WorldWideScience

Sample records for subduction experiment cruise

  1. Cruising tourism Novi Sad and Belgrade residents' experience analyze

    Directory of Open Access Journals (Sweden)

    Berić Dejan

    2012-01-01

    Full Text Available The subject of this paper are previous nautical experiences of the local population of Novi Sad and Belgrade. The aim of this paper is to determine how local population (who has already cruised, but as well as those who have not is experiencing our country in terms of cruises. The research was based on conducting interviews with local people in Novi Sad and Belgrade. Interviews with a structured questionnaire, were performed from March to June 2010 with the task to determine past and potential cruise destinations, as well as attitudes about the potentials of Serbia in terms of nautical tourism. The importance of this paper is primarily based on the enrichment of knowledge on the segment of tourism that is the subject of this paper. Obtained results may help further studies of the causal link between cruises and experiences of local population in nautical tourism. [Projekat Ministarstva nauke Republike Srbije, br. 176020: Transformations of Geo Area of Serbia - past, current problems and suggestions of the solutions

  2. All at sea: Insights into crew work experiences on a cruise liner | Bolt ...

    African Journals Online (AJOL)

    This research explores employee experiences of working on board a cruise ship. Cruise liners have been described as floating hotels; but increasingly they are more like floating resorts, embracing passenger and crew populations as big as small towns. In addition to the usual service sector experiences and emotional ...

  3. Fore-arc deformation at the transition between collision and subduction: insights from 3D thermo-mechanical laboratory experiments.

    OpenAIRE

    D. Boutelier; Onno Oncken; A. Cruden

    2012-01-01

    Three-dimensional thermomechanical laboratory experiments of arc-continent collision investigate the deformation of the fore arc at the transition between collision and subduction. The deformation of the plates in the collision area propagates into the subduction-collision transition zone via along-strike coupling of the neighboring segments of the plate boundary. In our experiments, the largest along-strike gradient of trench-perpendicular compression does not produce sufficiently localized ...

  4. Plume-induced subduction

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  5. Subduction factory in an ampoule: Experiments on sediment-peridotite interaction under temperature gradient conditions

    Science.gov (United States)

    Woodland, A. B.; Bulatov, V. K.; Brey, G. P.; Girnis, A. V.; Höfer, H. E.; Gerdes, A.

    2018-02-01

    To better understand processes above subducted oceanic slabs, we have undertaken experiments with juxtaposed sediment and peridotite layers at pressures of 7.5 and 10.5 GPa at a controlled temperature gradient from ∼100 to ∼500 °C per a sample length of ∼3 mm. The sediment starting material contains H2O (6.9 wt%) and CO2 (5.9 wt%) and has a major-element composition similar to GLOSS (Plank and Langmuir, 1998) doped with trace elements at 10-100 ppm levels. Several experiments were conducted with ∼0.5 wt% Cl or F. The peridotite layer is composed of natural olivine (66 wt%), orthopyroxene (27 wt%) and garnet (7 wt%) mixed with ∼15 wt% graphite. Several experimental configurations were investigated, but the "basic" setup has the sediment layer at the bottom in the cold zone (400-1200 °C) overlain by peridotite at 900-1500 °C. The temperature distribution was determined by two thermocouples and orthopyroxene-garnet thermometry. Features common to many experiments are (1) the development of multiple layers of various lithologies and a pool of hydrous silicate or carbonate-silicate melt in the hottest part of the capsule; (2) replacement of olivine by orthopyroxene in the metaperidotite; (3) preservation and growth of garnet and local development of magnesite in the metaperidotite layer; (4) enrichment in garnet within the metasediment layer at the contact with the metaperidotite; (5) formation of a clinopyroxene-garnet assemblage at the bottom (the coldest part); (6) presence of K-bearing phases (phlogopite or phengite) and carbonates in the metasediment layer only at temperatures <700 °C; and (7) occurrence of accessory zircon, rutile and phosphates in the coldest regions. In terms of element redistribution, the peridotite becomes strongly enriched in SiO2 compared to the starting composition, and the sediment gains MgO, FeO and Cr2O3. Potassium is fully extracted into the melt, while Na and Ca are largely retained in the coldest part of the metasediment

  6. Peru Subduction Experiment (PERUSE) Preliminary results of Gravity measurements, Earthquake locations and Regional Seismicity in Southern Peru

    Science.gov (United States)

    Foote, E. J.; Davis, P. M.; Guy, R.; Lukac, M. L.; Feng, H. S.; Clayton, R. W.; Phillips, K. E.; Skinner, S.; Audin, L.; Tavera, H.; Aguilar, V.

    2009-12-01

    The Peru Subduction Experiment (PERUSE) is a collaborative project developed by UCLA, Caltech, French L’Institut de Recherche pour le Développement (IRD) and Instituto Geofisico del Peru (IGP) to improve geophysical models of the Andean Orogenic Belt and to image the subduction process in Southern Peru. One area of particular interest is where the Nazca Plate transitions from a normally subducting slab at an angle of about 30 degrees to a shallow subducting slab beneath the South American Plate. The PERUSE project, which started in the summer of 2008, consists of a linear array of 50 broadband seismic stations that are evenly spaced about 6 kilometers apart. They are aligned perpendicular to the coast of Peru, from Mollendo to Juliaca. Caltech will deploy 50 more stations by the end of 2009. Their line will run perpendicular to the current line, from Juliaca to Cusco. By the end of 2010, a third linear array will be installed north of and perpendicular to Caltech’s line in the Altiplano. Preliminary results from gravity measurements indicate that the crustal root of the Andes dips approximately 20 degrees on both sides of the range, and extends to a depth of approximately 70km. This also agrees well with the receiver function results, which show that the crust thickens from the coast of Mollendo through the Altiplano to Juliaca to a depth about 70km (Phillips et al, Fall AGU 2009). Teleseismic studies also indicate that the crustal thickness varies laterally below southern Peru. We are developing a heterogeneous model from the topographic and gravity data, teleseismic events, and the receiver function results to accurately locate earthquakes in the area of interest and to provide a better crustal model of the region.

  7. Ocean Bottom Seismometer Augmentation of the Philippine Sea Experiment (OBSAPS) Cruise Report

    Science.gov (United States)

    2011-09-01

    Aaron SIO OBSIP Engineer Richard Campbell OASIS Inc. Visiting Scientist and Watchstander Brianne Moskovitz SIO Graduate Student Watchstander John...70 -60 D ep th (m ) Range from DVLA (km) CRAM: 77.5 Hz from DVLA (incoh over 15 elts ) to 250km, bearing 016, XBT, multibeam 0 1000 2000 3000 4000...Grad Student : Brianne Moskovitz, SIO Cruise Dates: (04/19/11 – 05/16/11) WHOI  -­‐2011-­‐04   OBSAPS  Cruise  Report   Page  172  of

  8. All at sea: Insights into crew work experiences on a cruise liner

    African Journals Online (AJOL)

    ., Marnburg, E., & Ogaard, T. (2012). Working onboard - Job perception, organizational commitment and job satisfaction in the cruise sector. Tourism Management, 33(3), 592–597. http://dx.doi. org/10.1016/j.tourman.2011.06.014. Lincoln, Y. S. ...

  9. A review of supersonic cruise flight path control experience with the YF-12 aircraft

    Science.gov (United States)

    Berry, D. T.; Gilyard, G. B.

    1976-01-01

    Flight research with the YF-12 aircraft indicates that solutions to many handling qualities problems of supersonic cruise are at hand. Airframe/propulsion system interactions in the Dutch roll mode can be alleviated by the use of passive filters or additional feedback loops in the propulsion and flight control systems. Mach and altitude excursions due to atmospheric temperature fluctuations can be minimized by the use of a cruise autothrottle. Autopilot instabilities in the altitude hold mode have been traced to angle of attack-sensitive static ports on the compensated nose boom. For the YF-12, the feedback of high-passed pitch rate to the autopilot resolves this problem. Manual flight path control is significantly improved by the use of an inertial rate of climb display in the cockpit.

  10. RRS Discovery Cruise 228, 21 May-28 Jun 1997. The Fluxes at AMAR Experiment: FLAME

    OpenAIRE

    C. R. German

    1997-01-01

    The principle objectives of the cruise were to study the physical, geochemical and biological dispersion of the neutrally-buoyant hydrothermal plume overlying the Rainbow hydrothermal field on the Mid-Atlantic Ridge, near 36°15'N; to investigate the interacting processes active within the dispersing plume; to better constrain the source of active venting on the seabed; and to quantify the physical, geochemical and biological fluxes to the water column on the segment scale. A secondary object...

  11. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru.

    Science.gov (United States)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.

    2008-12-01

    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  12. Atlantic Coastal Experiment III: R/V KNORR cruise 68, 4-30 August 1977; FRV ALBATROSS IV cruise 77-07, 1-4, 16-31 August 1977. Data report, volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, D.C.; von Bock, K.

    1983-03-01

    Data are reported from KNORR cruise 68, the major investigation of the third Atlantic Coastal Experiment (ACE), conducted during a period of pro-nounced water-column stratification. One hundred fifty-five stations, including 6 time-series sitings, were occupied within the shelf and shelf- break regimes of New York Bight. Measurements were made to assess water-mass characterization, nutrient cycling, carbon/nitrogen assimilation, bio-mass distribution and diel dynamics and benthic/water-column interfacial exchange. Data are also included from the cruise of ALBATROSS IV carried out contemporaneously with the KNORR investigations, in an area ranging from Nantucket Shoals to the upper reaches of the Gulf of Maine. 20 hydrographic stations were used to augment underway mapping in order to elucidate surface-layer chlorophyll and nutrient distributions occurring at an impor-tant boundary of the New York Bight.

  13. Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist.

    Science.gov (United States)

    Eichelberger, Angela H; McCartt, Anne T

    2016-02-01

    Advanced crash avoidance and driver assistance technologies potentially can prevent or mitigate many crashes. Previous surveys with drivers have found favorable opinions for many advanced technologies; however, these surveys are not necessarily representative of all drivers or all systems. As the technologies spread throughout the vehicle fleet, it is important to continue studying driver acceptance and use of them. This study focused on 2010-2013 Toyota Sienna and Prius models that were equipped with adaptive cruise control, forward collision avoidance, and lane departure warning and prevention (Prius models only). Telephone interviews were conducted in summer 2013 with 183 owners of vehicles with these technologies. About 9 in 10 respondents wanted adaptive cruise control and forward collision avoidance on their next vehicle, and 71% wanted lane departure warning/prevention again. Males and females reported some differences in their experiences with the systems; for example, males were more likely to have turned on lane departure warning/prevention than females, and when using this system, males reported more frequent warnings than did females. Relative to older drivers, drivers age 40 and younger were more likely to have seen or heard a forward collision warning. Consistent with the results in previous surveys of owners of luxury vehicles, the present survey found that driver acceptance of the technologies was high, although less so for lane departure warning/prevention. Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles. Crash avoidance technologies potentially can prevent or mitigate many crashes, but their success depends in part on driver acceptance. These systems will be effective only to the extent that drivers use them. Copyright © 2015 Elsevier Ltd and

  14. Preface: The Oligotrophy to the UlTra-oligotrophy PACific Experiment (OUTPACE cruise, 18 February to 3 April 2015)

    Science.gov (United States)

    Moutin, Thierry; Michelangelo Doglioli, Andrea; de Verneil, Alain; Bonnet, Sophie

    2017-07-01

    The overall goal of OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment) was to obtain a successful representation of the interactions between planktonic organisms and the cycle of biogenic elements in the western tropical South Pacific Ocean across trophic and N2 fixation gradients. Within the context of climate change, it is necessary to better quantify the ability of the oligotrophic ocean to sequester carbon through biological processes. OUTPACE was organized around three main objectives, which were (1) to perform a zonal characterization of the biogeochemistry and biological diversity of the western tropical South Pacific during austral summer conditions, (2) to study the production and fate of organic matter (including carbon export) in three contrasting trophic regimes (increasing oligotrophy) with a particular emphasis on the role of dinitrogen fixation, and (3) to obtain a representation of the main biogeochemical fluxes and dynamics of the planktonic trophic network. The international OUTPACE cruise took place between 18 February and 3 April 2015 aboard the RV L'Atalante and involved 60 scientists (30 onboard). The west-east transect covered ˜ 4000 km from the western part of the Melanesian archipelago (New Caledonia) to the western boundary of the South Pacific gyre (French Polynesia). Following an adaptive strategy, the transect initially designed along the 19° S parallel was adapted along-route to incorporate information coming from satellite measurements of sea surface temperature, chlorophyll a concentration, currents, and diazotroph quantification. After providing a general context and describing previous work done in this area, this introductory paper elucidates the objectives of OUTPACE, the implementation plan of the cruise and water mass and climatological characteristics and concludes with a general overview of the other papers that will be published in this special issue.

  15. Ervaringen met Advanced Cruise Control (ACC) in een korte praktijkproef.

    NARCIS (Netherlands)

    Oei, H.-l.

    2003-01-01

    Experiences with Advanced Cruise Control in traffic; a limited experiment. Advanced Cruise Control (ACC) is an ordinary cruise control in which the desired speed is installed manually, but in which the headway time to the vehicle in front is also taken into account. If the headway time becomes less

  16. Kinematics of subduction and subduction-induced flow in the upper mantle

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    Results of fluid dynamical experiments are presented to model the kinematics of lithospheric subduction in the upper mantle. The experiments model a dense highviscosity plate (subducting lithosphere) overlying a less dense low-viscosity layer (upper mantle). The overriding lithosphere is not

  17. Evolution of seismic signals and slip patterns along subduction zones: insights from a friction lab scale experiment

    CERN Document Server

    Voisin, Christophe; Larose, Eric; Renard, François

    2008-01-01

    Continuous GPS and broadband seismic monitoring have revealed a variety of disparate slip patterns especially in shallow dipping subduction zones, among which regular earthquakes, slow slip events and silent quakes1,2. Slow slip events are sometimes accompanied by Non Volcanic Tremors (NVT), which origin remains unclear3, either related to fluid migration or to friction. The present understanding of the whole menagerie of slip patterns is based upon numerical simulations imposing ad hoc values of the rate and state parameters a and b4-6 derived from the temperature dependence of a and b of a wet granite gouge7. Here we investigate the influence of the cumulative slip on the frictional and acoustic patterns of a lab scale subduction zone. Shallow loud earthquakes (stick-slip events), medium depth slow, deeper silent quakes (smooth sliding oscillations) and deepest steady-state creep (continuous sliding) are reproduced by the ageing of contact interface with cumulative displacement8. The Acoustic Emission evolv...

  18. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2005-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  19. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2004-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  20. OBS seismic data preliminary results: Manila subduction zone (21°N)

    Science.gov (United States)

    Zhao, M.; Liu, S.; Sun, L.; Sibuet, J. C.; Zhang, J.; Chen, C.; Qiu, X.

    2016-12-01

    A two-dimensional ocean bottom seismometer (OBS) survey was performed in 2015, along an E-W trending line (OBS2015-2) located in front of the Manila subduction zone. The preliminary results show that OBS data are of high quality for the whole experiment. Seismic phases (such as Pg and PmP) are very clear in the OBSs' record sections. They are further identified by forward modeling using the Rayinvr software. The reflective seismic phases from the Moho interface (PmP) are observed in all OBS sections. The identification of these PmP phases used simultaneously with Fast and Tomo2D tomography results shows that the nature of the crust is essentially continental, not oceanic, except perhaps close to the trench. The obvious PmP phases in the incoming plate along the Manila Trench subduction zone, will further provide good constraints concerning the nature and evolution of the incoming plate in the Manila subduction zone. This research was granted by the Natural Science Foundation of China (91428204, 41176053) and the scientific cruise (NORC2015-8) by the R/V Shiyan 2.

  1. Acquisition and preliminary analysis of multi-channel seismic reflection data, acquired during the oceanographic cruises of the TOMO-ETNA experiment

    Directory of Open Access Journals (Sweden)

    Marco Firetto Carlino

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was performed in the framework of the FP7 “MED-SUV” (MEDiterranean SUpersite Volcanoes in order to gain a detailed geological and structural model of the continental and oceanic crust concerning Etna and Aeolian Islands volcanoes (Sicily, Italy, by means of active and passive seismic exploration methodologies. Among all data collected, some 1410 km of marine multi-channel seismic (MCS reflection profiles were acquired in the Ionian and Tyrrhenian Seas during two of the three oceanographic cruises of the TOMO-ETNA experiment, in July and November 2014, with the aim of shading light to deep, intermediate and shallow stratigraphy and crustal structure of the two above mentioned areas. The MCS sections, targeted to deep exploration, were acquired during the oceanographic cruise on board the R/V “Sarmiento de Gamboa”, using an active seismic source of 16 air-guns, for a total volume of 4340 cu. in., and a 3000 m long, 240-channels digital streamer as receiving system. High-resolution seismic profiles were instead collected through the R/V “Aegaeo”, using two smaller air-guns (overall 270 cu. in. volume and a 96 channels, 300 m long digital streamer. This paper provides a detailed description of the acquisition parameters and main processing steps adopted for the MCS data. Some processed lines are shown and preliminarily interpreted, to highlight the overall good quality and the high potential of the MCS sections collected during the TOMO-ETNA experiment.

  2. An integrated approach to the seismic activity and structure of the central Lesser Antilles subduction megathrust seismogenic zone

    Science.gov (United States)

    Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria

    2010-05-01

    main target has been localized along 3 transects to the Arc, thanks to a preliminary survey in 2001, the French SISMANTILLES cruise. We will present the first results obtained during these experiments dedicated specifically to image at depth the seismic structure and activity of this region. To image faults at depth and the detailed upper-crustal structure, 3700 km of multi-beam bathymetry and multi-channel reflection seismic profiles have been collected along a grid comprising 7 strike-lines of up to 300 km long and spaced by 15 km and 12 transects of up to 150 km long and spaced by 25 km (SISMANTILLES II). All these airgun shots dedicated to deep penetration have been recorded by the 80 OBSs and 20 OBHs deployed by the F/S Merian and N/O Atalante on the nodes of this grid of profiles. It will permit to get Vp constraints on the deep forearc region and mantle wedge by wide-angle refraction studies, as well as constraints on the updip and downdip limits of the seismogenic part of the mega-thrust fault plane. Two of these transects have been extended across the whole arc during the TRAIL survey, with up to 50 OBSs deployed along both 240 km long profiles. All these OBSs remained several months after the shot experiments to gather data for accurate location of local earthquakes and possibly Vp and Vp/Vs tomography. They have been recovered and partly redeployed by N/O Antea during the OBSANTILLES survey. A significant number of those instruments had broadband seismometers, a notable originality in the case of the OBSs to probe the conditions for detecting low-frequency transient signals which have been found recently in the case of the Cascadia and Central Japan subductions and associated to their seismogenic character.

  3. Cruise tourism shore excursions

    DEFF Research Database (Denmark)

    João Lopes, Maria; Dredge, Dianne

    2018-01-01

    Very complex yet highly integrated business logics characterise cruise tourism with shore excursions frequently identified as a key source of value. This paper presents a case study of cruise tourism and shore excursion planning in Copenhagen, Denmark. The aim of this paper is to investigate...... the characteristics of cruise tourism, itinerary and shore excursion planning with a view to understanding the value generated from cruise tourism shore excursions. We argue that economic value is a blunt measure, and there are other types of value, positive and negative, that are also generated. This research...... reveals that a range of local conditions and structural characteristics create barriers and opportunities for generating different types of value. Using a case study of shore excursions in Copenhagen, the Baltic’s most important port, this paper explains the dynamics between cruise tourism and shore...

  4. Diapiric flow at subduction zones: a recipe for rapid transport.

    Science.gov (United States)

    Hall, P S; Kincaid, C

    2001-06-29

    Recent geochemical studies of uranium-thorium series disequilibrium in rocks from subduction zones require magmas to be transported through the mantle from just above the subducting slab to the surface in as little as approximately 30,000 years. We present a series of laboratory experiments that investigate the characteristic time scales and flow patterns of the diapiric upwelling model of subduction zone magmatism. Results indicate that the interaction between buoyantly upwelling diapirs and subduction-induced flow in the mantle creates a network of low-density, low-viscosity conduits through which buoyant flow is rapid, yielding transport times commensurate with those indicated by uranium-thorium studies.

  5. Juvenile Rockfish Recruitment Cruise

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1983, the groundfish analysis project began a series of yearly cruises designed to assess the annual abundance of juvenile rockfish along the central California...

  6. Shallow Low-frequency Tremor in the Hyuga-nada region, western Nankai Trough subduction zone, observed by ocean bottom seismographic experiment

    Science.gov (United States)

    Yamashita, Y.; Yakiwara, H.; Shimizu, H.; Uchida, K.; Kamizono, M.; Nakamoto, M.; Fukui, M.; Fujita, S.; Aizawa, K.; Miyamachi, H.; Hirano, S.; Umakoshi, K.; Yamada, T.; Kanehara, H.; Aoshima, T.

    2013-12-01

    The Hyuga-nada region, locating western Nankai trough, is one of the most seismically active areas in Japan. Here, the Philippine Sea Plate subducts northwestward beneath the Eurasian Plate at an approximate rate of 5-7 cm/yr [e.g., Seno et al., 1993; Miyazaki and Heki, 2001]. Interplate earthquakes with magnitudes in the range of 6.5 to 7.5 repeatedly occur at intervals of decades. In the shallower part of the plate boundary in this region, the shallow very-low frequency earthquakes (dominant frequency 10~20 s) occur [Obara and Ito, 2005; Asano et al., 2008]. The shallow part of the plate boundary zone is very important for the generation of large interplate earthquakes and following tsunami. In order to reveal the detail of microseismicity from the shallower part of the plate boundary to seismogenic zone in the Hyuga-nada region, we have conducted Ocean Bottom Seismographic experiment from May 19 until July 6, 2013. We used 12 Ocean Bottom Seismometers (OBSs) with a three-component short-period (10 OBSs: 4.5Hz, 2 OBSs: 1Hz) seismometer. All OBSs were recovered but one OBS was no data because of the technical problem of the recorder. During this experiment, many earthquakes recorded by OBSs. In addition, many low-frequency signals were also recorded. From the characteristic of the waveform and estimated source location, these are the shallow low-frequency tremor which is recorded for the first time by close-in observation the Hyuga-nada region. Here, we report the result of preliminary analysis of these shallow low-frequency tremors. The tremor activity mainly occurred from end of May to end of July 2013. Dominant frequency range of these tremors are 1-8 Hz and long duration range (10 seconds ~ a few minutes), which is same character of low-frequency tremor observed in Kii-Peninsula, Nankai trough using short-period OBSs [Obana and Kodaira, 2009]. We estimated tremor source location using envelop correlation method [Obara, 2002]. Although we estimated only a few

  7. Seamount subduction at the North-Ecuadorian convergent margin : effects on structures, inter-seismic coupling and seismogenesis

    OpenAIRE

    Marcaillou, Boris; Collot, Jean-Yves; Ribodetti, Alessandra; d'Acremont, E.; Mahamat, A. A.; Alvarado, A.

    2016-01-01

    At the North-Ecuadorian convergent margin (1 degrees S-1.5 degrees N), the subduction of the rough Nazca oceanic plate leads to tectonic erosion of the upper plate and complex seismogenic behavior of the megathrust. We used three selected pre-stack depth migrated, multi-channel seismic reflection lines collected during the SISTEUR cruise to investigate the margin structure and decipher the impact of the subducted Atacames seamounts on tectonic erosion, interseismic coupling, and seismogenesis...

  8. Seismic Structure of the Subducted Cocos Plate

    Science.gov (United States)

    Clayton, R. W.; Davis, P. M.; Perez-Campos, X.

    2007-05-01

    The Meso-American Subduction Experiment (MASE) was designed to determine the critical parameters to necessary to simulate the subduction process in Central Mexico . A preliminary analysis of the data shows a 200km section of the slab that is subhorizontal and to within the resolution of the receiver functions it underplates the continental crust with no intervening asthenosphere. This is an interesting situation because the short-term (GPS) and long-term (geologic) strain measurements show almost no compressive strain in this region. This would imply that the crust is decoupled from the subducting slab. Near the coast, the receiver functions show that the slab cuts through the crust at an approximately a 15-degree angle, and under the Trans-Mexican Volcanic Belt the slab becomes detached from the crust, but its geometry at depth is not yet determined from the receiver functions, but a well-developed mantle wedge is apparent from the attenuation of regional earthquakes.

  9. On the initiation of subduction

    Science.gov (United States)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  10. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    Science.gov (United States)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  11. Earth's oldest mantle fabrics indicate Eoarchaean subduction.

    Science.gov (United States)

    Kaczmarek, Mary-Alix; Reddy, Steven M; Nutman, Allen P; Friend, Clark R L; Bennett, Vickie C

    2016-02-16

    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.

  12. Deep structure and historical earthquakes in the Calabrian subduction zone (Southern Italy): preliminary results from multi-channel seismic reflection profiles

    Science.gov (United States)

    Gallais, F.; Gutscher, M.; Torelli, L.; Polonia, A.; Riminucci, F.

    2009-12-01

    The Calabrian subduction zone is located in the complex Central Mediterranean area. This subduction is characterized by the presence of deep earthquakes under the Tyrrhenian Sea down to 500 km depth. The Tethyan remnant Ionian slab descends towards the NW at a dip of about 70° and is associated with an active volcanic arc (the Aeolian Islands). Recently reported GPS and seismicity studies suggest that the subduction of the Ionian lithosphere beneath the Calabrian Arc may be locally still active, though at very slow rates (thrust earthquakes, characteristic of active subduction zone, suggests that if subduction is active, the fault plane may be locked since the instrumental period. To seek evidence of continuous tectonic activity of the Calabrian system, we present preliminary results from reprocessed 96-channels seismic reflection profiles (French Archimede cruise, 1997) offshore Sicily. This analysis permits to recognize a well-defined stratigraphy in the Ionian Abyssal Plain, this stratigraphy becomes difficult to follow under the deformed Calabrian Prism. But the joint interpretation with the reprocessed PM01 profile (French PRISMED cruise, 1994) helps constrain this interpretation and to image some characteristic structures of an accretionary wedge (fore/back-thrusts, basal decollement...). This study also include interpretation of a more recent Italian seismic cruise (Calamare, 2008) and CROP profiles. This work will help to prepare a future cruise proposal (CIRCEE, to be submitted in January 2010) to study the Calabrian subduction with OBS, MCS seismic, heat-flow measurements and sediment coring. The goals are : 1/ to image the deep structure of this subduction zone, 2/ to characterize its thermal state to deduce a geometry of the seismogenic part of the plate interface and add new constraints on seismic risk linked with the Calabrian subduction.

  13. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  14. Reaction-induced rheological weakening enables oceanic plate subduction

    OpenAIRE

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite goug...

  15. Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling

    Science.gov (United States)

    Shi, Yanan; Wei, Dongping; Li, Zhong-Hai; Liu, Ming-Qi; Liu, Mengxue

    2017-12-01

    Global seismic tomography of the subduction zones shows that the subducting slabs could either stagnate around the 660-km discontinuity, or penetrate into the lower mantle. The stagnating slabs also have various morphologies. These are directly related to the interaction between the subducting slabs and the mantle transition zone (MTZ), the dynamics of which are still debated. Using a 2-D thermo-mechanical model, we systematically investigated the modes of subduction in the mantle transition zone and explored the key constraints of various subduction styles. Four basic subduction modes are obtained in the numerical experiments, including one with slab penetrating through the 660-km discontinuity and three other modes with slab stagnating in the MTZ (i.e. folding, lying and rolling-back). The numerical models indicate that the age of subducting oceanic plate, the thickness of overriding continental lithosphere and the convergence velocity play crucial roles in the dynamics of subducting slab and MTZ interaction. In general, the young subducting slab favors the penetration or folding mode, whereas the old subducting slab tends to result in lying or rolling-back mode, although other parameters can also affect. Our models also show a strong correlation between the subduction mode selection and dip angle of the slab tip when reaching the 660-km phase boundary.

  16. Luxury cruise? The safety potential of advanced cruise control.

    NARCIS (Netherlands)

    Oei, H.L.

    2003-01-01

    The principles of advanced cruise control (ACC) are outlined and the requirements for an ACC system are described. An intelligent cruise control system fitted in a Nissan Primera was tested on the road over a 2-week period by 10 drivers, eight of which were experts in road safety. Most test-drives

  17. Connected Cruise Control : Final report

    NARCIS (Netherlands)

    van Arem, B.

    2013-01-01

    This report describes the final results of the Connected Cruise Control project. The
    Connected Cruise Control project was conducted from December 2009-April 2013 as a High Tech Automotive System Innovation project (HTASD09002), subsidized by
    Agentschap NL. The project was conducted by a

  18. Evolution of the Archaean crust by delamination and shallow subduction.

    Science.gov (United States)

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.

  19. Oceanographic Mower Cruise

    Science.gov (United States)

    Valencia, J.; Ercilla, G.; Hernández-Molina, F. J.; Casas, D.

    2015-04-01

    The MOWER Cruise has executed a geophysics and geologic expedition in the Gulf of Cádiz (sector adjacent to the Strait of Gibraltar) and west off Portugal, in the framework of the coordinate research project MOWER "Erosive features and associated sandy deposits generated by the Mediterranean Outflow Water (MOW) around Iberia: paleoceanographic, sedimentary & economic implications" (CTM 2012-39599-C03). The main aim of this project is to identify and study the erosional features (terraces and channels) and associated sedimentary deposits (sandy contourites) generated by the Mediterranean Water Masses around the middle continental slope of Iberia (The Mediterranean Outflow Water - MOW - in the Atlantic margins), their Pliocene and Quaternary evolution and their paleoceanographic, sedimentary and economic implications. This objective directly involves the study of alongslope (contourite) processes associated with the MOW and across-slope (turbiditic flows, debris flows, etc.) processes in the sedimentary stacking pattern and evolution of the Iberian margins. The MOWER project and cruise are related to the Integrated Ocean Drilling Program (IODP) Expedition 339 (Mediterranean Outflow). It is also linked and coordinated with CONDRIBER Project "Contourite drifts and associated mass-transport deposits along the SW Iberia margin - implications to slope stability and tsunami hazard assessment" (2013-2015) funded by the Fundação para a Ciência e Tecnologia, Portugal (PTDC/GEO-GEO/4430/2012).

  20. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  1. Ablative subduction - A two-sided alternative to the conventional subduction model

    Science.gov (United States)

    Tao, Winston C.; O'Connell, Richard J.

    1992-01-01

    The plausibility of a two-sided fluid-based model of lithospheric subduction that is based upon current views of lithospheric structure is examined. In this model the viscous lower lithosphere flows downward, and the brittle upper lithosphere deforms in passive response. This process is potentially double-sided, since it is found that even a buoyant plate can be dragged downward by a dense descending neighbor. Thus an apparent overriding plate may be worn away by a process of viscous ablation, with the rate of ablation a function of plate buoyancy. This process, called 'ablative subduction,' makes it possible to simply interpret observations concerning slab profiles, interplate seismicity, back arc tectonics, and complex processes such as double subduction and subduction polarity reversal. When experiments modeling the evolution of simple fluid 'slabs' are performed, slab profile is found to be strongly influenced by ablation in the overriding plate. When ablation is weak, as when a buoyant continent borders the trench, deformable slabs adopt shallow Andean-style profiles.

  2. Seismicity and the subduction process

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1980-01-01

    There is considerable variation between subduction zones in the largest characteristic earthquake within each zone. Assuming that coupling between downgoing and upper plates is directly related to characteristic earthquake size, tests for correlations between variation in coupling and other physical features of subduction zones are conducted: the lateral extent and penetration depth of Benioff zones, age of subducting lithosphere, convergence rate, and back-arc spreading. Using linear multivariate regression, coupling is correlated with two variables: convergence rate and lithosphere age. Secondary correlations within the data set are penetration depth versus lithosphere age, and lateral extent versus convergence rate. Taken together, the observed correlations suggest a simple qualitative model where convergence rate and lithosphere age determine the horizontal and sinking rates, respectively, of slabs: these parameters influence the seismic coupling in the subduction zone. In the limit of a fast sinking rate and slow convergence rate, back-arc spreading occurs and thereby appears to be a passive process.

  3. Metallogeny of subduction zones

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2017-03-01

    Full Text Available The paper deals with the multistage mechanism of the Earth's crust enrichment in ore elements in underthrust zones. The processes of metamorphism and the formation of hydrothermal solutions at pulling of the watered oceanic lithospheric plate into the subduction zone have been described. Some physical and chemical transformation regularities of structural-material complexes in these areas and mechanisms of the formation of ore deposits have been discussed. Spatio-temporal patterns of the localization of a number of endogenetic and exogenetic deposits have been described using metallogeny of the Ural and the Verkhoyansk-Kolyma Fold Belts as an example. It has been shown that in nature there are several effective mechanisms of the enrichment of the crust in ore minerals. One of them is the process of pulling into subduction zone of metalliferous sediments and ferromanganese crusts as well as seabed nodules, their metamorphic transformation, partial melting and transition of ore components into magmatic melts and mineralized fluids. In the future this leads to the release of ore material by magmas and hydrothermal solutions into the folded formations of island-arc and Andean types and the formation of igneous, metasomatic and hydrothermal deposits. Another, yet no less powerful natural mechanism of a conveyor enrichment of the crust in ore elements is the process of destruction and sedimentation of mineral deposits formed in the folded areas as well as the formation of placers and their transfer to the marginal parts of the continent. Later, during the collision of active and passive margins of two lithospheric plates, such as the collision of the Kolyma Massif with the eastern part of the Siberian craton in the middle of the Mesozoic there was a thrusting of a younger lithospheric plate over a more ancient one. As a result, the sedimentary sequences of the passive margin of the Siberian plate were submerged and partially melted by the basic magmas

  4. STARDUST NAVCAM EARLY CRUISE IMAGES

    Data.gov (United States)

    National Aeronautics and Space Administration — This volume contains the results of the early cruise images of the Stardust Navigation Camera. These images are of no clear scientific or engineering use. They were...

  5. GALILEO MAGNETOMETER CRUISE EDR DATA

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains data acquired by the Galileo Magnetometer during the Interplanetary Cruise to Jupiter. The data are at varying resolution depending on the...

  6. Post-Cruise Questionnaire - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Post-Cruise Questionnaire is a mandatory post trip legal document that observers fill out after every trip they have completed.

  7. Travelers' Health: Cruise Ship Travel

    Science.gov (United States)

    ... Kara Tardivel, Susan A. Lippold, Krista Kornylo Duong INTRODUCTION Cruise ship travel presents a unique combination of ... may include countries where vectorborne diseases such as malaria, dengue, yellow fever, Japanese encephalitis, and Zika are ...

  8. Subduction initiation and Obduction: insights from analog models

    Science.gov (United States)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was

  9. A discussion of numerical subduction initiation

    Science.gov (United States)

    Buiter, Susanne; Ellis, Susan

    2016-04-01

    In nature, subduction can initiate in various ways: Shortening can localise at oceanic transform faults, extinct spreading centres, or inherited passive margin faults; or, alternatively, subduction can be triggered from existing subduction systems by along-strike trench propagation, polarity reversals, or trench jumps. Numerical studies that specifically address subduction initiation have highlighted the roles of sediment loading, rheological strength contrasts, strain softening, and continental topographic gradients, among others. Usually, however, numerical models that aim to investigate subduction dynamics prefer to bypass the subduction initiation phase and its complexities, and focus instead on the stages during which the slab is descending into the mantle. However, even in these models, subduction still needs to begin. It is disturbingly easy to define initial model geometries that do not result in subduction. The specific combination of initial model geometries and values for rheological parameters that successfully initiates subduction has even been referred to as 'the sweet spot' in model space. One cause of subduction initiation failure is when the subducting and overriding plates lock, resulting in either indentation or severe dragging downwards of the overriding plate. This may point to a difficulty in maintaining a weak subduction interface during model evolution. A second factor that may cause difficulties is that initial model geometry and stresses need to balance, as otherwise the first model stages may show spurious deformation associated with reaching equilibrium. A third requirement that may cause problems is that the surface needs to have sufficient displacement freedom to allow the overriding plate to overthrust the subducting plate. That also implies an exclusion of sharp corners in the subduction interface near the surface. It is the interplay of subduction interface geometry, interface strength and subducting plate rheology that determines

  10. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.

    2012-01-01

    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  11. Subduction-driven recycling of continental margin lithosphere.

    Science.gov (United States)

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  12. Processes and consequences of deep subduction

    NARCIS (Netherlands)

    Rubie, David C.; Hilst, R.D. van der

    2001-01-01

    Subduction of slabs of oceanic lithosphere into the deep mantle involves a wide range of geophysical and geochemical processes and is of major importance for the physical and chemical evolution of the Earth. For example, subduction and subduction-related volcanism are major processes through

  13. Building a Subduction Zone Observatory

    Science.gov (United States)

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; Gonzalez, Frank; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  14. Pining for home: Studying crew homesickness aboard a cruise liner ...

    African Journals Online (AJOL)

    Crew homesickness should be seen as important by both shipboard and liner company management because it can ultimately impact on customer service experiences, and can be ameliorated by sensitive management policies and practices. Keywords: homesickness, cruise-liner, crewmembers, shipboard hotel services ...

  15. Thermal buoyancy on Venus - Underthrusting vs subduction

    Science.gov (United States)

    Burt, Jeffrey D.; Head, James W.

    1992-01-01

    The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.

  16. Experimental and observational evidence for plume-induced subduction on Venus

    Science.gov (United States)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S.

    2017-04-01

    Why Venus lacks plate tectonics remains an unanswered question in terrestrial planet evolution. There is observational evidence for subduction--a requirement for plate tectonics--on Venus, but it is unclear why the features have characteristics of both mantle plumes and subduction zones. One explanation is that mantle plumes trigger subduction. Here we compare laboratory experiments of plume-induced subduction in a colloidal solution of nanoparticles to observations of proposed subduction sites on Venus. The experimental fluids are heated from below to produce upwelling plumes, which in turn produce tensile fractures in the lithosphere-like skin that forms on the upper surface. Plume material upwells through the fractures and spreads above the skin, analogous to volcanic flooding, and leads to bending and eventual subduction of the skin along arcuate segments. The segments are analogous to the semi-circular trenches seen at two proposed sites of plume-triggered subduction at Quetzalpetlatl and Artemis coronae. Other experimental deformation structures and subsurface density variations are also consistent with topography, radar and gravity data for Venus. Scaling analysis suggests that this regime with limited, plume-induced subduction is favoured by a hot lithosphere, such as that found on early Earth or present-day Venus.

  17. Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean

    Science.gov (United States)

    Gebbie, Geoffrey

    2004-01-01

    Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.

  18. ROSETTA-ORBITER CHECK GIADA 2 CR2 CRUISE2 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This volume contains Experiment Data acquired by GIADA during 'Cruise 2' phase. More in detail it refers to the data provided during the following in-flight tests:...

  19. Horizontal mantle flow controls subduction dynamics.

    Science.gov (United States)

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  20. Frictional behavior of carbonate-rich sediments in subduction zones

    Science.gov (United States)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2016-12-01

    Deformation in rocks and sediments is controlled by multiple mechanisms, each governed by its own pressure- (P), temperature- (T), and slip velocity- (v) dependent kinetics. Frictional behavior depends on which of these mechanisms are dominant, and, thus, varies with P, T, and v. Carbonates are a useful material with which to interrogate the PTv controls on friction due to the fact that a wide range of mechanisms can be easily accessed in the lab at geologically relevant conditions. In addition, carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of shallow subduction zones. In order to investigate the effect of carbonate subduction and the evolution of friction at subduction zone conditions, we conducted deformation experiments on input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of 40/60 wt% and 80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σeff = 1-100 MPa and T = 20-100 °C with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. We test the changes in velocity dependence and healing over these PT conditions to elucidate the frictional behavior of carbonates in subduction zone settings. The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization; however, by 25 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Optical observations of these shear zones under cross-polarized light show evidence of plastic deformation (CPO development) while SEM-EDS observations indicate phase segregation in the boundary shears. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our

  1. Dynamics and Significance of Plume-Induced Subduction Initiation: Numerical Modeling

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2014-12-01

    How did the first subduction zone form? Most present-day subduction initiation mechanisms require acting plate forces and/or preexisting zones of lithospheric weakness, which are themselves the consequence of plate tectonics (Stern 2004). In contrast, spontaneous plume-induced subduction initiation - suggested on the basis of numerical thermo-mechanical experiments (Ueda et al., 2008) and supported by data re-interpretation of how subduction started in Late Cretaceous time around the Caribbean LIP (Whattam and Stern, 2014) - does not require pre-existing lithospheric fabric, such as are created by active plate tectonics and is viable for both stagnant lid and mobile/deformable lid conditions. Here, we present first results of high-resolution 3D numerical thermo-mechanical modeling of plume-induced subduction resulting from mechanical-magmatic interaction of an ascending thermal mantle plume with old, cold, dense oceanic lithosphere. We demonstrate that weakening of the strong lithosphere by plume-induced magmatism is the key factor enabling subduction initiation around the plume head. A large plume head is required to overcome ring confinement, and subduction initiation is further favored when plume activity and lithospheric weakening continues for several tens of Ma. We further discuss possible implications of this scenario for modern plate tectonics as well as for plate tectonics initiation in Precambrian time. ReferencesStern, R.J., 2004. Subduction initiation: spontaneous and induced. EPSL 226, 275-292.Ueda, K., Gerya, T., Sobolev, S.V., 2008. Subduction initiation by thermal-chemical plumes. PEPI 171, 296-312.Whattam, S.A., Stern, R. 2014. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, (accepted).

  2. Back-arc Extension: Critical Analisys of Subduction-related and Non Subduction-related Driving Mechanisms

    Science.gov (United States)

    Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Albarello, D.

    It is argued that the opening of back arc basins can hardly be explained as an effect of subduction related forces, since this kind of interpretation has not yet provided plausible explanations for several major features of such processes in the world. In particular, it is not clear why back arc extension occurs in some subduction zones and not in others, why extension ceased in zones where subduction has remained active, why the arcs associated with back arc basins are often characterized by a strongly curved shape, why arc-trench-back arc systems do not develop along the entire length of consuming borders and why no significant correlation can be recognized between any parameter of subduction processes and the occurrence of back arc extension. In addition, modelling experiments indicate that the magnitude of the tensional stress induced in the overriding plate by subduction-related forces is significantly lower than the lithospheric strength. These problems are discussed, in particular, for three subduction-related interpretations, the "slab-pull", the "corner flow" and the "sea an- chor" models, which seem to be the most quoted in literature. It is then argued that possible solutions of the above problems may be provided by the extrusion model, which postulates that back arc basins are generated by the forced separation of the arc from the overriding plate, along a sector of the consuming border. This separa- tion is generally caused by the oblique indentation of strong and buoyant structures against the accretionary belt. In this view, subduction and back arc extension are not causally linked one to the other, but rather represent simultaneous effects of the lateral migration of the arc, driven by plate convergence. It is pointed out that the conditions required for the occurrence of this kind of mechanism may be recognized in the tec- tonic contexts where back arc basins developed in the wake of arc-trench migrating systems. On the other hand, in the zones

  3. Dynamical effects of subducting ridges: Insights from 3-D laboratory models

    CERN Document Server

    Martinod, Joseph; Faccenna, Claudio; Labanieh, Shasa; Regard, Vincent; 10.1111/j.1365-246X.2005.02797.x

    2010-01-01

    We model the subduction of buoyant ridges and plateaus to study their effect on slab dynamics. Oceanic ridges parallel to the trench have a stronger effect on the process of subduction because they simultaneously affect a longer trench segment. Large buoyant slab segments sink more slowly into the asthenosphere, and their subduction result in a diminution of the velocity of subduction of the plate. We observe a steeping of the slab below those buoyant anomalies, resulting in smaller radius of curvature of the slab, that augments the energy dissipated in folding the plate and further diminishes the velocity of subduction. When the 3D geometry of a buoyant plateau is modelled, the dip of the slab above the plateau decreases, as a result of the larger velocity of subduction of the dense "normal" oceanic plate on both sides of the plateau. Such a perturbation of the dip of the slab maintains long time after the plateau has been entirely incorporated into the subduction zone. We compare experiments with the presen...

  4. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  5. Wind-induced subduction at the South Atlantic subtropical front

    Science.gov (United States)

    Calil, Paulo H. R.

    2017-10-01

    The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with O(1) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.

  6. The dynamical control of subduction parameters on surface topography

    Science.gov (United States)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  7. Reevaluating plate driving forces from 3-D models of subduction

    Science.gov (United States)

    Stegman, D. R.; Freeman, J.; Schellart, W. P.; Moresi, L.; May, D.; Turnbull, R.

    2004-12-01

    Subducting lithospheric slabs mechanically attached to tectonic plates provide the main driving force for surface plate motion. Numerical models historically simulate slab dynamics as a 2-D process and further simplify the problem into either a density driven model (no heat transfer) or a corner-flow problem (thermal convection) [Christensen, 2001; Enns et al., (in revision); van Keken, 2003]. Recent 3-D global models of density driven flow incorporating a history of plate motion (Conrad and Lithgow-Bertelloni, 2002) have succussfully ruled out slab "suction" (basal shear traction induced by downward flow of the slabs) as a major driving force, but exact partitioning of the remaining forces acting on the slab remain unconstrained. A survey of trenches around the world reveals that over half of the slabs presently subducted in the upper mantle have a discontinuous edge (either a slab tip on a young slab, or the side edge of a slab with finite width) around which mantle can flow: prime examples being slabs in the Mediterranean and Carribean. However, even slabs with a wide lateral extent (and where a 2-D approximation may seem appropriate), show signs of having 3-D complexity. For example, on the surface Tonga appears relatively symmetric, but when the history of subduction is considered, the slab has a twisted, 3-D structure due to significant eastward retreat of just the northern part of an originally N-S oriented trench edge. Similarly the widest slabs, South American and Kamchatka, show seismic anisotropy attributed to trench parallel mantle flow (Russo and Silver, 1994; Peyton, et al., 2001, respectively), while the Aleutian trench has oblique subduction varying in magnitude from west to east, and medium width Central American slab likely has a slab window allowing 3-D flow (Johnston and Thorkelson, 1997). Recent laboratory experiments of subduction have demonstrated the full complexity of flow occuring in 3-D geometry (Kincaid and Griffiths, 2003; Schellart

  8. Research of Cruise Industry Development Bottlenecks In China

    OpenAIRE

    Ping Zhou

    2014-01-01

    Cruise industry is a comprehensive new industry, which has a strong impetus to the development of other industries. In recent years, as the explosive growth in cruise market, China has become a global rapidly-growing emerging cruise market. The cruise industry has begun transiting from infancy to the development phase, in all likelihood facing a number of bottlenecks problem. In this paper, the development trend of the cruise industry is first analyzed, then the bottlenecks of cruise industry...

  9. Fuel Economy Impacts of Manual, Conventional Cruise Control, and Predictive Eco-Cruise Control Driving

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2013-09-01

    Full Text Available The paper presents the results of a field experiment that was designed to compare manual driving, conventional cruise control (CCC driving, and Eco-cruise control (ECC driving with regard to fuel economy. The field experiment was conducted on five test vehicles along a section of Interstate 81 that was comprised of ±4% uphill and downhill grade sections. Using an Onboard Diagnostic II reader, instantaneous fuel consumption rates and other driving parameters were collected with and without the CCC system enabled. The collected data were compared with regard to fuel economy, throttle control, and travel time. The results demonstrate that CCC enhances vehicle fuel economy by 3.3 percent on average relative to manual driving, however this difference was not found to be statistically significant at a 5 percent significance level. The results demonstrate that CCC driving is more efficient on downhill versus uphill sections. In addition, the study demonstrates that an ECC system can produce fuel savings ranging between 8 and 16 percent with increases in travel times ranging between 3 and 6 percent. These benefits appear to be largest for heavier vehicles (SUVs.

  10. Subduction dynamics: Constraints from gravity field observations

    Science.gov (United States)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  11. Cruise ship seakeeping and passenger comfort

    NARCIS (Netherlands)

    Dallinga, R.P.; Bos, J.E.

    2010-01-01

    In the last decade the design and construction of a substantial volume of large cruise ships has stimulated the evolution of cruise ship design. The MARIN and TNO involvement in these developments, and in particular the increase in size, have lead to new insights in how the ship design governs

  12. Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific.

    Science.gov (United States)

    Xu, Lixiao; Li, Peiliang; Xie, Shang-Ping; Liu, Qinyu; Liu, Cong; Gao, Wendian

    2016-02-01

    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow--an effect that needs to be better represented in climate models.

  13. To what depth can continental crust be subducted: numerical predictions and critical observations

    Science.gov (United States)

    Gerya, T.; Faccenda, M.

