WorldWideScience

Sample records for subducting plates mantle

  1. Investigating the Subduction History of the Southwest Pacific using Coupled Plate Tectonic-Mantle Convection Models

    Science.gov (United States)

    Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.

    2014-12-01

    The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.

  2. Impact of Mantle Wind on Subducting Plate Geometry and Interplate Pressure: Insights From Physical Modelling.

    Science.gov (United States)

    Boutelier, D.; Cruden, A. R.

    2005-12-01

    New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch

  3. The temporal evolution of a subducting plate in the lower mantle

    Science.gov (United States)

    Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.

    2009-04-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better

  4. Plate coupling across the northern Manila subduction zone deduced from mantle lithosphere buoyancy

    Science.gov (United States)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2017-12-01

    The Manila subduction zone is located at the plate boundary where the Philippine Sea plate (PSP) moves northwestward toward the Eurasian plate (EU) with a high convergence rate. However, historically, no large earthquakes greater than Mw7 have been observed across the northern Manila subduction zone. The poorly understood plate interaction between these two plates in this region creates significant issues for evaluating the seismic hazard. Therefore, the variation of mantle lithospheric buoyancy is calculated to evaluate the plate coupling status across the northern Manila subduction zone, based on recently published forward gravity modeling constrained by the results of the P-wave seismic crustal structure of the TAIGER (Taiwan Integrated Geodynamic Research) project. The results indicate weak plate coupling between the PSP and EU, which could be related to the release of the overriding PSP from the descending EU's dragging force, which was deduced from the higher elevation of the Luzon arc and the fore-arc basin northward toward the Taiwan orogen. Moreover, serpentinized peridotite is present above the plate boundary and is distributed more widely and thickly closer to offshore southern Taiwan orogen. We suggest that low plate coupling may facilitate the uplifting of serpentinized mantle material up to the plate boundary.

  5. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, Roy D; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay j

    2015-01-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  6. Horizontal mantle flow controls subduction dynamics.

    Science.gov (United States)

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  7. P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics

    Science.gov (United States)

    Ma, Jincheng; Tian, You; Liu, Cai; Zhao, Dapeng; Feng, Xuan; Zhu, Hongxiang

    2018-01-01

    A high-resolution model of 3-D P-wave velocity structure beneath Northeast Asia and adjacent regions is determined by using 244,180 arrival times of 14,163 local and regional earthquakes and 319,857 relative travel-time residuals of 9988 teleseismic events recorded at ∼2100 seismic stations in the study region. Our tomographic results reveal the subducting Pacific slab clearly as a prominent high-velocity anomaly from the Japan Trench to the North-South Gravity lineament (NSGL) in East China. The NSGL is roughly coincident with the western edge of the stagnant Pacific slab in the mantle transition zone (MTZ). The subducting Pacific slab has partly sunk into the lower mantle beneath Northeast China, but under the Sino-Korean Craton the slab lies horizontally in the MTZ. The NSGL, as an important tectonic line in Mainland China, is marked by sharp differences in the surface topography, gravity anomaly, crustal and lithospheric thickness and mantle seismic velocity from the east to the west. These features of the NSGL and large-scale hot and wet upwelling in the big mantle wedge (BMW) in the east of the NSGL are all related to the subduction processes of the Western Pacific plate. The Changbai intraplate volcanic group is underlain by a striking low-velocity anomaly from the upper MTZ and the BMW up to the surface, and deep earthquakes (410-650 km depths) occur actively in the subducting Pacific slab to the east of the Changbai volcano. We propose that the Changbai volcanic group is caused by upwelling of hot and wet asthenospheric materials and active convection in the BMW. The formation of other volcanic groups in the east of the NSGL is also associated with the subduction-driven corner flow in the BMW.

  8. Kinematics and flow patterns in deep mantle and upper mantle subduction models : Influence of the mantle depth and slab to mantle viscosity ratio

    NARCIS (Netherlands)

    Schellart, W. P.

    Three-dimensional fluid dynamic laboratory simulations are presented that investigate the subduction process in two mantle models, an upper mantle model and a deep mantle model, and for various subducting plate/mantle viscosity ratios (ηSP/ηM = 59-1375). The models investigate the mantle flow field,

  9. How mantle slabs drive plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  10. Crustal and upper mantle structure of the Anatolian plate: Imaging the effects of subduction termination and continental collision with seismic techniques

    Science.gov (United States)

    Delph, Jonathan R.

    The neotectonic evolution of the eastern Mediterranean is intimately tied to interactions between the underthrusting/subducting slab along the southern margin of Anatolia and the overriding plate. The lateral variations in the subduction zone can be viewed as a temporal analogue of the transition between continuous subduction and subduction termination by continent-continent collision. By investigating the lateral variations along this subduction zone in the overriding plate, we can gain insight into the processes that precede continent collision. This dissertation summarizes the results of three studies that focus on different parts of the subduction margin: 1) In the west, where the development of a slab tear represents the transition between continuous and enigmatic subduction, 2) In the east, where continent-continent collision between the Arabian and Eurasian Plate is leading to the development of the third largest orogenic plateau on earth after complete slab detachment, and 3) In central Anatolia, where the subducting slab is thought to be in the processes of breaking up, which is affecting the flow of mantle material leading to volcanism and uplift along the margin. In the first study, we interpret that variations in the composition of material in the downgoing plate (i.e. a change from the subduction of oceanic material to continental material) may have led to the development of a slab tear in the eastern Aegean. This underthrusting, buoyant continental fragment is controlling overriding plate deformation, separating the highly extensional strains of western Anatolia from the much lower extensional strains of central Anatolia. Based on intermediate depth seismicity, it appears that the oceanic portion of the slab is still attached to this underthrusting continental fragment. In the second study, we interpret that the introduction of continental lithosphere into the north-dipping subduction zone at the Arabian-Eurasian margin led to the rollback and

  11. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled......, the origin of Chlorine is explained via slab-derived fluids, and the contrast between backarc and frontal arc magmas is discussed. These results add to the understanding of the origin of the complexities in the mantle wedge under arc-backarc in a subduction zone which has transition to flat slab conditions...

  12. Subduction of the Tethys Oceans reconstructed from plate kinematics and mantle tomography

    NARCIS (Netherlands)

    Hafkenscheid, Edith

    2004-01-01

    This thesis is concerned with the large-scale history of subduction within the Tethyan region, the Alpine-Himalayan mountain chain that stretches from the Mediterranean to the Indonesian archipelago. We investigate whether we can contribute to a better understanding of the Tethyan evolution by

  13. Kinematics of subduction and subduction-induced flow in the upper mantle

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    Results of fluid dynamical experiments are presented to model the kinematics of lithospheric subduction in the upper mantle. The experiments model a dense highviscosity plate (subducting lithosphere) overlying a less dense low-viscosity layer (upper mantle). The overriding lithosphere is not

  14. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-01-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flowforce the

  15. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  16. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  17. Reaction-induced rheological weakening enables oceanic plate subduction

    OpenAIRE

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite goug...

  18. Formation and metasomatism of continental lithospheric mantle in intra-plate and subduction-related tectonic settings

    Science.gov (United States)

    Ionov, Dmitri

    2010-05-01

    , major and trace element and isotope compositions of fertile lherzolites and thus cannot provide viable alternatives to the concept of melt extraction from pristine mantle as the major mechanism of CLM formation. Published data on xenoliths from andesitic volcanoes and on supra-subduction oceanic peridotites [4] show that the most common rocks in mantle wedge lithosphere are highly refractory harzburgites characterized by a combination of variable but generally high modal opx (18-30%) with very low modal cpx (1.5-3%). At a given olivine (or MgO) content, they have higher opx and silica, and lower cpx, Al and Ca contents than normal refractory peridotite xenoliths in continental basalts; the Mg-Si and Al-Si trends in those rocks resemble those in cratonic peridotites. These features may indicate either fluid fluxing during melting in the mantle wedge or selective post-melting metasomatic enrichments in silica to transform some olivine to opx. High oxygen fugacities and radiogenic Os-isotope compositions in those rocks may be related to enrichments by slab-derived fluids, but these features are not always coupled with trace element enrichments or patterns commonly attributed to "subduction zone metasomatism" deduced from studies of arc volcanic rocks and experiments. The valuable insights provided by experimental work and xenolith case studies are difficult to apply to many natural peridotite series because late-stage processes commonly overlap the evidence for initial melting. References: [1] Herzberg C., J. Petrol. 45: 2507 (2004). [2] Ionov D. & Sobolev A., GCA 72 (S1): A410 (2008). [3] Ionov D., Contrib. Miner. Petrol. (2007) [4] Ionov D., J. Petrol. doi: 10.1093/petrology/egp090 (2010)

  19. Subducting Plate Breakup by Plume-Lithosphere Interaction

    Science.gov (United States)

    Koptev, A.; Gerya, T.; Jolivet, L.; Leroy, S. D.

    2016-12-01

    We use a 3D high-resolution thermo-mechanical modeling to investigate the impact of active mantle plume on a subducting lithospheric plate. Initial model setup consists of an overriding continental lithosphere and subducting lithospheric plate including oceanic and continental lithosphere. A mantle plume thermal anomaly has been initially seeded at the bottom of the model box underneath the continental segment of subducting plate. Mantle plume impingement on lithospheric bottom leads to thinning of continental lithosphere and decompressional melting of both lithospheric and sublithospheric mantle along stretched trench-parallel zone. Further continental breakup is followed by opening of an oceanic basin separating a newly formed microcontinent from the main subducting continent. Despite continuous push applied at the boundary of subducting plate, plume-induced oceanic basin opens during several Myrs reaching several hundred kilometers wide. Cooling of the mantle plume and beginning of collision between the separated microcontinent and the overriding continental plate lead to gradual closure of newly formed oceanic basin that gets further involved into subduction and collision. The final stage sees continental subduction of main body of subducting plate and simultaneous tectonic exhumation of the upper crust of the subducted microcontinent. This scenario involving a plume-induced rifting of a microcontinent away from main body of subducted plate can be compared to the Mesozoic-Cenozoic development of the African plate characterized by the consecutive separation of the Apulian microcontinent and Arabian plate (in the Jurassic and the Neogene, respectively) during subduction of Neo-Tethys oceanic lithosphere beneath the Eurasian margin.

  20. Seismic anisotropy and mantle flow below subducting slabs

    Science.gov (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  1. Subduction and volatile recycling in Earth's mantle

    Science.gov (United States)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  2. The subduction dichotomy of strong plates and weak slabs

    Science.gov (United States)

    Petersen, Robert I.; Stegman, Dave R.; Tackley, Paul J.

    2017-03-01

    A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography.

  3. Subduction, back-arc spreading and global mantle flow

    Science.gov (United States)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  4. Earth's oldest mantle fabrics indicate Eoarchaean subduction.

    Science.gov (United States)

    Kaczmarek, Mary-Alix; Reddy, Steven M; Nutman, Allen P; Friend, Clark R L; Bennett, Vickie C

    2016-02-16

    The extension of subduction processes into the Eoarchaean era (4.0-3.6 Ga) is controversial. The oldest reported terrestrial olivine, from two dunite lenses within the ∼3,720 Ma Isua supracrustal belt in Greenland, record a shape-preferred orientation of olivine crystals defining a weak foliation and a well-defined lattice-preferred orientation (LPO). [001] parallel to the maximum finite elongation direction and (010) perpendicular to the foliation plane define a B-type LPO. In the modern Earth such fabrics are associated with deformation of mantle rocks in the hanging wall of subduction systems; an interpretation supported by experiments. Here we show that the presence of B-type fabrics in the studied Isua dunites is consistent with a mantle origin and a supra-subduction mantle wedge setting, the latter supported by compositional data from nearby mafic rocks. Our results provide independent microstructural data consistent with the operation of Eoarchaean subduction and indicate that microstructural analyses of ancient ultramafic rocks provide a valuable record of Archaean geodynamics.

  5. Slab-mantle interactions in simulations of self-consistent mantle convection with single-sided subduction

    Science.gov (United States)

    Crameri, F.; Tackley, P. J.; Meilick, I.; Gerya, T. V.; Kaus, B. J. P.

    2012-04-01

    Subduction zones on present-day Earth are strongly asymmetric features (Zhao 2004) composed of an overriding plate above a subducting plate that sinks into the mantle. Our recent advances in numerical modelling allow global mantle convection models to produce single-sided subduction self-consistently by allowing for free surface topography on and lubrication between the converging plates (Crameri et al., 2012). Thereby, they are indicating important mantle-slab interactions. The increase of viscosity with depth is an important mantle property affecting the dynamics of subduction: a large viscosity increase on the one hand favours an immediate stagnant lid because the slab cannot sink fast enough, while a small increase on the other hand does not provide enough resistance for the sinking slab and therefore facilitates an immediate slab break-off. While in the mobile lid (plate tectonic like) regime, our model also shows that single-sided subduction in turn has strong implications on Earth's interior such as its rms. velocity or its stress distribution. The arcuate trench curvature is such a feature that is caused by single-sided subduction in 3-D geometry. The pressure difference between the mantle region below the inclined sinking slab and the region above it causes a toroidal mantle flow around the slab edges. This flow of mantle material is responsible for forming the slabs and subsequently also the subduction trenches above it towards an arcuate shape. For this study we perform experiments in 2-D and global spherical 3-D, fully dynamic mantle convection models with self-consistent plate tectonics. These are calculated using the finite volume multi-grid code StagYY (Tackley 2008) with strongly temperature and pressure-dependent viscosity, ductile and/or brittle plastic yielding, and non-diffusive tracers tracking compositional variations (the 'air' and the weak crustal layer in this case).

  6. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  7. Laboratory models of the thermal evolution of the mantle during rollback subduction.

    Science.gov (United States)

    Kincaid, C; Griffiths, R W

    2003-09-04

    The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. Information on mantle flow, thermal conditions and chemical transport in subduction zones come from the geochemistry of arc volcanoes, seismic images and geodynamic models. The majority of this work considers subduction as a two-dimensional process, assuming limited variability in the direction parallel to the trench. In contrast, observationally based models increasingly appeal to three-dimensional flow associated with trench migration and the sinking of oceanic plates with a translational component of motion (rollback). Here we report results from laboratory experiments that reveal fundamental differences in three-dimensional mantle circulation and temperature structure in response to subduction with and without a rollback component. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate and plate edges heat up faster than plate centres. In contrast, during rollback subduction flow is driven around and beneath the sinking plate, velocities increase within the mantle wedge and are focused towards the centre of the plate, and the surface of the plate heats more along the centreline.

  8. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    Science.gov (United States)

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  9. Reaction-induced rheological weakening enables oceanic plate subduction.

    Science.gov (United States)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  10. Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling

    Science.gov (United States)

    Shi, Yanan; Wei, Dongping; Li, Zhong-Hai; Liu, Ming-Qi; Liu, Mengxue

    2017-12-01

    Global seismic tomography of the subduction zones shows that the subducting slabs could either stagnate around the 660-km discontinuity, or penetrate into the lower mantle. The stagnating slabs also have various morphologies. These are directly related to the interaction between the subducting slabs and the mantle transition zone (MTZ), the dynamics of which are still debated. Using a 2-D thermo-mechanical model, we systematically investigated the modes of subduction in the mantle transition zone and explored the key constraints of various subduction styles. Four basic subduction modes are obtained in the numerical experiments, including one with slab penetrating through the 660-km discontinuity and three other modes with slab stagnating in the MTZ (i.e. folding, lying and rolling-back). The numerical models indicate that the age of subducting oceanic plate, the thickness of overriding continental lithosphere and the convergence velocity play crucial roles in the dynamics of subducting slab and MTZ interaction. In general, the young subducting slab favors the penetration or folding mode, whereas the old subducting slab tends to result in lying or rolling-back mode, although other parameters can also affect. Our models also show a strong correlation between the subduction mode selection and dip angle of the slab tip when reaching the 660-km phase boundary.

  11. Lasting mantle scars lead to perennial plate tectonics.

    Science.gov (United States)

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  12. Lasting mantle scars lead to perennial plate tectonics

    Science.gov (United States)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  13. Subduction induced mantle flow: Length-scales and orientation of the toroidal cell

    Science.gov (United States)

    Király, Ágnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio

    2017-12-01

    Subduction-induced mantle circulation plays an important role in the dynamics of convergent margins. Different components of the flow, i.e. toroidal and poloidal, provide relevant driving forces for back-arc basin formation, overriding plate deformation, curvature of subduction zones and volcanic activity. Here, we investigate on the emergence and controls on the toroidal component of the subduction-induced mantle flow by means of numerical modeling. To characterize the toroidal cell's three-dimensional flow, size and length-scales and its disposing factors, we test separately a series of lithospheric and mantle parameters, such as the density difference and viscosity ratio between the slab and the mantle, the width of the slab, as opposed to the size, the stratification and the rheology of the mantle. Out of the tested parameters, the numerical results show that the strength of the flow depends on the mantle viscosity and the magnitude of the slab pull force, that is slab-mantle density difference and the mantle thickness, however the characteristic length, axis and the shape of the toroidal cell are almost independent of the slab's properties and mainly depend on the thickness of the convecting mantle.

  14. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older

  15. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  16. Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

    Directory of Open Access Journals (Sweden)

    D. Arcay

    2012-12-01

    Full Text Available The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1 significantly if mantle viscosity at asthenospheric wedge tip is low, (2 if the difference in mantle and interplate activation energy is weak, and (3 if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate

  17. Subduction of oceanic plate irregularities and seismicity distribution along the Mexican Subduction Zone

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Gerya, Taras; Wong, Raul-Valenzuela; Radulian, Mircea

    2017-04-01

    It is known that oceanic plates morphology is not a simple one, but rather complicated by a series of irregularities as seamounts, fracture zones and mid-ocean ridges. These features present on the oceanic floor form part of the fabric of oceanic crust, and once formed they move together with the oceanic plates until eventually enter a subduction zone. Offshore Mexico the oceanic Cocos plate seafloor is littered with relatively small but numerous seamounts and seamount chains, and also large fracture zones. In this study we investigate the relationship between these oceanic irregularities located in the vicinity of the trench in Mexico and the distribution of subduction seismicity, including the rupture history of large subduction zone earthquakes. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Our preliminary study shows a direct relationship between the presence of seamounts chains on the incoming oceanic plate and the subduction seismicity distribution. We also found a clear relationship between the subduction of the Tehuantepec fracture zone (TFZ) and the low seismic activity in the region where this fracture zone intersects the trench. This region is also long term conspicuously quiet and considered a seismic gap where no significant large earthquake has occurred in more than 100 years. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Cocos plate in the region of TFZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy. The presence of serpentinite in the fore arc apparently lowers the degree of interseismic locking, producing a seismic gap in southern Mexico.

  18. Multiple subduction imprints in the mantle below Italy detected in a single lava flow

    Science.gov (United States)

    Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.

    2016-09-01

    Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.

  19. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    Science.gov (United States)

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  20. Mantle Wedge formation during Subduction Initiation: evidence from the refertilized base of the Oman ophiolitic mantle

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Godard, M.; Lemarchand, D.; Ulrich, M.

    2015-12-01

    Although the Oman ophiolite is classically regarded as being the direct analog of oceanic lithosphere created at fast spreading ridges, the geodynamic context of its formation is still highly debated. The other alternative end-member model suggests that this ophiolite entirely formed in a supra-subduction zone setting. The latter one is supported by studies on volcanic sequences whereas studies dealing on the mantle section do not involve a significant influence of subduction processes on its structure and composition. We herein focus on basal peridotites from all along the ophiolite strike in order to decipher and characterize potential fluid/melt transfers relate to subduction processes. Samples were taken across the basal banded unit directly overlying the amphibolitic/granulitic metamorphic sole which represents an accreted part of the lower plate. We carried out a petrological, structural and geochemical study on these rocks and their constitutive minerals. Our results show that basal peridotites range from lherzolites to highly depleted harzburgites in composition. Clinopyroxenes (cpx) display melt impregnation textures and co-crystallized with HT/HP amphiboles (amph), spinels and sulfurs. Major and trace elements of the constitutive minerals indicate that these minerals represent trapped incremental partial melt after hydrous melting. Different cpx-bearing lithologies then result from varying degrees of partial melting and melt extraction. Combined with Boron isotopic data, we demonstrate that fluids responsible for hydrous melting of these ophiolitic basal peridotites are subduction-related, most likely derived from dehydration of the metamorphic sole during its formation in subduction initiation. From these observations and thermal constraints, we interpret the occurrence of these basal lherzolites as representing a freezing front developed by thermal re-equilibration (cooling) during subduction processes: subduction-related hydrous partial melts were

  1. Reevaluating plate driving forces from 3-D models of subduction

    Science.gov (United States)

    Stegman, D. R.; Freeman, J.; Schellart, W. P.; Moresi, L.; May, D.; Turnbull, R.

    2004-12-01

    Subducting lithospheric slabs mechanically attached to tectonic plates provide the main driving force for surface plate motion. Numerical models historically simulate slab dynamics as a 2-D process and further simplify the problem into either a density driven model (no heat transfer) or a corner-flow problem (thermal convection) [Christensen, 2001; Enns et al., (in revision); van Keken, 2003]. Recent 3-D global models of density driven flow incorporating a history of plate motion (Conrad and Lithgow-Bertelloni, 2002) have succussfully ruled out slab "suction" (basal shear traction induced by downward flow of the slabs) as a major driving force, but exact partitioning of the remaining forces acting on the slab remain unconstrained. A survey of trenches around the world reveals that over half of the slabs presently subducted in the upper mantle have a discontinuous edge (either a slab tip on a young slab, or the side edge of a slab with finite width) around which mantle can flow: prime examples being slabs in the Mediterranean and Carribean. However, even slabs with a wide lateral extent (and where a 2-D approximation may seem appropriate), show signs of having 3-D complexity. For example, on the surface Tonga appears relatively symmetric, but when the history of subduction is considered, the slab has a twisted, 3-D structure due to significant eastward retreat of just the northern part of an originally N-S oriented trench edge. Similarly the widest slabs, South American and Kamchatka, show seismic anisotropy attributed to trench parallel mantle flow (Russo and Silver, 1994; Peyton, et al., 2001, respectively), while the Aleutian trench has oblique subduction varying in magnitude from west to east, and medium width Central American slab likely has a slab window allowing 3-D flow (Johnston and Thorkelson, 1997). Recent laboratory experiments of subduction have demonstrated the full complexity of flow occuring in 3-D geometry (Kincaid and Griffiths, 2003; Schellart

  2. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  3. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous.

    Science.gov (United States)

    Liu, Lijun; Spasojevic, Sonja; Gurnis, Michael

    2008-11-07

    Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.

  4. Seismic Structure of the Subducted Cocos Plate

    Science.gov (United States)

    Clayton, R. W.; Davis, P. M.; Perez-Campos, X.

    2007-05-01

    The Meso-American Subduction Experiment (MASE) was designed to determine the critical parameters to necessary to simulate the subduction process in Central Mexico . A preliminary analysis of the data shows a 200km section of the slab that is subhorizontal and to within the resolution of the receiver functions it underplates the continental crust with no intervening asthenosphere. This is an interesting situation because the short-term (GPS) and long-term (geologic) strain measurements show almost no compressive strain in this region. This would imply that the crust is decoupled from the subducting slab. Near the coast, the receiver functions show that the slab cuts through the crust at an approximately a 15-degree angle, and under the Trans-Mexican Volcanic Belt the slab becomes detached from the crust, but its geometry at depth is not yet determined from the receiver functions, but a well-developed mantle wedge is apparent from the attenuation of regional earthquakes.

  5. Geodynamical Analysis of Plate Reconstructions based on Subduction History Models

    Science.gov (United States)

    Quevedo, L. E.; Butterworth, N. P.; Matthews, K. J.; Morra, G.; Müller, R. D.

    2011-12-01

    We present a novel method to produce global subduction history models from plate reconstructions and use their predicted geodynamic behaviour as a quality metric for the physical consistency of absolute motions. We show that modelled slabs constructed by advecting material into the mantle according to absolute and relative plate motions given by a particular reconstruction are better correlated with the present day slab dips observed in mantle tomography than instantaneous kinematic quantities like present convergence rate. A complete simulation incorporating lithospheric thickness derived from oceanic age and a rheological model of the lithosphere was run using the Boundary Element Method-based software BEMEarth to infer the global pattern of mantle flow. The predicted plate motion orientations in the form of Euler pole location for the present day and mid-Cretaceous (125 Ma) were compared with the kinematic model for a set of rheologies and mantle structures, and found to be a robust and efficient indicator of the physical consistency of kinematic reconstructions based on their effect on the balance of plate driving forces. As an application example, during the Early Cretaceous, the predicted motion of the Farallon plate was found to be more consistent with the regional geology of the Western North American Cordillera system than the instantaneous motion suggested by a reconstruction at 125 Ma based on sparse hotspot track data on the Pacific Plate. This suggests that a methodology based on forward geodynamic modellling could be used to predict absolute plate motions in reconstructions for times that are ill-constrained by observations constraining absolute plate motions.

  6. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  7. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, Ming-Qi; Li, Zhong-Hai; Yang, Shao-Hua

    2017-09-01

    Subduction channel processes are crucial for understanding the material and energy exchange between the Earth's crust and mantle. Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. In addition, the crustal rocks generally undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channels; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. The thick overriding continental plate and the low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, the thin overriding lithosphere and the steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge

  8. Modeling mantle circulation and density distributions in subduction zones: Implications for seismic studies

    Science.gov (United States)

    Kincaid, C. R.; Druken, K. A.; Griffiths, R. W.; Long, M. D.; Behn, M. D.; Hirth, G.

    2009-12-01

    Subduction of ocean lithosphere drives plate tectonics, large-scale mantle circulation and thermal-chemical recycling processes through arcs. Seismologists have made important advances in our ability to map circulation patterns in subduction zones though anisotropy data/methods and in providing detailed images of mantle density fields. Increasingly, seismic and geodynamic disciplines are combining to extend our understanding of time varying subduction processes and associated vertical mass and energy fluxes. We use laboratory experiments to characterize three-dimensional flow fields in convergent margins for a range in plate forcing conditions and background, buoyancy-driven flow scenarios. Results reveal basic patterns in circulation, buoyant flow morphologies and density distributions that have implications for reconciling seismic data with mantle convection models. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000km of the mantle. Subducting lithosphere is modeled with a Phenolic plate and back-arc extension is produced using Mylar sheets. We recreate basic subduction styles observed in previous dynamic subduction models using simplified, kinematic forcing. Slab plate segments, driven by hydraulic pistons, move with various combinations of downdip, rollback and steepening motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of olivine alignment through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3D velocity fields for use in directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening, back-arc extension) in convergent margins produce relatively simple anisotropy patterns (e.g., trench-normal alignments) and underscore the importance of initial strain marker orientations on alignment patterns in the wedge. Results also

  9. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    Science.gov (United States)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located

  10. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    Science.gov (United States)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides

  11. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    Science.gov (United States)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  12. Shear wave splitting and the dynamics of the hydrated mantle wedge in subduction regions constrained by the example of the Ryukyu subduction zone

    Science.gov (United States)

    Nagaya, T.; Walker, A.; Wookey, J. M.; Wallis, S.; Ishii, K.; Kendall, J. M.

    2016-12-01

    H2O-rich subduction fluids are a key component of convergent plate margin dynamics, essential to earthquake initiation and magma formation. These fluids in the wedge mantle are dominantly derived from antigorite dragged down by plate motion. However, the accurate distribution of antigorite-rich serpentinite related to the fluid transport in subduction zones has thus far been difficult to determine. Our approach is to model the S-wave splitting of the Ryukyu arc in order to constrain the distribution, amount and orientation of antigorite, while taking into account the geometry of seismic ray paths and the elastic anisotropy of deformed antigorite-bearing mantle. We have also carried out a full assessment of uncertainties associated with our analysis including time delay estimates from the seismic waves themselves, crustal anisotropy, averaging schemes for CPO, and the strength of antigorite CPO patterns. The results suggest the presence of a large-scale flow in the hydrous mantle with a low viscosity and more than 54% of this domain consists of antigorite. Other geophysical observations in the forearc mantle including the low seismic velocity and gravity anomaly are also compatible with our inference of the presence of induced flow in an antigorite-rich, hydrated mantle wedge in the Ryukyu arc. We have also constructed a geodynamic model to examine flow patterns in the hydrated shallow wedge mantle using the distribution and proportion of serpentinite derived from our seismic model and subduction parameters that are close to those of the arc. The results clearly show that convection occurs in the serpentinized mantle wedge and that this domain is associated with a low surface heat flow. S-wave splitting observations in other subduction zones implies this large-scale serpentinization and hydrous mantle flow is likely to be more widespread than generally recognized and the view that the forearc mantle of cold subduction zones lacks significant zones of hydration needs

  13. The zone of influence of the subducting slab in the asthenospheric mantle

    Science.gov (United States)

    MacDougall, Julia G.; Jadamec, Margarete A.; Fischer, Karen M.

    2017-08-01

    Due to the multidisciplinary nature of combined geodynamics and shear wave splitting studies, there is still much to be understood in terms of isolating the contributions from mantle dynamics to the shear wave splitting signal, even in a two-dimensional (2-D) mantle flow framework. This paper investigates the viscous flow, lattice preferred orientation (LPO) development, and predicted shear wave splitting for a suite of buoyancy-driven subduction models using a non-linear rheology to shed light on the nature of the slab-driven asthenospheric flow and plate-mantle coupling. The slab-driven zone of influence in the mantle, LPO fabric, and resulting synthetic splitting are sensitive to slab strength and slab initial slab dip. The non-linear viscosity formulations leads to dynamic reductions in asthenospheric viscosity extending over 600 km into the mantle wedge and over 300 km behind the trench, with peak flow velocities occurring in models with a weaker slab and moderate slab dip. The olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab but can be transient and spatially variable on small length scales. The results suggest that LPO formed during initial subduction may persist into the steady state subduction regime. Vertical flow fields in the asthenosphere can produce shear wave splitting variations with back azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear wave splitting observed in real subduction zones. Furthermore, the models demonstrate the corner flow paradigm should not be equated with a 2-D subduction framework.

  14. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    Full Text Available The lower plate is the dominant agent in modern convergent margins characterized by active subduction, as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight. This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle. As geological and geochemical data seem inconsistent with the existence of modern-style ridges and arcs in the Archaean, a periodically-destabilized stagnant-lid crust system is proposed instead. Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle, perturbing Earth's heat generation/loss balance, eventually triggering mantle overturns. Archaean basalts were derived from fertile mantle in overturn upwelling zones (OUZOs, which were larger and longer-lived than post-Archaean plumes. Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods, allowing basal crustal cannibalism, garnetiferous crustal restite delamination, and coupled development of continental crust and sub-continental lithospheric mantle. Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB (mid-ocean ridge basalt mantle. Only after the start of true subduction did sequestration of subducted slabs at the core-mantle boundary lead to the development of the depleted MORB mantle source. During Archaean mantle overturns, pre-existing continents located above OUZOs would be strongly reworked; whereas OUZO-distal continents would drift in response to mantle currents. The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion, imbrication, subcretion and anatexis of unsubductable oceanic lithosphere. As Earth cooled and the background oceanic lithosphere became denser and stiffer, there would be an increasing

  15. Conjecture with water and rheological control for subducting slab in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Fumiko Tajima

    2015-01-01

    Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not

  16. Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust

    NARCIS (Netherlands)

    Edwards, Sarah J.; Schellart, Wouter P.; Duarte, Joao C.

    2015-01-01

    Continental subduction takes place in the final stage of subduction when all oceanic lithosphere is consumed and continental passive margin is pulled into the mantle. When the overriding plate is oceanic, dense forearc oceanic lithosphere might be obducted onto light continental crust forming an

  17. The Elephants' Graveyard: Constraints from Mantle Plumes on the Fate of Subducted Slabs and Implications for the Style of Mantle Convection

    Science.gov (United States)

    Lassiter, J. C.

    2007-12-01

    The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source

  18. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    Science.gov (United States)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  19. Nitrogen recycling at the Costa Rican subduction zone: The role of incoming plate structure.

    Science.gov (United States)

    Lee, Hyunwoo; Fischer, Tobias P; de Moor, J Maarten; Sharp, Zachary D; Takahata, Naoto; Sano, Yuji

    2017-10-24

    Efficient recycling of subducted sedimentary nitrogen (N) back to the atmosphere through arc volcanism has been advocated for the Central America margin while at other locations mass balance considerations and N contents of high pressure metamorphic rocks imply massive addition of subducted N to the mantle and past the zones of arc magma generation. Here, we report new results of N isotope compositions with gas chemistry and noble gas compositions of forearc and arc front springs in Costa Rica to show that the structure of the incoming plate has a profound effect on the extent of N subduction into the mantle. N isotope compositions of emitted arc gases (9-11 N°) imply less subducted pelagic sediment contribution compared to farther north. The N isotope compositions (δ(15)N = -4.4 to 1.6‰) of forearc springs at 9-11 N° are consistent with previously reported values in volcanic centers (δ(15)N = -3.0 to 1.9‰). We advocate that subduction erosion enhanced by abundant seamount subduction at 9-11 N° introduces overlying forearc crustal materials into the Costa Rican subduction zone, releasing fluids with lighter N isotope signatures. This process supports the recycling of heavier N into the deep mantle in this section of the Central America margin.

  20. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  1. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  2. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  3. Post-Eocene Subduction Dynamics and Mantle Flow beneath Western U.S.

    Science.gov (United States)

    Liu, L.; Zhou, Q.; Leonard, T.

    2015-12-01

    Both surface geology and mantle seismic images suggest a complex late Cenozoic history of mantle dynamics over western U.S. We try to understand this history by simulating the Farallon subduction since 40 Ma. Forward subduction models assimilating time dependent seafloor ages, plate kinematics and evolving plate boundaries suggest that the present-day 3D distribution of fast seismic anomalies below western U.S. mostly represent late Cenozoic slabs, which experienced multiple phases of segmentation during subduction because of their young age and small mechanical strength (Liu & Stegman, 2011). A major slab segmentation event occurred around mid-Miocene, with the resulting slab tear and induced asthenosphere upwelling correlating with the Steens-Columbia River flood basalts (SCRB) eruption both in space and in time (Liu & Stegman, 2012). This suggests that a mantle plume is not required for the formation of the SCRB. Segmentation of the Farallon slab generates rapid toroidal flows around the newly formed slab edges beneath the Cascadia arc. These mantle flows may affect both the pattern and composition of arc volcanism through transportation of oceanic asthenosphere material into the mantle wedge. Based on the forward model, we further test the influence of slow seismic anomalies on mantle dynamics. On the one hand, we explicitly input a deep hot anomaly to represent the putative Yellowstone plume. On the other hand, we develop a hybrid scheme that combines the adjoint inverse method with the high-resolution forward simulation approach, so that the present-day mantle seismic structure is entirely consistent with the convection model. Our preliminary results suggest that a hot plume could actively rise up only when it is several hundreds of kilometers away from the slabs, as is the case prior to 20 Ma. Subsequently, the plume is dominated by the surrounding slabs, resulting in an overall downwelling mantle flow. This suggests that a plume might have contributed to

  4. Mantle peridotite in newly discovered far-inland subduction complex, southwest Arizona: Initial report

    Science.gov (United States)

    Haxel, Gordon B.; Jacobson, Carl E.; Wittke, James H.

    2015-01-01

    The latest Cretaceous to early Palaeogene Orocopia Schist and related units are generally considered a low-angle subduction complex that underlies much of southern California and Arizona. A recently discovered exposure of Orocopia Schist at Cemetery Ridge west of Phoenix, Arizona, lies exceptionally far inland from the continental margin. Unexpectedly, this body of Orocopia Schist contains numerous blocks, as large as ~300 m, of variably serpentinized mantle peridotite. These are unique; elsewhere in the Orocopia and related schists, peridotite is rare and completely serpentinized. Peridotite and metaperidotite at Cemetery Ridge are of three principal types: (1) serpentinite and tremolite serpentinite, derived from dunite; (2) partially serpentinized harzburgite and olivine orthopyroxenite (collectively, harzburgite); and (3) granoblastic or schistose metasomatic rocks, derived from serpentinite, made largely of actinolite, calcic plagioclase, hercynite, and chlorite. In the serpentinite, paucity of relict olivine, relatively abundant magnetite (5%), and elevated Fe3+/Fe indicate advanced serpentinization. Harzburgite contains abundant orthopyroxene, only slightly serpentinized, and minor to moderate (1–15%) relict olivine. Mantle tectonite fabric is locally preserved. Several petrographic and geochemical characteristics of the peridotite at Cemetery Ridge are ambiguously similar to either abyssal or mantle-wedge (suprasubduction) peridotites and serpentinites. Least ambiguous are orthopyroxene compositions. Orthopyroxene is distinctively depleted in Al2O3, Cr2O3, and CaO, indicating mantle-wedge affinities. Initial interpretation of field and petrologic data suggests that the peridotite blocks in the Orocopia Schist subduction complex at Cemetery Ridge may be derived from the leading corner or edge of a mantle wedge, presumably in (pre-San Andreas fault) southwest California. However, derivation from a subducting plate is not precluded.

  5. Earth's plate motion evolution and its link to global mantle dynamics

    Science.gov (United States)

    Rolf, Tobias; Capitanio, Fabio; Tackley, Paul

    2015-04-01

    Present-day plate motions provide a global dataset that allows us to infer the present convective structure of the Earth's mantle. Moreover, present geological observations combined with the kinematic principles of plate tectonics enables us to reconstruct Earth's tectonic history back until Pangaean times, which improves our understanding of how Earth has evolved to its present state. However, several aspects are not yet sufficiently well understood, for instance, how surface motions are linked to deep mantle processes or how plate motion changes over time, including those timescales of several 100 Myr that are associated with supercontinent formation and dispersal. Here, we use global spherical models of mantle convection to investigate plate motion evolution in a general and dynamically fully consistent manner. These models include tectonic plates self-consistently evolving from mantle flow as well as Earth-like continental drift. We analyze the evolution of plate velocities over long timescales and observe fluctuations of globally averaged plate motions of a factor of 2-3, in agreement with kinematic reconstructions. The fluctuations are mainly driven by the onset of new subduction, highlighting the strong role of slab-related driving forces in the rates of plate motion. Average plate motions are increased with a stronger viscosity contrast between upper and lower mantle, partly due to an increased subduction flux into the lower mantle, which increases the driving forces of plate motion. The motion of individual plates shows much stronger fluctuation. Continental plate motions are modulated by continental assembly and dispersal. Continents usually move slower when strongly clustered and faster during dispersal and before collision. In a further step, we analyze changes in the direction of motion of these individual plates by calculating their Euler pole and its change with time. This allows us to characterize the variety of modeled plate reorganizations and to

  6. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    Science.gov (United States)

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  7. Topography of the Overriding Plate During Progressive Subduction: A Dynamic Model to Explain Forearc Subsidence

    Science.gov (United States)

    Chen, Zhihao; Schellart, Wouter P.; Duarte, João. C.; Strak, Vincent

    2017-10-01

    Overriding plate topography provides constraints on subduction zone geodynamics. We investigate its evolution using fully dynamic laboratory models of subduction with techniques of stereoscopic photogrammetry and particle image velocimetry. Model results show that the topography is characterized by an area of forearc dynamic subsidence, with a magnitude scaling to 1.44-3.97 km in nature, and a local topographic high between the forearc subsided region and the trench. These topographic features rapidly develop during the slab free-sinking phase and gradually decrease during the steady state slab rollback phase. We propose that they result from the variation of the vertical component of the trench suction force along the subduction zone interface, which gradually increases with depth and results from the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in driving forearc subsidence.

  8. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  9. Three-Dimensional Thermal Structure of the Middle-America Subduction Zone: Along-margin mantle flow and slab metamorphism

    Science.gov (United States)

    Rosas, J. C.; Currie, C. A.; He, J.

    2013-12-01

    Temperature is the primary control parameter of several processes occurring at subduction zones, such as slab metamorphism and dehydration, arc volcanism and the rupture width of megathrust earthquakes. The thermal state depends on the temperature of the oceanic slab and the flow pattern of the overlying mantle wedge. In most previous studies, mantle flow was modeled as two-dimensional (2D) corner flow, driven by the subducting plate. However, recent studies have shown the limitations of the 2D corner flow scheme, as a three-dimensional (3D) oceanic plate structure can generate along-strike pressure gradients, producing a trench-parallel flow component. One region where 3D effects may be important is the Middle America Subduction Zone (MASZ). Here, the dip of the oceanic plate varies from 0 to 70 degrees along the margin, with abrupt changes in slab dip in Central Mexico and Costa Rica-Nicaragua. Seismic anisotropy and arc magma geochemistry variations suggest a significant along-margin component of flow in these areas. Further, offshore surface heat flow measurements show that there may be along-margin variations in the temperature of the subducting oceanic plate, due to variations in plate age and hydrothermal circulation. In this study, we quantify the changes in the thermal structure of a subduction zone that result from along-margin variations in oceanic plate structure. We use 3D numerical models that consist of kinematically-defined subducting and overriding plates, and a flowing mantle wedge driven by drag exerted by the subducting plate. The finite-element code PGCtherm-3D is used to solve the steady-state governing equations for mantle wedge flow and the 3D thermal structure of the subduction zone. The models employ an oceanic plate that smoothly dips into the mantle and has along-margin variations in the deep dip of 40 and 70 degrees over a distance of 50km to 300km, as observed in some regions of the MASZ. Using an isoviscous mantle wedge, our

  10. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in slab-derived elements to the locus of partial melting in subduction zones.

  11. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    2007). We investigate the northward subduction of the. Indo-Australian plate along the eastern Sunda arc right from northwestern Sumatra, along Java to. Keywords. Slab detachment; subduction zone; Sunda arc; Indo-Australian slab; trench migration. J. Earth Syst. Sci. 120, No. 2, April 2011, pp. 193–204 c Indian Academy ...

  12. The characteristics of mantle lithosphere buoyancy revealed from the northern Manila subduction zone to the active collision in Taiwan region

    Science.gov (United States)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun; Lin, Jing-Yi

    2017-04-01

    It has been widely studied on the complexity tectonic structure in the active Taiwan orogenesis, since the converging between the Philippine Sea plate (PSP) and the Eurasian plate (EU) along with the Manila subduction zone extended from the Philippine to offshore the southern Taiwan and the Ryukyu subduction zone in the east. Considering the separate contribution of the crust and the mantle lithosphere to the topography, we try to examine the mantle lithosphere buoyancy (Hm) behavior from the northern Manila subduction zone to the active collision in Taiwan region. In this study, we present several Hm profiles across the northern Manila subduction zone and the Taiwan island. In order to calculate the Hm, the crust structures are constrained by the forward gravity modeling, in which the density is provided from the multi-channel seismic data and on land seismic data (thanks to the Taiwan Integrated Geodynamic Research (TAIGER) project). The result shows that the Hm across the northern Manila subduction zone displays apparent undulations, and undulates more drastic approaching the north end of the subduction zone. It implies that the plate coupling between the PSP and the EU here is weak. The Hm across the southern Taiwan undulates still, but the amplitudes are smaller with relative gentle undulations. This reflects the contribution from the slab underneath while the initial collision occurs in south Taiwan. Into the central Taiwan, the Hm pattern behaves undulating mild comparing with that across the subduction zone because the slab structure effects not obvious. Besides, the Hm in the central Taiwan primarily is affects by both the thickening crust and high elevation caused by the strong lateral external compression stress.

  13. SubductionGenerator: A program to build three-dimensional plate configurations

    Science.gov (United States)

    Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.

    2016-12-01

    Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.

  14. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    Science.gov (United States)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  15. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NARCIS (Netherlands)

    Schellart, W. P.

    2011-01-01

    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (v S⊥) at the surface into its subducting plate motion component (vSP⊥) and trench migration component (vT⊥). Geodynamic models of progressive subduction

  16. Mantle convection, tectonics and the evolution of the Tethyan subduction zone

    Science.gov (United States)

    Jolivet, Laurent; Sternai, Pietro; Menant, Armel; Faccenna, Claudio; Becker, Thorsten; Burov, Evguenii

    2014-05-01

    side of Africa from the Jurassic until the collision in the Oligocene, and even afterward when Arabia formed by opening of the Red Sea and the Gulf of Aden. This also suggests a dominant role of an underlying flow at large scale, dragging and mechanically eroding plates and breaking them into fragments, then passively carried. Only during a short period of the Late Cretaceous did the situation change drastically with the obduction event giving the large ophiolitic nappes observed from Oman to Turkey. This obduction event has never been really explained. It has been shown to be coeval with faster plate velocities and more active formation of oceanic crust globally, which in turn suggests a link with deep mantle convection. We discuss this succession of events and propose to relate them with the basal drag induced by convective mantle flow below the African continental lithosphere. We discuss the effects of convection on crustal deformation at different scales from deep convection related to plumes and subduction zones to more local mantle flow due to slab retreat and tearing.

