WorldWideScience

Sample records for subducting oceanic lithosphere

  1. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  2. Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust

    NARCIS (Netherlands)

    Edwards, Sarah J.; Schellart, Wouter P.; Duarte, Joao C.

    2015-01-01

    Continental subduction takes place in the final stage of subduction when all oceanic lithosphere is consumed and continental passive margin is pulled into the mantle. When the overriding plate is oceanic, dense forearc oceanic lithosphere might be obducted onto light continental crust forming an

  3. Breaking the oceanic lithosphere of a subducting slab: the 2013 Khash, Iran earthquake

    Science.gov (United States)

    Barnhart, William D.; Hayes, Gavin P.; Samsonov, S.; Fielding, E.; Seidman, L.

    2014-01-01

    [1] Large intermediate depth, intraslab normal faulting earthquakes are a common, dangerous, but poorly understood phenomenon in subduction zones owing to a paucity of near field geophysical observations. Seismological and high quality geodetic observations of the 2013 Mw7.7 Khash, Iran earthquake reveal that at least half of the oceanic lithosphere, including the mantle and entire crust, ruptured in a single earthquake, confirming with unprecedented resolution that large earthquakes can nucleate in and rupture through the oceanic mantle. A rupture width of at least 55 km is required to explain both InSAR observations and teleseismic waveforms, with the majority of slip occurring in the oceanic mantle. Combining our well-constrained earthquake slip distributions with the causative fault orientation and geometry of the local subduction zone, we hypothesize that the Khash earthquake likely occurred as the combined result of slab bending forces and dehydration of hydrous minerals along a preexisting fault formed prior to subduction.

  4. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Science.gov (United States)

    Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun

    2017-01-01

    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics. PMID:28691714

  5. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Science.gov (United States)

    Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun

    2017-07-01

    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60-100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120-160 km depth suggests that the slab's mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.

  6. Plate Tectonic Consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere

    CERN Document Server

    Heine, Christian; McKay, Hamish; Müller, R Dietmar

    2012-01-01

    The Banda Arc, situated west of Irian Jaya and in the easternmost extension of the Sunda subduction zone system, reveals a characteristic bowl-shaped geometry in seismic tomographic images. This indicates that the oceanic lithosphere still remains attached to the surrounding continental margins of northern Australia and the Bird's Head microcontinent. Major controversies exist between authors proposing an allochthonous or autochthonous origin of the Bird's Head block. Either scenario has important implications for plate kinematic models aiming to reconstruct the tectonic evolution of the region and the late Jurassic seaoor spreading geometry of this now subducted Argo-Tanimbar-Seram (ATS) ocean basin. Wider implications affect the tectonic conguration of the Tethyan-Pacic realm, the distribution of plate boundaries as well as the shape and size of continental blocks which have been rifted off the northeastern Gondwana margin during the Late Jurassic and are now accreted to the SE Asia margin. We apply structu...

  7. Subducting Plate Breakup by Plume-Lithosphere Interaction

    Science.gov (United States)

    Koptev, A.; Gerya, T.; Jolivet, L.; Leroy, S. D.

    2016-12-01

    We use a 3D high-resolution thermo-mechanical modeling to investigate the impact of active mantle plume on a subducting lithospheric plate. Initial model setup consists of an overriding continental lithosphere and subducting lithospheric plate including oceanic and continental lithosphere. A mantle plume thermal anomaly has been initially seeded at the bottom of the model box underneath the continental segment of subducting plate. Mantle plume impingement on lithospheric bottom leads to thinning of continental lithosphere and decompressional melting of both lithospheric and sublithospheric mantle along stretched trench-parallel zone. Further continental breakup is followed by opening of an oceanic basin separating a newly formed microcontinent from the main subducting continent. Despite continuous push applied at the boundary of subducting plate, plume-induced oceanic basin opens during several Myrs reaching several hundred kilometers wide. Cooling of the mantle plume and beginning of collision between the separated microcontinent and the overriding continental plate lead to gradual closure of newly formed oceanic basin that gets further involved into subduction and collision. The final stage sees continental subduction of main body of subducting plate and simultaneous tectonic exhumation of the upper crust of the subducted microcontinent. This scenario involving a plume-induced rifting of a microcontinent away from main body of subducted plate can be compared to the Mesozoic-Cenozoic development of the African plate characterized by the consecutive separation of the Apulian microcontinent and Arabian plate (in the Jurassic and the Neogene, respectively) during subduction of Neo-Tethys oceanic lithosphere beneath the Eurasian margin.

  8. Subduction-driven recycling of continental margin lithosphere.

    Science.gov (United States)

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  9. Evidence for retrograde lithospheric subduction on Venus

    Science.gov (United States)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Annular moats and outer rises around large Venus coronas such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronas on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronas while compensating back-arc extension is occurring in the expanding coronas interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of aestern Aphrodite Terra.

  10. The Geodynamics of Continental Lithosphere Entering a Subduction Zone

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.; Wu, F. T.

    2006-12-01

    As deformation patterns resulting from subduction of a passive continental margin are insufficiently understood, here we perform 2-D numerical simulations to explore the effects of continental lithosphere entering a subduction zone. The model setup consists of a subduction zone in which the oceanic part of a passive continental margin initially subducts beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel new feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study this feature is employed to study how crustal scale deformation around the subduction zone is influenced by surface processes and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography over time, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the strength of the lower crust; the amounts of erosion; imposed pushing versus density-driven (slab-pull and ridge- push) convergence; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. The results can be compared to evidence from areas such as Taiwan where continental subduction or convergence is thought to be happening. Preliminary results indicate that a low viscosity lower crust may contribute to crustal uplift.

  11. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden

    2013-07-01

    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  12. Reaction-induced rheological weakening enables oceanic plate subduction

    OpenAIRE

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite goug...

  13. Deformation Patterns and Subduction Behavior of Continental Lithosphere Entering a Trench

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.

    2007-05-01

    We perform 2-D numerical simulations of continental lithosphere entering a subduction zone, to better understand deformation patterns resulting from subduction of a continental margin. The model consists of a subduction zone in which an attached slab drives subduction of a passive continental margin beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study we employ this feature to study how lithospheric-scale deformation around and within the subduction zone is influenced by surface processes such as erosion, and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography and trench location, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the lithospheric age and temperature structure; the strength of the lower crust; the presence of a weak zone at the plate interface; the amounts of erosion; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. We find that the strength of the overriding plate influences surface uplift and the shape of subsurface deformation, and that the density and thermal structure of the subducting plate affects trench motion. Denser slab roll back, and younger, lighter slabs advance, while neither slab rheology nor the presence of erosion greatly affect trench location. For all cases

  14. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    Science.gov (United States)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  15. Vertically Integrated Rheology of Deforming Oceanic Lithosphere

    Science.gov (United States)

    Mishra, J. K.; Gordon, R. G.