    2006-12-01

    We performed systematic two-dimensional numerical modeling of continental collision associated with subduction of the lithospheric mantle. Results of our experiments suggest that two contrasting modes of lithospheric subduction below an orogen can exist: one-sided and double-sided. One-sided subduction brings continental crust subducting atop the slab to the contact with hot asthenosperic mantle wedge below the overriding plate. This can result in strong heating, partial melting and rheological weakening of the crust triggering its delamination from subducting mantle lithosphere in form of compositionally buoyant structures (cold plumes) propagating away from subducting plate, passing through the hot mantle wedge, underplating the overriding lithosphere and producing large amount of relatively felsic syn-orogenic magmas at sub-lithospheric depths. One-sided subduction of the buoyant continental crust can also result in a transient "hot channel effect" triggering formation and exhumation of coesite- and diamond- bearing rocks metamorphosed at 700 to 900oC. Anomalously high temperature is caused by intense viscous and radiogenic heating in the channel composed of deeply subducted radiogenic upper-crustal rocks. Low effective viscosity of the channel subsequent to increased temperature and partial melting permits profound mixing of mantle and crustal rocks. The hot channel exists during few million years only but rapidly produces and exhumes large amounts of ultrahigh-pressure, high-temperature rocks within the orogen. Double-sided subduction can follow the one-sided mode at later stages of orogeny when significant rheological coupling between two plates occurs during the collision. In this case the orogen is characterized by double- verging structure, the layer of subducting continental crust is embedded between two negatively buoyant lithospheric slabs and delamination of the crust does not occur. This mode of subduction can bring crustal rocks from the bottom of an

  14. Blueschist facies pseudotachylytes from Corsica: First account of fossil earthquakes from a subduction complex

    Science.gov (United States)

    Andersen, T. B.; Austrheim, H.

    2003-04-01

    Pseudotachylytes (PST) are products of deformation at extreme slip-rates along faults or in impact structures. Fault-plane PSTs are considered to represent fossil earthquakes. Tectonics in subduction zones, generate >80% of the seismic energy. Earthquake rocks should therefore also be common in old subduction complexes. Blueschist terrains are formed in the upper 15 to 50 km by tectonic burial in accreationary complexes and subduction zones. In spite of the very common earthquakes recorded from present-day subduction complexes, we are unaware of previous accounts of fossil earthquakes from exhumed subduction complexes. With a working hypothesis predicting fossil earthquakes to be preserved in subduction complexes, we have re-examined parts of the Alpine blueschist-eclogite terrain in Corsica. Within blueschist facies ophiolite gabbro and peridotite of Cape Corse, we discovered a number of faults decorated with ultra-fine fault rocks including PSTs. Detailed probe and SEM-studies reveal that some of the PSTs have quench textures proving the former presence of a melt. Quenched minerals, including fassaitic pyroxene are found as spherulites and dendrites. Fassaite has previously been described from UHP complexes and from PSTs formed in HP experiments. Other devitrification minerals include glaucophane, barroisite and zoisite as well as pumpellyite and albite. Our hypothesis -- fossil earthquakes in the form of frictional heat generated PST and ultra-cataclasite may be preserved within subduction complexes -- has been confirmed. Whilst most models view the properties of subducted lithosphere as a function of temperature, it is increasingly recognized that the rheological properties of rocks depend on their metamorphic status and importantly on fluids. Fluids from dehydration reactions in subduction complexes may reduce the effective stress to allow rapid brittle failure, which in turn may produce frictional heating and additional dehydration. It is, however, also

  15. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared W.

    2016-01-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  16. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli A.; Kluesner, Jared W.

    2016-06-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a "depositionary forearc," a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  17. Reaction-induced rheological weakening enables oceanic plate subduction.

    Science.gov (United States)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  18. Dynamics of intraoceanic subduction initiation: 2D thermomechanical modeling

    Science.gov (United States)

    Zhou, X.; Gerya, T.; LI, Z.; Stern, R. J.

    2016-12-01

    Intraoceanic subduction initiation occurs in previous weak zones which could be transform faults or old fracture zones, and concurrents with the change of plate motions. It is an important process to understand the beginning of plate tectonics. However, the dynamic process during (after) subduction initiation remain obscure. The process of suducting slabs move from down to downdip is also not revealed clearly. In order to obtain better understanding of the transitional process of subducting slab motion, we use finite difference and marker-in-cell methods to establish a series of self-sustainable subduction initiation models and explore many visco-plastic parameters to qualify the dynamical process of subduction initiation. The following parameters are systematic tested: (1) the age of the subducting slab; (2) friction coefficient of the mantle material; (3) the mantle potential temperature; (4) the age of the overriding slab. We find out the critical age of the oceanic lithosphere which can produce subduction initiation. And the age of subducting slab plays important roles during subduction initiation. The young subducting slab induces fast trench retreat and then trench begin to advance. For the old subducting slab, it induces relative slower trench retreat and then stop moving. The age of overriding slabs impacts coupling with the subducting slab. The friction coefficient of lithosphere also impacts the backarc spreading and subduction velocity. Stronger subducted plate gives lower subduction velocity and faster trench retreat velocity. The mantle potential temperature changes the critical age of subducted slabs.

  19. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta

  20. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NARCIS (Netherlands)

    Schellart, W. P.

    2011-01-01

    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (v S⊥) at the surface into its subducting plate motion component (vSP⊥) and trench migration component (vT⊥). Geodynamic models of progressive subduction

  1. The earthquake cycle in subduction zones

    Science.gov (United States)

    Melosh, H. J.; Fleitout, L.

    1982-01-01

    A simplified model of a subduction zone is presented, which incorporates the mechanical asymmetry induced by the subducted slab to anchor the subducting plate during post-seismic rebound and thus throw most of the coseismic stream release into the overthrust plate. The model predicts that the trench moves with respect to the deep mantle toward the subducting plate at a velocity equal to one-half of the convergence rate. A strong extensional pulse is propagated into the overthrust plate shortly after the earthquake, and although this extension changes into compression before the next earthquake in the cycle, the period of strong extension following the earthquake may be responsible for extensional tectonic features in the back-arc region.

  2. Seismic coupling and uncoupling at subduction zones

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  3. Improved Tracking of Research Cruises

    Science.gov (United States)

    Urban, Ed; Sathyendranath, Shubha; de Leeuw, Jan

    2009-02-01

    Every year, several hundred ocean research cruises are conducted by academic institutions and government agencies worldwide, with major expenditures of finances and human resources. Ships may be in the same ocean area at the same time without prior knowledge of one another's activities, missing opportunities for joint work. Some ships go to sea with empty berths, which might have been filled if scientists from other institutions or countries had known about the availability of space. Many scientists using in situ instruments have missed opportunities to deploy them in seldom visited parts of the ocean because the scientists did not realize a ship was going to that area, and opportunities for ``sea truthing'' of satellite observations in remote regions are missed.

  4. A numerical reference model for themomechanical subduction

    DEFF Research Database (Denmark)

    Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola

    2010-01-01

    response to systematic variations in input parameters, numerical studies often start from a 'reference' subduction model. However, the reference model often varies between different numerical studies, making it difficult to compare results directly. We aim therefore to define a numerical reference model......, and initial temperature distribution. We will show results of the evolution and dynamics of the subduction reference model using different numerical codes: a finite element code, SULEC, and two finite difference codes, YACC and FDcon....

  5. GALILEO CRUISE POSITION DATA (RTN COORDINATES)

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains the Galileo spacecraft trajectory during the interplanetary cruise. The data have been derived from SPICE kernels at a 1 minute sample rate....

  6. GALILEO MAGNETOMETER CRUISE DATA (RTN COORDINATES)

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains data acquired by the Galileo Magnetometer during the Interplanetary Cruise to Jupiter. The data are at varying resolution depending on the...

  7. BioSampling Data from LHP Cruises

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes separate bioSampling logs from each LHP Bottomfishing cruise both within and outside of the Main Hawaiian Islands, as well as a master file...

  8. NEAR GRS SPECTRA FOR CRUISE 4 PHASE

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Gamma Ray Spectrometer (GRS) observations made during the fourth cruise phase of the NEAR mission. The individual observations are combined...

  9. Atmosphere-ocean ozone fluxes during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEx 2008, and AMMA 2008 cruises

    NARCIS (Netherlands)

    Helmig, D.; Lang, E.K.; Bariteau, L.; Boylan, P.; Fairall, C.W.; Ganzeveld, L.N.; Hare, J.E.; Hueber, J.; Pallandt, M.

    2012-01-01

    A ship-based eddy covariance ozone flux system was deployed to investigate the magnitude and variability of ozone surface fluxes over the open ocean. The flux experiments were conducted on five cruises on board the NOAA research vessel Ronald Brown during 2006-2008. The cruises covered the Gulf of

  10. Intrinsic and Extrinsic Factors in Subduction Dynamics

    Science.gov (United States)

    Billen, Magali; Arredondo, Katrina

    2014-05-01

    Since the realization that tectonic plates sink into the mantle, in a process we now call subduction, our understanding of this process has improved dramatically through the combined application of observations, theory and modeling. During that time independent research groups focusing on different aspects of subduction have identified factors with a significant impact on subduction, such as three-dimensionality, slab rollback, rheology of the slab and mantle and magnitude of phase changes. However, as each group makes progress we often wonder how these different factors interact as we all strive to understand the real world subduction system. These factors can be divided in two groups: intrinsic factors, including the age of the slab, its thermal structure, composition, and rheology, and extrinsic factors including others forces on plates, overall mantle flow, structure of the overriding plate, rheology of the mantle and phase changes. In addition, while modeling has been a powerful tool for understanding subduction, all models make important (but often necessary) approximations, such as using two dimensions, imposed boundary conditions, and approximations of the conservation equations and material properties. Here we present results of a study in which the "training wheels" are systematically removed from 2D models of subduction to build a more realistic model of subduction and to better understand how combined effects of intrinsic and extrinsic factors contribute to the dynamics. We find that a change from the Boussinesq to the extended Boussinesq form of the conservation equations has a dramatic effect on slab evolution in particular when phase changes are included. Allowing for free (dynamically-driven) subduction and trench motion is numerically challenging, but also an important factor that allows for more direct comparison to observations of plate kinematics. Finally, compositional layering of the slab and compositionally-controlled phase changes also have

  11. Cruise control for segmented flow.

    Science.gov (United States)

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-11-21

    Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.

  12. A Multi-Objective Optimization Model for Planning Unmanned Aerial Vehicle Cruise Route

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2016-06-01

    Full Text Available The use of unmanned aerial vehicles (UAVs was introduced to monitor a traffic situation and the respective cruise route optimization problem was given. Firstly, a multi-objective optimization model was proposed, which considered two scenarios: the first scenario was that there were enough UAVs to monitor all the targets, while the second scenario was that only some targets could be monitored due to a lack of UAVs. A multi-objective evolutionary algorithm was subsequently proposed to plan the UAV cruise route. Next, a route planning experiment, using the Microdrones md4-1000 UAV, was conducted and a UAV route planning case was studied. The experiment showed that the UAV actual flight route was almost consistent with the planned route. The case study showed that, compared with the initial optimal solutions, the optimal total UAV cruise distance and the number of UAVs used in scenario 1 decreased by 41.65% and 40.00%, respectively. Meanwhile, the total UAV cruise distance and the number of targets monitored in scenario 2 reduced by 15.75% and increased by 27.27%, respectively. In addition, a comparison study with other algorithms was conducted, while the optimization results were also improved. This demonstrated that the proposed UAV cruise route planning model was effective.

  13. Evidence for retrograde lithospheric subduction on Venus

    Science.gov (United States)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Annular moats and outer rises around large Venus coronas such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronas on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronas while compensating back-arc extension is occurring in the expanding coronas interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of aestern Aphrodite Terra.

  14. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods...... is that gradients are extremely sensitive to localized density contrasts within regional geological settings, which makes it ideally suited for detecting subduction zones. Second order gravity gradients of disturbing potential were extracted from global geopotential model, the fifth release GOCE model ‘EGM_TIM_RL05......’. In order to remove the signal which mainly corresponds to the gravity signal of the lower mantle, long wavelength part of the gravity signal was removed up to degree and order 60. Because the areas with notable topography differences coincide with subduction zones, topography correction was also performed...

  15. Thermal impact of magmatism in subduction zones

    Science.gov (United States)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  16. Subduction trench migration since the Cretaceous

    Science.gov (United States)

    Williams, S.; Flament, N. E.; Müller, D.; Butterworth, N. P.

    2015-12-01

    Much of our knowledge about subduction zone processes is derived from analyzing present-day Earth. Several studies of contemporary plate motions have investigated the balance between retreating and advancing trenches and shown that subduction zone kinematics are sensitive to the choice of Absolute Plate Motion (APM) model (or "reference frame"). For past times, the absolute motions of the lithospheric plates relative to the Earth's deep interior over tens of millions of years are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. APM models derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Here we quantitatively compare the subduction zone kinematics, net lithospheric rotation and fit to hotspot trails derived the last 130 Myr for a range of alternative reference frames and a single relative plate motion model. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the period between 130 and 70 Ma, when hotspot trails become scarce, hotspot reference frames yield a much more dispersed distribution of slab advance and retreat velocities, which is considered geodynamically less plausible. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation

  17. Prospect of Cruising in Boka Kotorska

    Directory of Open Access Journals (Sweden)

    Đurđica Perović

    2013-01-01

    Full Text Available The main objectives of this research are to get answers, to the following: the achieved level of development of cruise tourism in the Bay of Kotor; characteristics of cruise tourism in Kotor, what are the possibilities of innovation in the cruise tourism in the port of Kotor, how to adjust the cruise tourism sustainable development of Kotor, as a tourist destination? Merely by being a part of the Mediterranean, which represents a developing market in cruising, Boka Kotorska has endless potential. Yet, its significance is still to be recognized only if careful strategy of further development is followed. Having in mind that Boka Kotorska is a valuable natural and cultural heritage site, it is necessary to make assessments in terms of sustainability of this kind of tourism as well as actions that should be taken. Its limited geographical area, more suitable for minor boats and not ships, is something that should be taken into account. Other things such as tourist offer enrichment in the Old Town, including not just the seaside but background of Boka Kotorska in the tourist offer, would certainly improve the quality of tourist product. This would undoubtedly generate more profit.

  18. Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones.

    Science.gov (United States)

    Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.

    2015-12-01

    One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise

  19. Metamorphic zirconology of continental subduction zones

    Science.gov (United States)

    Chen, Ren-Xu; Zheng, Yong-Fei

    2017-09-01

    Zircon is widely used to date geological events and trace geochemical sources in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks of continental subduction zones. However, protolith zircons may be modified by three different types of metamorphic recrystallization via mechanisms of solid-state transformation, metasomatic alteration and dissolution reprecipitation; new zircon growth may be induced by dehydration reactions below the wet solidus of crustal rocks (metamorphic zircon) or peritectic reactions above the wet solidus (peritectic zircon). As a consequence, there are different origins of zircon domains in high-grade metamorphic rocks from collisional orogens. Thus, determining the nature of individual zircon domains is substantial to correct interpretation of their origin in studies of isotopic geochronology and geochemical tracing. We advocate an integrated study of zircon mineragraphy (internal structure and external morphology), U-Pb ages, mineral inclusions, trace elements, and Lu-Hf and O isotope compositions. Only in this way we are in a position to advance the simple zircon applications to metamorphic zirconology, enabling discrimination between the different origins of zircon and providing constraints on the property of fluid activity at subduction-zone conditions. The metamorphic recrystallization of protolith zircons and the new growth of metamorphic and peritectic zircons are prominent in HP to UHP metamorphic rocks of collisional orogens. These different types of recrystallized and grown zircons can be distinguished by their differences in element and isotope compositions. While the protolith nature of metamorphosed rocks dictates water availability, the P-T conditions of subduction zones dictate the property of subduction-zone fluids. The fluids of different properties may be produced at different positions of subducting and exhuming crustal slices, and they may physically and chemically mix with each other in continental

  20. RV Ronald H. Brown Cruise RB1201 (EM122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cruise RB1201 was led by Chief Scientist Molly Baringer (AOML, NOAA, Miami) as per previous cruises RB0602, RB0701 and RB0901. The three main objectives were:...

  1. Laboratory models of the thermal evolution of the mantle during rollback subduction.

    Science.gov (United States)

    Kincaid, C; Griffiths, R W

    2003-09-04

    The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. Information on mantle flow, thermal conditions and chemical transport in subduction zones come from the geochemistry of arc volcanoes, seismic images and geodynamic models. The majority of this work considers subduction as a two-dimensional process, assuming limited variability in the direction parallel to the trench. In contrast, observationally based models increasingly appeal to three-dimensional flow associated with trench migration and the sinking of oceanic plates with a translational component of motion (rollback). Here we report results from laboratory experiments that reveal fundamental differences in three-dimensional mantle circulation and temperature structure in response to subduction with and without a rollback component. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate and plate edges heat up faster than plate centres. In contrast, during rollback subduction flow is driven around and beneath the sinking plate, velocities increase within the mantle wedge and are focused towards the centre of the plate, and the surface of the plate heats more along the centreline.

  2. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  3. Mesoscale subduction at the Almeria-Oran front. Part 1: Ageostrophic flow

    Science.gov (United States)

    Allen, J. T.; Smeed, D. A.; Tintoré, J.; Ruiz, S.

    2001-10-01

    This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria-Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar, traced the subduction of Mediterranean Surface Water across the Almeria-Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error.

  4. Customer Relationship Management in Asia/Pacific Cruise Industry

    OpenAIRE

    Liu, Xiao Meng

    2006-01-01

    ABSTRACT This study has demonstrated Customer Relationship Management (CRM) in the cruise industry is vital for its long-term success. The globalization of business has directly influenced the overall business strategy of cruise companies worldwide. Many cruise companies are consolidating into a few large corporations through merger and acquisition. These big cruise companies are extending their businesses to every corner of the world, with increasing bigger ships providing high volume pa...

  5. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction.

    Science.gov (United States)

    Hilairet, Nadege; Reynard, Bruno; Wang, Yanbin; Daniel, Isabelle; Merkel, Sebastien; Nishiyama, Norimasa; Petitgirard, Sylvain

    2007-12-21

    The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.

  6. Stress orientations in subduction zones and the strength of subduction megathrust faults.

    Science.gov (United States)

    Hardebeck, Jeanne L

    2015-09-11

    Subduction zone megathrust faults produce most of the world's largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making an angle of 45° to 60° with respect to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface. Copyright © 2015, American Association for the Advancement of Science.

  7. Stress orientations in subduction zones and the strength of subduction megathrust faults

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2015-01-01

    Subduction zone megathrust faults produce most of the world’s largest earthquakes. Although the physical properties of these faults are difficult to observe directly, their frictional strength can be estimated indirectly by constraining the orientations of the stresses that act on them. A global investigation of stress orientations in subduction zones finds that the maximum compressive stress axis plunges systematically trenchward, consistently making a 45°-60° angle to the subduction megathrust fault. These angles indicate that the megathrust fault is not substantially weaker than its surroundings. Together with several other lines of evidence, this implies that subduction zone megathrusts are weak faults in a low-stress environment. The deforming outer accretionary wedge may decouple the stress state along the megathrust from the constraints of the free surface.

  8. Why Do We Need 3-d Numerical Models of Subduction?

    Science.gov (United States)

    Morra, G.; Faccenna, C.; Funiciello, F.; Giardini, D.; Regenauer-Lieb, K.

    We use a set of 2-D and 3-D numerical fluid dynamic experiments, modeled with different strain rate dependent rheologies (viscous, visco-plastic, power law) to ana- lyze the long-term dynamics of the subduction of an oceanic slab into an iso-viscous or stratified mantle. For the lithosphere a fluid dynamic approach has been bench- marked with our previous solid mechanical approach with the aim of overcoming the coherency problem of fluid dynamic calculations. The solid mechanical dichotomy Sstrong before failure and weak where it failsT has been cast into a specialized non- & cedil;linear fluid rheology. Analog 2-D and 3-D experiments are finally compared with the numerical experiments. 2-D numerical experiments are considered with and without free surface to investigate the limitations induced by a closed top boundary. The effect of asymmetric boundary conditions (with and without overriding plate) is analyzed with respect to the possibility of trench retreat. We clearly state the importance for the free surface analysis. 2-D experiments have inherent weaknesses: first they provide an unrealistic simulation of mantle flow (suppression of toroidal flow), second they give rise to the Sclosed boxT problem (interaction of the slab with a boundary, i.e. & cedil;660 km and the left and right box boundaries). 3-D numerical experiments permit to overcome these problems. A natural analysis of the behavior of the mantle flow during subduction and the three-dimensional behavior of the slab is thus possible. Physical observables like trench retreat and toroidal and poloidal flow are compared with the results of our companion analog 3-D experiments.

  9. Subduction and volatile recycling in Earth's mantle

    Science.gov (United States)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  10. Earthquake nucleation in weak subducted carbonates

    NARCIS (Netherlands)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Chirstopher J.; Behrmann, Jan H.

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests

  11. 78 FR 51728 - Fees for Sanitation Inspections of Cruise Ships

    Science.gov (United States)

    2013-08-21

    ... HUMAN SERVICES Centers for Disease Control and Prevention Fees for Sanitation Inspections of Cruise Ships AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services... cooperative activity with the cruise ship industry. VSP helps the cruise ship industry prevent and control the...

  12. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2013-01-01

    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g.

  13. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric|info:eu-repo/dai/nl/270177493; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624; Morris, Antony; Plümper, Oliver|info:eu-repo/dai/nl/37155960X; Spakman, Wim|info:eu-repo/dai/nl/074103164

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  14. Seamount subduction at the North-Ecuadorian convergent margin: Effects on structures, inter-seismic coupling and seismogenesis

    Science.gov (United States)

    Marcaillou, Boris; Collot, Jean-Yves; Ribodetti, Alessandra; d'Acremont, Elia; Mahamat, Ammy-Adoum; Alvarado, Alexandra

    2016-01-01

    At the North-Ecuadorian convergent margin (1°S-1.5°N), the subduction of the rough Nazca oceanic plate leads to tectonic erosion of the upper plate and complex seismogenic behavior of the megathrust. We used three selected pre-stack depth migrated, multi-channel seismic reflection lines collected during the SISTEUR cruise to investigate the margin structure and decipher the impact of the subducted Atacames seamounts on tectonic erosion, interseismic coupling, and seismogenesis in the region of the 1942 Mw7.8 earthquake. This dataset highlights a subducted ∼ 30 × 40 km, double-peak seamount that belongs to the Atacames seamount chain and that is associated with a deep morphologic re-entrant containing mass transport deposits. The seamount subduction uplifted the margin basement by ∼1.6 km and pervasively broke the margin by deep and intense reverse faulting ahead of the seamount, a process that is likely to weaken considerably the margin. In the seamount wake, the basement reverse fault system rotated counter-clockwise. This faulted basement is overlain with slope sediment sliding along listric normal faults that sole out onto the BSR. This superposition of deep tectonic contraction within the basement and shallow gravitational extension deformation within the sediment highlights the key role of gas hydrate on outer slope erosion. In addition to long-term regional basal erosion, the margin basement has thinned locally by an extra 0.8-1 km in response to the subduction of the Atacames seamount chain and hydrofracturing by overpressured fluids at the margin toe. This pervasively and deeply fractured margin segment is associated with a seismically quiet and GPS-modeled low interseismic coupling corridor that terminates downdip near the 1942 epicenter and locked zone. We suggest that the deeply buried double-peak Atacames seamount triggered the 1942 earthquake ahead of its leading flank. This result supports previous studies proposing that subducted seamounts

  15. Experiencing Work: Supporting the Undergraduate Hospitality, Tourism and Cruise Management Student on an Overseas Work Placement

    Science.gov (United States)

    Gibson, Philip; Busby, Graham

    2009-01-01

    This paper reports on a funded research project into the experiences of tourism, hospitality and cruise management students on internship outside the UK as part of their British university degree between 2007 and 2009. The research reflected on the perceptions of students, course managers, placement officers and members of university placement…

  16. Management and Marketing Elements in Maritime Cruises Industry. European Cruise Market

    National Research Council Canada - National Science Library

    Romeo Boşneagu; Carmen Elena Coca; Florin Sorescu

    2015-01-01

    European cruises market has a major impact on all aspects of maritime industry: boarding ports, ports of call, shipbuilding, ship maintenance, supplies, sales and marketing, ship crews and administrative facilities...

  17. NEAR MAG DATA FOR CRUISE4

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the NEAR magnetometer (MAG) data for the CRUISE4 phase. The data set begins on 1998-12-24T00:00:00.000 and ends 2000-01-10T23:59:59.999 . The...

  18. Masterplan Wind - Seabirds Cruise Report January 2011

    NARCIS (Netherlands)

    Witte, R.H.; Witte, L.

    2011-01-01

    This cruise report presents the seabird and marine mammal data collected during the 10th ‘fish egg and fish larvae’ survey on the Dutch Continental Shelf, in a series of 12 monthly surveys from April 2010 till March 2011.

  19. Advanced Cruise Control en verkeersveiligheid : een literatuurstudie.

    NARCIS (Netherlands)

    Hoetink, A.E.

    2003-01-01

    Manufacturers and dealers present Advanced Cruise Control (ACC) as a system to increase the comfort of car driving, but not as a system to increase road safety. This study presents the possible road safety effects of ACC, based on research results of recent literature. A structure was created for

  20. Developing eco-adaptive cruise control systems.

    Science.gov (United States)

    2014-01-01

    The study demonstrates the feasibility of two eco-driving applications which reduces vehicle fuel consumption and greenhouse gas emissions. In particular, the study develops an eco-drive system that combines eco-cruise control logic with state-of-the...

  1. Creating ubiquitous intelligent sensing environments (CRUISE)

    DEFF Research Database (Denmark)

    Prasad, Neeli R.; Prasad, Ramjee

    2006-01-01

    , bringing important social benefits for each person and for the society as a whole. Taking into account the current fragmentation in the European research in this field, CRUISE Network of Excellence (NoE) intends to be a focal point in the coordination of research on communication and application aspects...

  2. Acquisition and cruise sensing for attitude control

    Science.gov (United States)

    Pace, G. D., Jr.; Schmidt, L. F.

    1977-01-01

    Modified wideangle analog cruise sun sensor coupled with changes in optic attitude correction capabilities, eliminate need of acquisition and sun gate sensors, making on-course navigation of spacecraft flying interplanetary missions less risky and costly. Operational characteristics potentially make system applicable to guidance and control of solar energy collection systems.

  3. Wellness Centres on Costa Crociere Cruises: Body, Space, and Representation from an Anthropological and Linguistic perspective

    Directory of Open Access Journals (Sweden)

    Mariangela Albano

    2016-12-01

    Full Text Available Many tourist services are connected to the care of the body. The tourist industry proposes different vacation opportunities where the body is the main focus of the experience. This kind of tourism implies specific services that show a particular universe of representation and particular languages. In this context, cruise tourism is an interesting case to analyze because a part of its services gives a central role to the body which, on-board, organizes and is organized within dedicated spaces and times. Cruise ships provide spaces for the wellness of the passengers such as swimming pools, gyms, spas or beauty centres. The analysis proposed in this work is based, on one hand, on a recent anthropological fieldwork on a Costa Crociere cruise in the Mediterranean Sea. On cruises people use a limited space, the ship, in different ways. This use also reflects a particular conception of the body, built through an interaction of different systems of representation. So, the ship can become a space for social aggregation or separation. On the other hand, this study considers different textual advertisements from the Costa Web site where the company presents specific services for the body to future passengers . This paper analyzes them using a joint approach: both semiotic and linguistic. Through texts and pictures Costa Crociere creates a “synthesis” of the wellness spaces which prefiguresthe behaviour of the passengers on the cruise. More particularly, in order to analyze advertisements, a cognitive linguistics approach is suitable to show the authors’ linguistic choices and the paratextual elements used to promote the cruise. .

  4. IODP expedition 334: An investigation of the sedimentary record, fluid flow and state of stress on top of the seismogenic zone of an erosive subduction margin

    Digital Repository Service at National Institute of Oceanography (India)

    Vannucchi, P.; Ujiie, K.; Stroncik, N.; IODP Exp. 334 Scientific Party; Yatheesh, V.

    The Costa Rica Seismogenesis Project (CRISP) is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP) Expedition 334 by R...

  5. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench

    National Research Council Canada - National Science Library

    Nishizawa, Azusa; Kaneda, Kentaro; Watanabe, Naoko; Oikawa, Mitsuhiro

    2009-01-01

    We present detailed P-wave velocity models of subducting seamounts from two wide-angle seismic experiments across the Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench...

  6. Subduction zone earthquakes and stress in slabs

    Science.gov (United States)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  7. The hidden simplicity of subduction megathrust earthquakes

    Science.gov (United States)

    Meier, M.-A.; Ampuero, J. P.; Heaton, T. H.

    2017-09-01

    The largest observed earthquakes occur on subduction interfaces and frequently cause widespread damage and loss of life. Understanding the rupture behavior of megathrust events is crucial for earthquake rupture physics, as well as for earthquake early-warning systems. However, the large variability in behavior between individual events seemingly defies a description with a simple unifying model. Here we use three source time function (STF) data sets for subduction zone earthquakes, with moment magnitude Mw ≥ 7, and show that such large ruptures share a typical universal behavior. The median STF is scalable between events with different sizes, grows linearly, and is nearly triangular. The deviations from the median behavior are multiplicative and Gaussian—that is, they are proportionally larger for larger events. Our observations suggest that earthquake magnitudes cannot be predicted from the characteristics of rupture onsets.

  8. Subduction related fluids fractionate Nb/Ta

    Science.gov (United States)

    Salters, V. J.; Bizimis, M.; Sachi-Kocher, A.; Taylor, R.; Savov, I. P.; Stern, C. R.

    2009-12-01

    Key differences between the chemical composition of terrestrial materials and those of meteorites have led to the suggestion that a `hidden’ high Nb/Ta reservoir exists in the Earth’s mantle. In order to test this hypothesis we must identify the processes that can create such a reservoir. It has been suggested that during subduction Nb is more refractory then Ta resulting in low Nb/Ta in the subducted slab, which then serves as a reservoir for the high Nb/Ta. Here we report high precision HFSE data on products of the subduction processes thought to fractionate Nb from Ta: boninites (hydrous melting), adakites (slab melting), oceanic island arc basalts and supra subduction zone peridotites. We developed a new method for the high precision determination of Nb, Ta, Zr, Hf concentrations based on a modified version of standard addition. All analyses were performed on a single collector ICPMS (ELEMENT 1), using Y and Yb as internal standards to correct for instrumental drift during the unspiked -spiked sample sequence. Concentrations are calculated using a York- type regression that accounts for all measured and propagated errors. Long-term reproducibility (multiple dissolutions and multiple spike solutions) for the standards BHVO-1, BIR-1 AGV-1 and BCR-1 are better than 0.8% (1s) for Nb/Ta and Zr/Hf ratios. The advantages of this method compared to previous methods are fast throughput, no column chemistry and low blanks. While the Zr/Hf ratios in subduction-related volcanics and ocean island basalts vary by less than a factor of two, the Nb/Ta ratio varies by a factor of four. Most of the Nb/Ta variation is observed in subduction related rocks. Samples with the highest Nb/Ta ratio (up to 19.5) are adakites from the Austral Volcanic Zone (Andes) which are thought to represent eclogitic melts from subducted oceanic crust which was most likely dehydrated. The lowest Nb/Ta (5) was found in boninites from Chichi-Jima, Bonin Island. Samples from Chichi-Jima and from the

  9. Diverse melanges of an ancient subduction complex

    Energy Technology Data Exchange (ETDEWEB)

    Lash, G.G.

    1987-07-01

    Three lithologically and structurally diverse melanges occur within an early Paleozoic (Early-Middle Ordovician) subduction complex in the central Appalachian orogen. Type I melange, characterized by horizons of variably deformed sandstone and scaly mudstone that alternate with coherent sandstone-rich sequences, is interpreted to reflect accretion-related deformation of water-saturated trench deposits. Type II melange, composed of exotic radiolaria-bearing mudstone clasts in a scaly mudstone matrix, can be explained by remobilization and mixing of inner-trench slope sediments. Type III melange is a poorly sorted polymict assemblage of native lithology clasts in a scaly mudstone matrix. Evidence of forceful injection of matrix mud into clasts and inferred discordant contacts between melange and surrounding bedded deposits suggest that the type III melange formed from mud diapirism. The close association of these melanges points out the diversity of tectonic and sedimentary processes previously documented from modern convergent margins that may be reflected in older subduction complexes.

  10. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust

    Science.gov (United States)

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  11. Volcanism and Subduction: The Kamchatka Region

    Science.gov (United States)

    Eichelberger, John; Gordeev, Evgenii; Izbekov, Pavel; Kasahara, Minoru; Lees, Jonathan

    The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in 1962. At its heart is the uniquely acute subduction cusp where the Kamchatka and Aleutian Arcs and Emperor Seamount Chain meet. Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

  12. Regional differences in subduction ground motions

    CERN Document Server

    Beauval, Céline; Abrahamson, N; Theodulidis, N; Delavaud, E; Rodriguez, L; Scherbaum, F; Haendel, A

    2012-01-01

    A few ground-motion prediction models have been published in the last years, for predicting ground motions produced by interface and intraslab earthquakes. When one must carry out a probabilistic seismic hazard analysis in a region including a subduction zone, GMPEs must be selected to feed a logic tree. In the present study, the aim is to identify which models provide the best fit to the dataset M6+, global or local models. The subduction regions considered are Japan, Taiwan, Central and South America, and Greece. Most of the data comes from the database built to develop the new BCHydro subduction global GMPE (Abrahamson et al., submitted). We show that this model is among best-fitting models in all cases, followed closely by Zhao et al. (2006), whereas the local Lin and Lee (2008) is well predicting the data in Taiwan and also in Greece. The Scherbaum et al. (2009) LLH method prove to be efficient in providing one number quantifying the overall fit, but additional analysis on the between-event and within-ev...

  13. Experimental Determination of Chloritoid Stability in Subducting Oceanic Crust

    Science.gov (United States)

    Forneris, J.; Holloway, J. R.

    2001-12-01

    Dehydration of subducting oceanic lithosphere is the key process for understanding arc magma generation and transport of H2O into the mantle. To establish when and how H2O may be released from the slab into the overlying mantle it is necessary to determine the stability of hydrous phases in the subducting lithosphere. In the past 10 years, experimental investigations of phase relationships in basaltic compositions representing the crustal component of the slab have led to controversial results. Results obtained by Schmidt and Poli (1998) and Pawley and Holloway (1993) on basaltic compositions under H2O saturated conditions showed the potential importance of hydrous phases other than amphibole (such as chloritoid, epidote and lawsonite) in the dehydration process. However, these results are in disagreement with the experiments of Liu et al. (1996), which showed that no hydrous phases are stable beyond the amphibole breakdown reaction at or above 650° C. In our study, piston-cylinder experiments were conducted between 2.2 GPa and 2.8 GPa at 650° C. The starting material consisted of a natural basaltic glass with blueschist/eclogite seeds and H2O. Samples were pressure-sealed in a thick-walled silver capsule with a gold lining designed to prevent hydrogen diffusion in long-duration experiments. The oxygen fugacity was fixed at or near Ni+NiO. These experiments have been focused on determining the stability field of chloritoid by running long-duration experiments (up to 1 month). Our results are in agreement with results by Liu et al. (1996): Chloritoid appears in short-duration runs (144 hours or less at 2.6 GPa and 650° C) but is not present in longer-duration experiments (696 hours or more under the same conditions). The amphiboles obtained in our run products have a glaucophane composition and seem to be stable up to higher pressures (at least 2.6 GPa) than the more calcic amphiboles obtained by the three other groups. Epidote/zoisite is present up to at least

  14. Determinants of cruise passengers’ expenditures in the port of call

    Directory of Open Access Journals (Sweden)

    Maršenka Marksel

    2016-12-01

    Full Text Available Cruise tourism generates different types of cruise consumption and related indirect, direct and induced expenditure effects, in homeports as well as in ports of call. Cruise passengers’ expenditures produce positive economic effects for destinations, from increasing the incomes and employment, to tax incomes, duties, etc. Therefore, it is no doubt that cruise stakeholders and local economies can benefit from increased cruise passenger consumption. To stimulate higher consumption and passengers’ satisfaction, it is necessary to design the supportive policy framework and build appropriate quality of products and services. Identifying influential variables of cruise passengers’ expenditures in this sense enables the design of appropriate policies and measures. In the current research, based on a survey of 357 cruise passengers, several variables included in a new theoretical model of the expenditures determinants, such as gender, nationality, frequency of cruising and frequency of visits, were found to be statistically significantly associated with cruise passengers’ expenditures. Several conclusions and suggestions to stimulate cruise passenger expenditures based on research findings are provided.

  15. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction

  16. Great earthquakes hazard in slow subduction zones

    Science.gov (United States)

    Marcaillou, B.; Gutscher, M.; Westbrook, G. K.

    2008-12-01

    Research on the Sumatra-Andaman earthquake of 2004 has challenged two popular paradigms; that the strongest subduction earthquakes strike in regions of rapid plate convergence and that rupture occurs primarily along the contact between the basement of the overriding plate and the downgoing plate. Subduction zones presenting similar structural and geodynamic characteristics (slow convergence and thick wedges of accreted sediment) may be capable of generating great megathrust earthquakes (M>8.5) despite an absence of thrust type earthquakes over the past 40 years. Existing deep seismic sounding data and hypocenters are used to constrain the geometry of several key slow subduction zones (Antilles, Hellenic, Sumatra). This geometry forms the basis for numerical modelling of fore-arc thermal structure, which is applied to calculate the estimated width of the seismogenic portion of the subduction fault plane. The margins with the thickest accretionary wedges are commonly found to have the widest (predicted) seismogenic zone. Furthermore, for these margins there exists a substantial (20-60 km wide) region above the up-dip limit for which the contribution to tsunami generation is poorly understood. As the rigidity (mu) of these high-porosity sediments is low, co-seismic slip here can be expected to be slow. Accordingly, the contribution to seismic moment will be low, but the contribution to tsunami generation may be very high. Indeed, recent seismological data from Nankai indicate very low frequency shallow-thrust earthquakes beneath this portion of the accretionary wedge, long-considered to be "aseismic". We propose that thick accumulations of sediment on the downgoing plate and the presence of a thick accretionary wedge can increase the maximum size of the potential rupture fault plane in two ways; 1) by thermally insulating the downgoing plate and thereby increasing the total downdip length of the fault which can rupture seismically and 2) by "smoothing out" the

  17. Subduction of oceanic plate irregularities and seismicity distribution along the Mexican Subduction Zone

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Gerya, Taras; Wong, Raul-Valenzuela; Radulian, Mircea

    2017-04-01

    It is known that oceanic plates morphology is not a simple one, but rather complicated by a series of irregularities as seamounts, fracture zones and mid-ocean ridges. These features present on the oceanic floor form part of the fabric of oceanic crust, and once formed they move together with the oceanic plates until eventually enter a subduction zone. Offshore Mexico the oceanic Cocos plate seafloor is littered with relatively small but numerous seamounts and seamount chains, and also large fracture zones. In this study we investigate the relationship between these oceanic irregularities located in the vicinity of the trench in Mexico and the distribution of subduction seismicity, including the rupture history of large subduction zone earthquakes. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Our preliminary study shows a direct relationship between the presence of seamounts chains on the incoming oceanic plate and the subduction seismicity distribution. We also found a clear relationship between the subduction of the Tehuantepec fracture zone (TFZ) and the low seismic activity in the region where this fracture zone intersects the trench. This region is also long term conspicuously quiet and considered a seismic gap where no significant large earthquake has occurred in more than 100 years. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Cocos plate in the region of TFZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy. The presence of serpentinite in the fore arc apparently lowers the degree of interseismic locking, producing a seismic gap in southern Mexico.

  18. What's happening inside the subduction factory?

    Science.gov (United States)

    Penniston-Dorland, S. C.; Bebout, G. E.; Gorman, J. K.; Piccoli, P. M.; Walker, R. J.

    2012-12-01

    Much research has focused on the inputs and outputs of the 'subduction factory,' however a variety of metamorphic processes occur within the subducting slab and at its interface with the mantle wedge that contribute to creating the mixed signals observed in arc magmas. Subduction-related metamorphic rocks from the Catalina Schist represent a range of metamorphic grades and provide a natural laboratory to investigate these processes. Hybrid rock types such as reaction zones or 'rinds' between mafic (crustal) and ultramafic (mantle) rocks have attracted recent interest since they have a different bulk chemistry and mineralogy compared to the original inputs to the subduction factory. Here we explore the mineralogical and geochemical differences between the metamorphic rocks, their reaction zones, and endmember subduction input lithologies over a range of metamorphic grades including lawsonite albite, lawsonite blueschist, and amphibolite facies (with peak T ranging from ~ 275 to ~ 750°C and peak P ranging up to ~1.1 GPa). The results shed light on chemical changes occurring within the subduction zone and the processes happening inside the 'subduction factory', including mass transfer of elements by both fluid infiltration and mechanical mixing. Elements commonly enriched in arc magmatic rocks, such as the LILE (e.g. Ba, K), are enriched in metamafic rocks at all metamorphic grades relative to likely MORB protoliths. These enrichments are interpreted as the product of metamorphic fluid infiltration. Many major- and trace-element concentrations in reaction rinds fall between those of metamafic blocks and surrounding ultramafic-rich mélange matrix (including TiO2, MgO, FeO, Al2O3, Zr, Ni and Cr). Spatial distributions of these elements within the rinds suggest that the intermediate concentrations may be due to mechanical mixing of crustal and mantle materials. Rind concentrations of the highly siderophile elements (HSE: including Os, Ir, Ru, Pt, Pd, Re) as well as

  19. Velocities of Subducted Sediments and Continents

    Science.gov (United States)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios 1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at

  20. Extensive decarbonation of continuously hydrated subducting slabs

    Science.gov (United States)

    Arzilli, Fabio; Burton, Mike; La Spina, Giuseppe; Macpherson, Colin G.

    2017-04-01

    CO2 release from subducting slabs is a key element of Earth's carbon cycle, consigning slab carbon either to mantle burial or recycling to the surface through arc volcanism, however, what controls subducted carbon's fate is poorly understood. Fluids mobilized by devolatilization of subducting slabs play a fundamental role in the melting of mantle wedges and in global geochemical cycles [1]. The effect of such fluids on decarbonation in subducting lithologies has been investigated recently [2-5], but several thermodynamic models [2-3], and experimental studies [6] suggest that carbon-bearing phases are stable at sub-arc depths (80-140 km; 2.6-4.5 GPa), implying that this carbon can be carried to mantle depths of >140 km. This is inconsistent with observations of voluminous CO2 release from arc volcanoes [7-10], located above slabs that are at 2.6-4.5 GPa pressure. The aim of this study is to re-evaluate the role of metamorphic decarbonation, showing if decarbonation reactions could be feasible at sub-arc depths combined with a continuous hydration scenario. We used the PerpleX software combined with a custom-designed algorithm to simulate a pervasive fluid infiltration characterized by "continuous hydration" combined with a distillation model, in which is possible to remove CO2 when decarbonation occurs, to obtain an open-system scenario. This is performed by repeatedly flushing the sediment with pure H2O at 0.5, 1.0 or 5 wt.% until no further decarbonation occurs. Here we show that continuous hydrated of sediment veneers on subducting slabs by H2O released from oceanic crust and serpentinised mantle lithosphere [11-13], produces extensive slab decarbonation over a narrow, sub-arc pressure range, even for low temperature subduction pathways. This explains the location of CO2-rich volcanism, quantitatively links the sedimentary composition of slab material to the degree of decarbonation and greatly increases estimates for the magnitude of carbon flux through the arc

  1. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older

  2. Plume-induced roll back subduction around Venus large coronae

    Science.gov (United States)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S. M.

    2016-12-01

    On Venus, possible subduction trenches are mainly associated with large coronae, eventhough the latter are thought to be produced by hot mantle plumes. The mechanism of assocation between subduction and plume has long remained elusive. However, we recently observe the same association in laboratory experiments on thermal convection in colloidal aqueous dispersions of silica nanoparticles, which deform in the Newtonian regime at low solid particle fraction φp, and transition to strain-rate weakening, plasticity, elasticity, and brittle properties as φp increases. Hence, a dense skin akin to a planetary lithosphere grows on the surface when the system is dried from above. When a hot plume rises under the skin, the latter undergoes a flexural deformation which puts it under tension. Cracks then develop, sometimes using pre-existing weaknesses. Plume material (being more buoyant that the laboratory lithosphere) upwells through the cracks and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the conjugate action of its own weight and the plume gravity current. The brittle character of the top experimental lithosphere forbids it to deform viscously to accomodate the sinking motions. Instead, the plate continues to tear as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Scalings derived from the experiments suggest that a weaker lithosphere than that present on Earth today is required for such a convective regime. We identified two candidates on Venus. At Artemis and Quetzelpetlatl Coronae, the radar image observations and subsurface density variations inferred from modeling the gravity and topography agree with the predictions from

  3. Melting carbonated epidote eclogites: carbonatites from subducting slabs

    Science.gov (United States)

    Poli, Stefano

    2016-12-01

    Current knowledge on the solidus temperature for carbonated eclogites suggests that carbonatitic liquids should not form from a subducted oceanic lithosphere at sub-arc depth. However, the oceanic crust includes a range of gabbroic rocks, altered on rifts and transforms, with large amounts of anorthite-rich plagioclase forming epidote on metamorphism. Epidote disappearance with pressure depends on the normative anorthite content of the bulk composition; we therefore expect that altered gabbros might display a much wider pressure range where epidote persists, potentially affecting the solidus relationships. A set of experimental data up to 4.6 GPa, and 1000 °C, including new syntheses on mafic eclogites with 36.8 % normative anorthite, is discussed to unravel the effect of variable bulk and volatile compositions in model eclogites, enriched in the normative anorthite component ( An 37 and An 45). Experiments are performed in piston cylinder and multianvil machines. Garnet, clinopyroxene, and coesite form in all syntheses. Lawsonite was found to persist at 3.7 GPa, 750 °C, with both dolomite and magnesite; at 3.8 GPa, 775-800 °C, fluid-saturated conditions, epidote coexists with kyanite, dolomite, and magnesite. The anhydrous assemblage garnet, omphacite, aragonite, and kyanite is found at 4.2 GPa, 850 °C. At 900 °C, a silicate glass of granitoid composition, a carbonatitic precipitate, and Na-carbonate are observed. Precipitates are interpreted as evidence of hydrous carbonatitic liquids at run conditions; these liquids produced are richer in Ca compared to experimental carbonatites from anhydrous experiments, consistently with the dramatic role of H2O in depressing the solidus temperature for CaCO3. The fluid-absent melting of the assemblage epidote + dolomite, enlarged in its pressure stability for An-rich gabbros, is expected to promote the generation of carbonatitic liquids. The subsolidus breakdown of epidote in the presence of carbonates at depths

  4. Dehydration reactions in subducting oceanic crust: implications for arc volcanism

    Science.gov (United States)

    Forneris, J. F.; Holloway, J. R.