  17. Long-Term Stability of Plate-Like Behavior Caused by Hydrous Mantle Convection and Water Absorption in the Deep Mantle

    Science.gov (United States)

    Nakagawa, Takashi; Iwamori, Hikaru

    2017-10-01

    We investigate the cycling of water (regassing, dehydration, and degassing) in mantle convection simulations as a function of the strength of the oceanic lithosphere and its influence on the evolution of mantle water content. We also consider pseudo-plastic yielding with a friction coefficient for simulating brittle behavior of the plates and the water-weakening effect of mantle materials. This model can generate long-term plate-like behavior as a consequence of the water-weakening effect of mantle minerals. This finding indicates that water cycling plays an essential role in generating tectonic plates. In vigorous plate motion, the mantle water content rapidly increases by up to approximately 4-5 ocean masses, which we define as the "burst" effect. A burst is related to the mantle temperature and water solubility in the mantle transition zone. When the mantle is efficiently cooled down, the mantle transition zone can store water transported by the subducted slabs that can pass through the "choke point" of water solubility. The onset of the burst effect is strongly dependent on the friction coefficient. The burst effect of the mantle water content could have significantly influenced the evolution of the surface water if the burst started early, in which case the Earth's surface cannot preserve the surface water over the age of the Earth.

  18. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  19. Geometry and seismic properties of the subducting Cocos plate in central Mexico

    Science.gov (United States)

    Kim, Y.; Clayton, R. W.; Jackson, J. M.

    2010-06-01

    The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans-Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low-velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson's and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure. The evidence of high water content within the oceanic crust explains the flat subduction geometry without strong coupling of two plates. This may also explain the nonvolcanic tremor activity and slow slip events occurring in the subducting plate and the overlying crust.

  20. Dynamic Linkages Between the Transition Zone & Surface Plate Motion in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2014-12-01

    Subduction zones exhibit a wide range of behavior, from slab stagnation at 660 km to direct penetration into the lower mantle. Due to uncertainties in the tectonic history of individual subduction zones, such as trench velocities, potential mechanisms for controlling slab behavior in the transition zone are explored using numerical models. Numerical simulations have utilized a range of assumptions to improve computational efficiency, such as ignoring latent heat, ignoring compositional effects or fixing the trench location: the net effect of these assumptions resulting modeled dynamics remains unclear. Additionally the eight major, composition-dependent, phase transitions for pyrolite, harzburgite and eclogite may be an important influence on subducting slab dynamics due to the additional forces that are dependent on depth and compositional layering within the slab (e.g., Ricard et al., 2005). With the goal of developing more complete, self-consistent, and less idealized simulations, we test the importance of various factors on slab behavior: the presence of shear, adiabatic and latent heating, compositional layering, composition-dependent phase transitions and explicit plate speeds versus dynamically evolving plate and trench velocities. Preliminary results indicate that individual components have a relatively minor effect, but produce large changes when combined together. The extent of slab folding and stagnation is overestimated by only modeling the 410 and 660 km phase transitions. Dynamic models with all seven composition-dependent phase transitions are very sensitive to the plate strength and weak zone viscosity, causing large changes in plate speed and slab detachment. Changes to the overriding plate buoyance and strength investigate the origin and influence of trench movement on slab deformation. These feedbacks and parameter-sensitive behavior indicate that the wide range of observed slab behavior may result from subtle differences in plate and plate

  1. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    Science.gov (United States)

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  2. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, DR

    2017-01-01

    and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution......, building on previous efforts to mitigate the impact of finite-rotation data noise. We find that the largest change in Pacific plate-motion direction occurred between 10 and 5 Ma, with the plate rotating clockwise. We subsequently develop and use coupled global numerical models of the mantle...

  3. Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting

    Science.gov (United States)

    Arcay, Diane

    2017-08-01

    The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate. A 2D thermo-mechanical model is used to simulate a subduction channel, made of oceanic crust, free to evolve. Convergence at constant rate is imposed under a 100 km thick upper plate. Pseudo-brittle and non-Newtonian behaviours are modelled. The influence of the subduction channel strength, parameterized by the difference in activation energy between crust and mantle (ΔEa) is investigated to examine in detail the variations in depth of the subduction plane down-dip extent, zcoup . First, simulations show that numerical resolution may be responsible for an artificial and significant shallowing of zcoup if the weak crustal layer is not correctly resolved. Second, if the age of the subducting plate is 100 Myr, subduction occurs for any ΔEa . The stiffer the crust is, that is, the lower ΔEa is, the shallower zcoup is (60 km depth if ΔEa = 20 kJ/mol) and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel (ΔEa > 135 J/mol) leads there to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. Partial kinematic coupling at the fore-arc base occurs if ΔEa = 145 kJ/mol. If the incoming plate is 20 Myr old, subduction can occur under the conditions that the crust is either stiff and denser than the mantle, or weak and buoyant. In the latter condition, cold crust plumes rise from the subduction channel and ascend through the upper lithosphere, triggering (1) partial kinematic coupling under the fore-arc, (2) fore-arc lithosphere cooling, and (3) partial or complete hindrance of wet mantle melting. zcoup then ranges from 50 to more than 250 km depth and is time-dependent if crust plumes form. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow. Two different intervals of ΔEa are underlined: 80-120 kJ/mol to reproduce the range of slab

  4. Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models

    Science.gov (United States)

    Yoshida, Masaki; Santosh, M.

    2011-03-01

    The periodic assembly and dispersal of supercontinents through the history of the Earth had considerable impact on mantle dynamics and surface processes. Here we synthesize some of the conceptual models on supercontinent amalgamation and disruption and combine it with recent information from numerical studies to provide a unified approach in understanding Wilson Cycle and supercontinent cycle. Plate tectonic models predict that superdownwelling along multiple subduction zones might provide an effective mechanism to pull together dispersed continental fragments into a closely packed assembly. The recycled subducted material that accumulates at the mantle transition zone and sinks down into the core-mantle boundary (CMB) provides the potential fuel for the generation of plumes and superplumes which ultimately fragment the supercontinent. Geological evidence related to the disruption of two major supercontinents (Columbia and Gondwana) attest to the involvement of plumes. The re-assembly of dispersed continental fragments after the breakup of a supercontinent occurs through complex processes involving 'introversion', 'extroversion' or a combination of both, with the closure of the intervening ocean occurring through Pacific-type or Atlantic-type processes. The timescales of the assembly and dispersion of supercontinents have varied through the Earth history, and appear to be closely linked with the processes and duration of superplume genesis. The widely held view that the volume of continental crust has increased over time has been challenged in recent works and current models propose that plate tectonics creates and destroys Earth's continental crust with more crust being destroyed than created. The creation-destruction balance changes over a supercontinent cycle, with a higher crustal growth through magmatic influx during supercontinent break-up as compared to the tectonic erosion and sediment-trapped subduction in convergent margins associated with supercontinent

  5. Mantle rheology and the scaling of bending dissipation in plate tectonics

    Science.gov (United States)

    Rose, I. R.; Korenaga, J.

    2011-06-01

    Plate tectonics on Earth involves the bending deformation of plates at subduction zones, and because plates are generally considered to be stiff owning to the rheology of mantle minerals, the role of energy dissipation by plate bending in the global energy balance has been frequently debated in the recent literature. Here we consider how bending dissipation should scale with slab parameters such as dip angle, plate age, the radius of curvature, and plate velocity by systematically exploring the parameter space with instantaneous Stokes flow calculations. We derive the scaling of bending dissipation for a range of mantle viscosity functions, including pseudoplastic rheology with olivine flow laws. Our results indicate that, as we move away from the isoviscous case, the scaling gradually deviates from what has commonly been assumed in previous studies, most notably for the radius exponent, which exhibits more than threefold reduction and even a sign reversal in some cases. These modifications in scaling exponents originate in the complication of the deformation field caused by viscosity variations within the bending plate. Approximating the lithospheric rheology by a single effective viscosity in the dynamical models of subduction has been a common practice, but we suggest that such approximation may limit the geological relevance of modeling studies, in particular when estimating the significance of bending dissipation.

  6. Variation of Seismic Velocity Structure around the Mantle Transition Zone and Conjecture of Deep Water Transport by Subducted Slabs

    Science.gov (United States)

    Tajima, F. C.; Stahler, S. C.; Ohtani, E.; Yoshida, M.; Sigloch, K.

    2011-12-01

    Seismic tomography models published in the past two decades determined common long-wavelength features of subducting plates as high velocity anomalies and upwelling plumes as low velocity anomalies, and have led to a new class of high-resolution three-dimensional (3D) modeling of global mantle convection with a link to tomography models [e.g., Becker and Boschi, 2002; Ritsema et al., 2007; Schuberth et al., 2009a,b]. However, even such high resolution numerical models do not account for the variation associated with different behaviors of subducting plates as they enter the mantle transition zone (MTZ), i.e., some flatten to form stagnant slabs with a large lateral extent and others descend further into the lower mantle. There are conventional interpretations applied for the cause of variation of the subducted slab behaviors, i.e., temperature difference due to different plate age, different geochemical compositions, different water content and subsequent possible reduction of viscosity etc., which could be taken as non-unique and somewhat equivocal. These parameters and conditions have been tested in two-dimensional numerical simulations, while the water content in the MTZ or the mechanisms of hydration and dehydration through subduction process are still in the realm of conjecture. Recent models of seismic P- and SH-wave velocities derived for the mantle structure beneath northeast China [Wang and Niu, 2010; Ye et al., 2011] using reflectivity synthetics with data from the dense Chinese networks of broadband seismic instruments, show a broader 660 km discontinuity (by about 30 to 70 km) and slower shear velocities above the MTZ than a global standard model iasp91 (Kennett and Engdahl, 1991). These features were interpreted with a mixture of different chemical properties which show delayed phase transformation, and effects of water above the flattened slab. Nonetheless, the SH-wave model has a structure similar to model TNA above the MTZ, which was derived for the

  7. Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow

    Science.gov (United States)

    Evangelidis, C. P.

    2017-12-01

    The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve

  8. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    Science.gov (United States)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  9. Seawater subduction controls the heavy noble gas composition of the mantle.

    Science.gov (United States)

    Holland, Greg; Ballentine, Chris J

    2006-05-11

    The relationship between solar volatiles and those now in the Earth's atmosphere and mantle reservoirs provides insight into the processes controlling the acquisition of volatiles during planetary accretion and their subsequent evolution. Whereas the light noble gases (helium and neon) in the Earth's mantle preserve a solar-like isotopic composition, heavy noble gases (argon, krypton and xenon) have an isotopic composition very similar to that of the modern atmosphere, with radiogenic and (in the case of xenon) solar contributions. Mantle noble gases in a magmatic CO2 natural gas field have been previously corrected for shallow atmosphere/groundwater and crustal additions. Here we analyse new data from this field and show that the elemental composition of non-radiogenic heavy noble gases in the mantle is remarkably similar to that of sea water. We challenge the popular concept of a noble gas 'subduction barrier'--the convecting mantle noble gas isotopic and elemental composition is explained by subduction of sediment and seawater-dominated pore fluids. This accounts for approximately 100% of the non-radiogenic argon and krypton and 80% of the xenon. Approximately 50% of the convecting mantle water concentration can then be explained by this mechanism. Enhanced recycling of subducted material to the mantle plume source region then accounts for the lower ratio of radiogenic to non-radiogenic heavy noble gas isotopes and higher water content of plume-derived basalts.

  10. Formation of mantle "lone plumes" in the global downwelling zone - A multiscale modelling of subduction-controlled plume generation beneath the South China Sea

    Science.gov (United States)

    Zhang, Nan; Li, Zheng-Xiang

    2018-01-01

    It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead of rising above the LLSVPs, it is located within the broad global mantle downwelling zone, therefore classified as a "lone plume". Here, we use the Hainan plume example to investigate the feasibility of such lone plumes being generated by subducting slabs in the mantle downwelling zone using 3D geodynamic modelling. Our geodynamic model has a high-resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adaptive-mesh-refined, 3D mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). We use a recently published plate motion model to define the top mechanical boundary condition. Our modelling results suggest that cold slabs under the present-day Eurasia, formed from the Mesozoic subduction and closure of the Tethys oceans, have prevented deep mantle hot materials from moving to the South China Sea from regions north or west of the South China Sea. From the east side, the Western Pacific subduction systems started to promote the formation of a lower-mantle thermal-chemical pile in the vicinity of the future South China Sea region since 70 Ma ago. As the top of this lower-mantle thermal-chemical pile rises, it first moved to the west, and finally rested beneath the South China Sea. The presence of a thermochemical layer (possible the D″ layer) in the model helps stabilizing the plume root. Our modelling is the first implementation of multi-scale mesh in the regional model. It has been proved to be an effective way of modelling regional dynamics within a global plate motion and mantle dynamics background.

  11. Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves

    Science.gov (United States)

    Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay

    2016-12-01

    The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path

  12. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone.

    Science.gov (United States)

    Nagaya, Takayoshi; Walker, Andrew M; Wookey, James; Wallis, Simon R; Ishii, Kazuhiko; Kendall, J-Michael

    2016-07-20

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  13. A Dynamical Context for Small-scale Heterogeneity Throughout the Mantle Beneath Subduction

    Science.gov (United States)

    Frost, D. A.; Rost, S.; Garnero, E.

    2014-12-01

    Subduction zones are a source for mantle heterogeneity within the convection system and there is mounting evidence that seismic signatures can be used to track slabs down from the surface throughout the mantle. Seismic studies of the mantle beneath Central America demonstrate that subducted slab material reaches the Core-Mantle Boundary (CMB). The lowermost mantle beneath this convergent margin shows strong seismic evidence for heterogeneity. Tomographic models characterise subduction zones to be underlain by increased seismic velocities over 100s-1000s km laterally, in association with D'´ discontinuities 100-300 km above the CMB, consistent with phase transitions in the Bridgmanite system. Recent analyses have found evidence for isolated Ultra Low Velocity Zones in addition to prevalent fine-scale heterogeneity, on the order of 1-10 km, scattering high frequency waves. These techniques indicate thermal and/or chemical anomalies within the mantle on a range of scales. Numerical geodynamical simulations suggest small-scale mechanical mixing of initially coherent compositionally anomalous subducted material separating into entities of various sizes consistent with the range of heterogeneity sizes observed in the lower mantle.Investigating seismic scattering, the re-radiation of a wavefront due to interaction with a sharply contrasting volumetric anomaly, is an effective method for studying small-scale elastic heterogeneities in the Earth's mantle. Studies commonly record structure with scale lengths of about 10 km. Here we analyse scattered energy related to PKPPKP — PKP•PKP (the • indicates the scattering location along the raypath) — sampling a large volume of the mantle beneath Central America. We reveal the character of heterogeneity in various frequency bands within the whole mantle using both broadband and short-period data. These observations will be placed in context with other studies in this region illustrating the large-scale background structure

  14. Nitrogen evolution within the Earth's atmosphere-mantle system assessed by recycling in subduction zones

    Science.gov (United States)

    Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael

    2018-01-01

    Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to

  15. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2017-07-01

    The timing and magnitude of a Pacific plate motion change within the past 10 Ma remains enigmatic, due to the noise associated with finite-rotation data. Nonetheless, it has been hypothesized that this change was driven by the arrival of the Ontong Java Plateau (OJP) at the Melanesian arc and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution, building on previous efforts to mitigate the impact of finite-rotation data noise. We find that the largest change in Pacific plate-motion direction occurred between 10 and 5 Ma, with the plate rotating clockwise. We subsequently develop and use coupled global numerical models of the mantle/lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key drivers of this kinematic change.

  16. Using global, quantitative models of the coupled plates/mantle system to understand Late Miocene dynamics of the Pacific plate

    Science.gov (United States)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2017-04-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of

  17. Using Global, Quantitative Models of the Coupled Plates/Mantle System to Understand Late Neogene Dynamics of the Pacific Plate

    Science.gov (United States)

    Stotz, I.; Davies, R.; Iaffaldano, G.

    2016-12-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of

  18. Subduction of the Caribbean Plate and Basement Uplifts in the Overriding South American Plate

    Science.gov (United States)

    Kellogg, J. N.; Bonini, W. E.

    1982-06-01

    The new tectonic interpretations presented in this paper are based on geologic field mapping and gravity data supplemented by well logs, seismic profiles, and radiometric and earthquake data. The present Caribbean-South American plate boundary is the South Caribbean marginal fault, where subduction is indicated by folding and thrusting in the deformed belt and a seismic zone that dips 30° to the southeast and terminates 200 km below the Maracaibo Basin. The Caribbean-South American convergence rate is estimated as 1.9 ± 0.3 cm/yr on the basis of the 390-km length of the seismic zone and a thermal equilibration time of 10 m.y. The Caribbean-South American convergence has produced a northwest-southeast maximum principal stress direction σ1 in the overriding South American plate. The mean σ1 direction for the Maracaibo-Santa Marta block is 310° ± 10° based on earthquake focal mechanism determinations, and structural and gravity data. On the overriding South American plate, basement blocks have been uplifted 7-12 km in the last 10 m.y. to form the Venezuelan Andes, Sierra de Perija, and the Colombian Santa Marta massif. Crystalline basement of the Venezuelan Andes has been thrust to the northwest over Tertiary sediments on a fault dipping about 25° and extending to the mantle. In the Sierra de Perija, Mesozoic sediments have been thrust 16-26 km to the northwest over Tertiary sandstones along the Cerrejon fault. A thrust fault dipping 15° ± 10° to the southeast is consistent with field mapping, and gravity and density data. The Santa Marta massif has been uplifted 12 km in the last 10 m.y. by northwest thrusting over sediments. The basement block overthrusts of the Perijas, Venezuelan Andes, and the Santa Marta massif are Pliocene-Pleistocene analogs for Laramide orogenic structures in the middle and southern Rocky Mountains of the United States. The nonmagmatic basement block uplifts along low-angle thrust faults reveal horizontal compression in the

  19. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity

    Science.gov (United States)

    Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane

    2014-01-01

    Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.

  20. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.

    Science.gov (United States)

    Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine

    2017-05-16

    At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.

  1. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction

    Science.gov (United States)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus

    2017-04-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation

  2. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets

    Science.gov (United States)

    Condie, Kent C.; Shearer, Charles K.

    2017-09-01

    The distribution of high field strength incompatible element ratios Zr/Nb, Nb/Th, Th/Yb and Nb/Yb in terrestrial oceanic basalts prior to 2.7 Ga suggests the absence or near-absence of an enriched mantle reservoir. Instead, most oceanic basalts reflect a variably depleted mantle source similar in composition to primitive mantle. In contrast, basalts from hydrated mantle sources (like those associated with subduction) exist from 4 Ga onwards. The gradual appearance of enriched mantle between 2 and 3 Ga may reflect the onset and propagation of plate tectonics around the globe. Prior to 3 Ga, Earth may have been in a stagnant-lid regime with most basaltic magmas coming from a rather uniform, variably depleted mantle source or from a non-subduction hydrated mantle source. It was not until the extraction of continental crust and accompanying propagation of plate tectonics that ;modern type; enriched and depleted mantle reservoirs developed. Consistent with the absence of plate tectonics on the Moon is the near absence of basalts derived from depleted (DM) and enriched (EM) mantle reservoirs as defined by the four incompatible element ratios of this study. An exception are Apollo 17 basalts, which may come from a mixed source with a composition similar to primitive mantle as one end member and a high-Nb component as the other end member. With exception of Th, which requires selective enrichment in at least parts of the martian mantle, most martian meteorites can be derived from sources similar to terrestrial primitive mantle or by mixing of enriched and depleted mantle end members produced during magma ocean crystallization. Earth, Mars and the Moon exhibit three very different planetary evolution paths. The mantle source regions for Mars and the Moon are ancient and have HFS element signatures of magma ocean crystallization well-preserved, and differences in these signatures reflect magma ocean crystallization under two distinct pressure regimes. In contrast, plate

  3. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

    NARCIS (Netherlands)

    Meer, D.G. van der; Torsvik, T.H.; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.

    2012-01-01

    The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean’s history since the Cretaceous period, and

  4. Seismic structure of the mantle ; from subduction zone to craton

    NARCIS (Netherlands)

    Kennett, B.L.N.; Hilst, R.D. van der

    1998-01-01

    Seismological techniques have provided much of the currently available information on the internal structure of the Earth, and in particular on the mantle. Early studies revealed the need for an increase in seismic velocity with depth in the Earth, and by 1915 Gutenberg was able to make a good

  5. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.

    Science.gov (United States)

    Manea, Vlad C; Leeman, William P; Gerya, Taras; Manea, Marina; Zhu, Guizhi

    2014-10-24

    For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes.

  6. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  7. Ultra-slow spreading ridges: a response to the interplay between mantle convection and plate tectonics

    Science.gov (United States)

    Husson, Laurent; Yamato, Philippe; Bezos, Antoine

    2014-05-01

    Ultra-slow spreading ridges such as the South West Indian ridge or the Arctic ridge system are oddities amongst oceanic ridges. Conversely to faster oceanic ridges, petrographic and seafloor studies have shown that they are characterized by low melt supply and present low crustal thicknesses and heat flow; these features are interpreted as an evidence for a cooler sublithospheric mantle. In cartoonish sketches of plate tectonics, ridges open above upwellings, subduction zones occur over downwellings, and plates are riding over the mantle convection cells. In this study, we designed a simple yet dynamically consistent thermal convection model to test the impact of far-field forces on spreading ridges and show that this pattern is disrupted by plate tectonics. In particular, continental collisions modulate the spreading rates because resisting forces build up at plate boundaries. As a consequence, this modifies the surface boundary conditions and therefore the underlying mantle flow. We show that the ideal convection cell pattern quickly breaks down when plate motion is impeded by continental collisions in the far field. Not only the decreasing spreading rates are diagnostic, but in the same time, (i) the heat flow is decreasing at the ridge, (ii) the thermal structure of the cooling lithosphere no longer matches the cooling half-space model, and (iii) the mantle temperature beneath the ridge drops by more than 100 degrees. We compare our model predictions to available observables and show that this simple mechanism explains the atypical thermo-mechanical evolution of the South West Indian ridge and Arctic ridge system. Last, the recent S wave seismic tomography model of Debayle and Ricard (2012) reveals that only away from those two ridges does lithospheric thickening departs from the half-space cooling model, in accord with our model predictions.

  8. Deeper Subduction Zone Melting Explains Enrichment of Upper Mantle and Resolves Dehydration Paradox

    Science.gov (United States)

    Dixon, Jacqueline; Bindeman, Ilya; Kingsley, Richard

    2017-04-01

    We present new volatile and stable isotope data on oceanic basaltic glasses with a range of enriched compositions. Basalt compositions studied here can be modeled by mixing between depleted mantle and various enriched (EM) and prevalent (PREMA) mantle components. We develop a multi-stage metasomatic and melting model for the origin of the enriched components, extending the subduction factory concept to involve melting of different components at different depths, down to the mantle transition zone (660 km), with slab temperature a key variable. EM components are heterogeneous, ranging from wet and heavy (Arctic Ridges) to dry and light (East Pacific Rise), and are derived from the subducted slab at depths of 150 to 250 km by addition of oceanic ridge and ocean island basalts requires involvement of a mostly dehydrated slab component to explain trace element ratios and radiogenic isotopic compositions, but a fully hydrated slab component to explain stable isotope compositions. In our model, thermal parameters of slabs control the timing and composition of subduction-derived components. This includes deep release of fluids from subcrustal hydrous phases that may rehydrate previously dehydrated slab, resolving the paradox.

  9. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic

  10. A thermo-mechanical model of horizontal subduction below an overriding plate

    NARCIS (Netherlands)

    Hunen, Jeroen van; Berg, A.P. van den; Vlaar, N.J.

    2000-01-01

    Subduction of young oceanic lithosphere cannot be explained by the gravitational driving mechanisms of slab pull and ridge push. This deficiency of driving forces can be overcome by obduction of an actively overriding plate, which forces the young plate either to subduct or to collide. This

  11. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc

    NARCIS (Netherlands)

    Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J.; Van Der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui

    2015-01-01

    The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence

  12. The Impact of Surface Bending, A Complete Mineralogical Model and Movement of the Overriding Plate on Subduction Zones

    Science.gov (United States)

    Arredondo, Katrina Marie

    Modern observations of subduction zones provide only snapshots of a complex geologic system that can last tens of millions of years. Surface velocity measurements and seismic tomography images provide information on the possible forces acting on the plate and influencing slab shape and behavior. Modern subduction zones exhibit a wide range of behavior, from the rapidly rolling back Tonga subduction zone (where the trench is moving toward the subducting plate) to stationary trenches to trench advance (where the trench is moving toward the overriding plate). Slabs may also stagnate at 660 km while others directly penetrate into the lower mantle. Numerical models can combine observations and laboratory data to test and study possible forces that may explain the wide variety of behavior observed in modern subduction zones. Past numerical model studies have not studied the impact on subduction zone behavior from: composition-dependent phase transitions, a complete mineralogical model and movement of the overriding plate. Here we show that: 1) weakening of the subducting plate can be observed from the forebulge to the trench using highly detailed bathymetry and gravity measurement tracks parallel to the trench, 2) using a complete mineralogy model is important for accurate numerical models because incomplete approximations may overestimate slab stagnation and slab rollback, 3) in free subduction models, the complete mineralogy model creates a strong feedback loop between broad slab folds and trench velocities, and 4) the movement of the overriding plate is very important for slab rollback. Results presented in Chapter 1 indicate that the rheology in the numerical models should produce weakening in the slab as it bends into the trench, which is observed in the models of Chapter 2 and 3. Past published models can be analyzed in relation to Chapter 2 and 3 to determine if their conclusions are skewed by an overestimation of slab stagnation or trench rollback. The presented

  13. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    Science.gov (United States)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  14. Chaotic, subduction-like downflows in a spherical model of convection in the earth's mantle

    Science.gov (United States)

    Glatzmaier, Gary A.; Schubert, Gerald; Bercovici, Dave

    1990-01-01

    Model calculations are described for a compressible fluid in a three-dimensional spherical shell with 80 percent of the surface heat flow generated within the model mantle. The numerical solutions are strongly chaotic, with surface planforms dominated by long curvilinear downflows reminiscent of the descending slabs in the earth's mantle. The results suggest that descending slabs play an important part in driving mantle convection, and that their chaotic evolution may influence the spatial and temporal behavior of plates and thus the dispersal and aggregation of continents.

  15. Plume-subduction interaction in southern Central America: Mantle upwelling and slab melting

    Science.gov (United States)

    Gazel, Esteban; Hoernle, Kaj; Carr, Michael J.; Herzberg, Claude; Saginor, Ian; den Bogaard, Paul van; Hauff, Folkmar; Feigenson, Mark; Swisher, Carl

    2011-01-01

    The volcanic front in southern Central America is well known for its Galapagos OIB-like geochemical signature. A comprehensive set of geochemical, isotopic and geochronological data collected on volumetrically minor alkaline basalts and adakites were used to better constrain the mantle and subduction magma components and to test the different models that explain this OIB signature in an arc setting. We report a migration of back-arc alkaline volcanism towards the northwest, consistent with arc-parallel mantle flow models, and a migration towards the southeast in the adakites possibly tracking the eastward movement of the triple junction where the Panama Fracture Zone intersects the Middle America Trench. The adakites major and trace element compositions are consistent with magmas produced by melting a mantle-wedge source metasomatized by slab derived melts. The alkaline magmas are restricted to areas that have no seismic evidence of a subducting slab. The geochemical signature of the alkaline magmas is mostly controlled by upwelling asthenosphere with minor contributions from subduction components. Mantle potential temperatures calculated from the alkaline basalt primary magmas increased from close to ambient mantle (~ 1380-1410 °C) in the Pliocene to ~ 1450 °C in the younger units. The calculated initial melting pressures for these primary magmas are in the garnet stability field (3.0-2.7 GPa). The average final melting pressures range between 2.7 and 2.5 GPa, which is interpreted as the lithosphere-asthenosphere boundary at ~ 85-90 km. We provide a geotectonic model that integrates the diverse observations presented here. The slab detached after the collision of the Galapagos tracks with the arc (~ 10-8 Ma). The detachment allowed hotter asthenosphere to flow into the mantle wedge. This influx of hotter asthenosphere explains the increase in mantle potential temperatures, the northwest migration in the back-arc alkaline lavas that tracks the passage of the

  16. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    Science.gov (United States)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  17. Analyzing One-Sided vs. Two-Sided Subduction Arising from Mantle Convection Simulations

    Science.gov (United States)

    Kaplan, M. S.; Becker, T. W.

    2013-12-01

    Purely thermal plate tectonic generation models struggle to consistently reproduce one-sided subduction as is observed on Earth (Tackley 2000; Van Heck and Tackley 2008; Foley and Becker 2009), and instead produce two-sided subduction where the subducting slab contains a significant flux of material from both plates. The models of Crameri et al. (2012) demonstrate that the implementation of a free upper surface boundary condition and the inclusion of a weak hydrated crust can facilitate one-sided subduction. We employ a similar model configuration to Crameri et al. (2012) to further investigate the dynamics and energetics which are associated with one-sided vs. two-sided subduction. We use a 2D finite difference code based off of the algorithms of I2ELVIS (Gerya and Yuen 2007) where material parameters are tracked on Lagrangian markers and the Stokes and Energy equations are solved on a Cartesian grid. A free surface is implemented by a low viscosity and density 'sticky air layer' (Schmeling et al., 2008; Crameri et al., 2012) with the stabilization routine of Duretz et al. (2011) to prevent the 'drunken seaman' instability (Kaus et al., 2010). The effects of a weak crust, shear heating, a free surface or free slip upper mechanical boundary condition, plasticity as a function of depth or pressure, and the sticky air layer thermal conductivity on one-sided vs. two-sided subduction are investigated. When we observe one-sided subduction it is transient and can smoothly evolve back to a two-sided configuration. In our models, 'sidedness' is a spectrum, rather than either discretely one or two sided, and the models move between the two regimes throughout the model runs. We observe that the thermal conductivity of the sticky air layer can influence the dynamics of the convective domain. Elevated values of thermal conductivity compared to those of rock must be implemented in the sticky air layer in order to maintain a constant temperature at the surface of the convective

  18. The benefits of extended plate motion history in mantle circulation models

    Science.gov (United States)

    Webb, Peter; Davies, Huw; Davies, Rhodri; Hochard, Cyril; Stampfli, Gerard

    2010-05-01

    Mantle Circulation Models (MCMs) are mantle convection simulations conditioned with plate motion history. Due to difficulties in reconstructing plate motions beyond ≈ 120 Ma, MCMs often only incorporate the most recent 120 Myr of plate tectonic evolution. We find that such models are strongly influenced by initial conditions. The development of a new series of tectonic reconstructions extending back to the Triassic (230 Ma) and including careful reconstruction of the oceanic parts of the plates (modified from Stampfli and Borel, 2004, Stampfli et al. 2008 and references therein) should prove to be of huge importance to MCMs. In this study we present a comparison between the traditionally used 120 Myr and the latest 230 Myr plate motion histories. We use the three-dimensional spherical mantle convection code TERRA (Bunge et al., 2003) to simulate convection at Earth like vigour. Here we apply the plate motion history as a surface velocity boundary condition to drive the internal convection of an already well-mixed system. The forward models from a chosen starting point to present day yield information on mantle temperature (as well as pressure, velocity and material properties) throughout the volume. One of the ways to validate our results is to compare these with tomographic models. Seismic tomography provides us with a snapshot of Earth's mantle at present day. Assuming that the mantle is driven largely by thermal convection, we can assume that the seismically fast regions are associated with cooler, denser material. The most significant of these can be interpreted as remnants of subducted slabs (Hafkenscheid et al 2006, van der Meer et al. 2010). We convert the temperatures predicted by the MCM to seismic velocities using the latest techniques (e.g. Cobden et al., 2008) and compare the calculated velocities to a range of seismic tomography models (both P and S wave). This way we can examine the validity of the surface velocity boundary condition and identify

  19. Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1029/2009GC003015

    2011-01-01

    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facie...

  20. Tomography of the subducting Cocos plate in central Mexico: Images of a truncated slab

    Science.gov (United States)

    Husker, A. L.; Davis, P. M.

    2007-12-01

    The location of the subducting slab beneath Mexico City and its relation to the Trans-Mexican Volcanic Belt (TMVB) has been unknown because of the absence of deep seismicity that could be used to define the Wadati-Benioff zone. We used data from a temporary seismic network to locate the slab using seismic tomography. A break is seen in the Cocos plate under the TMVB. The break is seen with both P-wave and S-wave tomography and in a constrained tomographic inversion that finds parameters for a simple slab temperature model. The data used are 172 teleseismic earthquakes recorded by the Middle American Subduction Experiment (MASE). MASE was made up of 100 broadband seismometers spaced every 5 km running from Acapulco north through Mexico City almost to the Gulf Coast. In order to determine arrival time differences, Dt, across the array, waveforms were cross correlated. When Dt is plotted with respect to the latitude of the seismometer at which it was recorded, a Dt minimum (early arrivals) is seen near the TMVB. This minimum is shifted northward for back azimuths from the south, and southward for back azimuths from the north. The shift in the Dt minimum is indicative of a fast structure at depth. If there were no break in the slab, the localized minimum would not be seen. Tomography reveals an approximately 50-80 km thick slab diving into the mantle at about 75° to approximately 550 km depth and 375 km inland from Acapulco. We speculate the absence of deep earthquakes is due to low stresses in a young plate that has been truncated at depth.

  1. High frequency local reflections and conversions from upper mantle discontinuities in the Fiji-Tonga subduction zone

    Science.gov (United States)

    Tibi, R.; Wiens, D. A.

    2003-12-01

    Recordings of deep Fiji-Tonga earthquakes from an array of 15 broadband seismographs in Fiji are stacked and searched for reflections and conversions from upper mantle discontinuities near the Fiji-Tonga slab. The Fiji array operated as part of the SAFT (Seismic Arrays in Fiji and Tonga) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We study the phases s410p, P660p and S660p where they arrive at least 10 seconds after the direct P wave and prior to the S wave accross the array. To anhance low-amplitude reflections/conversions, deconvolved seismograms from each event are aligned on the maximum amplitude of the direct P wave and slant stacked. Preliminary results indicate that for the northern part of the Fiji-Tonga subduction zone, the 660-km discontinuity varies between 660 and 670 km in depth. In the central part we observe converted phases consistent with a ``410'' depth of 380 km, indicating the effect of the cold subducting plate. The reflections/conversions show only a slight frequency shift relative to the direct P waveforms, suggesting the discontinuities are relatively sharp. The thickness for the 660-km discontinuity is estimated as between 2 and 6 km.

  2. Experimental Study of Slab-Mantle Geochemical Exchange in Subduction Zones

    Science.gov (United States)

    Iizuka, Y.; Nakamura, E.; Kobayashi, K.

    2001-12-01

    Aqueous fluids derived from subducting oceanic crust play an important role in the material transport leading to the production or arc lavas, and in the long-term chemical evolution of the Earth's mantle and crust. In order to determine the geochemical evolution of both the subducting slab and the overlying mantle wedge, a series of dehydration/hydration experiments was carried out at conditions of 0.8-4.0 GPa and 650-900° C appropriate for subduction zones. Blueschist facies rocks/minerals, and olivine (Fo90) were used for starting materials, as analogue materials of slab and mantle, respectively. Finely ground metabasalt (H2O = 5.9 wt%) and glaucophane (H2O = 2.3 wt%) were separately sealed in gold capsules with an olivine grain (1mm diameter), and then run in a piston-cylinder apparatus. Polished sections of run products were observed and analyzed for major element compositions with an electron micro-probe. Trace elements of selected run-products were determined using an ion probe (Cameca-5f). At subsolidus conditions, the metabasalt was transformed into amphibolite-facies mineral assemblages containing Mg-ilmenite at 1.5 GPa. Glaucophane was transformed into the mineral assemblage of Na-Cpx, Opx +/- garnet. Garnets formed in the slab portion show low-LREE/HREE and higher-HREE contents when compared with the starting materials. In all subsolidus experiments, Al-rich silicate glasses, which could be quenched aqueous fluids, were observed between mineral grain boundaries in the slab portions. The fluids at 3.0 GPa show high-LREE/HREE, and higher-LILE and lower-HREE contents. In contrast, the quenched fluids for glaucophane experiments. The behavior of the HREE and HFSE is consistent with the existence of garnet and Ti-oxides (rutile and ilmenite) in the slab portion of the experiments. The fluids should therefore be enriched in SiO2, LILE and LREE. Mineral zones were observed on olivine grains near the initial olivine-slab interface. These reaction zones

  3. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?

    Science.gov (United States)

    Lara, M.; Cardona, A.; Monsalve, G.; Yarce, J.; Montes, C.; Valencia, V.; Weber, M.; De La Parra, F.; Espitia, D.; López-Martínez, M.

    2013-08-01

    Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13-14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin. The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.

  4. Metastability of Subducted Slabs in the Mantle Transition Zone: A Collaborative Geodynamic, Petrologic, and Seismological Approach

    Science.gov (United States)

    Garber, J. M.; Billen, M. I.; Duncan, M. S.; Roy, C.; Ibourichene, A. S.; Olugboji, T.; Celine, C.; Rodríguez-González, J.; Grand, S. P.; Madrigal, P.; Sandiford, D.; Valencia-Cardona, J. J.

    2016-12-01

    Subducted slabs exhibit a range of geometries in the mantle transition zone. Studies of this phenomenon suggest that olivine and/or pyroxene metastability may profoundly alter the slab density profile, leading to slab flattening (e.g., King et al., 2015) and potentially yielding a resolvable seismological signature (e.g., Kawakatsu and Yoshioka, 2011; Yoshioka et al., 2015). Such metastability may also be critical for deep earthquake generation. Geodynamic modelling of this process is typically done with a simplified petrologic model of the downgoing slab, whereas petrologic studies of phase assemblages in subducted slabs typically impose an idealized geodynamic model with an unrealistic thermal structure. Connecting these two approaches should lead to a better understanding of the consequences of metastable assemblages on subducting slabs. Here, we present a new methodology that combines geodynamic, seismic and petrologic approaches to assess the impact of mineral metastability on dynamic subduction models, developed in a collaborative effort begun at the 2016 NSF CIDER summer program in Santa Barbara, CA. We use two parallel approaches to extrapolate equilibrium rock properties to metastable regions and impose these data on extracted time-slices from robust thermo-mechanical geodynamic models, allowing us to quantify the density and buoyancy changes in the slab that result from considering metastable phase assemblages. Our preliminary results suggest that metastable assemblages can yield a 10-30% density decrease over the subducted slab relative to an equilibrium reference model. We then generate a seismic velocity profile of the slab, and compute waveforms based on the 2D finite-difference method (e.g., Vidale & Helmberger, 1987) to determine whether metastable phases could reasonably be detected by different seismic approaches. Continuing analyses will be aimed at coupling the evolution of geodynamic models with phase metastability to model the feedback between

  5. Quantifying global melt flux and degassing rate from global mantle convection models with plate motion history

    Science.gov (United States)

    Li, M.; Black, B. A.; Zhong, S.; Manga, M.; Rudolph, M. L.; Olson, P.

    2015-12-01

    How does the Earth's deep mantle convection affect surface climate change? Volcanism in various geological settings, including mid-ocean ridges, volcanic arcs, rift zones and sites with intraplate volcanism, releases volatiles to Earth's surface. The amount and composition of these volatiles influence the evolution Earth's ocean, crust and atmosphere, which in turn control the evolution of the biosphere. While there are constraints of Earth's degassing from the geochemistry of samples in some localized regions, a quantification of the time evolution of degassing on a global scale remains largely unknown.In this study, we run geodynamical calculations with a full 3D spherical geometry to explore the amount of partial melting in the shallow part of Earth's mantle and implied degassing at a global scale. The plate motion history for the last 200 Ma or longer is employed as time-dependent velocity boundary condition for mantle flow. Using the temperature, pressure and composition in mantle convection models, we calculate the degree of partial melting in different geological settings. We show that the melt flux at mid-ocean ridges generally increases linearly with the speed of plates, with some perturbations due to changes of length of mid-ocean ridges. Generally, this melt flux is about 2-3 times in the past 200 million years than that of the present-day Earth. The present-day melt flux is ~20 km3/year, but this value reaches ~40 km3/year at about 80Ma, and ~60 km3/year at about 120-160Ma. Given estimates of volatile content in the source regions where partial melting occurs and the melt flux we calculate, we quantify the evolution of degassing rate (of CO2) at mid-ocean ridges, hotspots, large igneous provinces, and subduction zones.

  6. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    Science.gov (United States)

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-05

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

  7. MASE: A seismological perspective of the sub-horizontal subduction of the Cocos Plate under North America

    Science.gov (United States)

    Pérez-Campos, X.; Clayton, R. W.; Davis, P.; Iglesias, A.; Husker, A.; Valdés-González, C. M.

    2006-12-01

    The main objective of the MesoAmerican Subduction Experiment (MASE) is the generation of a dynamic model of the subduction of Cocos plate underneath the North American plate. One component of this project is a seismic line consisting of 100 broadband seismometers, located every 5 km between Acapulco and Tampico, with its mid-point in Mexico City. The initial instrument was deployed at the end of 2004 and the full line will operate until January 2007. The purpose of this line is to derive a velocity and structure model along the transect, and to determine attenuation and viscosity in the mantle wedge. Various researchers from the three institutions involved (Caltech, UNAM, and UCLA) are using several techniques to achieve these goals, such as receiver functions, surface-wave dispersion, tomography and waveform modeling. Preliminary results from dispersion curves show clearly a Moho that correlates to one obtained with receiver functions, which show a flat subducting slab up to ~200 km from the trench. Also, tomography, together with the previous techniques and ray tracing, show a difference in behavior within the Trans Mexican Volvanic Belt. Furthermore, from microseism correlation, we can distinguish surface waves that give information about the crust structure.

  8. Plume-induced subduction

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  9. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T. (Ehime U); (WHOI); (UC); (ANU)

    2008-10-08

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as

  10. Dynamics of intraoceanic subduction initiation: 2D thermomechanical modeling

    Science.gov (United States)

    Zhou, X.; Gerya, T.; LI, Z.; Stern, R. J.

    2016-12-01

    Intraoceanic subduction initiation occurs in previous weak zones which could be transform faults or old fracture zones, and concurrents with the change of plate motions. It is an important process to understand the beginning of plate tectonics. However, the dynamic process during (after) subduction initiation remain obscure. The process of suducting slabs move from down to downdip is also not revealed clearly. In order to obtain better understanding of the transitional process of subducting slab motion, we use finite difference and marker-in-cell methods to establish a series of self-sustainable subduction initiation models and explore many visco-plastic parameters to qualify the dynamical process of subduction initiation. The following parameters are systematic tested: (1) the age of the subducting slab; (2) friction coefficient of the mantle material; (3) the mantle potential temperature; (4) the age of the overriding slab. We find out the critical age of the oceanic lithosphere which can produce subduction initiation. And the age of subducting slab plays important roles during subduction initiation. The young subducting slab induces fast trench retreat and then trench begin to advance. For the old subducting slab, it induces relative slower trench retreat and then stop moving. The age of overriding slabs impacts coupling with the subducting slab. The friction coefficient of lithosphere also impacts the backarc spreading and subduction velocity. Stronger subducted plate gives lower subduction velocity and faster trench retreat velocity. The mantle potential temperature changes the critical age of subducted slabs.