    2011-12-01

    The tectonics of the oceans have traditionally been modeled in terms of rigid plates interacting at narrow boundaries. The now well-documented existence of diffuse oceanic plate boundaries, across which relative motion is distributed over hundreds to thousands of kilometers, demonstrates the need for a different approach to understanding the tectonics and geodynamics of a substantial fraction of oceanic lithosphere. A model that has usefully been applied to diffuse zones of continental deformation is that of a thin viscous sheet of fluid obeying a power-law rheology. The model has few adjustable parameters, typically a power-law exponent, n, and the Argand number [England & McKenzie, 1982], which is a measure of the size of buoyancy forces caused by the deformation, and which can be neglected for deformation of oceanic lithosphere. In prior investigations of a thin sheet of power-law fluid for continental regions, most studies have found that the most appropriate power-law exponent is ≈3 [e.g., England & Molnar 1991, 1997], but a value as large as ≈10 has been recently suggested by Dayem et al. [2009]. Because the rheology of oceanic lithosphere differs significantly from that of continental lithosphere, the most appropriate exponent may be larger than 3, and should in some sense be an appropriately weighted average between the properties of the upper lithosphere, which deforms brittlely and semi-brittlely, and for which the power-law exponent is n → ∞, and the lower lithosphere, which deforms by dislocation glide [Goetze 1978; Evans & Goetze 1979; Ratteron et al. 2003; Dayem et al. 2009; Mei et al. 2010], which obeys an exponential law, and by dislocation creep for which n≈3 [Sonder & England, 1986]. To estimate the appropriate power-law exponent consistent with laboratory experiments we determine strain rate as a function of applied end load on the lithosphere for various ages of lithosphere. We find that a power-law fluid well approximates the

  16. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta

  17. On the Yield Strength of Oceanic Lithosphere

    Science.gov (United States)

    Jain, Chhavi; Korenaga, Jun; Karato, Shun-ichiro

    2017-10-01

    The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of Mei et al. (2010) with a comprehensive inversion approach based on Markov chain Monte Carlo sampling. Our inversion results indicate that the uncertainty of the relevant flow law parameters is considerably greater than previously thought. Depending on the choice of flow law parameters, the strength of oceanic lithosphere would vary substantially, carrying different implications for the origin of plate tectonics on Earth. To reduce the flow law ambiguity, we suggest that it is important to establish a theoretical basis for estimating macroscopic stress in high-pressure experiments and also to better utilize marine geophysical observations.

  18. Reaction-induced rheological weakening enables oceanic plate subduction.

    Science.gov (United States)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  19. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics

    NARCIS (Netherlands)

    Chertova, M.V.; Geenen, T.; van den Berg, A.; Spakman, W.

    2012-01-01

    Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free

  20. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    OpenAIRE

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    2017-01-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distribut...

  1. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology.

    Science.gov (United States)

    Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin

    2016-11-22

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  2. Global equivalent magnetization of the oceanic lithosphere

    Science.gov (United States)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  3. Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction

    Science.gov (United States)

    Spencer, J.E.

    1996-01-01

    The Colorado Plateau is blanketed by Phanerozoic marine and nonmarine strata as young as Cretaceous that are now exposed at elevations of about 2 km. Crustal thickening due to magmatism and horizontal crustal shortening was far less than necessary to cause this uplift, which is commonly attributed to the consequences of mantle lithosphere thinning and heating. The Colorado Plateau and the midcontinent region around Iowa consist of Precambrian bedrock overlain by a similar amount of Paleozoic platformal strata, and thus both regions once had similar lithospheric buoyancy. Mesozoic sedimentation increased the crustal thickness and lithospheric buoyancy of the Colorado Plateau relative to the midcontinent region. Backstripping calculations yield elevation without these sediments and lead to a calculated elevation difference between the two areas of about 1200 m, which represents unexplained plateau uplift. Review of constraints on uplift timing finds little support for a late Cenozoic uplift age and allows early to middle Cenozoic uplift, which is consistent with uplift mechanisms related to low-angle subduction that ended in the middle Cenozoic. Finite element heat flow calculations of low-angle subduction and lithosphere attenuation, using a range of initial lithosphere thicknesses and degree of attenuation, indicate that required uplift can result from tectonic removal of about 120 km of mantle lithosphere from an initially 200-km-thick lithosphere. This allows for partial preservation of North American mantle lithosphere with its distinctive isotopic signature in some late Cenozoic volcanic rocks and is consistent with normal Pn velocities in the uppermost mantle beneath the plateau.

  4. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision [rapid communication

    Science.gov (United States)

    Song, Shuguang; Zhang, Lifei; Niu, Yaoling; Su, Li; Jian, Ping; Liu, Dunyi

    2005-05-01

    We report the results of a comprehensive study of zircons separated from the Lüliangshan peridotite massif within the 400-km-long North Qaidam UHPM belt, northern Tibetan Plateau, NW China. The peridotite massif is dominated by garnet lherzolite with minor amounts of interlayered garnet-bearing dunite and cross-cutting garnet pyroxenite dikes. Most zircons from the garnet lherzolite show rather complex zoning. One diamond and a few graphite inclusions are identified in some zircons by Raman spectroscopy. SHRIMP dating on these zircons show four major age groups: (a) 484-444 Ma (weighted mean age, 457 ± 22 Ma) for cores of most crystals, whose morphology and rare earth element (REE) systematics (i.e., very high [Lu / Sm] CN = 88-230) suggest a magmatic origin, consistent with the protolith being magmatic cumulate; (b) 435-414 Ma with a mean of 423 ± 5 Ma, which, given by mantle portions of zircon crystals, is interpreted to record the event of ultrahigh-pressure metamorphism (UHPM) at depths greater than 200 km in an Andean-type subduction zone; (c) 402-384 Ma (mean age 397 ± 6 Ma) for near-rim portions of zircon crystals; and (d) 368-349 Ma for outermost rims, which is interpreted as representing some post-orogenic thermal events. Inherited cores in two zircon crystals were identified using CL and found to be Proterozoic. Morphology and CL images show that zircons from dunite and garnet pyroxenite are of metamorphic origin. The mean age of dunite zircons is 420 ± 5 Ma, which overlaps the mantle age of the garnet lherzolite zircon (see (b) above). The mean age of garnet pyroxenite zircons is 399 ± 8 Ma, which overlaps ages of near-rim domains in garnet lherzolite zircons (see (c) above). Some garnet pyroxenite zircons also recorded a retrograde event at 358 ± 7 Ma. All these data suggest that the Lüliangshan garnet peridotite massif is not a fragment of ancient lithospheric mantle, but a peridotite body with long and complex histories from Early Ordovician

  5. Reconstructions of subducted ocean floor along the Andes: a framework for assessing Magmatic and Ore Deposit History

    Science.gov (United States)

    Sdrolias, M.; Müller, R.

    2006-05-01

    The South American-Antarctic margin has been characterised by numerous episodes of volcanic arc activity and ore deposit formation throughout much of the Mesozoic and Cenozoic. Although its Cenozoic subduction history is relatively well known, placing the Mesozoic arc-related volcanics and the emplacement of ore bodies in their plate tectonic context remains poorly constrained. We use a merged moving hotspot (Late Cretaceous- present) and palaeomagnetic /fixed hotspot (Early Cretaceous) reference frame, coupled with reconstructed spreading histories of the Pacific, Phoenix and Farallon plates to understand the convergence history of the South American and Antarctic margins. We compute the age-area distribution of oceanic lithosphere through time, including subducting oceanic lithosphere and estimate convergence rates along the margin. Additionally, we map the location and migration of spreading ridges along the margin and relate this to processes on the overriding plate. The South American-Antarctic margin in the late Jurassic-early Cretaceous was dominated by rapid convergence, the subduction of relatively young oceanic lithosphere (Verdes" in southern South America. The speed of subduction increased again along the South American-Antarctic margin at ~105 Ma after another change in tectonic regime. Newly created crust from the Farallon-Phoenix ridge continued to be subducted along southern South America until the cessation of the Farallon-Phoenix ridge in the latest Cretaceous / beginning of the Cenozoic. The age of the subducting oceanic lithosphere along the South American-Antarctic margin has increased steadily through time.