    2003-04-01

    In subduction zones, oceanic lithosphere progressively dehydrates as it sinks deep into the underlying mantle. Fluids released from the subducting slab are thought to trigger partial melting in the overlying mantle wedge, leading to the formation of volcanic arcs. Experiments were conducted in the ranges of 2.2--3.4 GPa (70 to 100 km) and 625--750^oC to determine the dehydration reactions that control fluid release from the basaltic layer of the subducting slab. The experimental duration was typically one month, although some experiments were replicated with a shorter run duration (one to two weeks) in order to identify potentially metastable phases. A mixture of a natural mid-ocean ridge basalt glass and mineral seeds was used as the starting material. Oxygen fugacity was buffered within ±1.3 log units of nickel-bunsenite (NiNiO). The results obtained indicate that the transformation of a hydrated eclogite into a nominally dry eclogite occurs through the decomposition of three hydrous phases: amphibole, lawsonite, and zoisite. Chloritoid, a mineral described as an H_2O carrier in previous experimental studies, is found to be metastable in the examined pressure-temperature (P-T) range and therefore should not be involved in the global fluid release from the basaltic crust. A detailed chemical analysis reveals that amphiboles are sodic-calcic (barroisite) at low pressures (2.2 to 2.4 GPa), but become sodic (glaucophane) with increasing pressure. This observation is the first experimental confirmation of the high-pressure stability of glaucophane in metabasalt compositions. At pressures above the stability field of amphibole, zoisite/clinozoisite becomes the stable hydrous phase at temperatures above 645^oC, whereas lawsonite is stable at lower temperatures. H_2O contents of eclogitic assemblages have been estimated based on modal abundance of minerals calculated from electron microprobe analyses. These results indicate that a slab following an intermediate

  5. Preliminary results of high resolution subbottom survey and surface sediment sampling by ROV "NSS" in the Nankai subduction zone off Kumano

    Science.gov (United States)

    Ashi, J.; Kh-10-3 Science Party

    2010-12-01

    The Nankai subduction zone off Kumano has been extensively investigated for site surveys of IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) by bathymetirc survey, 2D and 3D seismic reflection survey, dive observation and sidescan sonar survey. However, subbottom profiling and surface sediment sampling were limited due to steep and complex topography under strong Kuroshio Current. We carried out deep-tow subbottom survey and pinpoint core sampling by ROV "NSS (Navigable Sampling System)" of Atmosphere and Ocean Research Institute, the Univ. Tokyo during Hakuho-maru KH-10-3 cruise. A pilot vehicle of NSS is equipped with four thrusters, observation cameras and a hock for a heavy payload. Depth capability of the pilot vehicle is 4000 m and maximum payload weight is 1.5 tons. We introduced a chirp subbottom profiling system of EdgeTech DW-106 for high resolution mapping of shallow structures and determination of a sampling point on this year's survey. Three survey lines crossed the splay fault area around IODP drilling sites. Subbottom profiles show that seafloor is completely covered by stratified sediments and any fault displacement cannot be identified although maximum penetration of chirp signal is only 15 meters in prism slope regions. In contrast, landward progressive tilting of slope basin sediments and talus deposits on it are well imaged along the steep scarp 30 km southwest of the drilling sites. Dense chemosynthetic biological community revealed by camera observations also suggests existence of active fault in this area. The scarp more gentle slope than the above is located 4 kilometers trenchward of it. Subbottom profiles show well-stratified sediment cover without fault deformation. Seismic reflection profiles and existence of dense traces of bivalves, however, suggest existence of a splay fault beneath it. A long-term heat flow meter of ERI, Univ. Tokyo was installed at each fault scarp for monitoring of cold seep activity. We also present

  6. Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Carrizo, Daniel

    2011-05-01

    We discuss the earthquake rupture behavior along the Chile-Peru subduction zone in terms of the buoyancy of the subducting high oceanic features (HOF's), and the effect of the interplay between HOF and subduction channel thickness on the degree of interplate coupling. We show a strong relation between subduction of HOF's and earthquake rupture segments along the Chile-Peru margin, elucidating how these subducting features play a key role in seismic segmentation. Within this context, the extra increase of normal stress at the subduction interface is strongly controlled by the buoyancy of HOF's which is likely caused by crustal thickening and mantle serpentinization beneath hotspot ridges and fracture zones, respectively. Buoyancy of HOF's provide an increase in normal stress estimated to be as high as 10-50 MPa. This significant increase of normal stress will enhance seismic coupling across the subduction interface and hence will affect the seismicity. In particular, several large earthquakes (Mw ≥ 7.5) have occurred in regions characterized by subduction of HOF's including fracture zones (e.g., Nazca, Challenger and Mocha), hotspot ridges (e.g., Nazca, Iquique, and Juan Fernández) and the active Nazca-Antarctic spreading center. For instance, the giant 1960 earthquake (Mw = 9.5) is coincident with the linear projections of the Mocha Fracture Zone and the buoyant Chile Rise, while the active seismic gap of north Chile spatially correlates with the subduction of the Iquique Ridge. Further comparison of rupture characteristics of large underthrusting earthquakes and the locations of subducting features provide evidence that HOF's control earthquake rupture acting as both asperities and barriers. This dual behavior can be partially controlled by the subduction channel thickness. A thick subduction channel smooths the degree of coupling caused by the subducted HOF which allows lateral earthquake rupture propagation. This may explain why the 1960 rupture propagates

  7. Stakeholder Orientation in Cruise Lines’ Mission Statements

    Directory of Open Access Journals (Sweden)

    Lara Penco

    2017-11-01

    Full Text Available Consistent with the extant management literature, mission statements are crucial for the sustainability and growth of any firms and have been considered to be a tool for the strategic management process. Despite the considerable attention awarded to this theme, the role of the mission statement in the strategic management of tourism firms has not been sufficiently highlighted. The present paper tries to bridge this literature gap and aims to (i analyze the content of mission statements; and (ii investigate the stakeholder orientation of cruise line mission statements. We apply a content analysis method to analyze the mission statements of 44 cruise lines, employing three different perspectives: (1 the inclusion of stakeholder groups; (2 mentions of specific “mission” components; (3 reference to four goals usually assigned to mission statements. The analysis was performed using the software package QDA-Miner. The results suggest that it is possible to identify four clusters of firms that present similar content in their mission statements, and that cruise companies tend to reserve a major attention to customers. This contribution presents some valuable research implications mainly useful for researchers and academics, but also maybe of benefit to professionals and investors.

  8. Impact of Mantle Wind on Subducting Plate Geometry and Interplate Pressure: Insights From Physical Modelling.

    Science.gov (United States)

    Boutelier, D.; Cruden, A. R.

    2005-12-01

    New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch

  9. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  10. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  11. MAINTAINING VEHICLE SPEED USING A MECHANICAL CRUISE CONTROL

    Directory of Open Access Journals (Sweden)

    Peter GIROVSKÝ

    2017-06-01

    Full Text Available In this article we would like to present cruise control realization. This cruise control is presented as mechanical device for vehicle speed maintenance and has been proposed as a low cost solution. Principle of function in mechanical cruise control is based on a position control of throttle. For the right action of mechanical cruise control it was need to solve some particular tasks related with speed sensing, construct of device for control of throttle position and design of control system of whole mechanical cruise control. Information about car velocity we have gained using Hall sensor attached on a magnetic ring of car tachometer. For control of the throttle was used a small servo drive and as the control unit was used Arduino. The designed solution of mechanical cruise control have been realized for car Škoda Felicia.

  12. Quantitative Study of Seismogenic Potential Along Manila Trench: Effects of Scaborough Seamount Chain Subduction

    Science.gov (United States)

    Yu, H.; Liu, Y.; Li, D.; Ning, J.; Matsuzawa, T.; Shibazaki, B.; Hsu, Y. J.

    2014-12-01

    Modern seismicity record along the Manila Trench shows only infrequent Mw7 earthquakes, the lack of great earthquakes may indicate the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a megathrust earthquake. We conduct numerical simulations of the plate coupling, earthquake nucleation and dynamic rupture propagation processes along the Manila subduction fault (15-19.5ºN), taking into consideration the effects of plate geometry (including subducted seamounts), fault strength, rate-state frictional properties and pore pressure variations. Specifically, we use the bathymetry to depict the outline of Manila trench along its strike, 2681 background seismicity (1970/02/13 to 2013/09/06) from Chinese Earthquake Network Center and 540 focal mechanism solutions (1976/01/01 to 2013/01/27) from Global CMT project to constrain the geometry of the subducting Sunda/Eurasian slab. The compilation of seismicity and focal mechanism indicates the plate dipping angle gradually changes from 28º (south of the Scaborough Seamount Chain) to 12º (north of it). This geometric anomaly may due to the subducted part of the seamount chain. Preliminary modeling results using gabbro gouge friction data show that the Scaborough Seamount Chain could be a barrier to earthquake rupture propagation. Only earthquakes larger than Mw7 can overcome the barrier to rupture the entire Manila trench. Smaller earthquakes would cease rupturing when it encounters the seamount chain. Moreover, we propose that Manila trench subduction zone has the potential of rupturing in a Mw8 megathrust earthquake, if the simulation period is long enough for an Mw8 earthquake cycle and dynamic rupture overcomes the subducted Scaborough Seamount Chain. Our model parameters will be further constrained by laboratory rock mechanics experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples (work in progress at China Earthquake Administration

  13. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone

    Science.gov (United States)

    Yamamoto, Yojiro; Obana, Koichiro; Takahashi, Tsutomu; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-03-01

    We performed 3D seismic tomography of the Hyuga-nada region, western Nankai subduction zone, to investigate the relationship of the subducted part of Kyushu-Palau Ridge (KPR) to coseismic rupture propagation, seismicity, and shallow very low frequency earthquakes. Combining active-source and passive-source data recorded both onshore and offshore, we imaged the deep slab from near the trough axis to the coastal area. Our results show the subducted KPR as a low-velocity belt oriented NW-SE extending down the plate boundary to around 30 km depth. At this depth, we suggest that the subducted KPR detaches from the slab and becomes underplated on the overriding continental plate. As the coseismic slip areas of past large earthquakes do not extend into the subducted KPR, we suggest that it may inhibit rupture propagation. The interior of the subducted KPR shows active intraslab seismicity with a wide depth distribution. Shallow very low frequency earthquakes are continuously active above the location of the subducted KPR, whereas they are intermittent to the northeast of the subducted KPR. Thus, the subducted KPR appears to be an important factor in coseismic rupture propagation and seismic phenomena in this region.

  14. The melting of subducted banded iron formations

    Science.gov (United States)

    Kang, Nathan; Schmidt, Max W.

    2017-10-01

    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  15. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    Science.gov (United States)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a

  16. Subducting Plate Breakup by Plume-Lithosphere Interaction

    Science.gov (United States)

    Koptev, A.; Gerya, T.; Jolivet, L.; Leroy, S. D.

    2016-12-01

    We use a 3D high-resolution thermo-mechanical modeling to investigate the impact of active mantle plume on a subducting lithospheric plate. Initial model setup consists of an overriding continental lithosphere and subducting lithospheric plate including oceanic and continental lithosphere. A mantle plume thermal anomaly has been initially seeded at the bottom of the model box underneath the continental segment of subducting plate. Mantle plume impingement on lithospheric bottom leads to thinning of continental lithosphere and decompressional melting of both lithospheric and sublithospheric mantle along stretched trench-parallel zone. Further continental breakup is followed by opening of an oceanic basin separating a newly formed microcontinent from the main subducting continent. Despite continuous push applied at the boundary of subducting plate, plume-induced oceanic basin opens during several Myrs reaching several hundred kilometers wide. Cooling of the mantle plume and beginning of collision between the separated microcontinent and the overriding continental plate lead to gradual closure of newly formed oceanic basin that gets further involved into subduction and collision. The final stage sees continental subduction of main body of subducting plate and simultaneous tectonic exhumation of the upper crust of the subducted microcontinent. This scenario involving a plume-induced rifting of a microcontinent away from main body of subducted plate can be compared to the Mesozoic-Cenozoic development of the African plate characterized by the consecutive separation of the Apulian microcontinent and Arabian plate (in the Jurassic and the Neogene, respectively) during subduction of Neo-Tethys oceanic lithosphere beneath the Eurasian margin.

  17. Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

    Directory of Open Access Journals (Sweden)

    D. Arcay

    2012-12-01

    Full Text Available The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1 significantly if mantle viscosity at asthenospheric wedge tip is low, (2 if the difference in mantle and interplate activation energy is weak, and (3 if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate

  18. Customer orientation of cruise destinations in Newfoundland and Labrador, Canada – exploring key issues for ports and the cruise lines

    OpenAIRE

    Hull, John S.; Losekoot, Erwin

    2011-01-01

    This paper evaluates the customer needs of cruise passengers in a context of industry ports in the province of Newfoundland and Labrador, Canada. The study was conducted for the Cruise Association of Newfoundland and Labrador (CANAL) providing primary data as part of their assessment for their Port Readiness Program. The results are generated from a survey of 34 key decision-makers working in 24 ports in the province. Another survey representing the views of 12 cruise lines operating in these...

  19. Slab-mantle interactions in simulations of self-consistent mantle convection with single-sided subduction

    Science.gov (United States)

    Crameri, F.; Tackley, P. J.; Meilick, I.; Gerya, T. V.; Kaus, B. J. P.

    2012-04-01

    Subduction zones on present-day Earth are strongly asymmetric features (Zhao 2004) composed of an overriding plate above a subducting plate that sinks into the mantle. Our recent advances in numerical modelling allow global mantle convection models to produce single-sided subduction self-consistently by allowing for free surface topography on and lubrication between the converging plates (Crameri et al., 2012). Thereby, they are indicating important mantle-slab interactions. The increase of viscosity with depth is an important mantle property affecting the dynamics of subduction: a large viscosity increase on the one hand favours an immediate stagnant lid because the slab cannot sink fast enough, while a small increase on the other hand does not provide enough resistance for the sinking slab and therefore facilitates an immediate slab break-off. While in the mobile lid (plate tectonic like) regime, our model also shows that single-sided subduction in turn has strong implications on Earth's interior such as its rms. velocity or its stress distribution. The arcuate trench curvature is such a feature that is caused by single-sided subduction in 3-D geometry. The pressure difference between the mantle region below the inclined sinking slab and the region above it causes a toroidal mantle flow around the slab edges. This flow of mantle material is responsible for forming the slabs and subsequently also the subduction trenches above it towards an arcuate shape. For this study we perform experiments in 2-D and global spherical 3-D, fully dynamic mantle convection models with self-consistent plate tectonics. These are calculated using the finite volume multi-grid code StagYY (Tackley 2008) with strongly temperature and pressure-dependent viscosity, ductile and/or brittle plastic yielding, and non-diffusive tracers tracking compositional variations (the 'air' and the weak crustal layer in this case).

  20. Modeling mantle circulation and density distributions in subduction zones: Implications for seismic studies

    Science.gov (United States)

    Kincaid, C. R.; Druken, K. A.; Griffiths, R. W.; Long, M. D.; Behn, M. D.; Hirth, G.

    2009-12-01

    Subduction of ocean lithosphere drives plate tectonics, large-scale mantle circulation and thermal-chemical recycling processes through arcs. Seismologists have made important advances in our ability to map circulation patterns in subduction zones though anisotropy data/methods and in providing detailed images of mantle density fields. Increasingly, seismic and geodynamic disciplines are combining to extend our understanding of time varying subduction processes and associated vertical mass and energy fluxes. We use laboratory experiments to characterize three-dimensional flow fields in convergent margins for a range in plate forcing conditions and background, buoyancy-driven flow scenarios. Results reveal basic patterns in circulation, buoyant flow morphologies and density distributions that have implications for reconciling seismic data with mantle convection models. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000km of the mantle. Subducting lithosphere is modeled with a Phenolic plate and back-arc extension is produced using Mylar sheets. We recreate basic subduction styles observed in previous dynamic subduction models using simplified, kinematic forcing. Slab plate segments, driven by hydraulic pistons, move with various combinations of downdip, rollback and steepening motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of olivine alignment through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3D velocity fields for use in directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening, back-arc extension) in convergent margins produce relatively simple anisotropy patterns (e.g., trench-normal alignments) and underscore the importance of initial strain marker orientations on alignment patterns in the wedge. Results also

  1. Geometry and seismic properties of the subducting Cocos plate in central Mexico

    Science.gov (United States)

    Kim, Y.; Clayton, R. W.; Jackson, J. M.

    2010-06-01

    The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans-Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low-velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson's and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure. The evidence of high water content within the oceanic crust explains the flat subduction geometry without strong coupling of two plates. This may also explain the nonvolcanic tremor activity and slow slip events occurring in the subducting plate and the overlying crust.

  2. From rifting to subduction: the role of inheritance in the Wilson Cycle

    Science.gov (United States)

    Beaussier, Stéphane; Gerya, Taras; Burg, Jean-Pierre

    2017-04-01

    The Wilson Cycle entails that oceans close and reopen. This cycle is a fundamental principle in plate tectonics, inferring continuity from divergence to convergence and that continental rifting takes place along former suture zones. This view questions the role of inherited structures at each stage of the Wilson Cycle. Using the 3D thermo-mechanical code, I3ELVIS (Gerya and Yuen 2007) we present a high-resolution continuous model of the Wilson cycle from continental rifting, breakup and oceanic spreading to convergence and spontaneous subduction initiation. Therefore, all lateral and longitudinal structures of the lithospheres are generated self-consistently and are consequences of the initial continental structure, tectono-magmatic inheritance and material rheology. In the models, subduction systematically initiates off-ridge and is controlled by the convergence-induced swelling of the ridge. Geometry and dynamics of the developing off-ridge subduction is controlled by four main factors: (1) the obliquity of the ridge with respect to the convergence direction; (2) fluid-induced weakening of the oceanic crust; (3) irregularity of ridge and margins inherited from rifting and spreading; (4) strain localization at transform faults formed during ocean floor spreading. Further convergence can lead to obduction of the oceanic crust and segments of ridge after the oceanic lithosphere is entrained into subduction. We show that the main parameters controlling the occurrence and geometry of obducted ophiolite are the convergence rate and the inherited structure of the passive margins and ridge. Our numerical experiments results show the essential role played by inheritance during the Wilson Cycle and are consistent with nature observations such as the tectonic history of the Oman subduction-obduction system. REFERENCES Gerya, T. V., and D. A. Yuen. 2007: "Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems, Physics of the

  3. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Shear Wave Splitting from PULSE

    Science.gov (United States)

    Eakin, C. M.; Long, M. D.; Beck, S. L.; Wagner, L. S.; Tavera, H.

    2013-12-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for deep and teleseismic events, making use of a wide variety of available phases that sample the upper mantle directly beneath the stations (such as SKS, SKKS, PKS, sSKS, SKiKS, ScS and local/direct S). We analyze the variability of our results with respect to initial polarizations and ray paths, as well as spatial variability between stations as the underlying slab morphology changes. Preliminary results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA). Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. We carefully evaluate the different possible source locations within the subduction zone for this seismic anisotropy and observe increasing evidence for distinct anisotropy within the slab as well as the sub-slab mantle.

  4. Rheological property of mafic schist and geological interpretation to the subduction dynamics

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2013-12-01

    To understand the spatial and temporal distribution of deformation (e.g., underplating and exhumation of metamorphic rocks) and earthquakes in subduction zones, it is important to constrain the rheological properties of metamorphic rocks (i.e., altered oceanic crust and sediments), and how they evolve during metamorphic reactions following hydration, carbonation and dehydration of the down-going slab. Metamorphism of oceanic crust has stimulated hypotheses on the relationship between intra-slab earthquakes and slab-wedge coupling along plate boundaries in subduction zone. While it is well known that metamorphisms have important effects on material circulation and arc volcanisms at subduction system, it remains unclear how the formation of metamorphic minerals followed by fluid release on the subduction dynamics influences rheology. Past experimental studies on mafic metamorphic rocks were mostly concentrated on phase equilibrium of mineral, thus there are very few reports on the mechanical data for these metamorphic rocks. We conducted triaxial deformation experiments on a mafic greenschist using Griggs-type solid pressure-medium apparatus installed in Brown University. Mafic schist (chlorite - amphibole - epidote - albite schist) containing calcite and quartz veins from Sambagawa metamorphic belt (Japan), which is metamorphosed at the condition of nearly the corner of mantle wedge in hot subduction (1 GPa of pressure and 520C of temperature), was used as experimental samples for typical metamorphic rocks composing oceanic crust in warm subduction zones. Constant strain rete experiments and strain rate step experiment were conducted at 1.0 GPa of confining pressure, 400 ~ 500C of temperature and 10-5 ~ 5×10-7 1/s of strain rate. At stable conditions of samples (1 GPa of confining pressure and 400 and 500C of temperature), differential stresses were higher than 1 GPa. Microstructure of recovered samples showed backing and several localized shear zones. Although

  5. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  6. GPS Monitoring of Subduction Zone Deformation in Costa Rica

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The subduction of the Cocos plate beneath Costa Rica is among the highest convergence rates in the world. The high subduction rate and nearness of the Nicoya Peninsula, Costa Rica to the Middle America Trench (MAT) provide a unique opportunity to map variations in interseismic strain of the crust above the seismogenic zone in response to variations in seismic coupling.

  7. The subduction dichotomy of strong plates and weak slabs

    Science.gov (United States)

    Petersen, Robert I.; Stegman, Dave R.; Tackley, Paul J.

    2017-03-01

    A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography.

  8. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    2007). We investigate the northward subduction of the. Indo-Australian plate along the eastern Sunda arc right from northwestern Sumatra, along Java to. Keywords. Slab detachment; subduction zone; Sunda arc; Indo-Australian slab; trench migration. J. Earth Syst. Sci. 120, No. 2, April 2011, pp. 193–204 c Indian Academy ...

  9. The Run-Up of Subduction Zones

    Science.gov (United States)

    Riquelme, S.; Bravo, F. J.; Fuentes, M.; Matias, M.; Medina, M.

    2016-12-01

    Large earthquakes in subduction zones are liable to produce tsunamis that can cause destruction and fatalities. The Run-up is a geophysical parameter that quantifies damage and if critical facilities or population are exposed to. Here we use the coupling for certain subduction regions measured by different techniques (Potency and GPS observations) to define areas where large earthquakes can occur. Taking the slab 1.0 from the United States Geological Survey (USGS), we can define the geometry of the area including its tsunamigenic potential. By using stochastic earthquakes sources for each area with its maximum tsunamigenic potential, we calculate the numerical and analytical run-up for each case. Then, we perform a statistical analysis and calculate the envelope for both methods. Furthermore, we build an index of risk using: the closest slope to the shore in a piecewise linear approach (last slopecriteria) and the outputsfrom tsunami modeling. Results show that there are areas prone to produce higher run-up than others based on the size of the earthquake, geometrical constraints of the source, tectonic setting and the coast last slope. Based on these results, there are zones that have low risk index which can define escape routes or secure coastal areas for tsunami early warning, urban and planning purposes when detailed data is available.

  10. Profile and bottle data collected on the RV Melville (cruise Vancouver 06) from the Agulhas-South Atlantic Thermohaline Transport Experiment (ASTTEX) in the Atlantic Ocean from 20030102 to 20030115 (NODC Accession 0074001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Introduction: The Agulhas-South Atlantic Thermohaline Experiment (ASTTEX) examined the fluxes of heat, salt and mass entering the South Atlantic ocean via the...

  11. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  12. Mapping subduction interface coupling using magnetotellurics: Hikurangi margin, New Zealand

    Science.gov (United States)

    Heise, W.; Caldwell, T. G.; Bannister, S.; Bertrand, E. A.; Ogawa, Y.; Bennie, S. L.; Ichihara, H.

    2017-09-01

    The observation of slow-slip, seismic tremor, and low-frequency earthquakes at subduction margins has provided new insight into the mechanisms by which stress accumulates between large subduction (megathrust) earthquakes. However, the relationship between the physical properties of the subduction interface and the nature of the controls on interplate seismic coupling is not fully understood. Using magnetotelluric data, we show in situ that an electrically resistive patch on the Hikurangi subduction interface corresponds with an area of increased coupling inferred from geodetic data. This resistive patch must reflect a decrease in the fluid or sediment content of the interface shear zone. Together, the magnetotelluric and geodetic data suggest that the frictional coupling of this part on the Hikurangi margin may be controlled by the interface fluid and sediment content: the resistive patch marking a fluid- and sediment-starved area with an increased density of small, seismogenic-asperities, and therefore a greater likelihood of subduction earthquake nucleation.

  13. Unstable fault slip induced by lawsonite dehydration in blueschist: Implication for the seismicity in the subducting oceanic crusts

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2015-12-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the subducting mantle In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Moho. These observations have stimulated interest in potential relationships between blueschist-facies metamorphism and seismicity, particularly through the dehydration reactions involving lawsonite. The rheology of these high-pressure and low-temperature metamorphic minerals is largely unknown. We conducted experiments on lawsonite accompanied by monitoring of acoustic emission (AE) in a Griggs-type deformation apparatus. Deformation was started at the confining pressure of 1.0 GPa, the temperature of 300 ˚C, and constant displacement rates of 0.16 to 0.016 μm/s, that correspond to equivalent strain rates (ɛ) of 9 × 10-5 to 9 × 10-6 1/s. In these experiments, temperature was increased at the temperature ramp rate of 0.5 to 0.05˚C/s above the thermal stability of lawsonite (600˚C) while the sample was deforming to test whether the dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (i.e., stick-slip) occurred during dehydration reactions in the lawsonite gouge layer, and AE signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shear), and the fault surface shows mirror-like slickensides. The unloading slope (i.e., rate of stress drop as a function of slip) during the unstable slip follows the stiffness of the apparatus at all experimental conditions regardless of the strain rate and temperature ramping rate. A thermal-mechanical scaling factor in the experiments covers the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers to induce seismicity in cold subduction zones.

  14. Two-dimensional Numerical Models of Accretionary Wedges Deformation in Response to Subduction and Obduction: Evidence from the Middle Part of the Manila Trench

    Science.gov (United States)

    Ma, L.; Ding, W.; Chen, L.; Gerya, T.

    2016-12-01

    The Manila Trench is located at the eastern boundary of the South China Sea (SCS). It was created by the subduction of the South China Sea Plate beneath the Philippine Sea Plate since the early Neogene, and also influenced by the northwestern movement of the Philippine Sea Plate. There is wide discussion whether the dual-subduction and widespread seamounts in the South China Sea would have play important roles in the 'S-shaped' geometry and the different diving angle along the Manila Trench. Multi-beam tectono-geomorphological studies on the accretionary wedges have suggested that: (1) the stress direction of the subduction along the middle part of the Manila Trench, between 17o and 18 o N, is NW55 o; (2) The Manila Trench is actually caused by obduction due to the northwestern movement of the Philippine Sea Plate. Although the NW 55 o stress direction has been supported by detailed analysis on the trend of the folds, thrust faults, extension fractures and large sea-floor canyon, its obduction-origin is purely based on regional structure. Here we use 2D numerical modeling experiments to investigate the deformation style of accretionary wedge in response to the seamounts subduction and obduction, and provide new insights into the mechanism responsible for the Luzon obduction along the Manila Trench. Our preliminary results show that: (1) the accretionary wedge is eroded faster in subduction model; (2) the velocity field direction of the slab differs in two models at the beginning of seamount subduction, which is vertical in obduction model, but oblique in subduction model; (3) both sides of the accretionary wedge deform strongly in subduction model, whereas in obduction model only the leading edge shows intensive deformation. Further modelling will focus on other parts of the Manila Trench with different slab age and subduction velocity to see their tectonic influences on the accretionary wedges.

  15. Improvement of Adaptive Cruise Control Performance

    Directory of Open Access Journals (Sweden)

    Nakagami Takashi

    2010-01-01

    Full Text Available This paper describes the Adaptive Cruise Control system (ACC, a system which reduces the driving burden on the driver. The ACC system primarily supports four driving modes on the road and controls the acceleration and deceleration of the vehicle in order to maintain a set speed or to avoid a crash. This paper proposes more accurate methods of detecting the preceding vehicle by radar while cornering, with consideration for the vehicle sideslip angle, and also of controlling the distance between vehicles. By making full use of the proposed identification logic for preceding vehicles and path estimation logic, an improvement in driving stability was achieved.

  16. Dissemination Protocols to Support Cooperative Adaptive Cruise Control (CACC) Merging

    NARCIS (Netherlands)

    Klein Wolterink, W.; Heijenk, Geert; Karagiannis, Georgios

    2011-01-01

    Cooperative adaptive cruise control (CACC) is a form of cruise control in which vehicles cooperatively control their speed using wireless communication. Previously we have implemented CACC using beaconing: the regular broadcasting of status information using 802.11p. Currently we are concerned with

  17. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    NARCIS (Netherlands)

    Klein Wolterink, W.; Karagiannis, Georgios; Brogle, Marc; Masip Bruin, Xavier; Braun, Torsten; Heijenk, Gerhard J.

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system,

  18. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    NARCIS (Netherlands)

    Klein Wolterink, W.; Heijenk, Geert; Karagiannis, Georgios

    2011-01-01

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system,

  19. Career Cruising Impact on the Self Efficacy of Deciding Majors

    Science.gov (United States)

    Smother, Anthony William

    2012-01-01

    The purpose of this study was to analyze the impact of "Career Cruising"© on self-efficacy of deciding majors in a university setting. The use of the self-assessment instrument, "Career Cruising"©, was used with measuring the career-decision making self-efficacy in a pre and post-test with deciding majors. The independent…

  20. 77 FR 12843 - Fees for Sanitation Inspections of Cruise Ships

    Science.gov (United States)

    2012-03-02

    ... HUMAN SERVICES Centers for Disease Control and Prevention Fees for Sanitation Inspections of Cruise Ships AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services... cruise ships. VSP operates under the authority of the Public Health Service Act (42 U.S.C. 264, ``Control...

  1. 77 FR 50511 - Fees for Sanitation Inspections of Cruise Ships

    Science.gov (United States)

    2012-08-21

    ... HUMAN SERVICES Centers for Disease Control and Prevention Fees for Sanitation Inspections of Cruise Ships AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and Human Services... prevent and control the introduction, transmission, and spread of gastrointestinal illnesses on cruise...

  2. Emergency braking is affected by the use of cruise control.

    Science.gov (United States)

    Jammes, Yves; Behr, Michel; Llari, Maxime; Bonicel, Sarah; Weber, Jean Paul; Berdah, Stephane

    2017-08-18

    We compared the differences in the braking response to vehicle collision between an active human emergency braking (control condition) and cruise control (CC) or adaptive cruise control (ACC). In 11 male subjects, age 22 to 67 years, we measured the active emergency braking response during manual driving using the accelerator pedal (control condition) or in condition mimicking CC or ACC. In both conditions, we measured the brake reaction time (BRT), delay to produce the peak braking force (PBD), total emergency braking response (BRT + PBD), and peak braking force (PBF). Electromyograms of leg and thigh muscles were recorded during braking. The tonic vibratory response (TVR), Hoffman reflex (HR), and M-waves were recorded in leg muscles to explore the change in sensorimotor control. No difference in PBF, TVR amplitude, HR latency, and H max /M max ratio were found between the control and CC/ACC conditions. On the other hand, BRT and PBD were significantly lengthened in the CC/ACC condition (240 ± 13 ms and 704 ± 70 ms, respectively) compared to control (183 ± 7 ms and 568 ± 36 ms, respectively). BRT increased with the age of participants and the driving experience shortened PBD and increased PBF. In male subjects, driving in a CC/ACC condition significantly delays the active emergency braking response to vehicle collision. This could result from higher amplitude of leg motion in the CC/ACC condition and/or by the age-related changes in motor control. Car and truck drivers must take account of the significant increase in the braking distance in a CC/ACC condition.

  3. Effects on inlet technology on cruise speed selection

    Science.gov (United States)

    Bangert, L. H.; Santman, D. M.; Horie, G.; Miller, L. D.

    1980-01-01

    The impact of cruise speed on technology level for certain aircraft components is examined. External-compression inlets were compared with mixed compression, self starting inlets at cruise Mach numbers of 2.0 and 2.3. Inlet engine combinations that provided the greatest aircraft range were identified. Results show that increased transonic to cruise corrected air flow ratio gives decreased range for missions dominated by supersonic cruise. It is also found important that inlets be designed to minimize spillage drag at subsonic cruise, because of the need for efficient performance for overland operations. The external compression inlet emerged as the probable first choice at Mach 2.0, while the self starting inlet was the probable first choice at Mach 2.3. Airframe propulsion system interference effects were significant, and further study is needed to assess the existing design methods and to develop improvements.

  4. The interplay between subduction and lateral extrusion : A case study for the European Eastern Alps based on analogue models

    NARCIS (Netherlands)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A.P.L.

    2017-01-01

    A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental

  5. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    Science.gov (United States)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  6. Cascadia subduction tremor muted by crustal faults

    Science.gov (United States)

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  7. Depositionary Margins: The Destruction and Renovation of Subduction Forearcs

    Science.gov (United States)

    Vannucchi, P.; Morgan, J. P.; Silver, E. A.; Kluesner, J.

    2016-12-01

    A depositionary margin is a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  8. Subducted oceanic relief locks the shallow megathrust in central Ecuador

    Science.gov (United States)

    Collot, Jean-Yves; Sanclemente, Eddy; Nocquet, Jean-Mathieu; Leprêtre, Angélique; Ribodetti, Alessandra; Jarrin, Paul; Chlieh, Mohamed; Graindorge, David; Charvis, Philippe

    2017-05-01

    Whether subducted oceanic reliefs such as seamounts promote seismic rupture or aseismic slip remains controversial. Here we use swath bathymetry, prestack depth-migrated multichannel seismic reflection lines, and wide-angle seismic data collected across the central Ecuador subduction segment to reveal a broad 55 km × 50 km, 1.5-2.0 km high, low height-to-width ratio, multipeaked, sediment-bare, shallow subducted oceanic relief. Owing to La Plata Island and the coastline being located, respectively, 35 km and 50-60 km from the trench, GPS measurements allow us to demonstrate that the subducted oceanic relief spatially correlates to a shallow, 80 km × 55 km locked interplate asperity within a dominantly creeping subduction segment. The oceanic relief geometrical anomaly together with its highly jagged topography, the absence of a subduction channel, and a stiff erosive oceanic margin are found to be long-term geological characteristics associated with the shallow locking of the megathrust. Although the size and level of locking observed at the subducted relief scale could produce an Mw >7+ event, no large earthquakes are known to have happened for several centuries. On the contrary, frequent slow slip events have been recorded since 2010 within the locked patch, and regular seismic swarms have occurred in this area during the last 40 years. These transient processes, together with the rough subducted oceanic topography, suggest that interplate friction might actually be heterogeneous within the locked patch. Additionally, we find that the subducted relief undergoes internal shearing and produces a permanent flexural bulge of the margin, which uplifted La Plata Island.

  9. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Science.gov (United States)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang

    2017-08-01

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.

  10. Optimizing Cruising Routes for Taxi Drivers Using a Spatio-Temporal Trajectory Model

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2017-11-01

    Full Text Available Much of the taxi route-planning literature has focused on driver strategies for finding passengers and determining the hot spot pick-up locations using historical global positioning system (GPS trajectories of taxis based on driver experience, distance from the passenger drop-off location to the next passenger pick-up location and the waiting times at recommended locations for the next passenger. The present work, however, considers the average taxi travel speed mined from historical taxi GPS trajectory data and the allocation of cruising routes to more than one taxi driver in a small-scale region to neighboring pick-up locations. A spatio-temporal trajectory model with load balancing allocations is presented to not only explore pick-up/drop-off information but also provide taxi drivers with cruising routes to the recommended pick-up locations. In simulation experiments, our study shows that taxi drivers using cruising routes recommended by our spatio-temporal trajectory model can significantly reduce the average waiting time and travel less distance to quickly find their next passengers, and the load balancing strategy significantly alleviates road loads. These objective measures can help us better understand spatio-temporal traffic patterns and guide taxi navigation.

  11. The initiation of subduction: criticality by addition of water?

    Science.gov (United States)

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  12. Deformation cycles of subduction earthquakes in a viscoelastic Earth.

    Science.gov (United States)

    Wang, Kelin; Hu, Yan; He, Jiangheng

    2012-04-18

    Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic 'snapshots' from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

  13. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc

    NARCIS (Netherlands)

    Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J.; Van Der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui

    2015-01-01

    The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence

  14. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-01-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flowforce the

  15. Numerical simulation of earthquake rupture sequences on the Manila thrust fault: Effects of seamount subduction

    Science.gov (United States)

    Yu, H.; Liu, Y.; Ning, J.; He, C.; Zhang, L.

    2015-12-01

    The Manila subduction zone is located at the convergent boundary between the Philippine Sea Plate and the Sunda/Eurasian Plate from offshore Taiwan to northern Luzon of Philippines, where only infrequent M7 earthquakes were observed in modern seismological instrumentation history. The lack of great events (M8+) indicates the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a great earthquake. Here we conduct numerical simulations of earthquake rupture sequences in the framework of rate-state-friction along the 15-19.5ºN segment of the 3D plate boundary with subducted seamounts. Rate-state frictional properties are constrained by laboratory friction experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples from the basaltic basement rock under 100ºC - 600ºC, effective normal stress of 50 MPa and pore pressure of 100 MPa. During the modeled 2000-year period, the maximum magnitude of earthquakes is Mw7. Each sequence repeats every ~200 years and is consisted of three sub-events, event 1 (Mw7) that can overcome the barrier, where dip angle changes most rapidly along the strike, to rupture the entire fault. Events 2 (Mw 6.4) and 3 (Mw 5.7) are of smaller magnitudes and result in north-south segmented rupture pattern. We further quantify the potential of earthquake nucleation by the S-ratio (lower S ratio means the initial stress is closer to peak strength, hence more likely to nucleate an earthquake). The subducted seamount shows higher S-ratios than its surroundings mostly, implying an unlikely nucleate area. Our results are qualitatively similar to 2D subduction earthquake modeling by Herrendörfer et al. (2015, 2-3 events per supercycle and median long-term S is 0.5-1). Finally, we plan to use our coseismic rupture model results as inputs for a tsunami propagation model in SCS. Compared to the kinematic seafloor deformation input, our physics-based earthquake source model and its

  16. Formation of Strategy of Efficient Development of Cruise Tourism

    Directory of Open Access Journals (Sweden)

    Lohunova Natalia A.

    2014-03-01

    Full Text Available The article presents conceptualisation of basic provisions on formation of strategy of efficient development of cruise tourism in Ukraine. Based on the study of problems of the cruise sector development, the article identifies the main goal and structures relevant tasks, justifies main reference points and strategic priorities of development of the cruise industry, specifies principles, mechanisms and expected results of realisation of the designated strategic course. The article states that efficient development of cruise tourism requires creation of an effective system of regulatory and legal, organisational, scientific and methodical, financial and information support. The article offers methodical recommendations on preparation of statistical reports and submission of statistical information about the state and development of the cruise market to the bodies of state statistics, which would allow identification of its quantitative and qualitative parameters, carry out monitoring of the process of creation of the cruise tourist product, analyse practical consequences of measures on stimulation and regulation of the cruise sphere and assess results of realisation of priority directions of strategic development.

  17. Aerodynamic performances of cruise missile flying above local terrain

    Science.gov (United States)

    Ahmad, A.; Saad, M. R.; Che Idris, A.; Rahman, M. R. A.; Sujipto, S.

    2016-10-01

    Cruise missile can be classified as a smart bomb and also Unmanned Aerial Vehicle (UAV) due to its ability to move and manoeuvre by itself without a pilot. Cruise missile flies in constant velocity in cruising stage. Malaysia is one of the consumers of cruise missiles that are imported from other nations, which can have distinct geographic factors including their local terrains compared to Malaysia. Some of the aerodynamic performances of missile such as drag and lift coefficients can be affected by the local geographic conditions in Malaysia, which is different from the origin nation. Therefore, a detailed study must be done to get aerodynamic performance of cruise missiles that operate in Malaysia. The effect of aerodynamic angles such as angle of attack and side slip can be used to investigate the aerodynamic performances of cruise missile. Hence, subsonic wind tunnel testings were conducted to obtain the aerodynamic performances of the missile at various angle of attack and sideslip angles. Smoke visualization was also performed to visualize the behaviour of flow separation. The optimum angle of attack found was at α=21° and side slip, β=10° for optimum pitching and yawing motion of cruise missile.

  18. Simulation analysis of adaptive cruise prediction control

    Science.gov (United States)

    Zhang, Li; Cui, Sheng Min

    2017-09-01

    Predictive control is suitable for multi-variable and multi-constraint system control.In order to discuss the effect of predictive control on the vehicle longitudinal motion, this paper establishes the expected spacing model by combining variable pitch spacing and the of safety distance strategy. The model predictive control theory and the optimization method based on secondary planning are designed to obtain and track the best expected acceleration trajectory quickly. Simulation models are established including predictive and adaptive fuzzy control. Simulation results show that predictive control can realize the basic function of the system while ensuring the safety. The application of predictive and fuzzy adaptive algorithm in cruise condition indicates that the predictive control effect is better.

  19. Subduction-stage P-T path of eclogite from the Sambagawa belt: Prophetic record for oceanic-ridge subduction

    Science.gov (United States)

    Aoya, M.; Uehara, S.; Wallis, S. R.; Enami, M.

    2003-12-01

    The Sambagawa belt in SW Japan is a subduction-type high-P/T metamorphic belt. Subduction-stage P-T paths of its constituent rocks are important because they directly constrain physical conditions of the EarthOs interior at the time exhumation of high-P/T metamorphic rocks became feasible. Although a few examples of subduction-stage P-T paths for the Sambagawa rocks have been recognized, these are limited to relatively low-pressure regions (~10 kbar). To augment these data the subduction-stage P-T path of the Kotsu glaucophane (Gln) eclogite is derived. The tectonic significance of the derived and previously determined P-T paths is further examined using a new thermal model. By using compositions of matrix minerals and rims of porphyroblastic garnet (Grt), the peak-T conditions of the Kotsu Gln eclogite have been estimated as ~20 kbar/ 600° C. However, the dP/dT of the P-T path leading to the peak-T conditions is unknown. Petrological studies focusing on inclusion minerals in Grt show: (1) albite is absent as inclusions within Grt; (2) acmite (Acm) component of cpx decreased during growth of Grt; (3) Tschermakite (Ts) component of amphibole decreased and Gln component increased during growth of Grt; and (4) Grt-Cpx thermometry shows a temperature increase during growth of Grt. Along with mineral textures observed in the matrix, the Gln-formation reaction can be determined as: 4Acm + 2Ts + 2quartz + H2O (R) 2Gln + 2epidote + hematite. P-T curve of this reaction always has a large positive dP/dT (>7.1 kbar/100 ?C) with the Gln stability field on the high-P/T side. To cross this reaction curve into the Gln stability field during a rise in temperature, the Kotsu eclogite must trace a very steep subduction-type P-T path. Compilation of previously obtained subduction-stage P-T paths for the Sambagawa rocks along with the P-T path of the Kotsu Gln eclogite shows that the series of subduction-stage P-T paths are not distributed on a straight line starting from the origin

  20. Subduction, back-arc spreading and global mantle flow

    Science.gov (United States)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  1. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    Science.gov (United States)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  2. Initiation of GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone

    Science.gov (United States)

    Chadwell, C. D.

    2016-12-01

    Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider. In July 2016, the GPS-A Wave Glider was launched on month-long mission to two sites on the continental slope of the Cascadia Subduction Zone. One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. We will report on initial results of the GPS-A data collection and operational experiences of the mission. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.

  3. The Calabrian subduction zone (Ionian Sea): Historical seismicity and a new review of the system from multi-channel seismic data

    Science.gov (United States)

    Gallais, Flora; Gutscher, Marc-Andre; Torelli, Luigi; Polonia, Alina; Graindorge, David

    2010-05-01

    The Calabrian subduction zone is included in the long W-E elongated compressive South Mediterranean belt. This subduction is located in the complex Central Mediterranean area and accommodates the African/Eurasian convergence at very slow rates (thrusts events characteristic of active subduction have been recorded during the instrumental era. However, the South Calabrian/East Sicilian region is well-known to have been affected by strong historical seismicity with Mercalli intensities reaching XI. The sources of these events is often linked to the activity of crustal, normal faults in the Calabrian region: 1638, 1783, 1905. Furthermore, important details of the Messina 1908 earthquake (72000 killed) and tsunami remain unresolved, in particular the origin of the tsunami (fault induced or submarine landslide). Moreover, the origin of two of the most destructive earthquakes (1169 and 1693) remains enigmatic. For the 1169 and 1693 (60000 killed and 5 to 10 m tsunami wave) Catania earthquakes, the source faults are the subject of debate and linked alternatively to the activity of the Malta escarpment or of the subduction fault plane (because the isoseismals are open to the sea). In this case, the 1169 earthquake which had similar intensities and a comparable isoseismal pattern, is suggested to have the same source and so the fault plane may have be locked between these two events. To better understand the origins of the 1169 and 1693 major events and seek evidence of activity of Calabrian system, we present new results from reprocessed 96-channels seismic reflection profiles (French Archimede cruise, 1997) offshore Sicily. Interpretation of the seismic dataset is based on correlations with published seismic data and with ESP results and allows us to identify the following thick sedimentary cover (>5km) in the Ionian Abyssal Plain overlying an oceanic crust: Mesozoic (1400 to 1800m) and Tertiary (~1800m) sequences, a Messinian unit (1400m) and the Plio-Quaternary deposits

  4. Impact-driven subduction on the Hadean Earth

    Science.gov (United States)

    O'Neill, C.; Marchi, S.; Zhang, S.; Bottke, W.

    2017-10-01

    Impact cratering was a dominant geologic process in the early Solar System that probably played an active role in the crustal evolution of the young terrestrial planets. The Earth's interior during the Hadean, 4.56 to 4 billion years ago, may have been too hot to sustain plate tectonics. However, whether large impacts could have triggered tectonism on the early Earth remains unclear. Here we conduct global-scale tectonic simulations of the evolution of the Earth through the Hadean eon under variable impact fluxes. Our simulations show that the thermal anomalies produced by large impacts induce mantle upwellings that are capable of driving transient subduction events. Furthermore, we find that moderate-sized impacts can act as subduction triggers by causing localized lithospheric thinning and mantle upwelling, and modulate tectonic activity. In contrast to contemporary subduction, the simulated localized subduction events are relatively short-lived (less than 10 Myr) with relatively thin, weak plates. We suggest that resurgence in subduction activity induced by an increased impact flux between 4.1 and 4.0 billion years ago may explain the coincident increase in palaeointensity of the magnetic field. We further suggest that transient impact-driven subduction reconciles evidence from Hadean zircons for tectonic activity with other lines of evidence consistent with an Earth that was largely tectonically stagnant from the Hadean into the Archaean.

  5. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    Science.gov (United States)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  6. InRidge program: Preliminary results from the first cruise

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Murthy, K.S.R.; Iyer, S.D.; Rao, M.M.M.; Banerjee, R.; Subrahmanyam, A.S.; Shirodkar, P.V.; Ghose, I.

    The first cruise under India's own Ridge research initiative, InRidge collected new data on bathymetry, free-air gravity and magnetic anomalies across the ridge axis between the Vema and Zhivago transform faults in the Central Indian Ridge...

  7. Acoustic Doppler current profile (ADCP) data from FRD cruises

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is an archive of raw data obtained from the ADCP for cruises conducted by the SWFSC Fisheries Resources Division from 1991 to present.

  8. Pining for home: Studying crew homesickness aboard a cruise liner

    African Journals Online (AJOL)

    crew are working and living in a situation that is very different to their home. ... and practices. Keywords: homesickness, cruise-liner, crewmembers, shipboard hotel services ... such as age, gender, social class, or culture have an impact of.

  9. NEW HORIZONS LORRI PLUTO CRUISE RAW V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Raw data taken by the New Horizons Long Range Reconnaissance Imager instrument during the pluto cruise mission phase. This is VERSION 1.0 of...

  10. NEW HORIZONS LORRI PLUTO CRUISE CALIBRATED V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains Calibrated data taken by the New Horizons Long Range Reconnaissance Imager instrument during the pluto cruise mission phase. This is VERSION...

  11. Intelligent cruise control field operational test. Volume I, Technical report

    Science.gov (United States)

    1998-05-01

    This document reports on a cooperative agreement between NHTSA and UMTRI entitled Intelligent Cruise Control (ICC) Field Operational Test (FOT). The main goal of the work is to characterize safety and comfort issues that are fundamental to human inte...

  12. A simulator evaluation of different forms of intelligent cruise control

    NARCIS (Netherlands)

    Hogema, J.H.; Horst, A.R.A. van der; Janssen, W.H.

    1994-01-01

    In een simulatorexperiment is onderzoek gedaan naar rijgedrag bij verschillende uitvoeringsvormen van Intelligent Cruise Control (ICC). ICC's die zelf ingrijpen geven lagere snelheden op secties met een speciale snelheidslimiet, maar hogere snelheden op de overige delen.

  13. Vehicle-to-infrastructure program cooperative adaptive cruise control.

    Science.gov (United States)

    2015-03-01

    This report documents the work completed by the Crash Avoidance Metrics Partners LLC (CAMP) Vehicle to Infrastructure (V2I) Consortium during the project titled Cooperative Adaptive Cruise Control (CACC). Participating companies in the V2I Cons...

  14. Intelligent cruise control field operational test : interim report

    Science.gov (United States)

    1997-03-01

    This interim document reports on a cooperative agreement between NHTSA and UMTRI entitled Intelligent Cruise Control (ICC) Field Operational Test (FOT). The overarching goal of the work is to characterize safety and comfort issues that are fundamenta...

  15. Evaluation of the intelligent cruise control system. Volume 2, Appendices

    Science.gov (United States)

    1999-10-01

    The Intelligent Cruise Control (ICC) system evaluation was sponsored by the National Highway Traffic Safety Administration (NHTSA) and based on an ICC Field Operational Test (FOT) conducted under a cooperative agreement between the NHTSA and the Univ...

  16. Cruise control: prevention and management of sexual violence at sea.

    Science.gov (United States)

    O'Connor, Mike

    2015-03-01

    The drug-related death of Dianne Brimble on the P&O cruise liner Pacific Sky in 2002 triggered a wide-ranging review of the safety on board cruise ships operating in the Australian market. This column assesses the frequency of recent sexual assaults on cruise ships and examines the findings and recommendations of the Brimble inquest, focusing on the Commonwealth government's response to those recommendations. The problem of jurisdiction on flag of convenience registered ships is discussed, with emphasis on a possible co-operative arrangement between Australian police and foreign flag states. It seems likely that the United States and Canadian models of cruise ship regulation to enhance passenger safety will in part be introduced in Australia.