  11. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  12. Perovskite inclusions in deep mantle diamonds and the fate of subducted lithosphere

    Science.gov (United States)

    Walter, Michael; Armstrong, Lora

    2010-05-01

    Sublithospheric diamonds are typically Type II, frequently exhibit complex zoning, and sometimes contain mineral inclusions that can potentially reveal deep mantle lithologies and petrologic processes. A considerable number of these diamonds contain inclusions with elemental stoichiometries consistent with transition zone (e.g. majoritic garnet, Ca-perovskite) and lower mantle phases (e.g. Mg-perovskite, Ca-perovskite, (Mg,Fe)-periclase) [1]. Ca-rich perovskites, some containing considerable CaTiO3 component, almost invariably have very low Mg contents, unlike what would be expected in solid lower mantle peridotitic or basaltic lithologies, but have elevated incompatible elements abundances that almost certainly indicate crystallization from a low-degree Ca-rich partial melt [2,3]. High-Ca majoritic garnets also have both major and trace element characteristics indicating the role of low-degree, Ca-rich partial melts [3,4], and in some cases calculated melts likely formed in subducted oceanic crust or lithosphere [3]. Given that diamond crystallized syngenetically with the inclusions, crystallization from carbonated melts is implicated. The reducing conditions expected in the ambient transition zone and lower mantle [5] could promote reduction of the carbonate component in slab-derived, carbonated (oxidized), partial melts. Reduction can lead to diamond and perovskite crystallization from the melt, possibly with H2O as a by-product through a reaction such as: CaCO3 (melt) + SiO2(melt-solid) + CH4(fluid-melt)= CaSiO3(melt-solid)) + 2H2O(melt) + 2Cdiamond Mg-perovskite could crystallize via a similar reaction involving the MgCO3 component of the melt. We speculate that when subducted slabs stall at the base of the transition zone, they may heat up and release low-degree carbonated melts [6]. Such melts may migrate, crystallize and metasomatize the ambient mantle. Trace element abundances in some kimberlites are remarkably similar to liquids that could have coexisted

  13. Dynamics and stress field of the Eurasian plate: A combined lithosphere-mantle approach

    NARCIS (Netherlands)

    Ruckstuhl, K.N.|info:eu-repo/dai/nl/304848743

    2012-01-01

    This thesis presents a new combined lithosphere-mantle modeling approach to the dynamics of individual tectonic plates. This approach incorporates tractions from convective mantle flow modeling into a detailed analysis of the forces acting on a tectonic plate. Mechanical equilibrium of the plate is

  14. Mantle convection and plate tectonics: toward an integrated physical and chemical theory

    Science.gov (United States)

    Tackley

    2000-06-16

    Plate tectonics and convection of the solid, rocky mantle are responsible for transporting heat out of Earth. However, the physics of plate tectonics is poorly understood; other planets do not exhibit it. Recent seismic evidence for convection and mixing throughout the mantle seems at odds with the chemical composition of erupted magmas requiring the presence of several chemically distinct reservoirs within the mantle. There has been rapid progress on these two problems, with the emergence of the first self-consistent models of plate tectonics and mantle convection, along with new geochemical models that may be consistent with seismic and dynamical constraints on mantle structure.

  15. Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin?

    Science.gov (United States)

    Tauzin, B.; Kim, S.; Kennett, B. L. N.

    2017-11-01

    We exploit conversions between P and S waves for large-scale, high-resolution imaging of the mantle transition zone beneath Northwest Pacific and the margin of Eastern Asia. We find pervasive reflectivity concentrated in two bands with apparent wave-speed reduction of -2% to -4% about 50 km thick at the top of the transition zone and 100 km thick at the bottom. This negative reflectivity associated with the scattered-waves at depth is interpreted jointly with larger-scale mantle tomographic images, and is shown to delineate the stagnant portions of the subducted Pacific plate in the transition zone, with largely positive shear-wave velocity contrasts. The upper reflectivity zone connects to broad low-velocity regions below major intra-plate volcanoes, whereas the lower zone coincides locally with the occurrence of deep-focus earthquakes along the East Asia margin. Similar reflectivity is found in Pacific Northwest of the USA. We demonstrate that the thermal signature of plates alone is not sufficient to explain such features. Alternative explanations for these reflective zones include kinetic effects on olivine phase transitions (meta-stability), compositional heterogeneities within and above stagnant plates, complex wave-propagation effects in the heterogeneous slab structure, or a combination of such factors. We speculate that part of the negative reflectivity is the signature of compositional heterogeneities, as revealed by numerous other studies of seismic scattering throughout the mantle, and that such features could be widespread across the globe.

  16. Atlas of the Underworld : Paleo-subduction, -geography, -atmosphere and -sea level reconstructed from present-day mantle structure

    NARCIS (Netherlands)

    van der Meer, Douwe G.

    2017-01-01

    In this thesis, I aimed at searching for new ways of constraining paleo-geographic, -atmosphere and -sea level reconstructions, through an extensive investigation of mantle structure in seismic tomographic models. To this end, I explored evidence for paleo-subduction in these models and how this may

  17. Key role of Upper Mantle rocks in Alpine type orogens: some speculations derived from extensional settings for subduction zone processes and mountain roots

    Science.gov (United States)

    Müntener, Othmar

    2016-04-01

    Orogenic architecture and mountain roots are intrinsically related. Understanding mountain roots largely depends on geophysical methods and exhumed high pressure and high temperature rocks that might record snapshots of the temporal evolution at elevated pressure, temperatures and/or fluid pulses. If such high pressure rocks represent ophiolitic material they are commonly interpreted as exhumed remnants of some sort of 'mid-ocean ridge' processes. Mantle peridotites and their serpentinized counterparts thus play a key role in understanding orogenic architecture as they are often considered to track suture zones or ancient plate boundaries. The recognition that some mantle peridotites and their serpentinized counterparts are derived from ocean-continent transition zones (OCT's) or non-steady state (ultra-)slow plate separation systems question a series of 'common beliefs' that have been applied to understand Alpine-type collisional orogens in the framework of the ophiolite concept. Among these are: (i) the commonly held assumption of a simple genetic link between mantle melting and mafic (MORB-type) magmatism, (ii) the commonly held assumption that mélange zones represent deep subduction zone processes at the plate interface, (iii) that pre-collisional continental crust and oceanic crust can easily be reconstructed to their original thickness and used for reconstructions of the size of small subducted oceanic basins as geophysical data from rifted margins increasingly indicate that continental crust is thinned to much less than the average 30-35 kilometers over a large area that might be called the 'zone of hyperextension', and (iv) the lack of a continuous sheet of mafic oceanic crust and the extremely short time interval of formation results in a lack of 'eclogitization potential' during convergence and hence a lack of potential for subsequent slab pull and, perhaps, a lack of potential for 'slab-breakoff'. Here we provide a synopsis of mantle rocks from the

  18. 3-D Laboratory and Numerical Models of Mantle Flow in Subduction Zones

    Science.gov (United States)

    Funiciello, F.; Piromallo, C.; Moroni, M.; Becker, T.; Faccenna, C.; Bui, H.; Cenedese, A.

    2004-12-01

    Analogue and numerical studies are powerful tools to gain insight on the subduction process. Here we investigate some results from both approaches in order to characterize the induced flow triggered in the mantle by slab motion. The fluid velocity field in our 3-D laboratory experiments is reconstructed and analyzed through the PTV (Particle Tracking Velocimetry) image analysis technique, which provides a set of velocity vectors centred with particle centroid positions. Numerical investigation is approached by means of the finite element code Citcom (e.g. Moresi & Solomatov, 1995, Zhong et al., 1998; obtained from geoframework.org), solving the equations for conservation of mass, momentum and energy for an incompressible viscous spherical shell.

  19. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Seismic tomography indicates that subducting oceanic lithosphere often penetrates the transition zone and eventually the lower mantle [e.g. 1, 2]. While mineralogical changes in the mafic and ultramafic portions of slabs have been well documented experimentally, the phase relations of overlying sediments at pressures above 25 GPa remain poorly studied. This is in part because sediments are expected to partially melt at sub-arc depth (P~2.5-4.5 GPa), and contribute to the genesis of arc magmas. Sediment restites left behind after the extraction of low pressure melts undergo major chemical changes, according to the melting reaction: Coe+Phen+Cpx+H2O = Grt+Ky+Melt [3]. However, sediments may not always melt depending on the thermal regime and volatile availability and composition [3]. Hence, chemically unmodified sediments as well as restites may be entrained to greater depths and contribute to compositional heterogeneity in the deep mantle. Indeed, mineral inclusions with compositions indicative of subducted sedimentary protoliths (CAS-phase; K-hollandite; stishovite) have been reported in 'ultradeep' diamonds and suggest that deep subduction and survival of sediments occurs to at least transition zone depths [4]. With this in mind, we have performed laser heated diamond anvil cell experiments at pressures of 8-80 GPa on two anhydrous glass starting materials: a marine clay and the restite that is left after 50% melt extraction of this clay at 3 GPa and 800 °C [3]. We chose to work with an anhydrous version of the marine clay given that the investigated pressure range exceeds that of phengite stability [5], and phengite is the only hydrous phase in subducted sediments at UHP conditions. The clay was heated along a P-T path representative of a cold subduction geotherm, whereas the clay restite was heated along a hotter subduction geotherm consistent with low pressure melting. Phases were identified by synchrotron X-ray micro-diffraction at beamline I15 of the Diamond

  20. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    Science.gov (United States)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  1. The dynamics of plate tectonics and mantle flow: from local to global scales.

    Science.gov (United States)

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  2. Predicting SKS-splitting from 35 Myr of subduction and mantle flow evolution in the western Mediterranean

    Science.gov (United States)

    Chertova, Maria; Spakman, Wim; Faccenda, Manuele

    2017-04-01

    We investigate the development of mantle anisotropy associated with the evolution of the Rif-Gibraltar-Betic (RGB) slab of the western Mediterranean and predict SKS-splitting directions for comparison with the recent observations compiled in Diaz and Gallart (2014). Our numerical model of slab evolution starts at 35 Ma and builds on our on recent work (Chertova et al., 2014) with the extension of imposing mantle flow velocities on the side boundaries of the model (Chertova et al., 2017). For the calculation of the evolution of finite strain deformation from the mantle flow field and for prediction of SKS-splitting directions we use the modified D-Rex program of Faccenda (2014). We test the predicted splitting observations against present-day shear wave splitting observations for subduction models with open boundary conditions (Chertova, 2014) and for models with various prescribed mantle flow conditions on the model side boundaries. The latter are predicted time-dependent (1 Myr time steps) velocity boundary conditions computed from back-advection of a temperature and density model of the present-day mantle scaled from a global seismic tomography model (Steinberger et al., 2015). These boundary conditions where used recently to demonstrate the relative insensitivity of RGB slab position and overall slab morphology for external mantle flow (Chertova et al., 2017). Using open boundaries only we obtain a poor to moderate fit between predicted and observed splitting directions after 35 Myr of slab and mantle flow evolution. In contrast, a good fit is obtained when imposing the computed mantle flow velocities on the western, southern, and northern boundaries during 35 Myr of model evolution. This successful model combines local slab-driven mantle flow with remotely forced mantle flow. We are in the process to repeat these calculations for shorter periods of mantle flow evolution to determine how much of past mantle flow is implicitly recorded in present-day observation

  3. The effect of plumes and a free surface on mantle dynamics with continents and self-consistent plate tectonics

    Science.gov (United States)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2014-05-01

    Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free

  4. Continental crust subducted deeply into lithospheric mantle: the driving force of Early Carboniferous magmatism in the Variscan collisional orogen (Bohemian Massif)

    Science.gov (United States)

    Janoušek, Vojtěch; Schulmann, Karel; Lexa, Ondrej; Holub, František; Franěk, Jan; Vrána, Stanislav

    2014-05-01

    relamination mechanisms. The presence of refractory light material rich in radioactive elements under the denser upper plate would eventually result in gravity-driven overturns in the thickened crust. The contaminated lithospheric mantle domains yielded, soon thereafter, ultrapotassic magmas whose major- and compatible-trace element signatures point to equilibration with the mantle peridotite, while their LILE contents and radiogenic isotope signatures are reminiscent of the subducted continental crust. This research was financially supported by the GAČR Project P210-11-2358 (to VJ) and Ministry of Education of the Czech Republic program LK11202 (to KS). Becker, H. 1996. Journal of Petrology 37, 785-810. Kotková, J. et al. 2011. Geology 39, 667-670. Massonne, H.-J. 2001. European Journal of Mineralogy 13, 565-570. Naemura, K. et al. 2009. Journal of Petrolology 50, 1795-1827. Schulmann, K., et al., 2014. Geology, in print. Vrána, S. 2013. Journal of Geosciences 58, 347-378. Zheng, Y. F. 2012. Chemical Geology 328, 5-48.

  5. Subduction-related metasomatism in French Massif Central: evidence from secondary orthopyroxene in mantle xenoliths.

    Science.gov (United States)

    Wagner, Christiane

    2017-04-01

    Peridotite xenoliths from the French Massif Central (FMC) have undergone a complex mantle metasomatic history by percolation of various melts/ fluids from alkali basaltic to carbonatite composition. This contribution argues for the imprint of another type of metasomatism related to subduction-derived melts/fluids. The samples come from the Mont Coupet strombolian volcano, Devès, FMC. They are fresh protogranular spinel lherzolites, with no infiltration of the host basanitic magma, but with evidences of alkali and carbonate-related metasomatism discussed elsewhere [1-3]. This study focuses on secondary orthopyroxene (opx2). It occurs +/- minor secondary clinopyroxene (cpx2) in cross-cutting thin (10 µm-20 µm) veinlets, and also as discontinuous patches developed after primary clinopyroxene (cpx1) at the contact with primary olivine (ol1). Opx2 crystals do not form fibrous radial aggregates. Rare small (<1 µm) rounded chloroapatite is included in opx2 after cpx1. Small (2 µm) pores are observed throughout the veins, at the contact with ol1, along sub-grained boundaries between opx2 and cpx2 in the veinlets, and between opx2 and cpx1. The primary minerals crosscut by the veinlets do not show any compositional zoning and the different elements show sharp profiles between opx 2 and primary minerals. Compared to primary opx, opx2 are characterized by a lower content in Al2O3 (1.7-2.5 wt. %) / 3.2-4.0 wt. %). They are slightly MgO (XMg = 90-91/ 89-90) and CaO richer (0.5 wt. % / 0.3 wt. %), and contain slightly less Cr2O3 (<0.2 wt. % / 0.2-0.3wt. %) and TiO2 (<0.06 wt. % / 0.06-0.14 wt. %), although there is some crossover between the two data sets. Na2O contents (<0.05 wt. %) are comparable. Cpx2 and opx2 from the veinlets are in equilibrium (XMg = 90-92). Al and Ti contents in cpx2 exclude any influence of percolation of the host magma. Moreover, their high Al6/Al4 ratio points to an equilibration at higher pressure than igneous cpx, close to that of cpx1. These

  6. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  7. Development of Stokes flow solver against a large contrast in viscosity: toward plate-mantle simulation with free surface

    Science.gov (United States)

    Furuichi, M.

    2009-12-01

    We are interested in solving a large-scale plate-mantle simulation enables capture of the large and complex deformation of a subducting plate. In our earlier study (Furuichi, et al 2008), we developed a numerical method toward plate-mantle simulation especially for the highly parallel vector supercomputer system (e.g. Earth Simulator). Our scheme is based on the finite volume method combines (i) the multigrid technique together with ACuTE smoother algorithm (Kameyama et al., 2005), and (ii) the low diffusive CIP-CSLR advection. The validity test of our simulation code by using a fluid rope coiling event (Furuichi, et al 2009) showed that our method enable us to reproduce large non-linear deformation problems of a rigid plate surrounded by soft material without serious quantitative errors. Then as a next step, I am trying to create a Stokes flow solver scalable against a large jump in a viscosity profile, for moving surface (geometrically free boundary) problems. It is for solving the Stokes flow motion under the same condition as real earth. In this presentation, I propose to apply BFBt preconditioner and AMG techniques for the problems of large viscosity contrast and moving free surface boundary condition respectively. I would like to show some numerical experiments for a self-gravitating motion of the layered Stokes flow.

  8. Numerical Modelling of Subduction Plate Interface, Technical Advances for Outstanding Questions

    Science.gov (United States)

    Le Pourhiet, L.; Ruh, J.; Pranger, C. C.; Zheng, L.; van Dinther, Y.; May, D.; Gerya, T.; Burov, E. B.

    2015-12-01

    The subduction zone interface is the place of the largest earthquakes on earth. Compared to the size of a subduction zone itself, it constitutes a very thin zone (few kilometers) with effective rheological behaviour that varies as a function of pressure, temperature, loading, nature of the material locally embedded within the interface as well as the amount of water, melts and CO2. Capturing the behaviour of this interface and its evolution in time is crucial, yet modelling it is not an easy task. In the last decade, thermo-mechanical models of subduction zone have flourished in the literature. They mostly focused on the long-term dynamics of the subduction; e.g. flat subduction, slab detachment or exhumation. The models were validated models against PTt path of exhumed material as well as topography. The models that could reproduce the data all included a mechanically weak subduction channel made of extremely weak and non cohesive material. While this subduction channel model is very convenient at large scale and might apply to some real subduction zones, it does not capture the many geological field evidences that point out the exhumation of very large slice of almost pristine oceanic crust along localised shear zone. Moreover, modelling of sismological and geodetic data using short term tectonic modelling approach also point out that large localised patches rupture within the subduction interface, which is in accordance with geological data but not with large-scale long-term tectonic models. I will present how high resolution models permit to produce slicing at the subduction interface and give clues on how the plate coupling and effective location of the plate interface vary over a few millions of year time scale. I will then discuss the implication of these new high-resolution long-term models of subduction zone on earthquake generation, report progress in the development of self-consistent thermomechanical codes which can handle large strain, high resolution

  9. Arc-parallel shear deformation and escape flow in the mantle wedge of the Central America subduction zone: Evidence from P wave anisotropy

    National Research Council Canada - National Science Library

    W. Rabbel; I. Koulakov; A. N. Dinc; A. Jakovlev

    2011-01-01

      The upper mantle of the Central America subduction zone is anisotropic In the fore arc P wave anisotropy is arc-parallel P wave anisotropy indicates escape flow in agreement with GPS and S waves...

  10. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    Science.gov (United States)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  11. Dynamics of subduction and continental collision: Influence of the nature of the plate contact. Geologica Ultraiectina (284)

    NARCIS (Netherlands)

    De Franco, R.

    2008-01-01

    At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction

  12. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  13. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations

    Science.gov (United States)

    King, Scott D.; Hager, Bradford H.

    1990-01-01

    The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.

  14. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere

    NARCIS (Netherlands)

    Čížková, H.; van den Berg, A.P.; Spakman, W.; Matyska, C.

    2012-01-01

    The viscosity of the mantle is indispensable for predicting Earth's mechanical behavior at scales ranging from deep mantle material flow to local stress accumulation in earthquakes zones. But, mantle viscosity is not well determined. For the lower mantle, particularly, only few constraints result

  15. Sulphide-sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time

    Science.gov (United States)

    Canil, Dante; Fellows, Steven A.

    2017-07-01

    The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the oceans in only the past 250 million years.

  16. A two-way interaction between the Hainan plume and the Manila subduction zone

    NARCIS (Netherlands)

    Mériaux, Catherine A.; Duarte, João C.; Schellart, Wouter P.; Mériaux, Anne Sophie

    2015-01-01

    The interaction between mantle plumes and subducting slabs is well accepted, but the influence of slabs on plumes has more often been portrayed than the reverse. Here we present three-dimensional upper mantle laboratory models in which a compositional plume rises underneath a subducting plate.

  17. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate

    NARCIS (Netherlands)

    Warners-Ruckstuhl, K.N.; Govers, R.; Wortel, R.

    2012-01-01

    Mechanical equilibrium of tectonic plates implies that lithospheric edge and body forces are balanced by forces arising from interaction with the underlying mantle. We use this quantitative physical relation to integrate existing modelling approaches of lithosphere dynamics and mantle flow into a

  18. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    Science.gov (United States)

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  19. Is subduction really in the plate tectonics driving seat, or do two other global mechanisms do the driving? A review in the 'deep-keeled cratons' frame for global dynamics

    Science.gov (United States)

    Osmaston, M. F.

    2012-04-01

    Introduction. The title poses a question very like that of my talk in 2003 [1], concluding then that, as a driver, subduction comes 'a doubtful third'. My purpose here is to show that subsequent developments now cause even that limited status to be denied it with great assurance, except in a rare situation, of which there is no current example. The key point is that studies of subduction have been importantly mistaken as to the nature of the plate arriving for subduction. Deep-keeled cratons? The 'deep-keeled cratons' frame for global dynamics [2 - 5] is the result of seeking Earth-behaviour guidance on the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Remarkably it has turned out [2 - 5] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that the explanation for the otherwise-unexpected immobility of subcratonic material to such depths is a petrological one which is also applicable to the behaviour of LVZ mantle below MORs [6 - 8]. Straight away this result has major consequences for the character of the plate arriving for subduction. First, to construct them, we need a 'thick-plate' (>100km?) model of the MOR process which recognizes that this LVZ immobility renders invalid the existing concept of divergent mantle flow below MORs. I show that my now not-so-new model [1, 8 - 10], based on a deep, narrrow, wall-accreting sub-axis crack, possesses outstandingly relevant properties, even appropriately dependent on spreading rate. Second, the oceanic plate arriving for subduction is no longer just the cooled

  20. Plate tectonics and convection in the Earth's mantle: toward a numerical simulation

    OpenAIRE

    Moresi, Louis; Gurnis, Michael; Zhong, Shijie

    2000-01-01

    Plate tectonics is a kinematic description of Earth that treats the outer shell of its mantle as a number of plates or rigid spherical caps that move with respect to each other (see the “Plate tectonics” sidebar). The mantle is the outer, solid 3,000-km-thick shell that overlies Earth’s fluid outer core. An enormous amount of geological and geophysical data has gone into determining the motion of the plates,1 and within the last few years direct GPS measurements have corroborated the geolo...

  1. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection

    Science.gov (United States)

    Zhong, Shijie; Zuber, Maria T.; Moresi, Louis; Gurnis, Michael

    2000-05-01

    Layered viscosity, temperature-dependent viscosity, and surface plates have an important effect on the scale and morphology of structure in spherical models of mantle convection. We find that long-wavelength structures can be produced either by a layered viscosity with a weak upper mantle or temperature-dependent viscosity even in the absence of surface plates, corroborating earlier studies. However, combining the layered viscosity structure with a temperature-dependent viscosity results in structure with significantly shorter wavelengths. Our models show that the scale of convection is mainly controlled by the surface plates, supporting the previous two-dimensional studies. Our models with surface plates, layered and temperature-dependent viscosity, and internal heating explain mantle structures inferred from seismic tomography. The models show that hot upwellings initiate at the core-mantle boundary (CMB) with linear structures, and as they depart from CMB, the linear upwellings quickly change into quasi-cylindrical plumes that dynamically interact with the ambient mantle and surface plates while ascending through the mantle. A linear up welling structure is generated again at shallow depths (maintained throughout the mantle. The tendency for linear upwelling and downwelling structures to break into plume-like structures is stronger at higher Rayleigh numbers. Our models also show that downwellings to first-order control surface plate motions and the locations and horizontal motion of upwellings. Upwellings tend to form at stagnation points predicted solely from the buoyancy forces of downwellings. Temperature-dependent viscosity greatly enhances the ascending velocity of developed upwelling plumes, and this may reduce the influence of global mantle flow on the motion of plumes. Our results can explain the anticorrelation between hotspot distribution and fast seismic wave speed anomalies in the lower mantle and may also have significant implications to the

  2. Numerical simulations of temperature, dehydration, and flow fields associated with subduction of the Cocos plate, and its relation to the occurrence of interplate seismic events in southern Mexico

    Science.gov (United States)

    Suenaga, N.; Ji, Y.; Yoshioka, S.; Manea, M.; Manea, V. C.

    2016-12-01

    In southern Mexico, tectonic tremors mainly occur in the "flat slab region, and the last three SSEs in southern Mexico occurred in the shallower region. Besides, there are two seismic gaps of megathrust earthquakes in Guerrero and Oaxaca. To investigate generation mechanisms of megathrust earthquakes, tectonic tremors, and slow slip events (SSEs) in southern Mexico, we performed three-dimensional numerical simulations of temperature and mantle flow associated with subduction of the Cocos plate, and estimated dehydrated water content from the subducting plate. Here we considered retreat of the Middle American trench initiating about 16 Ma as one of the generation mechanisms of the slab flattening. In our model, we introduced the trench retreat effect during only a certain period between 16 Ma and present in order to best fit the observed heat flow data (from Global Heat Flow Database) as well as Curie point depths defined by the 580 ° isotherm. Our preliminary results show that trench rollback has a strong influence on temperature distribution. Models with trench rollback induce a weaker mantle wedge convection cell compared with models with stationary trench. Other parameter that is currently investigated in this study is the rate of trench retreat.

  3. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle

    Science.gov (United States)

    Ribeiro, Julia M.; Lee, Cin-Ty A.

    2017-12-01

    The depth of slab dehydration is thought to be controlled by the thermal state of the downgoing slab: cold slabs are thought to mostly dehydrate beneath the arc front while warmer slabs should mostly dehydrate beneath the fore-arc. Cold subduction zone lavas are thus predicted to have interacted with greater extent of water-rich fluids released from the downgoing slab, and should thus display higher water content and be elevated in slab-fluid proxies (i.e., high Ba/Th, H2O/Ce, Rb/Th, etc.) compared to hot subduction zone lavas. Arc lavas, however, display similar slab-fluid signatures regardless of the thermal state of the slab, suggesting more complexity to volatile cycling in subduction zones. Here, we explore whether the serpentinized fore-arc mantle may be an important fluid reservoir in subduction zones and whether it can contribute to arc magma generation by being dragged down with the slab. Using simple mass balance and fluid dynamics calculations, we show that the dragged-down fore-arc mantle could provide enough water (∼7-78% of the total water injected at the trenches) to account for the water outfluxes released beneath the volcanic arc. Hence, we propose that the water captured by arc magmas may not all derive directly from the slab, but a significant component may be indirectly slab-derived via dehydration of dragged-down fore-arc serpentinites. Fore-arc serpentinite dehydration, if universal, could be a process that explains the similar geochemical fingerprint (i.e., in slab fluid proxies) of arc magmas.

  4. A discussion of numerical subduction initiation

    Science.gov (United States)

    Buiter, Susanne; Ellis, Susan

    2016-04-01

    In nature, subduction can initiate in various ways: Shortening can localise at oceanic transform faults, extinct spreading centres, or inherited passive margin faults; or, alternatively, subduction can be triggered from existing subduction systems by along-strike trench propagation, polarity reversals, or trench jumps. Numerical studies that specifically address subduction initiation have highlighted the roles of sediment loading, rheological strength contrasts, strain softening, and continental topographic gradients, among others. Usually, however, numerical models that aim to investigate subduction dynamics prefer to bypass the subduction initiation phase and its complexities, and focus instead on the stages during which the slab is descending into the mantle. However, even in these models, subduction still needs to begin. It is disturbingly easy to define initial model geometries that do not result in subduction. The specific combination of initial model geometries and values for rheological parameters that successfully initiates subduction has even been referred to as 'the sweet spot' in model space. One cause of subduction initiation failure is when the subducting and overriding plates lock, resulting in either indentation or severe dragging downwards of the overriding plate. This may point to a difficulty in maintaining a weak subduction interface during model evolution. A second factor that may cause difficulties is that initial model geometry and stresses need to balance, as otherwise the first model stages may show spurious deformation associated with reaching equilibrium. A third requirement that may cause problems is that the surface needs to have sufficient displacement freedom to allow the overriding plate to overthrust the subducting plate. That also implies an exclusion of sharp corners in the subduction interface near the surface. It is the interplay of subduction interface geometry, interface strength and subducting plate rheology that determines

  5. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.

    Science.gov (United States)

    Kelemen, Peter B; Manning, Craig E

    2015-07-28

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  6. Dynamic effects of plate-buoyancy subduction at Manila Trench, South China Sea

    Science.gov (United States)

    Jiang, L.; Zhan, W.; Sun, J.; Li, J.

    2015-12-01

    Bathymetric map of SCS plate shows two subducting buoyancies, the fossil ridge and the oceanic plateau, which are supposed to impact slab segmentation into the north from Taiwan to 18°N, and the south from 17°N to Mindoro. Hypocenter distribution show that slab dip angle turns lower southwards from 45° to 30° in the north segment, and relatively equals ~45° in the south segment at the depth of 100km. Moreover, volcano distribution can be segmented into Miocene WVC, Quaternary EVC in the north and combined SVC in the south (Fig. A). We found that WVC and SVC mostly locate in a parallel belt ~50km apart to Manila trench, however EVC turn father southwards from 50km to 100km (Fig. B). Above characters congruously indicate that SCS plate kept equal dip angle in Miocene; then the north segment shallowed at 18°N and developed northwards in Quaternary, resulting in lower dip angle than the invariant south segment. To check the transformation of slab dip angle from 45° to 30° between 17~18°N, focal mechanism solution nearby 17°N are found 90° in rake and dip angle, strike parallel to the fossil ridge, indicating a slab tear located coincident with the ridge, where is a weak zone of higher heat flow and lower plate coupling ratio than the adjacent zones and slab can be easily tore as an interface for SCS plate segmentation. Subduction of the two buoyancies within SCS plate is supposed as influential dynamic factor: It caused the trench retreat rate reduced, forming a cusp and a flat convex of Manila trench shape; Moreover, the buoyancies resisted subduction, resulting in shear stress heterogeneity of SCS plate, in consequence the fossil ridge as a fragile belt potentially became stress concentration zone that easily tore; Then the buoyant oceanic plateau might lead to shallowing of the northern SCS plate. To examine the hypothesis, dynamic effects of the two subducting buoyancies are being respectively investigated based on numerical models. (Grt. 41376063, 2013

  7. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    Science.gov (United States)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  8. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    Science.gov (United States)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be

  9. Surface deformation resulting from subduction and slab detachment

    NARCIS (Netherlands)

    Buiter, S.J.H.

    2000-01-01

    Convergence of lithospheric plates is accommodated at active margins by one plate moving beneath the other into the Earth's mantle. Changes in this subduction process may cause variations in the topography of the Earth's surface near a convergent plate margin. The focus of this thesis lies on

  10. Reconstructing mantle heterogeneity with data assimilation based on the back-and-forth nudging method: Implications for mantle-dynamic fitting of past plate motions

    Science.gov (United States)

    Glišović, Petar; Forte, Alessandro

    2016-04-01

    The paleo-distribution of density variations throughout the mantle is unknown. To address this question, we reconstruct 3-D mantle structure over the Cenozoic era using a data assimilation method that implements a new back-and-forth nudging algorithm. For this purpose, we employ convection models for a compressible and self-gravitating mantle that employ 3-D mantle structure derived from joint seismic-geodynamic tomography as a starting condition. These convection models are then integrated backwards in time and are required to match geologic estimates of past plate motions derived from marine magnetic data. Our implementation of the nudging algorithm limits the difference between a reconstruction (backward-in-time solution) and a prediction (forward-in-time solution) on over a sequence of 5-million-year time windows that span the Cenozoic. We find that forward integration of reconstructed mantle heterogeneity that is constrained to match past plate motions delivers relatively poor fits to the seismic-tomographic inference of present-day mantle heterogeneity in the upper mantle. We suggest that uncertainties in the past plate motions, related for example to plate reorganization episodes, could partly contribute to the poor match between predicted and observed present-day heterogeneity. We propose that convection models that allow tectonic plates to evolve freely in accord with the buoyancy forces and rheological structure in the mantle could provide additional constraints on geologic estimates of paleo-configurations of the major tectonic plates.

  11. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau

    Science.gov (United States)

    Meyer, B.; Tapponnier, P.; Bourjot, L.; Métivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, Guo; Zhitai, Chen

    1998-10-01

    Late-Cenozoic crustal shortening on NE sections between the Kunlun fault and the Hexi corridor are estimated to range between 100 and 200 km. In keeping with the inference of a deep crustal décollement and with the existence of Mid-Miocene to Pliocene plutonism and volcanism south of the Kunlun range, such values suggest that the lithospheric mantle of the Qaidam plunged obliquely into the asthenosphere south of that range to minimum depths of the order of 200-300 km. A minimum of ~150 km of shortening in the last ~10 Ma, consistent with the average age of the earliest volcanic-plutonic rocks just south of the Kunlun (~10.8 Ma) would imply average Late-Cenozoic rates of shortening and regional uplift in NE Tibet of at least ~15 mm yr-1 and ~0.2 mm yr-1, respectively. Such numbers are consistent with a cumulative sinistral offset and slip rate of at least ~200 km and ~2 cm yr-1, respectively, on the Altyn Tagh fault east of 88°E. The fault may have propagated more than 1000 km, to 102°E, in the last 10 Ma. Our study of ongoing tectonics in northeast Tibet is consistent with a scenario in which, while the Himalayas-Gangdese essentially `stagnated' above India's subducting mantle, much of Tibet grew by thickening of the Asian crust, as propagation of large, lithospheric, strike-slip shear zones caused the opposite edge of the plateau to migrate far into Asia. The Asian lithospheric mantle, decoupled from the crust, appears to have subducted southwards along the two Mesozoic sutures that cut Tibet north of the Gangdese, rather than to have thickened. The Bangong-Nujiang suture was probably reactivated earlier than the Jinsha-Kunlun suture, located farther north. Overall, the large-scale deformation bears a resemblance to plate tectonics at obliquely convergent margins, including slip-partioning along large strike-slip faults such as the Altyn Tagh and Kunlun faults. Simple mechanisms at the level of the lithospheric mantle are merely hidden by the broader distribution

  12. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.

    2007-01-01

    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  13. Detailed Structure and Thickness of Upper Mantle Discontinuities in the Tonga Subduction Zone From Regional Broadband Arrays

    Science.gov (United States)

    Tibi, R.; Wiens, D. A.

    2004-12-01

    Recordings of deep Tonga earthquakes from two arrays of 12 broadband seismographs each in the Fiji and Tonga islands are stacked and searched for reflections and conversions from upper mantle discontinuities in the Tonga subduction zone. The arrays operated as part of the Seismic Arrays in Fiji and Tonga (SAFT) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the regional data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We studied the phases s410p, P660p and S660p. To enhance these low-amplitude phases, deconvolved seismograms from each event/array pair are aligned on the maximum amplitude of the direct P wave and subsequently slant-stacked. For the 410-km discontinuity, the results show no systematic variations in depth with distance to the cold slab. The 660-km discontinuity varies between 656 and 714 km in depth. For the southern and central parts of the subduction zone, the largest depths occur in the core of the Tonga slab. For the northern part, two separate depressions of the 660 are observed. These anomalies are interpreted as being induced by the active, steeply subducting Tonga deep zone and a subhorizontally lying remnant of subducted lithosphere from the fossil Vityaz trench, respectively. Interpreting the deflections of the 660 in terms of local temperatures implies a thermal anomaly at 660 km depth of -800 to -1200oK for the Tonga slab, and -600 to -950oK for the piece of the Vityaz lithosphere. Except for the southern region where it thickens, the Tonga slab seems to penetrate the 660 with little deformation. Waveform modeling susggests that both the 410 and 660 discontinuities are sharp. The 410

  14. Crustal structure and configuration of the subducting Philippine Sea plate beneath the Pacific coast industrial zone in Japan inferred from receiver function analysis

    Science.gov (United States)

    Igarashi, T.; Iidaka, T.; Sakai, S.; Hirata, N.

    2012-12-01

    , the Kanto plain and Boso peninsula are covered in thick sediment layers. The velocity perturbations in the crust are consistent with existing tomography models. There are low-velocity zones in the upper crust to the crust-mantle boundary corresponding to volcanoes. In contrast, non-volcanic mountain foothills are relatively high-velocity zones. We also elucidated the configuration of PHS plate to a depth of about 60 km. The PHS plate subducts to the northwest and the direction coincides with plate motion. The northeastern margin of PHS plate is estimated from the plate thickness, which gradually decreases to the northeast after contact with the underlying Pacific plate beneath the Tokyo metropolitan area. Asperities of some large earthquakes seem to be corresponded to the high-velocity area in the PHS slab. On the other hand, non-volcanic low-frequency earthquakes located in the plate interface are characterized by relatively low-velocity areas. They may indicate the serpentinized mantle wedge which reflects dehydration of the subducting oceanic crust.

  15. Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics

    Science.gov (United States)

    JöDicke, H.; Jording, A.; Ferrari, L.; Arzate, J.; Mezger, K.; Rüpke, L.

    2006-08-01

    In order to study electrical conductivity phenomena that are associated with subduction related fluid release and melt production, magnetotelluric (MT) measurements were carried out in southern Mexico along two coast to coast profiles. The conductivity-depth distribution was obtained by simultaneous two-dimensional inversion of the transverse magnetic and transverse electric modes of the magnetotelluric transfer functions. The MT models demonstrate that the plate southern profile shows enhanced conductivity in the deep crust. The northern profile is dominated by an elongated conductive zone extending >250 km below the Trans-Mexican Volcanic Belt (TMVB). The isolated conductivity anomalies in the southern profile are interpreted as slab fluids stored in the overlying deep continental crust. These fluids were released by progressive metamorphic dehydration of the basaltic oceanic crust. The conductivity anomalies may be related to the main dehydration reactions at the zeolite → blueschist → eclogite facies transitions and the breakdown of chlorite. This relation allows the estimation of a geothermal gradient of ˜8.5°C/km for the top of the subducting plate. The same dehydration reactions may be recognized along the northern profile at the same position relative to the depth of the plate, but more inland due to a shallower dip, and merge near the volcanic front due to steep downbending of the plate. When the oceanic crust reaches a depth of 80-90 km, ascending fluids produce basaltic melts in the intervening hot subcontinental mantle wedge that give rise to the volcanic belt. Water-rich basalts may intrude into the lower continental crust leading to partial melting. The elongated highly conductive zone below the TMVB may therefore be caused by partial melts and fluids of various origins, ongoing migmatization, ascending basaltic and granitic melts, growing plutons as well as residual metamorphic fluids. Zones of extremely high conductance (>8000 S) in the

  16. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Dungan, Michael A.; Escrig, Stephane

    2017-08-01

    The composition of the convecting asthenospheric mantle that feeds the mantle wedge can be investigated via rear-arc lavas that have minimal slab influence. This "ambient mantle wedge" composition (the composition of the wedge prior to the addition of a slab component) varies substantially both worldwide and within individual arcs. 143Nd/144Nd measurements of rear-arc samples that have minimal slab influence are similar to 143Nd/144Nd in the stratovolcanoes of the adjacent volcanic fronts, suggesting that 143Nd/144Nd of arc-front volcanics are largely inherited from the ambient mantle composition. 143Nd/144Nd correlates with ratios such as Th/U, Zr/Nb, and La/Sm, indicating that these ratios also are strongly influenced by ambient wedge heterogeneity. The same phenomenon is observed among individual volcanoes from the Chilean Southern Volcanic Zone (SVZ), where along-strike variability of the volcanic front tracks that of rear-arc monogenetic volcanics. Depleted mantle wedges are more strongly influenced by slab-derived components than are enriched wedges. This leads to surprising trace element correlations in the global dataset, such as between Pb/Nb and Zr/Nb, which are not explicable by variable compositions or fluxes of slab components. Depleted ambient mantle is present beneath arcs with back-arc spreading; relatively enriched mantle is present adjacent to continents. Ambient mantle wedge heterogeneity both globally and regionally forms isotope mixing trajectories for Sr, Nd and Hf between depleted mantle and EM1-type enriched compositions as represented by Gough Island basalts. Making use of this relationship permits a quantitative match with the SVZ data. It has been suggested that EM1-type mantle reservoirs are the result of recycled lower continental crust, though such models do not account for certain trace element ratios such as Ce/Pb and Nb/U or the surprisingly homogeneous trace element compositions of EM1 volcanics. A model in which the EM1 end

  17. Structure of the subducted Cocos Plate from locations of intermediate-depth earthquakes

    Science.gov (United States)

    Lomnitz, C.; Rodríguez-Padilla, L. D.; Castaños, H.

    2013-05-01

    Locations of 3,000 earthquakes of 40 to 300 km depth are used to define the 3-D structure of the subducted Cocos Plate under central and southern Mexico. Discrepancies between deep-seated lineaments and surface tectonics are described. Features of particular interest include: (1) a belt of moderate activity at 40 to 80 km depth that parallels the southern boundary of the Mexican Volcanic Plateau; (2) an offset of 150 km across the Isthmus of Tehuantepec where all seismic activity is displaced toward the northeast; (3) three nests of frequent, deep-seated events (80 to 300 km depth) under southern Veracruz, Chiapas and the coast of Mexico-Guatemala. The active subduction process is sharply delimited along a NW-SE lineament from the Yucatan Peninsula, of insignificant earthquake activity. The focal distribution of intermediate-depth earthquakes in south-central Mexico provides evidence of stepwise deepening of the subduction angle along the Trench, starting at 15 degrees under Michoacan-Guerrero to 45 degrees under NW Guatemala. Historical evidence suggests that the hazard to Mexico City from large intermediate-depth earthquakes may have been underestimated.

  18. Geodynamic Evolution of Subduction to Collision to Escape in Central Anatolia From Surface to Mantle - Results From the CD-CAT Project

    Science.gov (United States)

    Darin, Michael

    2017-04-01

    Despite significant progress toward understanding the kinematics of modern tectonic escape in Anatolia, considerable uncertainty remains regarding the dynamics of the transition from collision to escape. Because of the relatively small size of the Anatolia microplate, regional-scale studies spanning the plate margins and interior are well-suited to investigate the driving forces and space-time evolution of this unique tectonic transition in collisional orogens. CD-CAT (Continental Dynamics-Central Anatolia Tectonics) is a five-year (2011-2016) project funded by the National Science Foundation (USA) designed to explore the surface-to-mantle dynamics of Anatolia during the Cenozoic subduction-collision-escape transition in central Anatolia. Our approach integrates results from a diversity of methods including: structural, stratigraphic, and geomorphic analyses; magnetostratigraphy; low-temperature thermochronometry; Ar/Ar geochronology; geochemistry; passive seismic experiments (71 stations over two years); magnetotellurics; and numerical modeling. The principal results from this project include: recognition of a margin-wide magmatic lull from 40-20 Ma, followed by a southwestward migration of the initiation of magmatism toward and within the Central Anatolia Volcanic Province (CAVP); an early Miocene switch from contraction/transpression to extension/transtension in the Kırşehir and Niǧde Massifs, while contraction changed to late Miocene strike-slip deformation east of the Central Anatolian fault zone (CAFZ); rain shadow development due to uplift of the central Taurides 11-5 Ma; thin to absent lithospheric mantle beneath central Anatolia; the lack of an Arabia slab shallower than 800 km depth; and a change in the Cyprus slab from horizontal beneath the central Taurides and apparently fragmented beneath the CAVP, to very steeply dipping beneath the eastern Isparta Angle. The CAFZ lies along part of the Inner Tauride Suture (ITS) and represents a fundamental

  19. Plate-mantle interaction through time explains two-phase uplift history of the eastern Australian passive margin

    Science.gov (United States)

    Dietmar Müller, R.; Flament, Nicolas; Matthews, Kara J.; Williams, Simon E.; Gurnis, Michael

    2015-04-01

    The origin of passive margin mountains is a hotly debated topic in geodynamics. The Eastern Highlands of Australia are a type example whose uplift history has been investigated for several decades, with suggested mechanisms ranging from flexural rift shoulder uplift, volcanism and underplating to mantle-convection driven dynamic topography. Most of the highlands have experienced a distinct two-phase uplift history, with the first phase being Late Cretaceous in age, followed by a mid-late Cenozoic renewal in uplift, but the timing and magnitude of uplift differs along strike. We investigate the origin of the Eastern Highlands with a coupled plate-mantle model, using a thorough parameter space analysis, including two alternative subduction boundary evolution models. The first model includes a large (~1000 km width at its maximum extent) Early Cretaceous (140-120 Ma) back-arc basin east of the Lord Howe Rise, representing the now subducted South Loyalty Basin which may have formed due to eastward rollback of the long-lived west-dipping eastern Gondwanaland subduction zone; the alternative scenario is based on the premise that west-dipping subduction is continuous to the East of the Lord Howe Rise between 140-85 Ma, without a large back-arc basin, and the South Loyalty Basin opening as a back arc basin from 85-55 Ma, which is subsequently consumed by subduction. We further investigate the influence of a low-viscosity asthenosphere and of the viscosity profile of the lower mantle on dynamic topography, as well as the effect of changing the buoyancy of the basal dense layer (LLSVP) that contributes to the long-wavelength Pacific superswell. Our best-fit model produces a total uplift up to ~400 m in the interval between 120 and 90-70 Ma, well-matched with recent published estimates from river profile inversion for the Snowy Mountains, New England and the Central Highlands. The driving mechanism is rebound from the eastwards motion of Australia over a sinking slab, first

  20. Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

    NARCIS (Netherlands)

    Hunen, Jeroen van

    2001-01-01

    Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling

  1. SECULAR CHANGES IN RELATIONSHIPS BETWEEN PLATE-TECTONIC AND MANTLE-PLUME ENGENDERED PROCESSES DURING PRECAMBRIAN TIME

    Directory of Open Access Journals (Sweden)

    M. V. Mints

    2016-01-01

    Full Text Available Paradoxically, the lists of “proxies” of both plate- and plume-related settings are devoid of even a mention of the high-grade metamorphic rocks (granulite, amphibolite and high-temperature eclogite facies. However, the granulite-gneiss belts and areas which contain these rocks, have a regional distribution in both the Precambrian and the Phanerozoic records. The origin and evolution of the granulite-gneiss belts correspond to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and pyroclastic flow deposits; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that spreads over the fill of rift depressions also. Granulite-gneiss complexes of the East European Craton form one of the main components of the large oval intracontinental tectonic terranes of regional or continental rank. Inclusion of the granulite-gneiss complexes from Eastern Europe, North and South America, Africa, India, China and Australia in discussion of the problem indicated in the title to this paper, suggests consideration of a significant change in existing views on the relations between the plate- and plume-tectonic processes in geological history, as well as in supercontinent assembly and decay. The East European and North American cratons are fragments of the long-lived supercontinent Lauroscandia. After its appearance at ~2.8 Ga, the crust of this supercontinent evolved under the influence of the sequence of powerful mantle plumes (superplumes up to ~0.85 Ga. During this time Lauroscandia was subjected to rifting, partial breakup and the following reconstruction of the continent. The processes of plate-tectonic type (rifting with the transition to spreading and closing of the short-lived ocean with subduction within Lauroscandia were controlled by the superplumes. Revision of the

  2. The earthquake cycle in subduction zones

    Science.gov (United States)

    Melosh, H. J.; Fleitout, L.