  6. Structure and evolution of subducted lithosphere beneath the Sunda arc, Indonesia

    NARCIS (Netherlands)

    Widiyantoro, Sri; Hilst, R.D. van der

    1996-01-01

    Tomographic imaging reveals seismic anomalies beneath the Sunda island arc, Indonesia, that suggest that the lithospheric slab penetrates to a depth of at least 1500 kilometers. The Sunda slab forms the eastern end of a deep anomaly associated with the past subduction of the plate underlying the

  7. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America

    NARCIS (Netherlands)

    Hilst, R.D. van der; Mann, P.

    1994-01-01

    We used seismic tomography to investigate the complex structure of the upper mantle below northwestern South America. Images of slab structure not delineated by previous seismicity studies help us to refine existing tectonic models of subducted Caribbean-Pacific lithosphere beneath the study area.

  8. Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

    NARCIS (Netherlands)

    Hunen, Jeroen van

    2001-01-01

    Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling

  9. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe; de Gelder, Giovanni; van der Goes, Freek; Morris, Antony

    2017-04-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Supra-subduction zone (SSZ) ophiolites (i.e., emerged fragments of ancient oceanic lithosphere accreted at supra-subduction spreading centers) were generated during this subduction event, and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Current models associate these ophiolite belts to simultaneous initiation of multiple, E-W trending subduction zones at 95 Ma. Here we report paleospreading direction data obtained from paleomagnetic analysis of sheeted dyke sections from seven Neo-Tethyan ophiolites of Turkey, Cyprus, and Syria, demonstrating that these ophiolites formed at NNE-SSW striking ridges parallel to the newly formed subduction zones. This subduction system was step-shaped and composed of NNE-SSW and ESE-WNW segments. The eastern subduction segment invaded the SW Mediterranean, leading to a radial obduction pattern similar to the Banda arc. Emplacement age constraints indicate that this subduction system formed close to the Triassic passive and paleo-transform margins of the Anatolide-Tauride continental block. Because the original Triassic-Jurassic Neo-Tethyan spreading ridge must have already subducted below the Pontides before the Late Cretaceous, we infer that the Late Cretaceous Neo-Tethyan subduction system started within ancient lithosphere, along NNE-SSW oriented fracture zones and faults parallel to the E-W trending passive margins. This challenges current concepts suggesting that subduction initiation occurs along active intra-oceanic plate boundaries.

  10. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  11. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  12. Perovskite inclusions in deep mantle diamonds and the fate of subducted lithosphere

    Science.gov (United States)

    Walter, Michael; Armstrong, Lora

    2010-05-01

    Sublithospheric diamonds are typically Type II, frequently exhibit complex zoning, and sometimes contain mineral inclusions that can potentially reveal deep mantle lithologies and petrologic processes. A considerable number of these diamonds contain inclusions with elemental stoichiometries consistent with transition zone (e.g. majoritic garnet, Ca-perovskite) and lower mantle phases (e.g. Mg-perovskite, Ca-perovskite, (Mg,Fe)-periclase) [1]. Ca-rich perovskites, some containing considerable CaTiO3 component, almost invariably have very low Mg contents, unlike what would be expected in solid lower mantle peridotitic or basaltic lithologies, but have elevated incompatible elements abundances that almost certainly indicate crystallization from a low-degree Ca-rich partial melt [2,3]. High-Ca majoritic garnets also have both major and trace element characteristics indicating the role of low-degree, Ca-rich partial melts [3,4], and in some cases calculated melts likely formed in subducted oceanic crust or lithosphere [3]. Given that diamond crystallized syngenetically with the inclusions, crystallization from carbonated melts is implicated. The reducing conditions expected in the ambient transition zone and lower mantle [5] could promote reduction of the carbonate component in slab-derived, carbonated (oxidized), partial melts. Reduction can lead to diamond and perovskite crystallization from the melt, possibly with H2O as a by-product through a reaction such as: CaCO3 (melt) + SiO2(melt-solid) + CH4(fluid-melt)= CaSiO3(melt-solid)) + 2H2O(melt) + 2Cdiamond Mg-perovskite could crystallize via a similar reaction involving the MgCO3 component of the melt. We speculate that when subducted slabs stall at the base of the transition zone, they may heat up and release low-degree carbonated melts [6]. Such melts may migrate, crystallize and metasomatize the ambient mantle. Trace element abundances in some kimberlites are remarkably similar to liquids that could have coexisted

  13. Dehydration reactions in subducting oceanic crust: implications for arc volcanism

    Science.gov (United States)

    Forneris, J. F.; Holloway, J. R.

    2003-04-01

    In subduction zones, oceanic lithosphere progressively dehydrates as it sinks deep into the underlying mantle. Fluids released from the subducting slab are thought to trigger partial melting in the overlying mantle wedge, leading to the formation of volcanic arcs. Experiments were conducted in the ranges of 2.2--3.4 GPa (70 to 100 km) and 625--750^oC to determine the dehydration reactions that control fluid release from the basaltic layer of the subducting slab. The experimental duration was typically one month, although some experiments were replicated with a shorter run duration (one to two weeks) in order to identify potentially metastable phases. A mixture of a natural mid-ocean ridge basalt glass and mineral seeds was used as the starting material. Oxygen fugacity was buffered within ±1.3 log units of nickel-bunsenite (NiNiO). The results obtained indicate that the transformation of a hydrated eclogite into a nominally dry eclogite occurs through the decomposition of three hydrous phases: amphibole, lawsonite, and zoisite. Chloritoid, a mineral described as an H_2O carrier in previous experimental studies, is found to be metastable in the examined pressure-temperature (P-T) range and therefore should not be involved in the global fluid release from the basaltic crust. A detailed chemical analysis reveals that amphiboles are sodic-calcic (barroisite) at low pressures (2.2 to 2.4 GPa), but become sodic (glaucophane) with increasing pressure. This observation is the first experimental confirmation of the high-pressure stability of glaucophane in metabasalt compositions. At pressures above the stability field of amphibole, zoisite/clinozoisite becomes the stable hydrous phase at temperatures above 645^oC, whereas lawsonite is stable at lower temperatures. H_2O contents of eclogitic assemblages have been estimated based on modal abundance of minerals calculated from electron microprobe analyses. These results indicate that a slab following an intermediate

  14. The effects of the overriding plate thermal state on the slab dip in an ocean-continent subduction system

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1016/j.crte.2011.01.005

    2011-01-01

    To evaluate the effects of variations in the thermal state of the overriding plate on the slab dip in an ocean-continent subduction system, a 2-D finite element thermo-mechanical model was implemented. The lithosphere base was located at the depth of the 1600 K isotherm. Numerical simulations were performed while taking into account four different initial thicknesses for the oceanic lithosphere (60, 80, 95 and 110 km) and five different thicknesses of the overriding plate, as compared in terms of the continental-oceanic plate thickness ratio (100, 120, 140, 160 and 200% of the oceanic lithosphere thickness). The results of numerical modeling indicate that a high variability of the subducting plate geometry occurs for an oceanic lithosphere thickness ranging from 60 to 80 km, while the variability decreases where the oceanic plates are thicker (95 and 110 km). Furthermore, the slab dip strongly depends on the thermal state of the overriding plate, and, in particular, the slab dip decreases with the increase in...