  17. Applying the "Principles of War" to Cruise Missile Defense

    National Research Council Canada - National Science Library

    Carney, Robert

    2001-01-01

    The U.S. military must assume its future adversaries will possess arsenals that include sophisticated cruise missiles capable of being launched from multiple platforms and engaging both land and sea targets...

  18. Multiscale Architecture of a Subduction Complex and Insight into Large-scale Material Movement in Subduction Systems

    Science.gov (United States)

    Wakabayashi, J.

    2014-12-01

    The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at

  19. The Joint Cruise Missiles Project: An Acquisition History

    Science.gov (United States)

    1982-08-01

    information presented in this report. Xi . ....... --------- GLOSSARY ABL Armored box launcher ACE Alternate cruise engine ACSM Advanced conventional... guidelines previously provided to the DMA by letter of June 30, 1977, for the generation of data bases required by land-attack cruise missiles that...of Air Force and Navy studies, including the Air Force Strike Options Comparison Study and the Advanced Conventional Standoff Missile ( ACSM ) Study

  20. User's Manual for Total-Tree Multiproduct Cruise Program

    Science.gov (United States)

    Alexander Clark; Thomas M. Burgan; Richard C. Field; Peter E. Dress

    1985-01-01

    This interactive computer program uses standard tree-cruise data to estimate the weight and volume of the total tree, saw logs, plylogs, chipping logs, pulpwood, crown firewood, and logging residue in timber stands.Input is cumulative cruise data for tree counts by d.b.h. and height. Output is in tables: board-foot volume by d.b.h.; total-tree and tree-component...

  1. Imaging the Middle America subduction zone with body waves extracted from ambient noise by seismic interferometry

    Science.gov (United States)

    Vargas, W.; Brown, L. D.; Cabolova, A.; Quiros, D. A.; Chen, C.

    2011-12-01

    Subduction zones have long been a prime target for seismic imaging with a variety of active and passive methodologies. Here we report an attempt to use seismic interferometry to extract body waves (P and S) from ambient noise recorded during a broadband experiment in southwestern Mexico for reflection imaging of the crust and subducting Cocos plate. The Middle America Subduction Experiment (MASE; Kim et al., 2010) included a quasi linear array of 100 broadband seismic instruments deployed at a nominal spacing of 6 km which continuously recorded for up to 30 months. Our focus was on using cross-correlation and autocorrelation of ambient noise along this array to 1) determine if useful body waves could be extracted, 2) assess which conditions were most favorable for such extraction, and 3) evaluate whether these waves could be used to image deep lithospheric structure, with particular interest in the seismogenic zone. While surface wave tomography using cross-correlation techniques have found widespread success in mapping crustal structure, examples of body wave imaging of crustal targets using this approach are still very few. In our analysis, we have found it necessary to suppress the surface wave energy to enhance body waves from virtual sources. Our pre-processing sequence includes bias removal, bandpass filtering, deconvolution (spectral whitening), and sign- bit conversion. The resulting data windows are cross-correlated and stacked until useful signals are apparent. The virtual shot gathers thus far produced show clear Rayleigh and Pg waves, with weaker but distinct Sg phases. We have also found arrivals with hyperbolic travel times that match those expected for deep reflections. Crustal imaging is limited by the large station spacing, which results in relatively few stations at sub-critical offsets. However several apparent reflections from sub-Moho depths suggest that key elements of the subduction process can be imaged using reflections derived from ambient

  2. Intelligent cruise control met wegkantcommunicatie: effecten op het rijgedrag [Intelligent Cruise Control and roadside communication: effects on driving behaviour

    NARCIS (Netherlands)

    Hogema, J.H.; Horst, A.R.A. van der; Janssen, W.H.; Coemet, M.

    1995-01-01

    In een simulatorexperiment is onderzoek gedaan naar rijgedrag bij verschillende uitvoeringsvormen van Intelligent Cruise Control (ICC). ICC's die zelf ingrijpen geven lagere snelheden op secties met een speciale snelheidslimiet, maar hogere snelheden op de overige delen.

  3. Rapid Deployment of a RESTful Service for Oceanographic Research Cruises

    Science.gov (United States)

    Fu, Linyun; Arko, Robert; Leadbetter, Adam

    2014-05-01

    The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries, by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. R2R publishes information online as Linked Open Data, making it widely available using Semantic Web standards. Each vessel, sensor, cruise, dataset, person, organization, funding award, log, report, etc, has a Uniform Resource Identifier (URI). Complex queries that federate results from other data providers are supported, using the SPARQL query language. To facilitate interoperability, R2R uses controlled vocabularies developed collaboratively by the science community (eg. SeaDataNet device categories) and published online by the NERC Vocabulary Server (NVS). In response to user feedback, we are developing a standard programming interface (API) and Web portal for R2R's Linked Open Data. The API provides a set of simple REST-type URLs that are translated on-the-fly into SPARQL queries, and supports common output formats (eg. JSON). We will demonstrate an implementation based on the Epimorphics Linked Data API (ELDA) open-source Java package. Our experience shows that constructing a simple portal with limited schema elements in this way can significantly reduce development time and maintenance complexity.

  4. The Geodynamics of Continental Lithosphere Entering a Subduction Zone

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.; Wu, F. T.

    2006-12-01

    As deformation patterns resulting from subduction of a passive continental margin are insufficiently understood, here we perform 2-D numerical simulations to explore the effects of continental lithosphere entering a subduction zone. The model setup consists of a subduction zone in which the oceanic part of a passive continental margin initially subducts beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel new feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study this feature is employed to study how crustal scale deformation around the subduction zone is influenced by surface processes and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography over time, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the strength of the lower crust; the amounts of erosion; imposed pushing versus density-driven (slab-pull and ridge- push) convergence; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. The results can be compared to evidence from areas such as Taiwan where continental subduction or convergence is thought to be happening. Preliminary results indicate that a low viscosity lower crust may contribute to crustal uplift.

  5. Deep electrical resistivity structure of Costa Rican Subduction Zone

    Science.gov (United States)

    Worzewski, T.; Jegen, M.; Brasse, H.; Taylor, W.

    2009-04-01

    The water content and its distribution play an important role in the subduction process. Water is released from the subducting slab in a series of metamorphic reactions and the hydration of the mantle wedge may trigger the onset of melting, weakening and changes in the dynamics and thermal structure of subduction zones. However, the amount of water carried into the subduction zone and its distribution are not well constrained by existing data and are subject of vigorous current research in SFB574 (Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters). We will show numerical modeling studies which are used to determine the resolution and sensitivity of the MT response to fluids in the crust and subducting slab under the special condition of a coastal setting. In 2007-2008 we conducted a long-period magnetotelluric investigations in northwestern Costa Rica on- and offshore, where the Cocos Plate subducts beneath the Carribean plate. Eleven marine magnetotelluric Stations newly developed and constructed by IFM-GEOMAR and University of Kiel were deployed on the 200 km long marine extension of the profile for several months. We will present the data and its processing, as well as our attempts to eliminate motion induced noise observed on some stations on the cliffy shelf due to tidal waves hitting the shelf and trench parallel- and perpendicular currents. The marine profile was extended landwards by the Free University of Berlin over length of 160 kilometers with further 18 stations. We present preliminary modeling results of land data, which revealed interesting features, inter alia a possible image of fluid release from the downgoing slab in the forearc, as well as ongoing modeling of the combined on- and offshore data sets.

  6. Cruise Report: Long-Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    Science.gov (United States)

    2005-04-01

    Long-range Owan ACoustic Propagation EXpewbitent LOAPEX L ý ý . OPXSRO So0 SVLAMVLA 40 KAA 20 M0 1 10 170 IN ISO 140 30 1010 Figure 1.2. LOAPEX assets...4.64 4.65 4.66 4.67 4.68 5000 > -5000 4.6 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 20 0 -I -20 4.6 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 .• 50001 1 1 1

  7. Driver behaviour with adaptive cruise control.

    Science.gov (United States)

    Stanton, Neville A; Young, Mark S

    2005-08-15

    This paper reports on the evaluation of adaptive cruise control (ACC) from a psychological perspective. It was anticipated that ACC would have an effect upon the psychology of driving, i.e. make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but workload might be reduced and driving might be less stressful. Drivers were asked to drive in a driving simulator under manual and ACC conditions. Analysis of variance techniques were used to determine the effects of workload (i.e. amount of traffic) and feedback (i.e. degree of information from the ACC system) on the psychological variables measured (i.e. locus of control, trust, workload, stress, mental models and situation awareness). The results showed that: locus of control and trust were unaffected by ACC, whereas situation awareness, workload and stress were reduced by ACC. Ways of improving situation awareness could include cues to help the driver predict vehicle trajectory and identify conflicts.

  8. The temporal evolution of a subducting plate in the lower mantle

    Science.gov (United States)

    Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.

    2009-04-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better

  9. Subduction processes related to the Sea of Okhotsk

    Science.gov (United States)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  10. Highly oxidising fluids generated during serpentinite breakdown in subduction zones.

    Science.gov (United States)

    Debret, B; Sverjensky, D A

    2017-09-04

    Subduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs. But the reason that the fluids are oxidizing has been unclear. Here we use theoretical chemical mass transfer calculations to predict the redox state of fluids generated during serpentinite dehydration. Specifically, the breakdown of antigorite to olivine, enstatite, and chlorite generates fluids with high oxygen fugacities, close to the hematite-magnetite buffer, that can contain significant amounts of sulfate. The migration of these fluids from the slab to the mantle wedge could therefore provide the oxidized source for the genesis of primary arc magmas that release gases to the atmosphere during volcanism. Our results also show that the evolution of oxygen fugacity in serpentinite during subduction is sensitive to the amount of sulfides and potentially metal alloys in bulk rock, possibly producing redox heterogeneities in subducting slabs.

  11. Fluid flux and melting reactions in subduction zones

    Science.gov (United States)

    Bouilhol, Pierre; Magni, Valentina; van Hunen, Jeroen; Kaislaniemi, Lars

    2014-05-01

    Understanding the metamorphic reactions that occurs within the slab is a must to constrain subduction zone processes. Slab dehydration reactions ultimately permit the mantle wedge to melt, by lowering its solidus, thus forming arcs above descending slabs. Alternatively the slab crust may cross its solidus in warm hydrated slabs. Moreover, slab dehydration allows chemical fractionation to occur between residual phases and transferred fluid phase, giving arc magmas part of their typical subduction zone chemical characteristics. To better comprehend such complex thermo-chemical open system, we are using a numerical model that reproduces the thermo-mechanical behaviour of a subducting slab and computes the thermodynamic equilibrium paragenesis at each P-T-X conditions of the system. Hence we generate a "paragenetic map" of a subduction system, allowing us to track the fate of water during dehydration and subsequent re-hydration or melting reactions. Here we highlight the role of dehydration and re-hydration reactions occurring in the slab's igneous crust and mantle and the mantle wedge for different slab configuration hence presenting the evolution of a subduction paragenetic map for different regimes. We intend to show the key roles of a) antigorite and chlorite breakdown in the hydrated part of the slab mantle, b) amphibole and lawsonite in the slab crust, and c) the role of amphibole and chlorite in the mantle wedge. Our results show the crucial role of dehydration and re-hydration reactions on slab and mantle wedge melting potential.

  12. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

    Science.gov (United States)

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.

    2009-01-01

    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  13. Experimental Study of Slab-Mantle Geochemical Exchange in Subduction Zones

    Science.gov (United States)

    Iizuka, Y.; Nakamura, E.; Kobayashi, K.

    2001-12-01

    Aqueous fluids derived from subducting oceanic crust play an important role in the material transport leading to the production or arc lavas, and in the long-term chemical evolution of the Earth's mantle and crust. In order to determine the geochemical evolution of both the subducting slab and the overlying mantle wedge, a series of dehydration/hydration experiments was carried out at conditions of 0.8-4.0 GPa and 650-900° C appropriate for subduction zones. Blueschist facies rocks/minerals, and olivine (Fo90) were used for starting materials, as analogue materials of slab and mantle, respectively. Finely ground metabasalt (H2O = 5.9 wt%) and glaucophane (H2O = 2.3 wt%) were separately sealed in gold capsules with an olivine grain (1mm diameter), and then run in a piston-cylinder apparatus. Polished sections of run products were observed and analyzed for major element compositions with an electron micro-probe. Trace elements of selected run-products were determined using an ion probe (Cameca-5f). At subsolidus conditions, the metabasalt was transformed into amphibolite-facies mineral assemblages containing Mg-ilmenite at 1.5 GPa. Glaucophane was transformed into the mineral assemblage of Na-Cpx, Opx +/- garnet. Garnets formed in the slab portion show low-LREE/HREE and higher-HREE contents when compared with the starting materials. In all subsolidus experiments, Al-rich silicate glasses, which could be quenched aqueous fluids, were observed between mineral grain boundaries in the slab portions. The fluids at 3.0 GPa show high-LREE/HREE, and higher-LILE and lower-HREE contents. In contrast, the quenched fluids for glaucophane experiments. The behavior of the HREE and HFSE is consistent with the existence of garnet and Ti-oxides (rutile and ilmenite) in the slab portion of the experiments. The fluids should therefore be enriched in SiO2, LILE and LREE. Mineral zones were observed on olivine grains near the initial olivine-slab interface. These reaction zones

  14. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    Science.gov (United States)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be

  15. Long streamer waveform tomography imaging of the Sanak Basin, Alaska subduction zone

    Science.gov (United States)

    Roche, Pierre-Henri; Delescluse, Matthias; Becel, Anne; Nedimovic, Mladen; Shillington, Donna; Webb, Spahr; Kuehn, Harold

    2017-04-01

    The Alaska subduction zone is prone to large megathrust earthquakes, including several large tsunamigenic events in the historical record (e.g. the 1964 Mw 9.2 and the 1946 Mw 8.6 earthquakes). Along the Alaska Peninsula trench, seismic coupling varies from fully locked to the east to weakly coupled to the West, with apparent aseismic slip in the Shumagin Gap and Unimak rupture zone. Overlapping the Shumagin gap and the Unimak area, the Sanak basin is a Miocene basin formed by a large-scale normal fault recently imaged by the ALEUT 2011 cruise and clearly rooting in the subduction interface at 30 km depth (Becel et al., submitted). Recent activity on this normal fault is detected at the seafloor of the Sanak Basin by a 5 m scarp in the multibeam bathymetry data. As this normal fault may be associated with faults involved in the 1946 tsunami earthquake, it is particularly important to try to decipher its history in the Sanak basin, where sediments record the fault activity. MCS data processing and interpretation shows evidence for the activity of the fault from Miocene to recent geological times. Very limited knowledge of the sedimentation rates and ages as well as complexities due to submarine landslides and channel depositions make it difficult to quantify the present day fault activity with respect to the Miocene fault activity. In addition, the mechanical behaviour of a normal splay fault system requires low to zero effective friction and probably involves fluids. High-resolution seismic velocity imaging can help with both the interpretation of complex sedimentary deposition and fluid detection. To obtain such a high resolution velocity field, we use two 45-km-long MCS profiles from the ALEUT 2011 cruise acquired with an 8-km-long streamer towed at 12 m depth to enhance low frequencies with shots fired from a large, tuned airgun array (6600 cu.in.). The two profiles extend from the shelf break to mid slope and encompass the normal splay fault emerging at 1 km

  16. Mapping fluids to subduction megathrust locking and slip behavior

    Science.gov (United States)

    Saffer, Demian M.

    2017-09-01

    In subduction zones, high fluid content and pore pressure are thought to promote aseismic creep, whereas well-drained conditions are thought to promote locking and failure in earthquakes. However, observations directly linking fluid content and seismic coupling remain elusive. Heise et al. (2017) use a magnetotelluric survey to image the electrical resistivity structure of the northern Hikurangi subduction thrust to 30 km depth, as an indicator of interconnected fluid content. The authors document a clear correlation between high resistivity and a distinct geodetically locked patch and between conductive areas and weak coupling. Their study, together with other recent geophysical investigations, provides new evidence for the role of fluids in governing subduction thrust locking.

  17. A Silent Slip Event on the Deeper Cascadia Subduction Interface

    Science.gov (United States)

    Dragert, Herb; Wang, Kelin; James, Thomas S.

    2001-05-01

    Continuous Global Positioning System sites in southwestern British Columbia, Canada, and northwestern Washington state, USA, have been moving landward as a result of the locked state of the Cascadia subduction fault offshore. In the summer of 1999, a cluster of seven sites briefly reversed their direction of motion. No seismicity was associated with this event. The sudden displacements are best explained by ~2 centimeters of aseismic slip over a 50-kilometer-by-300-kilometer area on the subduction interface downdip from the seismogenic zone, a rupture equivalent to an earthquake of moment magnitude 6.7. This provides evidence that slip of the hotter, plastic part of the subduction interface, and hence stress loading of the megathrust earthquake zone, can occur in discrete pulses.

  18. A silent slip event on the deeper Cascadia subduction interface.

    Science.gov (United States)

    Dragert, G; Wang, K; James, T S

    2001-05-25

    Continuous Global Positioning System sites in southwestern British Columbia, Canada, and northwestern Washington state, USA, have been moving landward as a result of the locked state of the Cascadia subduction fault offshore. In the summer of 1999, a cluster of seven sites briefly reversed their direction of motion. No seismicity was associated with this event. The sudden displacements are best explained by approximately 2 centimeters of aseismic slip over a 50-kilometer-by-300-kilometer area on the subduction interface downdip from the seismogenic zone, a rupture equivalent to an earthquake of moment magnitude 6.7. This provides evidence that slip of the hotter, plastic part of the subduction interface, and hence stress loading of the megathrust earthquake zone, can occur in discrete pulses.

  19. Impressions of Serbia: Tourists on cruises along Corridor 7

    Directory of Open Access Journals (Sweden)

    Dragin Aleksandra S.

    2009-01-01

    Full Text Available This paper deals with cruises along Corridor 7 and the tourist offer of Serbia. The purpose of the paper has been to establish how international tourists see our country during their travels across Serbia on cruises along Corridor 7. The research has been based on the interviews with international tourists who participated in land tours while cruising through Serbia. The interviews, together with the structured questionnaire, were conducted from March to November 2007 with the objectives to establish the following: the structure of the respondents according to the country of origin, gender and age structure, as well as the social and economic structure; what their motives are for cruising along Corridor 7; what is their perception of the value obtained through the tourist product and services during the Corridor 7 cruises and during their stay in Serbia (what they liked best in Serbia; if they were dissatisfied with anything in terms of the tourist offer of Serbia; to what extent their visit complemented or influenced their personal impressions of this country - what their impressions were before and after the visit. The importance of this paper, above all, is in broadening our knowledge about the adequacy of the tourist offer in Serbia in the tourism segment which is the subject of study of the paper.

  20. Cruise Speed Sensitivity Study for Transonic Truss Braced Wing

    Science.gov (United States)

    Wells, Douglas P.

    2017-01-01

    NASA's investment and research in aviation has led to new technologies and concepts that make aircraft more efficient and environmentally friendly. One aircraft design operational concept is the reduction of cruise speed to reduce fuel burned during a mission. Although this is not a new idea, it was used by all of the contractors involved in a 2008 NASA sponsored study that solicited concept and technology ideas to reduce environmental impacts for future subsonic passenger transports. NASA is currently improving and building new analysis capabilities to analyze advanced concepts. To test some of these new capabilities, a transonic truss braced wing configuration was used as a test case. This paper examines the effects due to changes in the design cruise speed and other tradeoffs in the design space. The analysis was baselined to the Boeing SUGAR High truss braced wing concept. An optimization was run at five different design cruise Mach numbers. These designs are compared to provide an initial assessment space and the parameters that should be considered when selecting a design cruise speed. A discussion of the design drivers is also included. The results show that the wing weight in the current analysis has more influence on the takeoff gross weight than expected. This effect caused lower than expected wing sweep angle values for higher cruise speed designs.

  1. Friction and stress coupling on the subduction interfaces

    Science.gov (United States)

    Tan, E.; Lavier, L.; van Avendonk, H.

    2011-12-01

    At a subduction zone, the down-going oceanic plate slides underneath the overriding plate. The frictional resistance to the relative motion between the plates generates great earthquakes along the subduction interface, which can cause tremendous damage in the civil life and property. There is a strong incentive to understand the frictional strength of the subduction interface. One fundamental question of mechanics of subuction is the degree of coupling between the plates, which is linked to the size of earthquakes. It has been noted that the trench-parallel (along-strike) gravity variation correlates positively with the trench-parallel topography anomaly and negatively with the activity of great earthquake (Song and Simons, 2003). Regions with a negative trench-parallel gravity anomaly are more likely to have great earthquakes. The interpretation of such correlation is that strong coupling along subduction interface will drag down the for-arc region of the overriding plate, which generates the gravity and topography anomalies, and could store more strain energy to be released during a great earthquake. We developed a 2D numerical thermo-mechanical code for modeling subduction. The numerical method is based on an explicit finite element method similar to the Fast Lagrangian Analysis of Continua (FLAC) technique. The constitutive law is visco-elasti-plastic with strain weakening. The cohesion and friction angle are reduced with increasing plastic strain after yielding. To track different petrologic phases, Lagrangian particles are distributed in the domain. Basalt-eclogite, sediment-schist and peridotite-serpentinite phase changes are included in the model. Our numerical models show that the degree of coupling negatively correlates with the coefficient of friction. In the low friction case, the subduction interface has very shallow dipping angle, which helps to elastically couple the downing plate with the overriding plate. The topography and gravity anomalies of the

  2. The polyphased tectonic evolution of the Anegada Passage in the northern Lesser Antilles subduction zone

    Science.gov (United States)

    Laurencin, M.; Marcaillou, B.; Graindorge, D.; Klingelhoefer, F.; Lallemand, S.; Laigle, M.; Lebrun, J.-F.

    2017-05-01

    The influence of the highly oblique plate convergence at the northern Lesser Antilles onto the margin strain partitioning and deformation pattern, although frequently invoked, has never been clearly imaged. The Anegada Passage is a set of basins and deep valleys, regularly related to the southern boundary of the Puerto Rico-Virgin Islands (PRVI) microplate. Despite the publications of various tectonic models mostly based on bathymetric data, the tectonic origin and deformation of this Passage remains unconstrained in the absence of deep structure imaging. During cruises Antithesis 1 and 3 (2013-2016), we recorded the first deep multichannel seismic images and new multibeam data in the northern Lesser Antilles margin segment in order to shed a new light on the structure and tectonic pattern of the Anegada Passage. We image the northeastern extent of the Anegada Passage, from the Sombrero Basin to the Lesser Antilles margin front. Our results reveal that this northeastern segment is an EW trending left-stepping en échelon strike-slip system that consists of the Sombrero and Malliwana pull-apart basins, the Malliwana and Anguilla left-lateral faults, and the NE-SW compressional restraining bend at the Malliwana Hill. Reviewing the structure of the Anegada Passage, from the south of Puerto Rico to the Lesser Antilles margin front, reveals a polyphased tectonic history. The Anegada Passage is formed by a NW-SE extension, possibly related to the rotation or escape of PRVI block due to collision of the Bahamas Bank. Currently, it is deformed by an active WNW-ESE strike-slip deformation associated to the shear component of the strain partitioning resulting from the subduction obliquity.

  3. Diffusion creep of fine-grained garnetite: Implications for the flow strength of subducting slabs

    Science.gov (United States)

    Wang, Zichao; Ji, Shaocheng

    2000-08-01

    Creep experiments were performed on synthetic fine-grained garnetite to investigate the flow strength of the Earth's subducting slabs. Experiments were conducted at temperatures (T) of 1373-1543 K and total pressure (P) of 0.1 MPa in controlled atmospheres of fO2 =10-17-10-8 MPa. The mechanical data indicate a grain-size sensitive diffusion flow and the creep behavior can be described by an equation of the form: FD1 ɛ.=(5.32±3.10)×10-6Td2.5±0.3fO20σ1.1±0.2exp(-347±46kJ/molRT) where T in Kelvin, d in meter, σ and fO2 in MPa. Based on the diffusivities (D) calculated from creep and diffusion experiments, we proposed that grain boundary diffusion is the dominant mechanism for high temperature creep of the fine-grained garnetite. Normalized creep strength of the garnetite is found to be comparable to those of feldspar and olivine in diffusion creep regime, suggesting that garnetite may not form a strong layer in the subducted oceanic lithosphere if it deforms by grain boundary diffusion creep.

  4. Splay fault branching along the Nankai subduction zone.

    Science.gov (United States)

    Park, Jin-Oh; Tsuru, Tetsuro; Kodaira, Shuichi; Cummins, Phil R; Kaneda, Yoshiyuki

    2002-08-16

    Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.

  5. Methods of Raising Funds for Purchasing of New Cruise Ships by International Corporations

    Directory of Open Access Journals (Sweden)

    Kizielewicz Joanna

    2017-06-01

    Full Text Available The world’s cruise corporations regularly purchase large, luxurious cruise ships. In accordance with the Cruise Line International Association, 33 new ocean cruise ships will be available on the market by 2020. These types of capital expenditures are associated with large financial outlays of up to $ 1 billion. The leading cruise corporations are not able to finance purchases of new units with their own resources and therefore look for different solutions. Available publications focus mainly on issues related to purchasing cargo ships, not cruise ships. The objective of the article is to identify sources of funding of new cruise ships. Our analysis identifies the average capital expenditure associated with purchasing new cruise ships and factors that influence it. The most popular methods for raising such capital are also provided. Our research methodology relies on data exploration method, a desk research method and comparative analysis.

  6. FRV Deleware II cruise, 30 June to 7 July 1978. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, W.; von Bock, K. (eds.)

    1982-05-01

    This was the last of three companion cruises designed to provide broad-scale coverage of seasonal shelf conditions occurring between the April and October investigations undertaken aboard ATLANTIS II cruises 99 and 104.

  7. Lateral control strategy for a hypersonic cruise missile

    Directory of Open Access Journals (Sweden)

    Yonghua Fan

    2017-04-01

    Full Text Available Hypersonic cruise missile always adopts the configuration of waverider body with the restraint of scramjet. As a result, the lateral motion exhibits serious coupling, and the controller design of the lateral lateral system cannot be conducted separately for yaw channel and roll channel. A multiple input and multiple output optimal control method with integrators is presented to design the lateral combined control system for hypersonic cruise missile. A hypersonic cruise missile lateral model is linearized as a multiple input and multiple output plant, which is coupled by kinematics and fin deflection between yaw and roll. In lateral combined controller, the integrators are augmented, respectively, into the loop of roll angle and lateral overload to ensure that the commands are tracked with zero steady-state error. Through simulation, the proposed controller demonstrates good performance in tracking the command of roll angle and lateral overload.

  8. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction

    Science.gov (United States)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu

    2018-01-01

    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  9. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    Science.gov (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  10. NOC RRS Discovery Cruise D376. Glider operations report, June - July 2012

    OpenAIRE

    Balfour, C.

    2012-01-01

    This document summarises the four Slocum Electric glider deployments during the RRS Discovery Based D376 research cruise for the FASTNEt project. The deployments occurred at or close to the Celtic Sea shelf edge. The lack of small boat support for the cruise resulted in a series of procedures for glider ballasting testing, deployment and recovery being developed during the cruise. Towards the end of a cruise a glider that had been deployed with a turbulence sensor was recovered after a nine d...

  11. The Politics of Environmental Activism: a Case Study of the Cruise Industry and the Environmental Movement

    OpenAIRE

    Ross A. Klein

    2007-01-01

    Based on a case study of environmental organizations' confrontation of the cruise industry over environmental practices, this article critically assesses several campaigns and actions by the environmental movement as represented by several key organizations that focus specifically on the cruise industry, and at the social and political processes used by the cruise industry to deal with these organizations. Five environmental groups are included in the case study; the cruise industry is repres...

  12. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback

    NARCIS (Netherlands)

    Stegman, D. R.; Freeman, J.A.; Schellart, W. P.; Moresi, L.; May, D.

    Subduction of tectonic plates limited in lateral extent and with a free-trailing tail, i.e., "free subduction,'' is modeled in a three-dimensional (3-D) geometry. The models use a nonlinear viscoplastic rheology for the subducting plate and exhibit a wide range of behaviors depending on such plate

  13. Review of subduction and its association with geothermal system in Sumatera-Java

    Science.gov (United States)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.

    2017-12-01

    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  14. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  15. Performance and benefits of an advanced technology supersonic cruise aircraft

    Science.gov (United States)

    Fitzsimmons, R. D.

    1976-01-01

    The results of four years research on technology are synthesized in an advanced supersonic cruise aircraft design. Comparisons are presented with the former United States SST and the British-French Concorde, including aerodynamic efficiency, propulsion efficiency, weight efficiency, and community noise. Selected trade study results are presented on the subjects of design cruise Mach number, engine cycle selection, and noise suppression. The critical issue of program timing is addressed and some observations made regarding the impact that timing has on engine selection and minimization of program risk.

  16. Automated Merging in a Cooperative Adaptive Cruise Control (CACC) System

    OpenAIRE

    Klein Wolterink, W.; Heijenk, Geert; Karagiannis, Georgios

    2011-01-01

    Cooperative Adaptive Cruise Control (CACC) is a form of cruise control in which a vehicle maintains a constant headway to its preceding vehicle using radar and vehicle-to-vehicle (V2V) communication. Within the Connect & Drive1 project we have implemented and tested a prototype of such a system, with IEEE 802.11p as the enabling communication technology. In this paper we present an extension of our CACC system that allows vehicles to merge inside a platoon of vehicles at a junction, i.e., at ...

  17. Legionella risk assessment in cruise ships and ferries

    Directory of Open Access Journals (Sweden)

    Pasqualina Laganà

    2017-06-01

    Legionella pneumophila sg 1 was isolated from the samples of shower and tap water in 7 (70% of the 10 ferries examined, and in 3 (33% of the 6 cruise ships examined, and L. pneumophila sg 2–14 in 8 (80% and 1 (16.7% of these ships, respectively. No Legionella contamination was found in whirlpool baths, air and ice samples. In conclusion, the data obtained confirm higher levels of Legionella contamination in local ferries and cruise ships, underlining the need to adopt corrective actions more specific for these smaller vessels.

  18. Smectite reactions and slip instabilities in subduction zones

    Science.gov (United States)

    Gadenne, Leslie; Raimbourg, Hugues; Champallier, Remi; Yamamoto, Yuzuru

    2015-04-01

    Though it is of prime importance in terms of seismic and tsunami risk, the mechanical behavior of the shallow (ztransformation of a soft sediment into a hard sedimentary rock, which modifies the rock potential to localize deformation and be involved in slip instabilities. While it is the major control on diagenetic reactions, the effect of temperature on the mechanical behavior is not well constrained experimentally. To address this question, we have designed triaxial deformation experiments in the Paterson rig either at ambient temperature or at 300 °C. The tested material includes siltstones from the Boso Peninsula in Japan (corresponding to the shallow domain of a paleo-accretionary prism), either as cylindrical cores or as ground powders as well as powders composed principally of smectite. For this material, the main consequence of the high temperature conditions is to trigger the smectite-to-illite reaction or the smectite interlayer space collapse. The first result is that at 300 °C, all tested samples show slip instabilities. These instabilities are apparent as a sudden (~ 4s) and large (~10 to 45 MPa depending on the starting material and the confining pressure) stress drop in the macroscopic stress-strain curve, in some cases followed by a rapid restrengthening of the material. In contrast, no instability was observed for the experiments at ambient temperature. As slip instabilities are activated by the temperature and occur as well in smectite powders, we attribute these instabilities to the diagenetic reactions of smectite. An additional experiment on a powder of smectite where the smectite-to-illite reaction has been inhibited by cationic exchanges does not show instabilities upon deformation at 300 °C. We propose therefore that catastrophic dehydration of smectite associated with the smectite-to-illite reaction may be responsible for triggering the instabilities. This catastrophic dehydration is potentially a major control on the genesis of

  19. Formation and stability of a double subduction system: a numerical study

    Science.gov (United States)

    Pusok, Adina E.; Stegman, Dave

    2017-04-01

    Examples of double subduction systems can be found in both modern (Izu-Bonin-Marianas and Ryukyu arcs, e.g. Hall [1997]) and ancient (Kohistan arc in Western Himalayas, e.g. Burg [2006], Burg et al. [2006]) tectonic record. A double subduction system has also been proposed to explain the high convergence rate observed for the India-Eurasia convergence [Jagoutz et al., 2015; Holt et al., 2016, 2017]. Rates of convergence across coupled double subduction systems can be significantly faster than across single subduction systems because of slab pull by two slabs. However, despite significant geological and geophysical observations, our understanding about this process is limited, and questions regarding double subduction remain largely unexplored in terms of physical factors controlling its initiation, duration and dynamics. Subduction initiation (of a single system) in itself has been a popular and challenging topic in the research community for the last few years, and various mechanisms (i.e., collapse at a passive margin or transform fault [Gerya et al., 2008; Stern, 2004], driven by compression [Hall et al., 2003; Toth and Gurnis, 1998], due to shear heating under compression [Thielmann and Kaus, 2012] or plume induced initiation [Gerya et al., 2015]) have been proposed. However, initiation of a secondary subduction, and formation of a stable double subduction system has not been studied before. Previous studies of double subduction either introduced weak zones to initiate subduction [Mishin et al., 2008] or both the subduction systems were already initiated [Jagoutz et al., 2015], thus assuming a priori information regarding the initial position of the two subduction zones. In this study, we perform 2D and 3D numerical simulations to investigate i) subduction initiation of a secondary system in an already initiated single subduction system, and ii) the dynamics and stability of the newly formed double subduction system. For this, we employ the code LaMEM [Kaus et

  20. Ecological considerations in constructing marine infrastructure: The Falmouth cruise terminal development, Jamaica

    NARCIS (Netherlands)

    Korbee, D.; Mol, A.P.J.; Tatenhove, van J.P.M.

    2015-01-01

    Cruise tourism is an important and expanding global industry. The growth of this sector,coupled with the continuous development of larger cruise ships, creates demands for new marine infrastructure. The development of these marine infrastructures takes place at the intersection of global cruise

  1. Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy

    NARCIS (Netherlands)

    Mullakkal Babu, F.A.; Wang, M.; van Arem, B.; Happee, R.; Rosetti, R.; Wolf, D.

    2016-01-01

    Current Full Range Adaptive Cruise Control (FRACC) systems switch between separate adaptive cruise control and collision avoidance systems. This can lead to jerky responses and discomfort during the transition between the two control modes. We propose a Full Range Adaptive Cruise Control (FRACC)

  2. Quaternary sedimentation and active faulting along the Ecuadorian shelf: preliminary results of the ATACAMES Cruise (2012)

    Science.gov (United States)

    Michaud, F.; Proust, J. N.; Collot, J. Y.; Lebrun, J. F.; Witt, C.; Ratzov, G.; Pouderoux, H.; Martillo, C.; Hernández, M. J.; Loayza, G.; Penafiel, L.; Schenini, L.; Dano, A.; Gonzalez, M.; Barba, D.; De Min, L.; Ponce, G.; Urresta, A.; Calderon, M.

    2015-03-01

    Selected high-resolution seismic-reflection profiles and multibeam bathymetry acquired along the convergent Ecuador margin during the ATACAMES cruise on onboard the R/V L'Atalante (Jan.15-Feb.18, 2012) allow a preliminary evaluation of the neotectonic development and stratigraphic evolution of the margin based on the sismo-stratigraphic analysis of Quaternary sediment preserved on the margin shelf and upper slope. We present three major preliminary results. (1) The evolution of the Esmeraldas, Guayaquil and Santa Elena canyons. The head of the Esmeraldas canyon is the location of a continuous significant sediment transport. The Guayaquil canyon shows several episodes of deposition and incision. Aggrading sedimentation pattern in the canyon records several changes in relative sea-level. The subsidence of the Gulf of Guayaquil probably contributes to the good preservation of the canyon filling stages. The Santa Elena canyon is controlled by a SW-NE trending normal fault. (2) Variations of sediment accumulation and relative vertical motions are shown along-strike the shelf edge. Offshore the uplifted Manta peninsula, a pronounced subsidence of the shelf edge is documented by sedimentary clinoforms that have deposited in a morphological reentrant, and have migrated upslope testifying of a local subsidence meanwhile the adjacent La Plata Island area underwent uplift. In the Esmeraldas canyon area, a local uplift of the shelf is documented. (3) Two neotectonic fault systems with a possible transcurrent component are imaged across the shelf edge and upper margin slope offshore Jama, and Cape Galera. This possible transcurrent motion could be related to the reactivation of ancient faults of the upper plate by the subduction. These preliminary results indicate that the ATACAMES data set has a strong potential to evaluate the spatial and temporal contribution of tectonic and climate changes on the structural development and stratigraphic evolution of the Ecuador continental

  3. Seismic anisotropy and mantle flow below subducting slabs

    Science.gov (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  4. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, Sierd

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the initiation

  5. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the

  6. The course of water in Archean subduction systems

    Science.gov (United States)

    Bouilhol, P.; Magni, V.; Van Hunen, J.; Kaislaniemi, L.

    2012-12-01

    The andesitic nature of the bulk continental crust, as well as its characteristic trace element ratios, have a close resemblance to the differentiated crust of volcanic arcs, thus leading to models for formation of continental crust in subduction zone settings. If the modern processes leading to continental crust formation at convergent margins are well constrained, the extrapolation to early Earth conditions is hazardous, because the composition of Earth's early crust can be achieved through several processes. We study the different scenarios that may have operated during early Earth subduction to form differentiated crust. Each scenario (e.g. arc crust melting, slab melting, mantle melting followed by differentiation…) has a common denominator that is the fate of water, because it reflects slab devolatilization and controls the melting process and the stability of minerals such as garnet, amphibole and plagioclase, which are major players in the final melt composition. To this end, we present thermomechanical numerical models that incorporate internally consistent thermodynamic data in order to simulate slab dehydration. Our goal is to track the fate of subducted water in an Archean style subduction regime to better comprehend its modus operandi.

  7. Slab melting versus slab dehydration in subduction-zone magmatism.

    Science.gov (United States)

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N; Fei, Yingwei; Ono, Shigeaki

    2011-05-17

    The second critical endpoint in the basalt-H(2)O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones.

  8. Surface deformation resulting from subduction and slab detachment

    NARCIS (Netherlands)

    Buiter, S.J.H.

    2000-01-01

    Convergence of lithospheric plates is accommodated at active margins by one plate moving beneath the other into the Earth's mantle. Changes in this subduction process may cause variations in the topography of the Earth's surface near a convergent plate margin. The focus of this thesis lies on

  9. Some consequences of the subduction of young slabs

    NARCIS (Netherlands)

    England, P.; Wortel, R.

    The negative buoyancy force exerted by a subducting oceanic slab depends on its descent velocity, and strongly on its age. For lithosphere close to thermal equilibrium, this force dominates by a large margin the resisting forces arising from friction on the plate boundary and compositional buoyancy.

  10. Fluid Release and the Deformation of Subducting Crust

    Science.gov (United States)

    Maunder, Benjamin; van Hunen, Jeroen; Magni, Valentina; Bouilhol, Pierre

    2014-05-01

    It is known that slab dehydration is crucial in subduction dynamics and for the formation of arc-magmatism. Previous studies of this process have constrained this intake and subsequent release of fluids into the mantle wedge by considering the stability hydrous phases within the slab. Other, more dynamical effects of this hydration state and partial melting have also been suggested, such as the possibility of "cold plumes", crustal delamination, and subduction channel return flow. These processes have been inferred to play a role in the generation of continental crust over time through accumulation and melting beneath the overriding plate. Water content and melt fraction have a strong control on the rheology of the system. Therefore we investigate the effect of these parameters on the dynamics of a subducting slab, with the aim to establish the physical bounds on the delamination process. To do this we use a coupled geodynamical-petrological model that tracks dehydration and melting reactions in order to factor in the rheological effect of metamorphism and magmatism on slab and mantle wedge dynamics. We focus primarily on the strength of the subducting crust and the possibility of delamination. We then extend this investigation by considering whether early earth crust formation could have been the result of such a processes by looking at a hypothetical Archean setting.

  11. Tensor-guided fitting of subduction slab depths

    Science.gov (United States)

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  12. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch

    2004-05-15

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  13. Recycling Revisited: Where did all the Subducted Sediments go?

    Science.gov (United States)

    Hofmann, A. W.; Chauvel, C.; Lewin, E.; Kelemen, P. B.; Hacker, B. R.

    2016-12-01

    Several lines of reasoning have revived the idea [1] that subduction has recycled continent-derived sediments into the mantle on a massive scale. For example, well-known peaks in zircon ages have been reinterpreted as reflecting variable rates of crust destruction via erosion and sediment subduction [2]. In addition, assessment of the trace element budgets of subducted sediments and arc volcanics, as well as geological and geophysical studies of accretionary wedges have led to estimates that about one mass of present-day continental crust has been returned to the mantle [3]. If these ideas are correct, then recycled sedimentary components should be present in MORB and OIB sources. As previously established, Nb/U and 87Sr/86Sr are negatively correlated in all EM2-type OIBs, clearly indicating continental/sedimentary input. However, the MORB source reservoir, being depleted in incompatible elements, is particularly susceptible to "pollution" by subducted sediments. Chauvel et al. [4] modeled the Hf-Nd isotopic array of MORBs+OIBs and concluded that it requires the addition of up to 6 % subducted sediment. We revisit this issue and show that global MORBs show no decrease in Nb/U with increasing 87Sr/86Sr, ruling out extensive addition of recycled sediment into global MORB sources. Instead, the Hf-Nd array can be obtained by recycled alkali basalts derived from subducted seamounts and ocean islands, rather than sediments. Moreover, mantle plumes with clearly identifiable sediment input contribute less than 20% of the total plume flux. We conclude that most of the subducted sediment flux is not returned to the convecting mantle. Instead, its most plausible fate is to be underplated beneath existing continental crust via "relamination" [5]. These results imply that continental recycling is subordinate and the growth of the continental crust has been largely irreversible. [1] Armstrong, 1968, Rev. Geophys. 6, 175. [2] Hawkesworth et al., 2009, Science 323, 49. [3] Porter

  14. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  15. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    Science.gov (United States)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  16. Three-dimensional Thermal Model of the Mexican Subduction Zone

    Science.gov (United States)

    Rosas, J. C.; Pimentel, F. D. C.; Currie, C. A.; He, J.; Harris, R. N.

    2015-12-01

    Along the Mexican section of the Middle America Trench (MAT), the Cocos plate subducts beneath the North American plate. The most important feature of this subduction zone is the flat-slab section below central Mexico, extending approximately 250 km landward from the trench at a depth of 50 km. Further west, the dip changes to 45-50º. This particular geometry has several unique consequences, such as a volcanic arc that is not aligned with the trench and very shallow slab seismicity. For the mantle wedge, the abrupt change in slab geometry could lead to a three-dimensional (3D) mantle wedge flow that departs from the classical 2D subduction-driven corner flow. Evidence of 3D flow in the region comes from seismic anisotropy studies, which show that olivine fast-direction axes have a component that is parallel to the MAT. In other subduction zones, such as Costa Rica-Nicaragua and Japan, 3D flow has been observed to increase temperatures by >50º C relative to corner flow models.For this study, we have created the first 3D finite-element model of the Mexican subduction zone in order to analyze its thermal structure. Our objective is to assess the effects of 3D mantle flow and hydrothermal circulation (HC) in the subducting slab. In this region, low surface heat flow values near the trench indicate that HC may remove heat from the oceanic plate. Our model incorporates the effect of HC through conductivity proxies in the subducting crust and a 2D oceanic geotherm that includes the age variations of the Cocos plate along the MAT. For an isoviscous mantle, our model shows that the slab dip variations induce a flow that departs from 2D corner flow near the transition between the flat-slab and normal-dipping sections. The mantle flows in eastward direction toward the flat slab, and its orientation is consistent with seismic anisotropy studies. The maximum along-margin flow rate is nearly 2 cm/yr, which is >30% of the convergence rate. Temperatures at the location of this

  17. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    Science.gov (United States)

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  18. The Hainan Lone Plume Prompted By Encircling Subduction Zones around the South China Sea

    Science.gov (United States)

    Zhang, N.; Li, Z. X.

    2016-12-01

    The present of the late Mesozoic Hainan plume originated from the lower mantle of northern South China Sea has been documented by both seismic tomographic and geochemical-petrological work. The Hainan plume is one of the rare mantle plumes that are located away from the two large low shear velocity provinces (LLSVPs) in the lower mantle. Instead, it is within the broad global mantle downwelling zone, thus classified as a "lone plume". It had previously been proposed that this plume could have been triggered by subducting slabs into the lower mantle in the regions surrounding the South China Sea, a mechanism similar to what had been proposed for the formation of the LLSVPs. Here, we investigate the feasibility of such a plume-generation mechanism use a geodynamic modelling. Our geodynamic model has a high resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adoptive-mesh-refined, 3D mantle convection code ASPECT. The top mechanic boundary condition of the global domain uses the latest plate motion reconstruction. In a series of experiments, we explore the effects of various important mantle parameters on mantle plume generation. The results so far suggest that the Indo-Australian cold slab acted like a cold wall from the southwest side in the present-day South China Sea mantle domain since 80 Ma ago. Fossil slabs from much older Tethyan subduction systems plays a moderate role in blocking the deep mantle hot materials from escaping to the north. The Western Pacific subduction systems started to promote the initiation of Hainan plume some 50 Ma ago from near the core-mantle boundary (CMB). As the plume head rises, it first moved to the west, and finally to beneath the South China Sea. Our model results are not sensitive to whether there is a chemical layer (possible D" layer) near the CMB.

  19. Geologic signature of early Tertiary ridge subduction in Alaska

    Science.gov (United States)

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Goldfarb, Richard J.; Miller, Marti L.; Dumoulin, Julie A.; Nelson, Steven W.; Karl, Susan M.

    2003-01-01

    A mid-Paleocene to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska. The most striking effects are seen in the accretionary prism (Chugach–Prince William terrane), where 61 to 50 Ma near-trench granitic to gabbroic plutons were intruded into accreted trench sediments that had been deposited only a few million years earlier. This short time interval also saw the genesis of ophiolites, some of which contain syngenetic massive sulfide deposits; the rapid burial of these ophiolites beneath trench turbidites, followed immediately by obduction; anomalous high-T, low-P, near-trench metamorphism; intense ductile deformation; motion on transverse strike-slip and normal faults; gold mineralization; and uplift of the accretionary prism above sea level. The magmatic arc experienced a brief flare-up followed by quiescence. In the Alaskan interior, 100 to 600 km landward of the paleotrench, several Paleocene to Eocene sedimentary basins underwent episodes of extensional subsidence, accompanied by bimodal volcanism. Even as far as 1000 km inboard of the paleotrench, the ancestral Brooks Range and its foreland basin experienced a pulse of uplift that followed about 40 million years of quiescence.All of these events - but most especially those in the accretionary prism - can be attributed with varying degrees of confidence to the subduction of an oceanic spreading center. In this model, the ophiolites and allied ore deposits were produced at the soon-to-be subducted ridge. Near-trench magmatism, metamorphism, deformation, and gold mineralization took place in the accretionary prism above a slab window, where hot asthenosphere welled up into the gap between the two subducted, but still diverging, plates. Deformation took place as the critically tapered accretionary prism adjusted its shape to changes in the bathymetry of the incoming plate, changes in the convergence direction before and after

  20. Taking the load off: investigations of how adaptive cruise control affects mental workload.

    Science.gov (United States)

    Young, Mark S; Stanton, Neville A

    2004-07-15

    It has been posited that Adaptive Cruise Control (ACC) represents a new generation of vehicle automation, in that it has the potential to relieve drivers of mental as well as physical workload. The results of previous research however, have raised some confusing issues about the specific effects of Adaptive Cruise Control (ACC) on driver mental workload (MWL)--some studies report reduced MWL compared to manual driving, while others find no effect. Two hypotheses are proposed in an attempt to explain these discrepancies: (a) that any potential MWL reductions due to ACC could be masked by the overriding influence of steering demand; or (b) that the tasks designed in some experiments do not exploit the adaptive nature of the ACC system, therefore precluding any potential benefits. Two related experiments were designed to test these hypotheses. It was found that the main reason for the discrepant findings was the nature of the driving task chosen--constant-speed tasks do not realise the mental workload benefits of ACC. Future researchers using ACC devices are advised to use variable-speed tasks to ensure that all aspects of device functionality are covered.