    1982-01-01

    A simplified model of a subduction zone is presented, which incorporates the mechanical asymmetry induced by the subducted slab to anchor the subducting plate during post-seismic rebound and thus throw most of the coseismic stream release into the overthrust plate. The model predicts that the trench moves with respect to the deep mantle toward the subducting plate at a velocity equal to one-half of the convergence rate. A strong extensional pulse is propagated into the overthrust plate shortly after the earthquake, and although this extension changes into compression before the next earthquake in the cycle, the period of strong extension following the earthquake may be responsible for extensional tectonic features in the back-arc region.

  3. Detailed structure and sharpness of upper mantle discontinuities in the Tonga subduction zone from regional broadband arrays

    Science.gov (United States)

    Tibi, Rigobert; Wiens, Douglas A.

    2005-06-01

    Recordings of deep Tonga earthquakes from two arrays of 12 broadband seismographs each in the Fiji and Tonga islands are stacked and searched for reflections and conversions from upper mantle discontinuities in the Tonga subduction zone. The arrays operated as part of the Seismic Arrays in Fiji and Tonga (SAFT) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high-frequency content for precise mapping of discontinuity topography and sharpness. To enhance the low-amplitude discontinuity phases s410p, P660p and S660p, deconvolved seismograms from each event/array pair are aligned on the maximum amplitude of the direct P wave and subsequently slant stacked. For the 410-km discontinuity, the results show no systematic variations in depth with distance to the cold slab. The 660-km discontinuity varies between 656 and 714 km in depth. For the southern and central parts of the subduction zone, the largest depths occur in the core of the Tonga slab. For the northern part, two separate depressions of the 660-km discontinuity are observed. These anomalies are interpreted as being induced by the active, steeply subducting Tonga deep zone and a subhorizontally lying remnant of subducted lithosphere from the fossil Vityaz trench, respectively. Interpreting the deflections of the 660-km discontinuity in terms of local temperatures implies a thermal anomaly of -800°K to -1200°K at 660 km depth. Except for the southern region where it may thicken, the width of the depressed 660-km discontinuity region implies that the Tonga slab seems to penetrate the 660-km discontinuity with little deformation. Waveform modeling suggests that both the 410- and 660-km discontinuities are sharp. The 660-km discontinuity is at most 2 km thick in many parts of the region, and a first-order discontinuity cannot be precluded. The 410-km discontinuity thickness shows

  4. A satellite magnetic perspective of subduction zones, large igneous provinces, rifts, and diffuse plate boundary zones

    Science.gov (United States)

    Purucker, M. E.; Whaler, K. A.

    2008-12-01

    Large and intermediate-scale tectonic features such as subduction zones, large igneous provinces, rifts, and diffuse plate boundary zones are often seen to have a magnetic signature visible from the perspective of near-Earth magnetic field satellites such as CHAMP and Orsted. Why do these tectonic features have a magnetic signature, while others do not? A new model of the lithospheric field (MF-6, Maus et al., 2008) extending to spherical harmonic degree 120 (333 km wavelength) has been used to evaluate the magnetic state of the lithosphere under the assumption that the magnetization is either induced (with a seismic starting model), or remanent (with a minimum norm approach). Some of the features identified from these images include the Tethyan and NE Siberian diffuse plate boundary zones, the Red Sea rift, and Cretaceous rift basins developed on the West African shield. Almost without exception, subduction zones exhibit a magnetic signature, as do many large igneous provinces. In this talk we discuss some of the new insights this magnetic perspective provides, and speculate on the controls which determine whether tectonic features will be expressed magnetically.

  5. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    Science.gov (United States)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  6. Scaling of Mixing Rate in Mantle Convection Models: Influence of Plate Tectonics, Melting and Crustal Production

    Science.gov (United States)

    Tackley, Paul

    2017-04-01

    It is generally thought that the early Earth's mantle was hotter than today, which using conventional convective scalings should have led to vigorous convection and mixing. Geochemical observations, however, suggest that mixing was not as rapid as would be expected, leading to the suggestion that early Earth had stagnant lid convection [Debaille et al., 2003]. Additionally, the mantle's thermal evolution is difficult to explain using conventional scalings because early heat loss would have been too rapid, which has led to the hypothesis that plate tectonics convection does not follow the conventional convective scalings [Korenaga, 2003]. One physical process that could be important in this context is partial melting leading to crustal production, which has been shown to have the major effects of buffering mantle temperature and carrying a significant fraction of the heat from hot mantle [Nakagawa & Tackley, 2012], making plate tectonics easier [Lourenco et al., 2016], and causing compositional differentiation of the mantle that can buffer core heat loss [Nakagawa & Tackley, 2010]. Here, the influence of this process on mantle mixing is examined, using secular thermo-chemical models that simulate Earth's evolution over 4.5 billion years. Mixing is quantified both in terms of how rapidly stretching occurs, and in terms of dispersion: how rapidly initially close heterogeneities are dispersed horizontally and vertically through the mantle. It is found that convection with plate tectonics, melting and crustal production does not follow the conventional Nu-Ra and velocity-Ra scalings derived from boundary-layer theory, and thus mixing in the early Earth is much less rapid than earlier thought. Reasons for this will be analysed in this presentation.

  7. Integrating Geochemical and Geodynamic Numerical Models of Mantle Evolution and Plate Tectonics

    Science.gov (United States)

    Tackley, P. J.; Xie, S.

    2001-12-01

    The thermal and chemical evolution of Earth's mantle and plates are inextricably coupled by the plate tectonic - mantle convective system. Convection causes chemical differentiation, recycling and mixing, while chemical variations affect the convection through physical properties such as density and viscosity which depend on composition. It is now possible to construct numerical mantle convection models that track the thermo-chemical evolution of major and minor elements, and which can be used to test prospective models and hypotheses regarding Earth's chemical and thermal evolution. Model thermal and chemical structures can be compared to results from seismic tomography, while geochemical signatures (e.g., trace element ratios) can be compared to geochemical observations. The presented, two-dimensional model combines a simplified 2-component major element model with tracking of the most important trace elements, using a tracer method. Melting is self-consistently treated using a solidus, with melt placed on the surface as crust. Partitioning of trace elements occurs between melt and residue. Decaying heat-producing elements and secular cooling of the mantle and core provide the driving heat sources. Pseudo-plastic yielding of the lithosphere gives a first-order approximation of plate tectonics, and also allows planets with a rigid lid or intermittent plate tectonics to be modeled simply by increasing the yield strength. Preliminary models with an initially homogeneous mantle show that regions with a HIMU-like signature can be generated by crustal recycling, and regions with high 3He/4He ratios can be generated by residuum recycling. Outgassing of Argon is within the observed range. Models with initially layered mantles will also be investigated. In future it will be important to include a more realistic bulk compositional model that allows continental crust as well as oceanic crust to form, and to extend the model to three dimensions since toroidal flow may alter

  8. Upper Plate Response to Varying Subduction Styles in the Forearc Cook Inlet Basin in South Central Alaska

    Science.gov (United States)

    Sanchez-Lohff, S. K.; Enkelmann, E.; Finzel, E.; Reid, M. M.

    2016-12-01

    The Cook Inlet forearc basin strata record the upper plate response to changes in subduction since 170 Ma. Subduction of normal oceanic crust during the Jurassic and Cretaceous was followed by spreading ridge subduction in the Paleocene, which initiated near trench magmatism and a shallow subduction angle. This was followed by a period of normal subduction until the Oligocene when subduction of an oceanic plateau commenced causing flat-slab subduction. We study the sedimentary record of the Cook Inlet Basin and analyze the sediment provenance, magmatic sources, paleotopography, and rock exhumation of southern Alaska, and their changes through time. We use a double dating technique on single detrital zircon grains from 25 samples combining fission track and U-Pb dating. We collected Jurassic to Pliocene sandstone, and modern fluvial deposits. Eight Mesozoic samples were taken from the eastern inverted section of the Cook Inlet Basin. Seven Cenozoic samples were taken from outcrops on the northern and southern margin of the basin, and four from northern offshore cores. Six modern river sands were sampled from four rivers to analyze what is currently draining into the basin from the north, east, and south. Zircon fission track data reveal that the Jurassic samples have been fully reset, while Cretaceous and Eocene samples have been partially reset. Subduction of the spreading ridge probably increased the geothermal gradient in the upper plate and caused thermal resetting of the underlying strata. Oligocene to Pliocene sediments contain the youngest age populations with lag times ranging 13-25 Myr. Samples from the northern margin (arc side) yield generally shorter lag times than samples from the south side (prism side). This pattern is consistent with modern sediments that show the youngest ages are sourced from the Alaska Range, revealed by a 14 Ma age peak in the Susitna River. In contrast, the youngest age populations found in the sediments of rivers draining the

  9. Topographic form of the Coast Ranges of the Cascadia Margin in relation ot coastal uplift rates and plate subduction

    Science.gov (United States)

    Kelsey, Harvey M.; Engebretson, David C.; Mitchell, Clifton E.; Ticknor, Robert L.

    1994-01-01

    The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the

  10. Mantle Viscosity in the Kuril Subduction Zone from Postseismic GPS Monitoring of Great 2006/2007 Earthquakes

    Science.gov (United States)

    Kogan, M. G.; Vasilenko, N. F.; Frolov, D. I.; Freymueller, J. T.; Steblov, G. M.; Ekstrom, G.; Prytkov, A. S.

    2016-12-01

    This study is based on 10 years of ongoing GPS measurements of postseismic deformation following a pair of great earthquakes in the Kuril subduction zone. The study area is one of only a handful to capture a magnitude >8 signal and its postseismic signature with continuous GPS. The Kuril GPS Array was installed a few months prior to a 2006/2007 earthquake doublet and has been recording postseismic displacements in the near and far fields since that time. For a decade, the near field stations are moving trenchward, towards the seismic source at a speed of several tens of millimeters per year initially and an order of magnitude slower currently. Our modeling of viscoelastic relaxation explores realistic 3D subduction structures accounting for the dipping slab and for a low-viscosity mantle wedge above it (software RELAX of S. Barbot). We test linear (Maxwell) and nonlinear (power-law) rheologies of the asthenosphere, assuming that the viscoelastic relaxation is the dominant signal compared to afterslip after a year since the earthquakes. The data are best fit by the Maxwell asthenospheric viscosity 1 × 1018 Pa s for an interval 2007.5-2016.5. This viscosity is about ten times smaller than for two M9 events (Chile 1960 and Alaska 1964) from postseismic GPS displacements observed several decades later. This suggests a power-law rheology predicting the growth of apparent viscosity with time. From laboratory experiments with olivine, two alternative power-law mechanisms are possible: dislocation creep (stress power-law exponent n = 3.4-4.5) or diffusion creep (n = 0.9-1.5). Our numerical tests spanned the expected range of n, as well as a range of values of the initial apparent viscosity. The data are best fit by diffusion creep with n = 1.2 although the fit is not as good as for the Maxwell model.

  11. Mantle Flow Beneath the Juan de Fuca and East Pacific Rise Spreading Centers and Adjacent Plates

    Science.gov (United States)

    Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.

    2010-12-01

    Observations of seismic anisotropy are a principal means of inferring the direction of mantle flow beneath tectonic plates. Azimuthal anisotropy of mantle head waves (Pn) observed in mid-plate settings, for example, has been used to infer that beneath oceanic crust the mantle flow that is frozen in is parallel to the paleospreading direction. While the agreement between historical measurements of azimuthal anisotropy and paleospreading direction is good, the combined uncertainties in experimental results (many of which date back 30 to 50 years) and in inferring the paleospreading direction are often 10-15°. In contrast to historical results from mid-plate settings, recent studies of Pn anisotropy beneath the East Pacific Rise (EPR) and the Mid-Atlantic Ridge reveal that the fast-direction of seismic anisotropy - and by inference the direction of mantle flow - is skewed with respect to the current spreading direction. This result indicates that sub-ridge mantle flow is not an entirely passive response to plate spreading. Here we use data from recent active-source seismic experiments to investigate azimuthal anisotropy of Pn arrivals in two near-ridge settings. These modern experiments, which use dense arrays of ocean-bottom seismometers (OBSs) and well-navigated seismic shooting lines, can constrain azimuthal anisotropy to within ±1°. One data set is from the multi-scale Endeavour seismic tomography experiment (ETOMO) that took place in September 2009. Seismic data were collected using 68 four-component OBSs at 64 sites and the 6600 in3 airgun array of the R/V Marcus G. Langseth. The study includes 5567 shots covering 90 km along-axis and 50 km across. The second data set is from the UNDERSHOOT experiment, which was conducted at the EPR between the Siqueiros and Clipperton transforms, a section of ridge that is sub-divided by the 9°03'N overlapping spreading center (OSC). Seismic data were collected using a combination of four-component OBSs and single

  12. Controls of mantle plumes and lithospheric folding on modes of intra-plate continental tectonics: differences and similarities

    NARCIS (Netherlands)

    Burov, E.; Cloetingh, S.A.P.L.

    2009-01-01

    Mantle plume activity and lithospheric folding by far-field stresses exerted from plate boundaries are two important end-members as mechanisms for continental intraplate deformation. The topographic expression of mantle plume impingement on continental lithosphere and lithospheric folding has some

  13. Deformation of mantle pyroxenites provides clues to geodynamic processes in subduction zones: Case study of the Cabo Ortegal Complex, Spain

    Science.gov (United States)

    Henry, Hadrien; Tilhac, Romain; Griffin, William L.; O'Reilly, Suzanne Y.; Satsukawa, Takako; Kaczmarek, Mary-Alix; Grégoire, Michel; Ceuleneer, Georges

    2017-08-01

    pyroxenites: (1) delamination from an arc root in a mantle-wedge setting at temperatures above 1000 °C and (2) introduction into a relatively softer subduction channel where deformation was accommodated by localized shear zones, thus preserving the high-temperature fabrics of pyroxenites. The Cabo Ortegal pyroxenites may therefore be seen as a rare exposure of deformed mantle-wedge material.

  14. Early Jurassic calc-alkaline magmatism in northeast China: Magmatic response to subduction of the Paleo-Pacific Plate beneath the Eurasian continent

    Science.gov (United States)

    Wang, Feng; Xu, Yi-Gang; Xu, Wen-Liang; Yang, Lei; Wu, Wei; Sun, Chen-Yang

    2017-08-01

    The subduction of the Paleo-Pacific Plate played an important role in the regional evolution of the eastern margin of the Eurasian continent, but the timing and extent of this event remain ambiguous. To address these issues, we examine the geochronology and geochemistry of Early Jurassic intrusive rocks in eastern Jilin Province, NE China. The Early Jurassic gabbro-diorites, diorites, granodiorites, and monzogranites are found to have been emplaced at 183-185 Ma and are characterized by enrichment in large ion lithophile elements and depletion in high field strength elements, similar to calc-alkaline arc-type igneous rocks. The Early Jurassic gabbroic and dioritic rocks have εHf(t) values of +2.1 to +10.1 and Hf single-stage (TDM1) model ages of 430-774 Ma, whereas the monzogranites have εHf(t) values of +6.7 to +8.9 and Hf single-stage (TDM1) ages of 597-718 Ma. The gabbro-diorites, diorites, and granodiorites described in this study are genetically linked and they represent the products of the fractional crystallization of a common mafic magma that was in turn derived from the partial melting of a mantle source that was metasomatized by subduction-related fluids. In contrast, the Early Jurassic monzogranites were generated by partial melting of a depleted lower crustal block that was probably accreted during the Neoproterozoic. More importantly, the Early Jurassic calc-alkaline igneous rocks in the east part of NE China form a NE-trending belt that is oriented perpendicular to the direction of Paleo-Pacific Plate movement at that time. West of this belt, contemporaneous bimodal igneous rocks occur in the Lesser Xing'an-Zhangguangcai Ranges. This magmatic configuration is best explained by continental arc magmatism along the continental margin and extensional magmatism in a back-arc setting, in each case triggered by the initial subduction of the Paleo-Pacific Plate beneath Eurasia in the Early Jurassic.

  15. From the global scale to the Mediterranean plate kinematics

    OpenAIRE

    Riguzzi, F.

    2008-01-01

    Plate motions with respect to the mantle represent the most direct evidence to understand the origin of plate tectonic processes. The research here described has the aim to improve the knowledge on the global scale plate kinematics in “absolute” reference frames, or better, relative to the mantle, incorporating both geological–geophysical and space geodesy data. Geophysical and geological signatures of subduction and rift zones independently show a global polarity of current plate motions, su...

  16. The effects of the overriding plate thermal state on the slab dip in an ocean-continent subduction system

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1016/j.crte.2011.01.005

    2011-01-01

    To evaluate the effects of variations in the thermal state of the overriding plate on the slab dip in an ocean-continent subduction system, a 2-D finite element thermo-mechanical model was implemented. The lithosphere base was located at the depth of the 1600 K isotherm. Numerical simulations were performed while taking into account four different initial thicknesses for the oceanic lithosphere (60, 80, 95 and 110 km) and five different thicknesses of the overriding plate, as compared in terms of the continental-oceanic plate thickness ratio (100, 120, 140, 160 and 200% of the oceanic lithosphere thickness). The results of numerical modeling indicate that a high variability of the subducting plate geometry occurs for an oceanic lithosphere thickness ranging from 60 to 80 km, while the variability decreases where the oceanic plates are thicker (95 and 110 km). Furthermore, the slab dip strongly depends on the thermal state of the overriding plate, and, in particular, the slab dip decreases with the increase in...

  17. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    Science.gov (United States)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  18. Plate Tectonic Consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere

    CERN Document Server

    Heine, Christian; McKay, Hamish; Müller, R Dietmar

    2012-01-01

    The Banda Arc, situated west of Irian Jaya and in the easternmost extension of the Sunda subduction zone system, reveals a characteristic bowl-shaped geometry in seismic tomographic images. This indicates that the oceanic lithosphere still remains attached to the surrounding continental margins of northern Australia and the Bird's Head microcontinent. Major controversies exist between authors proposing an allochthonous or autochthonous origin of the Bird's Head block. Either scenario has important implications for plate kinematic models aiming to reconstruct the tectonic evolution of the region and the late Jurassic seaoor spreading geometry of this now subducted Argo-Tanimbar-Seram (ATS) ocean basin. Wider implications affect the tectonic conguration of the Tethyan-Pacic realm, the distribution of plate boundaries as well as the shape and size of continental blocks which have been rifted off the northeastern Gondwana margin during the Late Jurassic and are now accreted to the SE Asia margin. We apply structu...

  19. Boron isotope variations in Tonga-Kermadec-New Zealand arc lavas: Implications for the origin of subduction components and mantle influences

    Science.gov (United States)

    Leeman, William P.; Tonarini, Sonia; Turner, Simon

    2017-03-01

    The Tonga-Kermadec-New Zealand volcanic arc is an end-member of arc systems with fast subduction suggesting that the Tonga sector should have the coolest modern slab thermal structure on Earth. New data for boron concentration and isotopic composition are used to evaluate the contrasting roles of postulated subduction components (sediments and oceanic slab lithologies) in magma genesis. Major observations include: (a) Tonga-Kermadec volcanic front lavas are enriched in B (as recorded by B/Nb and similar ratios) and most have relatively high δ11B (>+4‰), whereas basaltic lavas from New Zealand have relatively low B/Nb and δ11B (back-arc, as observed elsewhere; and (d) low δ11B is observed in volcanic front samples from Ata, an anomalous sector where the back-arc Valu Fa Spreading Center impinges on the arc and the Louisville Seamount Chain is presently subducting. Otherwise, volcanic front lavas exhibit positive correlations for both B/Nb and δ11B with other plausible indicators of slab-derived fluid contributions (e.g., Ba/Nb, U/Th, (230Th/232Th) and 10Be/9Be), and with estimated degree of melting to produce the mafic lavas. Inferred B-enrichments in the arc magma sources are likely dominated by serpentinite domains deeper within the subducting slab (±altered oceanic crust), and B systematics are consistent with dominant transport by slab-derived aqueous fluids. Effects of this process are amplified by mantle wedge source depletion due to prior melt extraction.Plain Language SummaryBoron isotope and other geochemical data are used to evaluate contributions from subducted materials to magma sources for volcanoes of the Tonga-Kermadec-New Zealand volcanic arc. The data are used to estimate the composition of modified mantle sources for the arc magmas as well as the extent of melting to produce them. It is shown that the mantle was previously depleted in melt components, and then overprinted by B and other components from the subducting slab, predominantly by

  20. Deep Mantle Structure As a Reference Frame for Absolute Plate Motions

    Science.gov (United States)

    Torsvik, T. H.; Van Der Voo, R.; Doubrovine, P. V.; Burke, K. C.; Steinberger, B. M.; Domeier, M.

    2014-12-01

    Since the Pangea supercontinent formed some 320 million years ago, the majority of large igneous provinces and diamond-bearing rocks (kimberlites) near Earth's surface can be sourced to plumes erupting from the margins of two large thermochemical reservoirs at the core-mantle boundary. Using this surface to core-mantle boundary correlation to locate continents in longitude and a new iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we present a model for plate motion back to earliest Paleozoic time (540 Ma). We have identified six phases of slow, oscillatory true polar wander during the Paleozoic. True polar wander rates (<1 Degree/Myr) are compatible to those in the Mesozoic but plate velocities are on average twice as high. We show that a geologically reasonable model that reconstructs continents in longitude in such a way that large igneous provinces and kimberlites are positioned above the plume generation zones at the times of their formation can be successfully applied to the entire Phanerozoic. Our model is a kinematic model for only the continents. The next step in improving it will be developing a model for the entire lithosphere, including synthetic oceanic lithosphere. This is challenging, but we will demonstrate a full-plate model back to the Late Paleozoic (410 Ma).

  1. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.

    2013-12-01

    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  2. Mantle-derived peridotites in southwestern Oregon: relation to plate tectonics.

    Science.gov (United States)

    Medaris, L G; Dott, R H

    1970-09-04

    A group of peridotites in southwestern Oregon contains high-pressure mineral assemblages reflecting recrystallization at high temperatures (1100 degrees to 1200 degrees C) over a range of pressure decreasing from 19 to 5 kilobars. It is proposed that the peridotites represent upper-mantle material brought from depth along the ancestral Gorda-Juan de Fuca ridge system, transported eastward by the spreading Gorda lithosphere plate, and then emplaced by thrust-faulting in the western margin of the Cordillera during late Mesozoic time.

  3. Insights from numerical modeling on the global-scale mantle water cycle: evolution of the surface water ocean as a constraint on the plate-mantle-core system

    Science.gov (United States)

    Nakagawa, T.; Spiegelman, M. W.

    2016-12-01

    In our previous model on global-scale water cycle in the mantle, we considered a boundary condition that provided an `infinite water reservoir' at the surface [Nakagawa and Spiegelman, revised]. However, the volume of the surface water reservoir is clearly finite with 1OM over the age of the Earth [Hamano et al., 2013]. Here we describe a new model where the amount of surface water reservoir is controlled by the degassing-regassing balance. In addition, for addressing the entire evolution of plate-mantle-core system in the numerical model, we also include the core cooling effects described as global heat balance with the inner core growth effects and core-mantle chemical reaction to transport oxygen and/or volatile from the deep mantle in the model. Since petrological studies suggest that mantle minerals are not necessarily saturated with water at the surface [Asimow and Langmuir, 2003], we introduce the efficiency of regassing for computing both regassing flux and the boundary conditions on mantle water content varying from 10-5(strongly under-saturated) to 1 (completely saturated) as suggested from a parameterized model of mantle water cycle evolution [Sandu et al., 2011]. Checking the model sensitivities to the initial amount of surface water ocean (2 to 5 ocean masses) and the efficiency of regassing, the best-fit scenario for explaining the current amount of surface water reservoir requires a small efficiency of regassing with any choice of initial amount of surface water ocean. If the efficiency of regassing is large, the active plate-like motion easily transports all of surface water ocean into the mantle in about time-scale of O(100) Myrs. This suggests that the water content of oceanic lithosphere might be less than the petrological constraints ( 200 ppm [Asimow and Langmiur, 2003]). Since the rheological dependence of water on hydrous minerals enhances the heat transfer of mantle convection, the thermo-chemical evolution of the plate-mantle-core system

  4. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  5. Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): Implications for melt generation and volatile recycling processes in subduction zones

    Science.gov (United States)

    Bénard, A.; Koga, K. T.; Shimizu, N.; Kendrick, M. A.; Ionov, D. A.; Nebel, O.; Arculus, R. J.

    2017-02-01

    We report chlorine (Cl) and fluorine (F) abundances in minerals, interstitial glasses, and melt inclusions in 12 andesite-hosted, spinel harzburgite xenoliths and crosscutting pyroxenite veins exhumed from the sub-arc lithospheric mantle beneath Avacha volcano in the Kamchatka Arc (NE Russia). The data are used to calculate equilibrium mineral-melt partition coefficients (D mineral / melt) for Cl and F relevant to subduction-zone processes and unravel the history of volatile depletion and enrichment mechanisms in an arc setting. Chlorine is ∼100 times more incompatible in pyroxenes (DClmineral/melt = 0.005-0.008 [±0.002-0.003]) than F (DFmineral/melt = 0.50-0.57 [±0.21-0.24]), which indicates that partial melting of mantle sources leads to strong depletions in Cl relative to F in the residues. The data set in this study suggests a strong control of melt composition on DCl,Fpyroxene/melt, in particular H2O contents and Al/(Al + Si), which is in line with recent experiments. Fluorine is compatible in Ca-amphibole in the 'wet' sub-arc mantle (DFamphibole/melt = 3.5-3.7 [±1.5]) but not Cl (DClamphibole/melt = 0.03-0.05 [±0.01-0.03]), indicating that amphibole may fractionate F from Cl in the mantle wedge. The inter-mineral partition coefficients for Cl and F in this study are consistent amongst different harzburgite samples, whether they contain glass or not. In particular, disseminated amphibole hosts much of the Cl and F bulk rock budgets of spinel harzburgites (DClamphibole/pyroxene up to 14 and DFamphibole/pyroxene up to 40). Chlorine and fluorine are variably enriched (up to 1500 ppm Cl and 750 ppm F) in the parental arc picrite and boninite melts of primitive pyroxenite veins (and related melt inclusions) crosscutting spinel harzburgites. Based on the data in this study, the main inferences on the behaviour of Cl and F during melting and metasomatic processes in the sub-arc mantle are as follow: (i) Melting models show that most depleted mantle protoliths

  6. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New Zealand

    Science.gov (United States)

    Abercrombie, Rachel E.; Poli, Piero; Bannister, Stephen

    2017-12-01

    We develop an approach to calculate earthquake source directivity and rupture velocity for small earthquakes, using the whole source time function rather than just an estimate of the duration. We apply the method to an aftershock sequence within the subducting plate beneath North Island, New Zealand, and investigate its resolution. We use closely located, highly correlated empirical Green's function (EGF) events to obtain source time functions (STFs) for this well-recorded sequence. We stack the STFs from multiple EGFs at each station, to improve the stability of the STFs. Eleven earthquakes (M 3.3-4.5) have sufficient azimuthal coverage, and both P and S STFs, to investigate directivity. The time axis of each STF in turn is stretched to find the maximum correlation between all pairs of stations. We then invert for the orientation and rupture velocity of both unilateral and bilateral line sources that best match the observations. We determine whether they are distinguishable and investigate the effects of limited frequency bandwidth. Rupture orientations are resolvable for eight earthquakes, seven of which are predominantly unilateral, and all are consistent with rupture on planes similar to the main shock fault plane. Purely unilateral rupture is rarely distinguishable from asymmetric bilateral rupture, despite a good station distribution. Synthetic testing shows that rupture velocity is the least well-resolved parameter; estimates decrease with loss of high-frequency energy, and measurements are best considered minimum values. We see no correlation between rupture velocity and stress drop, and spatial stress drop variation cannot be explained as an artifact of varying rupture velocity.

  7. Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis

    Science.gov (United States)

    Kameda, Jun; Inoue, Sayako; Tanikawa, Wataru; Yamaguchi, Asuka; Hamada, Yohei; Hashimoto, Yoshitaka; Kimura, Gaku

    2017-04-01

    The alteration and dehydration of predominantly basaltic subducting oceanic crustal material are thought to be important controls on the mechanical and hydrological properties of the seismogenic plate interface below accretionary prisms. This study focuses on pillow basalts exposed in an ancient accretionary complex within the Shimanto Belt of southwest Japan and provides new quantitative data that provide insight into clay mineral reactions and the associated dehydration of underthrust basalts. Whole-rock and clay-fraction X-ray diffraction analyses indicate that the progressive conversion of saponite to chlorite proceeds under an almost constant bulk-rock mineral assemblage. These clay mineral reactions may persist to deep crustal levels ( 320 °C), possibly contributing to the bulk dehydration of the basalt and supplying fluid to plate-boundary fault systems. This dehydration can also cause fluid pressurization at certain horizons within hydrous basalt sequences, eventually leading to fracturing and subsequent underplating of upper basement rock into the overriding accretionary prism. This dehydration-induced breakage of the basalt can explain variations in the thickness of accreted basalt fragments within accretionary prisms as well as the reported geochemical compositions of mineralized veins associated with exposed basalts in onland locations. This fracturing of intact basalt can also nucleate seismic rupturing that would subsequently propagate along seismogenic plate interfaces.[Figure not available: see fulltext.

  8. Modeling Crustal Thickness Variations Beneath the East Pacific Rise: Mantle Diapirs or Plate Kinematics?

    Science.gov (United States)

    George, S. A.; Toomey, D. R.

    2003-12-01

    Geophysical studies along the East Pacific Rise between the Siqueiros and Clipperton fracture zones reveal along- and cross-axis variations in crustal thickness whose origins are poorly understood. By one view, variations in crustal thickness are the result of three-dimensional upwelling of the mantle associated with a melt-rich diapir centered at 9° 50'N. Alternatively, it has been proposed that the migration of the 9° 03'N overlapping spreading center (OSC) alters the thickness of crust by increasing the amount of time that a crustal unit resides near the spreading axis. In this case, crustal thickness variations arise from plate kinematics, and not from three-dimensional variations in mantle upwelling. We report on a modeling study designed to explore how the evolution of OSCs may alter the thickness of newly-formed crust. OSC propagation is modeled using the kinematic algorithm developed by Wilson [1990], modified to track parcels of crust through time. Given an OSC's kinematic history and two-dimensional descriptions of the melt flux out of the mantle (i.e. invariant along the rise), we predict relative variations in crustal thickness. Our modeling assumes that underplating increases the thickness of the crust and/or Moho transition zone as long as a crustal unit resides over the source of mantle-derived melt. Results suggest two general kinematic mechanisms whereby variations in crustal thickness can occur: those due to an offset between the mantle-level magmatic system and the spreading axis, and those due to any relative reduction in the velocity of a crustal unit as it moves off axis. Offset-induced crustal thickness variations are manifest as long-wavelength ( ˜50 km), low-amplitude cross-axis asymmetries. Local slowing of crustal units as they move off axis -- in direct association with the OSC and its overlap basins -- results in relatively short-wavelength ( ˜10 km), high-amplitude variations in crustal thickness. Using a kinematic history

  9. Mantle flow and dynamic topography associated with slab window opening

    Science.gov (United States)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-05-01

    A slab window is defined as an 'hole' in the subducting lithosphere. In the classical view, slab windows develop where a spreading ridge intersects a subduction zone. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. In this work, we perform dynamically self-consistent mantle-scale laboratory models, to evaluate how the opening of a window in the subducting panel influences the geometry and the kinematics of the slab, the mantle circulation pattern and, finally, the overriding plate dynamic topography. The adopted setup consists in a two-layer linearly viscous system simulating the roll-back of a fixed subducting plate (simulated using silicone putty) into the upper mantle (simulated using glucose syrup). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We find that the geometry and the kinematics of the slab are only minorly affected by the opening of a slab window. On the contrary, slab induced mantle circulation, quantified using Feature Tracking image analysis technique, is strongly modified and produces a peculiar non-isostatic topographic signal on the overriding plate. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compare them to the Patagonian subduction zone finding that anomalous backarc volcanism that developed since middle Miocene could result from the lateral flowage of subslab mantle, and that part of the Patagonian uplift could be dynamically supported.

  10. Intrinsic and Extrinsic Factors in Subduction Dynamics

    Science.gov (United States)

    Billen, Magali; Arredondo, Katrina

    2014-05-01

    Since the realization that tectonic plates sink into the mantle, in a process we now call subduction, our understanding of this process has improved dramatically through the combined application of observations, theory and modeling. During that time independent research groups focusing on different aspects of subduction have identified factors with a significant impact on subduction, such as three-dimensionality, slab rollback, rheology of the slab and mantle and magnitude of phase changes. However, as each group makes progress we often wonder how these different factors interact as we all strive to understand the real world subduction system. These factors can be divided in two groups: intrinsic factors, including the age of the slab, its thermal structure, composition, and rheology, and extrinsic factors including others forces on plates, overall mantle flow, structure of the overriding plate, rheology of the mantle and phase changes. In addition, while modeling has been a powerful tool for understanding subduction, all models make important (but often necessary) approximations, such as using two dimensions, imposed boundary conditions, and approximations of the conservation equations and material properties. Here we present results of a study in which the "training wheels" are systematically removed from 2D models of subduction to build a more realistic model of subduction and to better understand how combined effects of intrinsic and extrinsic factors contribute to the dynamics. We find that a change from the Boussinesq to the extended Boussinesq form of the conservation equations has a dramatic effect on slab evolution in particular when phase changes are included. Allowing for free (dynamically-driven) subduction and trench motion is numerically challenging, but also an important factor that allows for more direct comparison to observations of plate kinematics. Finally, compositional layering of the slab and compositionally-controlled phase changes also have

  11. Modification of an ancient subcontinental lithospheric mantle by continental subduction: Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China

    Science.gov (United States)

    Chen, Yi; Su, Bin; Chu, Zhuyin

    2017-05-01

    Orogenic mantle-derived peridotites commonly originate from the subcontinental lithospheric mantle (SCLM) and thus provide a key target to investigate the modification of the SCLM by a subducting slab. The Maowu ultramafic rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt have formerly been debated as representing cumulates or mantle-derived peridotites. Detailed petrological and geochemical data presented in this study provide new constraints on the origin and formation of the peridotites involving melt depletion in the ancient SCLM and deep crustal metasomatism. The Maowu garnet dunites have refractory bulk compositions characterized by high Mg# (91.9-92.0) and Ni (2537-2892 ppm) values and low Al2O3 (0.26-0.76 wt.%), CaO (0.05-0.32 wt.%), TiO2 (enrichment in incompatible elements. Mineral and whole-rock chemistry indicate that these veins represent metasomatic products between the wall dunites and silica-rich hydrous melts under UHP conditions. The veins show large variations in platinum-group element (PGE) signatures and Re-Os isotopes. The garnet-poor orthopyroxenite veins are characterized by low Al2O3 ( 6 wt.%) and S (99-306 ppm) contents and show melt-like PGE patterns and high 187Os/188Os ratios (up to 0.36910). These features, combined with the occurrence of interstitial sulfides in the garnet-rich orthopyroxenite veins, suggest that crust-derived sulfur-saturated silicate melts may have significantly modified the PGE signature and destroyed the Re-Os systematics of the SCLM. However, when the crust-derived silicate melts became sulfur-depleted, such melts would not significantly modify the PGE patterns, radiogenic Os-isotope compositions or the Re-depletion model ages of the SCLM. Consequently, deep crust-mantle interactions in continental subduction zones could induce high degrees of Os isotopic heterogeneity in the SCLM wedge.

  12. Serpentinization and fluids in the forearc mantle

    Science.gov (United States)

    Reynard, B.

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab, and tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Above the subducting plate, intense reactions between dehydration fluids from the subducting slab and ultramafic rocks result in extensive serpentinization in the forearc mantle wedge. The plate interface is mechanically decoupled, most likely because serpentines are low strength material, isolating the forearc mantle wedge from convection. Geophysical observations are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties are used to infer fluid migration and fluid/rock reactions from geophysical data. Seismic velocities reveal high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of the hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that need to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity of dry peridotites and serpentinites is similar, and high conductivities are found to be diagnostic of increasing fluid content, fluid salinity. Conductivities in the forearc increase with the temperature of the subduction. A notable exception is the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, that shows only modest electrical conductivity. Detailed electrical conductivity profiles suggest fluid content and chemistry may vary not only with the thermal state of the subduction zone but also with time through variations of fluid salinity. High-Cl fluids produced by serpentinization can mix

  13. Can plate osteosynthesis of periprosthethic femoral fractures cause cement mantle failure around a stable hip stem? A biomechanical analysis.

    Science.gov (United States)

    Giesinger, Karlmeinrad; Ebneter, Lukas; Day, Robert E; Stoffel, Karl K; Yates, Piers J; Kuster, Markus S

    2014-06-01

    Periprosthetic femoral fractures (PFF) are a serious complication after total hip arthroplasty. Plate fixation with screws perforating the cement mantle is a common treatment option. The study objective was to investigate hip stem stability and cement mantle integrity under dynamic loading. A cemented hip stem was implanted in 17 composite femur models. Nine bone models were osteotomised just distal to the stem and fixed with a polyaxial locking plate the other eight constructs served as the control group. All specimens were tested in a bi-axial material testing machine (100000 cycles). There were no statistically significant differences in axial nor in medial (varus) stem migration. No cement cracks were detected in both groups. Plate fixation of a PFF with a stable, cemented prosthesis did not lead to cement mantle failure in this in vitro study. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Subduction-driven recycling of continental margin lithosphere.

    Science.gov (United States)

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  15. Development of Eulerian numerical procedure for free surface toward plate-mantle simulation

    Science.gov (United States)

    Furuichi, M.; Kameyama, M.; Kageyama, A.

    2008-12-01

    In the geophysical simulation study, one of the great challenges is to reproduce a realistic plate tectonics with mantle convection simulation. We develop an Eulerian numerical scheme for the steady Stokes flow to solve the deformation of rigid material (plate tectonics) induced by thermal convection of soft fluid (mantle convection). Our simulation scheme combines (i) the multigrid method together with a fast and robust smoother algorithm named ACuTE by Kameyama et~al. (2005), and (ii) an low diffusive semi-Lagrangian advection algorithm named CIP-CSLR-CS by Furuichi et~al. (2008). Since it is easy to optimize in vectorization/parallelization, our method is suitable for large scale simulation. According to our recent study, in which we carry out the validity test of our simulation scheme for a large deformation problem by using the fluid rope coiling event, the current approach in the grid resolution of our large scale simulation successfully reproduces not only qualitative but also quantitative behavior of a deformation of curved rigid plate. This indicates that by introducing a proper treatment of a free surface, our scheme may solve the whole system of solid earth on the mechanical model including the surface deformations without serious quantitative errors. In this study, we are trying to simulate self-gravitationg motion of the Stokes flow as the free surface problem. It means that the spherical shape like the real earth is simulated in the Cartesian grid. We would like to show the development of our numerical treatment toward free surface problems.

  16. Subduction trench migration since the Cretaceous

    Science.gov (United States)

    Williams, S.; Flament, N. E.; Müller, D.; Butterworth, N. P.

    2015-12-01

    Much of our knowledge about subduction zone processes is derived from analyzing present-day Earth. Several studies of contemporary plate motions have investigated the balance between retreating and advancing trenches and shown that subduction zone kinematics are sensitive to the choice of Absolute Plate Motion (APM) model (or "reference frame"). For past times, the absolute motions of the lithospheric plates relative to the Earth's deep interior over tens of millions of years are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. APM models derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Here we quantitatively compare the subduction zone kinematics, net lithospheric rotation and fit to hotspot trails derived the last 130 Myr for a range of alternative reference frames and a single relative plate motion model. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the period between 130 and 70 Ma, when hotspot trails become scarce, hotspot reference frames yield a much more dispersed distribution of slab advance and retreat velocities, which is considered geodynamically less plausible. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation

  17. Effects of low-pressure igneous processes and subduction on Fe3+/ΣFe and redox state of mantle eclogites from Lace (Kaapvaal craton)

    Science.gov (United States)

    Aulbach, S.; Woodland, A. B.; Vasilyev, P.; Galvez, M. E.; Viljoen, K. S.

    2017-09-01

    Reconstructing the redox state of the mantle is critical in discussing the evolution of atmospheric composition through time. Kimberlite-borne mantle eclogite xenoliths, commonly interpreted as representing former oceanic crust, may record the chemical and physical state of Archaean and Proterozoic convecting mantle sources that generated their magmatic protoliths. However, their message is generally obscured by a range of primary (igneous differentiation) and secondary processes (seawater alteration, metamorphism, metasomatism). Here, we report the Fe3+/ΣFe ratio and δ18 O in garnet from in a suite of well-characterised mantle eclogite and pyroxenite xenoliths hosted in the Lace kimberlite (Kaapvaal craton), which originated as ca. 3 Ga-old ocean floor. Fe3+/ΣFe in garnet (0.01 to 0.063, median 0.02; n = 16) shows a negative correlation with jadeite content in clinopyroxene, suggesting increased partitioning of Fe3+ into clinopyroxene in the presence of monovalent cations with which it can form coupled substitutions. Jadeite-corrected Fe3+/ΣFe in garnet shows a broad negative trend with Eu*, consistent with incompatible behaviour of Fe3+ during olivine-plagioclase accumulation in the protoliths. This trend is partially obscured by increasing Fe3+ partitioning into garnet along a conductive cratonic geotherm. In contrast, NMORB-normalised Nd/Yb - a proxy of partial melt loss from subducting oceanic crust (1) - shows no obvious correlation with Fe3+/ΣFe, nor does garnet δ18OVSMOW (5.14 to 6.21‰) point to significant seawater alteration. Median bulk-rock Fe3+/ΣFe is roughly estimated at 0.025. This observation agrees with V/Sc systematics, which collectively point to a reduced Archaean convecting mantle source to the igneous protoliths of these eclogites compared to the modern MORB source. Oxygen fugacites (fO2) relative to the fayalite-magnetite-quartz buffer (FMQ) range from Δlog ⁡ fO2 = FMQ-1.3 to FMQ-4.6. At those reducing conditions, the solubility

  18. Current Plate Motion Relative to the Hotspots and to the Mantle

    Science.gov (United States)

    Zheng, L.; Gordon, R. G.; Argus, D.; Demets, C.; Kreemer, C. W.

