate Boundary Transition Zones

    Science.gov (United States)

    Furlong, Kevin P.; Herman, Matthew; Govers, Rob

    2017-04-01

    Plate boundaries can exhibit spatially abrupt changes in their long-term tectonic deformation (and associated kinematics) at triple junctions and other sites of changes in plate boundary structure. How earthquake behavior responds to these abrupt tectonic changes is unclear. The situation may be additionally obscured by the effects of superimposed deformational signals - juxtaposed short-term (earthquake cycle) kinematics may combine to produce a net deformational signal that does not reflect intuition about the actual strain accumulation in the region. Two examples of this effect are in the vicinity of the Mendocino triple junction (MTJ) along the west coast of North America, and at the southern end of the Hikurangi subduction zone, New Zealand. In the region immediately north of the MTJ, GPS-based observed crustal displacements (relative to North America (NAm)) are intermediate between Pacific and Juan de Fuca (JdF) motions. With distance north, these displacements rotate to become more aligned with JdF - NAm displacements, i.e. to motions expected along a coupled subduction interface. The deviation of GPS motions from the coupled subduction interface signal near the MTJ has been previously interpreted to reflect clock-wise rotation of a coastal, crustal block and/or reduced coupling at the southern Cascadia margin. The geologic record of crustal deformation near the MTJ reflects the combined effects of northward crustal shortening (on geologic time scales) associated with the MTJ Crustal Conveyor (Furlong and Govers, 1999) overprinted onto the subduction earthquake cycle signal. With this interpretation, the Cascadia subduction margin appears to be well-coupled along its entire length, consistent with paleo-seismic records of large earthquake ruptures extending to its southern limit. At the Hikurangi to Alpine Fault transition in New Zealand, plate interactions switch from subduction to oblique translation as a consequence of changes in lithospheric structure of

  19. Intrinsic and Extrinsic Factors in Subduction Dynamics

    Science.gov (United States)

    Billen, Magali; Arredondo, Katrina

    2014-05-01

    Since the realization that tectonic plates sink into the mantle, in a process we now call subduction, our understanding of this process has improved dramatically through the combined application of observations, theory and modeling. During that time independent research groups focusing on different aspects of subduction have identified factors with a significant impact on subduction, such as three-dimensionality, slab rollback, rheology of the slab and mantle and magnitude of phase changes. However, as each group makes progress we often wonder how these different factors interact as we all strive to understand the real world subduction system. These factors can be divided in two groups: intrinsic factors, including the age of the slab, its thermal structure, composition, and rheology, and extrinsic factors including others forces on plates, overall mantle flow, structure of the overriding plate, rheology of the mantle and phase changes. In addition, while modeling has been a powerful tool for understanding subduction, all models make important (but often necessary) approximations, such as using two dimensions, imposed boundary conditions, and approximations of the conservation equations and material properties. Here we present results of a study in which the "training wheels" are systematically removed from 2D models of subduction to build a more realistic model of subduction and to better understand how combined effects of intrinsic and extrinsic factors contribute to the dynamics. We find that a change from the Boussinesq to the extended Boussinesq form of the conservation equations has a dramatic effect on slab evolution in particular when phase changes are included. Allowing for free (dynamically-driven) subduction and trench motion is numerically challenging, but also an important factor that allows for more direct comparison to observations of plate kinematics. Finally, compositional layering of the slab and compositionally-controlled phase changes also have

  20. Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone

    Science.gov (United States)