  15. Phase change in subducted lithosphere, impulse, and quantizing Earth surface deformations

    Science.gov (United States)

    Bowin, C. O.; Yi, W.; Rosson, R. D.; Bolmer, S. T.

    2015-09-01

    The new paradigm of plate tectonics began in 1960 with Harry H. Hess's 1960 realization that new ocean floor was being created today and is not everywhere of Precambrian age as previously thought. In the following decades an unprecedented coming together of bathymetric, topographic, magnetic, gravity, seismicity, seismic profiling data occurred, all supporting and building upon the concept of plate tectonics. Most investigators accepted the premise that there was no net torque amongst the plates. Bowin (2010) demonstrated that plates accelerated and decelerated at rates 10-8 times smaller than plate velocities, and that globally angular momentum is conserved by plate tectonic motions, but few appeared to note its existence. Here we first summarize how we separate where different mass sources may lie within the Earth and how we can estimate their mass. The Earth's greatest mass anomalies arise from topography of the boundary between the metallic nickel-iron core and the silicate mantle that dominate the Earth's spherical harmonic degree 2 and 3 potential field coefficients, and overwhelm all other internal mass anomalies. The mass anomalies due to phase changes in olivine and pyroxene in subducted lithosphere are hidden within the spherical harmonic degree 4-10 packet, and are an order of magnitude smaller than those from the core-mantle boundary. Then we explore the geometry of the Emperor and Hawaiian seamount chains and the 60° bend between them that aids in documenting the slow acceleration during both the Pacific Plate's northward motion that formed the Emperor seamount chain and its westward motion that formed the Hawaiian seamount chain, but it decelerated at the time of the bend (46 Myr). Although the 60° change in direction of the Pacific Plate at of the bend, there appears to have been nary a pause in a passive spreading history for the North Atlantic Plate, for example. This, too, supports phase change being the single driver for plate tectonics and

  16. On the initiation of subduction

    Science.gov (United States)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  17. Experimental Determination of Chloritoid Stability in Subducting Oceanic Crust

    Science.gov (United States)

    Forneris, J.; Holloway, J. R.

    2001-12-01

    Dehydration of subducting oceanic lithosphere is the key process for understanding arc magma generation and transport of H2O into the mantle. To establish when and how H2O may be released from the slab into the overlying mantle it is necessary to determine the stability of hydrous phases in the subducting lithosphere. In the past 10 years, experimental investigations of phase relationships in basaltic compositions representing the crustal component of the slab have led to controversial results. Results obtained by Schmidt and Poli (1998) and Pawley and Holloway (1993) on basaltic compositions under H2O saturated conditions showed the potential importance of hydrous phases other than amphibole (such as chloritoid, epidote and lawsonite) in the dehydration process. However, these results are in disagreement with the experiments of Liu et al. (1996), which showed that no hydrous phases are stable beyond the amphibole breakdown reaction at or above 650° C. In our study, piston-cylinder experiments were conducted between 2.2 GPa and 2.8 GPa at 650° C. The starting material consisted of a natural basaltic glass with blueschist/eclogite seeds and H2O. Samples were pressure-sealed in a thick-walled silver capsule with a gold lining designed to prevent hydrogen diffusion in long-duration experiments. The oxygen fugacity was fixed at or near Ni+NiO. These experiments have been focused on determining the stability field of chloritoid by running long-duration experiments (up to 1 month). Our results are in agreement with results by Liu et al. (1996): Chloritoid appears in short-duration runs (144 hours or less at 2.6 GPa and 650° C) but is not present in longer-duration experiments (696 hours or more under the same conditions). The amphiboles obtained in our run products have a glaucophane composition and seem to be stable up to higher pressures (at least 2.6 GPa) than the more calcic amphiboles obtained by the three other groups. Epidote/zoisite is present up to at least

  18. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    DEFF Research Database (Denmark)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.

    2016-01-01

    , there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. Themodel derived from more than 12 years of satellite data reveals...

  19. Plate coupling across the northern Manila subduction zone deduced from mantle lithosphere buoyancy

    Science.gov (United States)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2017-12-01

    The Manila subduction zone is located at the plate boundary where the Philippine Sea plate (PSP) moves northwestward toward the Eurasian plate (EU) with a high convergence rate. However, historically, no large earthquakes greater than Mw7 have been observed across the northern Manila subduction zone. The poorly understood plate interaction between these two plates in this region creates significant issues for evaluating the seismic hazard. Therefore, the variation of mantle lithospheric buoyancy is calculated to evaluate the plate coupling status across the northern Manila subduction zone, based on recently published forward gravity modeling constrained by the results of the P-wave seismic crustal structure of the TAIGER (Taiwan Integrated Geodynamic Research) project. The results indicate weak plate coupling between the PSP and EU, which could be related to the release of the overriding PSP from the descending EU's dragging force, which was deduced from the higher elevation of the Luzon arc and the fore-arc basin northward toward the Taiwan orogen. Moreover, serpentinized peridotite is present above the plate boundary and is distributed more widely and thickly closer to offshore southern Taiwan orogen. We suggest that low plate coupling may facilitate the uplifting of serpentinized mantle material up to the plate boundary.

  20. Subducted oceanic relief locks the shallow megathrust in central Ecuador

    Science.gov (United States)

    Collot, Jean-Yves; Sanclemente, Eddy; Nocquet, Jean-Mathieu; Leprêtre, Angélique; Ribodetti, Alessandra; Jarrin, Paul; Chlieh, Mohamed; Graindorge, David; Charvis, Philippe

    2017-05-01

    Whether subducted oceanic reliefs such as seamounts promote seismic rupture or aseismic slip remains controversial. Here we use swath bathymetry, prestack depth-migrated multichannel seismic reflection lines, and wide-angle seismic data collected across the central Ecuador subduction segment to reveal a broad 55 km × 50 km, 1.5-2.0 km high, low height-to-width ratio, multipeaked, sediment-bare, shallow subducted oceanic relief. Owing to La Plata Island and the coastline being located, respectively, 35 km and 50-60 km from the trench, GPS measurements allow us to demonstrate that the subducted oceanic relief spatially correlates to a shallow, 80 km × 55 km locked interplate asperity within a dominantly creeping subduction segment. The oceanic relief geometrical anomaly together with its highly jagged topography, the absence of a subduction channel, and a stiff erosive oceanic margin are found to be long-term geological characteristics associated with the shallow locking of the megathrust. Although the size and level of locking observed at the subducted relief scale could produce an Mw >7+ event, no large earthquakes are known to have happened for several centuries. On the contrary, frequent slow slip events have been recorded since 2010 within the locked patch, and regular seismic swarms have occurred in this area during the last 40 years. These transient processes, together with the rough subducted oceanic topography, suggest that interplate friction might actually be heterogeneous within the locked patch. Additionally, we find that the subducted relief undergoes internal shearing and produces a permanent flexural bulge of the margin, which uplifted La Plata Island.