    2010-12-01

    We present several new global sets of angular velocities of the plates relative to the deeper mantle. A starting point for our estimate of plate motion relative to the hotspots is HS3, a hotspot data set developed by Gripp & Gordon [2002], which consists of two volcanic propagation rates and eleven segment trends from the Pacific, Nazca, South America, and North America plates. Due to the bias (argon loss) inherent in K-Ar measurements, the volcanic ages in HS3 are probably systematically too young and the volcanic propagation rates are thus probably biased (i.e., they are too high) [Morgan & Phipps Morgan, 2007]. Here we use the difference between an astrogeochronologic-based geomagnetic reversal time scale [Gradstein et al. 2004] and a K-Ar-based geomagnetic reversal time scale [Harland et al. 1982] as a proxy to estimate the recalibration required for K-Ar measurements. This recalibration of K-Ar ages reduces the volcanic propagation rates of the Hawaii hotspot track and the Society hotspot track by 8% and 6% respectively. We incorporate these revised volcanic propagation rates into the HS3B data set, which is merely HS3 corrected for this bias. We combine the HS3B data set with the MORVEL global set of plate relative angular velocities [DeMets et al., 2010] to determine HS3B-MORVEL, a new global set of plate angular velocities relative to the hotspots. Unsurprisingly, the motion of the Pacific plate relative to the hotspots is slower in HS3B-MORVEL than in HS3-NUVEL1A. Because the orientations of seismic anisotropy inferred from shear-wave splitting may in many places indicate the direction of motion of lithosphere relative to the deeper mantle, Kreemer [2009] compiled a data set of 474 shear-wave splitting data, which we refer to as the SKS data set. When we invert these data in a manner similar to his, but using the MORVEL relative angular velocities, we find that the azimuth residuals of SKS-MORVEL are strongly correlated within each plate and do not have

  19. The initiation of subduction: criticality by addition of water?

    Science.gov (United States)

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  20. Coupled Global Models of Mantle and Lithosphere Dynamics: Identifying the Forces Governing Pacific Plate Motions since the mid–Miocene

    DEFF Research Database (Denmark)

    Stotz Canales, Ingo Leonardo

    2017-01-01

    at the Melanesian arc. Furthermore, we demonstrate, for the first time, that the sub–Pacific asthenosphere features a significant component of pressure–driven flow (i.e., Poiseuille), and that this accounts for more than half of the Pacific plate motion over at least the past 15 Myr. Our results highlight the power......Almost all surface processes, including motions of the lithospheric plates, can be related to underlying mantle circulation. Geological expressions across Earth’s surface, such as the Andean mountain range in South America, the ancient cratons of Australia and the African continent’s unusual.......e. the direction and magnitude) of lithospheric plates. In this thesis, we have developed novel coupled global numerical models of mantle and lithosphere dynamics and, subsequently, used these to test hypotheses on the force–balance governing motion of the Pacific plate since the mid–Miocene. These coupled models...

  1. Three-dimensional Eulerian method for large deformation of viscoelastic fluid: Toward plate-mantle simulation

    Science.gov (United States)

    Furuichi, Mikito; Kameyama, Masanori; Kageyama, Akira

    2008-05-01

    Toward the unified simulation of the large deformation of a rigid viscoelastic material (plate) and the convection of a viscous fluid (mantle), an Eulerian scheme with a semi-Lagrangian method is developed. The scheme adopts the CIP-CSLR method for advection terms of staggered grid system in three dimensions. The positive transported profile of a positive quantity is assured by flux corrections in the dimensional splitting method. The Jaumann co-rotational effect of the stress tensor is also integrated into the semi-Lagrangian treatment. This co-rotated semi-Lagrangian method is combined with an exponential time differencing method in the time development of the Maxwell constitutive model. The large time step comparable to, or larger than, the Maxwell relaxation time is successfully realized. Validation tests are performed for the three-dimensional Rayleigh-Taylor instability of a viscoelastic material with jump discontinuity of the mass density and other material properties.

  2. Differential subsidence of the forearc wedge of the Ryukyu (Nansei-Shoto) Arc caused by subduction of ridges on the Philippine Sea Plate

    Science.gov (United States)

    Okamura, Yukinobu; Nishizawa, Azusa; Oikawa, Mitsuhiro; Horiuchi, Daishi

    2017-10-01

    The Philippine Sea Plate (PSP) carrying several ridges has been sudbucting under the Ryukyu (Nansei-Shoto) Arc since middle Miocene. Because no extensive accretionary prism has been growing along the Ryukyu Trench, the arc provides an opportunity to examine effects of ridge subduction on structure of the forearc wedge and a clue to reconstruct ancient plate motion of the PSP that is inferred to have changed between NW and NNW. To examine this perspective, we clarified structure of the Ryukyu forearc wedge based on seismic profiles and bathymetric data and related them to ridge subduction. An erosional unconformity between pre-Neogen and Neogene rocks is widely recognized through the Ryukyu Arc, and we divided the forearc wedges into Zones I to IV from southwest to northeast by difference of depth of the erosional unconformity. We correlated these four zones to the locations of ridge subduction that have been shifting NE or SW along the Ryukyu Trench. Zone I is underlain by the largely subsided unconformity and we attributed the structure to tearing of the Eurasia plate due to subduction of the western margin of the PSP including the Luzon Arc. Zone II consists of a wide terrace on the shallow erosional unconformity, and no ridge that was subducting in this zone is known. Zone III is characterized by the seaward descending unconformity covered with a thick sequence of Neogene sediments and is related to subduction of the NW-SE trending Daito Ridge and the E-W trending Amami Plateau. Zone IV has the deeper unconformity and slope geometry and corresponds to subduction of the NNW-SSE trending Kyushu-Palau Ridge. The structure of the Ryukyu forearc is consistently related to subduction of ridges on the PSP, suggesting that the change of the plate motion of the PSP can be precisely reconstructed by further detailed survey.

  3. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes

    Science.gov (United States)

    Wakabayashi, John

    2017-12-01

    The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of

  4. Linking the initial subduction of the South Tianshan Oceanic Plate and associated magmatism to Kazakhstan orocline: insights from petrogenesis of granites in the southern Yili Block

    Science.gov (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2017-04-01

    The Kazakhstan orocline is a striking collage system of the Central Asian Orogenic Belt. It has been documented to be a composite continent via assembly of several orogenic components by the Devonian and finally to attain its U-shaped structure through oroclinal bending in the Late Paleozoic. In order to reveal the relationship between the Kazakhstan orocline and regional magmatism, granitic rocks including monzogranites and K-feldspar granites in the south limb of the orocline have been conducted geochronological and geochemical studies. Zircon LA-ICP-MS U-Pb dating of the monzogranites gave crystallization ages of 360±1.8 Ma and 360.5±1.7 Ma, and the K-feldspar granites have a coeval age (361.3±1.8 Ma). Both of the granites are high-K granites, and show enrichment in light rare earth elements (LREE) and obvious negative Eu anomalies. They display negative anomalies in Ba, Nb, Sr, Eu, and Ti. The K-feldspar granites have higher SiO2, K2O contents and lower MgO, Fe2O3T, Zr contents than those of the monzogranites. Geochemical data support that the K-feldspar granites are highly fractionated I-type granites, and the monzogranites are unfractionated I-type granites. Distinguishable Nd and Hf isotope suggest that the K-feldspar granites and the monzogranites may share a common magma chamber. The negative Eu anomalies and depletions of Ba and Sr possibly imply plagioclase as residue in the magma source. The Sr-Nd isotopic data and the ɛHf(t) values (-3.6 - 2.9) indicate that the parental magma was probably derived from crustal rock with minor mantle-derived melt. The new geochemical data and regional geology evidences indicate that the granites may be generated in a continental back-arc environment, which was inferred to be a response to the initial subduction of the South Tianshan Oceanic Plate. Given that the Kazakhstan orocline was developed during this period, it is plausible to link the initial subduction of the South Tianshan Oceanic Plate and associated

  5. Is the Juan Fernandez Ridge (nazca Plate) a Deep-Mantle Hot SPOT Trail?

    Science.gov (United States)

    Lara, L. E.; Selles, D.; Díaz, A.; Piña-Gauthier, M.

    2011-12-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. Geochronological data is still scarce to prove this is the case, and other hypothesis should be taken into account. There are a few constrains, like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages in Robinson Crusoe yield ca. 1-3 Ma, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. New geological mapping also shows a sharp unconformity between the older, strongly altered sequences and more recent, post-erosional volcanic piles, where only the vent facies have disappeared. A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. Fondecyt grant 110966 is acknowledged for financial support.

  6. Mantle Flow and Melting Beneath Young Oceanic Lithosphere: Seismic Studies of the Galapagos Archipelago and the Juan de Fuca Plate

    Science.gov (United States)

    Byrnes, Joseph Stephen

    In this dissertation, I use seismic imaging techniques to constrain the physical state of the upper mantle beneath regions of young oceanic lithosphere. Mantle convection is investigated beneath the Galapagos Archipelago and then beneath the Juan de Fuca (JdF) plate, with a focus on the JdF and Gorda Ridges before turning to the off-axis asthenosphere. In the Galapagos Archipelago, S-to-p receiver functions reveal a discontinuity in seismic velocity that is attributed to the dehydration of the upper mantle. The depth at which dehydration occurs is shown to be consistent with prior constraints on mantle temperature. A comparison between results from receiver functions, seismic tomography and petrology shows that mantle upwelling and melt generation occur shallower than the depth of the discontinuity, despite the expectation of high viscosities in the dehydrated layer. Beneath the JdF and Gorda Ridge, low Vs anomalies are too large to be explained by the cooling of the lithosphere and are attributed to partial melt. The asymmetry, large Vs gradients, and sinuosity of the anomalies beneath the JdF Ridge are consistent with models of buoyancy-driven upwelling. However, deformation zone processes appear to dominate mantle flow over seafloor spreading beneath the Explorer and Gorda diffuse plate boundaries. Finally, S-to-p receiver functions reveal a seismic discontinuity beneath the JdF plate that can only be attributed to seismic anisotropy. Synthesis of the receiver function results with prior SKS splitting results requires heterogeneous anisotropy between the crust and the discontinuity. Models of anisotropy feature increasing anisotropy before the decrease at the discontinuity, but well below the base of the lithosphere, and a clockwise rotation of the fast direction with increasing depth. In these results and even in the SKS splitting results, additional driving mechanisms for mantle flow such as density or pressure anomalies are required.

  7. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    Science.gov (United States)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  8. Where does subduction initiate and die? Insights from global convection models with continental drift

    Science.gov (United States)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  9. Geometry and Evolution of the Cangdong Sag in the Bohai Bay Basin, China: Implications for Subduction of the Pacific Plate.

    Science.gov (United States)

    Luo, Liang; Qi, Jiafu; Li, Hongxiang; Dong, Yueqi; Zhang, Shuai; Zhang, Xichen; Yu, Xiaoxia; Luo, Lingyan

    2017-11-13

    The Cangdong Sag is a complex Cenozoic rift basin at the center of the Bohai Bay Basin. Cenozoic structures in the Cangdong Sag can be subdivided into the Cangdong Fault System in the west and the Xuxi Fault System in the east. The geometry of the boundary faults varies along the axes of half-grabens. According to the cross-sectional strata geometry, unconformity and planar structural pattern, the Cenozoic structural evolution of the Cangdong Sag can be divided into four distinct stages: (1) major Paleocene initial rift, (2) latest Paleocene-early Eocene intensive rift, (3) late Eocene-Oligocene strike-slip superimposed rift, and (4) Neogene to present-day post-rift depression. The extensional deformation was mainly derived from horizontal stress induced by the upwelling of asthenosphere. The strike-slip structure of the Cangdong Sag provides important information related to the subduction of the Western Pacific Plate. It was found that the strike-slip movement of the southern Xuxi Fault Zone was activated during the deposition of the third member of Shahejie Formation to the Dongying Formation; therefore, ~43 Ma probably marks the time when the Western Pacific Plate initially changed its subduction direction from northwest to nearly west.

  10. Measurements of upper mantle shear wave anisotropy from a permanent network in southern Mexico

    NARCIS (Netherlands)

    van Benthem, S.A.C.; Valenzuela, R.W.; Ponce, G.J.

    2013-01-01

    Upper mantle shear wave anisotropy under stations in southern Mexico was measured using records of SKS phases. Fast polarization directions where the Cocos plate subducts subhorizontally are oriented in the direction of the relative motion between the Cocos and North American plates, and are

  11. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    Science.gov (United States)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    plate interface, which in turn, may trigger slip events reported from many subduction zones.

  12. To what depth can continental crust be subducted: numerical predictions and critical observations

    Science.gov (United States)

    Gerya, T.; Faccenda, M.

    2006-12-01

    We performed systematic two-dimensional numerical modeling of continental collision associated with subduction of the lithospheric mantle. Results of our experiments suggest that two contrasting modes of lithospheric subduction below an orogen can exist: one-sided and double-sided. One-sided subduction brings continental crust subducting atop the slab to the contact with hot asthenosperic mantle wedge below the overriding plate. This can result in strong heating, partial melting and rheological weakening of the crust triggering its delamination from subducting mantle lithosphere in form of compositionally buoyant structures (cold plumes) propagating away from subducting plate, passing through the hot mantle wedge, underplating the overriding lithosphere and producing large amount of relatively felsic syn-orogenic magmas at sub-lithospheric depths. One-sided subduction of the buoyant continental crust can also result in a transient "hot channel effect" triggering formation and exhumation of coesite- and diamond- bearing rocks metamorphosed at 700 to 900oC. Anomalously high temperature is caused by intense viscous and radiogenic heating in the channel composed of deeply subducted radiogenic upper-crustal rocks. Low effective viscosity of the channel subsequent to increased temperature and partial melting permits profound mixing of mantle and crustal rocks. The hot channel exists during few million years only but rapidly produces and exhumes large amounts of ultrahigh-pressure, high-temperature rocks within the orogen. Double-sided subduction can follow the one-sided mode at later stages of orogeny when significant rheological coupling between two plates occurs during the collision. In this case the orogen is characterized by double- verging structure, the layer of subducting continental crust is embedded between two negatively buoyant lithospheric slabs and delamination of the crust does not occur. This mode of subduction can bring crustal rocks from the bottom of an

  13. Breaking the shell: Initiating plate tectonic-like subduction on Europa

    Science.gov (United States)

    Bland, Michael T.; McKinnon, William B.

    2017-10-01

    Europa’s prominent bands have been proposed to form by a seafloor-spreading-like mechanism involving complete separation of Europa’s lithosphere and the emplacement of fresh ice from below [Prockter et al. 2002]. This formation mechanism poses a challenge for Europa’s strain balance: extensional rifting at bands must be offset by lithospheric shortening elsewhere, yet few obvious contractional features have been observed. Kattenhorn and Prockter [2014] suggested that extension on Europa is accommodated by subduction of the lithosphere at linear, tabular zones termed subsumption bands. Subduction of Europa’s lithosphere implicitly requires that lithospheric-scale thrust faults can develop. This contrasts with previous numerical modeling, which found that lithospheric shortening is instead primarily accommodated by folding or passive thickening [Bland and McKinnon 2012, 2013]. Here we reevaluate the conditions required to form large-scale thrust faults using a numerical model of lithospheric shortening on Europa that includes realistic localization of brittle failure (non-associated plasticity). In the absence of strain weakening (wherein brittle failure decreases the subsequent yield strength) essentially all shortening results in folding or thickening, consistent with previous results. With moderate strain weakening, deformation becomes localized within fault-like zones for surface temperatures ≤100 K; however, the resulting surface deformation suggests a complex interplay between folding and faulting. Only if the ice shell weakens very easily does faulting dominate. Large-scale faults preferentially form at cold surface temperatures and high heat fluxes. Cold temperatures promote faulting (as opposed to folding), and high heat fluxes result in a thinner lithosphere, which is more easily subducted. The subsumption bands identified by Kattenhorn and Prockter [2014] are at a relatively high latitude (cold temperature), and are associated with putative

  14. Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates

    Science.gov (United States)

    Schaeffer, A. J.; Lebedev, S.; Becker, T. W.

    2016-11-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Here, we present a new global, azimuthally anisotropic model of the crust, upper mantle and transition zone. Two versions of this new model are computed: the rough SL2016svAr and the smooth SL2016svA. Both are constrained by a very large data set of waveform fits (˜750 000 vertical component seismogram fits). Automated, multimode waveform inversion was used to extract structural information from surface and S wave forms in broad period ranges (dominantly from 11 to 450 s, with the best global sampling in the 20-350 s range), yielding resolving power from the crust down to the transition zone. In our global tomographic inversion, regularization of anisotropy is implemented to more uniformly recover the amplitude and orientation of anisotropy, including near the poles. Our massive waveform data set, with complementary large global networks and high-density regional array data, produces improved resolution of global azimuthal anisotropy patterns. We show that regional scale variations, related to regional lithospheric deformation and mantle flow, can now be resolved by the global models, in particular in densely sampled regions. For oceanic regions, we compare quantitatively the directions of past and present plate motions and the fast-propagation orientations of anisotropy. By doing so, we infer the depth of the boundary between the rigid, high-viscosity lithosphere (preserving ancient, frozen fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently). The average depth of thus inferred rheological lithosphere-asthenosphere boundary (LAB) beneath the world's oceans is ˜115 km. The LAB depth displays a clear dependence on the age of the oceanic

  15. Volatile (Cl, F and S) and major element constraints on subduction-related mantle metasomatism along the alkaline basaltic backarc, Payenia, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang; Holm, Paul Martin; Hansteen, Thor H.

    2017-01-01

    We present data on volatile (S, F and Cl) and major element contents in olivine-hosted melt inclusions (MIs) from alkaline basaltic tephras along the Quaternary Payenia backarc volcanic province (~34°S–38°S) of the Andean Southern Volcanic Zone (SVZ). The composition of Cr-spinel inclusions...... Payenia require addition of subduction-related fluids to a mantle wedge, whereas volatile signatures in the southern Payenia are consistent with derivation from an enriched OIB source. Cl and Cl/K ratios define positive correlations with host olivine fosterite content (Fo80-90) that cannot be explained...... Mg# pyroxenite (from recycled eclogite) to a high Mg# fluid metasomatised peridotite. The Cl/K and S/K ratios in Payenia MIs extend from enriched OIB-like signatures (south) to Andean SVZ arc like signatures (north). We show that the northward increase in S, Cl and S/K is coupled to a northward...

  16. Convergent plate margin dynamics : New perspectives from structural geology, geophysics and geodynamic modelling

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2010-01-01

    Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one of the converging plates is oceanic and plunges beneath the other into the mantle, or a collision zone, where two continents or a continent and a magmatic arc collide.

  17. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  18. Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models

    Science.gov (United States)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-12-01

    We present dynamically self-consistent mantle-scale laboratory models that have been conducted to improve our understanding of the influence of slab window opening on subduction dynamics, mantle flow and associated dynamic topography over geological time scales. The adopted setup consists of a two-layer linearly viscous system simulating the subduction of a fixed plate of silicone (lithosphere) under negative buoyancy in a viscous layer of glucose syrup (mantle). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We found that the opening of a slab window does not produce consistent changes of the geometry and the kinematics of the slab. On the contrary, slab-induced mantle circulation, quantified both in the vertical and horizontal sections using the Feature Tracking image analysis technique, is strongly modified. In particular, rollback subduction and the opening of the slab window generate a complex mantle circulation pattern characterized by the presence of poloidal and toroidal components, with the importance of each evolving according to kinematic stages. Mantle coming from the oceanic domain floods through the slab window, indenting the supra-slab mantle zone and producing its deformation without any mixing between mantle portions. The opening of the slab window and the upwelling of sub-slab mantle produce a regional-scale non-isostatic topographic uplift of the overriding plate that would correspond to values ranging between ca. 1 and 5 km in nature. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compared them to the tectonics and volcanism of the Patagonian subduction zone. We found that the anomalous backarc volcanism that has been developing since the middle Miocene could result from the lateral flow of sub

  19. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NARCIS (Netherlands)

    Gaina, C.; Torsvik, T.H.; van Hinsbergen, D.J.J.; Medvedev, S.; Werner, S.C.; Labails, C.

    2013-01-01

    We present a model for the Jurassic to Present evolution of plate boundaries and oceanic crust of the African plate based on updated interpretation of magnetic, gravity and other geological and geophysical data sets. Location of continent ocean boundaries and age and geometry of old oceanic crust

  20. Plate reconstructions and tomography reveal a fossil lower mantle slab below the Tasman Sea

    NARCIS (Netherlands)

    Schellart, W. P.; Kennett, B. L N; Spakman, W.; Amaru, M.

    2009-01-01

    The Southwest Pacific region is tectonically complex and is home to numerous fossil and active subduction zones. At the Earth's surface, there remains a geological controversy regarding the polarity and continuity of fossil subduction zones in New Zealand and New Caledonia, the origin of obducted

  1. Impact-driven subduction on the Hadean Earth

    Science.gov (United States)

    O'Neill, C.; Marchi, S.; Zhang, S.; Bottke, W.

    2017-10-01

    Impact cratering was a dominant geologic process in the early Solar System that probably played an active role in the crustal evolution of the young terrestrial planets. The Earth's interior during the Hadean, 4.56 to 4 billion years ago, may have been too hot to sustain plate tectonics. However, whether large impacts could have triggered tectonism on the early Earth remains unclear. Here we conduct global-scale tectonic simulations of the evolution of the Earth through the Hadean eon under variable impact fluxes. Our simulations show that the thermal anomalies produced by large impacts induce mantle upwellings that are capable of driving transient subduction events. Furthermore, we find that moderate-sized impacts can act as subduction triggers by causing localized lithospheric thinning and mantle upwelling, and modulate tectonic activity. In contrast to contemporary subduction, the simulated localized subduction events are relatively short-lived (less than 10 Myr) with relatively thin, weak plates. We suggest that resurgence in subduction activity induced by an increased impact flux between 4.1 and 4.0 billion years ago may explain the coincident increase in palaeointensity of the magnetic field. We further suggest that transient impact-driven subduction reconciles evidence from Hadean zircons for tectonic activity with other lines of evidence consistent with an Earth that was largely tectonically stagnant from the Hadean into the Archaean.

  2. The Atlas of the Underworld: a catalogue of slab remnants in the mantle imaged by seismic tomography, and their geological interpretation

    Science.gov (United States)

    van der Meer, Douwe; van Hinsbergen, Douwe; Spakman, Wim

    2017-04-01

    Seismic tomography has provided a breakthrough in the analysis of plate tectonic history by allowing to trace now-subducted, ancient lithosphere in the Earth's mantle, where they appear as large positive seismic wave-speed anomalies. Subduction also leaves a geological record that allows for dating the geological period of active subduction. By combining these sources of information, we previously compiled 28 lower-mantle slab remnants and estimated for the timing of onset and end of subduction of these slabs, from which we derived a first-order sinking rate of slabs through the mantle (van der Meer et al., 2010). This constraint on lower mantle slab sinking rates allowed for the development of the first slab mantle reference frame, and was used to constrain of mantle viscosity. Since that first compilation, the plate tectonic and seismological community has made major progress on linking geological history to mantle structure. Slabs were linked to plate tectonic models at regional scale, contributed to understanding of orogenies at local level, and was recently even used as a novel basis for plate kinematic restorations. When analyses were expanded into the Pacific realm it improved our understanding of the presence of seismic scatterers in the sub-Pacific mantle and Pacific LLSVP topography. Expanding the tomographic analysis to a global, whole-mantle scale has led to the calculation of total lateral slab lengths, which was used to calculated corresponding subduction zone lengths through time that provided constraints for plate tectonic activity over the past 235 Myr impacting atmospheric CO2 and providing insights in the link between strontium isotope curves and global sea level. Encouraged by the direct and indirect results of our previous work, we have expanded our analysis to nearly 100 mantle images throughout the upper and lower mantle, which we correlate to 94 subduction systems active in the past 300 Myr. We provide our geological interpretation of these

  3. PGE and Re-Os Isotope Behaviour in a Subduction-Modified Mantle Wedge: A Fresh Look into the Peridotites from the Ulten Zone, Eastern Alps

    Science.gov (United States)

    Aulbach, S.; Braga, R.; Gudelius, D.; Prelevic, D.; Meisel, T. C.

    2015-12-01

    Peridotites in the upper Austroalpine Ulten zone (Eastern Italy) sample the subduction-modified Variscan mantle wedge. Metasomatism of peridotites during four stages of mantle wedge evolution includes: (1) Intrusion of alkaline melts from an inner, subduction-modified wedge and cryptic enrichment of spinel lherzolites (SL); (2) Reaction with siliceous crustal melts after pressure increase, generating coarse-grained garnet amphibole peridotites (GAP); (3) Crystallisation of abundant amphibole (± apatite and dolomite) from residual hydrous fluids during and/or after peak metamorphism recorded by fine-grained GAP; [4] Subsequent influx of crustal fluids, causing retrograde formation of spinel chlorite amphibole peridotites (SAP) [1-5]. SL and coarse GAP are apparently more fertile, whereas fine GAP and SAP retain the most depleted major-element characteristics. Overall, samples fall on partial melting trends consistent with extraction of low degrees of melt (F≤0.15) at 2-1 GPa. SL and coarse GAP have ±flat PGE patterns normalised to Primitive Upper Mantle (PUM), or show small decreases or increases from compatible to incompatible PGE. This suggests retention of primary sulphide liquid at low degrees of melting, during which PGE concentrations are little fractionated [6]. Indeed, broad positive correlations between the PGE suggest a common host, likely sulphide, observed in the samples as assemblages of pn ± po and cpy. Most fine-GAP share these patterns, indicating robustness against massive hydrous fluid influx, while Os/Ir > PUM argue against strong Os scavenging by highly oxidising hydrous fluids. Nevertheless, elevated Ru/IrPUM in a subgroup of samples may indicate a role for spinel addition under oxidising conditions. Most samples have 187Os/188Os >PUM, despite sub-PUM Re/Os, which requires addition of, or isotopic equilibration with, 187Os-rich crustal components, most likely via the precipitation of metasomatic sulphide. [1] Nimis and Morten (2000) J

  4. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history

    Science.gov (United States)

    Li, Mingming; Black, Benjamin; Zhong, Shijie; Manga, Michael; Rudolph, Maxwell L.; Olson, Peter

    2016-07-01

    The Earth's surface volcanism exerts first-order controls on the composition of the atmosphere and the climate. On Earth, the majority of surface volcanism occurs at mid-ocean ridges. In this study, based on the dependence of melt fraction on temperature, pressure, and composition, we compute melt production and degassing rate at mid-ocean ridges from three-dimensional global mantle convection models with plate motion history as the surface velocity boundary condition. By incorporating melting in global mantle convection models, we connect deep mantle convection to surface volcanism, with deep and shallow mantle processes internally consistent. We compare two methods to compute melt production: a tracer method and an Eulerian method. Our results show that melt production at mid-ocean ridges is mainly controlled by surface plate motion history, and that changes in plate tectonic motion, including plate reorganizations, may lead to significant deviation of melt production from the expected scaling with seafloor production rate. We also find a good correlation between melt production and degassing rate beneath mid-ocean ridges. The calculated global melt production and CO2 degassing rate at mid-ocean ridges varies by as much as a factor of 3 over the past 200 Myr. We show that mid-ocean ridge melt production and degassing rate would be much larger in the Cretaceous, and reached maximum values at ˜150-120 Ma. Our results raise the possibility that warmer climate in the Cretaceous could be due in part to high magmatic productivity and correspondingly high outgassing rates at mid-ocean ridges during that time.

  5. Three-dimensional Thermal Model of the Mexican Subduction Zone

    Science.gov (United States)

    Rosas, J. C.; Pimentel, F. D. C.; Currie, C. A.; He, J.; Harris, R. N.

    2015-12-01

    Along the Mexican section of the Middle America Trench (MAT), the Cocos plate subducts beneath the North American plate. The most important feature of this subduction zone is the flat-slab section below central Mexico, extending approximately 250 km landward from the trench at a depth of 50 km. Further west, the dip changes to 45-50º. This particular geometry has several unique consequences, such as a volcanic arc that is not aligned with the trench and very shallow slab seismicity. For the mantle wedge, the abrupt change in slab geometry could lead to a three-dimensional (3D) mantle wedge flow that departs from the classical 2D subduction-driven corner flow. Evidence of 3D flow in the region comes from seismic anisotropy studies, which show that olivine fast-direction axes have a component that is parallel to the MAT. In other subduction zones, such as Costa Rica-Nicaragua and Japan, 3D flow has been observed to increase temperatures by >50º C relative to corner flow models.For this study, we have created the first 3D finite-element model of the Mexican subduction zone in order to analyze its thermal structure. Our objective is to assess the effects of 3D mantle flow and hydrothermal circulation (HC) in the subducting slab. In this region, low surface heat flow values near the trench indicate that HC may remove heat from the oceanic plate. Our model incorporates the effect of HC through conductivity proxies in the subducting crust and a 2D oceanic geotherm that includes the age variations of the Cocos plate along the MAT. For an isoviscous mantle, our model shows that the slab dip variations induce a flow that departs from 2D corner flow near the transition between the flat-slab and normal-dipping sections. The mantle flows in eastward direction toward the flat slab, and its orientation is consistent with seismic anisotropy studies. The maximum along-margin flow rate is nearly 2 cm/yr, which is >30% of the convergence rate. Temperatures at the location of this

  6. Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics

    OpenAIRE

    Jödicke, A; Jording, H.; Ferrari, L.; Arzate, J.; Mezger, K.; Rüpke, Lars

    2006-01-01

    In order to study electrical conductivity phenomena that are associated with subduction related fluid release and melt production, magnetotelluric (MT) measurements were carried out in southern Mexico along two coast to coast profiles. The conductivity-depth distribution was obtained by simultaneous two-dimensional inversion of the transverse magnetic and transverse electric modes of the magnetotelluric transfer functions. The MT models demonstrate that the plate southern profile shows enhanc...

  7. Seismic Anisotropy due to Crust and Uppermost Mantle Deformation Beneath Southern Peru and Bolivia: Constraints from Receiver Functions

    Science.gov (United States)

    Bar, N.; Long, M. D.; Wagner, L. S.; Beck, S. L.; Tavera, H.

    2016-12-01

    Subduction systems play a key role in plate tectonics, but the deformation of the crust and uppermost mantle during subduction and orogenesis in continental subduction systems remains poorly understood. Observations of seismic anisotropy can provide important constraints on dynamic processes in the crust and uppermost mantle in subduction systems. The subduction zone beneath Peru and Bolivia, where the Nazca plate subducts beneath South America, represents a particularly interesting location to study subduction-related deformation, given the complex slab morphology and the along-strike transition from flat to normally dipping subduction. In particular, understanding the structure and deformation of the crust and mantle will yield insight into the relationship between the flat slab and the overriding continental lithosphere. In this study we constrain seismic anisotropy within and above the subducting slab (including the mantle wedge and the overriding plate) beneath southern Peru and Bolivia using transverse component receiver functions. Because anisotropic receiver function analysis can constrain the depth distribution of anisotropy, this analysis is complementary to previous studies of shear wave splitting in this region. We examine data from two dense lines of seismometers from the PULSE and CAUGHT deployments in Peru and Bolivia, each anchored by a long-running permanent station. The northern line overlies the Peru flat slab, while the southern line overlies the normally dipping slab beneath Bolivia. Beneath Peru, our investigation of anisotropic structure along the flat slab will help test the recently suggested hypothesis of a slab tear; beneath Bolivia, we aim to characterize the pattern of flow in the mantle wedge as well as the nature of deformation in the lower crust of the overriding plate.

  8. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    Science.gov (United States)

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  9. Experimental and observational evidence for plume-induced subduction on Venus

    Science.gov (United States)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S.

    2017-04-01

    Why Venus lacks plate tectonics remains an unanswered question in terrestrial planet evolution. There is observational evidence for subduction--a requirement for plate tectonics--on Venus, but it is unclear why the features have characteristics of both mantle plumes and subduction zones. One explanation is that mantle plumes trigger subduction. Here we compare laboratory experiments of plume-induced subduction in a colloidal solution of nanoparticles to observations of proposed subduction sites on Venus. The experimental fluids are heated from below to produce upwelling plumes, which in turn produce tensile fractures in the lithosphere-like skin that forms on the upper surface. Plume material upwells through the fractures and spreads above the skin, analogous to volcanic flooding, and leads to bending and eventual subduction of the skin along arcuate segments. The segments are analogous to the semi-circular trenches seen at two proposed sites of plume-triggered subduction at Quetzalpetlatl and Artemis coronae. Other experimental deformation structures and subsurface density variations are also consistent with topography, radar and gravity data for Venus. Scaling analysis suggests that this regime with limited, plume-induced subduction is favoured by a hot lithosphere, such as that found on early Earth or present-day Venus.

  10. Plate tectonics, damage and inheritance.

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  11. Geodynamic Modeling of the Subduction Zone around the Japanese Islands

    Science.gov (United States)

    Honda, S.

    2017-06-01

    In this review, which focuses on our research, we describe the development of the thermomechanical modeling of subduction zones, paying special attention to those around the Japanese Islands. Without a sufficient amount of data and observations, models tended to be conceptual and general. However, the increasing power of computational tools has resulted in simple analytical and numerical models becoming more realistic, by incorporating the mantle flow around the subducting slab. The accumulation of observations and data has made it possible to construct regional models to understand the detail of the subduction processes. Recent advancements in the study of the seismic tomography and geology around the Japanese Islands has enabled new aspects of modeling the mantle processes. A good correlation between the seismic velocity anomalies and the finger-like distribution of volcanoes in northeast Japan has been recognized and small-scale convection (SSC) in the mantle wedge has been proposed to explain such a feature. The spatial and temporal evolution of the distribution of past volcanoes may reflect the characteristics of the flow in the mantle wedge, and points to the possibility of the flip-flopping of the finger-like pattern of the volcano distribution and the migration of volcanic activity from the back-arc side to the trench side. These observations are found to be qualitatively consistent with the results of the SSC model. We have also investigated the expected seismic anisotropy in the presence of SSC. The fast direction of the P-wave anisotropy generally shows the trench-normal direction with a reduced magnitude compared to the case without SSC. An analysis of full 3D seismic anisotropy is necessary to confirm the existence and nature of SSC. The 3D mantle flow around the subduction zone of plate-size scale has been modeled. It was found that the trench-parallel flow in the sub-slab mantle around the northern edge of the Pacific plate at the junction between

  12. Source contamination and tectonomagmatic signals of overlapping Early to Middle Miocene orogenic magmas associated with shallow continental subduction and asthenospheric mantle flows in Western Anatolia: A record from Simav (Kütahya) region

    Science.gov (United States)

    Çoban, Hakan; Karacık, Zekiye; Ece, Ömer Işık

    2012-05-01

    The disappearances of mafic shoshonitic and ultrapotassic magma prior to Late Oligocene in Western Anatolia post-collisional tectonic settings, and the sudden appearance of Early-Middle Miocene potassic lavas with orogenic geochemical signatures, indicate a striking change of mantle sources during the Early-Middle Miocene period, and require a special explanation. In this regard, the Simav (Kütahya) region of Western Anatolia represents a critical area, where the Early-Middle Miocene mafic potassic (shoshonite, absarokite, ultrapotassic) and high-K calc-alkaline (andesite, dacite-rhyolite, granite) series rocks overlap in the extensional geotectonic setting in a back-arc position. The appraisal of petrological data obtained from Simav igneous complex indicates that there is a remarkable geochemical and isotopic similarity (e.g., negative Eu anomalies; Nb-Ta depletions; high Sr, low Nd and variable Pb isotope compositions) between coevally generated mafic potassic and high-K calc-alkaline magma series. The near primitive mafic potassic (MHKS) lavas with high Sr isotope compositions require a heterogeneous mantle source contaminated with crustal materials. Dragged and delaminated crustal components, caused by shallow continental subduction and the late arrived subducted terrigenous sediments from the Aegean trench are likely candidate sources of continental materials incorporated into the mantle source of the Simav mafic potassic (MHKS) magmas. The nature of these components also played a significant role in the compositional variations of Simav mafic series rocks. The Simav mafic potassic (MHKS) magmas were derived from a crust-contaminated, subduction-modified (metasomatized) EM-II type mantle source, interacting with influxed asthenosphere in a back-arc mantle wedge, whereas mixing of lower crustal silicic melts with underplated potassic mafic magmas resulted in coeval high-K calc-alkaline rocks, matched by the extent of crustal contamination observed in the more

  13. The dynamical control of subduction parameters on surface topography

    Science.gov (United States)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  14. Upper Mantle Seismic Anisotropy in the Southwest Indian Ocean from SKS-splitting measurements: Plate, Plume and Ridges signatures

    Science.gov (United States)

    Scholz, J. R.; Barruol, G.; Fontaine, F. R.; Montagner, J. P.; Stutzmann, E.; Sigloch, K.; Mazzullo, A.

    2016-12-01

    We present results of upper mantle seismic anisotropy in the Southwest Indian Ocean, a region influenced by the effects of absolute plate motion of the African Plate, of mid-ocean ridge spreading of the Central and Southwest Indian Ridges, and of potential plume-lithosphere and plume-ridge interactions. Data analyzed in this study were recorded by 20 terrestrial and 57 ocean-bottom three-component seismometers installed in the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel, www.rhum-rum.net). Broadband land stations were installed at the Îles Eparses (5), Madagascar (5) and La Réunion Island (10), and recorded for about two years. Broadband and wideband ocean-bottom instruments were deployed around the La Réunion Island and along the Central and Southwest Indian Ridges (deployment: R/V Marion Dufresne, 2012, MD192 - recovery: R/V Meteor, 2013, M101), and recorded for 8 to 13 months. Measurements of upper mantle anisotropy measurements are based on the effect of SKS-splitting and performed using the `SplitLab' toolbox. To our results we integrate findings of former seismic anisotropy studies (SKS-splitting measurements and fundamental mode Rayleigh wave tomography). We interpret the overall picture in terms of the existence - or lack - of a mantle plume signature around the La Réunion hotspot, of a physical plume-ridge interaction and of the general upper mantle flow geometry in the Southwest Indian Ocean.

  15. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction

  16. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    Science.gov (United States)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  17. Forced relative displacements of the core and mantle as the basic mechanism of secular changes of the Earth shape and lithosphere plates tectonics

    Science.gov (United States)

    Barkin, Yury

    2010-05-01

    The summary. In the work planetary changes of a figure of the Earth and geoid in present epoch are discussed. Contrast and asymmetric geodetic changes of northern and southern hemispheres are revealed. The phenomenon of lengthening of latitude circles of a southern hemisphere and shortening of lengths of latitude circles of northern hemisphere, the phenomenon of expansion of a southern hemisphere and, accordingly, compression of northern hemisphere in relation to the center of mass of the Earth have been predicted. The reasons of the planetary tendency of displacement (drift) of plates in northern direction are studied. The geodynamic model is developed, on which the basic moving force in tectonics of plates is a gravitational influence of a moveable core of the Earth on all layers of the mantle, and also on blocks of the crust and lithosphere plates. In a base of all tectonic and geological reorganizations the mechanism of the forced relative oscillations and swings of the core and the mantle of the Earth in various time scales, including geological timescale lays. 1 Mechanism of formation and changes of the pear-shaped form of the Earth. According to developed geodynamic model a pear-shaped form of planets is not their given property for all time (as believed before scientists), and is the dynamic response to the slow forced relative displacements of the core and mantle [1]. Than more a relative displacement of the core and mantle (eccentricity of the core in some geology epoch), is especially clearly expressed pear-shaped form. The planet Mars possesses a big pear-shaped form and by our estimations the core of this planet is displaced in northern direction (to latitude in approximately 60° N) on 20-25 km [2]. An eccentricity of the Earth core is less (estimations give displacement about 3-4 km in direction to Brazil [3]) and it pear-shaped form is much less. 2 The phenomenon of asymmetric lengthening of latitude circles of southern and northern hemispheres of

  18. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes

    Science.gov (United States)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng

    2016-02-01

    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  19. Dynamics and Significance of Plume-Induced Subduction Initiation: Numerical Modeling

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2014-12-01

    How did the first subduction zone form? Most present-day subduction initiation mechanisms require acting plate forces and/or preexisting zones of lithospheric weakness, which are themselves the consequence of plate tectonics (Stern 2004). In contrast, spontaneous plume-induced subduction initiation - suggested on the basis of numerical thermo-mechanical experiments (Ueda et al., 2008) and supported by data re-interpretation of how subduction started in Late Cretaceous time around the Caribbean LIP (Whattam and Stern, 2014) - does not require pre-existing lithospheric fabric, such as are created by active plate tectonics and is viable for both stagnant lid and mobile/deformable lid conditions. Here, we present first results of high-resolution 3D numerical thermo-mechanical modeling of plume-induced subduction resulting from mechanical-magmatic interaction of an ascending thermal mantle plume with old, cold, dense oceanic lithosphere. We demonstrate that weakening of the strong lithosphere by plume-induced magmatism is the key factor enabling subduction initiation around the plume head. A large plume head is required to overcome ring confinement, and subduction initiation is further favored when plume activity and lithospheric weakening continues for several tens of Ma. We further discuss possible implications of this scenario for modern plate tectonics as well as for plate tectonics initiation in Precambrian time. ReferencesStern, R.J., 2004. Subduction initiation: spontaneous and induced. EPSL 226, 275-292.Ueda, K., Gerya, T., Sobolev, S.V., 2008. Subduction initiation by thermal-chemical plumes. PEPI 171, 296-312.Whattam, S.A., Stern, R. 2014. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, (accepted).

  20. Continental Growth and Mantle Hydration as Earth System Feedback Cycles and possible Effects of the Biosphere

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2016-12-01

    The evolution of Earth is charcterized by intertwined feedback cycles. We focus on two feedback cycles that include the mantle water budget and the continental crust and study possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water will reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the mantle water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents grow by volcanism above subduction zones, whose total length is determined by the total area of the continents. Furthermore, the erosion rate of the continents is proportional to the total surface area of continental crust. The rate of sediment subduction affects the rate of transport of water to the mantle and the production rate of new continental crust. We present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface are of continents. The stable points represent either an Earth mostly covered by continents and a wet mantle or an Earth mostly covered by oceans with a dry mantle. The presently observed Earth is inbetween these extreme states but the state is intrinsically unstable. We couple the feedback model to a parameterized thermal evolution model. We show how Earth evolved towards its present unstable state. We argue that other feedback cycles such as the carbonate silicate cycle may act to stabilize the present state, however. By enhancing continental weathering and erosion, and eventually the sediment transport into subduction zones, the biosphere impacts both feedback cycles and might play a crucial role in regulating Earth's system and keep continental crust coverage and

  1. Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia

    Science.gov (United States)

    Ryu, In-Chang; Lee, Changyeol

    2017-12-01

    A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the

  2. Numerical modelling of volatiles in the deep mantle

    Science.gov (United States)

    Eichheimer, Philipp; Thielmann, Marcel; Golabek, Gregor J.

    2017-04-01

    The transport and storage of water in the mantle significantly affects several material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.). The processes driving transport and circulation of H2O in subduction zones remain a debated topic. Geological and seismological observations suggest different inflow mechanisms of water e.g. slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017), followed by dehydration of the slab. On Earth both shallow and steep subduction can be observed (Li et al., 2011). However most previous models (van Keken et al., 2008; Wilson et al., 2014) did not take different dip angles and subduction velocities of slabs into account. To which extent these parameters and processes influence the inflow of water still remains unclear. We present 2D numerical models simulating the influence of the various water inflow mechanisms on the mantle with changing dip angle and subduction velocity of the slab over time. The results are used to make predictions regarding the rheological behavior of the mantle wedge, dehydration regimes and volcanism at the surface. References: van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Wilson, C. R., et al. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261-274 (2014). Li, Z. H., Z. Q. Xu, and T. V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011).

  3. Thermal buoyancy on Venus - Underthrusting vs subduction

    Science.gov (United States)

    Burt, Jeffrey D.; Head, James W.

    1992-01-01

    The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.

  4. MACMA: a Virtual Lab for Plate Tectonics

    Science.gov (United States)

    Grigne, C.; Combes, M.; Tisseau, C.