  1. The real-time complex cruise scene motion detection system based on DSP

    Science.gov (United States)

    Wu, Zhi-guo; Wang, Ming-jia

    2014-11-01

    Dynamic target recognition is an important issue in the field of image processing research. It is widely used in photoelectric detection, target tracking, video surveillance areas. Complex cruise scene of target detection, compared to the static background, since the target and background objects together and both are in motion, greatly increases the complexity of moving target detection and recognition. Based on the practical engineering applications, combining an embedded systems and real-time image detection technology, this paper proposes a real-time movement detection method on an embedded system based on the FPGA + DSP system architecture on an embedded system. The DSP digital image processing system takes high speed digital signal processor DSP TMS320C6416T as the main computing components. And we take large capacity FPGA as coprocessor. It is designed and developed a high-performance image processing card. The FPGA is responsible for the data receiving and dispatching, DSP is responsible for data processing. The FPGA collects image data and controls SDRAM according to the digital image sequence. The SDRAM realizes multiport image buffer. DSP reads real-time image through SDRAM and performs scene motion detection algorithm. Then we implement the data reception and data processing parallelization. This system designs and realizes complex cruise scene motion detection for engineering application. The image edge information has the anti-light change and the strong anti-interference ability. First of all, the adjacent frame and current frame image are processed by convolution operation, extract the edge images. Then we compute correlation strength and the value of movement offset. We can complete scene motion parameters estimation by the result, in order to achieve real-time accurate motion detection. We use images in resolution of 768 * 576 and 25Hz frame rate to do the real-time cruise experiment. The results show that the proposed system achieves real

  2. Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1029/2009GC003015

    2011-01-01

    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facie...

  3. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  4. Use of adaptive cruise control functions on motorways and urban roads: Changes over time in an on-road study.

    Science.gov (United States)

    Pereira, Marta; Beggiato, Matthias; Petzoldt, Tibor

    2015-09-01

    The study aimed at investigating how drivers use Adaptive Cruise Control and its functions in distinct road environments and to verify if changes occur over time. Fifteen participants were invited to drive a vehicle equipped with a Stop & Go Adaptive Cruise Control system on nine occasions. The course remained the same for each test run and included roads on urban and motorway environments. Results showed significant effect of experience for ACC usage percentage, and selection of the shortest time headway value in the urban road environment. This indicates that getting to know a system is not a homogenous process, as mastering the use of all the system's functions can take differing lengths of time in distinct road environments. Results can be used not only for the development of the new generation of systems that integrate ACC functionalities but also for determining the length of training required to operate an ACC system. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  5. Connected Cruise Control: Driver response to the advisory system

    NARCIS (Netherlands)

    Martens, Marieke Hendrikje; Risto, Malte; Wilschut, E.S.

    2011-01-01

    Connected Cruise Control (CCC) is a system, that is currently under development within a HTAS project. CCC aims to improve throughput in dense motorway traffic by advising drivers how to drive. The advice will integrate a lane advice, a headway advice and speed advice. The CCC advice will be

  6. A Potent Vector: Assessing Chinese Cruise Missile Developments

    Science.gov (United States)

    2014-01-01

    of Sydney. This article draws on the authors’ book A Low-Visibility Force Multiplier: Assessing China’s Cruise Missile Ambitions (NDU Press, 2014...infrastructure; didactic PLA discussions (Modern Navy and People’s Navy); generalist deliberations on the de- velopment trajectory and operational use of

  7. Physiological effects of Adaptive Cruise Control behaviour in real driving

    NARCIS (Netherlands)

    Brouwer, A.M.; Snelting, A.F.; Jaswa, M.; Flascher, O.; Krol, L.R.; Zander, T.O.

    2017-01-01

    We examined physiological responses to behavior of an Adaptive Cruise Control (ACC) system during real driving. ACC is an example of automating a task that used to be performed by the user. In order to preserve the link between the user and an automated system such that they work together optimally,

  8. Contact infection of infectious disease onboard a cruise ship

    Science.gov (United States)

    Zhang, Nan; Miao, Ruosong; Huang, Hong; Chan, Emily Y. Y.

    2016-12-01

    Cruise tourism has become more popular. Long-term personal contact, complex population flows, a lack of medical care facilities, and defective infrastructure aboard most cruise ships is likely to result in the ship becoming an incubator for infectious diseases. In this paper, we use a cruise ship as a research scenario. Taking into consideration personal behavior, the nature and transfer route of the virus across different surfaces, virus reproduction, and disinfection, we studied contact infection of infectious disease on a cruise ship. Using gastroenteritis caused by the norovirus as an example, we analyzed the characteristics of infectious disease propagation based on simulation results under different conditions. We found hand washing are the most important factors affecting virus propagation and passenger infection. It also decides either the total number of virus microorganisms or the virus distribution in different functional areas. The transfer rate between different surfaces is a key factor influencing the concentricity of the virus. A high transfer rate leads to high concentricity. In addition, the risk of getting infected is effectively reduced when the disinfection frequency is above a certain threshold. The efficiency of disinfection of functional areas is determined by total virus number and total contact times of surfaces.

  9. Field Report from the Nalunaq Cruise March/April 2001

    DEFF Research Database (Denmark)

    Asmund, G.

    The purpose of the cruise was to collect environmental baseline samples in the Saqqaa Fjord outside of the Kirkespir Valley in South Greenland, where a gold mine is planed. Such a study should be performed in three different years during the same annual period in order to assess satisfying...

  10. Vision-based adaptive cruise control using pattern matching

    CSIR Research Space (South Africa)

    Kanjee, R

    2013-10-01

    Full Text Available Adaptive Cruise Control (ACC) is a relatively new system designed to assist automobile drivers in maintaining a safe following distance. This paper proposes and validates a vision-based ACC system which uses a single camera to obtain the clearance...

  11. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Seismic tomography indicates that subducting oceanic lithosphere often penetrates the transition zone and eventually the lower mantle [e.g. 1, 2]. While mineralogical changes in the mafic and ultramafic portions of slabs have been well documented experimentally, the phase relations of overlying sediments at pressures above 25 GPa remain poorly studied. This is in part because sediments are expected to partially melt at sub-arc depth (P~2.5-4.5 GPa), and contribute to the genesis of arc magmas. Sediment restites left behind after the extraction of low pressure melts undergo major chemical changes, according to the melting reaction: Coe+Phen+Cpx+H2O = Grt+Ky+Melt [3]. However, sediments may not always melt depending on the thermal regime and volatile availability and composition [3]. Hence, chemically unmodified sediments as well as restites may be entrained to greater depths and contribute to compositional heterogeneity in the deep mantle. Indeed, mineral inclusions with compositions indicative of subducted sedimentary protoliths (CAS-phase; K-hollandite; stishovite) have been reported in 'ultradeep' diamonds and suggest that deep subduction and survival of sediments occurs to at least transition zone depths [4]. With this in mind, we have performed laser heated diamond anvil cell experiments at pressures of 8-80 GPa on two anhydrous glass starting materials: a marine clay and the restite that is left after 50% melt extraction of this clay at 3 GPa and 800 °C [3]. We chose to work with an anhydrous version of the marine clay given that the investigated pressure range exceeds that of phengite stability [5], and phengite is the only hydrous phase in subducted sediments at UHP conditions. The clay was heated along a P-T path representative of a cold subduction geotherm, whereas the clay restite was heated along a hotter subduction geotherm consistent with low pressure melting. Phases were identified by synchrotron X-ray micro-diffraction at beamline I15 of the Diamond

  12. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  13. Active and long-lived permanent forearc deformation driven by the subduction seismic cycle

    Science.gov (United States)

    Aron Melo, Felipe Alejandro

    I have used geological, geophysical and engineering methods to explore mechanisms of upper plate, brittle deformation at active forearc regions. My dissertation particularly addresses the permanent deformation style experienced by the forearc following great subduction ruptures, such as the 2010 M w8.8 Maule, Chile and 2011 Mw9.0 Tohoku, Japan earthquakes. These events triggered large, shallow seismicity on upper plate normal faults above the rupture reaching Mw7.0. First I present new structural data from the Chilean Coastal Cordillera over the rupture zone of the Maule earthquake. The study area contains the Pichilemu normal fault, which produced the large crustal aftershocks of the megathrust event. Normal faults are the major neotectonic structural elements but reverse faults also exist. Crustal seismicity and GPS surface displacements show that the forearc experiences pulses of rapid coseismic extension, parallel to the heave of the megathrust, and slow interseismic, convergence-parallel shortening. These cycles, over geologic time, build the forearc structural grain, reactivating structures properly-oriented respect to the deformation field of each stage of the interplate cycle. Great subduction events may play a fundamental role in constructing the crustal architecture of extensional forearc regions. Static mechanical models of coseismic and interseismic upper plate deformation are used to explore for distinct features that could result from brittle fracturing over the two stages of the interplate cycle. I show that the semi-elliptical outline of the first-order normal faults along the Coastal Cordillera may define the location of a characteristic, long-lived megathrust segment. Finally, using data from the Global CMT catalog I analyzed the seismic behavior through time of forearc regions that have experienced great subduction ruptures >Mw7.7 worldwide. Between 61% and 83% of the cases where upper plate earthquakes exhibited periods of increased seismicity

  14. Multiplicity of cruising: interactions with the unknown and realisation of cruising for sex in A. K. Campbell‘s “The Pride”

    OpenAIRE

    Narauskaitė, Gintarė

    2017-01-01

    „Cruisin“ can be defined as an activity where subjects look for sex in public spaces and is usually called cruising for sex. Authors like Humphrey and Delph emphasize that non-verbal communication, such as eye contact, body language, way of walking, etc., is used to make first contacts that eventually lead to sex. Despite the sexuality of cruising, authors like T. Dean or Turner note that besides public sex, cruising also defines a way of life or indicates a pastime. When discussing cruising,...

  15. Detailed Structure and Thickness of Upper Mantle Discontinuities in the Tonga Subduction Zone From Regional Broadband Arrays

    Science.gov (United States)

    Tibi, R.; Wiens, D. A.

    2004-12-01

    Recordings of deep Tonga earthquakes from two arrays of 12 broadband seismographs each in the Fiji and Tonga islands are stacked and searched for reflections and conversions from upper mantle discontinuities in the Tonga subduction zone. The arrays operated as part of the Seismic Arrays in Fiji and Tonga (SAFT) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the regional data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We studied the phases s410p, P660p and S660p. To enhance these low-amplitude phases, deconvolved seismograms from each event/array pair are aligned on the maximum amplitude of the direct P wave and subsequently slant-stacked. For the 410-km discontinuity, the results show no systematic variations in depth with distance to the cold slab. The 660-km discontinuity varies between 656 and 714 km in depth. For the southern and central parts of the subduction zone, the largest depths occur in the core of the Tonga slab. For the northern part, two separate depressions of the 660 are observed. These anomalies are interpreted as being induced by the active, steeply subducting Tonga deep zone and a subhorizontally lying remnant of subducted lithosphere from the fossil Vityaz trench, respectively. Interpreting the deflections of the 660 in terms of local temperatures implies a thermal anomaly at 660 km depth of -800 to -1200oK for the Tonga slab, and -600 to -950oK for the piece of the Vityaz lithosphere. Except for the southern region where it thickens, the Tonga slab seems to penetrate the 660 with little deformation. Waveform modeling susggests that both the 410 and 660 discontinuities are sharp. The 410

  16. Legionella risk assessment in cruise ships and ferries.

    Science.gov (United States)

    Laganà, Pasqualina; Gambuzza, Maria Elsa; Delia, Santi

    2017-06-12

    Introduction. The increasing development of marine traffic has led to a rise in the incidence of legionellosis among travellers. It occurs in similar environments, especially closed and crowded, and aboard ships Legionella survives and multiplies easily in water pipes, spreading into the environment through air conditioning systems and water distribution points. Although in recent years in the construction of cruise ships preventive measures aimed at curbing the proliferation of Legionella (design, materials, focus on the operation and maintenance of the water system), have been taken account, little or no attention has been paid to small ships which, in many cases, are old and not well maintained. Objective. The aim of the study was to evaluate the frequency and severity of Legionella contamination in ferries and cruise ships in order to adopt more specific control measures. Materials and method. A prevalence study was carried out on 10 ferries and 6 cruise ships docking or in transit across the port of Messina (Sicily, Italy). Water and air samples collected from many critical points were tested for qualitative and quantitative identification of Legionella. Results and conclusions. Legionella pneumophila sg 1 was isolated from the samples of shower and tap water in 7 (70%) of the 10 ferries examined, and in 3 (33%) of the 6 cruise ships examined, and L. pneumophila sg 2-14 in 8 (80%) and 1 (16.7%) of these ships, respectively. No Legionella contamination was found in whirlpool baths, air and ice samples. In conclusion, the data obtained confirm higher levels of Legionella contamination in local ferries and cruise ships, underlining the need to adopt corrective actions more specific for these smaller vessels.

  17. 3D Numerical modelling of topography development associated with curved subduction zones

    Science.gov (United States)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab

  18. Dynamic Topography during Flat Subduction: Subsidence or Uplift?

    Science.gov (United States)

    Davila, F. M.; Lithgow-Bertelloni, C. R.

    2011-12-01

    Since the first studies on dynamic topography and basin evolution, low-dipping subduction has been related to intracontinental, long-wavelength and high-amplitude subsidence, whereas retreating to normal subduction systems to uplift. This was proposed to explain the Cretaceous-early Cenozoic topographic evolution of the western US. However, modern flat-slab and slab-retreating segments of South America do not record such a subsidence and uplift patterns. For example, the flat slab of Peru at ˜10°SL, related to the subduction of the Nazca Ridge, underlies an elevated promontory known as the Fitzcarrald Arch. The Argentine flat-slab at ˜31°SL associated to the subduction of the Juan Fernandez Ridge underlies a high-elevated intermontane system known as the Pampean broken foreland. Both upwarping features are younger than 7 Ma and contemporaneous with the arrival of flat subduction to these segments. In order to shed light into this controversy, we calculate dynamic topography along the Andean flat-slab segments using the Hager and O'Connell (1981) instantaneous flow formulation, an accurate reconstruction of the slab geometry along the central Andes and a density contrast between the flat slabs and the country mantle close to zero (△δ≈0) in order to simulate a buoyant oceanic lithosphere. We demonstrate that dynamic subsidence develops only at the leading edge of flat subduction, where the slabs plunge >30°, whereas the flatter slabs reproduce minor or no dynamic topography signals. These results agree with geological and geophysical proxies. Along the Argentine Plains, the account for a accumulated relief of ˜200 m, which might be considered as an "observed dynamic subsidence" signal (given that no tectonic activity has been recorded in this region since the Cretaceous to explain this surface topography). This gives a ˜0.03 mm/yr dynamic subsidence rate that are curiously similar to the exhumations estimated by low-temperature thermochronology along the

  19. Normal faulting of the Daiichi-Kashima Seamount in the Japan Trench revealed by the Kaiko I cruise, Leg 3

    Science.gov (United States)

    Kobayashi, K.; Cadet, J.-P.; Aubouin, J.; Boulegue, J.; Dubois, J.; von, Huene R.; Jolivet, L.; Kanazawa, T.; Kasahara, J.; Koizumi, K.-i.; Lallemand, S.; Nakamura, Y.; Pautot, G.; Suyehiro, K.; Tani, S.; Tokuyama, H.; Yamazaki, T.

    1987-01-01

    A detailed topographic and geophysical survey of the Daiichi-Kashima Seamount area in the southern Japan Trench, northwestern Pacific margin, clearly defines a high-angle normal fault which splits the seamount into two halves. A fan-shaped zone was investigated along 2-4 km spaced, 100 km long subparallel tracks using narrow multi-beam (Seabeam) echo-sounder with simultaneous measurements of gravity, magnetic total field and single-channel seismic reflection records. Vertical displacement of the inboard half was clearly mapped and its normal fault origin was supported. The northern and southern extensions of the normal fault beyond the flank of the seamount were delineated. Materials on the landward trench slope are displaced upward and to sideways away from the colliding seamount. Canyons observed in the upper landward slope terminate at the mid-slope terrace which has been uplifted since start of subduction of the seamount. Most of the landward slope except for the landward walls aside the seamount comprises only a landslide topography in a manner similar to the northern Japan Trench wall. This survey was conducted on R/V "Jean Charcot" as a part of the Kaiko I cruise, Leg 3, in July-August 1984 under the auspices of the French-Japanese scientific cooperative program. ?? 1987.

  20. Phase equilibria in subducting basaltic crust: implications for H 2O release from the slab

    Science.gov (United States)

    Forneris, Juliette F.; Holloway, John R.

    2003-09-01

    Fluids released from subducting slabs induce partial melting of the mantle wedge above the slab, which in turn is responsible for arc volcanism at the Earth's surface. The partially hydrated basaltic layer of the slab is a potential source of these fluids and a major reservoir for H 2O at depth. Constraining the stability domains of hydrous phases and the position of the dehydration reactions in this system in pressure-temperature ( P- T) space is essential to describe and quantify the fluid release from subducting oceanic crust into the overlying mantle wedge. Experiments were conducted in the ranges of 2.2-3.4 GPa and 625-750°C to determine phase equilibria in an H 2O-saturated natural basalt at conditions relevant to subduction zones. The experimental duration was typically 1 month, although some experiments were replicated with a shorter run duration (1-2 weeks) in order to identify potentially metastable phases. A mixture of a natural mid-ocean ridge basalt (MORB) glass and mineral seeds was used as the starting material. Oxygen fugacity was buffered within ±1.3 log units of nickel-bunsenite (NiNiO). The results obtained show that a calcic amphibole (barroisite) is stable from 2.2 to about 2.4 GPa. At 2.6 GPa, it is replaced by a sodic amphibole (near end-member glaucophane), which is stable up to 3 GPa at 625°C. This high-pressure assemblage constitutes a true analog of a natural amphibole-bearing eclogite and the first synthesis of glaucophane from a rock of basaltic composition. As opposed to the results of previous studies on basaltic compositions [A.R. Pawley, J.R. Holloway, Science 260 (1993) 664-667; S. Poli, Am. J. Sci. 293 (1993) 1061-1107; S. Poli, M.W. Schmidt, J. Geophys. Res. 100 (1995) 22299-22314; M.W. Schmidt, S. Poli, Earth Planet. Sci. Lett. 163 (1998) 361-379], chloritoid is present only as a metastable phase in the pressure-temperature range investigated here. Metastability of chloritoid in earlier experiments, due to short run duration

  1. What favors the occurrence of subduction mega-earthquakes?

    Science.gov (United States)

    Brizzi, Silvia; Funiciello, Francesca; Corbi, Fabio; Sandri, Laura; van Zelst, Iris; Heuret, Arnauld; Piromallo, Claudia; van Dinther, Ylona

    2017-04-01

    Most of mega-earthquakes (MEqs; Mw > 8.5) occur at shallow depths along the subduction thrust fault (STF). The contribution of each subduction zone to the globally released seismic moment is not homogenous, as well as the maximum recorded magnitude MMax. Highlighting the ingredients likely responsible for MEqs nucleation has great implications for hazard assessment. In this work, we investigate the conditions favoring the occurrence of MEqs with a multi-disciplinary approach based on: i) multivariate statistics, ii) analogue- and iii) numerical modelling. Previous works have investigated the potential dependence between STF seismicity and various subduction zone parameters using simple regression models. Correlations are generally weak due to the limited instrumental seismic record and multi-parameter influence, which make the forecasting of the potential MMax rather difficult. To unravel the multi-parameter influence, we perform a multivariate statistical study (i.e., Pattern Recognition, PR) of the global database on convergent margins (Heuret et al., 2011), which includes seismological, geometrical, kinematic and physical parameters of 62 subduction segments. PR is based on the classification of objects (i.e., subduction segments) belonging to different classes through the identification of possible repetitive patterns. Tests have been performed using different MMax datasets and combination of inputs to indirectly test the stability of the identified patterns. Results show that the trench-parallel width of the subducting slab (Wtrench) and the sediment thickness at the trench (Tsed) are the most recurring parameters for MEqs occurrence. These features are mostly consistent, independently of the MMax dataset and combination of inputs used for the analysis. MEqs thus seem to be promoted for high Wtrench and Tsed, as their combination may potentially favor extreme (i.e., in the order of thousands of km) trench-parallel rupture propagation. To tackle the

  2. Nonuniform subduction of the Indian crust beneath the Himalayas.

    Science.gov (United States)

    Guo, Xiaoyu; Li, Wenhui; Gao, Rui; Xu, Xiao; Li, Hongqiang; Huang, Xingfu; Ye, Zhuo; Lu, Zhanwu; Klemperer, Simon L

    2017-10-02

    Himalayan tectonic activity is triggered by downward penetration of the Indian plate beneath the Asian plate. The subsurface geometry of this interaction has not been fully investigated. This study presents novel constraints on this geometry provided by two newly obtained, deep seismic reflection profiles. The profiles cover 100- and 60-km transects across the Yarlung-Zangbo suture of the Himalaya-Tibet orogen at c. 88°E. Both profiles show a crustal-scale outline of the subducting Indian crust. This outline clearly shows Indian understhrusting southern Tibet, but only to a limited degree. When combined with a third seismic reflection profile of the western Himalayas, the new profiles reveal progressive, eastward steepening and shortening in the horizontal advance of the subducting Indian crust.

  3. MASE: A seismological perspective of the sub-horizontal subduction of the Cocos Plate under North America

    Science.gov (United States)

    Pérez-Campos, X.; Clayton, R. W.; Davis, P.; Iglesias, A.; Husker, A.; Valdés-González, C. M.

    2006-12-01

    The main objective of the MesoAmerican Subduction Experiment (MASE) is the generation of a dynamic model of the subduction of Cocos plate underneath the North American plate. One component of this project is a seismic line consisting of 100 broadband seismometers, located every 5 km between Acapulco and Tampico, with its mid-point in Mexico City. The initial instrument was deployed at the end of 2004 and the full line will operate until January 2007. The purpose of this line is to derive a velocity and structure model along the transect, and to determine attenuation and viscosity in the mantle wedge. Various researchers from the three institutions involved (Caltech, UNAM, and UCLA) are using several techniques to achieve these goals, such as receiver functions, surface-wave dispersion, tomography and waveform modeling. Preliminary results from dispersion curves show clearly a Moho that correlates to one obtained with receiver functions, which show a flat subducting slab up to ~200 km from the trench. Also, tomography, together with the previous techniques and ray tracing, show a difference in behavior within the Trans Mexican Volvanic Belt. Furthermore, from microseism correlation, we can distinguish surface waves that give information about the crust structure.

  4. The dominant surface-topography contributions of individual subduction parameters

    Science.gov (United States)

    Crameri, Fabio; Lithgow-Bertelloni, Carolina; Tackley, Paul

    2017-04-01

    It is no secret, not any longer, that dynamic processes below the plate exert a significant contribution to the elevation of the plate at the surface (e.g., Flament et al., 2013). We have therefore studied* the individual impact each and every major subduction parameter has on surface topography. This allows us to qualitatively compare the different sources amongst each other, and to quantify their actual potential to vertically deflect the surface. The gained knowledge from this compilation is crucial: We might finally be able to link the directly-observable surface topography to the dynamics (buoyancy, rheology, and geometry) of the subduction system. *This study is made possible by the efficient convection code StagYY (Tackley 2008), the largely-automated post-processing and visualisation toolbox StagLab (www.fabiocrameri.ch/software), and crucial model developments (Crameri and Tackley, 2015; Crameri et al., G-cubed, submitted, Crameri and Lithgow-Bertelloni, Tectonophysics, submitted). REFERENCES 
Flament, N., M. Gurnis, and R. D. Müller (2013), A review of observations and models of dynamic topography, Lithosphere, 5(2), 189-210. Crameri, F., and P. J. Tackley (2015), Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection, J. Geophys. Res. Solid Earth, 120(5), 3680-3706. Crameri, F., C. R. Lithgow-Bertelloni, and P. J. Tackley (submitted), The dynamical control of subduction parameters on surface topography, Geochem. Geophys. Geosyst. Crameri, F., and C. R. Lithgow-Bertelloni (submitted), Dynamic Mantle-Transition-Zone Controls on Upper-Plate Tilt, Tectonophysics. Tackley, P.J (2008) Modelling compressible mantle convection with large viscosity contrasts in a three- dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171(1-4), 7-18.

  5. Complex Subduction Imaged by Diffractional Tomography of USArray Receiver Functions

    Science.gov (United States)

    Zhou, Y.

    2016-12-01

    Subduction of a large oceanic plate beneath a continental plate is a complex process. In the Western United States, fragmentation of the Farallon slab has been reported in recent tomographic models. In this study, we measure finite-frequency travel times of P410s and P660s receiver functions recorded at USArray Transportable Array (TA) stations for teleseismic events occurred between 2015 and 2011. We calculate the finite-frequency sensitivities of receiver functions to depth perturbations of the 410-km and 660-km discontinuities to obtain high resolution mantle transition zone models based on diffractional tomography. The high-resolution discontinuity models reveal several interesting anomalies associated with complex subduction of the Farallon plate. In particular, we observe a linear feature in both the 410-km and 660-km discontinuity models. This mantle transition zone anomaly is roughly located in the western Snake River Plain and aligns with a major slab gap imaged in an earlier finite-frequency S-wave velocity model. We show that non-stationary upwellings generated by eastward propagation of a slab tearing event, together with a westward motion of the North American plate at a rate of about 1 to 1.5 centimeters per year (comparable to the half spreading rate of the Mid-Atlantic Ridge) in the past 16 million years can explain the age-progressive Snake River Plain / Yellowstone volcanic track. The slab to the west of the anomaly shows a near vertical subduction, it is heavily fragmented and the 410-km and 660-km discontinuity topography indicates that the southern fragment north of the Mendocino triple junction has subducted down to the mantle transition zone.

  6. Subducting characteristic of the Pacific slab beneath northeast China

    Science.gov (United States)

    Jiang, G.; Zhang, G.; Xu, Y.

    2012-12-01

    The volcanoes locating in northeast China are very active. Some researchers consider that the origin of volcanoes is closely related to the subducting western Pacific plate and the upwelling asthenosphere. The thickness and the existing range of the subducted plate are not clear as far although the seismic tomography results obviously show that the Pacific plate exists below the volcano region. Therefore, in this study, we adopted the method combining the teleseismic tomography with travel time forward modeling to further study the velocity structure beneath northeast China, especially the precise model of subducted Pacific plate. Our results show that (1) the average thickness and velocity perturbation of slab is 85 km and 1%, respectively, and the slab has not been thickened compared with the previous result of the Japan Sea; (2) the Pacific plate subducted into the mantle transition zone with a shallow dip angle, and changed horizontally when it touched the bottom of mantle transition zone, and extended westward to Longitude 127°E and then stops over there; (3) the horizontal slab locates right below the volcano region. These above features help people understand the origin of intraplate volcanoes and the geodynamical process better. (a) Tomographic result along 43°N. Red and blue colors represent the high and low velocity anomalies, respectively, and the scale is shown at the right-bottom; The profile line is shown in (b); The black triangles represent the volcanoes locating near the profile; The black solid and dashed lines show the depths of upper and lower boundaries of Pacific plate, respectively. The red dots represent the deep earthquakes around the profile. (b) Location of profile AA' along 43°N. Black triangles denote volcanoes; White squares represent the stations; Blue contours denote the depth of upper boundary of Pacific plate; Black and red dots represent the deep epicenters.

  7. Crust and subduction zone structure of Southwestern Mexico

    Science.gov (United States)

    Suhardja, Sandy Kurniawan; Grand, Stephen P.; Wilson, David; Guzman-Speziale, Marco; Gomez-Gonzalez, Juan Martin; Dominguez-Reyes, Tonatiuh; Ni, James

    2015-02-01

    Southwestern Mexico is a region of complex active tectonics with subduction of the young Rivera and Cocos plates to the south and widespread magmatism and rifting in the continental interior. Here we use receiver function analysis on data recorded by a 50 station temporary deployment of seismometers known as the MARS (MApping the Rivera Subduction zone) array to investigate crustal structure as well as the nature of the subduction interface near the coast. The array was deployed in the Mexican states of Jalisco, Colima, and Michoacan. Crustal thickness varies from 20 km near the coast to 42 km in the continental interior. The Rivera plate has steeper dip than the Cocos plate and is also deeper along the coast than previous estimates have shown. Inland, there is not a correlation between the thickness of the crust and topography indicating that the high topography in northern Jalisco and Michoacan is likely supported by buoyant mantle. High crustal Vp/Vs ratios (greater than 1.82) are found beneath the trenchward edge of magmatism including below the Central Jalisco Volcanic Lineament and the Michoacan-Guanajuato Volcanic Field implying a new arc is forming closer to the trench than the Trans Mexican Volcanic Belt. Elsewhere in the region, crustal Vp/Vs ratios are normal. The subducting Rivera and Cocos plates are marked by a dipping shear wave low-velocity layer. We estimate the thickness of the low-velocity layer to be 3 to 4 km with an unusually high Vp/Vs ratio of 2.0 to 2.1 and a drop in S velocity of 25%. We postulate that the low-velocity zone is the upper oceanic crust with high pore pressures. The low-velocity zone ends from 45 to 50 km depth and likely marks the basalt to eclogite transition.

  8. Retrograde lawsonite formation in the Franciscan subduction complex

    Science.gov (United States)

    Myers, S.; Mulcahy, S. R.

    2016-12-01

    Lawsonite [CaAl2Si2O7(OH)2·H2O] is an index mineral of low-temperature subduction zones, contains a significant amount of water, and is an important host of rare-earth and trace elements in mafic protoliths. For these reasons, numerous studies have investigated the consequences of lawsonite breakdown during prograde subduction. In the Franciscan subduction complex, however, lawsonite in mafic blueschist largely formed along a retrograde path from pre-existing eclogite. In order to asses the conditions and significance of retrograde lawsonite formation we examined the petrology and geochemistry of lawsonite-bearing assemblages in Franciscan mafic rocks. All of the samples have the common assemblage: lawsonite, glaucophane, and sphene. Quartz is generally absent. Muscovite, chlorite, and relict epidote and rutile are variably present. Different index minerals calcite, aragonite, albite, and jadeitic pyroxene are present within lawsonite assemblages. Garnet occurs in equilibrium with lawsonite, as a relict mineral in lawsonite and the matrix, or is completely absent. Major element compositions vary from typical basalts and are strongly correlated with one another. Chondrite normalized REE compositions are variably LREE depleted or enriched, MREE are flat to enriched, and HREE are generally flat. Trace elements normalized to NMORB show variably enriched and depleted LILE. The petrology suggests lawsonite, glaucophane, and sphene formed from multiple retrograde reactions involving garnet, clinopyroxene, epidote, and rutile, together with significant hydration. Important index minerals imply lawsonite formed over a wide range of pressures within the subduction zone. The major, REE, and trace element compositions suggest lawsonite assemblages were derived from different protoliths or experienced variable amounts of metasomatism and interaction with crustally derived material and serpentinite.

  9. Silicate dissolution boosts the CO2 concentrations in subduction fluids.

    Science.gov (United States)

    Tumiati, S; Tiraboschi, C; Sverjensky, D A; Pettke, T; Recchia, S; Ulmer, P; Miozzi, F; Poli, S

    2017-09-20

    Estimates of dissolved CO2 in subduction-zone fluids are based on thermodynamic models, relying on a very sparse experimental data base. Here, we present experimental data at 1-3 GPa, 800 °C, and ∆FMQ ≈ -0.5 for the volatiles and solute contents of graphite-saturated fluids in the systems COH, SiO2-COH ( + quartz/coesite) and MgO-SiO2-COH ( + forsterite and enstatite). The CO2 content of fluids interacting with silicates exceeds the amounts measured in the pure COH system by up to 30 mol%, as a consequence of a decrease in water activity probably associated with the formation of organic complexes containing Si-O-C and Si-O-Mg bonds. The interaction of deep aqueous fluids with silicates is a novel mechanism for controlling the composition of subduction COH fluids, promoting the deep CO2 transfer from the slab-mantle interface to the overlying mantle wedge, in particular where fluids are stable over melts.Current estimates of dissolved CO2 in subduction-zone fluids based on thermodynamic models rely on a very sparse experimental data base. Here, the authors show that experimental graphite-saturated COH fluids interacting with silicates at 1-3 GPa and 800 °C display unpredictably high CO2 contents.

  10. Ups and downs in western Crete (Hellenic subduction zone).

    Science.gov (United States)

    Tiberti, Mara Monica; Basili, Roberto; Vannoli, Paola

    2014-07-14

    Studies of past sea-level markers are commonly used to unveil the tectonic history and seismic behavior of subduction zones. We present new evidence on vertical motions of the Hellenic subduction zone as resulting from a suite of Late Pleistocene - Holocene shorelines in western Crete (Greece). Shoreline ages obtained by AMS radiocarbon dating of seashells, together with the reappraisal of shoreline ages from previous works, testify a long-term uplift rate of 2.5-2.7 mm/y. This average value, however, includes periods in which the vertical motions vary significantly: 2.6-3.2 mm/y subsidence rate from 42 ka to 23 ka, followed by ~7.7 mm/y sustained uplift rate from 23 ka to present. The last ~5 ky shows a relatively slower uplift rate of 3.0-3.3 mm/y, yet slightly higher than the long-term average. A preliminary tectonic model attempts at explaining these up and down motions by across-strike partitioning of fault activity in the subduction zone.

  11. Water and the oxidation state of subduction zone magmas.

    Science.gov (United States)

    Kelley, Katherine A; Cottrell, Elizabeth

    2009-07-31

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  12. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    Science.gov (United States)

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  13. Thermobarometric and fluid expulsion history of subduction zones

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W.G. (Univ. of California, Los Angeles (United States))

    1990-06-10

    Phanerozoic, unmetamorphosed, weathered, and altered lithotectonic complexes subjected to subduction exhibit the prograde metamorphic facies sequence: zeolite {r arrow} prehnite-pumpellyite {r arrow} glaucophane schist {r arrow} eclogite. Parageneses reflect relatively high-P trajectories, accompanied by semicontinuous devolatilization. The thermal evolution of convergent plate junctions results in early production of high-rank blueschists, high-P amphibolites, and eclogites at depth. Inclusion studies suggest that two-phase immiscible volatiles are evolved in turn during progressive metamorphism of the subducted sections. Expulsion of pore fluids and transitions from weathered and altered supracrustal rocks to zeolite facies assemblages release far more fluid than the better understood higher-grade transformations. Many blueschist parageneses (e.g., Western Alps) have been partially overprinted by later greenschist and/or epidote-amphibolite facies assemblages. Less common blueschist terranes (e.g., Franciscan belt of western California) preserve metamorphic aragonite and other high-P minerals, and lack a low-pressure overprint; physical conditions during retrogression approximately retraced the prograde path or, for early formed high-grade blocks, reflect somewhat higher pressures and lower temperatures. The ease with which volatiles are expelled from a subduction complex and migrate upward along the plate junction zone is roughly proportional to the sandstone/shale ratio: low-permeability mudstones tend to maintain P{sub fluid} values approaching lithostatic, lose strength, and deform chaotically (forming melange belts), whereas permeable sandstone-rich sections retain structural/stratigraphic coherence and fail brittlely (forming coherent terranes).

  14. Impact of changing fuel characteristics on supersonic cruise airplane

    Science.gov (United States)

    Hadaller, O. J.; Schmidt, J. E.; Momenthy, A. M.; Johnson, P. E.

    1980-01-01

    The question of an advanced supersonic cruise research airplane is related to future oil supplies and prices. Technical data on the impact of changing fuel characteristics on the SCR airplane were developed. Projections of crude oil characteristics typical of the 1985 to 2000 time period were made with the help of consultants to the oil industry. Refineries for the future were modeled to establish jet fuel of engine and aircraft systems for future airplanes, with emphasis on supersonic cruise airplanes. Study results do not show a need for broadening the fuel specification. Hypothetical study fuels with broader specifications were defined, however, as was the impact of their properties on the SCR airplane and systems.

  15. Debriefing of the medical team after emergencies on cruise ships.

    Science.gov (United States)

    Dahl, Eilif

    2017-01-01

    Done to improve safety and patient outcome but not to lay blame, debriefings on cruise ships should preferably be conducted as standard practice in the medical facility immediately after all critical events aboard. The key questions to be asked are: What went well, what could have gone better and what must participants do to improve care? Post-debriefing the ship's doctor might have to deal with team members' mental stress resulting both from the event and from debriefing it. Required by most cruise companies, standardised advanced life support courses teach effective high-performance team dynamics. They provide the multinational medical staff with a clearer understanding of the rescue sequence, which again will reduce the risk of mistakes and simplify post-event debriefings. Their systematic approach to the chain of survival is also helpful for post-event debriefings if something went wrong.

  16. Minimum energy, liquid hydrogen supersonic cruise vehicle study

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential was examined of hydrogen-fueled supersonic vehicles designed for cruise at Mach 2.7 and at Mach 2.2. The aerodynamic, weight, and propulsion characteristics of a previously established design of a LH2 fueled, Mach 2.7 supersonic cruise vehicle (SCV) were critically reviewed and updated. The design of a Mach 2.2 SCV was established on a corresponding basis. These baseline designs were then studied to determine the potential of minimizing energy expenditure in performing their design mission, and to explore the effect of fuel price and noise restriction on their design and operating performance. The baseline designs of LH2 fueled aircraft were than compared with equivalent designs of jet A (conventional hydrocarbon) fueled SCV's. Use of liquid hydrogen for fuel for the subject aircraft provides significant advantages in performance, cost, noise, pollution, sonic boom, and energy utilization.

  17. The Ionian Abyssal Plain - closure of a remnant Mesozoic oceanic domain: subbottom structures, deep deformation and the Calabrian subduction zone

    Science.gov (United States)

    Gallais, F.; Gutscher, M.; Graindorge, D.; Klaeschen, D.

    2010-12-01

    The Ionian Abyssal Plain (IAP), located in the Central Mediterranean area is a deep triangular shaped basin, surrounded by the Calabrian subduction zone to the NW, the Mediterranean Ridge to the NE and the Medina Ridges to the South. Available heat flow measurements show very low values under the Ionian Abyssal plain, suggesing a very old age of 180-200 Ma for the basin. The Bouguer gravity anomaly map shows only a strong positive anomaly in this region and the depth of the Moho is around 16 to 18 km corresponding to high refraction velocities of 8.1-8.2 km/s. The Ionian basin is interpreted as one of the oldest basins in the Mediterranean area, and is thought to represent a remnant part of the Mesozoic Tethyan ocean. Due to the complex relative motions of microplates and blocks, currently, the oceanic lithosphere of the Ionian basin is being simultaneously consumed by subduction to the NE beneath the Hellenic system and to the NW beneath Calabria. We present the most relevant lines of the Archimede multi-channel seismic cruise (1997, R/V Le Nadir) crossing the Ionian Abyssal Plain and the Calabrian subduction zone. Interpretation of this seismic dataset is based on correlation with published seismic data and with ESP results. Beneath the IAP, we identify a thick sedimentary cover (> 5km) from the Jurassic to the Plio-Quaternary in age, which overlies the oceanic basement. The Pre-Messinian sequences are affected by a set of NE/SW striking compressional faults with some syn-tectonic basins NW of these faults. These features are interpreted as a re-activated set of normal faults, possibly formed during rifting and/or subsequent accretion of oceanic crust. The orientation of the subbottom structures and the thickness of the Messinian deposits in the south-eastern part of the IAP may be linked with the presence of these faults and their activity through time. On the Calabrian side of the IAP, the Post-Messinian sequences are accreted to the Calabrian wedge. The weak

  18. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.

    Science.gov (United States)

    Kelemen, Peter B; Manning, Craig E

    2015-07-28

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  19. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    Science.gov (United States)

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  20. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes

    Science.gov (United States)

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  1. Geodynamic Modeling of the Subduction Zone around the Japanese Islands

    Science.gov (United States)

    Honda, S.

    2017-06-01

    In this review, which focuses on our research, we describe the development of the thermomechanical modeling of subduction zones, paying special attention to those around the Japanese Islands. Without a sufficient amount of data and observations, models tended to be conceptual and general. However, the increasing power of computational tools has resulted in simple analytical and numerical models becoming more realistic, by incorporating the mantle flow around the subducting slab. The accumulation of observations and data has made it possible to construct regional models to understand the detail of the subduction processes. Recent advancements in the study of the seismic tomography and geology around the Japanese Islands has enabled new aspects of modeling the mantle processes. A good correlation between the seismic velocity anomalies and the finger-like distribution of volcanoes in northeast Japan has been recognized and small-scale convection (SSC) in the mantle wedge has been proposed to explain such a feature. The spatial and temporal evolution of the distribution of past volcanoes may reflect the characteristics of the flow in the mantle wedge, and points to the possibility of the flip-flopping of the finger-like pattern of the volcano distribution and the migration of volcanic activity from the back-arc side to the trench side. These observations are found to be qualitatively consistent with the results of the SSC model. We have also investigated the expected seismic anisotropy in the presence of SSC. The fast direction of the P-wave anisotropy generally shows the trench-normal direction with a reduced magnitude compared to the case without SSC. An analysis of full 3D seismic anisotropy is necessary to confirm the existence and nature of SSC. The 3D mantle flow around the subduction zone of plate-size scale has been modeled. It was found that the trench-parallel flow in the sub-slab mantle around the northern edge of the Pacific plate at the junction between

  2. Laser diodes for sensing applications: adaptive cruise control and more

    Science.gov (United States)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  3. Cooperative airframe/propulsion control for supersonic cruise aircraft

    Science.gov (United States)

    Schweikhard, W. G.; Berry, D. T.

    1974-01-01

    Interactions between propulsion systems and flight controls have emerged as a major control problem on supersonic cruise aircraft. This paper describes the nature and causes of these interactions and the approaches to predicting and solving the problem. Integration of propulsion and flight control systems appears to be the most promising solution if the interaction effects can be adequately predicted early in the vehicle design. Significant performance, stability, and control improvements may be realized from a cooperative control system.

  4. Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.

    Science.gov (United States)

    Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela

    2014-06-01

    The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  6. 3-D Laboratory and Numerical Models of Mantle Flow in Subduction Zones

    Science.gov (United States)

    Funiciello, F.; Piromallo, C.; Moroni, M.; Becker, T.; Faccenna, C.; Bui, H.; Cenedese, A.

    2004-12-01

    Analogue and numerical studies are powerful tools to gain insight on the subduction process. Here we investigate some results from both approaches in order to characterize the induced flow triggered in the mantle by slab motion. The fluid velocity field in our 3-D laboratory experiments is reconstructed and analyzed through the PTV (Particle Tracking Velocimetry) image analysis technique, which provides a set of velocity vectors centred with particle centroid positions. Numerical investigation is approached by means of the finite element code Citcom (e.g. Moresi & Solomatov, 1995, Zhong et al., 1998; obtained from geoframework.org), solving the equations for conservation of mass, momentum and energy for an incompressible viscous spherical shell.

  7. Development of a small cruising-type AUV and training of constant altitude swimming; Kogata kokogata kaichu robot no kaihatsu to teikodo koko no kunren

    Energy Technology Data Exchange (ETDEWEB)

    Suto, T. [Japan Society for the Promotion of Science, Tokyo (Japan); Ura, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1997-08-01

    A small autonomous robot with high software development efficiency was developed to investigate the control system of an autonomous cruising-type AUV in the actual environment. This robot has a minimum of functions required as a cruising type. One researcher can make an experiment on the robot because of its compactness and lightweight. The robot can also automatically cruise around in a small pool. It was confirmed that an adaptive constant altitude swimming controller utilizing a neural network verified by simulation can also be properly adjusted by an actual robot. The switching mechanism of neural networks was introduced to classify environmental patterns. The corresponding controller is adjusted automatically. In this study, a lightweight and compact cruising-type test-bed robot that has not existed until now was developed. This robot is easy to manufacture and construct in software. Therefore, it is to be desired that the researches and development of autonomous functions are promoted using such a robot. 9 refs., 13 figs., 1 tab.

  8. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  9. Porosity and Salt Content Determine if Subduction Can Occur in Europa's Ice Shell

    Science.gov (United States)

    Johnson, Brandon C.; Sheppard, Rachel Y.; Pascuzzo, Alyssa C.; Fisher, Elizabeth A.; Wiggins, Sean E.

    2017-12-01

    Motivated by recent evidence for subduction in Europa's ice shell, we explore the geophysical feasibility of this process. Here we construct a simple model to track the evolution of porosity and temperature within a slab that is forced to subduct. We also vary the initial salt content in Europa's ice shell and determine the buoyancy of our simulated subducting slab. We find that porosity and salt content play a dominant role in determining whether the slab is nonbuoyant and subduction in Europa's ice shell is actually possible. Generally, we find that initially low porosities and high salt contents within the conductive lid are more conducive to subduction. If salt contents are laterally homogenous, and Europa has a reasonable surface porosity of ϕ0 = 0.1, the conductive portion of Europa's shell must have salt contents exceeding 22% for subduction to occur. However, if salt contents are laterally heterogeneous, with salt contents varying by a few percent, subduction may occur for a surface porosity of ϕ0 = 0.1 and overall salt contents of 5%. Thus, we argue that under plausible conditions, subduction in Europa's ice shell is possible. Moreover, assuming that subduction is actively occurring or has occurred in Europa's recent past provides important constraints on the structure and composition of the ice shell.

  10. Federated provenance of oceanographic research cruises: from metadata to data

    Science.gov (United States)

    Thomas, Rob; Leadbetter, Adam; Shepherd, Adam

    2016-04-01

    The World Wide Web Consortium's Provenance Data Model and associated Semantic Web ontology (PROV-O) have created much interest in the Earth and Space Science Informatics community (Ma et al., 2014). Indeed, PROV-O has recently been posited as an upper ontology for the alignment of various data models (Cox, 2015). Similarly, PROV-O has been used as the building blocks of a data release lifecycle ontology (Leadbetter & Buck, 2015). In this presentation we show that the alignment between different local data descriptions of an oceanographic research cruise can be achieved through alignment with PROV-O and that descriptions of the funding bodies, organisations and researchers involved in a cruise and its associated data release lifecycle can be modelled within a PROV-O based environment. We show that, at a first-order, this approach is scalable by presenting results from three endpoints (the Biological and Chemical Oceanography Data Management Office at Woods Hole Oceanographic Institution, USA; the British Oceanographic Data Centre at the National Oceanography Centre, UK; and the Marine Institute, Ireland). Current advances in ontology engineering, provide pathways to resolving reasoning issues from varying perspectives on implementing PROV-O. This includes the use of the Information Object design pattern where such edge cases as research cruise scheduling efforts are considered. PROV-O describes only things which have happened, but the Information Object design pattern allows for the description of planned research cruises through its statement that the local data description is not the the entity itself (in this case the planned research cruise) and therefore the local data description itself can be described using the PROV-O model. In particular, we present the use of the data lifecycle ontology to show the connection between research cruise activities and their associated datasets, and the publication of those data sets online with Digital Object Identifiers and

  11. Lesbians and Gay Men's Vacation Motivations, Perceptions, and Constraints: A Study of Cruise Vacation Choice.

    Science.gov (United States)

    Weeden, Clare; Lester, Jo-Anne; Jarvis, Nigel

    2016-08-01

    This study explores the push-pull vacation motivations of gay male and lesbian consumers and examines how these underpin their perceptions and purchase constraints of a mainstream and LGBT(1) cruise. Findings highlight a complex vacation market. Although lesbians and gay men share many of the same travel motivations as their heterosexual counterparts, the study reveals sexuality is a significant variable in their perception of cruise vacations, which further influences purchase constraints and destination choice. Gay men have more favorable perceptions than lesbians of both mainstream and LGBT cruises. The article recommends further inquiry into the multifaceted nature of motivations, perception, and constraints within the LGBT market in relation to cruise vacations.

  12. Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays

    Science.gov (United States)

    Tibi, Rigobert; Wiens, Douglas A.

    2005-06-01

    Recordings of deep Tonga earthquakes from two arrays of 12 broadband seismographs each in the Fiji and Tonga islands are stacked and searched for reflections and conversions from upper mantle discontinuities in the Tonga subduction zone. The arrays operated as part of the Seismic Arrays in Fiji and Tonga (SAFT) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high-frequency content for precise mapping of discontinuity topography and sharpness. To enhance the low-amplitude discontinuity phases s410p, P660p and S660p, deconvolved seismograms from each event/array pair are aligned on the maximum amplitude of the direct P wave and subsequently slant stacked. For the 410-km discontinuity, the results show no systematic variations in depth with distance to the cold slab. The 660-km discontinuity varies between 656 and 714 km in depth. For the southern and central parts of the subduction zone, the largest depths occur in the core of the Tonga slab. For the northern part, two separate depressions of the 660-km discontinuity are observed. These anomalies are interpreted as being induced by the active, steeply subducting Tonga deep zone and a subhorizontally lying remnant of subducted lithosphere from the fossil Vityaz trench, respectively. Interpreting the deflections of the 660-km discontinuity in terms of local temperatures implies a thermal anomaly of -800°K to -1200°K at 660 km depth. Except for the southern region where it may thicken, the width of the depressed 660-km discontinuity region implies that the Tonga slab seems to penetrate the 660-km discontinuity with little deformation. Waveform modeling suggests that both the 410- and 660-km discontinuities are sharp. The 660-km discontinuity is at most 2 km thick in many parts of the region, and a first-order discontinuity cannot be precluded. The 410-km discontinuity thickness shows

  13. Crustal Gravitational Potential Energy Change and Subduction Earthquakes

    Science.gov (United States)

    Zhu, P. P.