  1. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    Science.gov (United States)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  2. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric|info:eu-repo/dai/nl/270177493; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624; Morris, Antony; Plümper, Oliver|info:eu-repo/dai/nl/37155960X; Spakman, Wim|info:eu-repo/dai/nl/074103164

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  3. Lithospheric expression of cenozoic subduction, mesozoic rifting and the Precambrian Shield in Venezuela

    Science.gov (United States)

    Masy, Jeniffer; Niu, Fenglin; Levander, Alan; Schmitz, Michael

    2015-01-01

    We have combined surface wave tomography with Ps and Sp receiver-function images based on common-conversion-point (CCP) stacking to study the upper mantle velocity structure, particularly the lithosphere-asthenosphere boundary (LAB), beneath eastern and central Venezuela. Rayleigh phase velocities in the frequency range of 0.01-0.05 Hz (20-100 s in period) were measured using the two-plane-wave method and finite-frequency kernels, and then inverted on a 0.5° × 0.5° grid. The phase velocity dispersion data at grid points were inverted for 1D shear velocity profiles using initial crust-mantle velocity models constructed from previous studies. The 3D velocity model and receiver-function images were interpreted jointly to determine the depth of the LAB and other upper mantle features. The tomographic images revealed two high velocity anomalies extending to more than ∼200 km depth. One corresponds to the top of the subducting Atlantic plate beneath the Serrania del Interior. The other anomaly is a highly localized feature beneath the Maturin Basin. The LAB depth varies significantly in the study region: It is located at ∼110 km depth beneath the Guayana Shield, and reaches ∼130 km at the northern edge of the Maturin Basin, which might be related to the downward flexural bending due to thrust loading of the Caribbean plate and pull from the subducting Atlantic plate. Immediately to the west, the lithosphere is thin (∼50-60 km) along the NE-SW trending Espino Graben from the Cariaco basin to the Orinoco River at the northern edge of the craton. The LAB in this region is the top of a pronounced low velocity zone. Westward, the lithosphere deepens to ∼80 km depth beneath the Barinas Apure Basin, and to ∼90 km beneath the Neogene Merida Andes and Maracaibo block. Both upper mantle velocity structure and lithosphere thickness correlate well with surface geology and are consistent with northern South American tectonics.

  4. Subduction of oceanic plate irregularities and seismicity distribution along the Mexican Subduction Zone

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Gerya, Taras; Wong, Raul-Valenzuela; Radulian, Mircea

    2017-04-01

    It is known that oceanic plates morphology is not a simple one, but rather complicated by a series of irregularities as seamounts, fracture zones and mid-ocean ridges. These features present on the oceanic floor form part of the fabric of oceanic crust, and once formed they move together with the oceanic plates until eventually enter a subduction zone. Offshore Mexico the oceanic Cocos plate seafloor is littered with relatively small but numerous seamounts and seamount chains, and also large fracture zones. In this study we investigate the relationship between these oceanic irregularities located in the vicinity of the trench in Mexico and the distribution of subduction seismicity, including the rupture history of large subduction zone earthquakes. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Our preliminary study shows a direct relationship between the presence of seamounts chains on the incoming oceanic plate and the subduction seismicity distribution. We also found a clear relationship between the subduction of the Tehuantepec fracture zone (TFZ) and the low seismic activity in the region where this fracture zone intersects the trench. This region is also long term conspicuously quiet and considered a seismic gap where no significant large earthquake has occurred in more than 100 years. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Cocos plate in the region of TFZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy. The presence of serpentinite in the fore arc apparently lowers the degree of interseismic locking, producing a seismic gap in southern Mexico.

  5. Plume-induced subduction

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  6. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    Science.gov (United States)

    Choy, George; McGarr, A.

    2002-01-01

    of τa for the two types. Secondly, many of the intraplate events have focal mechanisms with the T-axes that are normal to the nearest ridge crest or subduction zone and P-axes that are normal to the proximate transform fault. These observations suggest that forces associated with the reorganization of plate boundaries play an important role in causing high-τa earthquakes inside oceanic plates. Extant transform boundaries may be misaligned with current plate motion. To accommodate current plate motion, the pre-existing plate boundaries would have to be subjected to large horizontal transform push forces. A notable example of this is the triple junction near which the second large aftershock of the 1992 April Cape Mendocino, California, sequence occurred. Alternatively, subduction zone resistance may be enhanced by the collision of a buoyant lithosphere, a process that also markedly increases the horizontal stress. A notable example of this is the Aleutian Trench near which large events occurred in the Gulf of Alaska in late 1987 and the 1998 March Balleny Sea M= 8.2 earthquake within the Antarctic Plate.

  7. Formation and metasomatism of continental lithospheric mantle in intra-plate and subduction-related tectonic settings

    Science.gov (United States)

    Ionov, Dmitri

    2010-05-01

    , major and trace element and isotope compositions of fertile lherzolites and thus cannot provide viable alternatives to the concept of melt extraction from pristine mantle as the major mechanism of CLM formation. Published data on xenoliths from andesitic volcanoes and on supra-subduction oceanic peridotites [4] show that the most common rocks in mantle wedge lithosphere are highly refractory harzburgites characterized by a combination of variable but generally high modal opx (18-30%) with very low modal cpx (1.5-3%). At a given olivine (or MgO) content, they have higher opx and silica, and lower cpx, Al and Ca contents than normal refractory peridotite xenoliths in continental basalts; the Mg-Si and Al-Si trends in those rocks resemble those in cratonic peridotites. These features may indicate either fluid fluxing during melting in the mantle wedge or selective post-melting metasomatic enrichments in silica to transform some olivine to opx. High oxygen fugacities and radiogenic Os-isotope compositions in those rocks may be related to enrichments by slab-derived fluids, but these features are not always coupled with trace element enrichments or patterns commonly attributed to "subduction zone metasomatism" deduced from studies of arc volcanic rocks and experiments. The valuable insights provided by experimental work and xenolith case studies are difficult to apply to many natural peridotite series because late-stage processes commonly overlap the evidence for initial melting. References: [1] Herzberg C., J. Petrol. 45: 2507 (2004). [2] Ionov D. & Sobolev A., GCA 72 (S1): A410 (2008). [3] Ionov D., Contrib. Miner. Petrol. (2007) [4] Ionov D., J. Petrol. doi: 10.1093/petrology/egp090 (2010)

  8. Processes and consequences of deep subduction

    NARCIS (Netherlands)

    Rubie, David C.; Hilst, R.D. van der

    2001-01-01

    Subduction of slabs of oceanic lithosphere into the deep mantle involves a wide range of geophysical and geochemical processes and is of major importance for the physical and chemical evolution of the Earth. For example, subduction and subduction-related volcanism are major processes through

  9. “Imaging” the cross section of oceanic lithosphere: The development and future of electrical microresistivity logging through scientific ocean drilling

    Science.gov (United States)