    2013-12-01

    MACMA (Multi-Agent Convective MAntle) is a tool developed to simulate evolutive plate tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). The model relies mainly on a force balance to compute the velocity of each plate, and on empirical rules to determine how plate boundaries move and evolve. It includes first-order features of plate tectonics: (a) all plates on Earth do not have the same size, (b) subduction zones are asymmetric, (c) plates driven by subducting slabs and upper plates do not exhibit the same velocities, and (d) plate boundaries are mobile, can collide, merge and disappear, and new plate boundaries can be created. The MACMA interface was designed to be user-friendly and a simple use of the simulator can be achieved without any prerequisite knowledge in fluid dynamics, mantle rheology, nor in numerical methods. As a preliminary study, the simulator was used by a few students from bachelor's degree to master's degree levels. An initial configuration for plate tectonics has to be created before starting a simulation: the number and types of plate boundaries (ridge, subduction, passive margins) has to be defined and seafloor ages must be given. A simple but interesting exercise consists in letting students build such an initial configuration: they must analyze a map of tectonic plates, choose a 2-D section and examine carefully a map of seafloor ages. Students mentioned that the exercise made them realize that the 3-D spherical structure of plate tectonics does not translate directly in a simple 2-D section, as opposed to what is usually shown in books. Physical parameters: e.g. mantle viscosity, number of layers to consider in the mantle (upper and lower mantle, possible asthenosphere), initial time and mantle temperature, have to be chosen, and students can use this virtual lab to see how different scenarios emerge when parameters are varied. Very importantly, the direct visualization of the mobility of plate

  5. Modeling Continental Growth and Mantle Hydration in Earth's Evolution and the Impact of Life

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-04-01

    The evolution of planets with plate tectonics is significantly affected by several intertwined feedback cycles. On Earth, interactions between atmosphere, hydrosphere, biosphere, crust, and interior determine its present day state. We here focus on the feedback cycles including the evolutions of mantle water budget and continental crust, and investigate possible effects of the Earth's biosphere. The first feedback loop includes cycling of water into the mantle at subduction zones and outgassing at volcanic chains and mid-ocean ridges. Water is known to reduce the viscosity of mantle rock, and therefore the speed of mantle convection and plate subduction will increase with the water concentration, eventually enhancing the rates of mantle water regassing and outgassing. A second feedback loop includes the production and erosion of continental crust. Continents are formed above subduction zones, whose total length is determined by the total size of the continents. Furthermore, the total surface area of continental crust determines the amount of eroded sediments per unit time. Subducted sediments affect processes in subduction zones, eventually enhancing the production rate of new continental crust. Both feedback loops affect each other: As a wet mantle increases the speed of subduction, continental production also speeds up. On the other hand, the total length of subduction zones and the rate at which sediments are subducted (both being functions of continental coverage) affect the rate of mantle water regassing. We here present a model that includes both cycles and show how the system develops stable and unstable fixed points in a plane defined by mantle water concentration and surface of continents. We couple these feedback cycles to a parameterized thermal evolution model that reproduces present day observations. We show how Earth has been affected by these feedback cycles during its evolution, and argue that Earth's present day state regarding its mantle water

  6. The interplay between subduction and lateral extrusion : A case study for the European Eastern Alps based on analogue models

    NARCIS (Netherlands)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A.P.L.

    2017-01-01

    A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental

  7. Geophysical detection of relict metasomatism from an Archean (approximately 3.5 Ga) subduction zone.

    Science.gov (United States)

    Chen, Chin-Wu; Rondenay, Stéphane; Evans, Rob L; Snyder, David B

    2009-11-20

    When plate tectonics started on Earth has been uncertain, and its role in the assembly of early continents is not well understood. By synthesizing coincident seismic and electrical profiles, we show that subduction processes formed the Archean Slave craton in Canada. The spatial overlap between a seismic discontinuity and a conductive anomaly at approximately 100 kilometers depth, in conjunction with the occurrence of mantle xenoliths rich in secondary minerals representative of a metasomatic front, supports cratonic assembly by subduction and accretion of lithospheric fragments. Although evidence of cratonic assembly is rarely preserved, these results suggest that plate tectonics was operating as early as Paleoarchean times, approximately 3.5 billion years ago (Ga).

  8. Subducting characteristic of the Pacific slab beneath northeast China

    Science.gov (United States)

    Jiang, G.; Zhang, G.; Xu, Y.

    2012-12-01

    The volcanoes locating in northeast China are very active. Some researchers consider that the origin of volcanoes is closely related to the subducting western Pacific plate and the upwelling asthenosphere. The thickness and the existing range of the subducted plate are not clear as far although the seismic tomography results obviously show that the Pacific plate exists below the volcano region. Therefore, in this study, we adopted the method combining the teleseismic tomography with travel time forward modeling to further study the velocity structure beneath northeast China, especially the precise model of subducted Pacific plate. Our results show that (1) the average thickness and velocity perturbation of slab is 85 km and 1%, respectively, and the slab has not been thickened compared with the previous result of the Japan Sea; (2) the Pacific plate subducted into the mantle transition zone with a shallow dip angle, and changed horizontally when it touched the bottom of mantle transition zone, and extended westward to Longitude 127°E and then stops over there; (3) the horizontal slab locates right below the volcano region. These above features help people understand the origin of intraplate volcanoes and the geodynamical process better. (a) Tomographic result along 43°N. Red and blue colors represent the high and low velocity anomalies, respectively, and the scale is shown at the right-bottom; The profile line is shown in (b); The black triangles represent the volcanoes locating near the profile; The black solid and dashed lines show the depths of upper and lower boundaries of Pacific plate, respectively. The red dots represent the deep earthquakes around the profile. (b) Location of profile AA' along 43°N. Black triangles denote volcanoes; White squares represent the stations; Blue contours denote the depth of upper boundary of Pacific plate; Black and red dots represent the deep epicenters.

  9. Interplay between deformation, fluid release and migration across a nascent subduction interface: evidence from Oman-UAE and implications for warm subduction zones

    Science.gov (United States)

    Agard, Philippe; Prigent, Cécile; Soret, Mathieu; Guillot, Stéphane; Dubacq, Benoît

    2017-04-01

    Frozen-in subduction plate interfaces preserving the first 1-2 My of the subduction history are found beneath ophiolites. These contacts are a key target to study the inception of mantle wedge metasomatism and the mechanical coupling between the upper plate and the top part of the sinking slab shortly after subduction initiation. Combining structural field and EBSD data, detailed petrology, thermodynamic modelling and geochemistry on both sides, i.e. the base of the mantle wedge (Oman-UAE basal peridotites) and the underlying accreted crustal fragments from the subducting slab (metamorphic soles), this study documents the continuous evolution of the plate contact from 1 GPa 900-750°C to 0.6 GPa 750-600°C, with emphasis on strain localization and feedbacks between deformation and fluid migration. In the mantle wedge, the (de)formation of proto-ultramylonitic peridotites is coeval with mantle metasomatism by focused hydrous fluid migration. Peridotite metasomatism results in the precipitation of new minerals (clinopyroxene, amphibole and spinel ± olivine and orthopyroxene) and their enrichment in FMEs (particularly B, Li and Cs, with concentrations up to 40 times that of the PM). Boron concentrations and isotopes (δ11B of metasomatized peridotites up to +25‰) suggest that these fluids with a "subduction signature" are probably sourced from the dehydrating amphibolitic metamorphic sole. Concomitantly, deformation in the lower plate results in the stepwise formation, detachment and accretion to the mylonitic s.l. mantle of successive slices of HT metabasalts from the downgoing slab, equilibrated at amphibolite/granulite conditions (900-750°C). Two major stages may be outlined: - between 900 and 750°C, the garnet-clinopyroxene-amphibole bearing sinking crust (with melting < 6 vol%) gets juxtaposed and mechanically coupled to the mantle, leading to the transfer of subduction fluids and metasomatism (possibly into the arc zone ultimately). Deformation is

  10. Towards absolute plate motions constrained by lower-mantle slab remnants

    NARCIS (Netherlands)

    Meer, D.G. van der; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.; Torsvik, T.H.

    2010-01-01

    Since the first reconstruction of the supercontinent Pangaea, key advances in plate tectonic reconstructions have been made1. Although the movement of tectonic plates since the start of the mid-Cretaceous period (~100 million years (Myr) ago) is relatively well understood1, 2, the longitudinal

  11. The dominant surface-topography contributions of individual subduction parameters

    Science.gov (United States)

    Crameri, Fabio; Lithgow-Bertelloni, Carolina; Tackley, Paul

    2017-04-01

    It is no secret, not any longer, that dynamic processes below the plate exert a significant contribution to the elevation of the plate at the surface (e.g., Flament et al., 2013). We have therefore studied* the individual impact each and every major subduction parameter has on surface topography. This allows us to qualitatively compare the different sources amongst each other, and to quantify their actual potential to vertically deflect the surface. The gained knowledge from this compilation is crucial: We might finally be able to link the directly-observable surface topography to the dynamics (buoyancy, rheology, and geometry) of the subduction system. *This study is made possible by the efficient convection code StagYY (Tackley 2008), the largely-automated post-processing and visualisation toolbox StagLab (www.fabiocrameri.ch/software), and crucial model developments (Crameri and Tackley, 2015; Crameri et al., G-cubed, submitted, Crameri and Lithgow-Bertelloni, Tectonophysics, submitted). REFERENCES 
Flament, N., M. Gurnis, and R. D. Müller (2013), A review of observations and models of dynamic topography, Lithosphere, 5(2), 189-210. Crameri, F., and P. J. Tackley (2015), Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection, J. Geophys. Res. Solid Earth, 120(5), 3680-3706. Crameri, F., C. R. Lithgow-Bertelloni, and P. J. Tackley (submitted), The dynamical control of subduction parameters on surface topography, Geochem. Geophys. Geosyst. Crameri, F., and C. R. Lithgow-Bertelloni (submitted), Dynamic Mantle-Transition-Zone Controls on Upper-Plate Tilt, Tectonophysics. Tackley, P.J (2008) Modelling compressible mantle convection with large viscosity contrasts in a three- dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171(1-4), 7-18.

  12. Complex Subduction Imaged by Diffractional Tomography of USArray Receiver Functions

    Science.gov (United States)

    Zhou, Y.

    2016-12-01

    Subduction of a large oceanic plate beneath a continental plate is a complex process. In the Western United States, fragmentation of the Farallon slab has been reported in recent tomographic models. In this study, we measure finite-frequency travel times of P410s and P660s receiver functions recorded at USArray Transportable Array (TA) stations for teleseismic events occurred between 2015 and 2011. We calculate the finite-frequency sensitivities of receiver functions to depth perturbations of the 410-km and 660-km discontinuities to obtain high resolution mantle transition zone models based on diffractional tomography. The high-resolution discontinuity models reveal several interesting anomalies associated with complex subduction of the Farallon plate. In particular, we observe a linear feature in both the 410-km and 660-km discontinuity models. This mantle transition zone anomaly is roughly located in the western Snake River Plain and aligns with a major slab gap imaged in an earlier finite-frequency S-wave velocity model. We show that non-stationary upwellings generated by eastward propagation of a slab tearing event, together with a westward motion of the North American plate at a rate of about 1 to 1.5 centimeters per year (comparable to the half spreading rate of the Mid-Atlantic Ridge) in the past 16 million years can explain the age-progressive Snake River Plain / Yellowstone volcanic track. The slab to the west of the anomaly shows a near vertical subduction, it is heavily fragmented and the 410-km and 660-km discontinuity topography indicates that the southern fragment north of the Mendocino triple junction has subducted down to the mantle transition zone.

  13. The Hainan Lone Plume Prompted By Encircling Subduction Zones around the South China Sea

    Science.gov (United States)

    Zhang, N.; Li, Z. X.

    2016-12-01

    The present of the late Mesozoic Hainan plume originated from the lower mantle of northern South China Sea has been documented by both seismic tomographic and geochemical-petrological work. The Hainan plume is one of the rare mantle plumes that are located away from the two large low shear velocity provinces (LLSVPs) in the lower mantle. Instead, it is within the broad global mantle downwelling zone, thus classified as a "lone plume". It had previously been proposed that this plume could have been triggered by subducting slabs into the lower mantle in the regions surrounding the South China Sea, a mechanism similar to what had been proposed for the formation of the LLSVPs. Here, we investigate the feasibility of such a plume-generation mechanism use a geodynamic modelling. Our geodynamic model has a high resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adoptive-mesh-refined, 3D mantle convection code ASPECT. The top mechanic boundary condition of the global domain uses the latest plate motion reconstruction. In a series of experiments, we explore the effects of various important mantle parameters on mantle plume generation. The results so far suggest that the Indo-Australian cold slab acted like a cold wall from the southwest side in the present-day South China Sea mantle domain since 80 Ma ago. Fossil slabs from much older Tethyan subduction systems plays a moderate role in blocking the deep mantle hot materials from escaping to the north. The Western Pacific subduction systems started to promote the initiation of Hainan plume some 50 Ma ago from near the core-mantle boundary (CMB). As the plume head rises, it first moved to the west, and finally to beneath the South China Sea. Our model results are not sensitive to whether there is a chemical layer (possible D" layer) near the CMB.

  14. Water and the oxidation state of subduction zone magmas.

    Science.gov (United States)

    Kelley, Katherine A; Cottrell, Elizabeth

    2009-07-31

    Mantle oxygen fugacity exerts a primary control on mass exchange between Earth's surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/SigmaFe), determined with Fe K-edge micro-x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/SigmaFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.

  15. Tsunami Hazard Posed to New Zealand by the Kermadec and Southern New Hebrides Subduction Margins: An Assessment Based on Plate Boundary Kinematics, Interseismic Coupling, and Historical Seismicity

    Science.gov (United States)

    Power, William; Wallace, Laura; Wang, Xiaoming; Reyners, Martin

    2012-01-01

    We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150 years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth's subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake ( M w ≳8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude-frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.

  16. Subduction initiation and Obduction: insights from analog models

    Science.gov (United States)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was

  17. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng; Li, Sanzhong; Wei, Wei

    2017-04-01

    We study the age of the subducting Pacific slab beneath East Asia using a high-resolution model of P-wave tomography and paleo-age data of ancient seafloor. Our results show that the lithosphere age of the subducting slab becomes younger from the Japan Trench (∼130 Ma) to the slab's western edge (∼90 Ma) beneath East China, and the flat (stagnant) slab in the mantle transition zone (MTZ) is the subducted Pacific plate rather than the proposed Izanagi plate which should have already collapsed into the lower mantle. The flat Pacific slab has been in the MTZ for no more than ∼10-20 million years, considerably less than the age of the big mantle wedge beneath East Asia (>110 million years). Hence, the present flat Pacific slab in the MTZ has contributed to the Cenozoic destruction of the East Asian continental lithosphere with extensive intraplate volcanism and back-arc spreading, whereas the destruction of the North China Craton during the Early Cretaceous (∼140-110 Ma) was caused by the subduction of the Izanagi (or the Paleo-Pacific) plate.

  18. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  19. Effect of the Earth's rotation on subduction processes

    Science.gov (United States)

    Levin, B. W.; Rodkin, M. V.; Sasorova, E. V.

    2017-09-01

    The role played by the Earth's rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally estimated by the value of the Rossby number: if this parameter is small, the Coriolis force considerably affects the character of movements. In the case of convection in the Earth's mantle and movements of lithospheric plates, the Rossby number is quite small; therefore, the effect of the Coriolis force is reflected in the character of movements of the lithospheric plates. Analysis of statistical data on subduction zones verifies this suggestion.

  20. The Role of Proto-Thrusts in Frontal Accretion and Accommodation of Plate Convergence, Hikurangi Subduction Margin, New Zealand

    Science.gov (United States)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.

    2016-12-01

    Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll

  1. Processes and consequences of deep subduction

    NARCIS (Netherlands)

    Rubie, David C.; Hilst, R.D. van der

    2001-01-01

    Subduction of slabs of oceanic lithosphere into the deep mantle involves a wide range of geophysical and geochemical processes and is of major importance for the physical and chemical evolution of the Earth. For example, subduction and subduction-related volcanism are major processes through

  2. Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island

    Science.gov (United States)

    Taneja, Rajat; Rushmer, Tracy; Blichert-Toft, Janne; Turner, Simon; O'Neill, Craig

    2016-10-01

    The intra-plate region of the Northeast Indian Ocean, located between the Ninetyeast Ridge and the North West Shelf of Australia, contains numerous submerged seamounts and two sub-aerially exposed volcanic island groups. While the Cocos (Keeling) Archipelago is a coral atoll, Christmas Island is the only sub-aerially exposed volcanic island and contains Late Cretaceous, Eocene and Pliocene lavas. The lavas are predominantly basaltic in composition, except for one sampled flow that is trachytic. Although the evolution of the western margin of Australia, and the seismicity in the intra-plate region, has received considerable attention, the origin of the seamount province in the Northeast Indian Ocean is still a matter of debate. In order to constrain the origin of volcanism on Christmas Island and the associated Seamount Province we analysed 14 Christmas Island samples for major and trace element abundances and 12 of these for Nd, Hf and Pb isotope compositions. The trace element patterns of the lavas are similar to many ocean island basalts, while high 208Pb/204Pb and 207Pb/204Pb at a given 206Pb/204Pb suggest affiliation with the DUPAL anomaly. The reconstructed position of Christmas Island during the Eocene (44-37 Ma) places the island in close proximity to the (present-day) upper mantle low-seismic velocity anomalies. Moreover, an enriched mantle (EM-2) type component in addition to the DUPAL anomaly is observed in the Eocene volcanic phase. The younger Pliocene ( 4 Ma) sequences at Christmas Island are inferred to be the product of partial melting of existing material induced by lithospheric flexure.

  3. Mantle temperature under drifting deformable continents during the supercontinent cycle

    Science.gov (United States)

    Yoshida, Masaki

    2013-04-01

    The thermal heterogeneity of the Earth's mantle under the drifting continents during a supercontinent cycle is a controversial issue in earth science. Here, a series of numerical simulations of mantle convection are performed in 3D spherical-shell geometry, incorporating drifting deformable continents and self-consistent plate tectonics, to evaluate the subcontinental mantle temperature during a supercontinent cycle. Results show that the laterally averaged temperature anomaly of the subcontinental mantle remains within several tens of degrees (±50 °C) throughout the simulation time. Even after the formation of the supercontinent and the development of subcontinental plumes due to the subduction of the oceanic plates, the laterally averaged temperature anomaly of the deep mantle under the continent is within +10 °C. This implies that there is no substantial temperature difference between the subcontinental and suboceanic mantles during a supercontinent cycle. The temperature anomaly immediately beneath the supercontinent is generally positive owing to the thermal insulation effect and the active upwelling plumes from the core-mantle boundary. In the present simulation, the formation of a supercontinent causes the laterally averaged subcontinental temperature to increase by a maximum of 50 °C, which would produce sufficient tensional force to break up the supercontinent. The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves complex processes of introversion, extroversion or a combination of these in uniting dispersed continental fragments, as against the simple opening and closing of individual oceans envisaged in Wilson cycle. In the present study, I evaluate supercontinent processes in a realistic mantle convection regime. Results show that the assembly of supercontinents is accompanied by a

  4. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite

    Science.gov (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel

    2014-05-01

    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  5. On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics

    Science.gov (United States)

    Araceli Sanchez-Maes, Sophia

    2018-01-01

    Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.

  6. 3D Numerical modelling of topography development associated with curved subduction zones

    Science.gov (United States)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab

  7. The Geodynamics of Continental Lithosphere Entering a Subduction Zone

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.; Wu, F. T.

    2006-12-01

    As deformation patterns resulting from subduction of a passive continental margin are insufficiently understood, here we perform 2-D numerical simulations to explore the effects of continental lithosphere entering a subduction zone. The model setup consists of a subduction zone in which the oceanic part of a passive continental margin initially subducts beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel new feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study this feature is employed to study how crustal scale deformation around the subduction zone is influenced by surface processes and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography over time, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the strength of the lower crust; the amounts of erosion; imposed pushing versus density-driven (slab-pull and ridge- push) convergence; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. The results can be compared to evidence from areas such as Taiwan where continental subduction or convergence is thought to be happening. Preliminary results indicate that a low viscosity lower crust may contribute to crustal uplift.

  8. Plate tectonics and planetary habitability: current status and future challenges.

    Science.gov (United States)

    Korenaga, Jun

    2012-07-01

    Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.

  9. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta

  10. An inverted continental Moho and serpentinization of the forearc mantle.

    Science.gov (United States)

    Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M

    2002-05-30

    Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.

  11. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy

    Science.gov (United States)

    Blackman, D. K.; Boyce, D. E.; Castelnau, O.; Dawson, P. R.; Laske, G.

    2017-09-01

    Insight into upper-mantle processes can be gained by linking flow-induced mineral alignment to regional deformation and seismic anisotropy patterns. Through a series of linked micro-macro scale numerical experiments, we explore the rheologic effects of crystal preferred orientation (CPO) and evaluate the magnitude of possible impacts on the pattern of flow and associated seismic signals for mantle that includes a cooling, thickening young oceanic lithosphere. The CPO and associated anisotropic rheology, computed by a micromechanical polycrystal model, are coupled with a large scale flow model (Eulerian Finite Element method) via a local viscosity tensor field, which quantifies the stress:strain rate response of a textured polycrystal. CPO is computed along streamlines throughout the model space and the corresponding viscosity tensor field at each element defines the local properties for the next iteration of the flow field. Stable flow and CPO distributions were obtained after several iterations for the two dislocation glide cases tested: linear and nonlinear stress:strain rate polycrystal behaviour. The textured olivine polycrystals are found to have anisotropic viscosity tensors in a significant portion of the model space. This directional dependence in strength impacts the pattern of upper-mantle flow. For background asthenosphere viscosity of ∼1020 Pa s and a rigid lithosphere, the modification of the corner flow pattern is not drastic but the change could have geologic implications. Feedback in the development of CPO occurs, particularly in the region immediately below the base of the lithosphere. Stronger fabric is predicted below the flanks of a spreading centre for fully coupled, power-law polycrystals than was determined using prior linear, intermediate coupling polycrystal models. The predicted SKS splitting is modestly different (∼0.5 s) between the intermediate and fully coupled cases for oceanic plates less than 20 Myr old. The magnitude of

  12. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    Science.gov (United States)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  13. Fluid Release and the Deformation of Subducting Crust

    Science.gov (United States)

    Maunder, Benjamin; van Hunen, Jeroen; Magni, Valentina; Bouilhol, Pierre

    2014-05-01

    It is known that slab dehydration is crucial in subduction dynamics and for the formation of arc-magmatism. Previous studies of this process have constrained this intake and subsequent release of fluids into the mantle wedge by considering the stability hydrous phases within the slab. Other, more dynamical effects of this hydration state and partial melting have also been suggested, such as the possibility of "cold plumes", crustal delamination, and subduction channel return flow. These processes have been inferred to play a role in the generation of continental crust over time through accumulation and melting beneath the overriding plate. Water content and melt fraction have a strong control on the rheology of the system. Therefore we investigate the effect of these parameters on the dynamics of a subducting slab, with the aim to establish the physical bounds on the delamination process. To do this we use a coupled geodynamical-petrological model that tracks dehydration and melting reactions in order to factor in the rheological effect of metamorphism and magmatism on slab and mantle wedge dynamics. We focus primarily on the strength of the subducting crust and the possibility of delamination. We then extend this investigation by considering whether early earth crust formation could have been the result of such a processes by looking at a hypothetical Archean setting.

  14. Deep electrical resistivity structure of Costa Rican Subduction Zone

    Science.gov (United States)

    Worzewski, T.; Jegen, M.; Brasse, H.; Taylor, W.

    2009-04-01

    The water content and its distribution play an important role in the subduction process. Water is released from the subducting slab in a series of metamorphic reactions and the hydration of the mantle wedge may trigger the onset of melting, weakening and changes in the dynamics and thermal structure of subduction zones. However, the amount of water carried into the subduction zone and its distribution are not well constrained by existing data and are subject of vigorous current research in SFB574 (Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters). We will show numerical modeling studies which are used to determine the resolution and sensitivity of the MT response to fluids in the crust and subducting slab under the special condition of a coastal setting. In 2007-2008 we conducted a long-period magnetotelluric investigations in northwestern Costa Rica on- and offshore, where the Cocos Plate subducts beneath the Carribean plate. Eleven marine magnetotelluric Stations newly developed and constructed by IFM-GEOMAR and University of Kiel were deployed on the 200 km long marine extension of the profile for several months. We will present the data and its processing, as well as our attempts to eliminate motion induced noise observed on some stations on the cliffy shelf due to tidal waves hitting the shelf and trench parallel- and perpendicular currents. The marine profile was extended landwards by the Free University of Berlin over length of 160 kilometers with further 18 stations. We present preliminary modeling results of land data, which revealed interesting features, inter alia a possible image of fluid release from the downgoing slab in the forearc, as well as ongoing modeling of the combined on- and offshore data sets.

  15. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    Science.gov (United States)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  16. Quantifying the net slab pull force as a driving mechanism for plate tectonics

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    It has remained unclear how much of the negative buoyancy force of the slab (FB) is used to pull the trailing plate at the surface into the mantle. Here I present three-dimensional laboratory experiments to quantify the net slab pull force (FNSP) with respect to FB during subduction. Results show

  17. Electrical conductivity imaging in the western Pacific subduction zone

    Science.gov (United States)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005

  18. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust

    DEFF Research Database (Denmark)

    Holm, Paul Martin; Søager, Nina; Dyhr, Charlotte Thorup

    2014-01-01

    mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb–Sr–Nd isotopes indicate a major......, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source...

  19. Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones.

    Science.gov (United States)

    Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.

    2015-12-01

    One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise

  20. Superweak asthenosphere in light of upper mantle seismic anisotropy

    Science.gov (United States)

    Becker, Thorsten W.

    2017-05-01

    Earth's upper mantle includes a ˜200 km thick asthenosphere underneath the plates where viscosity and seismic velocities are reduced compared to the background. This zone of weakness matters for plate dynamics and may be required for the generation of plate tectonics itself. However, recent seismological and electromagnetic studies indicate strong heterogeneity in thinner layers underneath the plates which, if related to more extreme, global viscosity reductions, may require a revision of our understanding of mantle convection. Here, I use dynamically consistent mantle flow modeling and the constraints provided by azimuthal seismic anisotropy as well as plate motions to explore the effect of a range of global and local viscosity reductions. The fit between mantle flow model predictions and observations of seismic anisotropy is highly sensitive to radial and lateral viscosity variations. I show that moderate suboceanic viscosity reductions, to ˜0.01-0.1 times the upper mantle viscosity, are preferred by the fit to anisotropy and global plate motions, depending on layer thickness. Lower viscosities degrade the fit to azimuthal anisotropy. Localized patches of viscosity reduction, or layers of subducted asthenosphere, however, have only limited additional effects on anisotropy or plate velocities. This indicates that it is unlikely that regional observations of subplate anomalies are both continuous and indicative of dramatic viscosity reduction. Locally, such weak patches may exist and would be detectable by regional anisotropy analysis, for example. However, large-scale plate dynamics are most likely governed by broad continent-ocean asthenospheric viscosity contrasts rather than a thin, possibly high melt fraction layer.

  1. On the initiation of subduction

    Science.gov (United States)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  2. Deformation Patterns and Subduction Behavior of Continental Lithosphere Entering a Trench

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.

    2007-05-01

    We perform 2-D numerical simulations of continental lithosphere entering a subduction zone, to better understand deformation patterns resulting from subduction of a continental margin. The model consists of a subduction zone in which an attached slab drives subduction of a passive continental margin beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study we employ this feature to study how lithospheric-scale deformation around and within the subduction zone is influenced by surface processes such as erosion, and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography and trench location, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the lithospheric age and temperature structure; the strength of the lower crust; the presence of a weak zone at the plate interface; the amounts of erosion; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. We find that the strength of the overriding plate influences surface uplift and the shape of subsurface deformation, and that the density and thermal structure of the subducting plate affects trench motion. Denser slab roll back, and younger, lighter slabs advance, while neither slab rheology nor the presence of erosion greatly affect trench location. For all cases

  3. Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

    Science.gov (United States)

    Rubey, Michael; Brune, Sascha; Heine, Christian; Rhodri Davies, D.; Williams, Simon E.; Dietmar Müller, R.

    2017-09-01

    We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.

  4. Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs

    Directory of Open Access Journals (Sweden)

    M. Rubey

    2017-09-01

    Full Text Available We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific. Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii regions far away from convergent margins feature long-term positive dynamic topography; and (iii rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.

  5. Petrofabrics of high-pressure rocks exhumed at the slab-mantle interface from the "point of no return" in a subduction zone (Sivrihisar, Turkey)

    Science.gov (United States)

    Whitney, Donna L.; Teyssier, Christian; Seaton, Nicholas C. A.; Fornash, Katherine F.

    2014-12-01

    The highest pressure recorded by metamorphic rocks exhumed from oceanic subduction zones is 2.5 GPa, corresponding to the maximum decoupling depth (MDD) (80 ± 10 km) identified in active subduction zones; beyond the MDD (the "point of no return") exhumation is unlikely. The Sivrihisar massif (Turkey) is a coherent terrane of lawsonite eclogite and blueschist facies rocks in which assemblages and fabrics record P-T-fluid-deformation conditions during exhumation from 80 to 45 km. Crystallographic fabrics and other features of high-pressure metasedimentary and metabasaltic rocks record transitions during exhumation. In quartzite, microstructures and crystallographic fabrics record deformation in the dislocation creep regime, including dynamic recrystallization during decompression, and a transition from prism slip to activation of rhomb and basal slip that may be related to a decrease in water fugacity during decompression ( 2.5 to 1.5 GPa). Phengite, lawsonite, and omphacite or glaucophane in quartzite and metabasalt remained stable during deformation, and omphacite developed an L-type crystallographic fabric. In marble, aragonite developed columnar textures with strong crystallographic fabrics that persisted during partial to complete dynamic recrystallization that was likely achieved in the stability field of aragonite (P > 1.2 GPa). Results of kinematic vorticity analysis based on lawsonite shape fabrics are consistent with shear criteria in quartzite and metabasalt and indicate a large component of coaxial deformation in the exhuming channel beneath a simple shear dominated interface. This large coaxial component may have multiplied the exhuming power of the subduction channel and forced deeply subducted rocks to flow back from the point of no return.

  6. Modeling 3-D flow in the mantle wedge with complex slab geometries: Comparisons with seismic anisotropy

    Science.gov (United States)

    Kincaid, C. R.; MacDougall, J. G.; Druken, K. A.; Fischer, K. M.

    2010-12-01

    Understanding patterns in plate scale mantle flow in subduction zones is key to models of thermal structure, dehydration reactions, volatile distributions and magma generation and transport in convergent margins. Different patterns of flow in the mantle wedge can generate distinct signatures in seismological observables. Observed shear wave fast polarization directions in several subduction zones are inconsistent with predictions of simple 2-D wedge corner flow. Geochemical signatures in a number of subduction zones also indicate 3-D flow and entrainment patterns in the wedge. We report on a series of laboratory experiments on subduction driven flow to characterize spatial and temporal variability in 3-D patterns in flow and shear-induced finite strain. Cases focus on how rollback subduction, along-strike dip changes in subducting plates and evolving gaps or tears in subduction zones control temporal-spatial patterns in 3-D wedge flow. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000 km of the mantle. Subducting lithosphere is modeled with two rubber-reinforced continuous belts. Belts pass around trench and upper/lower mantle rollers. The deeper rollers can move laterally to allow for time varying dip angle. Each belt has independent speed control and dip adjustment, allowing for along-strike changes in convergence rate and the evolution of slab gaps. Rollback is modeled using a translation system to produce either uniform and asymmetric lateral trench motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of anisotropy through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3-D velocity fields for directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening) and morphologies (gaps) in convergent margins produce flows with

  7. Chemical interactions in the subduction factory: New insights from an in situ trace element and hydrogen study of the Ichinomegata and Oki-Dogo mantle xenoliths (Japan)

    Science.gov (United States)

    Satsukawa, Takako; Godard, Marguerite; Demouchy, Sylvie; Michibayashi, Katsuyoshi; Ildefonse, Benoit

    2017-07-01

    The uppermost mantle in back arc regions is the site of complex interactions between partial melting, melt percolation, and fluid migration. To constrain these interactions and evaluate their consequences on geochemical cycles, we carried out an in situ trace element and water study of a suite of spinel peridotite xenoliths from two regions of the Japan back arc system, Ichinomegata (NE Japan) and Oki-Dogo (SW Japan), using LA-ICPMS and FTIR spectrometry, respectively. This study provides the first full dataset of trace element and hydrogen compositions in peridotites including analyses of all their main constitutive silicate minerals: olivine, orthopyroxene and clinopyroxene. The Ichinomegata peridotites sample a LREE-depleted refractory mantle (Mg# olivine = 0.90; Cr# spinel = 0.07-0.23; Yb clinopyroxene = 7.8-13.3 × C1-chondrite, and La/Yb clinopyroxene = 0.003-0.086 × C1-chondrite), characterized by Th-U positive anomalies and constant values of Nb/Ta. The composition of the studied Ichinomegata samples is consistent with that of an oceanic mantle lithosphere affected by cryptic metasomatic interactions with hydrous/aqueous fluids (crypto-hydrous metasomatism). In contrast, the Oki-Dogo peridotites have low Mg# olivine (0.86-0.93) and a broad range of compositions with clinopyroxene showing ;spoon-shaped; to flat, and LREE-enriched patterns. They are also characterized by their homogeneous compositions in the most incompatible LILE (e.g., Rb clinopyroxene = 0.01-0.05 × primitive mantle) and HFSE (e.g., Nb clinopyroxene = 0.01-2.16 × primitive mantle). This characteristic is interpreted as resulting from various degrees of melting and extensive melt-rock interactions. FTIR spectroscopy shows that olivine in both Ichinomegata and Oki-Dogo samples has low water contents ranging from 2 to 7 ppm wt. H2O. In contrast, the water contents of pyroxenes from Ichinomegata peridotites (113-271 ppm wt. H2O for orthopyroxene, and 292-347 ppm wt. H2O for clinopyroxene

  8. Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis

    Science.gov (United States)

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Pan; Wang, Liangshu; Xu, Mingjie; Mi, Ning; Li, Hua; Yu, Dayong; Yuan, Xiaohui

    2018-01-01

    The subduction of the Indian Plate beneath SE Tibet and its related volcanism in Tengchong are important geologic processes that accompany the evolution of the Tibetan Plateau. However, it is still not clear whether the subduction and volcanism are confined to the upper mantle or if they extend deep into the mantle transition zone (MTZ). Here, we imaged MTZ structures by using receiver function methods with the waveforms recorded by more than 300 temporary stations in SE Tibet. The results show significant depressions of both the 410-km and 660-km discontinuities and a thickened MTZ (260-280 km) beneath SE Tibet. The depression of the 660-km discontinuity (by 10-30 km) and the thickened MTZ correlate well with high P-wave velocity anomalies in the MTZ, indicating the presence of a subducted Indian slab within the MTZ. Significant depression of the 410-km discontinuity (by 10-20 km) beneath the Tengchong volcano indicates that the volcano originates from the MTZ and is closely related to the subducted Indian slab. Our results confirm the deep subduction of the Indian plate and the deep origin of the Tengchong volcano. However, it remains unknown whether a slab gap exists and contributes to the Tengchong volcano.

  9. Primary magmas and mantle temperatures through time

    Science.gov (United States)

    Ganne, Jérôme; Feng, Xiaojun

    2017-03-01

    Chemical composition of mafic magmas is a critical indicator of physicochemical conditions, such as pressure, temperature, and fluid availability, accompanying melt production in the mantle and its evolution in the continental or oceanic lithosphere. Recovering this information has fundamental implications in constraining the thermal state of the mantle and the physics of mantle convection throughout the Earth's history. Here a statistical approach is applied to a geochemical database of about 22,000 samples from the mafic magma record. Potential temperatures (Tps) of the mantle derived from this database, assuming melting by adiabatic decompression and a Ti-dependent (Fe2O3/TiO2 = 0.5) or constant redox condition (Fe2+/∑Fe = 0.9 or 0.8) in the magmatic source, are thought to be representative of different thermal "horizons" (or thermal heterogeneities) in the ambient mantle, ranging in depth from a shallow sublithospheric mantle (Tp minima) to a lower thermal boundary layer (Tp maxima). The difference of temperature (ΔTp) observed between Tp maxima and minima did not change significantly with time (˜170°C). Conversely, a progressive but limited cooling of ˜150°C is proposed since ˜2.5 Gyr for the Earth's ambient mantle, which falls in the lower limit proposed by Herzberg et al. [2010] (˜150-250°C hotter than today). Cooling of the ambient mantle after 2.5 Ga is preceded by a high-temperature plateau evolution and a transition from dominant plumes to a plate tectonics geodynamic regime, suggesting that subductions stabilized temperatures in the Archaean mantle that was in warming mode at that time.Plain Language SummaryThe Earth's upper mantle constitutes a major interface between inner and outer envelops of the planet. We explore at high resolution its thermal state evolution (potential temperature of the ambient mantle, Tp) in depth and time using a multi-dimensional database of mafic lavas chemistry (>22,000 samples formed in the last 4 billion years

  10. Velocity structure of the mantle transition zone beneath the southeastern margin of the Tibetan Plateau

    Science.gov (United States)

    Li, Guohui; Bai, Ling; Zhou, Yuanze; Wang, Xiaoran; Cui, Qinghui

    2017-11-01

    P-wave triplications related to the 410 km discontinuity (the 410) were clearly observed from the vertical component seismograms of three intermediate-depth earthquakes that occurred in the Indo-Burma Subduction Zone (IBSZ) and were recorded by the Chinese Digital Seismic Network (CDSN). By matching the observed P-wave triplications with synthetics through a grid search, we obtained the best-fit models for four azimuthal profiles (I-IV from north to south) to constrain the P-wave velocity structure near the 410 beneath the southeastern margin of the Tibetan Plateau (TP). A ubiquitous low-velocity layer (LVL) resides atop the mantle transition zone (MTZ). The LVL is 25 to 40 km thick, with a P-wave velocity decrement ranging from approximately - 5.3% to - 3.6% related to the standard Earth model IASP91. An abrupt transition in the velocity decrement of the LVL was observed between profiles II and III. We postulate that the mantle structure beneath the southeastern margin of the TP is primarily controlled by the southeastern extrusion of the TP to the north combined with the eastward subduction of the Indian plate to the south, but not affected by the Emeishan mantle plume. We attribute the LVL to the partial melting induced by water and/or other volatiles released from the subducted Indian plate and the stagnant Pacific plate, but not from the upwelling or the remnants of the Emeishan mantle plume. A high-velocity anomaly ranging from approximately 1.0% to 1.5% was also detected at a depth of 542 to 600 km, providing additional evidence for the remnants of the subducted Pacific plate within the MTZ.

  11. Tomography images of the Alpine roots and surrounding upper mantle

    Science.gov (United States)

    Plomerova, Jaroslava; Babuska, Vladislav

    2017-04-01

    Teleseismic body-wave tomography represents powerful tool to study regional velocity structure of the upper mantle and to image velocity anomalies, such as subducted lithosphere plates in collisional zones. In this contribution, we recapitulate 3D models of the upper mantle beneath the Alps, which developed at a collision zone of the Eurasian and African plates. Seismic tomography studies indicate a leading role of the rigid mantle lithosphere that functioned as a major stress guide during the plate collisions. Interactions of the European lithosphere with several micro-plates in the south resulted in an arcuate shape of this mountain range on the surface and in a complicated geometry of the Alpine subductions in the mantle. Early models with one bended lithosphere root have been replaced with more advanced models showing two separate lithosphere roots beneath the Western and Eastern Alps (Babuska et al., Tectonophysics 1990; Lippitsch et al., JGR 2003). The standard isotropic velocity tomography, based on pre-AlpArray data (the currently performed passive seismic experiment in the Alps and surroundings) images the south-eastward dipping curved slab of the Eurasian lithosphere in the Western Alps. On the contrary, beneath the Eastern Alps the results indicate a very steep northward dipping root that resulted from the collision of the European plate with the Adriatic microplate. Dando et al. (2011) interpret high-velocity heterogeneities at the bottom of their regional tomographic model as a graveyard of old subducted lithospheres. High density of stations, large amount of rays and dense ray-coverage of the volume studied are not the only essential pre-requisites for reliable tomography results. A compromise between the amount of pre-processed data and the high-quality of the tomography input (travel-time residuals) is of the high importance as well. For the first time, the existence of two separate roots beneath the Alps has been revealed from carefully pre

  12. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  13. Evidence for two upper mantle sources driving volcanism in Central Kamchatka

    Science.gov (United States)

    Nikulin, Alex; Levin, Vadim; Carr, Michael; Herzberg, Claude; West, Michael

    2012-03-01

    Volcanoes of the Central Kamchatka Depression (CKD) form the most active arc volcano system in the world. Volcanoes of the CKD are positioned ~ 170 km above the subducting Pacific Plate, in excess of the typical global value of ~ 100 km for arc volcanism. We present results of a combined geophysical and petrological study of the main volcanic center in the CKD, and argue for the presence of a second contributing melt source within the mantle wedge. This region of melt generation is separate from the fluid fluxed region above the subducting Pacific Plate; it may explain the presence of the active CKD arc in its current location. Results of receiver function imaging of the upper mantle beneath CKD reveal a distinct area of low velocities at approximately 110 km depth that is clearly distinct from the crust of the subducting Pacific Plate. Results of petrological modeling suggest presence of pyroxenite source melt contribution to CKD lavas, alongside previously described peridotite source melts. We contend that our results advance the notion that melting at two separate sources, rather than the simple flux-induced melting within the mantle wedge, drives volcanoes of the CKD.

  14. Asthenospheric outflow from the shrinking Philippine Sea Plate: Evidence from Hf-Nd isotopes of southern Mariana lavas

    Science.gov (United States)

    Ribeiro, Julia M.; Stern, Robert J.; Martinez, Fernando; Woodhead, Jon; Chen, Min; Ohara, Yasuhiko

    2017-11-01

    At subduction zones, sinking of the downgoing lithosphere is thought to enable a return flow of asthenospheric mantle around the slab edges, so that the asthenosphere from underneath the slab invades the ambient mantle flowing underneath the volcanic arc and the backarc basin. For instance at the northern end of the Lau Basin, trench retreat and slab rollback enable toroidal return flow of Samoan mantle beneath a transform margin to provide a supply of fresh, undepleted Indian mantle that feeds the backarc spreading center. Questions, however, arise about the sense of mantle flow when plate kinematics predict that the trench is advancing, as seen in the Mariana convergent margin. Does the mantle flow in or does it escape outward through slab tears or gaps? Here, we address the origin and sense of asthenospheric mantle flow supplying the southern Mariana convergent margin, a region of strong extension occurring above the subducting Pacific plate. Does the asthenosphere flow northward, from underneath the Pacific plate and Caroline hotspot through a slab tear or gap, or does it flow outward from the Mariana Trough, which possesses a characteristic Indian Ocean isotopic signature? To address these questions, we integrate geodetic data along with new Hf-Nd isotopic data for fresh basaltic lavas from three tectonic provinces in the southernmost Marianas: the Fina Nagu volcanic complex, the Malaguana-Gadao backarc spreading ridge and the SE Mariana forearc rift. Our results indicate that Indian mantle flows outward and likely escapes through slab tears or gaps to accommodate shrinking of the Philippine Sea plate. We thus predict that asthenospheric flow around the Pacific slab at the southern Mariana Trench is opposite to that predicted by most subduction-driven mantle flow models.

  15. Receiver function imaging of upper mantle complexity beneath the Pacific Northwest, United States

    Science.gov (United States)

    Eagar, Kevin C.; Fouch, Matthew J.; James, David E.

    2010-08-01

    Small-scale topographic variations on the upper mantle seismic discontinuities provide important constraints on the thermal influences of upwellings and downwellings in geodynamically complex regions. Subduction of the Juan de Fuca plate and other tectonic processes dominating the Pacific Northwest, United States in the Cenozoic involve massive thermal flux that likely result in an upper mantle that has strong 3-D temperature variations. We address the interaction of such processes in the region using receiver functions to image the upper mantle seismic discontinuities at 410 and 660 km. We utilized over 15 000 high quality receiver functions gathered from 294 teleseismic earthquakes recorded at 277 regional broadband seismic stations, primarily those of the Earthscope/USArray Transportable Array. We find the average depths of the discontinuities to be 412 km and 658 km, respectively, with no obvious 520 km discontinuity detected. The peak-to-peak range is greater on the '410' than the '660', suggesting the possibility of more significant regional dynamic processes at upper mantle depths. Our results are not consistent with a mantle plume below central Oregon in the High Lava Plains region. Our observation of a thinner transition zone beneath the western Snake River Plain region, however, is consistent with a regional increase in mantle temperatures, perhaps due to either asthenospheric flow from beneath and around the southern edge of the Juan de Fuca plate, or to vertical flow in the form of regional mantle upwelling related to the Snake River Plain / Yellowstone hotspot track. Further, our results are not consistent with a simple subducting Juan de Fuca slab morphology, but rather suggest similar levels of significant complexity in slab structure found by recent regional tomographic studies. We find evidence for a thickened and therefore cooler mantle transition zone beneath the Wallowa / Idaho Batholith region, consistent with tomographic models which suggest

  16. Crust and subduction zone structure of Southwestern Mexico

    Science.gov (United States)

    Suhardja, Sandy Kurniawan; Grand, Stephen P.; Wilson, David; Guzman-Speziale, Marco; Gomez-Gonzalez, Juan Martin; Dominguez-Reyes, Tonatiuh; Ni, James

    2015-02-01

    Southwestern Mexico is a region of complex active tectonics with subduction of the young Rivera and Cocos plates to the south and widespread magmatism and rifting in the continental interior. Here we use receiver function analysis on data recorded by a 50 station temporary deployment of seismometers known as the MARS (MApping the Rivera Subduction zone) array to investigate crustal structure as well as the nature of the subduction interface near the coast. The array was deployed in the Mexican states of Jalisco, Colima, and Michoacan. Crustal thickness varies from 20 km near the coast to 42 km in the continental interior. The Rivera plate has steeper dip than the Cocos plate and is also deeper along the coast than previous estimates have shown. Inland, there is not a correlation between the thickness of the crust and topography indicating that the high topography in northern Jalisco and Michoacan is likely supported by buoyant mantle. High crustal Vp/Vs ratios (greater than 1.82) are found beneath the trenchward edge of magmatism including below the Central Jalisco Volcanic Lineament and the Michoacan-Guanajuato Volcanic Field implying a new arc is forming closer to the trench than the Trans Mexican Volcanic Belt. Elsewhere in the region, crustal Vp/Vs ratios are normal. The subducting Rivera and Cocos plates are marked by a dipping shear wave low-velocity layer. We estimate the thickness of the low-velocity layer to be 3 to 4 km with an unusually high Vp/Vs ratio of 2.0 to 2.1 and a drop in S velocity of 25%. We postulate that the low-velocity zone is the upper oceanic crust with high pore pressures. The low-velocity zone ends from 45 to 50 km depth and likely marks the basalt to eclogite transition.