    2017-05-01

    Crustal gravitational potential energy (GPE) change induced by earthquakes is an important subject in geophysics and seismology. For the past forty years the research on this subject stayed in the stage of qualitative estimate. In recent few years the 3D dynamic faulting theory provided a quantitative solution of this subject. The theory deduced a quantitative calculating formula for the crustal GPE change using the mathematic method of tensor analysis under the principal stresses system. This formula contains only the vertical principal stress, rupture area, slip, dip, and rake; it does not include the horizontal principal stresses. It is just involved in simple mathematical operations and does not hold complicated surface or volume integrals. Moreover, the hanging wall vertical moving (up or down) height has a very simple expression containing only slip, dip, and rake. The above results are significant to investigate crustal GPE change. Commonly, the vertical principal stress is related to the gravitational field, substituting the relationship between the vertical principal stress and gravitational force into the above formula yields an alternative formula of crustal GPE change. The alternative formula indicates that even with lack of in situ borehole measured stress data, scientists can still quantitatively calculate crustal GPE change. The 3D dynamic faulting theory can be used for research on continental fault earthquakes; it also can be applied to investigate subduction earthquakes between oceanic and continental plates. Subduction earthquakes hold three types: (a) crust only on the vertical up side of the rupture area; (b) crust and seawater both on the vertical up side of the rupture area; (c) crust only on the vertical up side of the partial rupture area, and crust and seawater both on the vertical up side of the remaining rupture area. For each type we provide its quantitative formula of the crustal GPE change. We also establish a simplified model (called

  14. Stress and Strength of Seismogenic and Creeping Subduction Faults (Invited)

    Science.gov (United States)

    Wang, K.; Bilek, S. L.; Wada, I.; Gao, X.; Brown, L.

    2013-12-01

    Force balance studies of subduction zone forearcs constrained by earthquake focal mechanisms, active faulting, and topography suggest very weak subduction megathrusts. If represented by an effective coefficient of friction μ', the ratio of shear to normal stress at failure, the average μ' value of most megathrusts is about 0.03, seldom exceeding 0.06, an order of magnitude lower than fault strengths predicted by the Byerlee's law with hydrostatic pore fluid pressure. The μ' value required to explain heat flow observations using megathrust frictional heating modeling is usually also about 0.03, regardless of whether the megathrust is seismogenic or creeping. The mechanism for the weakness is not fully understood, although it must be a combined consequence of fault zone material, fault zone fabric, and pore fluid pressure. Prior to March 11, 2011, the Japan Trench was a rare exception where pervasive margin-normal compression of the upper plate made it difficult to infer megathrust strength. But wholesale stress reversal in much of the forearc due to the M 9 Tohoku earthquake dramatically verified the low-strength (μ' = 0.03) prediction of Wang and Suyehiro (1999, GRL 26(35), 2307-2310). This value translates to depth-dependant shear strength of roughly 10 MPa at 10 km and 30 MPa at 30 km. With regard to how fault strength and stress affect earthquake processes, several issues deserve special attention. (1) There is little doubt that no megathrust is 'strongly' locked, but creeping megathrusts can be either weaker or stronger than locked faults. In fact, subduction of extremely rugged seafloor causes creeping, despite strong resistance caused by geometrical incompatibilities. Physical meanings of regarding locked and creeping faults as 'strongly coupled' and 'weakly coupled', respectively, are in serious question. (2) A μ' value of 0.03-0.05 is a spatial average. For a smooth fault, even small changes in pore fluid pressure alone can cause local deviations from

  15. Thermobarometric and fluid expulsion history of subduction zones

    Science.gov (United States)

    Ernst, W. G.

    1990-06-01

    Phanerozoic, unmetamorphosed, weathered, and altered lithotectonic complexes subjected to subduction exhibit the prograde metamorphic facies sequence: zeolite → prehnite-pumpellyite → glaucophane schist → eclogite. Parageneses reflect relatively high-P trajectories, accompanied by semicontinuous devolatilization. The thermal evolution of convergent plate junctions results in early production of high-rank blueschists, high-P amphibolites, and eclogues at depth within narrow subduction zones while the hanging wall lithosphere is still hot. Protracted underflow drains heat from the nonsubducted plate and, even at profound depths, generates very low-T/high-P parageneses. Inclusion studies suggest that two-phase immiscible volatiles (liquid H2O, and gaseous high-hydrocarbons, CH4 and CO2) are evolved in turn during progressive metamorphism of the subducted sections. Expulsion of pore fluids and transitions from weathered and altered supracrustal rocks to zeolite facies assemblages release far more fluid than the better understood higher-grade transformations. Many blueschist parageneses, such as those of the internal Western Alps, have been partially overprinted by later greenschist and/or epidote-amphibolite facies assemblages. Alpine-type postblueschist metamorphic paths involved fairly rapid, nearly adiabatic decompression; some terranes even underwent modest continued heating and fluid evolution during early stages of ascent. Uplift probably occurred as a consequence of the underthrusting of low-density island arc or microcontinental crust along the convergent plate junction, resulting in marked deceleration or cessation of lithospheric underflow, decoupling, and nearly isothermal rise of the recrystallized subduction complex. Other, less common blueschist terranes, such as the eastern Franciscan belt of western California, preserve metamorphic aragonite and other high-P minerals, and lack a low-pressure overprint; physical conditions during retrogression

  16. Subduction zone forearc serpentinites as incubators for deep microbial life

    Science.gov (United States)

    Plümper, Oliver; King, Helen E.; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P.; Rost, Detlef; Zack, Thomas

    2017-04-01

    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ˜10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth’s largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth’s history such as the late heavy bombardment and global mass extinctions.

  17. Subduction zone forearc serpentinites as incubators for deep microbial life.

    Science.gov (United States)

    Plümper, Oliver; King, Helen E; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P; Rost, Detlef; Zack, Thomas

    2017-04-25

    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ∼10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth's largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth's history such as the late heavy bombardment and global mass extinctions.

  18. Slow earthquakes linked along dip in the Nankai subduction zone.

    Science.gov (United States)

    Hirose, Hitoshi; Asano, Youichi; Obara, Kazushige; Kimura, Takeshi; Matsuzawa, Takanori; Tanaka, Sachiko; Maeda, Takuto

    2010-12-10

    We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were triggered by the acceleration of a long-term slow slip event in between. This correlation suggests that the slow slip might extend along-dip between the source areas of deeper and shallower slow earthquakes and thus could modulate the stress buildup on the adjacent megathrust rupture zone.

  19. Tectonics of the IndoBurma Oblique Subduction Zone

    Science.gov (United States)

    Steckler, M. S.; Seeber, L.; Akhter, S. H.; Betka, P. M.; Cai, Y.; Grall, C.; Mondal, D. R.; Gahalaut, V. K.; Gaherty, J. B.; Maung Maung, P.; Ni, J.; Persaud, P.; Sandvol, E. A.; Tun, S. T.

    2016-12-01

    The Ganges-Brahmaputra Delta (GBD) is obliquely colliding with the IndoBurma subduction zone. Most of the 42 mm/y of arc-parallel motion is absorbed in a set of dextral to dextral-convergent faults, the Sagaing, Kabaw and Churachandpur-Mao Faults. The 13-17 mm/y of convergence with the delta has built a 250-km wide active accretionary prism. The upper part of the 19-km sediment thickness consists of a shallowing-up stack of prograding strata that has shifted the shelf edge 3-400 km since the Himalayan orogeny at 50 Ma. The upper 3-5 km sandy shelf to fluvial strata are deformed into a broad fold and thrust belt above an overpressured décollement. It forms a flat shallow roof thrust in the frontal accretionary prism. The structure of the deeper part of the accretionary prism, which must transfer the incoming sediments to the upper plate, is unknown. GPS indicates the downdip end of the megathrust locked zone is 25 km at 92.5°E. The deformation front, marked by nascent detachment folds above the shallow décollement reaches the megacity of Dhaka in the middle of the GBD. The seismogenic potential of this portion of the prism is unknown. Arc volcanism in Myanmar, 500 km east of the deformation front, is sparse. Limited geochemical data on the arc volcanics are consistent with hot slab conditions. One possibility is that the deep GBD slab and basement are metamorphosed and dewatered early in the subduction process whereby most of the fluids are transferred to the growing prism by buoyancy driven migration or accretion of fluid-rich strata. Since it is entirely subaerial this little-studied region crossing Bangladesh, India and Myanmar provides an opportunity for a detailed multidisciplinary geophysical and geological investigation. It has the potential to highlight the role of fluids in subduction zones, the tectonics of extreme accretion and their seismic hazards, and the interplay between driving and resistance forces of a subduction zone during a soft collision.

  20. Effect of the Earth's rotation on subduction processes

    Science.gov (United States)

    Levin, B. W.; Rodkin, M. V.; Sasorova, E. V.

    2017-09-01

    The role played by the Earth's rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally estimated by the value of the Rossby number: if this parameter is small, the Coriolis force considerably affects the character of movements. In the case of convection in the Earth's mantle and movements of lithospheric plates, the Rossby number is quite small; therefore, the effect of the Coriolis force is reflected in the character of movements of the lithospheric plates. Analysis of statistical data on subduction zones verifies this suggestion.

  1. Slab2 - Updated subduction zone geometries and modeling tools

    Science.gov (United States)

    Portner, D. E.; Hayes, G. P.; Furtney, M.; Moore, G.; Flamme, H. E.; Hearne, M. G.

    2016-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0) combines a variety of geophysical data sets (earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow subduction zone, bathymetry, trench locations, and sediment thickness information) to image the shape of subducting slabs in three dimensions, at approximately 85% of the world's convergent margins. The database is used extensively for a variety of purposes from earthquake source imaging to magnetotelluric modeling. Gaps in Slab1.0 exist where input data are sparse and/or where slabs are geometrically complex (and difficult to image with an automated approach). Slab1.0 also does not include information on the uncertainty in the modeled geometrical parameters, or the input data used to image them, and provides no means for others to reproduce the models it describes. Now near completion, Slab2 will update and replace Slab1.0 by: (1) extending modeled slab geometries to the full extent of all known global subduction zones; (2) incorporating regional data sets (e.g., tomography models) that may describe slab geometry more comprehensively than do previously used teleseismic data; (3) providing information on the uncertainties in each modeled slab surface; (4) modifying our modeling approach to a fully-three dimensional data interpolation, rather than following the 2-D to 3-D steps of Slab1.0; (5) adding further layers to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling; (6) migrating the slab modeling code base to a more universally distributable language, Python; and (7) providing the code base and input data we use to create our models, such that the community can both reproduce the slab geometries, and add their own data sets to ours to further improve upon those models in the future. In this presentation we will describe our progress made in creating Slab2, and provide information on

  2. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    Science.gov (United States)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides

  3. Full-waveform seismic tomography of the Vrancea, Romania, subduction region

    Science.gov (United States)

    Baron, Julie; Morelli, Andrea

    2017-12-01

    The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful

  4. Subduction and slab tearing dynamics constrained by thermal anomalies in the Anatolia-Aegean region

    Science.gov (United States)

    Roche, Vincent; Guillou-Frottier, Laurent; Jolivet, Laurent; Loiselet, Christelle; Bouchot, Vincent

    2015-04-01

    Most previous geodynamic studies treat subduction zones with backward migration (rollback), slab tearing or slab breakoff by numerical or laboratory experiments and by integrating seismicity, tomography data and geochemical studies. Here we investigate these processes in the Aegean-Anatolian domain and particularly the western side of Turkey (western Anatolia) by incorporating thermal regime of the crust, and in particular the geothermal fields as anomalies that could reflect the thermal state of Aegean subduction zone at depth. This domain is characterized by 1) extensional crustal deformation which progressively localized during the Aegean slab retreat from late Eocene to Present, enabling the development of a hot backarc domain; this extension accelerated between 15 and 8 Ma coeval with a fast rotation of the Hellenides and 2) since the latest Miocene, extension is coupled with the development of the North Anatolian Fault that accommodates the westward escape of the Anatolian block. Both the acceleration of extension in the Middle Miocene and the recent escape of Anatolia have been proposed to result from several slab tearing events, the first one being located below western Turkey and the Eastern Aegean Sea, a second one below eastern Turkey and a last one below the Corinth Rift (Faccenna et al., 2006; Jolivet et al., 2013). The distribution of magmatism and mineral resources has been suggested to be largely controlled by these retreat and tearing events (Menant et al., submitted). The development of a widespread active geothermal province in western Anatolia is unlikely to simply result from the Quaternary magmatism whose volcanism part has a too limited extent. Conversely, the long wavelength east-west variation of surface heat flow density could reflect deep thermal processes in the lower crust and/or deeper, and we thus look for possible connections with larger-scale mantle dynamics. We use the distribution of thermal anomalies at different scales and the 3

  5. IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin

    Directory of Open Access Journals (Sweden)

    Paola Vannucchi

    2013-03-01

    Full Text Available The Costa Rica Seismogenesis Project (CRISP is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP Expedition 334 by R/V JOIDES Resolution is the first step toward deep drilling through the aseismic and seismicplate boundary at the Costa Rica subduction zone offshore the Osa Peninsula where the Cocos Ridge is subducting beneath the Caribbean plate. Drilling operations included logging while drilling (LWD at two slope sites (Sites U1378 and U1379 and coring at three slope sites (Sites U1378–1380and at one site on the Cocos plate (Site U1381. For the first time the lithology, stratigraphy, and age of the slope and incoming sediments as well as the petrology of the subducting Cocos Ridge have been characterized at this margin.The slope sites recorded a high sediment accumulation rate of 160–1035m m.y.-1 possibly caused by on-land uplift triggered by the subduction of the Cocos Ridge. The geochemical data as well as the in situ temperature data obtained at the slope sites suggest that fluids are transported from greater depths. The geochemical profiles at Site U1381 reflect diffusional communication of a fluid with seawater-likechemistry and the igneous basement of the Cocos plate (Solomon et al., 2011; Vannucchi et al., 2012a. The present-day in situ stress orientation determined by borehole breakouts at Site U1378 in the middle slope and Site U1379 in the upper slope shows a marked change in stress state within ~12 km along the CRISP transect; that maycorrespond to a change from compression (middle slope to extension (upper slope.

  6. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Implications for the Dynamics of Flat-Slabs

    Science.gov (United States)

    Eakin, Caroline; Long, Maureen; Beck, Susan; Wagner, Lara; Tavera, Hernando

    2014-05-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for both teleseismic events (such as SKS, SKKS, PKS, sSKS) that sample the upper mantle column beneath the stations as well as direct S from local events that constrain anisotropy in the upper portion of the subduction zone. We analyze the variability of our results with respect to initial polarizations, ray paths, and frequency content as well as spatial variability between stations as the underlying slab morphology changes. Teleseismic results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA) that suggests a trench-perpendicular fast direction in the lowest layer in the sub-slab mantle. Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. Local S results indicate the presence of weak (delay times typically less than 0.5 seconds) and heterogeneous supra

  7. MSL-RAD Dosimetry Measurements in Cruise and on Mars: Calibration and First Results

    Science.gov (United States)

    Zeitlin, C. J.; Hassler, D. M.; Wimmer-Schweingruber, R. F.

    2012-12-01

    The Radiation Assessment Detector (RAD) was the first MSL science instrument to start collecting data, with data acquisition commencing 10 days after launch and continuing until the final three weeks of the cruise phase. RAD resumed data-taking on the first sol on Mars, returning the first-ever detailed measurements of cosmic radiation from the surface of another planet. Coincidentally, but appropriately, RAD's first measurements on Mars were taken on the 100th anniversary of the balloon flight experiment by Victor Hess, from which the existence of cosmic rays was deduced. RAD is an advanced and unique flight instrument. It combines charged- and neutral-particle measurement capabilities in an extremely compact, low-mass package. RAD contains six detectors, three of which (A, B, and C) are silicon diodes arranged as a telescope, with the other three (D, E, and F) being scintillators. Two of the scintillators, E and F, are made of Bicron BC-432m plastic; the other, D, is made of CsI for efficient gamma-ray detection. To minimize RAD's telemetry requirements, the instrument processes its data in real time and populates a number of histograms, sorting events into broad categories of penetrating charged particles, stopping charged particles, and neutral particles. There is also a group of histograms referred to as the "dosimetry" histograms. These include minute-by-minute totals of energy deposition in the B and E detectors, as well as LET spectra for charged particles in the telescope field of view. In this presentation, we will describe the methodology used to turn the onboard histograms into properly normalized dosimetric quantities, and show results expressed as time series of dose rates in silicon and tissue, and dose-equivalent rates in tissue. Interpretation of the dosimetry data depends on understanding the effects of the shielding around RAD, which is substantial, both in cruise (spacecraft mass) and on the surface of Mars (atmosphere). This shielding

  8. Tomography of the subducting Cocos plate in central Mexico: Images of a truncated slab

    Science.gov (United States)

    Husker, A. L.; Davis, P. M.

    2007-12-01

    The location of the subducting slab beneath Mexico City and its relation to the Trans-Mexican Volcanic Belt (TMVB) has been unknown because of the absence of deep seismicity that could be used to define the Wadati-Benioff zone. We used data from a temporary seismic network to locate the slab using seismic tomography. A break is seen in the Cocos plate under the TMVB. The break is seen with both P-wave and S-wave tomography and in a constrained tomographic inversion that finds parameters for a simple slab temperature model. The data used are 172 teleseismic earthquakes recorded by the Middle American Subduction Experiment (MASE). MASE was made up of 100 broadband seismometers spaced every 5 km running from Acapulco north through Mexico City almost to the Gulf Coast. In order to determine arrival time differences, Dt, across the array, waveforms were cross correlated. When Dt is plotted with respect to the latitude of the seismometer at which it was recorded, a Dt minimum (early arrivals) is seen near the TMVB. This minimum is shifted northward for back azimuths from the south, and southward for back azimuths from the north. The shift in the Dt minimum is indicative of a fast structure at depth. If there were no break in the slab, the localized minimum would not be seen. Tomography reveals an approximately 50-80 km thick slab diving into the mantle at about 75° to approximately 550 km depth and 375 km inland from Acapulco. We speculate the absence of deep earthquakes is due to low stresses in a young plate that has been truncated at depth.

  9. A microphysical model for fault gouge friction applied to subduction megathrusts

    Science.gov (United States)

    Hartog, Sabine A. M.; Spiers, Christopher J.

    2014-02-01

    A microphysical model is developed for the steady state frictional behavior of illite-quartz fault gouge and applied to subduction megathrust P-T conditions. The model assumes a foliated, phyllosilicate-supported microstructure which shears by rate-independent frictional slip on the aligned phyllosilicates plus thermally activated deformation of the intervening quartz clasts. At low slip rates or high temperatures, the deformation of the clasts is easy, accommodating slip on the foliation without dilatation. With increasing velocity or decreasing temperature, the shear of the clasts becomes more difficult, increasing bulk shear strength, until slip is activated on inclined portions of the phyllosilicate foliation, where it anastomoses around the clasts. Slip at these sites leads to dilation involving clast/matrix debonding, balanced, at steady state, by compaction through thermally activated clast deformation. Model predictions, taking pressure solution as the thermally activated mechanism, show three regimes of velocity-dependent frictional behavior at temperatures in the range of 200-500°C, with velocity weakening occurring at 300-400°C, in broad agreement with previous experiments on illite-quartz gouge. Effects of slip rate, normal stress, and quartz fraction predicted by the model also resemble those seen experimentally. Extrapolation of the model to earthquake nucleation slip rates successfully predicts the onset of velocity-weakening behavior at the updip seismogenic limit on subduction megathrusts. The model further implies that the onset of seismogenesis is controlled by the thermally activated initiation of fault rock compaction through pressure solution of quartz, which counteracts dilatation due to slip on the fault rock foliation.

  10. IODP Expedition 333: Return to Nankai Trough Subduction Inputs Sites and Coring of Mass Transport Deposits

    Directory of Open Access Journals (Sweden)

    Michael Strasser

    2012-09-01

    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 333 returned to two sites drilled during IODP Expedition 322 on the ocean side of the Nankai Trough to pursue the characterization of the inputs to the Nankai subduction and seismogenic zone, as part of the Nankai Trough Seismogenic Experiment (NanTroSEIZE multi-expedition project. SiteC0011 is located at the seaward edge of the trench and Site C0012 on a basement high, Kashinozaki Knoll (Fig. 1. The main objectives of drilling again at these sites were to fill coring gaps in the upper part (<350 m of the sedimentary sequence, to measure heat flow, and to core the oceanic basement to a greater depth on the Knoll. New results include the observation of a diagenetic boundary within the Shikoku Basin sediments that may be compared to one documented further west by ODP Legs 131, 190 and 196 but occurs here at a lower temperature. Borehole heat flow measurements confirm spatial variations in the Shikoku Basin that were indicated by short probe surveys. Heat flow variations between topographic highs and lows may be related to fluid convection within the basement. This expedition also included the objectives of the Nankai Trough Submarine LandSLIDEhistory (NanTroSLIDE Ancillary Project Letter (APL and cored at Site C0018 a pile of mass transport deposits on the footwall of the megasplay fault, a major out of sequence thrust that presumably slips coseismically during large subduction earthquakes. This brought newinsight on the timing of these mass wasting events and on the deformation within the sliding slope sediments.

  11. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic

  12. A thermo-mechanical model of horizontal subduction below an overriding plate

    NARCIS (Netherlands)

    Hunen, Jeroen van; Berg, A.P. van den; Vlaar, N.J.

    2000-01-01

    Subduction of young oceanic lithosphere cannot be explained by the gravitational driving mechanisms of slab pull and ridge push. This deficiency of driving forces can be overcome by obduction of an actively overriding plate, which forces the young plate either to subduct or to collide. This

  13. Subduction on the margins of coronae on Venus: Evidence from radiothermal emissivity measurements

    Science.gov (United States)

    Robinson, C. A.

    1993-01-01

    Retrograde subduction has been suggested to occur at three coronae on Venus: Latona, Artemis, and Eithinoha. Using the mineralogical arguments of Klose to explain surface emissivity, a study of radio thermal emissivity of Venus coronae showed that emissivity changes associated with Latona, Artemis, and Ceres imply the same crustal movements predicted by the subduction model of Sandwell and Schubert.

  14. Does subduction polarity changes below the Alps? Inferences from analogue modelling

    NARCIS (Netherlands)

    Luth, S.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S.

    2013-01-01

    The surface expression of a lateral polarity change of continental mantle lithosphere subduction has been studied by using lithosphere-scale physical models. Key parameters investigated were: the degree of lateral coupling between adjacent domains of opposing subduction polarity, the width of the

  15. A two-way interaction between the Hainan plume and the Manila subduction zone

    NARCIS (Netherlands)

    Mériaux, Catherine A.; Duarte, João C.; Schellart, Wouter P.; Mériaux, Anne Sophie

    2015-01-01

    The interaction between mantle plumes and subducting slabs is well accepted, but the influence of slabs on plumes has more often been portrayed than the reverse. Here we present three-dimensional upper mantle laboratory models in which a compositional plume rises underneath a subducting plate.

  16. Molecular modelling of rare earth element complexation in subduction zone fluids

    NARCIS (Netherlands)

    van Sijl, J.; Allan, N.L.; Davies, G.R.; van Westrenen, W.

    2009-01-01

    Complexation of (trace) elements in fluids plays a critical role in determining element mobility in subduction zones, but to date, the atomic-scale processes controlling elemental solubilities are poorly understood. As a first step towards computer simulation of element complexation in subduction

  17. Rapid fore-arc extension and detachment-mode spreading following subduction initiation

    NARCIS (Netherlands)

    Morris, Antony; Anderson, Mark W.; Omer, Ahmed; Maffione, Marco; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624

    2017-01-01

    Most ophiolites have geochemical signatures that indicate formation by suprasubduction seafloor spreading above newly initiated subduction zones, and hence they record fore-arc processes operating following subduction initiation. They are frequently underlain by a metamorphic sole formed at the top

  18. Slab melting as a barrier to deep carbon subduction.

    Science.gov (United States)

    Thomson, Andrew R; Walter, Michael J; Kohn, Simon C; Brooker, Richard A

    2016-01-07

    Interactions between crustal and mantle reservoirs dominate the surface inventory of volatile elements over geological time, moderating atmospheric composition and maintaining a life-supporting planet. While volcanoes expel volatile components into surface reservoirs, subduction of oceanic crust is responsible for replenishment of mantle reservoirs. Many natural, 'superdeep' diamonds originating in the deep upper mantle and transition zone host mineral inclusions, indicating an affinity to subducted oceanic crust. Here we show that the majority of slab geotherms will intersect a deep depression along the melting curve of carbonated oceanic crust at depths of approximately 300 to 700 kilometres, creating a barrier to direct carbonate recycling into the deep mantle. Low-degree partial melts are alkaline carbonatites that are highly reactive with reduced ambient mantle, producing diamond. Many inclusions in superdeep diamonds are best explained by carbonate melt-peridotite reaction. A deep carbon barrier may dominate the recycling of carbon in the mantle and contribute to chemical and isotopic heterogeneity of the mantle reservoir.

  19. Dehydration-induced instabilities at intermediate depths in subduction zones

    Science.gov (United States)

    Brantut, Nicolas; Stefanou, Ioannis; Sulem, Jean

    2017-08-01

    We formulate a model for coupled deformation and dehydration of antigorite, based on a porosity-dependent yield criterion and including shear-enhanced compaction. A pore pressure and compaction instability can develop when the net volume change associated with the reaction is negative, i.e., at intermediate depth in subduction zones. The instability criterion is derived in terms of the dependence of the yield criterion on porosity: if that dependence is strong, instabilities are more likely to occur. We also find that the instability is associated with strain localization, over characteristic length scales determined by the hydraulic diffusivity, the elasto-plastic parameters of the rock, and the reaction rate. Typical lower bounds for the localization length are of the order of 10 to 100 for antigorite dehydration and deformation at 3 GPa. The fluid pressure and deformation instability is expected to induce stress buildup in the surrounding rocks forming the subducted slab, which provides a mechanism for the nucleation and propagation of intermediate-depth earthquakes.

  20. Air transport cruise altitude restrictions to minimize contrail formation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, V.; Noland, R.B. [Imperial College, London (United Kingdom). Centre for Transport Studies; Toumi, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Physics

    2003-09-01

    While quantification of the effects of NO{sub x} and water vapor is still at an early stage there is evidence that contrail formation could make a significant contribution to global warming. This paper builds on previous research that analyzed a policy of restricting air transport cruise altitudes to eliminate contrail formation. Our previous work [Transport Res. D 7(6) (2002) 451] examined altitude restrictions in European airspace and concluded that this could be a beneficial policy for reducing climate change impacts from aviation. Since most of the flights in European airspace are short-haul flights, this paper evaluates the trade-offs between altitude restrictions, fuel burn and journey times for longer haul flights of up to 6000 nm. Our focus is on the North Atlantic and US airspace and we examine potential contrail fraction to determine optimal cruise altitudes for reducing contrail formation. Changes in fuel burn and travel times associated with flight levels of 18,000 and 31,000 ft for different aircraft types are analyzed. We find that, in most cases, CO{sub 2} emission increases would be unlikely to entirely counteract the benefit of possible reductions in contrail formation. For some aircraft types, the percentage increase in emitted CO{sub 2} was found to be strongly dependent on journey length. In general, journey times appear not to be a major issue except for some aircraft types. Our results suggest that reducing aircraft cruise altitudes could be a beneficial policy for mitigating climate change impacts from the aviation sector. This is clearly dependent on aircraft type and the distances traveled, but more importantly on ambient atmospheric conditions which can vary significantly between regions and due to daily variation. This suggests that real time flight planning to minimize contrail formation should be investigated as a possible climate mitigation policy. (author)

  1. Energy and exergy analysis of a cruise ship

    DEFF Research Database (Denmark)

    Baldi, Francesco; Ahlgren, Fredrik; Nguyen, Tuong-Van

    2015-01-01

    destruction is generated in the Diesel engines and in the oil - fired boilers) and in the sea water cooler (5.4%) ; the main exergy losses happen instead in the exhaust gas, mostly from the main engines (6 7% of total losses) and particularly from those not equipped with heat recovery devices . The improved...... to its final use on board. To illustrate this, we perform ed an analysis of the energy and exergy flow rates of a cruise ship sailing in the Baltic Sea based on a combination of available measurements from ship operations and of mechanistic knowledge of the system . The energy analys is allows...

  2. Geografía, homosexualidad masculina y cruising en Tenerife

    OpenAIRE

    Dóniz-Páez, Francisco Javier; Departamento de Geografíae Historia, Universidad de La Laguna, Tenerife, España

    2015-01-01

    A pesar de las interesantes aportaciones que la geografía ha prestado a las minorías sexuales todavía existe cierta marginalidad científica. En España las investigaciones sobre los gays son poco frecuentes, se enmarcan principalmente dentro de los estudios de género y se centran sobre todo en el concepto de visibilidad gay, en la producción de espacios y en el ocio turístico. El cruising se utiliza para designar los encuentros sexuales anónimos entre hombres ¿gays? en espacios públicos abiert...

  3. Hypersonic cruise aircraft propulsion integration study, volume 1

    Science.gov (United States)

    Morris, R. E.; Brewer, G. D.

    1979-01-01

    A hypersonic cruise transport conceptual design is described. The integration of the subsonic, supersonic, and hypersonic propulsion systems with the aerodynamic design of the airframe is emphasized. An evaluation of various configurations of aircraft and propulsion integration concepts, and selection and refinement of a final design are given. This configuration was used as a baseline to compare two propulsion concepts - one using a fixed geometry dual combustion mode scramjet and the other a variable geometry ramjet engine. Both concepts used turbojet engines for takeoff, landing and acceleration to supersonic speed.

  4. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra.

    Science.gov (United States)

    Hüpers, Andre; Torres, Marta E; Owari, Satoko; McNeill, Lisa C; Dugan, Brandon; Henstock, Timothy J; Milliken, Kitty L; Petronotis, Katerina E; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A; Frederik, Marina C G; Guèrin, Gilles; Hamahashi, Mari; House, Brian M; Jeppson, Tamara N; Kachovich, Sarah; Kenigsberg, Abby R; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T; Pouderoux, Hugo F A; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J; Yang, Tao; Zhao, Xixi

    2017-05-26

    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records. Copyright © 2017, American Association for the Advancement of Science.

  5. Modelling and Forecasting Cruise Tourism Demand to İzmir by Different Artificial Neural Network Architectures

    Directory of Open Access Journals (Sweden)

    Murat Cuhadar

    2014-03-01

    Full Text Available Abstract Cruise ports emerged as an important sector for the economy of Turkey bordered on three sides by water. Forecasting cruise tourism demand ensures better planning, efficient preparation at the destination and it is the basis for elaboration of future plans. In the recent years, new techniques such as; artificial neural networks were employed for developing of the predictive models to estimate tourism demand. In this study, it is aimed to determine the forecasting method that provides the best performance when compared the forecast accuracy of Multi-layer Perceptron (MLP, Radial Basis Function (RBF and Generalized Regression neural network (GRNN to estimate the monthly inbound cruise tourism demand to İzmir via the method giving best results. We used the total number of foreign cruise tourist arrivals as a measure of inbound cruise tourism demand and monthly cruise tourist arrivals to İzmir Cruise Port in the period of January 2005 ‐December 2013 were utilized to appropriate model. Experimental results showed that radial basis function (RBF neural network outperforms multi-layer perceptron (MLP and the generalised regression neural networks (GRNN in terms of forecasting accuracy. By the means of the obtained RBF neural network model, it has been forecasted the monthly inbound cruise tourism demand to İzmir for the year 2014.

  6. Deep Impact 9P/TEMPEL Cruise - Raw its Nav Images V1.0

    Science.gov (United States)

    Carcich, B.; Shaw, A. S.; Desnoyer, M.; McLaughlin, S. A.; Mastrodemos, N.; Klaasen, K. P.

    2010-01-01

    This data set contains raw calibration and test images acquired by the Deep Impact Impactor Targeting Sensor Visible CCD during the cruise phase of the mission. These observations were used for optical and autonomous navigation (NAV) of the impactor spacecraft. These data were collected from 7 April to 30 April 2005. The comet was not imaged during cruise.

  7. A Dynamic Geocast Solution to Support Cooperative Adaptive Cruise Control (CACC) Merging

    NARCIS (Netherlands)

    Klein Wolterink, W.; Karagiannis, Georgios; Heijenk, Geert

    2010-01-01

    Cooperative Adaptive Cruise Control (CACC) is a type of cruise control in which the speed of a vehicle is controlled based on wireless communication between vehicles. In this paper we tackle the communication needed in case of fully automatic CACC merging at a junction. The first contribution of our

  8. Regulations and policies that limit the growth of the U.S. Great Lakes cruising market.

    Science.gov (United States)

    2011-10-01

    The worldwide cruise industry has seen remarkable growth since the 1990s. The cruise market on the Great Lakes has lagged the worldwide growth and compared to historical records, has fallen far short of its full potential. This paper reviews the hist...

  9. Cruise control in personenauto's : een literatuur-oriëntatie op verkeersveiligheidsaspecten.

    NARCIS (Netherlands)

    Kampen, L.T.B. van

    1996-01-01

    In this literature survey little evidence is found of studies primarily investigating the road safety effects of cruise control. Those effects which were examined (mainly through practical tests with and without cruise control) showed that in addition to positive effects governing individual fuel

  10. Cruise report for FS METEOR Cruise 60 Leg 3 from Las Palmas, Canary Islands to Ponta Delgada, Azores, during February 28 - March 14, 1982 (NODC Accession 0078562)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of this cruise leg was physical oceanography of the area between the Canaries and the Azores within the program of the SFB 133 'Warm water sphere of the...

  11. Flows entering the Solomon Sea: observed features during the FLUSEC-1 cruise in August 2007

    Science.gov (United States)

    Maes, C.; Melet, A.; Eldin, G.; Lefevre, J.; Sudre, J.; Varillon, D.

    2007-12-01

    The properties of water masses transported into the equatorial band by the subtropical gyre in the thermocline and below are of primary importance for long-term climate variations. At decadal timescales, the circulation of the southwest Pacific Ocean is suspected to play a major role in that variability. However, the region remains undersampled because of its remote location and the dynamics of the circulation is still poorly understood. Within the context of the Southwest Pacific ocean Circulation and Climate Experiment (SPICE), an oceanographic cruise has been staged from the IRD center of Nouméa on the R/V Alis in August 2007. The main section has been conducted at the entrance of the Solomon Sea from the Louisade archipelago to Guadalcanal Island, roughly along 10°S from 154°E to 160°E. Climatology across this section suggests that waters originating from the South Equatorial Current are transported by two main pathways through the Solomon Sea before joining the equatorial band. The main objective of that cruise is to quantify the respective contributions of the western boundary current in the west, and of the direct flow of the SEC in the east, to the circulation in the Solomon Sea. Conductivity- Temperature-Depth and 02 concentration profiles have been collected from the surface down to 2000 m depth in order to discriminate these different flows and the corresponding water mass properties. Currents measured by L-ADCP have also provided direct insights on the dynamical description of the deep flows entering this region. In addition to these in situ observations, outputs of a regional ocean circulation model dedicated to the dynamics of the Solomon Sea will be jointly analyzed and discussed.

  12. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  13. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  14. Impact of great subduction earthquakes on the long-term forearc morphology, insight from mechanical modelling

    Science.gov (United States)

    Cubas, Nadaya

    2017-04-01

    The surge of great subduction earthquakes during the last fifteen years provided numerous observations requiring revisiting our understanding of large seismic events mechanics. For instance, we now have clear evidence that a significant part of the upper plate deformation is permanently acquired. The link between great earthquakes and long-term deformation offers a new perspective for the relief construction understanding. In addition, a better understanding of these relations could provide us with new constraints on earthquake mechanics. It is also of fundamental importance for seismic risk assessment. In this presentation, I will compile recent results obtained from mechanical modelling linking megathrust ruptures with upper-plate permanent deformation and discuss their impact. We will first show that, in good accordance with lab experiments, aseismic zones are characterized by frictions larger or equal to 0.1 whereas seismic asperities have dynamic frictions lower than 0.05. This difference will control the long-term upper-plate morphology. The larger values along aseismic zones allow the wedge to reach the critical state, and will lead to active thrust systems forming a relief. On the contrary, low dynamic friction along seismic asperities will place the taper in the sub-critical domain impeding any internal deformation. This will lead to the formation of forearc basins inducing negative gravity anomalies. Since aseismic zones have higher friction and larger taper, fully creeping segments will tend to develop peninsulas. On the contrary, fully locked segments with low dynamic friction and very low taper will favor subsiding coasts. The taper variation due to megathrust friction is also expressed through a correlation between coast-to-trench distance and forearc coupling (e.g., Mexican and South-American subduction zones). We will then discuss how variations of frictional properties along the megathrust can induce splay fault activation. For instance, we can

  15. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T. (Ehime U); (WHOI); (UC); (ANU)

    2008-10-08

    the product of melting of deeply recycled (subducted) Archean-age metasediments in the mantle transition zone [Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antartica: possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981-1001]. Here we report the results of phase equilibria experiments on two different natural sedimentary compositions (a high-grade metapelite with < 1 wt.% H{sub 2}O, and a marine 'mud' with 8 wt.% H{sub O}) at 16-23 GPa. In both materials, the high-pressure mineral assemblages contain {approx} 15-30 wt.% K-hollandite (KAlSi{sub 3}O{sub 8}), in addition to stishovite, garnet, an Al-silicate phase (kyanite or phase egg), and a Fe-Ti spinel (corundum). Ion microprobe analyses of K-hollandite for a range of trace elements reveal that this phase controls a significant proportion of the whole-rock budget of incompatible, large-ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, K, Pb, La, Ce and Th). Comparisons between the abundances and ratios of these elements in K-hollandite with those in EM-I type ocean-island basalts from Pitcairn Island and related seamounts, and with the Gaussberg lamproites, indicate the presence of deeply recycled, continent-derived sediments in these lavas sources. Our results suggest that the incompatible trace-element signature of EM-I OIB reservoirs in general and of the Gaussberg lamproites in particular can be attributed to recycling of K-hollandite-bearing continental sediments to transition zone depths.

  16. 3D instantaneous dynamics modeling of present-day Aegean subduction

    Science.gov (United States)

    Glerum, Anne; Spakman, Wim; van Hinsbergen, Douwe; Pranger, Casper

    2017-04-01

    we also intend to experiment with a dynamic free surface. In short, the forcing in our models comprises lateral pressure gradients, mantle buoyancy and forcing related to the prescribed plate motions. Based on the above initial and boundary conditions, we obtain model predictions of the regional flow field. Focusing on the crust, these represent predictions of the GPS velocity field that we can compare to the actual GPS field (e.g. compilation of Kreemer et al., 2014). Our preliminary models provide a good overall fit to the direction and magnitude of the GPS velocities. Subsequent models will include constructed variations in subduction morphology, slab segmentation, fault zone geometry and boundary conditions, for which a wide range of hypotheses can be found in the literature (e.g. Biryol et al., 2011). Changes in the resulting model predictions either improve or lessen our fit to the GPS velocity field and help determine the controls of mantle dynamics on present-day tectonic deformation in the Aegean region. This enables us to characterize the general sensitivity of surface observables to plate motions, mantle flow and slab dynamics and to further quantify the coupling of crust and mantle dynamics.

  17. The transition zone below the Chile-Argentina flat subduction region

    Science.gov (United States)

    Bonatto, Luciana; Piromallo, Claudia; Badi, Gabriela

    2017-04-01

    We study the fine structure of the upper mantle (below 200 km depth) beneath the western margin of South America, within an area known as the Chile-Argentina flat subduction zone (between 26°S and 36°S). Unlike what happens in most subduction zones, in this region the Nazca Plate subducts with an angle close to the horizontal -initially dips underneath the continent and flattens at a depth of approximately 100 km, remaining almost horizontal for about 300 km before descending more steeply into the mantle. Moreover, the flat slab follows the path of the subducting Juan Fernández Ridge, a hot spot seamount chain on the Nazca Plate. The complex tectonic setting makes this region an excellent laboratory to explore and quantify the relative contributions of thermal and compositional heterogeneities to the mantle discontinuity structure. In this study we combine data available from four past temporary experiments: 18 seismic stations from CHARGE; 43 from SIEMBRA, 12 from ESP and 30 from PUDEL. The research tools are the Pds phases (the direct P wave converted to an S wave while passing through a seismic discontinuity at depth d). These signals arrive in the coda of the P-phase in the radial component and are expected to be coherent with the waveform of the first arrival for conversion at discontinuities thinner than one half of the P-wavelength. In order to extract these converted phases by means of waveform similarity, we use the receiver function (RF) technique, i.e. the deconvolution of the vertical from the radial component in the frequency domain. The Pds phases are then detected on stacked RF (globally and by common conversion point) in the relative time-slowness domain. Since the incidence angle of converted phases is larger than the incidence angle of the P phase, they are expected with negative slowness. This permits to separate them from the multiples, which are instead expected with positive slowness. We measure amplitudes and arrival times for the

  18. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  19. Isotopic Characteristics of Thermal Fluids from Mexican Subduction Zone

    Science.gov (United States)

    Taran, Y.; Inguaggiato, S.

    2007-05-01

    Chemical (major and trace elements) and isotopic (H,O,N,C,He) composition of waters and gases from thermal springs and geothermal wells of Mexican subduction zone have been measured. Three main geochemical profiles have been realized: (1) along the frontal Trans-Mexican Volcanic Belt (TMVB) zone through high- temperature Acoculco, Los Humeros, Los Azufres and La Primavera hydrothermal systems, Colima and Ceboruco volcanoes; (2) along the for-arc region of Pacific coast (12 groups of hot springs); (3) across the zone, from Pacific coast to TMVB, through the Jalisco Block. Fluids from El Chichon volcano in Chiapanecan arc system and Tacana volcano from the Central America Volcanic Arc have also been sampled. The frontal zone of TMVB is characterized by high 3He/4He ratios, from 7.2Ra in Ceboruco fumaroles to 7.6Ra in gases from Acoculco and Los Humeros calderas (Ra is atmospheric value of 1.4x10-6). These values are significantly higher than those published earlier in 80-s (up to 6.8Ra). Gases from coastal springs are low in 3He, usually < 1Ra with a minimum value of 0.2Ra in the northernmost submarine Punta Mita hot springs and a maximum value of 2.4Ra in La Tuna springs at the southern board of the Colima graben. An important feature of the TMVB thermal fluids is the absence of excess nitrogen in gases and, as a consequence, close to zero d15N values. In contrast, some coastal for-arc gases and gases from the Jalisco Block have high N2/Ar ratios and d15N up to +5 permil. Isotopic composition of carbon of CO2 along TMVB is close to typical "magmatic" values from -3 permil to -5 permil, but d13C of methane varies significantly indicating multiple sources of CH4 in geothermal fluids and a partial temperature control. High 3He/4He ratios and pure atmospheric nitrogen may indicate a low contribution of subducted sediments into the TMVB magmas and magmatic fluids. In contrast, El Chichon and Tacana fluids show some excess nitrogen (N2/Ar up to 500) and variable d15N, but

  20. Shallow thermal structure constrained by seafloor temperature and heat flow estimated from BSRs in the Nankai subduction zone

    Science.gov (United States)

    Ohde, A.; Otsuka, H.; Kioka, A.; Ashi, J.

    2015-12-01

    The Nankai Trough is a plate convergent boundary where earthquakes with a magnitude of 8 take place repeatedly. Thermal structure in subduction zones affects pore pressure and diagenesis such as consolidation, dewatering and cementation, and constrains physical properties of a fault-slip plane. In the Nankai subduction zone, existence of methane hydrate is confirmed from acoustic reflectors called the Bottom Simulating Reflectors (BSRs) which parallel the seafloor on seismic reflection images with high-amplitude and reverse-polarity waveforms. As a depth of BSR is theoretically constrained by subseafloor profiles of temperature and pressure, the BSR depths effectively produce subseafloor geothermal information over a wide area without heat flow probe penetration or in-situ borehole temperature measurement that is fragmentary. In this study, we aim at calculating precise two-dimensional shallow thermal structure. First, we investigate detailed distribution of the BSRs in the Nankai area ranging from offshore Tokai to Hyuga using two-dimensional multi-channel seismic reflection data. The BSR depths are then forwarded to estimate heat flow values. Second, we use a simple two-dimensional thermal modeling of Blackwell et al. [1980] that takes into account topographical effects of the seafloor roughness. We also employ additional boundary conditions constrained by seafloor temperature and the heat flow estimated from BSR depths. In order to confirm reliability of the modeled thermal structure, we additionally estimate the base of gas hydrate stability zone which is proved to almost equal to observational BSR depths. We find in the modeled thermal structure that the convex portions that are subject to cooling by cold bottom water, while depressions are less subject to the cooling from observational BSRs and theoretical calculation. The thermal structure gained here provides essential data for seismic simulations in subduction zones and for laboratory experiments as

  1. High frequency local reflections and conversions from upper mantle discontinuities in the Fiji-Tonga subduction zone

    Science.gov (United States)

    Tibi, R.; Wiens, D. A.

    2003-12-01

    Recordings of deep Fiji-Tonga earthquakes from an array of 15 broadband seismographs in Fiji are stacked and searched for reflections and conversions from upper mantle discontinuities near the Fiji-Tonga slab. The Fiji array operated as part of the SAFT (Seismic Arrays in Fiji and Tonga) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We study the phases s410p, P660p and S660p where they arrive at least 10 seconds after the direct P wave and prior to the S wave accross the array. To anhance low-amplitude reflections/conversions, deconvolved seismograms from each event are aligned on the maximum amplitude of the direct P wave and slant stacked. Preliminary results indicate that for the northern part of the Fiji-Tonga subduction zone, the 660-km discontinuity varies between 660 and 670 km in depth. In the central part we observe converted phases consistent with a ``410'' depth of 380 km, indicating the effect of the cold subducting plate. The reflections/conversions show only a slight frequency shift relative to the direct P waveforms, suggesting the discontinuities are relatively sharp. The thickness for the 660-km discontinuity is estimated as between 2 and 6 km.

  2. Does subduction zone magmatism produce average continental crust

    Science.gov (United States)

    Ellam, R. M.; Hawkesworth, C. J.

    1988-01-01

    The question of whether present day subduction zone magmatism produces material of average continental crust composition, which perhaps most would agree is andesitic, is addressed. It was argued that modern andesitic to dacitic rocks in Andean-type settings are produced by plagioclase fractionation of mantle derived basalts, leaving a complementary residue with low Rb/Sr and a positive Eu anomaly. This residue must be removed, for example by delamination, if the average crust produced in these settings is andesitic. The author argued against this, pointing out the absence of evidence for such a signature in the mantle. Either the average crust is not andesitic, a conclusion the author was not entirely comfortable with, or other crust forming processes must be sought. One possibility is that during the Archean, direct slab melting of basaltic or eclogitic oceanic crust produced felsic melts, which together with about 65 percent mafic material, yielded an average crust of andesitic composition.

  3. Geoid anomalies in the vicinity of subduction zones

    Science.gov (United States)

    Mcadoo, D. C.

    1981-01-01

    In the considered investigation, attention is given to the line source model, a surface source model, an application of the model, and a model of the thermal lithosphere associated with marginal basins. It is found that undulations in the altimetrically observed geoid of the southwest Pacific are strongly controlled by positive density anomalies in the subducting slabs of the region and the effects of elevation of the geotherm in behind arc lithosphere (corresponding to young marginal basins). Finer details of slab geometry do not obviously manifest themselves in the observed geoid. Such gravitational effects are quite attenuated at sea level and are apparently mixed with crustal effects, oceanographic noise, etc. It appears that slabs in global composite may contribute substantially to intermediate and long wavelength portions (down to spherical harmonic degree 3 or 4) of the earth's gravity field.

  4. Subduction of the Daiichi Kashima Seamount in the Japan Trench

    Science.gov (United States)

    Lallemand, S.; Culotta, R.; Von Huene, R.