    Tominaga, Masako

    2013-11-01

    A detailed understanding of the architecture of volcanic and magmatic lithologies present within the oceanic lithosphere is essential to advance our knowledge of the geodynamics of spreading ridges and subduction zones. Undertaking sub-meter scale observations of oceanic lithosphere is challenging, primarily because of the difficulty in direct continuous sampling (e.g., by scientific ocean drilling) and the limited resolution of the majority of geophysical remote sensing methods. Downhole logging data from drillholes through basement formations, when integrated with recovered core and geophysical remote sensing data, can provide new insights into crustal accretion processes, lithosphere hydrogeology and associated alteration processes, and variations in the physical properties of the oceanic lithosphere over time. Here, we introduce an alternative approach to determine the formation architecture and lithofacies of the oceanic sub-basement by using logging data, particularly utilizing downhole microresistivity imagery (e.g. Formation MicroScanner (FMS) imagery), which has the potential to become a key tool in deciphering the high-resolution internal architecture of the intact upper ocean crust. A novel ocean crust lithostratigraphy model based on meticulously deciphered lava morphology determined by in situ FMS electrofacies analysis of holes drilled during Ocean Drilling Program legs (1) advances our understanding of ocean crust formation and accretionary processes over both time and space; and (2) allows the linking of local igneous histories deciphered from the drillholes to the regional magmatic and tectonic histories. Furthermore, microresistivity imagery can potentially allow the investigation of (i) magmatic lithology and architecture in the lower ocean crust and upper mantle; and, (ii) void space abundances in crustal material and the determination of complex lithology-dependent void geometries.

  10. The characteristics of mantle lithosphere buoyancy revealed from the northern Manila subduction zone to the active collision in Taiwan region

    Science.gov (United States)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun; Lin, Jing-Yi

    2017-04-01

    It has been widely studied on the complexity tectonic structure in the active Taiwan orogenesis, since the converging between the Philippine Sea plate (PSP) and the Eurasian plate (EU) along with the Manila subduction zone extended from the Philippine to offshore the southern Taiwan and the Ryukyu subduction zone in the east. Considering the separate contribution of the crust and the mantle lithosphere to the topography, we try to examine the mantle lithosphere buoyancy (Hm) behavior from the northern Manila subduction zone to the active collision in Taiwan region. In this study, we present several Hm profiles across the northern Manila subduction zone and the Taiwan island. In order to calculate the Hm, the crust structures are constrained by the forward gravity modeling, in which the density is provided from the multi-channel seismic data and on land seismic data (thanks to the Taiwan Integrated Geodynamic Research (TAIGER) project). The result shows that the Hm across the northern Manila subduction zone displays apparent undulations, and undulates more drastic approaching the north end of the subduction zone. It implies that the plate coupling between the PSP and the EU here is weak. The Hm across the southern Taiwan undulates still, but the amplitudes are smaller with relative gentle undulations. This reflects the contribution from the slab underneath while the initial collision occurs in south Taiwan. Into the central Taiwan, the Hm pattern behaves undulating mild comparing with that across the subduction zone because the slab structure effects not obvious. Besides, the Hm in the central Taiwan primarily is affects by both the thickening crust and high elevation caused by the strong lateral external compression stress.

  11. The role of hydrothermal cooling of the oceanic lithosphere for ocean floor bathymetry and heat flow

    Science.gov (United States)

    Schmeling, Harro; Marquart, Gabriele; Nawa, Viktor

    2017-05-01

    We investigate the influence of hydrothermal circulation on cooling of oceanic lithosphere. We include hydrothermal convection in a 1-D lithosphere cooling model by using a scaling law which relates the Rayleigh to the Nusselt number. This law allows calculating an effective thermal conductivity accounting for the extra heat transport. Based on a global data set for bathymetry and surface heat flow for ocean floor ages between 0.7 and 160 Ma, we perform a joint inversion based on a downhill simplex algorithm to constrain characteristic parameters for hydrothermal cooling (beside the classical parameter mantle temperature, thickness of the lithosphere, and thermal expansivity of lithosphere rocks). Hydrothermal cooling parameters are crack aspect ratio which controls the hydrothermal penetrations depth, characteristic cementation time at which cracks become closed and hydrothermal circulation ceases, and sealing time when enough sedimentary cover on top of the lithosphere has accumulated to prevent hydrothermal fluid escaping into the ocean. Best fitting parameter sets predict mantle temperatures between 1350 and 1450°C and lithosphere thickness between 70 and 90 km and further suggest that (1) the fit to the data is strongly improved if hydrothermal cooling effects are considered, (2) hydrothermal cooling is important for up to 10 Ma old lithosphere and leads to a significant deviation from the 1/square root—law with an exponent closer to 1/3, (3) sedimentary sealing is completed for 1.5 Ma old lithosphere, and (4) fitting of the data is improved for an apparently 1.4 times higher value of thermal expansivity which may account for effects of melt solidification.

  12. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

    Science.gov (United States)

    Eshagh, Mehdi; Tenzer, Robert

    2017-07-01

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  13. Atmosphere-ocean-lithosphere interactions during the Great Oxidation Event: insights from zircon δ18O

    Science.gov (United States)

    Spencer, C. J.; Partin, C. A.; Kirkland, C.; Shiels, C.; Raub, T. D.; Kinny, P.

    2016-12-01

    The Great Oxidation Event (GOE) records a precipitous atmospheric oxygen rise, perhaps by as much as three to four orders of magnitude within a few million years. The timescale of the GOE is primarily constrained by the rapid loss of mass-independently fractionated sulfur isotopes. The drastic surface changes associated with the GOE are reflected by the appearance of marine sulfate and manganese deposits, as well as increased redox-sensitive trace metal abundances in banded iron formations and shale. Each of these manifestations is recorded at the atmosphere-lithosphere or atmosphere-ocean interface. However, how the GOE affected the lithosphere beyond the atmosphere interface has received little attention to date. We present zircon δ18O data from Paleoproterozoic sedimentary successions in Western Australia and Canada that display a step-change from the isotopically distinct reservoir with high δ18O that was incorporated into subduction zone magmas. One likely candidate is marine sulfate evaporite deposits, which appear with the GOE. The incorporation of this enriched δ18O reservoir would have facilitated the step change seen in the zircon δ18O record. This signal may also be present to a much lower degree associated with the "whiffs" of atmospheric oxygen prior to the GOE.

  14. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Garay, Jeremías

    2018-01-01

    The outer rise is a topographic bulge seaward of the trench at a subduction zone that is caused by bending and flexure of the oceanic lithosphere as subduction commences. The classic model of the flexure of oceanic lithosphere w (x) is a hydrostatic restoring force acting upon an elastic plate at the trench axis. The governing parameters are elastic thickness Te, shear force V0, and bending moment M0. V0 and M0 are unknown variables that are typically replaced by other quantities such as the height of the fore-bulge, wb, and the half-width of the fore-bulge, (xb - xo). However, this method is difficult to implement with the presence of excessive topographic noise around the bulge of the outer rise. Here, we present an alternative method to the classic model, in which lithospheric flexure w (x) is a function of the flexure at the trench axis w0, the initial dip angle of subduction β0, and the elastic thickness Te. In this investigation, we apply a sensitivity analysis to both methods in order to determine the impact of the differing parameters on the solution, w (x). The parametric sensitivity analysis suggests that stable solutions for the alternative approach requires relatively low β0 values (<15°), which are consistent with the initial dip angles observed in seismic velocity-depth models across convergent margins worldwide. The predicted flexure for both methods are compared with observed bathymetric profiles across the Izu-Mariana trench, where the old and cold Pacific plate is characterized by a pronounced outer rise bulge. The alternative method is a more suitable approach, assuming that accurate geometric information at the trench axis (i.e., w0 and β0) is available.