  17. Investigating the effect of plate-mantle interaction in basin creation and associated drainage systems: insights from the North West Shelf of Australia

    Science.gov (United States)

    Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.

    2016-12-01

    The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.

  18. Insights into a fossil plate interface of an erosional subduction zone: a tectono-metamorphic study of the Tianshan metamorphic belt.

    Science.gov (United States)

    Bayet, Lea; Moritz, Lowen; Li, Jilei; Zhou, Tan; Agard, Philippe; John, Timm; Gao, Jun

    2016-04-01

    Subduction zone seismicity and volcanism are triggered by processes occurring at the slab-wedge interface as a consequence of metamorphic reactions, mass-transfer and deformation. Although the shallow parts of subduction zones (60km). In order to better understand the plate interface dynamics at these greater depths, one has to rely on the rock record from fossil subduction zones. The Chinese Tianshan metamorphic belt (TMB) represents an ideal candidate for such studies, because structures are well exposed with exceptionally fresh high-pressure rocks. Since previous studies from this area focused on fluid-related processes and its metamorphic evolution was assessed on single outcrops, the geodynamic setting of this metamorphic belt is unfortunately heavily debated. Here, we present a new geodynamic concept for the TMB based on detailed structural and petrological investigations on a more regional scale. A ~11km x 13km area was extensively covered, together with E-W and N-S transects, in order to produce a detailed map of the TMB. Overall, the belt is composed of two greenschist-facies units that constitute the northern and southern border of a large high-pressure (HP) to ultra high-pressure (UHP) unit in the center. This HP-UHP unit is mainly composed of metasediments and volcanoclastic rocks, with blueschist, eclogite and carbonate lenses. Only the southern part of the HP-UHP unit is composed of the uppermost part of an oceanic crust (e.g., pillow basalts and deep-sea carbonates). From south to north, the relative abundance and size of blueschist massive boudins and layers (as well as eclogite boudins) decreases and the sequence is increasingly interlayered with metasedimentary and carbonate-rich horizons. This indicates that the subducted material was dominated by trench filling made of sediments and volcanoclastic rocks, with only subordinate pieces of oceanic crust/lithosphere. The whole sequence is cut by km-scale major shear planes orientated WNW-ESE showing

  19. Analysis of the Seismicity Associated to the Subduction of the Rivera Plate using OBS and Onland Stations.

    Science.gov (United States)

    Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Danobeitia, J.; Bandy, W. L.; Zamora-Camacho, A.; Marquez-Ramirez, V. H.; Ambros, M.; Gomez, A.; Sandoval, J. M.; Mortera-Gutierrez, C. A.

    2016-12-01

    The second stage of TsuJal Project includes the study of passive seismic activity in the region of the plate Rivera and Jalisco block by anchoring OBS and densifying the network of seismic stations on land for at least four months. This stage began in April 2016 with the deployment of 25 Obsidian stations with sensor Le-3D MkIII from the northern part of Nayarit state to the south of Colima state, including the Marias Islands. This temporal seismic network complements the Jalisco Seismic Network (RESAJ) for a total of 50 stations. Offshore, ten OBS type LCHEAPO 2000 with 4 channel (3 seismic short period and 1 pressure) were deployed, in the period from 19 to 30 April 2016 using the BO El Puma from UNAM. The OBS were deployed in an array from the Marias Islands to offcoast of the border of Colima and Michoacan states. On May 4, an earthquake with Ml = 4.2 took place in the contact area of the Rivera Plate, Cocos Plate and the Middle America Trench, subsequently occurred a seismic swarm with over 200 earthquakes until May 16, including an earthquake with Ml = 5.0 on May 7. A second swarm took place between May 28 and Jun 4 including an earthquake with Ml = 4.8 on Jun 1. An analysis of the quality of different location methods is presented: automatic preliminary RESAJ location using Antelope; location with revised RESAJ phases in Antelope; relocation of RESAJ data with hypo and a regional velocity model; relocation of RESAJ data with hypo adding data from the temporal seismic network stations; and finally the relocation adding the data from the OBS network. Moreover, the tectonic implications of these earthquakes are discussed.

  20. Implications for metal and volatile cycles from the pH of subduction zone fluids.

    Science.gov (United States)

    Galvez, Matthieu E; Connolly, James A D; Manning, Craig E

    2016-11-17

    The chemistry of aqueous fluids controls the transport and exchange-the cycles-of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth's interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth's atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years(7).

  1. The Terminal Stage of Subduction: the Hindu Kush Slab Break-off

    Science.gov (United States)

    Kufner, S. K.; Schurr, B.; Sippl, C.; Yuan, X.; Ratschbacher, L.; Akbar, A. S. M.; Ischuk, A.; Murodkulov, S.; Schneider, F.; Mechie, J.; Tilmann, F. J.

    2016-12-01

    The terminal stage of subduction arrives when the ocean basin is closed and the continental margin arrives at the trench. The opposite forces of the sinking slab and buoyant continent ultimately leads to break-off of the subducted slab. This process, although common in geological history, is rarely observed, because it is short-lived. Here we report new precise earthquake hypocenters, detailed tomographic images and earthquake source mechanisms from the Hindu Kush region in Central Asia, which hint at continental subduction and plate necking. Our images provide a rare glimpse at the ephemeral process of slab break-off: the Hindu Kush slablet in its uppermost section is thinned or already severed and that intermediate depth earthquakes cluster at the neck connecting it to the deeper slab. From a strain rate analysis, we deduce that the deep portion of the slab is in the process of detaching from the shallower fragment at much higher rates than the current convergence rate at the surface. The increased strain rate might arise as the buoyant continental crust, which is dragged into the subduction system in its terminal stage, resists subduction, whereas the earlier subducted mantle lithosphere pulls from underneath.

  2. Convective instability of stagnant slabs at the base of the Mantle Transition Zone

    Science.gov (United States)

    Motoki, M.; Ballmer, M. D.

    2013-12-01

    Seismic tomography reveals that subducting slabs descend to a depth of about 660 km to stagnate at the base of the mantle transition zone for long timescales. Most of the slab is composed of harzburgite covered by veneers of eclogite and hydrated mantle, a make-up that is positively buoyant overall. Initially, this positive compositional buoyancy is overwhelmed by the negative thermal buoyancy of the cool slab. However, the plate continues to be heated from above and below while it stagnates. Consequently, its thermal buoyancy is expected to slowly increase, turning an initially stable into an unstable thermochemical density stratification, and triggering convective instability. Plumes rising out of stagnating slabs may enhance the transition zone and asthenosphere with compositional heterogeneity, including water, as well as support decompression melting. To study these important processes, we systematically explore the parameters controlling convective instability of stagnating slabs in two-dimensional thermochemical geodynamic models. Preliminary results show that instability occurs at about 50-75 Myr after subduction, a timescale that increases with the age and speed of the subducting plate, as well as Rayleigh number. This timescale is further found to be sensitive to preexisting heterogeneity within the slab, as well as the occurrence of small-scale convection at the base of the overriding plate. The plumes rising out of the slab can deliver only a small fraction of the slab's eclogite to the transition zone, but a larger fraction of the slab's harzburgite and hydrated mantle to the base of the lithosphere, where hydrated lithologies undergo decompression melting in a subset of our models. Most of the slab's eclogite instead settles at the very base of the transition zone. These findings have important implications for the fate of subducted slabs, material transport across the transition zone, the compositional stratification of the mantle as a whole, as well

  3. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia)

    Science.gov (United States)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel

    2017-12-01

    , the multiply documented occurrence of highly depleted boninites during subduction initiation suggests a causal relationship of subduction initiation and highly depleted mantle. Possibly, a discontinuity between dense fertile and buoyant depleted mantle contributes to the sinking of the future dense subducting plate, while the buoyant depleted mantle of the future overriding plate forms the infant mantle wedge.

  4. Mantle plume influence on the Neogene uplift and extension of the US western Cordillera?

    Science.gov (United States)

    Parsons, T.; Thompson, G.A.; Sleep, Norman H.

    1994-01-01

    Despite its highly extended and thinned crust, much of the western Cordillera in the United States is elevated more than 1km above sea level. Therefore, this region cannot be thought of as thick crust floating isostatically in a uniform mantle; rather, the lithospheric mantle and/or the upper asthenosphere must vary in thickness or density across the region. Utilizing crustal thickness and density constraints, the residual mass defcicit that must occur in the mantle lithosphere and asthenosphere beneath the western Cordillera was modelled. A major hot spot broke out during a complex series of Cenozoic tectonic events that included lithospheric thickening, back-arc extension, and transition from subduction to a transform plate boundary. It is suggested that many of the characteristics that make the western Cordillera unique among extensional provinces can be attributed to the mantle plume that created the Yellowstone hot spot. -Authors

  5. Importance of the Small-Scale Processes Melting, Plate Boundary Formation and Mineralogy on the Large-Scale, Long-Term Thermo-Chemical Evolution of Earth's Mantle-Plate System

    Science.gov (United States)

    Tackley, P.

    2015-12-01

    Seismic observations of the deep Earth reveal the presence of two large low shear velocity provinces (LLSVPs) that are typically inferred to be dense chemically-distinct material, as well as discontinuities that are typically linked to the post-perovskite (pPv) phase transition. Several possible origins of chemically-dense material have been proposed, including recycling of mid-ocean ridge basalt (MORB), primordial differentiation events, crystallisation of a basal magma ocean, or some combination of these creating a basal melange (BAM; Tackley 2012 Earth Sci. Rev.). Each of these possibilities would result in a different composition hence different mineralogy. In order to constrain this we have been running calculations of thermo-chemical mantle evolution over 4.5 billion years that include melting-induced differentiation, plate tectonics induced by strongly temperature-dependent viscosity and plastic yielding, core cooling and compressibility with reasonable assumptions about the pressure-dependence of other material properties. Some of our simulations start from a magma ocean state so initial layering is developed self-consistently. Already-published results (Nakagawa et al., 2009 GCubed, 2010 PEPI, 2012 GCubed) already indicate the importance of exact MORB composition on the amount of MORB segregating above the CMB, which in turn influences mantle thermal structure and the evolution of the core and geodynamo. In more recent results we have been additionally including primordial material. We find that melting-induced differentiation has several first-order effects on the dynamics, including (i) making plate tectonics easier (through stresses associated with lateral variations in crustal thickness) and (ii) reducing heat flux through the CMB (due to the build-up of dense material above the CMB); also (iii) tectonic mode (continuous plate tectonics, episodic lid or stagnant lid) also makes a first-order difference to mantle structure and dynamics. This emphasises

  6. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  7. The Start of Plate Tectonics in the Eoarchean: A Tribute to Gilbert N Hanson, Pioneer in Archean Geochemistry

    Science.gov (United States)

    Shirey, S. B.; Kamber, B. S.; Whitehouse, M. J.; Mueller, P. A.; Basu, A. R.

    2007-05-01

    The use of isotopic and trace element geochemistry and igneous petrology to understand the petrogenesis of Archean rocks was pioneered by Gilbert Hanson and Joseph Arth at SUNY Stony Brook in the 1970's. Extension of these approaches allows the onset of plate tectonics on Earth shortly after the end of the Hadean to be specified. Nb/Th and Th/U ratios of mafic-ultramafic rocks from the depleted upper mantle begin to change from 7 to 18.2 and 4.7 to 2.9 (respectively) at 3.6 Ga. This signals the appearance of subduction-altered slabs in general mantle circulation from subduction initiated at 3.8 Ga. Juvenile crustal rocks begin to show derivation from progressively depleted mantle with typical igneous ɛNd:ɛHf = 1:2 after 3.6 Ga. Cratons with stable mantle keels that have subduction imprints begin to appear at 3.5 Ga. These changes all suggest that extraction of continental crust by plate tectonic processes was progressively depleting the mantle from 3.6 Ga onwards. Neoarchean subduction appears largely analogous to present subduction except in being able to produce large cratons with thick mantle keels. The earliest Eoarchean juvenile rocks and Hadean zircons have compositions that reflect the integrated effects of separation of an early enriched reservoir and fractionation of perovskite from the Mars-size impact-derived magma ocean, rather than separation of voluminous continental crust or oceanic plate tectonics. Hadean zircons most likely were derived from a continent-absent, mafic to ultramafic protocrust that was multiply remelted between 4.4 and 4.0 Ga under wet conditions to produce evolved felsic rocks. If the protocrust was produced by global mantle overturn at ca 4.4 Ga, then the transition to plate tectonics resulted from radioactive decay-driven mantle heating. Otherwise, such protocrust would have been the typical product of mantle convection and the transition to plate tectonics resulted from cooling to the extent that large lithospheric plates

  8. Average slip rate at the transition zone on the plate interface in the Nankai subduction zone, Japan, estimated from short-term SSE catalog

    Science.gov (United States)

    Itaba, S.; Kimura, T.

    2013-12-01

    Short-term slow slip events (S-SSEs) in the Nankai subduction zone, Japan, have been monitored by borehole strainmeters and borehole accelerometers (tiltmeters) mainly. The scale of the S-SSE in this region is small (Mw5-6), and therefore there were two problems in S-SSE identification and estimation of the fault model. (1) There were few observatories that can detect crustal deformation associated with S-SSEs. Therefore, reliability of the estimated fault model was low. (2) The signal associated with the S-SSE is relatively small. Therefore, it was difficult to detect the S-SSE only from strainmeter and tiltmeter. The former problem has become resolvable to some extent by integrating the data of borehole strainmeter, tiltmeter and groundwater (pore pressure) of the National Institute of Advanced Industrial Science and Technology, tiltmeter of the National Research Institute for Earthquake Science and Disaster Prevention and borehole strainmeter of the Japan Meteorological Agency. For the latter, by using horizontal redundant component of a multi-component strainmeter, which consists generally of four horizontal extensometers, it has become possible to extract tectonic deformation efficiently and detect a S-SSE using only strainmeter data. Using the integrated data and newly developed technique, we started to make a catalog of S-SSE in the Nankai subduction zone. For example, in central Mie Prefecture, we detect and estimate fault model of eight S-SSEs from January 2010 to September 2012. According to our estimates, the average slip rate of S-SSE is 2.7 cm/yr. Ishida et al. [2013] estimated the slip rate as 2.6-3.0 cm/yr from deep low-frequency tremors, and this value is consistent with our estimation. Furthermore, the slip deficit rate in this region evaluated by the analysis of GPS data from 2001 to 2004 is 1.0 - 2.6 cm/yr [Kobayashi et al., 2006], and the convergence rate of the Philippine Sea plate in this region is estimated as 5.0 - 7.0 cm/yr. The difference

  9. Subduction dynamics: Constraints from gravity field observations

    Science.gov (United States)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  10. A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

    Directory of Open Access Journals (Sweden)

    Mario E. Gimenez

    2009-01-01

    Full Text Available A gravimetric study was carried out in a region of the Central Andean Range between 28∘ and 32∘ south latitudes and from 72∘ and 66∘ west longitudes. The seismological and gravimetrical Moho models were compared in a sector which coincides with the seismological stations of the CHARGE project. The comparison reveals discrepancies between the gravity Moho depths and those obtained from seismological investigations (CHARGE project, the latter giving deeper values than those resulting from the gravimetric inversion. These discrepancies are attenuated when the positive gravimetric effect of the Nazca plate is considered. Nonetheless, a small residuum of about 5 km remains beneath the Cuyania terrane region, to the east of the main Andean chain. This residuum could be gravimetrically justified if the existence of a high density or eclogitized portion of the lower crust is considered. This result differed from the interpretations from Project “CHARGE” which revealed that the entire inferior crust extending from the Precordillera to the occidental “Sierras Pampeanas” could be “eclogitized”. In this same sector, we calculated the effective elastic thickness (Te of the crust. These results indicated an anomalous value of Te = 30 km below the Cuyania terrane. This is further conclusive evidence of the fact that the Cuyania terrane is allochthonous, for which also geological evidences exist.

  11. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  12. Integrating Seismic Tomography, 3d Spherical Flow Modeling and Plate Reconstructions

    Science.gov (United States)

    Karason, H.; van der Hilst, R.; Hager, B. H.; Replumaz, A.; Tapponnier, P.

    Due to source and receiver distribution and ray geometry, the sampling of Earth's inte- rior structure is very uneven, and consequently the length scale at which structure can be resolved is spatially variable. In our most recent P-wave tomographic model the mantle is imaged at varying length scales, i.e. the grid size of our block parameteriza- tion adapts to the density of data coverage. In particular, detailed images of complex trajectories of convective flow in the upper mantle, across the transition zone and, in some cases, down to mid-mantle depths are obtained beneath many of the seismically active subduction zones. We have also developed a new code to simulate buoyancy driven mantle flow in three dimensions, in spherical geometry and with high spatial (slabs, are tracked through time to build a flow model with depth de- pendent viscosity profiles of the mantle. At the surface, geometrically complex and/or time-varying boundary conditions are easily applied, facilitating integration with sub- duction history. Comparing the tomography to flow modeling inspired by subduction history and vice versa gives an opportunity to constrain both mantle structure and plate reconstruc- tions. We apply this approach to tectonics in SE-Asia, i.e. the subduction associated with the South and South-West motion of the Sunda-block, caused by the collision of India with mainland Asia. The flow modeling allows us to dynamically connect the plate reconstructions, which constrain surface position of the convergent margin at different times in the past, and the tomography, which constrains the morphology of the slabs at depth. This way we can estimate sinking rates, single out subduction scenarios, constrain the viscosity contrast between the upper and lower mantle and explain apparent discrepancies between the two observables. Furthermore, juxtapos- ing the tomography, realistic flow models and inversion tests using the flow models as inputs, illustrates the biases built into

  13. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline.

    Science.gov (United States)

    Capitanio, F A; Faccenna, C; Zlotnik, S; Stegman, D R

    2011-11-23

    The building of the Andes results from the subduction of the oceanic Nazca plate underneath the South American continent. However, how and why the Andes and their curvature, the Bolivian orocline, formed in the Cenozoic era (65.5 million years (Myr) ago to present), despite subduction continuing since the Mesozoic era (251.0-65.5 Myr ago), is still unknown. Three-dimensional numerical subduction models demonstrate that variations in slab thickness, arising from the Nazca plate's age at the trench, produce a cordilleran morphology consistent with that observed. The age-dependent sinking of the slab in the mantle drives traction towards the trench at the base of the upper plate, causing it to thicken. Thus, subducting older Nazca plate below the Central Andes can explain the locally thickened crust and higher elevations. Here we demonstrate that resultant thickening of the South American plate modifies both shear force gradients and migration rates along the trench to produce a concave margin that matches the Bolivian orocline. Additionally, the varying forcing along the margin allows stress belts to form in the upper-plate interior, explaining the widening of the Central Andes and the different tectonic styles found on their margins, the Eastern and Western Cordilleras. The rise of the Central Andes and orocline formation are directly related to the local increase of Nazca plate age and an age distribution along the margin similar to that found today; the onset of these conditions only occurred in the Eocene epoch. This may explain the enigmatic delay of the Andean orogeny, that is, the formation of the modern Andes.

  14. Platinum Concentrations and Tungsten Isotope Ratios of Earth's Mantle as Tracers for Late Veneer Mixing into the Early Mantle

    Science.gov (United States)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2014-12-01

    Platinum (Pt) and tungsten (W) are both depleted in Earth's mantle. Due to their siderophile nature, they were both strongly partitioned into the Earth's core during its formation. However, in particular the Pt concentration in the Earth's mantle is much higher than expected from experimental data on metal-silicate partitioning appropriate for the conditions of core formation. A plausible explanation for this high Pt concentration is the late veneer hypothesis, where volatile-rich chondritic type material was delivered to Earth's surface after core formation. This can in principle explain both the volatiles in the Earth's ocean-atmosphere as well as the high Pt concentrations in the Earth's mantle. There are tungsten isotopic heterogeneities (182W/183W variations) in the early Earth that have been explained as being due to late veneer addition, as this material would have lower 182W/183W than the post-core formation mantle. There is also the gradual increase of Pt abundance through history in mantle as measured in mantle-derived rocks of various old ages. Both observations are thought to be caused by gradual mixing of late veneer material into Earth's mantle through plate subduction and mantle convection through geologic time. This would increase the Pt concentration and decrease the 182W/183W ratio in the mantle with time, as observed. Here we model the late veneer material as a thin sheet which is subducted into the mantle, and get stretched and mixed with the mantle material gradually. The stretching is assumed to follow a simple exponential law of decrease of the characteristic size of heterogeneity regions. The melting events that produce the rock samples of various ages measured on the surface are modeled as random geometric sampling of a sampling box with a certain length-scale. We are testing various scenarios of this mathematical model to see if both the variations in W isotopic ratio and the Pt concentration in Earth's history can be made consistent with

  15. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum: The Subduction Factory

    Science.gov (United States)

    Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.

  16. Mantle flow, melting, and the thermochemical evolution of the mantle wedge due to back-arc spreading

    Science.gov (United States)

    Hall, P. S.

    2012-12-01

    The Lau Basin - Tonga Arc system provides a unique window on the evolution of the mantle in arc - back-arc spreading center (BASC) systems. In particular, the southward propagation of rifting in the Lau Basin allows north-south (i.e., along-strike) variations in the characteristics of both the arc and the BASC to be mapped to temporal variations associated with migration of the BASC away from the arc. Systematic along-strike variations in both geophysical (e.g., crustal thickness, axial depth, gravity) and petrological observations at BASCs in the Lau Basin have accordingly been taken to reflect changes in the composition of the mantle source beneath the BASC as spreading progresses [Martinez and Taylor, 2002]. Similarly, along-strike variations in geochemistry (e.g., Ti6.0, Si6.0) within the active Tonga Arc have been attributed to changes in the composition of the mantle source beneath the arc with time as mantle that is depleted by decompression melting at the BASC is advected beneath the arc by slab-induced corner flow [Cooper et al., 2010]. Here I present the results of a series of computational geodynamic experiments undertaken to test these hypotheses by characterizing the thermal and compositional evolution of the mantle wedge in an arc-back-arc spreading center system. Mantle flow in an arc-BASC system is modeled within a 2-D model domain (600 km x 600 km) oriented perpendicular the strike of the arc and BASC using the COMSOL Multiphysics finite element package. Flow is driven kinematically by prescribing a constant velocity along an internal boundary corresponding to the surface of the subducting plate, and a time-varying divergent velocity along the upper boundary of the model, corresponding to the migrating BASC. A temperature-dependent diffusion creep rheology is employed, and melting and the resulting depletion of the mantle source within the model domain are calculated and tracked over time using Lagrangian particles. Experiments consider a range of

  17. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block.

    Science.gov (United States)

    Zuo, Xuran; Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab.

  18. The Coupling of Back-arc Extension, Extrusion and Subduction Dynamics in the Eastern Mediterranean

    Science.gov (United States)

    Capitanio, Fabio A.

    2017-04-01

    Extension in the Aegean Sea and lateral Anatolian extrusion are contrasting and seemingly unrelated examples of continental tectonics In the Eastern Mediterranean. It is acknowledged that these must reconcile with the dynamics of Tethys closure and following continental collision along the convergent margin, however the underlying mechanisms have been difficult to pinpoint, thus far. Three-dimensional numerical modelling of the dynamics of subduction and coupling with the mantle and upper plates allows probing the evolution of similar areas, supporting inferences on the ultimate causes for the continental tectonics. I will present models that reproduce the force balance of subducting slabs' buoyancy, mantle flow and upper plate interiors, and emphasise the role of perturbations in the force balance that may have followed slab breakoff, collision and trench land-locking reconstructed during the oceanic closure in the Eastern Mediterranean. These perturbations lead to a range of different margin motions and strain regimes in the upper plate, from rollback and back-arc spreading, to indentation and extrusion along the collisional margin. Different spatial and temporal fingerprints are illustrated for these processes, and while the trench rollback and back-arc spreading are rather stable features, extrusion is transient. When these regimes overlap, rapid and complex rearrangements of the tectonics in the upper plate are the result. The remarkable similarity between the models' and the Eastern Mediterranean tectonic regimes and geophysical observable allows proposing viable driving mechanisms and support inferences on the Miocene-to-Pliocene evolution of this puzzling area.

  19. Variation of the upper mantle velocity structure along the central-south Andes

    Science.gov (United States)

    Liang, X.; Sandvol, E. A.; Shen, Y.

    2012-12-01

    Variations in the subduction angle of the Nazca plate beneath the South American plate has lead to different modes of deformation along the strike of the Andean active margin including the formation of the Central Andean Plateau. There is a volcanic gap between the central and southern Andean volcanic zones, where the subducting Nazca slab changes from 30-degree dipping slab beneath the Puna plateau to a horizontal slab geometry beneath the Sierras Pampeanas, and then to a 30-degree dipping slab beneath the south Andes from north to south. The Pampean flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of crustal deformation. In the Puna plateau a major Pliocene delamination event has previously been inferred from geochemical and geological and preliminary geophysical data beneath the southern Puna plateau. The transition between dipping- and flat-subduction slab and the mountain building process of the central Andean plateau are probably key issues to understanding this type of Andean-type orogenic process. We combined both body-wave and ambient-noise measurements together to invert the upper mantle velocity structure by using a full-waveform simulation approach. The broadband waveform data from several temporary networks: PUNA, SIEMBRA, CHARGE, RAMP, and several permanent stations are used. The preliminary results show that the low upper mantle velocities north of 29°S and south of 35°S, corresponding to the low velocity mantle wedge of dipping-subduction. We also observe what appears to be an isolate high velocity below the southern Puna where the Pliocene delamination event may have occurred. At the same time the intermediate to high velocity is beneath the Sierras Pampeanas, which is well correlated with the Pampeanas flat-slab, however we observe substantial heterogenity within this flat slab.

  20. 3D instantaneous dynamics modeling of present-day Aegean subduction

    Science.gov (United States)

    Glerum, Anne; Spakman, Wim; van Hinsbergen, Douwe; Pranger, Casper

    2017-04-01

    To study the sensitivity of surface observables to subduction and mantle flow, i.e. the coupling of crustal tectonics and the underlying mantle dynamics, we have developed 3D numerical models of the instantaneous crust-mantle dynamics of the eastern Mediterranean. These models comprise both a realistic crust-lithosphere system and the underlying mantle. The focus for this presentation lies on the regional crustal flow response to the present-day Aegean subduction system. Our curved model domain measures 40°x40°x2900km with the Aegean subduction system taken as the geographic center. Model set-ups are based on geological and geophysical data of the eastern Mediterranean. We first create a 3D synthetic geometry of the crust-lithosphere system in a stand-alone program, including the present-day configuration of the plates in the region and crust and lithosphere thickness variations abstracted from Moho and LAB maps (Faccenna et al., 2014, Carafa et al., 2015). In addition we construct the geometry of the Aegean slab from a seismic tomography model (UU-P07; Amaru, 2007) and earthquake hypocenters (NCEDC, 2014). Geometries are then imported into the finite element code ASPECT (Kronbichler et al., 2012) using specially designed plugins. The mantle initial temperature conditions can include deviations from an adiabatic profile obtained from conversion of the UU-P07 seismic velocity anomalies to temperature anomalies using a depth-dependent scaling (Karato, 2008). We model compressible mantle flow for which material properties are obtained from thermodynamics P-T lookup-tables (Perple_X, Connolly, 2009) in combination with nonlinear viscoplastic rheology laws. Sublithospheric flow through the lateral model boundaries is left free via open boundary conditions (Chertova et al., 2012), while plate motion is prescribed at the model sides in terms of relative as well as absolute plate motion velocities (e.g. Doubrovine et al., 2012). So far, we used a free-slip surface, but

  1. Complex seismic anisotropy and mantle dynamics beneath Turkey

    Science.gov (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Karaoğlu, Özgür; Salah, Mohamed K.; Aouad, Nassib; Reed, Cory A.; Yu, Youqiang

    2017-12-01

    Seismic anisotropy is an unambiguous property of the deep Earth that is often detected through shear wave splitting (SWS) and anisotropic receiver function (RF) techniques, which are then used to infer the lithospheric and asthenospheric deformational structure. The Anatolian plate and its associated Mediterranean, Eurasian, and Arabian plate boundaries represent the consequences of a variety of convergent and transform tectonic regimes; these boundaries are thus well-suited for studying seismic anisotropy related to subduction, orogenic, and strike-slip processes. We apply a joint SWS and RF analysis to identify the magnitude and orientation of deformation associated with lithosphere-asthenosphere coupling beneath the Anatolian plate system as well as intra-plate fossil fabrics resulting from ancient and ongoing collision. SWS analysis reveals the existence of complex anisotropic fabrics beneath the Anatolian region, where the upper-layer fast orientations are either parallel to strike-slip faults or orthogonal to reverse faults. Strongly oriented NE-SW lower-layer fast orientations suggest that they originate from slab-modulated flow in the mantle wedge overlying the northward-subducting African plate. The results of the RF analysis show that the fast orientations are spatially variable but are generally consistent with crustal fabrics developed mostly through intensive faulting and are possibly associated with sub-vertical lower crustal shear zones.

  2. Intra-oceanic subduction shaped the assembly of Cordilleran North America.

    Science.gov (United States)

    Sigloch, Karin; Mihalynuk, Mitchell G

    2013-04-04

    The western quarter of North America consists of accreted terranes--crustal blocks added over the past 200 million years--but the reason for this is unclear. The widely accepted explanation posits that the oceanic Farallon plate acted as a conveyor belt, sweeping terranes into the continental margin while subducting under it. Here we show that this hypothesis, which fails to explain many terrane complexities, is also inconsistent with new tomographic images of lower-mantle slabs, and with their locations relative to plate reconstructions. We offer a reinterpretation of North American palaeogeography and test it quantitatively: collision events are clearly recorded by slab geometry, and can be time calibrated and reconciled with plate reconstructions and surface geology. The seas west of Cretaceous North America must have resembled today's western Pacific, strung with island arcs. All proto-Pacific plates initially subducted into almost stationary, intra-oceanic trenches, and accumulated below as massive vertical slab walls. Above the slabs, long-lived volcanic archipelagos and subduction complexes grew. Crustal accretion occurred when North America overrode the archipelagos, causing major episodes of Cordilleran mountain building.

  3. Diapiric flow at subduction zones: a recipe for rapid transport.

    Science.gov (United States)

    Hall, P S; Kincaid, C

    2001-06-29

    Recent geochemical studies of uranium-thorium series disequilibrium in rocks from subduction zones require magmas to be transported through the mantle from just above the subducting slab to the surface in as little as approximately 30,000 years. We present a series of laboratory experiments that investigate the characteristic time scales and flow patterns of the diapiric upwelling model of subduction zone magmatism. Results indicate that the interaction between buoyantly upwelling diapirs and subduction-induced flow in the mantle creates a network of low-density, low-viscosity conduits through which buoyant flow is rapid, yielding transport times commensurate with those indicated by uranium-thorium studies.

  4. Upper Mantle Seismic Anisotropy Patterns around the La Réunion Hotspot deduced from SKS-splitting measurements: Plate, Plume and Ridges signatures

    Science.gov (United States)

    Scholz, John-Robert; Barruol, Guilhem; Fontaine, Fabrice R.; Mazzullo, Alessandro; Montagner, Jean-Paul; Stutzmann, Eléonore; Sigloch, Karin

    2017-04-01

    We present results of upper mantle seismic anisotropy in the Southwest Indian Ocean around the hotspot of La Réunion, deduced from SKS splitting measurements using the 'SplitLab' toolbox. Data analysed in this study were recorded by 20 terrestrial and 57 ocean-bottom three-component seismometers installed in the framework of the RHUM-RUM project (www.rhum-rum.net). Broad-band and wide-band ocean-bottom instruments were deployed around the La Réunion Island and along the Central and Southwest Indian Ridges (deployment: R/V Marion Dufresne, 2012, MD192 - recovery: R/V Meteor, 2013, M101), and recorded for 8 to 13 months. We discuss the anisotropy signatures that are potentially induced by the absolute motion of the African Plate, by the spreading of the Central and Southwest Indian Mid-Ocean Ridges (CIR & SWIR), and by the interaction of the ascending plume with the overlying lithosphere and the neighbouring CIR and SWIR. The observed pattern displays a ridge-parallel anisotropy beneath the SWIR that suggests an along-axis upper mantle flow controlled by the thick and cold lithosphere on both sides of the ridge. We furthermore observe a coherent regional anisotropy pattern between La Réunion and the CIR. Both body and surface wave analysis suggest that this dominant flow is located at asthenospheric depths and could be consistent with a preserved feeding of the ridge by the mantle upwelling associated with the Réunion hotspot, as first proposed by Morgan (1978). Finally, we quantitatively compare the azimuthal anisotropy derived from SKS splitting with those from surface wave data.

  5. The Mantle Wedge of the Mariana Subduction Factory: Investigation on Peridotite Clasts Cored at South Chamorro Seamount, Site 1200, ODP Leg 195

    Science.gov (United States)

    D'Antonio, M.; Spadea, P.; Savov, I.

    2002-12-01

    The South Chamorro Seamount is a serpentine mud volcano located in the Mariana forearc region. It has been cored during Ocean Drilling Program Leg 195 (March-May 2001; Site 1200). It is made up of serpentine mud coming from the downgoing Pacific plate, which is about 30 km deep beneath the seamount. The mud encloses clasts of ultramafic rocks from the overriding plate. The clasts are mostly harzburgite, with minor dunite and lherzolite, strongly serpentinized and tectonized. The primary mineralogy includes olivine, orthopyroxene, clinopyroxene and chromium-spinel. The samples show typical mesh and hourglass serpentine textures, and contain veins of serpentine, brucite and chlorite. Whole-rock chemistry shows Mg# = 91-93, and high Ni and Cr contents. Low CaO and Al2O3 contents, and very low REE contents with U-shaped, strongly LREE-enriched and HREE-depleted, patterns confirm that most of the analyzed samples are highly residual peridotites which suffered extensive partial melting (20-25%), and contain an enriched component. The only lherzolite sample shows a significantly lower degree of depletion, slightly higher than 15%. In the analyzed sample set, olivine has Fo = 91.5-92.5, with Ni content in the 2200-4200 ppm range, enstatite has Al2O3 = 0.8-2.6 wt.% and CaO = 0.2-2.1 wt.%. Also diopside is chemically variable, with Mg# = 93-99, and low to very low Cr, Na and Al contents. Diopside from the lherzolite sample has higher Al and significantly lower Na than in most harzburgites. Chemical variations and textural differences of pyroxenes suggest that the peridotites underwent recrystallization and metasomatism after melt extraction.

  6. Constraints on Paleotsunami Runup Derived from Sand Deposits Mantling Three Holocene Marine Terraces at Puatai Beach, Northern Hikurangi Subduction Margin, New Zealand

    Science.gov (United States)

    Clark, K.; Litchfield, N. J.; Cochran, U. A.; Berryman, K. R.; Power, W. L.; Steele, R.

    2016-12-01

    At Puatai Beach, Gisborne, New Zealand, a 90-m-long continuous trench was excavated across a sequence of three marine terraces. The trench exposed the stratigraphy of deposits mantling the stepped shore platforms. The sequence of shelly sand and gravel beach deposits and silty colluvium allowed us to reconstruct the timing of earthquakes that uplifted the terraces, and place constraints on the age, runup and inundation distances of tsunamis that impacted the coastline in the late Holocene. Radiocarbon ages from shelly beach deposits lying on the platforms were used to date the terrace uplift ages at 1920-1650 (upper), 1270-1030 (middle), and 520-320 (lower) cal. yr BP respectively; we interpret these ages as the timing of large (M7+) paleoearthquakes on the nearshore Gable End Fault. With the inner edge of the highest shore platform reaching 9 m elevation, this flight of terraces has an average uplift rate of 5.6 ± 1 mm/yr, the highest uplift rate along the Hikurangi margin. The silty colluvium layers overlying the beach deposits contain thin semi-continuous sand layers. Based on chronological, geomorphological, sedimentological and biological considerations we suggest that at least some of these sand layers are tsunami deposits. Three sand layers were dated at 1190-930, 400-100, and 450-150 cal. yr BP, and the chronological overlap of the latter two suggests they could be the same event. Estimates of tsunami run-up were obtained from the surveyed maximum heights, and allowing for terrace uplift, they were 9.3 ± 0.5 m, 12.6 ± 0.5 m and 4.2-1.2 ± 0.5 m amsl, for the two dated and one un-dated paleotsunamis respectively; inundation distances were 58 m, 61 m, and 23 m. The inferred tsunami ages are slightly younger than the time of uplift of the marine terraces, and this, as well as their stratigraphic position within colluvium, suggests they were not necessarily triggered by rupture of the Gable End Fault. The younger ages potentially overlap tsunami deposits

  7. Tidal tomography constrains Earth’s deep-mantle buoyancy

    Science.gov (United States)

    Lau, Harriet C. P.; Mitrovica, Jerry X.; Davis, James L.; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David

    2017-11-01

    Earth’s body tide—also known as the solid Earth tide, the displacement of the solid Earth’s surface caused by gravitational forces from the Moon and the Sun—is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth’s deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth’s formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.

  8. On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean

    Science.gov (United States)

    Boschman, L.; Van Hinsbergen, D. J. J.

    2016-12-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.

  9. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  10. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback

    NARCIS (Netherlands)

    Stegman, D. R.; Freeman, J.A.; Schellart, W. P.; Moresi, L.; May, D.

    Subduction of tectonic plates limited in lateral extent and with a free-trailing tail, i.e., "free subduction,'' is modeled in a three-dimensional (3-D) geometry. The models use a nonlinear viscoplastic rheology for the subducting plate and exhibit a wide range of behaviors depending on such plate

  11. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    Science.gov (United States)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  12. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios

    Science.gov (United States)

    Guo, Kun; Zeng, Zhi-Gang; Chen, Shuai; Zhang, Yu-Xiang; Qi, Hai-Yan; Ma, Yao

    2017-09-01

    The Okinawa Trough (OT) is a back-arc, initial continental marginal sea basin located behind the Ryukyu Arc-Trench System. Formation and evolution of the OT have been intimately related to subduction of the Philippine Sea Plate (PSP) since the late Miocene; thus, the magma source of the trough has been affected by subduction components, as in the case of other active back-arc basins, including the Lau Basin (LB) and Mariana Trough (MT). We review all the available geochemical data relating to basaltic lavas from the OT and the middle Ryukyu Arc (RA) in this paper in order to determine the influence of the subduction components on the formation of arc and back-arc magmas within this subduction system. The results of this study reveal that the abundances of Th in OT basalts (OTBs) are higher than that in LB (LBBs) and MT basalts (MTBs) due to the mixing of subducted sediments and EMI-like enriched materials. The geochemical characteristics of Th and other trace element ratios indicate that the OTB originated from a more enriched mantle source (compared to N-mid-ocean ridge basalt, N-MORB) and was augmented by subducted sediments. Data show that the magma sources of the south OT (SOT) and middle Ryukyu Arc (MRA) basalts were principally influenced by subducted aqueous fluids and bulk sediments, which were potentially added into magma sources by accretion and underplating. At the same time, the magma sources of the middle OT (MOT) and Kobi-syo and Sekibi-Syo (KBS+SBS) basalts were impacted by subducted aqueous fluids from both altered oceanic crust (AOC) and sediment. The variable geochemical characteristics of these basalts are due to different Wadati-Benioff depths and tectonic environments of formation, while the addition of subducted bulk sediment to SOT and MRA basalts may be due to accretion and underplating, and subsequent to form mélange formation, which would occur partial melting after aqueous fluids are added. The addition of AOC and sediment aqueous fluid

  13. Dynamics of double-polarity subduction: application to the Western Mediterranean

    Science.gov (United States)

    Peral, Mireia; Zlotnik, Sergio; Fernandez, Manel; Vergés, Jaume; Jiménez-Munt, Ivone; Torne, Montserrat

    2016-04-01

    The evolution of the Western Mediterranean is a highly debated question by geologists and geophysicists. Even though most scientists agree in considering slab roll-back to be the driving mechanism of the tectonic evolution of this area, there is still no consensus about the initial setup and its time evolution. A recent model suggests a lateral change in subduction polarity of the Ligurian-Thetys oceanic domain to explain the formation and evolution of the Betic-Rif orogenic system and the associated Alboran back-arc basin. Such geodynamic scenario is also proposed for different converging regions. The aim of this study is to analyze the dynamic evolution of a double-polarity subduction process and its consequences in order to test the physical feasibility of this interaction and provide geometries and evolutions comparable to those proposed for the Western Mediterranean. The 3D numerical model is carried out via the Underworld framework. Tectonic plate behavior is described by equations of fluid dynamics in the presence of several different phases. Underworld solves a non-linear Stokes flow problem using Finite Elements combined with particle-in-cell approach, thus the discretization combines a standard Eulerian Finite Element mesh with Lagrangian particles to track the location of the phases. The final model consists of two oceanic plates with viscoplastic rheology subducting into the upper mantle in opposite direction and the problem is driven by Rayleigh-Taylor instability. We study the influence of the boundary conditions in the model evolution, and the slab deformation produced by the proximity between both plates. Moreover the case of asymmetric friction on the lateral sides of slabs is also considered. Simulations of single subduction models are used as a reference, to compare results and understand the influence of the second plate. We observe slight differences in the trench retreat velocity and the slab morphology near the contact area when plates are

  14. Elastic plate flexure above mantle plumes explains the upstream offset of volcanic activity at la Réunion and Hawaii

    Science.gov (United States)

    Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha

    2017-04-01

    Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis, 20 km thick and 150 km in radius, at 50-70 km depth where the temperature varies from 600°C to 750°C. It lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, a timing that is controlled by the visco-elastic relaxation time at 50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively, thus rendering this basal compression a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., 150 km away from the plume head. There, melts propagate through dikes upwards to 35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host magmatic reservoirs where melts pond, until further differentiation can relaunch ascension up to the surface and form a volcanic edifice. In a second stage, as the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at 15 km depth. It implies that now the melts pond at 15 km and form another magmatic reservoir lying just

  15. Constraints on the mantle and lithosphere dynamics from the observed geoid with the effect of visco-elasto-plastic rheology in the upper 300 km

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Rogozhina, Irina; Sobolev, Stephan

    2015-04-01

    Over the past decades rheological properties of the Earth's mantle and lithosphere have been extensively studied using numerical models calibrated versus a range of surface observations (e.g., free-air-gravity anomaly/geoid, dynamic topography, plate velocity, etc.).The quality of model predictions however strongly depends on the simplifying assumptions, spatial resolution and parameterizations adopted by numerical models. The geoid is largely (Hager & Richards, 1989) determined by both the density anomalies driving the mantle flow and the dynamic topography at the Earth surface and the core-mantle boundary. This is the effect of the convective processes within the Earth's mantle. The remainder is mostly due to strong heterogeneities in the lithospheric mantle and the crust, which also need to be taken into account. The surface topography caused by density anomalies both in the sub-lithospheric mantle and within the lithosphere also depends on the lithosphere rheology. Here we investigate the effects of complex lithosphere rheology on the modelled dynamic topography, geoid and plate motion using a spectral mantle flow code (Hager & O'Connell, 1981) considering radial viscosity distribution and a fully coupled code of the lithosphere and mantle accounting for strong heterogeneities in the upper mantle rheology in the 300 km depths (Popov & Sobolev, 2008). This study is the first step towards linking global mantle dynamics with lithosphere dynamics using the observed geoid as a major constraint. Here we present the results from both codes and compare them with the observed geoid, dynamic topography and plate velocities from GPS measurements. This method allows us to evaluate the effects of plate rheology (e.g., strong plate interiors and weak plate margins) and stiff subducted lithosphere on these observables (i.e. geoid, topography, plate boundary stresses) as well as on plate motion. This effort will also serve as a benchmark of the two existing numerical methods

  16. Seismicity and the subduction process

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1980-01-01

    There is considerable variation between subduction zones in the largest characteristic earthquake within each zone. Assuming that coupling between downgoing and upper plates is directly related to characteristic earthquake size, tests for correlations between variation in coupling and other physical features of subduction zones are conducted: the lateral extent and penetration depth of Benioff zones, age of subducting lithosphere, convergence rate, and back-arc spreading. Using linear multivariate regression, coupling is correlated with two variables: convergence rate and lithosphere age. Secondary correlations within the data set are penetration depth versus lithosphere age, and lateral extent versus convergence rate. Taken together, the observed correlations suggest a simple qualitative model where convergence rate and lithosphere age determine the horizontal and sinking rates, respectively, of slabs: these parameters influence the seismic coupling in the subduction zone. In the limit of a fast sinking rate and slow convergence rate, back-arc spreading occurs and thereby appears to be a passive process.