    1989-01-01

    In 1984-1985, the Kaiko consortium collected Seabeam, single-channel seismic and submersible sampling data in the vicinity of the Daiichi-Kashima seamount and the southern Japan trench. We performed a prestack migration of a Shell multichannel seismic profile, that crosses this area, and examined it in the light of this unusually diverse Kaiko dataset. Unlike the frontal structure of the northern Japan trench, where mass-wasting appears to be the dominant tectonic process, the margin in front of the Daiichi-Kashima shows indentation, imbrication, uplift and erosion. Emplacement of the front one-third of the seamount beneath the margin front occurs without accretion. We conclude that the Daiichi-Kashima seamount exemplifies an intermediate stage between the initial collision and subduction of a seamount at a continental margin. ?? 1989.

  5. The influence of cruise control and adaptive cruise control on driving behaviour--a driving simulator study.

    Science.gov (United States)

    Markvollrath; Schleicher, Susanne; Gelau, Christhard

    2011-05-01

    Although Cruise Control (CC) is available for most cars, no studies have been found which examine how this automation system influences driving behaviour. However, a relatively large number of studies have examined Adaptive Cruise Control (ACC) which compared to CC includes also a distance control. Besides positive effects with regard to a better compliance to speed limits, there are also indications of smaller distances to lead vehicles and slower responses in situations that require immediate braking. Similar effects can be expected for CC as this system takes over longitudinal control as well. To test this hypothesis, a simulator study was conducted at the German Aerospace Center (DLR). Twenty-two participants drove different routes (highway and motorway) under three different conditions (assisted by ACC, CC and manual driving without any system). Different driving scenarios were examined including a secondary task condition. On the one hand, both systems lead to lower maximum velocities and less speed limit violations. There was no indication that drivers shift more of their attention towards secondary tasks when driving with CC or ACC. However, there were delayed driver reactions in critical situations, e.g., in a narrow curve or a fog bank. These results give rise to some caution regarding the safety effects of these systems, especially if in the future their range of functionality (e.g., ACC Stop-and-Go) is further increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Nitrogen recycling at the Costa Rican subduction zone: The role of incoming plate structure.

    Science.gov (United States)

    Lee, Hyunwoo; Fischer, Tobias P; de Moor, J Maarten; Sharp, Zachary D; Takahata, Naoto; Sano, Yuji

    2017-10-24

    Efficient recycling of subducted sedimentary nitrogen (N) back to the atmosphere through arc volcanism has been advocated for the Central America margin while at other locations mass balance considerations and N contents of high pressure metamorphic rocks imply massive addition of subducted N to the mantle and past the zones of arc magma generation. Here, we report new results of N isotope compositions with gas chemistry and noble gas compositions of forearc and arc front springs in Costa Rica to show that the structure of the incoming plate has a profound effect on the extent of N subduction into the mantle. N isotope compositions of emitted arc gases (9-11 N°) imply less subducted pelagic sediment contribution compared to farther north. The N isotope compositions (δ(15)N = -4.4 to 1.6‰) of forearc springs at 9-11 N° are consistent with previously reported values in volcanic centers (δ(15)N = -3.0 to 1.9‰). We advocate that subduction erosion enhanced by abundant seamount subduction at 9-11 N° introduces overlying forearc crustal materials into the Costa Rican subduction zone, releasing fluids with lighter N isotope signatures. This process supports the recycling of heavier N into the deep mantle in this section of the Central America margin.

  7. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.

    Science.gov (United States)

    Manea, Vlad C; Leeman, William P; Gerya, Taras; Manea, Marina; Zhu, Guizhi

    2014-10-24

    For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes.

  8. Where does subduction initiate and die? Insights from global convection models with continental drift

    Science.gov (United States)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  9. Earth's first stable continents did not form by subduction.

    Science.gov (United States)

    Johnson, Tim E; Brown, Michael; Gardiner, Nicholas J; Kirkland, Christopher L; Smithies, R Hugh

    2017-03-09

    The geodynamic environment in which Earth's first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) comprises tonalite-trondhjemite-granodiorite rocks (TTGs) that were formed through partial melting of hydrated low-magnesium basaltic rocks; notably, these TTGs have 'arc-like' signatures of trace elements and thus resemble the continental crust produced in modern subduction settings. In the East Pilbara Terrane, Western Australia, low-magnesium basalts of the Coucal Formation at the base of the Pilbara Supergroup have trace-element compositions that are consistent with these being source rocks for TTGs. These basalts may be the remnants of a thick (more than 35 kilometres thick), ancient (more than 3.5 billion years old) basaltic crust that is predicted to have existed if Archaean mantle temperatures were much hotter than today's. Here, using phase equilibria modelling of the Coucal basalts, we confirm their suitability as TTG 'parents', and suggest that TTGs were produced by around 20 per cent to 30 per cent melting of the Coucal basalts along high geothermal gradients (of more than 700 degrees Celsius per gigapascal). We also analyse the trace-element composition of the Coucal basalts, and propose that these rocks were themselves derived from an earlier generation of high-magnesium basaltic rocks, suggesting that the arc-like signature in Archaean TTGs was inherited from an ancestral source lineage. This protracted, multistage process for the production and stabilization of the first continents-coupled with the high geothermal gradients-is incompatible with modern-style plate tectonics, and favours instead the formation of TTGs near the base of thick, plateau-like basaltic crust. Thus subduction was not required to produce TTGs in the early Archaean eon.

  10. Migration of teleseismically triggered tremor in southwestern Japan subduction zone

    Science.gov (United States)

    Kurihara, R.; Obara, K.; Maeda, T.; Takeo, A.

    2016-12-01

    Deep low frequency tremor in subduction zone is sometimes triggered by surface waves from teleseismic earthquakes. In southwestern Japan, a sequence of triggered tremor was reported for the 2004 Sumatra-Andaman earthquake (Miyazawa and Mori, 2006). Such triggered tremor was observed in the ambient tremor zone where the short-term slow slip events episodically occur. However, the triggered tremor is not distributed in the entire source area of ambient tremor, but is concentrated in several fixed spots. In this study, we tried to reveal accurate location of triggered tremor and investigate the spatiotemporal characteristics for understandings of condition and occurrence mechanism of triggered tremor. We detected low frequency earthquakes in tremor sequence triggered by teleseismic wave by using matched filter technique. The data were obtained at 10 NIED Hi-net stations. We used low frequency earthquakes occurred in 2014 detected by JMA as template events. Time duration of the templates is five seconds. We analyzed continuous waveform data for one hour from the origin times of 2004 Sumatra, 2008 Wenchuan, 2012 Sumatra and 2015 Nepal earthquakes. In western Shikoku, detected triggered tremor is concentrated at distant fixed two spots with an average separation of 20 km for analyzed four teleseismic events. Particularly, southwestern spot has a streak-like distribution along the dip direction of the subducting plate. In this spot, we detected along-dip migration of triggered tremor. The migration speed is about 300 km/h for 2008 Wenchuan earthquake and about 20 km/h for 2015 Nepal earthquake. Shelly et al. (2007) reported similar along-dip migration of ambient tremor at velocity from 25 to 150 km/h. Therefore, migrations of triggered tremor detected in this study suggest that the triggered tremor is also associated by slow slip event like as ambient tremor.

  11. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    Science.gov (United States)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  12. Implications for metal and volatile cycles from the pH of subduction zone fluids.

    Science.gov (United States)

    Galvez, Matthieu E; Connolly, James A D; Manning, Craig E

    2016-11-17

    The chemistry of aqueous fluids controls the transport and exchange-the cycles-of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth's interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth's atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years(7).

  13. Investigating the Subduction History of the Southwest Pacific using Coupled Plate Tectonic-Mantle Convection Models

    Science.gov (United States)

    Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.

    2014-12-01

    The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.

  14. Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions

    Science.gov (United States)

    Atkinson, G.M.; Boore, D.M.

    2003-01-01

    Ground-motion relations for earthquakes that occur in subduction zones are an important input to seismic-hazard analyses in many parts of the world. In the Cascadia region (Washington, Oregon, northern California, and British Columbia), for example, there is a significant hazard from megathrust earthquakes along the subduction interface and from large events within the subducting slab. These hazards are in addition to the hazard from shallow earthquakes in the overlying crust. We have compiled a response spectra database from thousands of strong-motion recordings from events of moment magnitude (M) 5-8.3 occurring in subduction zones around the world, including both interface and in-slab events. The 2001 M 6.8 Nisqually and 1999 M 5.9 Satsop earthquakes are included in the database, as are many records from subduction zones in Japan (Kyoshin-Net data), Mexico (Guerrero data), and Central America. The size of the database is four times larger than that available for previous empirical regressions to determine ground-motion relations for subduction-zone earthquakes. The large dataset enables improved determination of attenuation parameters and magnitude scaling, for both interface and in-slab events. Soil response parameters are also better determined by the data. We use the database to develop global ground-motion relations for interface and in-slab earthquakes, using a maximum likelihood regression method. We analyze regional variability of ground-motion amplitudes across the global database and find that there are significant regional differences. In particular, amplitudes in Cascadia differ by more than a factor of 2 from those in Japan for the same magnitude, distance, event type, and National Earthquake Hazards Reduction Program (NEHRP) soil class. This is believed to be due to regional differences in the depth of the soil profile, which are not captured by the NEHRP site classification scheme. Regional correction factors to account for these differences are

  15. Multi-decadal changes in southern hemisphere subduction rates in a 1/12° ocean model hindcast

    Science.gov (United States)

    Nowatzki, Eva; Patara, Lavinia; Böning, Claus; Karstensen, Johannes

    2017-04-01

    Mode and Intermediate Waters formed in the mid-latitudes of the Southern Ocean represent a major agent for the ventilation of the southern hemisphere lower thermocline, playing a key role in the uptake and intermittent storage of anthropogenic CO2. Long-term hydrographic records as well as modelling studies have provided indications that characteristics of these water masses have been changing over the last decades. Changes in heat, freshwater and momentum fluxes may all contribute to the water mass variability. In this study, we investigate the temporal and spatial variability of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation and its linkages to changing atmospheric conditions with a global ocean - sea-ice model for the time period 1979-2007. The model employs a horizontal resolution of 1/12° for the Southern Ocean and is forced with the CORE-II interannually-varying atmospheric forcing data set. The hindcast simulation is complemented by a second experiment with a repeated 'normal-year' atmospheric forcing in order to separate atmospherically-related changes from stochastic variability and spurious model trends. We find that subduction rates in the density range of SAMW and AAIW are dominated by the lateral induction term and as such are tightly linked to the maximum mixed layer depth (MLD) at the end of winter. The model simulation shows multi-decadal trends in subduction rates, however the trends are not uniform across the density range of SAMW/ AAIW and differ between the Pacific and Indian Ocean sectors. Largest changes in AAIW formation are found in the southeast Pacific, whereas changes in SAMW formation are most pronounced in the Indian Ocean. In the Pacific, the decrease of subduction rates in the AAIW range is contrasted by a positive trend in the SAMW range. The changes in subduction rates are linked to salinity and thus density trends of the winter mixed layer that can be traced to multi-decadal trends in heat and

  16. The Calabrian Arc: three-dimensional modelling of the subduction interface.

    Science.gov (United States)

    Maesano, Francesco E; Tiberti, Mara M; Basili, Roberto

    2017-08-21

    The Calabrian Arc is a one-of-a-kind subduction zone, featuring one of the shortest slab segments (subduction zone, we first made a geological reconstruction of the shallower slab interface (subduction interface, its lateral terminations and down-dip curvature, and a slab tear at 70-100 km depth. Our 3D slab model of the Calabrian Arc will contribute to understanding of the geodynamics of a cornerstone in the Mediterranean tectonic puzzle and estimates of seismic and tsunami hazards in the region.

  17. Uplift in the Fiordland region, New Zealand: implications for incipient subduction.

    Science.gov (United States)

    House, M A; Gurnis, M; Kamp, P J J; Sutherland, R

    2002-09-20

    Low-temperature thermochronometry reveals regional Late Cenozoic denudation in Fiordland, New Zealand, consistent with geodynamic models showing uplift of the overriding plate during incipient subduction. The data show a northward progression of exhumation in response to northward migration of the initiation of subduction. The locus of most recent uplift coincides with a large positive Bouguer gravity anomaly within Fiordland. Thermochronometrically deduced crustal thinning, anomalous gravity, and estimates of surface uplift are all consistent with approximately 2 kilometers of dynamic support. This amount of dynamic support is in accord with geodynamic predictions, suggesting that we have dated the initiation of subduction adjacent to Fiordland.

  18. Numerical Modelling of Subduction Plate Interface, Technical Advances for Outstanding Questions

    Science.gov (United States)

    Le Pourhiet, L.; Ruh, J.; Pranger, C. C.; Zheng, L.; van Dinther, Y.; May, D.; Gerya, T.; Burov, E. B.

    2015-12-01

    The subduction zone interface is the place of the largest earthquakes on earth. Compared to the size of a subduction zone itself, it constitutes a very thin zone (few kilometers) with effective rheological behaviour that varies as a function of pressure, temperature, loading, nature of the material locally embedded within the interface as well as the amount of water, melts and CO2. Capturing the behaviour of this interface and its evolution in time is crucial, yet modelling it is not an easy task. In the last decade, thermo-mechanical models of subduction zone have flourished in the literature. They mostly focused on the long-term dynamics of the subduction; e.g. flat subduction, slab detachment or exhumation. The models were validated models against PTt path of exhumed material as well as topography. The models that could reproduce the data all included a mechanically weak subduction channel made of extremely weak and non cohesive material. While this subduction channel model is very convenient at large scale and might apply to some real subduction zones, it does not capture the many geological field evidences that point out the exhumation of very large slice of almost pristine oceanic crust along localised shear zone. Moreover, modelling of sismological and geodetic data using short term tectonic modelling approach also point out that large localised patches rupture within the subduction interface, which is in accordance with geological data but not with large-scale long-term tectonic models. I will present how high resolution models permit to produce slicing at the subduction interface and give clues on how the plate coupling and effective location of the plate interface vary over a few millions of year time scale. I will then discuss the implication of these new high-resolution long-term models of subduction zone on earthquake generation, report progress in the development of self-consistent thermomechanical codes which can handle large strain, high resolution

  19. Cruise tourism and community economic development in Central America and the Caribbean: The case of Costa Rica

    Directory of Open Access Journals (Sweden)

    Seidl, Andy

    2006-01-01

    Full Text Available This paper illustrates an economic approach to understanding the cruise tourism industry as a driver of economic development in Costa Rica. The objective is to describe the role and activities of the cruise ship industry and identify sources of economic benefit and cost such that more informed local policy decisions about the cruise ship tourism might be made. For example, our analysis indicates: the cruise tourism industry competes with the cargo shipping industry for port space at a significant cost to Costa Rican ports; the amount of money injected into the local economy per cruise tourist is substantially lower than for other types of tourism; Cruise ships purchase relatively few supplies in Costa Rica; Cruise ships generate a great deal of human waste, water and air pollution, which can create a serious health hazard, cleanup costs, and which are not commensurate with other types of tourism development available to Costa Rica; Decision makers may want to consider that investment in cruise tourism friendly ports may be less efficient from a national perspective than investment in infrastructure (e.g., airports to increase more profitable types of tourism; And leaders may want to consider the encouragement of smaller “pocket” cruises over the current cruise version of mass tourism. This approach should be applicable to communities wherever cruise tourism currently exists or is under consideration to be included in the portfolio of community economic activities

  20. Acoustic Doppler current profiling from the JGOFS Arabian Sea cruises aboard the RV T.G. Thompson

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S.; Flagg, C.N.; Shi, Y. [Brookhaven National Lab., Upton, NY (United States). Oceanographic and Atmospheric Sciences Div.

    1996-12-01

    Acoustic Doppler current profiler (ADCP) data is part of the core data for the US JGOFS Arabian Sea project, along with hydrographic and nutrient data. Seventeen cruises are scheduled to take place between September 1994 and January 1996 on the R/V T.G. Thompson. Seven of the cruises follow a standard cruise track, taking hydrographic, chemical and biological measurements. The rest of the cruises, which take place generally within the standard cruise region defined by a set track, are for the deployment and recovery of moored equipment and towing of a SeaSoar. Detailed description of ADCP hardware, the AutoADCP data acquisition system, and the collection of navigation and compass data on the Thompson is documented in Section 2. Followed by data collection for each cruise together with a cruise track, Section 3 presents the processing and analysis of velocity and acoustic backscatter intensity data. Section 5 shows results of profile quality diagnosis.

  1. Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    M. Hoppema

    2009-12-01

    Full Text Available Initially a North Atlantic project, the CARINA carbon synthesis was extended to include the Southern Ocean. Carbon and relevant hydrographic and geochemical ancillary data from cruises all across the Arctic Mediterranean Seas, Atlantic and Southern Ocean were released to the public and merged into a new database as part of the CARINA synthesis effort. Of a total of 188 cruises, 37 cruises are part of the Southern Ocean, including 11 from the Atlantic sector. The variables from all Southern Ocean cruises, including dissolved inorganic carbon (TCO2, total alkalinity, oxygen, nitrate, phosphate and silicate, were examined for cruise-to-cruise consistency in one collective effort. Seawater pH and chlorofluorocarbons (CFCs are also part of the database, but the pH quality control (QC is described in another Earth System Science Data publication, while the complexity of the Southern Ocean physics and biogeochemistry prevented a proper QC analysis of the CFCs. The area-specific procedures of quality control, including crossover analysis between stations and inversion analysis of all crossover data (i.e. secondary QC, are briefly described here for the Atlantic sector of the Southern Ocean. Data from an existing, quality controlled database (GLODAP were used as a reference for our computations – however, the reference data were included into the analysis without applying the recommended GLODAP adjustments so the corrections could be independently verified. The outcome of this effort is an internally consistent, high-quality carbon data set for all cruises, including the reference cruises. The suggested corrections by the inversion analysis were allowed to vary within a fixed envelope, thus accounting for natural variability. The percentage of cruises adjusted ranged from 31% (for nitrate to 54% (for phosphate depending on the variable.

  2. Efficacy of Cruise Control in controlling postocclusion surge with Legacy and Millennium venturi phacoemulsification machines.

    Science.gov (United States)

    Wade, Matthew; Isom, Ryan; Georgescu, Dan; Olson, Randall J

    2007-06-01

    To determine the efficacy of the Cruise Control surge-limiting device (Staar Surgical) with phacoemulsification machines known to have high levels of surge. John A. Moran Eye Center Clinical Laboratories. In an in vitro study, postocclusion anterior chamber depth changes were measured in fresh phakic human eye-bank eyes using the Alcon Legacy and Bausch & Lomb Millennium venturi machines in conjunction with the Staar Cruise Control device. Both machines were tested with 19-gauge non-Aspiration Bypass System tips at high-surge settings (500 mm Hg vacuum pressure, 75 cm bottle height, 40 mL/min flow rate for the Legacy) and low-surge settings (400 mm Hg vacuum pressure, 125 cm bottle height, 40 mL/min flow rate for the Legacy). Adjusted parameters of flow, vacuum, and irrigation were used based on previous studies to create identical conditions for each device tested. The effect of the Cruise Control device on aspiration rates was also tested with both machines at the low-surge settings. At the high setting with the addition of Cruise Control, surge decreased significantly with the Legacy but was too large to measure with the Millennium venturi. At the low setting with the addition of Cruise Control, surge decreased significantly with both machines. Surge with the Millennium decreased from more than 1.0 mm to a mean of 0.21 mm +/- 0.02 (SD) (PCruise Control and the greatest percentage decrease in the surge and aspiration rates as a result of the addition of Cruise Control. In the Legacy machine, the Cruise Control device had a statistically and clinically significant effect. Cruise Control had a large effect on fluidics as well as surge amplitude with the Millennium machine. The greater the flow or greater the initial surge, the greater the impact of the Cruise Control device.

  3. Art concept of Magellan spacecraft in cruise configuration

    Science.gov (United States)

    1988-01-01

    Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.

  4. Airframe-integrated propulsion system for hypersonic cruise vehicles

    Science.gov (United States)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    The paper describes a new hydrogen-burning airframe-integrated scramjet concept which offers good potential for efficient hypersonic cruise vehicles. The characteristics of the engine which assure good performance are extensive engine-airframe integration, fixed geometry, low cooling, and control of heat release in the supersonic combustor by mixed modes of fuel injection from the combustor entrance. The present paper describes the concept and presents results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines currently underway under conditions which simulate flight at Mach 4 and 7. It is concluded that this engine concept has the potential for high thrust and efficiency, low drag and weight, low cooling requirement, and application to a wide range of vehicle sizes.

  5. Driver usage and understanding of adaptive cruise control.

    Science.gov (United States)

    Larsson, Annika F L

    2012-05-01

    Automation, in terms of systems such as adaptive/active cruise control (ACC) or collision warning systems, is increasingly becoming a part of everyday driving. These systems are not perfect though, and the driver has to be prepared to reclaim control in situations very similar to those the system easily handles by itself. This paper uses a questionnaire answered by 130 ACC users to discuss future research needs in the area of driver assistance systems. Results show that the longer drivers use their systems, the more aware of its limitations they become. Moreover, the drivers report that ACC forces them to take control intermittently. According to theory, this might actually be better than a more perfect system, as it provides preparation for unexpected situations requiring the driver to reclaim control. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Robust adaptive cruise control of high speed trains.

    Science.gov (United States)

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Tilt-rotor flutter control in cruise flight

    Science.gov (United States)

    Nasu, Ken-Ichi

    1986-01-01

    Tilt-rotor flutter control under cruising operation is analyzed. The rotor model consists of a straight fixed wing, a pylon attached to the wingtip, and a three-blade rotor. The wing is cantilevered to the fuselage and is allowed to bend forward and upward. It also has a torsional degree of freedom about the elastic axis. Each rotor blade has two bending degrees of freedom. Feedback of wingtip velocity and acceleration to cyclic pitch is investigated for flutter control, using strip theory and linearized equations of motion. To determine the feedback gain, an eigenvalue analysis is performed. A second, independent, timewise calculation is conducted to evaluate the control law while employing more sophisticated aerodynamics. The effectiveness of flutter control by cyclic pitch change was confirmed.

  8. Discrete Sliding Mode Control for Hypersonic Cruise Missile

    Directory of Open Access Journals (Sweden)

    Yong Hua Fan

    2016-01-01

    Full Text Available A discrete variable structure control (DVSC with sliding vector is presented to track the velocity and acceleration command for a hypersonic cruise missile. In the design an integrator is augmented to ensure the tracking with zero steady-state errors. Furthermore the sliding surface of acceleration is designed using the error of acceleration and acceleration rate to avoid the singularity of control matrix. A proper power rate reaching law is utilized in this proposal; therefore the state trajectory from any initial point can be driven into the sliding surface. Besides, in order to validate the robustness of controller, the unmolded dynamic and parameter disturbance of the missile are considered. Through simulation the proposed controller demonstrates good performance in tracking velocity and acceleration command.

  9. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous.

    Science.gov (United States)

    Liu, Lijun; Spasojevic, Sonja; Gurnis, Michael

    2008-11-07

    Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.

  10. Oblique subduction modelling indicates along-trench tectonic transport of sediments.

    Science.gov (United States)

    Malatesta, Cristina; Gerya, Taras; Crispini, Laura; Federico, Laura; Capponi, Giovanni

    2013-01-01

    Convergent plate margins are currently distinguished as 'accretional' or 'erosional', depending on the tendency to accumulate sediments, or not, at the trench. Accretion and erosion can coexist along the same margin and we have noticed that this mostly occurs where subduction is oblique. Here we show that at oblique subduction zones, sediments that enter the trench are first buried, and later migrate laterally parallel to the trench and at various depths. Lateral migration of sediments continues until they reach a physical barrier where they begin to accumulate. The accretionary wedge size decreases along the trench moving away from the barrier. We therefore suggest that the gradual variation of the accretionary wedge size and sediment amount at the trench along one single subduction zone, as observed in many active plate margins worldwide, can be explained by the lateral tectonic migration of sediments driven by obliquity of subduction as well.

  11. A Computer-Based Subduction-Zone-Earthquake Exercise for Introductory-Geology Classes.

    Science.gov (United States)

    Shea, James Herbert

    1991-01-01

    Describes the author's computer-based program for a subduction-zone-earthquake exercise. Instructions for conducting the activity and obtaining the program from the author are provided. Written in IBM QuickBasic. (PR)

  12. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation

    NARCIS (Netherlands)

    van Hinsbergen, D.J.J.|info:eu-repo/dai/nl/269263624; Vissers, R.L.M.|info:eu-repo/dai/nl/068789203; Spakman, W.|info:eu-repo/dai/nl/074103164

    2014-01-01

    The western Mediterranean recorded subduction rollback, slab segmentation and separation. Here we address the questions of what caused Oligocene rollback initiation, and how its subsequent evolution split up an originally coherent fore arc into circum-southwest Mediterranean segments. We

  13. Chromium isotope signature during continental crust subduction recorded in metamorphic rocks

    National Research Council Canada - National Science Library

    Shen, Ji; Liu, Jia; Qin, Liping; Wang, Shui‐Jiong; Li, Shuguang; Xia, Jiuxing; Ke, Shan; Yang, Jingsui

    2015-01-01

    The chromium isotope compositions of 27 metamorphic mafic rocks with varying metamorphic degrees from eastern China were systematically measured to investigate the Cr isotope behavior during continental crust subduction...

  14. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface

    National Research Council Canada - National Science Library

    Angiboust, Samuel; Kirsch, Josephine; Oncken, Onno; Glodny, Johannes; Monié, Patrick; Rybacki, Erik

    2015-01-01

    ... as the focus site of episodic tremor and slip features. Exhumed remnants of the former Alpine subduction zone found in the Swiss Alps allow analyzing fluid and deformation processes near the transition zone region (30–40 km paleodepth...

  15. Frictional behaviour of megathrust fault gouges under in-situ subduction zone conditions

    NARCIS (Netherlands)

    den Hartog, S.A.M.

    2013-01-01

    Subduction zone megathrusts generate the largest earthquakes and tsunamis known. Understanding and modelling “seismogenesis” on such faults requires an understanding of the frictional processes that control nucleation and propagation of seismic slip. However, experimental data on the frictional

  16. Electrical conductivity imaging in the western Pacific subduction zone

    Science.gov (United States)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005

  17. Dating Subduction Zone Metamorphism with Garnet and Lawsonite Geochronology

    Science.gov (United States)

    Mulcahy, S. R.; Vervoort, J. D.

    2013-12-01

    Lawsonite [CaAl2Si2O7(OH)2 H2O] is a critical index mineral for high- to ultrahigh-pressure metamorphism associated with subduction. Lawsonite is an important carrier of water into the mantle, a likely contributor to subduction zone seismicity, and a bearer of trace elements that link metamorphism to arc magmatism. Due to its limited pressure-temperature stability, lawsonite can serve as a powerful petrogenetic indicator of specific metamorphic events. Lu-Hf dating of lawsonite, therefore provides a potentially powerful new tool for constraining subduction zone processes in a pressure-temperature window where few successful geochronometers exist. Broad application of lawsonite Lu-Hf geochronology requires constraining the role of pressure-temperature path, lawsonite forming reactions, and the Lu and Hf systematics within lawsonite and other blueschist facies minerals. We are working to address the role of the metamorphic path on the applicability of lawsonite Lu-Hf geochronology within the Franciscan Complex of California. The Franciscan Complex preserves mafic high-grade exotic blocks in melange that underwent a counterclockwise pressure-temperature path wherein garnet, which strongly partitions heavy rare-earth elements, formed prior to lawsonite. Coherent mafic rocks within the Franciscan Complex, however, underwent a clockwise pressure-temperature path and lawsonite growth occurred prior to garnet. We sampled exotic blocks of garnet-hornblendite, garnet-epidote amphibolite, garnet-epidote blueschist, and lawsonite blueschist from the Berkeley Hills and Tiburon Peninsula of California. We collected four samples from coherent lawsonite blueschist across the lawsonite-pumpellyite-epidote isograds in Ward Creek, near Cazadero California. High-grade blocks give ages similar to existing Franciscan geochronology: multi-stage garnet in hornblendite gives the following ages: 171×1.3 Ma (MSWD 2.8) for the core and 159.4×0.9 Ma (MSWD 2.0) for the corresponding rim; 166

  18. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment

    Science.gov (United States)

    Schaefer, Andreas; Wenzel, Friedemann

    2017-04-01

    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept

  19. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.

    2017-04-01

    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  20. Influence of Initial Geometry and Boundary Conditions on Flat Subduction Models and Resulting Topography

    Science.gov (United States)

    Nelson, P.; Moucha, R.

    2014-12-01

    Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.

  1. Softening trigerred by eclogitization, the first step toward exhumation during continental subduction

    Science.gov (United States)

    Jolivet, Laurent; Raimbourg, Hugues; Labrousse, Loïc; Avigad, Dov; Leroy, Yves; Austrheim, Håkon; Andersen, Torgeir B.

    2005-09-01

    Direct observation of peak pressure deformation in exhumed subduction channels is difficult because little evidence of this deformation survives later syn-exhumation deformation. Most ultrahigh-pressure parageneses are found in continental derived metamorphic rocks making continental subduction the best context to observe peak pressure deformation. Whereas many studies have enlightened the main driving parameters of exhumation such as buoyancy forces, low viscosity in the subduction channel, overburden removal by erosion and normal faulting, a basic question is seldom considered: why is a tectonic unit disconnected from the descending lithosphere and why does it start its way towards the surface? This event, seminal to exhumation processes, must involve some deformation and decoupling of the exhumed slice from the descending slab at peak pressure conditions or close to it. Our field observations in the Bergen arc show that Caledonian eclogitization and later amphibolitization of a granulitic terrane was achieved with a consistent component of simple shear compatible with the sense of the Caledonian subduction. Thus, the sequence of deformation preserved in the Bergen Arc documents the decoupling of subducted crustal material from the descending slab at the onset of exhumation. This observation suggests that deformation in the subduction channel is largely controlled by kinematic boundary conditions, i.e. underthrusting of the subducting slab. In this context of simple shear, metamorphic reactions assisted by fracturating, fluid infiltration and ductile deformation lower the resistance of rocks and allow the localisation of shear zones and the decoupling of buoyant tectonic units from the subducting slab. These tectonic units can then be incorporated into the channel circulation and start their upward travel.

  2. Lower slab boundary in the Japan subduction zone

    Science.gov (United States)

    Tonegawa, Takashi; Hirahara, Kazuro; Shibutani, Takuo; Fujii, Naoyuki

    2006-07-01

    We have successfully detected the lower boundary of a subducting slab. The successive imaging of the lower slab boundary beneath northeastern (NE) Japan is attained by receiver function (RF) depth conversion analysis using a recent 3D tomographic velocity model. We use waveforms from 249 teleseismic events collected by Hi-net and J-array short-period stations in NE Japan. RFs are calculated through frequency domain division of radial components by vertical ones with a water level of 0.001 and a 1.0 Hz low-pass Gaussian filter. Assuming that all later phases in the radial RFs are due to Ps phases converted at discontinuities beneath stations, we calculate depth-converted RFs, mapped onto the cross-section with the CCP (common conversion point) stacking. In a cross section, the slab surface and the oceanic Moho can be imaged down to 120 km depth. For the greater depths, the RF amplitudes corresponding to them cannot be seen, because, in the oceanic crust, basalt would be completely metamorphosed to eclogite below this depth. The lower boundary of the Pacific slab can also be traced down to 200 km depth or more. It is parallel to the slab surface and the oceanic Moho, and the thickness between the slab surface and the lower boundary is ˜ 80 km. Finally, we estimate a top-to-bottom slab velocity model that explains the RFs observed at broadband stations with the synthetic RFs. This model exhibits a 13% velocity reduction downwards the lower slab boundary, which would relatively sharp for the base of the thermal boundary layer. Therefore, this sharp discontinuity is presumably considered to be the subducting G (Gutenberg) discontinuity that is formed by the change of the amount of H 2O (water), meaning that the G discontinuity is the chemical boundary at the bottom of the oceanic lithosphere. The G discontinuity depth is controlled by the potential temperature of the asthenospheric mantle beneath the mid-ocean ridge, and hence the observed thickness of 80 km, i.e. the

  3. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  4. Episodic tremor and slip in Northern Sumatra subduction zone

    Science.gov (United States)

    Sianipar, Dimas; Subakti, Hendri

    2017-07-01

    The first reported observation of non-volcanic tremor in Sunda Arc in Sumbawa, Indonesia open a possibility of discovery of episodic tremor and slip (ETS) from out of Pacific Rim. Non-volcanic tremor gives some important information about dynamic of plate boundaries. The characteristics of these tremors are visually as non-impulsive, high frequency, long-duration and low-amplitude signals. Tectonic tremor occurred in a transition part of brittle-ductile of a fault and frequently associated with the shearing mechanism of slow slip. Tectonic tremor is a seismic case that also very interested, because it shows strong sensitivity to stress changes. Deep non-volcanic tremor is usually associated with episodic slow-slip events. Tectonic tremor is found in close association with geodetically observed slow-slip events (SSE) in subduction zones. One research found that there is possibility of SSE occurrence on Banyak Islands, North Sumatra revealed from coral observation. The SSE occurred on the Banyak Islands portion of the megathrust at 30-55 km depth, within the downdip transition zone. We do a systematic search of episodic tremor and its possible relationship with slow-slip phenomena in Northern Sumatra subduction zone. The spectrogram analysis is done to analyze the potential tremor signals. We use three component broadband seismic stations with 20, 25, and 50 sampling per second (BH* and SH* channels). We apply a butterworth 5 Hz highpass filter to separate the signal as local tremor and teleseismic/regional earthquakes. Before computing spectrogram to avoid high-frequency artifacts to remote triggering, we apply a 0.5 Hz filter. We also convert the binary seismic data into sound waves to make sure that these events meet the tectonic tremor criterion. We successfully examine 3 seismic stations with good recording i.e. GSI, SNSI and KCSI. We find there are many evidences of high frequency episodic tremor like signals. This include an analysis of potential triggered

  5. Lithium Isotopic Fractionation in Subduction Zones: Clues From Clays

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2003-12-01

    Lithium isotope ratios show such large variations in nature (>30 per mil), that many areas of geosciences are exploring the usefulness of this system in explaining the evolution of particular rocks. Here we show how the lithium isotope ratios change during the transformation of smectite clay minerals to illite during burial metamorphism. Such a transition may be a common feature in the shallow regions of subduction zones and may ultimately affect the Li isotope compositions of fluids contributing to arc magmatism. Lithium is a ubiquitous trace element in natural formation waters that, like B, shows large isotopic fractionation especially during interactions with clay minerals. Lithium is adsorbed in the interlayer region of expandable clay minerals but is easily exchanged. Lithium is also incorporated into the octahedral sites. The substitutions of Li in two crystallographic sites of clay minerals may complicate interpretations of bulk Li-isotope ratios. We suggest that the magnitude of the isotopic fractionation of Li between fluid and clay is different in the interlayer sites of clay minerals than in the octahedral sites of clay minerals. Examination of Li contents and isotope variations in experimental reactions of smectite to illite (300C, 100MPa) shows changes with structural re-arrangement of the clay layers. The Li-isotope trend declines (from ~+6 to -13 per mil, expressed as ratios of 7/6) throughout R1-ordering of the mixed-layered illite smectite (I/S). However, the equilibrium end products of the reaction have R3-ordering and show a heavier isotope ratio (~0 per mil). This observation is very similar to the trends we observed for B-isotopes, where the interlayer B initially overprinted the tetrahedral-layer B isotope composition, but as the interlayer sites were collapsed during illitization, the equilibrium isotope composition was approached. The significant Li and B isotopic changes that occur during ordering of I/S coincides with the temperatures

  6. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II

    Science.gov (United States)

    Sree, Dave

    2015-01-01

    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  7. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe; de Gelder, Giovanni; van der Goes, Freek; Morris, Antony

    2017-04-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Supra-subduction zone (SSZ) ophiolites (i.e., emerged fragments of ancient oceanic lithosphere accreted at supra-subduction spreading centers) were generated during this subduction event, and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Current models associate these ophiolite belts to simultaneous initiation of multiple, E-W trending subduction zones at 95 Ma. Here we report paleospreading direction data obtained from paleomagnetic analysis of sheeted dyke sections from seven Neo-Tethyan ophiolites of Turkey, Cyprus, and Syria, demonstrating that these ophiolites formed at NNE-SSW striking ridges parallel to the newly formed subduction zones. This subduction system was step-shaped and composed of NNE-SSW and ESE-WNW segments. The eastern subduction segment invaded the SW Mediterranean, leading to a radial obduction pattern similar to the Banda arc. Emplacement age constraints indicate that this subduction system formed close to the Triassic passive and paleo-transform margins of the Anatolide-Tauride continental block. Because the original Triassic-Jurassic Neo-Tethyan spreading ridge must have already subducted below the Pontides before the Late Cretaceous, we infer that the Late Cretaceous Neo-Tethyan subduction system started within ancient lithosphere, along NNE-SSW oriented fracture zones and faults parallel to the E-W trending passive margins. This challenges current concepts suggesting that subduction initiation occurs along active intra-oceanic plate boundaries.

  8. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example

    Science.gov (United States)

    Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An

    2017-12-01

    The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved

  9. Multiple subduction imprints in the mantle below Italy detected in a single lava flow

    Science.gov (United States)

    Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.

    2016-09-01

    Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.

  10. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    Science.gov (United States)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  11. The Terminal Stage of Subduction: the Hindu Kush Slab Break-off

    Science.gov (United States)

    Kufner, S. K.; Schurr, B.; Sippl, C.; Yuan, X.; Ratschbacher, L.; Akbar, A. S. M.; Ischuk, A.; Murodkulov, S.; Schneider, F.; Mechie, J.; Tilmann, F. J.

    2016-12-01

    The terminal stage of subduction arrives when the ocean basin is closed and the continental margin arrives at the trench. The opposite forces of the sinking slab and buoyant continent ultimately leads to break-off of the subducted slab. This process, although common in geological history, is rarely observed, because it is short-lived. Here we report new precise earthquake hypocenters, detailed tomographic images and earthquake source mechanisms from the Hindu Kush region in Central Asia, which hint at continental subduction and plate necking. Our images provide a rare glimpse at the ephemeral process of slab break-off: the Hindu Kush slablet in its uppermost section is thinned or already severed and that intermediate depth earthquakes cluster at the neck connecting it to the deeper slab. From a strain rate analysis, we deduce that the deep portion of the slab is in the process of detaching from the shallower fragment at much higher rates than the current convergence rate at the surface. The increased strain rate might arise as the buoyant continental crust, which is dragged into the subduction system in its terminal stage, resists subduction, whereas the earlier subducted mantle lithosphere pulls from underneath.

  12. Connecting the Surface and the Deep: Evolving Role of Subduction Zone Fluids Through Time

    Science.gov (United States)

    Galvez, Matthieu Emmanuel

    2017-04-01

    The speciation of aqueous fluids controls the transport and exchange of metals and volatile elements on Earth. Subduction zones are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has been a major challenge in Earth science. I will first present thermodynamic predictions of fluid-rock equilibria that tie together models of mineralogy and fluid speciation along a range of model P-T paths. The pH of fluids in subducted crustal lithologies is uniform and confined to a mildly alkaline range, controlled by rock volatile and chlorine contents. In contrast, the pH of mantle wedge fluids exhibits marked sensitivity to minor variations in rock chemistry. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to carbon, alkali and halogens illustrates a top-down control of Earth's atmosphere - ocean chemistry on the speciation of subduction zone fluids via the hydrothermally altered oceanic lithosphere. These results provide a perspective on the physicochemical mechanisms that have coupled metal and volatile cycles in subduction zones for over 2.5 billion years.

  13. Nonlinear Responses of High-rise Buildings in Seattle for Simulated Ground Motions From Giant Cascadia Subduction Earthquakes (Mw 9.2)

    Science.gov (United States)

    Yang, J.; Heaton, T. H.

    2008-12-01

    With the exception of the 2003 Tokachi-oki earthquake, strong ground recordings from large subduction earthquakes (Mw > 8.0) are meager. Furthermore there are no strong motion recordings of giant earthquakes. However, there is a growing set of high-quality broadband teleseismic recordings of large and giant earthquakes. In this poster, we use recordings from the 2003 Tokachi-oki (Mw 8.3) earthquake as empirical Green's functions to simulate the rock and soil ground motions from a scenario Mw 9.2 subduction earthquake on Cascadia subduction zone in the frequency band of interest to flexible and large- scale buildings (0.075 to 1 Hz). The effect of amplification by the Seattle basin is considered by using a basin response Green's function which is derived from deconvolving the teleseismic waves recorded at rock sites from soil sites at the SHIP02 experiment. These strong ground motions are used to excite simulation of the fully nonlinear seismic responses of 20-story and 6-story steel moment-frame buildings designed according to both the U.S. 1994 UBC and also the Japanese building code published in 1987. We consider several realizations of the hypothetical subduction earthquake; the down-dip limit of rupture is of particular importance to the simulated ground motions in Seattle. If slip is assumed to be limited to offshore regions, then the building simulations indicate that the building responses are mostly in the linear range. However, our simulation shows that buildings with brittle welds would collapse for rupture models where rupture extends beneath the Olympic Mountains. The ground motions all have very long durations (more than 4 minutes), and our building simulations should be considered as a minimum estimate since we have used a very simple model of degradation of the structure.

  14. DEEP IMPACT 9P/TEMPEL CRUISE - RAW MRI NAV IMAGES V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains raw calibration and test images acquired by the Deep Impact Medium Resolution Instrument Visible CCD during the cruise phase of the mission....

  15. DEEP IMPACT 9P/TEMPEL CRUISE - RAW MRI CALIB DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains raw science calibration images acquired by the Deep Impact Medium Resolution Instrument Visible CCD during the cruise phase of the mission.

  16. DEEP IMPACT 9P/TEMPEL CRUISE - RAW MRI NAV IMAGES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains raw calibration and test images acquired by the Deep Impact Medium Resolution Instrument Visible CCD during the cruise phase of the mission....

  17. Cruise NF-12-03-GRNMS (Gray's Reef National Marine Sanctuary) (EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three projects are planned for the duration of this cruise: acoustic fish tracking, marine debris surveys, and collection of A. zebra samples. Two additional...

  18. ROSETTA-ORBITER CHECK GIADA 2 CR4B CRUISE4B V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Checkout 9 (PC9) was the 7th Passive Payload checkout conducted during the Rosetta spacecraft's Cruise Phase. The main objective of passive payload checkouts...

  19. Larval Fish Identification from Cruises at Oahu, TC-88-03

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — One cruise aboard the NOAA ship Townsend Cromwell was conducted during 14 April-3 May 1988. Collectors included George Boehlert, Bruce Mundy, Ronald Yoshimoto, Keith...

  20. Ichthyoplankton (biological) data collected aboard the NOAA ship Nancy Foster during cruise 0903

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Station data and ichthyoplankton (biological) data from cruise 0903 from the US Virgin Islands, British Virgin Islands, Puerto Rico, Anegada Passage, Leeward Islands...

  1. Cruise Tourism as a Factor of Development of the Investment Potential of the Ukrainian Danube

    National Research Council Canada - National Science Library

    Sergey Nezdoyminov

    2016-01-01

    The author of the article identified systemic problems in the functioning of water transport enterprises, affecting the development of investment attractiveness of cruise tourism in the Ukrainian Danube region...

  2. Flight Test Evaluation of Endurance-Maximizing Periodic Cruise Trajectories for UAV Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The benefits of periodic cruise operation of flight vehicles have been known for three decades. Although a number of papers and doctoral dissertations have studied...

  3. JUNO OUTER CRUISE RAW GRAVITY SCIENCE 1 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains archival raw, partially processed, and ancillary/supporting gravity science data acquired during the Juno outer cruise between the October...

  4. Oceanographic cruise Indian Ocean and Java Trench June 1969 (NODC Accession 7100908)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains oceanographic data which was obtained aboard H.M.A.S DIAMANTINA during an oceanographic cruise in the Java Trench and the Indian Ocean during...

  5. Oceanographic cruise: Coral Sea, Arafura Sea, and Java Trench, April - May 1969 (NODC Accession 7100914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains oceanographic data which was obtained aboard HMAS DIAMANTINA during an oceanographic cruise in the Coral Sea, Arafura Sea, and Java Trench...

  6. Evaluation of the intelligent cruise control system : volume 1 : study results

    Science.gov (United States)

    1999-10-01

    The Intelligent Cruise Control (ICC) system evaluation was based on an ICC Field Operational Test (FOT) performed in Michigan. The FOT involved 108 volunteers recruited to drive ten ICC-equipped Chrysler Concordes. Testing was initiated in July 1996 ...

  7. Predictive Eco-Cruise Control (ECC) system : model development, modeling and potential benefits.

    Science.gov (United States)

    2013-02-01

    The research develops a reference model of a predictive eco-cruise control (ECC) system that intelligently modulates vehicle speed within a pre-set speed range to minimize vehicle fuel consumption levels using roadway topographic information. The stu...

  8. PENGENDALIAN KELAJUAN KENDARAAN MENGGUNAKAN FUZZY LOGIC CONTROLLER (FLC PADA SISTEM CRUISE KONTROL

    Directory of Open Access Journals (Sweden)

    S. Susanto

    2016-11-01

    Full Text Available Pengendalian kelajuan kendaraan menggunakan FLC pada cruise control telah dilakukan dengan menginjeksi sistem fuzzy pada sistem gerak kendaraan. Sistem fuzzy terdiri dari dua himpunan masukan berupa error kelajuan dan laju error kelajuan sistem. Penambahan Fuzzy Logic Controller pada sistem gerak kendaraan berpengaruh terhadap respon sistem untuk mencapai kecepatan yang diinginkan. Dengan penambahan FLC respon kecepatan dalam mencapai kecepatan yang diinginkan semakin cepat sehingga sesuai untuk diterapkan pada cruise control.Control vehicle speed using the cruise control FLC has been done by injecting a fuzzy system on the vehicle motion system. The system consists of two sets fuzzy input is the speed error and the error rate of the speed of the system. The addition of Fuzzy Logic Controller in the vehicle motion system affect the response of the system to achieve the desired speed. With the addition of FLC response speed in reaching the desired speed more quickly so appropriate to be applied to the cruise control.

  9. Intelligent cruise control field operational test. Vol II, Appendices A-F

    Science.gov (United States)

    1998-05-01

    This document reports on a cooperative agreement between NHTSA and UMTRI entitled Intelligent Cruise Control (ICC) Field Operational Test (FOT). The main goal of the work is to characterize safety and comfort issues that are fundamental to human inte...

  10. Detection of new in-path targets by drivers using Stop & Go Adaptive Cruise Control.

    Science.gov (United States)

    Stanton, Neville A; Dunoyer, Alain; Leatherland, Adam

    2011-05-01

    This paper reports on the design and evaluation of in-car displays used to support Stop & Go Adaptive Cruise Control. Stop & Go Adaptive Cruise Control is an extension of Adaptive Cruise Control, as it is able to bring the vehicle to a complete stop. Previous versions of Adaptive Cruise Control have only operated above 26 kph. The greatest concern for these technologies is the appropriateness of the driver's response in any given scenario. Three different driver interfaces were proposed to support the detection of modal, spatial and temporal changes of the system: an iconic display, a flashing iconic display, and a representation of the radar. The results show that drivers correctly identified more changes detected by the system with the radar display than with the other displays, but higher levels of workload accompanied this increased detection. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. R2R Eventlogger: Community-wide Recording of Oceanographic Cruise Science Events

    Science.gov (United States)

    Maffei, A. R.; Chandler, C. L.; Stolp, L.; Lerner, S.; Avery, J.; Thiel, T.