  15. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    Science.gov (United States)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  16. Sulphidation of the oceanic lithosphere: an experimental approach

    Science.gov (United States)

    Los, Catharina; Hansen, Christian; Bach, Wolfgang

    2017-04-01

    Newly formed oceanic lithosphere close to spreading centers can be influenced by fluids that feed hydrothermal vents. These fluids often carry high amounts of dissolved gases such as H2S, which can trigger precipitation of sulphide minerals in the interacting rock during percolation. This process occurs equally in exposed mantle rock, serpentinised mantle rock, troctolite or gabbro and basalt, the lithology depending on the spreading rate at the ridge where hydrothermal activity is present. These later-stage fluid-rock interactions can develop different types of sulphide mineralization in the lithosphere. In order to better understand these sulphidation reactions, we have conducted several batch experiments that placed different oceanic lithologies in contact with an H2S saturated, iron-free solution. The mixture was heated to 250°C at 400 bars and kept under these conditions for 2-8 weeks. In situ fluid and gas sampling was used to monitor reaction progress. REM-analysis of the solid products has shown the growth of euhedral pyrite and magnetite crystals as well as dissolution textures in feldspar and olivine. The presence of pyrite (gabbro experiment) and magnetite (troctolite and serpentinite) is in agreement with the measured H2- and H2S-content in the analysed fluids. These Fe-bearing minerals grew although no iron was added to the fluid, showing the replacive nature of the reaction. Geochemical modeling can be used to extend the application of these observations to different PT-conditions. Using this technique, we can start tackling the problem of replacive sulphide formation within hydrothermal discharge zones in oceanic basement of variable composition.

  17. Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Carrizo, Daniel

    2011-05-01

    We discuss the earthquake rupture behavior along the Chile-Peru subduction zone in terms of the buoyancy of the subducting high oceanic features (HOF's), and the effect of the interplay between HOF and subduction channel thickness on the degree of interplate coupling. We show a strong relation between subduction of HOF's and earthquake rupture segments along the Chile-Peru margin, elucidating how these subducting features play a key role in seismic segmentation. Within this context, the extra increase of normal stress at the subduction interface is strongly controlled by the buoyancy of HOF's which is likely caused by crustal thickening and mantle serpentinization beneath hotspot ridges and fracture zones, respectively. Buoyancy of HOF's provide an increase in normal stress estimated to be as high as 10-50 MPa. This significant increase of normal stress will enhance seismic coupling across the subduction interface and hence will affect the seismicity. In particular, several large earthquakes (Mw ≥ 7.5) have occurred in regions characterized by subduction of HOF's including fracture zones (e.g., Nazca, Challenger and Mocha), hotspot ridges (e.g., Nazca, Iquique, and Juan Fernández) and the active Nazca-Antarctic spreading center. For instance, the giant 1960 earthquake (Mw = 9.5) is coincident with the linear projections of the Mocha Fracture Zone and the buoyant Chile Rise, while the active seismic gap of north Chile spatially correlates with the subduction of the Iquique Ridge. Further comparison of rupture characteristics of large underthrusting earthquakes and the locations of subducting features provide evidence that HOF's control earthquake rupture acting as both asperities and barriers. This dual behavior can be partially controlled by the subduction channel thickness. A thick subduction channel smooths the degree of coupling caused by the subducted HOF which allows lateral earthquake rupture propagation. This may explain why the 1960 rupture propagates

  18. Volcanic Markers of the Post-Subduction Evolution of Baja California and Sonora, Mexico: Slab Tearing Versus Lithospheric Rupture of the Gulf of California

    Science.gov (United States)

    Calmus, Thierry; Pallares, Carlos; Maury, René C.; Aguillón-Robles, Alfredo; Bellon, Hervé; Benoit, Mathieu; Michaud, François

    2011-08-01

    The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: "regular" calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial

  19. Subduction-stage P-T path of eclogite from the Sambagawa belt: Prophetic record for oceanic-ridge subduction

    Science.gov (United States)

    Aoya, M.; Uehara, S.; Wallis, S. R.; Enami, M.

    2003-12-01

    , but in a curve with dP/dT increasing with metamorphic pressure. In previous thermal models curved P-T paths of the same kind were predicted for subduction of a very young slab (<5 Ma) suggesting that the curved P-T paths will be formed just before oceanic-ridge subduction. A new model incorporating progressive approach of an oceanic ridge to a subduction zone shows that the series of the Sambagawa subduction P-T paths well fit the results for a setting where a ridge is close to being subducted at a slow rate relative to the subduction rate. The subduction P-T paths from the Sambagawa belt can, therefore, be regarded as a prophetic record of the subsequent ridge subduction. This suggests that exhumation of high-P/T metamorphic rocks in oceanic subduction zones may be associated with the slow approach and subsequent subduction of oceanic ridges.

  20. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    Science.gov (United States)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  1. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    Science.gov (United States)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  2. Continental crust subducted deeply into lithospheric mantle: the driving force of Early Carboniferous magmatism in the Variscan collisional orogen (Bohemian Massif)

    Science.gov (United States)

    Janoušek, Vojtěch; Schulmann, Karel; Lexa, Ondrej; Holub, František; Franěk, Jan; Vrána, Stanislav

    2014-05-01

    The vigorous Late Devonian-Early Carboniferous plutonic activity in the core of the Bohemian Massif was marked by a transition from normal-K calc-alkaline, arc-related (~375-355 Ma), through high-K calc-alkaline (~346 Ma) to (ultra-)potassic (343-335 Ma) suites, the latter associated with mainly felsic HP granulites enclosing Grt/Spl mantle peridotite bodies. The changing chemistry, especially an increase in K2O/Na2O and 87Sr/86Sri with decrease in 143Nd/144Ndi in the basic end-members, cannot be reconciled by contamination during ascent. Instead it has to reflect the character of the mantle sources, changing over time. The tectonic model invokes an oceanic subduction passing to subduction of the attenuated Saxothuringian crust under the rifted Gondwana margin (Teplá-Barrandian and Moldanubian domains). The deep burial of this mostly refractory felsic metaigneous material is evidenced by the presence of coesite/diamond (Massonne 2001; Kotková et al. 2011) in the detached UHP slices exhumed through the subduction channel and thrusted over the Saxothuringian basement, and by the abundance of felsic HP granulites (> 2.3 GPa), some bearing evidence for small-scale HP melt separation, in the orogen's core (Vrána et al. 2013). The subduction channel was most likely formed by 'dirty' serpentinites contaminated by the melts/fluids derived from the underlying continental-crust slab (Zheng 2012). Upon the passage through the orogenic mantle, the continental crust-slab derived material not only contaminated the adjacent mantle forming small bodies/veins of pyroxenites (Becker 1996), glimmerites (Becker et al. 1999) or even phlogopite- and apatite-bearing peridotites (Naemura et al. 2009) but the felsic HP-HT granulites also sampled the individual peridotite types at various levels. Eventually the subducted felsic material would form an (U)HP continental wedge under the forearc/arc region, to be later redistributed under the Moldanubian crust by channel flow and crustal

  3. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data

    Science.gov (United States)

    Moghadam, Hadi Shafaii; Corfu, Fernando; Chiaradia, Massimo; Stern, Robert J.; Ghorbani, Ghasem