    Li, Shaoyang; Moreno, Marcos; Bedford, Jonathan; Rosenau, Matthias; Oncken, Onno

    2015-06-01

    Viscoelastic effects potentially play an important role during all phases of the earthquake cycle in subduction zones. However, most current models neglect such effects in the interseismic deformation pattern. Here we use finite element method (FEM) models to investigate the control of viscoelasticity on interseismic deformation and to highlight the pitfalls of interpreting the data with purely elastic models for both the forward and inverse problems. Our results confirm that elastic models are prone to overestimating the interseismic locking depth, a crucial parameter for estimating the maximum possible earthquake magnitude. The application of the viscoelastic model improves the fit to the interseismic deformation, especially in the inland area. Additionally, we construct 3-D FEM models constrained by geophysical and GPS data and apply our methodology to the Peru-North Chile subduction zone. Our results indicate that viscoelastic effects contribute significantly to the observed GPS data. The signals interpreted as back-arc shortening in the elastic model can be alternatively explained by viscoelastic deformation, which, in turn, dramatically refines the interseismic locking pattern in both dip and strike directions. Our viscoelastic locking map exhibits excellent correlation with the slip distributions of previous earthquakes, especially the recent 2014 Mw 8.1 Iquique earthquake. The incorrect elastic assumptions affect the analysis of interseismic deformation with respect to slip deficit calculations. Our results thus suggest that it is necessary to thoroughly reevaluate existing locking models that are based on purely elastic models, some of which attribute viscoelastic deformation to different sources such as microplate sliver motions.

  1. The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks

    Directory of Open Access Journals (Sweden)

    Katsuichiro Goda

    2016-08-01

    Full Text Available A sequence of two strike-slip earthquakes occurred on 14 and 16 April 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.

  2. Detecting Possible Fault Zone Head Waves Along the Longmenshan Fault Zone Using Aftershocks of the 2013 Mw6.7 Lushan Earthquake

    Science.gov (United States)

    Daniels, C.; Peng, Z.; Li, Z.; Ross, Z. E.; Wu, J.; Su, J.; Zhang, H.; Pei, S.

    2016-12-01

    Fault zone head waves (FZHWs) are subtle refracted waves propagated along bi-material fault interfaces and recorded at stations at slower side of the fault. FZHWs are typically observed in association with mature strike-slip faults or subduction zones, where two sides exhibit a noticeable P-wave velocity difference. So far FZHWs have not been observed along continental thrust faults. In this study we search for possible FZHWs using abundant aftershock observations following the 2013 Mw6.7 Lushan earthquake. This event occurred along the southern portion of the Longmenshan Fault Zone that separated the Tibetan Plateau and Sichuan Basin in Western China. Recent P-wave tomographic studies have found clear velocity contrasts along this fault, suggesting that events occurred at the fault boundary are capable of producing FZHW-like signals. We are in the process of analyzing 4100 aftershocks recorded by 28 temporary stations deployed between April 24 to May 19 2013. We use both visual inspections and automatic FZHW pickers to identify weak precursory-type signals before sharp direct P wave arrivals. Next, we align them on the P-wave onset, and examine the moveout between the time delays of P and weak arrivals and distance along the fault strike. So far we find that many stations on both sides of the fault recorded possible evidence of FZHWs, but we do not find clear moveout with along-strike distances. Our next step is to combine this dataset with another larger dataset recorded by both permanent and temporary stations, and use automatic FZHW pickers to quantify the existences of FZHWs in this region. A systematic detection of FZHW along continental thrust faults could provide new insights on the fault geometry and high-resolution fault interface properties at seismogenic depth.

  3. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, Roy D; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay j

    2015-01-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  4. Prioritizing earthquake and tsunami alerting efforts

    Science.gov (United States)

    Allen, R. M.; Allen, S.; Aranha, M. A.; Chung, A. I.; Hellweg, M.; Henson, I. H.; Melgar, D.; Neuhauser, D. S.; Nof, R. N.; Strauss, J. A.

    2015-12-01

    The timeline of hazards associated with earthquakes ranges from seconds for the strong shaking at the epicenter, to minutes for strong shaking at more distant locations in big quakes, to tens of minutes for a local tsunami. Earthquake and tsunami warning systems must therefore include very fast initial alerts, while also taking advantage of available time in bigger and tsunami-generating quakes. At the UC Berkeley Seismological Laboratory we are developing a suite of algorithms to provide the fullest possible information about earthquake shaking and tsunami inundation from seconds to minutes after a quake. The E-larmS algorithm uses the P-wave to rapidly detect an earthquake and issue a warning. It is currently issuing alerts to test users in as little as 3 sec after the origin time. Development of a new waveform detector may lead to even faster alerts. G-larmS uses permanent deformation estimates from GNSS stations to estimate the geometry and extent of rupture underway providing more accurate ground shaking estimates in big (M>~7) earthquakes. It performe