  17. Chemo-probe into the mantle origin of the NW Anatolia Eocene to Miocene volcanic rocks: Implications for the role of, crustal accretion, subduction, slab roll-back and slab break-off processes in genesis of post-collisional magmatism

    Science.gov (United States)

    Ersoy, E. Yalçın; Palmer, Martin R.; Genç, Ş. Can; Prelević, Dejan; Akal, Cüneyt; Uysal, İbrahim

    2017-09-01

    Post-collisional Cenozoic magmatic activity in NW Anatolia produced widespread volcanism across the region. In the Biga Peninsula, in the west, medium-K calc-alkaline to ultra-K rocks with orogenic geochemical signature were emplaced at 43-15 Ma (Biga orogenic volcanic rocks; BOVR). Volcanic activity in the Central Sakarya region, to the east, is mainly restricted to 53-38 Ma, but also continued during the Early Miocene with small basaltic extrusives (Sakarya orogenic volcanic rocks; SOVR). This study presents a new set of geochemical data (whole rock major and trace elements and Sr-Nd-Pb isotopic compositions), obtained from the Cenozoic calc-alkaline volcanic rocks from these two regions. While there is considerable overlap in the emplacement time of volcanism in the two areas, the post-collisional volcanic rocks of these two regions differ in terms of their geochemical compositions: (1) the BOVR show an age-dependent increase in K and other large-ion lithophile elements (LILE), coupled with an increase in radiogenic Sr and Pb compositions from the Eocene to Miocene; whereas (2) the SOVR are characterized by more sodic compositions with lower K and less radiogenic Sr contents with respect to the BOVR, which were unchanged in Eocene and Miocene. We conclude that these geochemical features were principally related to the distinct modes of subduction-related mantle enrichment processes. We suggest that the Eocene to Miocene progressive enrichment in the BOVR mantle was related to successive subduction of oceanic and crustal materials in the western Aegean, while the SOVR mantle was dominantly enriched during the pre-collisional events. Magma generation in the western region was related to subduction roll-back processes associated with post-collisional extension. In the east, thermal perturbation of the mantle in response to asthenospheric upwelling due to slab break-off process was responsible for the magma generation. The time-dependent increase of K (and other

  18. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  19. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2013-01-01

    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g.

  20. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric|info:eu-repo/dai/nl/270177493; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624; Morris, Antony; Plümper, Oliver|info:eu-repo/dai/nl/37155960X; Spakman, Wim|info:eu-repo/dai/nl/074103164

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  1. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity

    DEFF Research Database (Denmark)

    Tesoniero, Andrea; Auer, Ludwig; Boschi, Lapo

    2015-01-01

    VP/VS and not extremely low VS at ∼150 km depth, consistently with presence of water. Most pronounced anomalies are located in the Sea of Japan, in the back-arc region of the Philippine Sea, and in the South China Sea. Our results indicate the effectiveness of slab-related processes to hydrate...... the mantle and suggest an important role of Pacific plate subduction also for the evolution of the South China Sea. We detect lateral variations in composition within the continental lithospheric mantle. Regions that have been subjected to rifting, collisions, and flood basalt events are underlain...

  2. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

    Science.gov (United States)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa

    2018-01-01

    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  3. P-wave tomography of subduction zones around the central Philippines and its geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong; Zhang, Guangxu

    2017-09-01

    High-resolution tomographic images are obtained by inverting a large number of arrival-time data of local earthquakes and teleseismic events to depict the 3-D crustal and upper mantle structure beneath the central Philippines. Our tomographic results show that the subducted South China Sea slab beneath the southern segment of the Manila Trench steepens and tears, resulting in migration of the locus of active volcanism in the Macolod Corridor, due to the collision between the Palawan microcontinental block and the Philippine Mobile Belt. The subduction of the Philippine Sea Plate along the Philippine Trench started at 10-12°N or south of 12°N, the central part of the trench, from at least ∼10 Ma estimated from our tomographic images. Our results reveal clearly a high-velocity anomaly in and around the mantle transition zone, which is interpreted as the subducted Proto South China Sea slab that sinks deeper southeastward, being well consistent with geological results that the age of collision between the Palawan microcontinental block and the Philippine Mobile Belt becomes younger from the south to the north. This collision zone can be divided into northern and southern segments, demarcated by the salient point of the collision zone, which is probably the boundary between the South China Sea slab and the Proto South China Sea slab, and may be ascribed to the complete consumption of the two slabs.

  4. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea

    Science.gov (United States)

    Brenna, Marco; Cronin, Shane J.; Kereszturi, Gábor; Sohn, Young Kwan; Smith, Ian E. M.; Wijbrans, Jan

    2015-01-01

    The drivers behind the inception of, and the variable, pulsatory eruption rates at distributed intraplate volcanic fields are not well understood. Such broad areas of monogenetic volcanism cover vast areas of the world and are often heavily populated. Reliable models to unravel their behaviour require robust spatio-temporal frameworks within the fields, but an analysis of the potential proximal and distal regional volcano-tectonic processes is also needed. Jeju Island (Republic of Korea) is a volcanic field that has been extensively drilled and dated. It is also located near one of the world's best-studied tectonic plate boundaries: the subduction zone in southwestern Japan, which generates the Ryukyu and SW Japan arcs. A new set of 40Ar/39Ar ages collected from cores penetrating the entire Jeju eruptive pile, along with geochemical information, is used to construct a temporal and volumetric model for the volcano's growth. The overall pattern indicates inception of volcanism at ~1.7 Ma, with an initial 1.2 Myr of low-rate activity, followed by over an order of magnitude rise over the last 0.5 Myr. The magma flux at Jeju correlates well with increased extension rates in the arc/backarc region. In particular, we infer that the increased trenchward mantle flow, caused by the greater rollback of the Philippine Sea Plate, activated pre-existing shear weaknesses in the mantle beneath Jeju, resulting in mantle upwelling and decompression melting that caused a change in compositions and an increase in eruption rates at Jeju. Thus, the volcanic activity of an intraplate field system can be modulated by regional subduction processes occurring more than 650 km away. This model may explain the frequent observation of pulsatory behaviour seen in many monogenetic volcanic fields worldwide that lie within 1,000 km of subduction zones.

  5. Why Do We Need 3-d Numerical Models of Subduction?

    Science.gov (United States)

    Morra, G.; Faccenna, C.; Funiciello, F.; Giardini, D.; Regenauer-Lieb, K.

    We use a set of 2-D and 3-D numerical fluid dynamic experiments, modeled with different strain rate dependent rheologies (viscous, visco-plastic, power law) to ana- lyze the long-term dynamics of the subduction of an oceanic slab into an iso-viscous or stratified mantle. For the lithosphere a fluid dynamic approach has been bench- marked with our previous solid mechanical approach with the aim of overcoming the coherency problem of fluid dynamic calculations. The solid mechanical dichotomy Sstrong before failure and weak where it failsT has been cast into a specialized non- & cedil;linear fluid rheology. Analog 2-D and 3-D experiments are finally compared with the numerical experiments. 2-D numerical experiments are considered with and without free surface to investigate the limitations induced by a closed top boundary. The effect of asymmetric boundary conditions (with and without overriding plate) is analyzed with respect to the possibility of trench retreat. We clearly state the importance for the free surface analysis. 2-D experiments have inherent weaknesses: first they provide an unrealistic simulation of mantle flow (suppression of toroidal flow), second they give rise to the Sclosed boxT problem (interaction of the slab with a boundary, i.e. & cedil;660 km and the left and right box boundaries). 3-D numerical experiments permit to overcome these problems. A natural analysis of the behavior of the mantle flow during subduction and the three-dimensional behavior of the slab is thus possible. Physical observables like trench retreat and toroidal and poloidal flow are compared with the results of our companion analog 3-D experiments.

  6. Episodic plate tectonics on Venus

    Science.gov (United States)

    Turcotte, Donald

    1992-01-01

    Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.

  7. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  8. Delamination, upper plate extension, and plate margin complexity

    Science.gov (United States)

    Ueda, Kosuke; Gerya, Taras; Willett, Sean

    2017-04-01

    We investigate the syn- and post-subduction margin evolution with respect to extension, lithospheric removal, and magmatic and topographic consequences by employing 3D geodynamic models. In all experiments, regions of extended partial melting are overlain by up to 3 km high plateaus. There is complex geometric entanglement between upper mantle, partially molten rocks, and lithosphere, which is thermally eroded, over hundreds of kilometers across the plate contact. A complex lithosphere-asthenosphere-boundary features elongated anomalies at scales of few tens to hundred kilometers. First-order, synthetic seismic anomaly patterns, based on thermodynamic velocities which are tabulated for model p,T conditions, are accordingly complex. Passive margin geometry variations in the lower plate effect consistent and inherited differences in dynamic evolution. Promontories along the margin tend to trigger three stages of evolution: 1) a magmatic arc; 2) a lower plate, eduction-like exhumation of buried continental crust in domal patterns of few tens of km wavelength; and subsequently, 3) the formation of extended zones on the upper plate which lack a lithospheric mantle, undergo partial extension, and feature lower crustal melting. Slab break-off is consistently favoured in locations where the lower plate margin is relatively recessed. Concerning the classical removal mechanisms, transitions and co-evolution between delamination, convective thinning, and upper-plate extension are gradual and these modes are not mutually exclusive. Almost complete mixed-mode removal and extension can be compared to the Aegean. Slab window formation by margin geometry variation produces characteristic uplift patterns that are comparable to the Apennines, where higher uplift rates could be a consequence of incipient necking of the slab below central Calabria.

  9. The fate of water within Earth and super-Earths and implications for plate tectonics

    Science.gov (United States)

    Tikoo, Sonia M.; Elkins-Tanton, Linda T.

    2017-04-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  10. The fate of water within Earth and super-Earths and implications for plate tectonics

    Science.gov (United States)

    2017-01-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729

  11. The fate of water within Earth and super-Earths and implications for plate tectonics.

    Science.gov (United States)

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  12. Isabella Anomaly: Lithospheric drip, delamination or fragment of the Farallon plate?

    Science.gov (United States)

    Forsyth, D. W.; Rau, C. J.

    2009-12-01

    The Isabella Anomaly or Central Valley Anomaly in California is perhaps the best known example of a high seismic velocity anomaly that has been interpreted as a lithospheric instability. High P and S velocities extend to a depth of at least 150 km and perhaps to several hundred km in a nearly cylindrical region 100-150 km across. The amplitude of the anomaly in the upper 200 km is similar to that of the subducted Gorda plate. This anomaly has been variously interpreted as a convective drip or as a remnant of the lithosphere delaminated from beneath the eastern Sierra Nevada. We suggest instead that the Isabella anomaly may represent a fragment of the subducted Farallon plate that is still attached to the Pacific lithosphere. Directly seaward of the anomaly is the fossil Monterrey microplate, which is a remnant of the Farallon plate that was left when subduction ceased before the spreading center itself subducted. The microplate was then incorporated into the Pacific plate, but it is not clear how much of the subducting slab remained attached to the surface microplate. New Rayleigh wave tomographic images of Baja California show that there are still fragments of the Farallon plate remaining attached to the unsubducted Guadelupe and Magdelena microplate remnants, with anomalies extending down to at least 150 km. The geometry of these anomalies in relationship to the microplates is very similar to that of the Isabella anomaly. A major question with this interpretation is whether a bit of oceanic lithosphere extending down into the asthenosphere could be dragged along with the surface microplate/Pacific plate for 20 Ma since subduction ceased. Another anomaly similar to the Isabella anomaly begins in the shallow mantle beneath the northern end of San Francisco bay and dips to the west - another candidate for a lithospheric drip or convective instability?

  13. Li isotopic constraints from the Erro-Tobbio serpentinites on Alpine subduction processes

    Science.gov (United States)

    Chu, M.-F.; Scambelluri, M.; Griffin, W. L.; O'Reilly, S. Y.; Pearson, N. J.

    2012-04-01

    Subduction zones represent a unique feature of the dynamic Earth and provide important constraints on how plate tectonics works. Subduction of serpentinized oceanic lithosphere, characterized by releasing water into the mantle wedge via dehydration, i.e. breakdown of hydrous minerals, plays a critical role in not only the generation of continental crust but also the Earth's water cycle. To track the recycling of water or fluid released by subduction, the stable isotope system of Li, a lithophile and mobile element, shows its high potential because 7Li, relative to 6Li, preferentially moves into the fluid phase when fractionation occurs. Here we present new Li abundance and isotopic compositions of the Erro-Tobbio serpentinized peridotite complex, a remnant mantle slice of the Alpine subduction. Our data indicate that most of the serpentinized ultramafic rocks have uniform Li concentrations, around 1 ppm. These rocks, however, show variable Li isotopic compositions. Among them, the high-pressure antigorite-bearing metaperidotites, formed under a low-strain condition, have a limited range in Li isotopic values, with δ7Li = +1.5 to +4.0, similar to those of serpentinized peridotites. In contrast, apparently heavier Li isotopes, up to +10.0, are observed in the high-pressure serpentinite mylonites that also contain antigorite but formed in high-strain domains. We note that O-H isotope ratios of the high-pressure ultramafic rocks reported in previous study (Früh-Green et al., 2001, Contrib. Mineral Petrol. 141: 145-159) show insignificant variations between the low- and high-strain domains. This demonstrates the superiority of Li isotope than conventional stable isotope systems in offering critical information about fluid-releasing processes in subduction zones. Moreover, our new data unsupport the general assumption that fluid released from subducted slabs is in favor of extracting 7Li than 6Li, thus capable of forming the much lighter δ7Li values observed in

  14. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    Science.gov (United States)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  15. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...

  16. Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope

    Science.gov (United States)

    Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.

    2010-12-01

    Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat

  17. Crust and Mantle Anisotropy Variations from the Coast to Inland In Central and Southern Mexico

    Science.gov (United States)

    Castillo, J. A.; Perez-Campos, X.; Husker, A. L.; Valenzuela Wong, R.

    2014-12-01

    We examine radial and tangential receiver functions (RFs) obtained along the Meso America Subduction Experiment (MASE), a profile from the Pacific coast in central-southern Mexico to the Gulf of Mexico. Tangential RFs show waveform variations in timing and polarity, both in the Moho and the slab Ps phases in function of its backazimuth; also, radial RFs show arrivals timing variation; all of which suggests a non-homogeneous horizontal layer medium. Using a particle motion analysis and a cross-correlation procedure, we are able to quantify the shear wave splitting in the continental crust, the subducted oceanic crust and the mantle below each station of the array in terms of a time delay, and a fast azimuth direction. From these variations, we distinguish between three major regions: 1) dipping subducted slab, 2) horizontal subducted slab, 3) absence of subducted slab. Results for region 1 are consistent with the geometry of the Cocos plate previously determined by other studies, showing a minimum energy content in the tangential RFs for the NE-SW geographic quadrants. In region 2, we identify a strong azimuthal dependence with a variable periodicity of 180° and 360° as well as the existence of "split" Ps phases in our data, possibly related to the presence of fluids and the ultra low velocity layer (ULVL) localized between the continental and oceanic crust. We compare these results with previous silent earthquakes (SSE) and non-volcanic tremors (NVT) studies in the area.

  18. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand.

    Science.gov (United States)

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke

    2009-08-06

    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models.

  19. GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, N A; Forte, A M; Boschi, L; Grand, S P

    2010-03-30

    GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are

  20. Where is mantle's carbon?

    Science.gov (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.

    2008-12-01

    Due to the strongly reducing conditions (the presence of metallic iron was suggested both by experiments [1] and theory [2]), diamond was believed to be the main host of carbon through most of the lower mantle [3]. We showed [4] that cementite Fe3C is another good candidate to be the main host of "reduced" carbon in the mantle, reinforcing an earlier hypothesis [5]. The fate of "oxidised" carbon (in subducted slabs) is of particular importance - if carbonates decompose producing fluid CO2, this would have important implications for the chemistry and rheology of the mantle. Knowledge of crystal structures and phase diagrams of carbonates is crucial here. The high-pressure structures of CaCO3 were predicted [6] and subsequently verified by experiments. For MgCO3, Isshiki et al. [7] found a new phase above 110 GPa, and several attempts were made to solve it [8,9]. Here [4], using an evolutionary algorithm for crystal structure prediction [10], we show that there are two post-magnesite phases at mantle-relevant pressure range, one stable at 82-138 GPa, and the other from 138 GPa to ~160 GPa. Both are based on threefold rings of CO4-tetrahedra and are more favourable than all previously proposed structures. We show that through most of the P-T conditions of the mantle, MgCO3 is the major host of oxidized carbon in the Earth. We predict the possibility of CO2 release at the very bottom of the mantle (in SiO2-rich basaltic part of subducted slabs), which could enhance partial melting of rocks and be related to the geodynamical differences between the Earth and Venus. 1.Frost D.J., Liebske C., Langenhorst F., McCammon C.A., Tronnes R.G., Rubie D.C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409-412. 2.Zhang F., Oganov A.R. (2006). Valence and spin states of iron impurities in mantle-forming silicates. Earth Planet. Sci. Lett. 249, 436-443. 3.Luth R.W. (1999). Carbon and carbonates in the mantle. In: Mantle

  1. Fluid flux and melting reactions in subduction zones

    Science.gov (United States)

    Bouilhol, Pierre; Magni, Valentina; van Hunen, Jeroen; Kaislaniemi, Lars

    2014-05-01

    Understanding the metamorphic reactions that occurs within the slab is a must to constrain subduction zone processes. Slab dehydration reactions ultimately permit the mantle wedge to melt, by lowering its solidus, thus forming arcs above descending slabs. Alternatively the slab crust may cross its solidus in warm hydrated slabs. Moreover, slab dehydration allows chemical fractionation to occur between residual phases and transferred fluid phase, giving arc magmas part of their typical subduction zone chemical characteristics. To better comprehend such complex thermo-chemical open system, we are using a numerical model that reproduces the thermo-mechanical behaviour of a subducting slab and computes the thermodynamic equilibrium paragenesis at each P-T-X conditions of the system. Hence we generate a "paragenetic map" of a subduction system, allowing us to track the fate of water during dehydration and subsequent re-hydration or melting reactions. Here we highlight the role of dehydration and re-hydration reactions occurring in the slab's igneous crust and mantle and the mantle wedge for different slab configuration hence presenting the evolution of a subduction paragenetic map for different regimes. We intend to show the key roles of a) antigorite and chlorite breakdown in the hydrated part of the slab mantle, b) amphibole and lawsonite in the slab crust, and c) the role of amphibole and chlorite in the mantle wedge. Our results show the crucial role of dehydration and re-hydration reactions on slab and mantle wedge melting potential.

  2. Os and HSE of the hot upper mantle beneath southern Tibet: Indian mantle affinity?

    Science.gov (United States)

    Zhao, Z.; Dale, C. W.; Pearson, D. G.; Niu, Y.; Zhu, D.; Mo, X.

    2011-12-01

    The subduction of the Indian plate (including cratonic continental crust and/or upper mantle) beneath southern Tibet is widely accepted from both geological and geophysical studies. Mantle-derived xenoliths from this region provide a means of directly investigating the mantle underlying the southern part of the plateau. Studies of xenoliths hosted in the Sailipu ultrapotassic volcanic rocks, erupted at ~17 Ma, have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). Here we report comprehensive EPMA and LA-ICP-MS major and trace element data for the Sailipu xenoliths and also whole rock Os isotope and HSE data in order to constrain the depletion history of the mantle and to identify the presence of any potential Indian cratonic mantle. The xenoliths, ranging in size from 0.5cm to 1.5cm in diameter, are mostly peridotites. The calculated temperatures are 1010-1230°C at the given pressures of ~1.6-2.0 GPa (n=47). These P-T conditions are similar to rift-related upper mantle regimes (e.g. Kenya), indicating the influence of regional extension beneath southern Tibet in the Miocene. A series of compositional discriminations for minerals (Cpx, Opx, Ol, and Phl), e.g. Fo ~91), with a clear metasomatic signature We obtained Os isotope data and abundances of highly siderophile elements (HSE, including Os, Ir, Ru, Pt, Pd and Re) on a set of six olivine-dominated peridotite samples from Sailipu volcanics, less than 1 cm in dimension. They allow us to further constrain the nature and state of the upper mantle beneath the southern Tibet. Sailipu samples display low total HSE abundances (Os+Ir+Ru+Pt+Pd+Re) ranging from 8.7 to 25 ppb, with nearly constant Os, Ir , and Ru, but rather varied Pt (2-13), Pd (0.4-5.2), and Re (0.01-0.5). Chondrite-normalised Pd/Ir ratios range from 0.2 to 2.4 reflecting significant metasomatism of some samples. The xenoliths exhibit 187Os/188Os

  3. First results of high-resolution modeling of Cenozoic subduction orogeny in Andes

    Science.gov (United States)

    Liu, S.; Sobolev, S. V.; Babeyko, A. Y.; Krueger, F.; Quinteros, J.; Popov, A.

    2016-12-01

    The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to 300 km shortening, the Earth's second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18°-35°S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.

  4. Comparing the effects of rheology on the dynamics and topography of 3D subduction-collision models

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2015-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. It is well known that they evolve differently from one another as the result of specific combinations of surface and mantle processes. The differences among the structures and evolutions of mountain belts arise for several reasons, such as different strengths of materials, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergence plates. All these possible controlling factors can change with space and time. Of all the mountain belts and orogenic plateaus, the most striking example is the India-Asia collision zone, which gave rise to the Himalayas and the Tibetan Plateau, the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of such a highly elevated region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed long-term 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the

  5. Deep vs. shallow expressions of continental cratons: Can cratonic roots be destroyed by subduction?

    Science.gov (United States)

    Perry-Houts, J.; Calo, M.; Eddy, C. L.; Guerri, M.; Holt, A.; Hopper, E.; Tesoniero, A.; Romanowicz, B. A.; Becker, T. W.; Wagner, L. S.

    2013-12-01

    Cratons are parts of continents that have remained tectonically quiescent over billion-year timescales. Although cratonic lithosphere has the stabilizing properties of chemical buoyancy and high viscosity, it can still be destroyed. The best known example of a missing cratonic root is beneath the eastern North China Craton (NCC). Despite strong evidence for the past existence of a craton in northern China, high heat flow, Mesozoic basin formation, extensive seismicity, and the lack of a fast seismic root imply that the deep cratonic lithosphere is missing. The mechanism for the lithospheric root loss is a source of much debate. Many mechanisms have been proposed, among them: shearing of the lithospheric root by asthenospheric flow induced by the Indo-Eurasian collision; ponding of the Pacific slab in the transition zone acting as a source of fluids that enable hydrous weakening; and thermal erosion due to the corner-flow upwelling of hot, deep material. It is generally agreed that the influence of subduction is key, both from the temporal coincidence of subduction with increased tectonomagmatic activity on the craton and from the spatial correlation of lithospheric loss adjacent to the Pacific trench. We investigate how cratons extend to depth through comparison between seismic signatures of the cratonic lithosphere in the upper mantle and surficial evidence of cratonic boundaries. We examine global and regional tomography, as well as receiver-function constraints on lithospheric thickness in the NCC. We define craton boundaries at the surface through analyses on crust and lithospheric mantle ages and kimberlite locations. We aim to identify regions where the fast cratonic root has been lost or altered beneath Archean and Proterozoic crust and in particular place constraints on the extent of the remaining cratonic root beneath North China. Given the common emphasis on the role of subduction as a driving force for the root loss beneath the eastern NCC, we focus on

  6. Earthquake nucleation in weak subducted carbonates

    NARCIS (Netherlands)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Chirstopher J.; Behrmann, Jan H.

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests

  7. Intermittent plate tectonics?

    Science.gov (United States)

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  8. Using paleomagnetism to expand the observation time window of plate locking along subduction zones: evidence from the Chilean fore-arc sliver (38°S - 42°S)

    Science.gov (United States)

    Hernandez-Moreno, Catalina; Speranza, Fabio; Di Chiara, Anita

    2017-04-01

    Fore-arc crustal motion has been usually addressed by the analysis of earthquake slip vectors and, since the last twenty years, by velocity fields derived from Global Positioning System (GPS) data. Yet this observation time window (few decades) can be significantly shorter than a complete seismic cycle or constrained to interseismic periods where the postseismic deformation release, the vicinity of other important faults, and the slip partitioning in oblique subduction may hinder the finite deformation pattern. Paleomagnetic data may yield finite rotations occurring since rock formation, thus provide a much longer observation time span in the order of millions or tens of millions of years. The cumulative permanent or nonreversing deformation in function of the considered geological formation age can represent the average over many seismic cycles, thus significantly complement "instantaneous" information derived from seismic and GPS data. With the aim of evaluate the strike-variation and evolution of the plate coupling along the Chilean subduction zone, here we report on the paleomagnetism of 43 Oligocene-Pleistocene volcanic sites from the fore-arc sliver between 38°S and 42°S. Sites were gathered west of the 1000 km long Liquiñe-Ofqui dextral fault zone (LOFZ) that represents the eastern fore-arc sliver boundary. Nineteen reliable sites reveal that the fore arc is characterized by counterclockwise (CCW) rotations of variable magnitude, except at 40°S - 41°S, where ultrafast (>50°/Myr) clockwise (CW) rotations occur within a 30 km wide zone adjacent to the LOFZ. CCW rotation variability (even at close sites) and rapidity (>10°/Myr) suggest that the observed block rotation pattern is related to NW-SE seismically active sinistral faults crosscutting the whole fore arc. According to previously published data, CW rotations up to 170° also occur east of the LOFZ and have been related to ongoing LOFZ shear. We suggest that the occurrence and width of the eastern

  9. Scales of mantle heterogeneity

    Science.gov (United States)

    Moore, J. C.; Akber-Knutson, S.; Konter, J.; Kellogg, J.; Hart, S.; Kellogg, L. H.; Romanowicz, B.

    2004-12-01

    A long-standing question in mantle dynamics concerns the scale of heterogeneity in the mantle. Mantle convection tends to both destroy (through stirring) and create (through melt extraction and subduction) heterogeneity in bulk and trace element composition. Over time, these competing processes create variations in geochemical composition along mid-oceanic ridges and among oceanic islands, spanning a range of scales from extremely long wavelength (for example, the DUPAL anomaly) to very small scale (for example, variations amongst melt inclusions). While geochemical data and seismic observations can be used to constrain the length scales of mantle heterogeneity, dynamical mixing calculations can illustrate the processes and timescales involved in stirring and mixing. At the Summer 2004 CIDER workshop on Relating Geochemical and Seismological Heterogeneity in the Earth's Mantle, an interdisciplinary group evaluated scales of heterogeneity in the Earth's mantle using a combined analysis of geochemical data, seismological data and results of numerical models of mixing. We mined the PetDB database for isotopic data from glass and whole rock analyses for the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR), projecting them along the ridge length. We examined Sr isotope variability along the East Pacific rise by looking at the difference in Sr ratio between adjacent samples as a function of distance between the samples. The East Pacific Rise exhibits an overall bowl shape of normal MORB characteristics, with higher values in the higher latitudes (there is, however, an unfortunate gap in sampling, roughly 2000 km long). These background characteristics are punctuated with spikes in values at various locations, some, but not all of which are associated with off-axis volcanism. A Lomb-Scargle periodogram for unevenly spaced data was utilized to construct a power spectrum of the scale lengths of heterogeneity along both ridges. Using the same isotopic systems (Sr, Nd

  10. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    Science.gov (United States)

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  11. Constraining central Neo-Tethys Ocean reconstructions with mantle convection models

    Science.gov (United States)

    Nerlich, Rainer; Colli, Lorenzo; Ghelichkhan, Siavash; Schuberth, Bernhard; Bunge, Hans-Peter

    2017-04-01

    A striking feature of the Indian Ocean is a distinct geoid low south of India, pointing to a regionally anomalous mantle density structure. Equally prominent are rapid plate convergence rate variations between India and SE Asia, particularly in Late Cretaceous/Paleocene times. Both observations are linked to the central Neo-Tethys Ocean subduction history, for which competing scenarios have been proposed. Here we evaluate three alternative reconstructions by assimilating their associated time-dependent velocity fields in global high-resolution geodynamic Earth models, allowing us to predict the resulting seismic mantle heterogeneity and geoid signal. Our analysis reveals that a geoid low similar to the one observed develops naturally when a long-lived back-arc basin south of Eurasia's paleomargin is assumed. A quantitative comparison to seismic tomography further supports this model. In contrast, reconstructions assuming a single northward dipping subduction zone along Eurasia's margin or models incorporating a temporary southward dipping intraoceanic subduction zone cannot sufficiently reproduce geoid and seismic observations.

  12. Crustal structure of the Carpathian orogen from receiver function analysis: how craton subduction and active delamination affect the crust

    Science.gov (United States)

    Petrescu, Laura; Tataru, Dragos; Grecu, Bogdan

    2017-04-01

    The Carpathian arc is an uncommon curved collisional system, involving the subduction of the Eastern European craton and the Proterozoic Moesian platform beneath younger European microplates. The Cenozoic collision led to the closure of the Tethys Oceanic basin, portions of which are actively breaking off or delaminating beneath the orogen, generating deep mantle earthquakes. Neogene volcanism, possibly related to subduction slab roll-back, also formed a band of presently extinct volcanoes in the back-arc region. The Carpathian embayment is thus an ideal laboratory to investigate crustal processes related to subduction of cratonic material, multiple plate junctions and active delamination. To better understand how the crustal structure changes from the Eastern European cratonic foreland, across the curved subduction zone, to the younger European microplates, we analyse teleseismic earthquakes recorded at broadband seismic stations located across eastern and southern Carpathians, in Romania and Moldova. We processed data from permanent seismic networks (The Romanian National Seismic Network) as well as data from temporary deployments such as CALIXTO (Carpathian Arc Lithosphere X-Tomography) and SCP (South Carpathian Project). Using extended multi-taper spectral division, we compute and analyse radial and transverse receiver functions. Energy on the transverse component may be an indicator of crustal anisotropy or the existence of intracrustal dipping interfaces. Using phase-weighted H-k stacking of receiver functions, we estimate the crustal thickness and the bulk crustal Poisson's ratio as well as the seismic sharpness of the Moho discontinuity. Furthermore, we invert receiver functions to obtain the S-wave velocity structure of the crust and upper mantle beneath individual stations, which provide concurrent information on the Moho nature. Our results provide a better understanding of crustal structure across complex collisional systems involving the subduction of

  13. Seismic coupling and uncoupling at subduction zones

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  14. Shear wave splitting as a tool to understand the interactions between oceanic plate tectonics and continental dynamics

    Science.gov (United States)

    Becker, Thorsten W.; Miller, Meghan S.; Faccenna, Claudio

    2013-04-01

    Subducting slabs are the major actors of oceanic-plate domain mantle convection, but their temporally variable pull and interaction with continental interiors strongly affect continental tectonics. We discuss how seismic anisotropy can be used jointly with global mantle flow models to constrain some of the governing, yet uncertain, parameters controlling such interactions. These include the relative strength of mantle rocks and the degree to which mantle heterogeneity, e.g. as imaged by tomography, actively drives mantle flow. To link geophysical and geological data, it is useful to consider global models with sufficient numerical resolution to allow for testing of regional geodynamic hypotheses, such as to the strength of plate boundaries and micro plate motions. Recent modeling and imaging results for the southeastern Caribbean, the Alboran/Atlas domain of northwest Africa, and the Middle East Afar/Arabia/Anatolia system show how anisotropy can help track the establishment of whole mantle convection cells, the extent of plume push and spreading, and continental keel-related channeling of asthenospheric currents.

  15. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow.

    Science.gov (United States)

    Hassan, Rakib; Müller, R Dietmar; Gurnis, Michael; Williams, Simon E; Flament, Nicolas

    2016-05-12

    Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin--probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  16. The Role of Deep Mantle Flow in Shaping the Hawaiian-Emperor Bend

    Science.gov (United States)

    Hassan, R.; Müller, D.; Gurnis, M.; Williams, S.; Flament, N. E.

    2016-12-01

    Age-progressive volcanic hotspot tracks are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin, potentially rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. The north Pacific features long-lasting subduction systems, unlike those in the south Pacific. We present palaeogeographically-constrained numerical models of thermochemical convection demonstrating that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 Ma and 50 Ma. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. We show that the different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 Ma and 50 Ma. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  17. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow

    Science.gov (United States)

    Hassan, Rakib; Müller, R. Dietmar; Gurnis, Michael; Williams, Simon E.; Flament, Nicolas

    2016-05-01

    Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth’s mantle. Seismic imaging reveals that these plumes can be of deep origin—probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  18. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared W.

    2016-01-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  19. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli A.; Kluesner, Jared W.

    2016-06-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a "depositionary forearc," a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  20. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  1. Subduction of shallowly formed arc cumulates: Evidence from clinopyroxene compositions of garnet peridotites in the Rio San Juan Complex, northern Dominican Republic

    Science.gov (United States)

    Hattori, K.; Tubrett, M.; Saumur, B.-M.; Guillot, S.

    2009-04-01

    Garnet peridotites are very rare in oceanic subduction complexes, with only two reported occurrences. One is in the Sambagawa metamorphic belt in Shikoku, Japan, and the other example is in the southern part of the Rio Juan Complex, northern Dominican Republic. In both locations, garnet peridotite occurs in close association with eclogites in high metamorphic grade of the terranes. The Rio Juan Complex represents rocks formed during the southwestern subduction of the Proto-Caribbean oceanic plate below the Carribean Plate during late Cretaceous to early Eocene. Garnet peridotites (clinopyroxene[Cpx]-bearing dunite, wehrlite, olivine clinopyroxenite) occur as large (The rocks are all low in Ir-group PGE (Ir, Ru, Os), indicating that they are cumulates of a melt, since these remain in the residue during partial melting. A cumulate origin of the ultramafic rocks is consistent with relatively low Mg contents of olivine (Fo 74-83) compared to olivine in mantle peridotites. Extended trace element plots of the bulk rocks show a so-called "arc geochemical signature" with high fluid-mobile element concentrations, such as Sr, U, and Pb, and low HFSE, such as Nb and Zr, indicating that formation of the parental magmas were related to subduction. Two representative garnet-bearing samples (wehrlite and clinopyroxenite) were selected for trace element analysis of Cpx grains using a LA HR ICP-MS. The data show a negatively sloped normalized pattern of REE; low contents of light REE (0.1-0.3 of the primitive mantle values) and similar concentrations of middle to heavy REE (1-2 of the primitive mantle values). Extended trace element patterns of Cpx are similar between two samples and also to that of the bulk rocks, with low Nb and Zr and high fluid-mobile elements. The Y and heavy REE patterns of Cpx do not show anomalies between the samples. As these elements would be preferentially incorporated into garnet, the lack of anomalies indicates early crystallization of Cpx and later

  2. Structure of the Upper Mantle and Mantle Transition Zone in Central Mongolia

    Science.gov (United States)

    Cui, Z.; Meltzer, A.; Stachnik, J.; Fischer, K. M.; Russo, R. M.; Munkhuu, U.; Baasanbat, T.

    2016-12-01

    Located between two major Archean cratons, the Siberian Craton to the north and the Tarim and Sino-Korean Cratons to the south, the lithosphere of Central Mongolia was constructed over an extended period of orogenesis associated with the Central Asian Orogenic Belt. Archean to Early Proterozoic basement was modified by accreted subduction complexes during the Paleozoic and early Mesozoic and basalt magmatism in the Cenozoic. Central and western Mongolia constitute a significant portion of the greater Mongolian plateau, an approximately 2.6 million km2area of Central Asia with an average elevation of 1500 meters. The high topography of the Mongolian Plateau has been attributed to far-field effects of India-Asia convergence, Pacific plate subduction, mantle plume activity, convective mantle flow, and magmatic underplating. The origin and persistence of continental plateaus through time provides insight into the evolution of continents and interactions between mantle dynamics and surface processes. As part of a larger interdisciplinary project to understand the origin of high topography in continental interiors we deployed 112 seismic broadband stations in central Mongolia as three separate subarrays in two separate mobilizations over a four year period (2012-2016). The stations extend from the Hovsgol rift in northern Mongolia, through the Hangay Dome, and into the Gobi Altai in southern Mongolia. We use S wave Receiver functions (SRF) to examine the lithosphere asthenosphere boundary and P wave Receiver functions (PRF) to investigate the mantle transition zone (MTZ). Preliminary SRF results from the subarray in the Hangay show lithospheric thinning and E-W variation. The LAB beneath the Hangay is 100km. It gradually thins to 90 km at the western end of the central Hangay and thins more abruptly to 80km at the eastern end of the central Hangay. These results are in agreement with results from joint inversion of receiver functions and surface waves and teleseismic

  3. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Implications for the Dynamics of Flat-Slabs

    Science.gov (United States)

    Eakin, Caroline; Long, Maureen; Beck, Susan; Wagner, Lara; Tavera, Hernando

    2014-05-01

    -slab anisotropy beneath all stations. Splitting is however is weakest and nulls most prevalent above the incoming Nazca Ridge where the slab is at its most shallow. This suggests the main source for the local S anisotropy may be from a thin mantle wedge layer sandwiched between the slab and upper plate. The deepest local S events sample a large volume of dipping slab material and provide increasing evidence for distinct anisotropy within the subducting slab itself that has fast polarizations parallel to the slab strike. Our detailed shear wave splitting study therefore reveals the presence of complex and multi-layered anisotropy across the Peruvian flat-slab region. We are able to characterize different sources of anisotropy in the sub-slab mantle, slab, asthenospheric wedge and the over-riding plate, each with their own implications for the regional subduction dynamics.

  4. Modeling Mantle Heterogeneity Development in Earth's Mantle Using Multidisciplinary Approaches

    Science.gov (United States)

    de Silva, S. M. S.; Finlayson, V.; Gu, T.; Li, M.; Lithgow-Bertelloni, C. R.; Cormier, V. F.

    2014-12-01

    The process of subduction provides continuous chemical and thermal heterogeneity to Earth's mantle. How heterogeneity is stirred, stretched and distributed depends on the detail of mantle convection as well as chemical and physical properties of mantle materials. Seismic observations have revealed heterogeneities in Earth's mantle at varying scales. Seismic velocities are controlled by physical parameters such as density, bulk modulus and shear modulus, which are a function of temperature, pressure and composition. Thus, understanding the origin of seismic heterogeneities play an important role in understanding the thermal and chemical state of the present Earth's mantle. Originating from the CIDER 2014 workshop, our goal is to take a multidisciplinary approach to tackle a variety of questions, foremost what length scales of heterogeneity might we expect from the convecting process and how do they manifest themselves in seismic imaging. This touches upon fundamental issues such as the composition of the mantle, the nature of stirring and mixing, and the nature of large-scale mantle upwellings (LLSVPs). We will investigate the development of heterogeneity in response to various compositions and redox states using existing and new thermochemical mantle convection simulations, and test the sensitivity of seismic measurements to different length scales of chemical heterogeneity. We try to reconcile large differences in length scales of heterogeneity as well as fractional perturbations of seismic velocity and density predicted by tomography and scattering seismic experiments. Preliminary results from the CIDER workshop initiate with conversion of geodynamic models to profiles of seismic velocity and density which are then taken as input models to predict multiply scattered, high frequency, P wave coda envelopes synthesized by a radiative transport technique. The predicted sensitivity of P coda envelopes to varying chemical compositions and heterogeneity length scales

  5. Subduction Zone Concepts and the 2010 Chile Earthqake (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    von Huene, Roland

    2010-05-01

    Knowledge of convergent margin systems evolved from hypothesis testing with marine geophysical technology that improved over decades. Wegener's drift hypothesis, Holmes mantle convection, and marine magnetic anomaly patterns were integrated into an ocean spreading concept that won wide acceptance after ocean drilling confirmed the crustal younging trend toward the Mid-Atlantic ridge. In contrast, the necessary disposal of oceanic and trench sediment at convergent margins remained largely hypothetical. Fresh interpretations of some coastal mountains as exposing ancient convergent margin rock assemblages and the seismologist's "Wadati-Benioff" zone were combined into a widely-accepted hypothesis. A convergent margin upper plate was pictured as an imbricate fan of ocean sediment thrust slices detached from the lower plate. During the 1980s ocean drilling to test the hypothesis revealed what then were counter-intuitive processes of sediment subduction and subduction erosion. Rather than the proposed seaward growth by accretion, many margins had lost material from erosion. In current concepts, individual margins are shaped by the net consequences of subduction accretion, sediment subduction, and subduction erosion. Similarly, recently acquired age data from ancient subduction complexes reveal periods dominated by accretion separated by periods dominated by tectonic erosion. Globally, the recycling of continental crustal material at subduction zones appears largely balanced by magmatic addition at volcanic arcs. The longevity of the original imbricate fan model in text books confirms its pictorial simplicity, because geophysical images and drill core evidence show that it commonly applies to only a relatively small frontal prism. A better understanding of convergent margin dynamics is of urgent societal importance as coastal populations increase rapidly and as recent disastrous earthquakes and tsunamis verify. The shift in convergent margin concepts has developed through

  6. Deflection of mantle flow controlled by slab-cratonic keel interactions: insights from shear-wave splitting in the southeastern Caribbean

    Science.gov (United States)

    Miller, M. S.; Becker, T. W.

    2012-12-01

    Subduction and recycling of oceanic lithosphere is a major control on the thermal evolution of the Earth. Cratonic continental lithosphere, conversely, can resist mechanical erosion for billions of years, moves coherently with plates, and deflects flow in the asthenosphere. We investigate the mechanical interactions between these two components of mantle convection in the Caribbean-South American plate margin which hosts a complex subduction system and continental transform fault adjacent to the Guyana Shield. Along the northern margin of the South American continent, shear-wave splitting measurements display anomalously large (1.5-2.5 s) delay times and fast polarization directions are oriented orthogonal to the Antilles trench and parallel to the transform plate boundary. Analysis of various seismological data, including seismicity, tomography, and SK(K)S splitting, and 176 global geodynamical models with lateral viscosity and density variations adapted to this unique region allow for quantitative testing of how mantle flow, as induced by the oceanic slab of the Antilles volcanic arc and mediated by a weak asthenosphere, is influenced by the stiff South American cratonic keel. We explore for the first time how slab-craton interactions affect tectonic force transmission to produce this narrow region of abnormally strong seismic anisotropy parallel to the coastline, change regional plate velocities, and localize intra-plate deformation.

  7. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  8. Subduction zone processes and continental crust formation in the southern Central Andes: insights from geochemistry and geochronology

    OpenAIRE

    Jones, Rosemary Ellen

    2014-01-01

    Subduction zones, such as the Andean convergent margin, are the sites at which new continental crust is generated, and where subducting material is either recycled to the crust via arc magmatism or transferred to the deep mantle. The composition of arc magmas and associated new continental crust reflects variable contributions from mantle, crustal and subducted reservoirs. Insights into crustal growth and recycling processes in the southern Central Andes, specifically in the ...

  9. Mantle flow and oceanic crust formation during the opening of the Tyrrhenian back-arc basin

    Science.gov (United States)

    Magni, Valentina

    2017-04-01

    The formation of the Tyrrhenian back-arc basin occurred through short-lived episodes of fast spreading alternated with periods of slow rifting. I present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, I explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. Moreover, the occurrence of collision results in the formation of two slab windows at the ocean-continent boundaries, which is in very good agreement with what is observed in the Central Mediterranean, nearby the Calabrian slab. During the evolution of the system the trench velocity shows pulses of fast trench retreat that last a few millions of years. This is associated with episodes of more intense melting of the asthenosphere rising at the back-arc basin. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  10. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch

    2004-05-15

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  11. Neoarchean Subduction Recorded in the Northern Mar