    2012-12-01

    Methods used by researchers to track science events during a science research cruise - and to note when and where these occur - varies widely. Handwritten notebooks, printed forms, watch-keeper logbooks, data-logging software, and customized software have all been employed. The quality of scientific results is affected by the consistency and care with which such events are recorded and integration of multi-cruise results is hampered because recording methods vary widely from cruise to cruise. The Rolling Deck to Repository (R2R) program has developed an Eventlogger system that will eventually be deployed on most vessels in the academic research fleet. It is based on the open software package called ELOG (http://midas.psi.ch/elog/) originally authored by Stefan Ritt and enhanced by our team. Lessons have been learned in its development and use on several research cruises. We have worked hard to find approaches that encourage cruise participants to use tools like the eventlogger. We examine these lessons and several eventlogger datasets from past cruises. We further describe how the R2R Science Eventlogger works in concert with the other R2R program elements to help coordinate research vessels into a coordinated mobile observing fleet. Making use of data collected on different research cruises is enabled by adopting common ways of describing science events, the science instruments employed, the data collected, etc. The use of controlled vocabularies and the practice of mapping these local vocabularies to accepted oceanographic community vocabularies helps to bind shipboard research events from different cruises into a more cohesive set of fleet-wide events that can be queried and examined in a cross-cruise manner. Examples of the use of the eventlogger during multi-cruise oceanographic research programs along with examples of resultant eventlogger data will be presented. Additionally we will highlight the importance of vocabulary use strategies to the success of the

  12. IODP Expedition 322 Drills Two Sites to Document Inputs to The Nankai Trough Subduction Zone

    Directory of Open Access Journals (Sweden)

    Yu’suke Kubo

    2010-09-01

    Full Text Available Ocean Drilling Program were to sample and log the incoming sedimentary strata and uppermost igneous basement of the Shikoku Basin, seaward of the Nankai Trough (southwestern Japan. Characterization of these subduction inputs is one piece of the overall science plan for the Nankai Trough Seismogenic Zone Experiment. Before we can assess how various material properties evolve down the dip of the plate interface, and potentially change the fault’s behavior from stable sliding to seismogenic slip, we must determine the initial pre-subduction conditions. Two sites were drilled seaward of the trench to demonstrate how facies characterand sedimentation rates responded to bathymetric architecture. Site C0011 is located on the northwest flank of a prominent basement high (Kashinosaki Knoll, and Site C0012 is located near the crest of the seamount. Even though significant gaps remain in the coring record, and attempts to recover wireline logs at Site C0012 failed, correlations can be made between stratigraphic units at the two sites.Sedimentation rates slowed down throughout the condensed section above the basement high, but the seafloor relief was never high enough during the basin’s evolution to prevent the accumulation of sandy turbidites near the crest of the seamount. We discovered a new stratigraphic unit, the middle Shikoku Basin facies, which is typified by late Miocene volcaniclastic turbidites. The sediment-basalt contact was recovered intact at Site C0012, giving a minimumbasement age of 18.9 Ma. Samples of interstitial water show a familiar freshening trend with depth at Site C0011, but chlorinity values at Site C0012 increase above the values for seawater toward the basement contact. The geochemical trends at Site C0012 are probably a response to hydration reactions in the volcaniclastic sediment and diffusional exchange with seawater-like fluid in the upper igneous basement. These data are important because they finallyestablish an

  13. Toward computational models of magma genesis and geochemical transport in subduction zones

    Science.gov (United States)

    Katz, R.; Spiegelman, M.

    2003-04-01

    The chemistry of material erupted from subduction-related volcanoes records important information about the processes that lead to its formation at depth in the Earth. Self-consistent numerical simulations provide a useful tool for interpreting this data as they can explore the non-linear feedbacks between processes that control the generation and transport of magma. A model capable of addressing such issues should include three critical components: (1) a variable viscosity solid flow solver with smooth and accurate pressure and velocity fields, (2) a parameterization of mass transfer reactions between the solid and fluid phases and (3) a consistent fluid flow and reactive transport code. We report on progress on each of these parts. To handle variable-viscosity solid-flow in the mantle wedge, we are adapting a Patankar-based FAS multigrid scheme developed by Albers (2000, J. Comp. Phys.). The pressure field in this scheme is the solution to an elliptic equation on a staggered grid. Thus we expect computed pressure fields to have smooth gradient fields suitable for porous flow calculations, unlike those of commonly used penalty-method schemes. Use of a temperature and strain-rate dependent mantle rheology has been shown to have important consequences for the pattern of flow and the temperature structure in the wedge. For computing thermal structure we present a novel scheme that is a hybrid of Crank-Nicholson (CN) and Semi-Lagrangian (SL) methods. We have tested the SLCN scheme on advection across a broad range of Peclet numbers and show the results. This scheme is also useful for low-diffusivity chemical transport. We also describe our parameterization of hydrous mantle melting [Katz et. al., G3, 2002 in review]. This parameterization is designed to capture the melting behavior of peridotite--water systems over parameter ranges relevant to subduction. The parameterization incorporates data and intuition gained from laboratory experiments and thermodynamic

  14. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.

    2013-12-01

    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  15. A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism

    Science.gov (United States)

    Gavrilenko, M.; Herzberg, C. T.; Vidito, C. A.; Carr, M. J.; Tenner, T.; Ozerov, A.

    2016-12-01

    Calcium contents of subduction zone olivines are lower than those for olivines from modern MORB, Archean komatiites, and Hawaii (Fig. 1). A role for magmatic H2O is likely for subduction zone olivines, and we have explored the suggestion by [1] that H2O has affected the partitioning of CaO between olivine and silicate melt. We provide a provisional calibration of DCaOOl/L as a function of magmatic MgO and H2O, based on nominally anhydrous experiments (Fig. 2) and minimally degassed H2O contents of olivine-hosted melt inclusions (Fig. 3). The low diffusivity of Ca in olivine [2], when compared to that of H+ [3, 4, 5, 6], might help to retain the memory of magmatic water that is otherwise lost by diffusion and degassing. Application of our geohygrometer (Fig. 4) typically yields 3 to 4 wt. % magmatic H2O at the Kamchatka and Central American arcs for olivines having 1000 ppm Ca, which agrees with H2O maxima from melt inclusion studies [7]; Cerro Negro and Shiveluch volcanoes are exceptions, with about 6% H2O. Our geohygrometer is by no means a replacement for more accurate methods of H2O analysis, but it has the advantage of applicability in cases where olivine-hosted melt inclusions do not exist (or in case when melt inclusions are partly or completely degassed). Additionally, application of the geohygrometer to core-rim olivine Ca analyses has the potential to reveal changes in magmatic H2O, as revealed by Klyuchevskoy and Shiveluch volcanoes. High precision EMPA analyses with 10-20 µm spatial resolution on some olivine grains from Klyuchevskoy and Shiveluch show a decrease in Ca content from core centers to the rim contacts. Our geohygrometer indicates the olivine grains may record changing magmatic H2O. Furthermore, high Mg numbers and Ni contents indicate these are mantle olivines, and the inferred H2O may be recording entry from the slab to the mantle wedge, a prediction that will be tested by SIMS analyses. References: [1] Feig et al. (2006) CMP, 152

  16. Modeling of GPS velocities across the Ganges-Brahmaputra Delta - Burma Arc oblique subduction system

    Science.gov (United States)

    Steckler, M. S.; Mondal, D. R.; Akhter, S. H.; Seeber, L.; Feng, L.; Gale, J.; Howe, M.; Masson, F.; Maurin, T.; Rangin, C.

    2014-12-01

    The Burma Arc is the northward continuation of the Sumatra-Anadaman subduction zone that gave rise to the 2004 M9.3 earthquake and tsunami. Near its northern end, it is colliding with the thick sediments of the Bengal Basin. The sediments of the Ganges-Brahmaputra Delta are folded and faulted, creating a subaerial 250-km wide accretionary prism. The deformation front is blind and reaches ½ way across the delta. Whether subduction is still occurring at this highly oblique plate boundary has been hotly debated. To investigate this, we combined our 25 continuous GPS receivers in Bangladesh with the campaign network in Myanmar, processing them together with GAMIT/GLOBK. We combined this data with 28 mostly campaign GPS sites in India (Gahalaut et al., 2012) by processing using the same IGS sites and performing a Helmert transformation to place all the data in same reference frame within ITRF2008. Published Indian plate poles yield a systematic residual for Bangladeshi sites believed to be on stable India. We estimated a new pole by combining 13 Indian stations (Mahesh et al., 2013) with 2 of our stations. Due to the rapid growth of the accretionary prism and the overthrusting by the Shillong Plateau, the Burma Arc changes shape from the backstop to the front folds. To project the GPS velocities into a profile, we have experimented with several projections that vary across the foldbelt, using the arc of the earthquakes and the topography as a guide. Strike-slip is mostly absorbed by the Sagaing and CMF faults, and some additional shear is distributed over the region. The best fitting suite of models for the shortening component yield 13-15 mm/y of shortening across the arc on a shallow-dipping megathrust. Additional shortening of ~4 mm/y is absorbed in the vicinity of the Kabaw Fault, where coverage is sparse. The dip of the megathrust and the depth of its downdip end trade off with one another in the different projections. The low range of dips of 6-10° is consistent

  17. A Dynamic Geocast Solution to Support Cooperative Adaptive Cruise Control (CACC) Merging

    OpenAIRE

    Klein Wolterink, W.; Karagiannis, Georgios; Heijenk, Geert

    2010-01-01

    Cooperative Adaptive Cruise Control (CACC) is a type of cruise control in which the speed of a vehicle is controlled based on wireless communication between vehicles. In this paper we tackle the communication needed in case of fully automatic CACC merging at a junction. The first contribution of our paper is to show that to target the vehicles involved we need a special kind of geocast that takes both the geographical location and the dynamics (speed, acceleration) of a vehicle into account. ...

  18. Air-breathing hypersonic cruise - Prospects for Mach 4-7 waverider aircraft

    Science.gov (United States)

    Blankson, Isaiah M.

    1992-06-01

    In the Mach 4-7 range, waverider aircraft are considered as candidates for both short- and long-range cruise missions, as hypersonic missiles, and as high L/D highly maneuverable craft. The potential for near- and far-term application of airbreathing engines to the waverider vehicle missions and concepts is presented. Attention is focused on the cruise mission and attempts are made to compare and contrast it with the accelerator mission.

  19. Defense Science Board Task Force on Defense Strategies for Advanced Ballistic and Cruise Missile Threats

    Science.gov (United States)

    2017-01-01

    REPORT OF THE DEFENSE SCIENCE BOARD TASK FORCE ON Defense Strategies for Advanced Ballistic and Cruise Missile Threats January 2017 Office of...Science Board Task Force on Defense Strategies for Advanced Ballistic and Cruise Missile Threats completed its information-gathering in February 2016...Defense Strategies fo r Advanced Ballistic and Crui se Missile Threats l am pleased to forward the final report of the DSB Task Force on Defense

  20. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.

    2008-07-01

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  1. Plume-subduction interaction forms large auriferous provinces.

    Science.gov (United States)

    Tassara, Santiago; González-Jiménez, José M; Reich, Martin; Schilling, Manuel E; Morata, Diego; Begg, Graham; Saunders, Edward; Griffin, William L; O'Reilly, Suzanne Y; Grégoire, Michel; Barra, Fernando; Corgne, Alexandre

    2017-10-10

    Gold enrichment at the crustal or mantle source has been proposed as a key ingredient in the production of giant gold deposits and districts. However, the lithospheric-scale processes controlling gold endowment in a given metallogenic province remain unclear. Here we provide the first direct evidence of native gold in the mantle beneath the Deseado Massif in Patagonia that links an enriched mantle source to the occurrence of a large auriferous province in the overlying crust. A precursor stage of mantle refertilisation by plume-derived melts generated a gold-rich mantle source during the Early Jurassic. The interplay of this enriched mantle domain and subduction-related fluids released during the Middle-Late Jurassic resulted in optimal conditions to produce the ore-forming magmas that generated the gold deposits. Our study highlights that refertilisation of the subcontinental lithospheric mantle is a key factor in forming large metallogenic provinces in the Earth's crust, thus providing an alternative view to current crust-related enrichment models.The lithospheric controls on giant gold deposits remain unclear. Here, the authors show evidence for native gold in the mantle from the Deseado Massif in Patagonia demonstrating that refertilisation of the lithospheric mantle is key in forming metallogenic provinces.

  2. The thermodynamic regime of metamorphism in the ancient subduction zones

    Science.gov (United States)

    Perchuk, L. L.; Aranovich, L. Ya.

    1981-02-01

    Based on mineralogical themometry and baroraetry and computation of mineral reactions modelling metamorphic sequence, a geotherm for metamorphic belts of the subduction zones has been deduced. Relatively low PT-values (3 kbar/200° C) correspond to zeolite and prehnite-pumpellyite metasediments and at higher pressures and temperatures (10 kbar/400 °C) lawsonite-glaucophane assemblages become unstable. The PT-curve achieves maximum at 11 kbar and 470° C to drop down to normal geotherm (Perchuk 1977). High concentration of H2O in the metamorphic fluid has been revealed, the difference between Pf1 and P_{{text{H}}_{text{2}} {text{O}}} being less than 2 kbar. Consideration has also been given to specific thermodynamic regime of zeolite and prehnite-pumpellyite zones of the younger island arcs, where lawsoniteglaucophane zones are absent. Here the geotherm has been found to rise from 0.2kbar/120° C up to 4 kbar/350° C and P_{{text{H}}_{text{2}} {text{O}}}-regime similar to that of glaucophane schists formations.

  3. Distribution of dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone.

    Science.gov (United States)

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H; Inagaki, Fumio

    2013-04-19

    Halogenated organic matter buried in marine subsurface sediment may serve as a source of electron acceptors for anaerobic respiration of subseafloor microbes. Detection of a diverse array of reductive dehalogenase-homologous (rdhA) genes suggests that subseafloor organohalide-respiring microbial communities may play significant ecological roles in the biogeochemical carbon and halogen cycle in the subseafloor biosphere. We report here the spatial distribution of dehalogenation activity in the Nankai Trough plate-subduction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation experiments with slurries of sediment collected at various depths and locations showed that degradation of several organohalides tested only occurred in the shallow sedimentary basin, down to 4.7 metres below the seafloor, despite detection of rdhA in the deeper sediments. We studied the phylogenetic diversity of the metabolically active microbes in positive enrichment cultures by extracting RNA, and found that Desulfuromonadales bacteria predominate. In addition, for the isolation of genes involved in the dehalogenation reaction, we performed a substrate-induced gene expression screening on DNA extracted from the enrichment cultures. Diverse DNA fragments were obtained and some of them showed best BLAST hit to known organohalide respirers such as Dehalococcoides, whereas no functionally known dehalogenation-related genes such as rdhA were found, indicating the need to improve the molecular approach to assess functional genes for organohalide respiration.

  4. Mesoscale subduction at the Almeria-Oran front. Part 2. Biophysical interactions

    Science.gov (United States)

    Fielding, S.; Crisp, N.; Allen, J. T.; Hartman, M. C.; Rabe, B.; Roe, H. S. J.

    2001-10-01

    The Almeria-Oran front forms where surface waters of Atlantic and Mediterranean origin meet at the eastern end of the Alboran Sea. A multidisciplinary field experiment on RRS Discovery in December 1996, in the second observational phase of the EU-funded Observations and Modelling of Eddy scale Geostrophic and Ageostrophic motions (OMEGA) project, observed the biological impact of mesoscale frontal instability of the Almeria-Oran frontal jet. It is concluded that periodic vertical velocities of ˜20 m/day, associated with the propagation of wave-like meanders along the front, have a significant effect on the vertical distribution of zooplankton across the front despite their ability to migrate at greater speeds. Observations of a layer of fluorescence coincident with subducted surface waters indicated that phytoplankton were drawn down and along isopycnals, by cross-front ageostrophic motion, to depths of 200 m. From the study of sound-scattering layers (SSL) identified in acoustic backscatter data, a layer of zooplankton was found coincident with the drawn-down phytoplankton. This layer persisted during and despite diel vertical migration. High-resolution optical plankton counter (OPC) data showed smaller zooplankton, which did not undertake diel vertical migration, remained concentrated near the surface in the fast-flowing frontal jet.

  5. CRUISE SHIP TOURISM ON THE DANUBE RIVER. CASE STUDY: CAPITALIZATION OF DELTAIC TOURISM POTENTIAL

    Directory of Open Access Journals (Sweden)

    IRINCU Elena

    2015-12-01

    Full Text Available Over the past two decades, river cruise tourism has witnessed a strong development, being preferred by more tourists each year, to the detriment of other forms of tourism. The presence of a plethora of attractive resources, concentrated along the inland waterways represents a particular offer for tourism development, through proper planning. However, in Romania, river cruise tourism is still incipient, even though cruises on the Danube are available, on a regular basis, since the 1970s. This research focuses on cruise ship tourism on the Danube, in particularly on the deltaic sector; with the Romanian ship MS Delta Star as a case study. Following, a brief presentation of the evolution of this type of tourism on the Danube River and its peculiarities on the Romanian sector, especially in the Danube Delta, was made. The assessment framework of the tourism potential of the Danube Delta at the level of administrative-territorial units was developed by applying the methodology from the National Spatial Plan. After correlating the results of the assessment with the current capitalization of tourism potential of the delta by the cruise ship included in the study, it is highlighted the need for optimizing the structure of the offer for this tourism sector. Identifying the most valuable elements of the Danube Delta, in terms of touristical attractions and including them to future itineraries for tourists on cruise ships guarantees a better capitalization of the tourism potential attracting therefore, a greater number of tourists.

  6. An assessment of cruise NOx emissions of short-haul commercial flights

    Science.gov (United States)

    Turgut, Enis T.; Usanmaz, Oznur

    2017-12-01

    Cruise NOx emissions of aircraft are an important input parameter for studies investigating climate change due to their ability to alter the concentrations of certain trace gases, such as ozone, methane, and hydroxyl in the atmosphere, and to induce positive radiative forcing. Therefore, it is of importance to minimize estimation errors on NOx emitted from aircraft engines at high altitude. In this study, the cruise NOx emissions of a frequently-used narrow-bodied aircraft type operating domestic flights in Turkey, are quantified based on numerous actual flight, actual emissions and actual meteorological data. The overall average cruise NOx emissions index is found to be ∼10 g/kg fuel. In addition, newly-developed parameters of the aircraft cruise NOx footprint and NOx intensity are calculated to be 0.5 g/pa-NM and ∼60 g/NM, respectively. Regarding the effects of flight parameters on cruise NOx emissions, while there is a distinct increase in NOx parameters with an increase in aircraft mass, this may differ for altitude. The results reveal that the NOx emissions index tends to increase slightly by 1-2%, particularly above 28,000 ft, whereas NOx intensity decreases at a rate of 2.4-2.7% per 2000 ft of cruise altitude increase.

  7. First results from the in-situ temperature measurements by the newly developed downhole tool during the drilling cruise in the hydrothermal fields of the mid-Okinawa Trough

    Science.gov (United States)

    Kitada, K.; Wu, H. Y.; Miyazaki, J.; Akiyama, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.

    2016-12-01

    The Okinawa trough is an active backarc basin behind the Ryukyu subduction zone and exhibits active rifting associated with extension of the continental margin. The temperature measurement in this area is essential for understanding hydrothermal system and hydraulic structure. During the CK16-01 cruise this March, we have conducted the in-situ temperature measurements by the newly developed downhole tool, TRDT (Thermo-Resistant Downhole Thermometer) in hydrothermal fields of the mid-Okinawa Trough. The purpose of this measurement is to investigate the in-situ temperature structure in deep-hot zones and its variation after coring and/or drilling. TRDT was designed by JAMSTEC as a memory downhole tool to measure in-situ borehole temperature under the extreme high temperature environment. First trial was conducted in the CK14-04 cruise by the free fall deployment to reduce the operation time. However, there was no temperature data recorded due to the strong vibration during the operation. After CK14-04 cruise, TRDT was modified to improve the function against vibration and shock. The improved TRDT passed the high temperature, vibration and shock tests to ensure the data acquisition of borehole logging. During the CK16-01 cruise, we have first successfully collected the in-situ temperature data from hydrothermal borehole in the Iheya North Knoll with wireline system. The temperature at depth of 187mbsf continued to increase almost linearly from 220 to 245°C during the 20 minute measurements time. This suggests that the inside borehole was cooled down by pumping seawater through drill pipes during the coring and lowering down the TRDT tool to the bottom hole. The in-situ temperature were extrapolated with exponential curve using nonlinear least squares fitting and the estimated equilibrium temperature was 278°C. To recover the in-situ temperature more precisely, the measurement time should kept as long as possible by considering the temperature rating. The operational

  8. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    Energy Technology Data Exchange (ETDEWEB)

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  9. Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.

    Science.gov (United States)

    Eom, Hwisoo; Lee, Sang Hun

    2015-06-12

    A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.

  10. Pleasure in using adaptive cruise control: A questionnaire study in The Netherlands.

    Science.gov (United States)

    de Winter, J C F; Gorter, C M; Schakel, W J; van Arem, B

    2017-02-17

    Adaptive cruise control (ACC), a technology that allows for automated car following, is becoming increasingly prevalent. Previous surveys have shown that drivers generally regard ACC as pleasant but that they have to intervene when the ACC reaches its operational limits. The former research has been mostly concerned with specific car brands and does not fully reflect the diversity of ACC types in traffic today. The objective of the present research was to establish the determinants of pleasure in using ACC. A 55-item online questionnaire was completed by Dutch users of diverse ACC systems. Respondents (N = 182) rated their ACC highly, with a mean score of 8.0 on a scale from 1 (extraordinarily negative) to 10 (extraordinarily positive) and were most pleased with ACC on high-speed roads and in low-density traffic. Moreover, the findings point to specific operational limits such as associated with cut-in situations. Pleasure was greater for the types of ACC that are able to decelerate to a full stop, according to 48% of our sample. An analysis of the free-response items indicated that respondents who were displeased with ACC mentioned its occasional clumsiness and the dangerous situations it may evoke, whereas those who were pleased with ACC valued the complementarity of human and machine and emphasized the roles of responsibility and experience in using ACC. Pleasure in using ACC is a function of both technological advances and human factors.

  11. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in slab-derived elements to the locus of partial melting in subduction zones.

  12. Analyzing One-Sided vs. Two-Sided Subduction Arising from Mantle Convection Simulations

    Science.gov (United States)

    Kaplan, M. S.; Becker, T. W.

    2013-12-01

    Purely thermal plate tectonic generation models struggle to consistently reproduce one-sided subduction as is observed on Earth (Tackley 2000; Van Heck and Tackley 2008; Foley and Becker 2009), and instead produce two-sided subduction where the subducting slab contains a significant flux of material from both plates. The models of Crameri et al. (2012) demonstrate that the implementation of a free upper surface boundary condition and the inclusion of a weak hydrated crust can facilitate one-sided subduction. We employ a similar model configuration to Crameri et al. (2012) to further investigate the dynamics and energetics which are associated with one-sided vs. two-sided subduction. We use a 2D finite difference code based off of the algorithms of I2ELVIS (Gerya and Yuen 2007) where material parameters are tracked on Lagrangian markers and the Stokes and Energy equations are solved on a Cartesian grid. A free surface is implemented by a low viscosity and density 'sticky air layer' (Schmeling et al., 2008; Crameri et al., 2012) with the stabilization routine of Duretz et al. (2011) to prevent the 'drunken seaman' instability (Kaus et al., 2010). The effects of a weak crust, shear heating, a free surface or free slip upper mechanical boundary condition, plasticity as a function of depth or pressure, and the sticky air layer thermal conductivity on one-sided vs. two-sided subduction are investigated. When we observe one-sided subduction it is transient and can smoothly evolve back to a two-sided configuration. In our models, 'sidedness' is a spectrum, rather than either discretely one or two sided, and the models move between the two regimes throughout the model runs. We observe that the thermal conductivity of the sticky air layer can influence the dynamics of the convective domain. Elevated values of thermal conductivity compared to those of rock must be implemented in the sticky air layer in order to maintain a constant temperature at the surface of the convective

  13. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    Science.gov (United States)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located

  14. Student Experiences: the 2013 Cascadia Initiative Expedition Team's Apply to Sail Program

    Science.gov (United States)

    Mejia, H.; Hooft, E. E.; Fattaruso, L.

    2013-12-01

    During the summer of 2013, the Cascadia Initiative Expedition Team led six oceanographic expeditions to recover and redeploy ocean bottom seismometers (OBSs) across the Cascadia subduction zone and Juan de Fuca plate. The Cascadia Initiative (CI) is an onshore/offshore seismic and geodetic experiment to study questions ranging from megathrust earthquakes to volcanic arc structure to the formation, deformation and hydration of the Juan de Fuca and Gorda plates with the overarching goal of understanding the entire subduction zone system. The Cascadia Initiative Expedition Team is a team of scientists charged with leading the oceanographic expeditions to deploy and recover CI OBSs and developing the associated Education and Outreach effort. Students and early career scientists were encouraged to apply to join the cruises via the Cascadia Initiative Expedition Team's Apply to Sail Program. The goal of this call for open participation was to help expand the user base of OBS data by providing opportunities for students and scientists to directly experience at-sea acquisition of OBS data. Participants were required to have a strong interest in learning field techniques, be willing to work long hours at sea assisting in OBS deployment, recovery and preliminary data processing and have an interest in working with the data collected. In total, there were 51 applicants to the Apply to Sail Program from the US and 4 other countries; 21 graduate students as well as a few undergraduate students, postdocs and young scientists from the US and Canada were chosen to join the crew. The cruises lasted from 6 to 14 days in length. OBS retrievals comprised the three first legs, of which the first two were aboard the Research Vessel Oceanus. During each of the retrievals, multiple acoustic signals were sent while the vessel completed a semi-circle around the OBS to accurately determine its position, a final signal was sent to drop the seismometer's anchor, and finally the ship and crew

  15. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    OpenAIRE

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    2017-01-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distribut...

  16. Subduction zone processes and continental crust formation in the southern Central Andes: insights from geochemistry and geochronology

    OpenAIRE

    Jones, Rosemary Ellen

    2014-01-01

    Subduction zones, such as the Andean convergent margin, are the sites at which new continental crust is generated, and where subducting material is either recycled to the crust via arc magmatism or transferred to the deep mantle. The composition of arc magmas and associated new continental crust reflects variable contributions from mantle, crustal and subducted reservoirs. Insights into crustal growth and recycling processes in the southern Central Andes, specifically in the ...

  17. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation

    Science.gov (United States)

    van Hinsbergen, Douwe J. J.; Vissers, Reinoud L. M.; Spakman, Wim

    2014-04-01

    The western Mediterranean recorded subduction rollback, slab segmentation and separation. Here we address the questions of what caused Oligocene rollback initiation, and how its subsequent evolution split up an originally coherent fore arc into circum-southwest Mediterranean segments. We kinematically reconstruct western Mediterranean geology from subduction initiation to present, using Atlantic plate reconstructions as boundary condition. We test possible reconstructions against remnants of subducted lithosphere imaged by seismic tomography. Transform motion between Africa and Iberia (including the Baleares) between 120 and 85 Ma was followed by up to 150 km convergence until 30 Ma. Subduction likely initiated along the transform fault that accommodated pre-85 Ma translation. By the 30 Ma inception of rollback, up to 150 km of convergence had formed a small slab below the Baleares. Iberia was disconnected from Sardinia/Calabria through the North Balearic Transform Zone (NBTZ). Subduction below Sardinia/Calabria was slightly faster than below the Baleares, the difference being accommodated in the Pyrenees. A moving triple junction at the trench-NBTZ intersection formed a subduction transform edge propagator fault between the Baleares and Calabria slab segments. Calabria rolled back eastward, whereas the Baleares slab underwent radial (SW-S-SE) rollback. After Kabylides-Africa collision, the western slab segment retreated toward Gibraltar, here reconstructed as the maximum rollback end-member model, and a Kabylides slab detached from Africa. Opening of a slab window below the NBTZ allowed asthenospheric rise to the base of the fore arc creating high-temperature metamorphism. Western Mediterranean rollback commenced only after sufficient slab-pull was created from 100 to 150 km of slow, forced subduction before 30 Ma.

  18. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    Science.gov (United States)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  19. Long distance transport of eclogite and blueschist during early Pacific Ocean subduction rollback

    Science.gov (United States)

    Tamblyn, Renee; Hand, Martin; Kelsey, David; Phillips, Glen; Anczkiewicz, Robert

    2017-04-01

    The Tasmanides in eastern Australia represent a period of continental crustal growth on the western margin of the Pacific Ocean associated with slab rollback from the Cambrian until the Triassic. During rollback numerical models predict that subduction products can become trapped in the forearc (Geyra et al., 2002), and can migrate with the trench as it retreats. In a long-lived subduction controlled regime such as the Tasmanides, this should result in an accumulation of subduction products with protracted geochronological and metamorphic histories. U-Pb, Lu-Hf, Sm-Nd and Ar-Ar geochronology and phase equilibria modelling of lawsonite-eclogite and garnet blueschist in the Southern New England Fold Belt in Australia demonstrate that high-P low-T rocks remained within a subduction setting for c. 40 Ma, from c. 500 to 460 Ma. High-P metamorphic rocks initially formed close to the Australian cratonic margin during the late Cambrian, and were subsequently transported over 1500 Ma oceanward, during which time subducted material continued to accumulate, resulting in the development of complex mélange which records eclogite and blueschist metamorphism and partial exhumation over 40 Ma. The duration of refrigerated metamorphism approximates the extensional evolution of the upper plate which culminated in the development of the Lachlan Fold Belt. The protracted record of eclogite and blueschist metamorphism indicates that rapid exhumation is not necessarily required for preservation of high-pressure metamorphic rocks from subduction systems. Reference: Gerya, T. V., Stockhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 6-1-6-19. doi:10.1029/2002tc001406

  20. Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow

    Science.gov (United States)

    Evangelidis, C. P.

    2017-12-01

    The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve

  1. Shear wave splitting and the dynamics of the hydrated mantle wedge in subduction regions constrained by the example of the Ryukyu subduction zone

    Science.gov (United States)

    Nagaya, T.; Walker, A.; Wookey, J. M.; Wallis, S.; Ishii, K.; Kendall, J. M.

    2016-12-01

    H2O-rich subduction fluids are a key component of convergent plate margin dynamics, essential to earthquake initiation and magma formation. These fluids in the wedge mantle are dominantly derived from antigorite dragged down by plate motion. However, the accurate distribution of antigorite-rich serpentinite related to the fluid transport in subduction zones has thus far been difficult to determine. Our approach is to model the S-wave splitting of the Ryukyu arc in order to constrain the distribution, amount and orientation of antigorite, while taking into account the geometry of seismic ray paths and the elastic anisotropy of deformed antigorite-bearing mantle. We have also carried out a full assessment of uncertainties associated with our analysis including time delay estimates from the seismic waves themselves, crustal anisotropy, averaging schemes for CPO, and the strength of antigorite CPO patterns. The results suggest the presence of a large-scale flow in the hydrous mantle with a low viscosity and more than 54% of this domain consists of antigorite. Other geophysical observations in the forearc mantle including the low seismic velocity and gravity anomaly are also compatible with our inference of the presence of induced flow in an antigorite-rich, hydrated mantle wedge in the Ryukyu arc. We have also constructed a geodynamic model to examine flow patterns in the hydrated shallow wedge mantle using the distribution and proportion of serpentinite derived from our seismic model and subduction parameters that are close to those of the arc. The results clearly show that convection occurs in the serpentinized mantle wedge and that this domain is associated with a low surface heat flow. S-wave splitting observations in other subduction zones implies this large-scale serpentinization and hydrous mantle flow is likely to be more widespread than generally recognized and the view that the forearc mantle of cold subduction zones lacks significant zones of hydration needs

  2. A STUDY ON INVESTIGATING THE CONSUMER PERCEPTIONS REGARDING THE ADVERTISEMENTS OF CRUISE SHIPPING COMPANIES IN SOCIAL MEDIA

    OpenAIRE

    Özgezmez, Özlem; Denktaş Şakar, Gül

    2017-01-01

    Cruise tourism has becomean important input in terms of tourism revenues of the countries. Increasingimportance of cruise tourism has been possible not only with the impact ofmacro environmental factors, but also with the impact of micro environmentalfactors. Advertisements play a crucial role for cruise shipping companies topromote themselves to their existing and/or potential customers.  The purpose of this study is to investigatethe perceptions of the potential consumers regarding the adve...

  3. Effect of adaptive cruise control systems on traffic flow

    Science.gov (United States)

    Davis, L. C.

    2004-06-01

    The flow of traffic composed of vehicles that are equipped with adaptive cruise control (ACC) is studied using simulations. The ACC vehicles are modeled by a linear dynamical equation that has string stability. In platoons of all ACC vehicles, perturbations due to changes in the lead vehicle’s velocity do not cause jams. Simulations of merging flows near an onramp show that if the total incoming rate does not exceed the capacity of the single outgoing lane, free flow is maintained. With larger incoming flows, a state closely related to the synchronized flow phase found in manually driven vehicular traffic has been observed. This state, however, should not be considered congested because the flow is maximal for the density. Traffic composed of random sequences of ACC vehicles and manual vehicles has also been studied. At high speeds ( ˜30 m/s ) jamming occurs for concentrations of ACC vehicles of 10% or less. At 20% no jams are formed. The formation of jams is sensitive to the sequence of vehicles (ACC or manual). At lower speeds ( ˜15 m/s ) , no critical concentration for complete jam suppression is found. Rather, the average velocity in the pseudojam region increases with increasing ACC concentration. Mixing 50% ACC vehicles randomly with manually driven vehicles on the primary lane in onramp simulations shows only modestly reduced travel times and larger flow rates.

  4. Control integration concept for hypersonic cruise-turn maneuvers

    Science.gov (United States)

    Raney, David L.; Lallman, Frederick J.

    1992-01-01

    Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.

  5. Use patterns among early adopters of adaptive cruise control.

    Science.gov (United States)

    Xiong, Huimin; Boyle, Linda Ng; Moeckli, Jane; Dow, Benjamin R; Brown, Timothy L

    2012-10-01

    The objective of this study was to investigate use patterns among early adopters of adaptive cruise control (ACC). Extended use ofACC may influence a driver's behavior in the long-term, which can have unintended safety consequences. The authors examined the use of a motion-based simulator by 24 participants (15 males and 9 females). Cluster analysis was performed on drivers' use of ACC and was based on their gap settings, speed settings, number of warnings issued, and ACC disengaged. The data were then examined on the basis of driving performance measures and drivers' subjective responses to trust in ACC, understanding of system operations, and driving styles. Driving performance measures included minimum time headway, adjusted minimum time to collision, and drivers' reaction time to critical events. Three groups of drivers were observed on the basis of risky behavior, moderately risky behavior, and conservative behavior. Drivers in the conservative group stayed farther behind the lead vehicle than did drivers in the other two groups. Risky drivers responded later to critical events and had more ACC warnings issued. Safety consequences with ACC may be more prevalent in some driver groups than others. The findings suggest that these safety implications are related to trust in automation, driving styles, understanding of system operations, and personalities. Potential applications of this research include enhanced design for next-generation ACC systems and countermeasures to improve safe driving with ACC.

  6. Geodynamical Analysis of Plate Reconstructions based on Subduction History Models

    Science.gov (United States)

    Quevedo, L. E.; Butterworth, N. P.; Matthews, K. J.; Morra, G.; Müller, R. D.

    2011-12-01

    We present a novel method to produce global subduction history models from plate reconstructions and use their predicted geodynamic behaviour as a quality metric for the physical consistency of absolute motions. We show that modelled slabs constructed by advecting material into the mantle according to absolute and relative plate motions given by a particular reconstruction are better correlated with the present day slab dips observed in mantle tomography than instantaneous kinematic quantities like present convergence rate. A complete simulation incorporating lithospheric thickness derived from oceanic age and a rheological model of the lithosphere was run using the Boundary Element Method-based software BEMEarth to infer the global pattern of mantle flow. The predicted plate motion orientations in the form of Euler pole location for the present day and mid-Cretaceous (125 Ma) were compared with the kinematic model for a set of rheologies and mantle structures, and found to be a robust and efficient indicator of the physical consistency of kinematic reconstructions based on their effect on the balance of plate driving forces. As an application example, during the Early Cretaceous, the predicted motion of the Farallon plate was found to be more consistent with the regional geology of the Western North American Cordillera system than the instantaneous motion suggested by a reconstruction at 125 Ma based on sparse hotspot track data on the Pacific Plate. This suggests that a methodology based on forward geodynamic modellling could be used to predict absolute plate motions in reconstructions for times that are ill-constrained by observations constraining absolute plate motions.

  7. The Southern Tyrrhenian subduction system: recent evolution and neotectonic implications

    Directory of Open Access Journals (Sweden)

    A. Argnani

    2000-06-01

    Full Text Available Geological and geophysical data have been integrated with the aim of presenting a new evolutionary model for the Southern Tyrrhenian and adjacent regions. The Southern Tyrrhenian backarc basin opened within a plate convergence regime because of sinking and rollback of the oceanic Ionian lithosphere. On the basis of seismological observations, I infer that the sinking slab was torn apart on either side in the last 2 Ma and this process controlled the neotectonics of the Southern Apennines - Tyrrhenian region. On the north-eastern side the slab broke off from NW to SE and this process triggered volcanism and NW-SE extension along the Eastern Tyrrhenian margin, and strike-slip tectonics along NW-SE trending faults in Northern Calabria. On the south-western side the slab broke off from W to E along the Aeolian Island alignment, although the tear has currently been reoriented along the NNW-SSE Malta escarpment. During its sinking the subducted slab also detached from the overriding plate, favouring the wedging of the asthenosphere between the two plates and the regional uplift of the Calabrian arc and surroundings. This regional uplift promoted gravitational instability within the orogenic wedge, particularly towards low topography areas; the large-scale sliding of the Calabrian arc towards the Ionian basin can be the cause of CW rotation and graben formation in Calabria. Also the E-dipping extensional faults of the Southern Apennines can be related to accommodation of vertical motions within the fold-and-thrust belt. The pattern of recent seismicity reflects this neotectonics where crustal-scale gravity deformation within the orogenic wedge is responsible for extensional earthquakes in Calabria and the Southern Apennines, whereas Africa plate convergence can account for compressional earthquakes in Sicily.

  8. Constraints on Subduction Zone Processes from Low Frequency Earthquakes

    Science.gov (United States)

    Bostock, M. G.

    2015-12-01

    The discovery of tectonic tremor and constituent low-frequency earthquakes (LFEs) offers seismologists new opportunities to study both deformational processes and structure within the subduction zone forearc. This assertion is especially true for northern Cascadia where i) regular seismicity is sparse, and ii) a relatively transparent overriding plate inflicts minimal distortion upon direct P and S wave arrivals from LFEs. Despite low signal-to-noise ratios, LFEs are highly repetitive and signal can be enhanced through construction of stacked templates. Studies in both Cascadia and Nankai reveal an association between LFE hypocenters and a high Vp/Vs, low-velocity zone (LVZ) that is inferred to represent overpressured upper oceanic crust. Scattered signals within Vancouver Island templates, interpreted to originate at boundaries of the LVZ, place LFEs within the LVZ and suggest that this structure may define a distributed (several km) zone of deformation. A recent analysis of LFE magnitudes indicates that LFEs exhibit scaling relations distinct from both regular earthquakes and longer period (10's of seconds to days) phenomena associated with slow slip. Regular earthquakes generally obey a scaling of moment proportional to duration cubed consistent with self similarity, whereas long period slow slip phenomena exhibit a linear scaling between moment and duration that can be accommodated through constant slip or constant stress drop models. In contrast, LFE durations are nearly constant suggesting that moment is governed by slip alone and that asperity size remains approximately constant. The implied dimensions (~1 km2), the persistance of LFEs in time and their stationarity in space point to structural heterogeneity, perhaps related to pockets of upper oceanic crust impervious to hydrothermal circulation, as a fundamental control.

  9. FAKTOR-FAKTOR YANG MEMPENGARUHI KUALITAS PELAYANAN PADA SCOOT FAST CRUISES DI BALI

    Directory of Open Access Journals (Sweden)

    Nengah Ardane

    2017-07-01

    Full Text Available Mode of water transport is very important in the tourism industry as a support in providing the best service for tourists. Transportation is the cause and the effect of the growth of tourist in Bali. Scoot Fast Cruises is transport services to Lembongan, Lombok and Senggigi. Based on Trip Advisor rating in the quality of service that is provided by Scoot Fast Cruises still very poor (158. This study aims to determine the factors that affect the service quality at Scoot Fast Cruises in Bali. Sampling technique used in this study using purposive sampling of respondents are crossing service users Scoot Fast Cruises in Bali with a total sample of 100 respondents. The data collection techniques using a questionnaire that was tested using the test validity and reliability. Analysis of the data used in this study is factor analysis using SPSS 17.0. The results of the factor analysis there are three factors that affect the service quality at Scoot Fast Cruises in Bali that is a factor completeness of facilities and services to get service with a value of eigen value 7.390, factor accuracy of services to the value of eigen value of 1.397 and the convenience factor rating with eigen values ??value amounting to 1.307. Factors completeness and ease of getting care facilities is a contributing factor dominant in influencing quality of tourist services at Scoot Fast Cruises in Bali. For further research that will lift the title of the research about the factors that affect the quality of service on a fast boat to take a shuttle to the hotel indicators and increasing the number of respondents and indicators. As for the company Scoot Cruises to take into account the convenience of tourists.

  10. Deformation Patterns and Subduction Behavior of Continental Lithosphere Entering a Trench

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.

    2007-05-01

    We perform 2-D numerical simulations of continental lithosphere entering a subduction zone, to better understand deformation patterns resulting from subduction of a continental margin. The model consists of a subduction zone in which an attached slab drives subduction of a passive continental margin beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study we employ this feature to study how lithospheric-scale deformation around and within the subduction zone is influenced by surface processes such as erosion, and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography and trench location, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the lithospheric age and temperature structure; the strength of the lower crust; the presence of a weak zone at the plate interface; the amounts of erosion; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. We find that the strength of the overriding plate influences surface uplift and the shape of subsurface deformation, and that the density and thermal structure of the subducting plate affects trench motion. Denser slab roll back, and younger, lighter slabs advance, while neither slab rheology nor the presence of erosion greatly affect trench location. For all cases

  11. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  12. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    Science.gov (United States)

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  13. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    Science.gov (United States)

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  14. Subduction zones dynamics and structure from coupled geodynamic and seismological modelling

    Science.gov (United States)

    Faccenda, Manuele

    2017-04-01

    The present-day structure of subduction settings is mainly determined by means of seismological methods. The interpretation of seismological data (e.g., isotropic and anisotropic velocity anomalies) is however non-unique, as different processes occurring simultaneously at subduction zones can be invoked to explain the observations. A further complication arises when regional tomographic seismic models ignore seismic anisotropy, in which case apparent seismic anomalies due to non-uniform sampling of anisotropic areas will appear. In order to decrease the uncertainties related to the interpretation of seismological observations, geodynamic modelling can be exploited to reproduce the micro and macro scale dynamics and structure of subduction settings, yielding a valuable first-order approximation of the rock isotropic and anisotropic elastic properties. The model output can be subsequently tested against observations by performing seismological synthetics (e.g., SKS splitting, travel-time tomography, receiver functions, azimuthal and radial anisotropy). When the misfit between the modelled and measured seismic parameters is low, the geodynamic model likely provides a good approximation of the recent dynamics and present-day structure of the subduction setting. Such a model can then be used to give a more robust and thermomechanically-based interpretation of the observables and/or further improve the seismological model by providing a-priori information for subsequent inversions. The methodology is still in its infancy, but we envisage that future developments could substantially improve seismological models and, overall, our understanding of complex subduction settings.

  15. Necessity of the Ridge for the Flat Slab Subduction: Insights from the Peruvian Flat Slab

    Science.gov (United States)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Long, M. D.; Zandt, G.; Tavera, H.

    2014-12-01

    Flattening of the subducting plate has been linked to the formation of various geological features, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005]. However, the mechanism responsible for the slab flattening is still poorly understood. Here we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~80 km depth and travels horizontally for several hundred kilometers, at which point steep subduction resumes. Based on a 1500 km long volcanic gap and intermediate depth seismicity patterns, the Peruvian flat slab appears to have the greatest along-strike extent and, therefore, has been suggested as a modern analogue to the putative flat slab during the Laramide orogeny in the western United States (~80-55 Ma). Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the subducting Nazca plate is not uniformly flat along the entire region, but fails to the north of the subducting Nazca Ridge. Our results show that, in combination with trench retreat, rapid overriding plate motion, and/or presence of a thick cratonic root, the subduction of buoyant overthickened oceanic crust, such as the Nazca Ridge, is necessary for the formation and sustainability of flat slabs. This finding has important implications for the formation of flat slabs both past and present.

  16. Neotectonics of a subduction/strike-slip transition: the northeastern Dominican Republic

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, M.A.; McCann, W.R.

    1985-01-01

    The Septentrional fault system in the northeastern Dominican Republic marks the zone where the North American-Carribean plate boundary is evolving from subduction to strike-slip motion, and where terranes appear to be forming and migrating laterally in a subduction complex/forearc region. On the Island of Hispaniola, slip vectors are oblique to the strike of the Puerto Rico trench, and oblique subduction thrusts the upper plate over normal seafloor. The offshore geology and seismicity of the northern Caribbean suggest that uplift, broad crustal warping, thrusting, and strike-slip faulting (ie. collisional tectonics) should be present in the northern part of the Dominican Republic. The high topography (>1000m), high levels of seismicity, and large earthquakes support the hypothesis of contemporary deformation in Hispaniola. In this region, the subduction regime dies out toward the west, and deformation is transferred to onshore, oblique-slip faults. As this change in tectonic style has occurred in Neogene to Recent times, we are investigating the modern evolution of a plate boundary. We have already documented: (1) the presence of a strike-slip faulting in the northeastern Dominican Republic; (2) an anomalous push-up structure; and (3) a region of numerous splay faults. In conclusion, recent seismicity suggest a wide zone of deformation and variations in interplate motions near Hispaniola. This island lies at the western limit of active underthrusting and at the eastern limit of onshore faulting, i.e., at an important transition from a subduction to strike-slip regime.

  17. Loss of solar He and Ne from IDPS in subducting sediment: Diffusion and the effect of phase changes

    Science.gov (United States)

    Hiyagon, H.

    1994-01-01

    The results of the diffusion experiment for solar He and Ne in IDP's in a magnetic separate from Pacific Ocean sediment suggest that solar He and Ne would be easily released from IDP grains and hence lost from subducting slabs at shallow depths. However, since the diffusion experiments was conducted under high vacuum, there may be a possibility that magnetite grains, which are supposedly the main constituent of the magnetic fraction, might be partly reduced to form a metal phase due to low oxygen fugacity in the experimental condition. If this is the case, such a phase change might affect the gas release and hence the results of the diffusion coefficients. In order to examine whether or not such a phase change really occurred in the condition of the diffusion experiment, I conducted a heating experiment for a magnetic separate from Pacific Ocean sediment. In the same condition as in the diffusion experiment, and the run products were examined with an x ray diffraction method. Three samples were prepared: they were wrapped with platinum foil, put in a vacuum line, and heated in a molybdenum crucible for two hours at 500 C, 800 C,and 950 C, respectively. After cooling the furnace, the samples were taken out from the crucible and analyzed with an x ray diffraction method.

  18. Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench

    Science.gov (United States)

    Nishizawa, A.; Kaneda, K.; Watanabe, N.; Oikawa, M.

    2009-03-01

    We present detailed P-wave velocity models of subducting seamounts from two wide-angle seismic experiments across the Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench. Common characteristics of the velocity models of the seamounts are that the maximum crustal thicknesses of the seamounts are 12-17 km thicker than a typical oceanic crust and that Pn velocities beneath the seamounts are approximately 7.7 km/s, i.e., slower then those of the neighboring area. These features are very similar to the crustal models for the seamounts produced by the Cretaceous off-ridge volcanism on the Pacific Basin.

  19. H2O and CO2 devolatilization in subduction zones: implications for the global water and carbon cycles (Invited)

    Science.gov (United States)

    van Keken, P. E.; Hacker, B. R.; Syracuse, E. M.; Abers, G. A.

    2010-12-01

    Subduction of sediments and altered oceanic crust functions as a major carbon sink. Upon subduction the carbon may be released by progressive metamorphic reactions, which can be strongly enhanced by free fluids. Quantification of the CO2 release from subducting slabs is important to determine the provenance of CO2 that is released by the volcanic arc and to constrain the flux of carbon to the deeper mantle. In recent work we used a global set of high resolution thermal models of subduction zones to predict the flux of H2O from the subducting slab (van Keken, Hacker, Syracuse, Abers, Subduction factory 4: Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., under review) which provides a new estimate of the dehydration efficiency of the global subducting system. It was found that mineralogically bound water can pass efficiently through old and fast subduction zones (such as in the western Pacific) but that warm subduction zones (such as Cascadia) see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust dehydrates significantly. The degree and depth of dehydration is highly diverse and strongly depends on (p,T) and bulk rock composition. On average about one third of subducted H2O reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The present-day global flux of H2O to the deep mantle translates to an addition of about one ocean mass over the age of the Earth. We extend the slab devolatilization work to carbon by providing an update to Gorman et al. (Geochem. Geophys. Geosyst, 2006), who quantified the effects of free fluids on CO2 release. The thermal conditions were based on three end-member subduction zones with linear interpolation to provide a global CO2 flux. We use the new high resolution and global set of models to provide higher resolution predictions for the provenance and pathways of CO2 release to

  20. Temperature distribution in the upper layers of the northern and eastern Arabian Sea during Indo-Soviet monsoon experiment

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Rao, L.V.G.; Varkey, M.J.; Udayavarma, P.

    -Soviet Monsoon Experiment (ISMEX). Using the bathythermograph data collected in those cruises, vertical distribution of temperature in the upper 275 metres was studied. Along the zonal section, east of 67 degrees E meridian, the depth of thermocline was found...