    2014-12-01

    The poorly known Sabzevar-Torbat-e-Heydarieh ophiolite belt (STOB) covers a large region in NE Iran, over 400 km E-W and almost 200 km N-S. The Sabzevar mantle sequence includes harzburgite, lherzolite, dunite and chromitite. Spinel Cr# (100Cr/(Cr + Al)) in harzburgites and lherzolites ranges from 44 to 47 and 24 to 26 respectively. The crustal sequence of the Sabzevar ophiolite is dominated by supra-subduction zone (SSZ)-type volcanic as well as plutonic rocks with minor Oceanic Island Basalt (OIB)-like pillowed and massive lavas. The ophiolite is covered by Late Campanian to Early Maastrichtian (~ 75-68 Ma) pelagic sediments and four plagiogranites yield zircon U-Pb ages of 99.9, 98.4, 90.2 and 77.8 Ma, indicating that the sequence evolved over a considerable period of time. Most Sabzevar ophiolitic magmatic rocks are enriched in Large Ion Lithophile Elements (LILEs) and depleted in High Field Strength Elements (HFSEs), similar to SSZ-type magmatic rocks. They (except OIB-type lavas) have higher Th/Yb and plot far away from mantle array and are similar to arc-related rocks. Subordinate OIB-type lavas show Nb-Ta enrichment with high Light Rare Earth Elements (LREE)/Heavy Rare Earth Elements (HREE) ratio, suggesting a plume or subcontinental lithosphere signature in their source. The ophiolitic rocks have positive εNd (t) values (+ 5.4 to + 8.3) and most have high 207Pb/204Pb, indicating a significant contribution of subducted sediments to their mantle source. The geochemical and Sr-Nd-Pb isotope characteristics suggest that the Sabzevar magmatic rocks originated from a Mid-Ocean Ridge Basalt (MORB)-type mantle source metasomatized by fluids or melts from subducted sediments, implying an SSZ environment. We suggest that the Sabzevar ophiolites formed in an embryonic oceanic arc basin between the Lut Block to the south and east and the Binalud mountains (Turan block) to the north, and that this small oceanic arc basin existed from at least mid-Cretaceous times

  4. A Magma Accretion Model for the Formation of Oceanic Lithosphere: Implications for Global Heat Loss

    CERN Document Server

    Hamza, V M; Alexandrino, C H

    2010-01-01

    A simple magma accretion model of the oceanic lithosphere is proposed and its implications for understanding the thermal field of oceanic lithosphere examined. The new model (designated VBA) assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere. Heat flow and bathymetry variations calculated on the basis of the VBA model provide vastly improved fits to respective observational datasets. The improved fits have been achieved for the entire age range and without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation in stable ocean crust. The results suggest that estimates of global heat loss need to be downsized by at least 25%.

  5. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.

    2008-07-01

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  6. Dynamics of intraoceanic subduction initiation: 2D thermomechanical modeling

    Science.gov (United States)

    Zhou, X.; Gerya, T.; LI, Z.; Stern, R. J.

    2016-12-01

    Intraoceanic subduction initiation occurs in previous weak zones which could be transform faults or old fracture zones, and concurrents with the change of plate motions. It is an important process to understand the beginning of plate tectonics. However, the dynamic process during (after) subduction initiation remain obscure. The process of suducting slabs move from down to downdip is also not revealed clearly. In order to obtain better understanding of the transitional process of subducting slab motion, we use finite difference and marker-in-cell methods to establish a series of self-sustainable subduction initiation models and explore many visco-plastic parameters to qualify the dynamical process of subduction initiation. The following parameters are systematic tested: (1) the age of the subducting slab; (2) friction coefficient of the mantle material; (3) the mantle potential temperature; (4) the age of the overriding slab. We find out the critical age of the oceanic lithosphere which can produce subduction initiation. And the age of subducting slab plays important roles during subduction initiation. The young subducting slab induces fast trench retreat and then trench begin to advance. For the old subducting slab, it induces relative slower trench retreat and then stop moving. The age of overriding slabs impacts coupling with the subducting slab. The friction coefficient of lithosphere also impacts the backarc spreading and subduction velocity. Stronger subducted plate gives lower subduction velocity and faster trench retreat velocity. The mantle potential temperature changes the critical age of subducted slabs.

  7. A Magma Accretion Model for the Formation of Oceanic Lithosphere: Implications for Global Heat Loss

    Directory of Open Access Journals (Sweden)

    Valiya M. Hamza

    2010-01-01

    Full Text Available A magma accretion model of oceanic lithosphere is proposed and its implications for understanding its thermal field examined. The new model (designated Variable Basal Accretion—VBA assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere. However, unlike the previous thermal models of the lithosphere, the ratio of advection to conduction heat transfer is considered a space dependent variable. The results of VBA model simulations reveal that the thickness of the young lithosphere increases with distance from the ridge axis, at rates faster than those predicted by Half-Space Cooling models. Another noteworthy feature of the new model is its ability to account for the main features in the thermal behavior of oceanic lithosphere. The improved fits to bathymetry have been achieved for the entire age range and without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation. Also, use of VBA model does not lead to artificial discontinuities in the temperature field of the lithosphere, as is the case with GDH (Global Depth Heat Flow reference models. The results suggest that estimates of global heat loss need to be downsized by at least 25%.

  8. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

    NARCIS (Netherlands)

    Meer, D.G. van der; Torsvik, T.H.; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.

    2012-01-01

    The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean’s history since the Cretaceous period, and

  9. Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (southwest Puerto Rico): a preserved section of Proto-Caribbean oceanic lithospheric mantle?

    Science.gov (United States)

    Marchesi, Claudio; Jolly, Wayne T.; Lewis, John F.; Garrido, Carlos J.; Proenza, Joaquín. A.; Lidiak, Edward G.

    2010-05-01

    The Monte del Estado massif is the largest and northernmost serpentinized peridotite belt in southwest Puerto Rico. It is mainly composed of spinel lherzolite and minor harzburgite with variable clinopyroxene modal abundances. Mineral and whole rock major and trace element compositions of peridotites coincide with those of fertile abyssal peridotites from mid ocean ridges. Peridotites lost 2-14 wt% of relative MgO and variable amounts of CaO by serpentinization and seafloor weathering. HREE contents in whole rock indicate that the Monte del Estado peridotites are residues after low to moderate degrees (2-15%) of fractional partial melting in the spinel stability field. However, very low LREE/HREE and MREE/HREE in clinopyroxene cannot be explained by melting models of a spinel lherzolite source and support that the Monte del Estado peridotites experienced initial low fractional melting degrees (~ 4%) in the garnet stability field. The relative enrichment of LREE in whole rock is not due to secondary processes but probably reflects the capture of percolating melt fractions along grain boundaries or as microinclusions in minerals, or the presence of exotic micro-phases in the mineral assemblage. We propose that the Monte del Estado peridotite belt represents a section of ancient Proto-Caribbean (Atlantic) lithospheric mantle originated by seafloor spreading between North and South America in the Late Jurassic-Early Cretaceous. This portion of oceanic lithospheric mantle was subsequently trapped in the forearc region of the Greater Antilles paleo-island arc generated by the northward subduction of the Caribbean plate beneath the Proto-Caribbean ocean. Finally, the Monte del Estado peridotites belt was emplaced in the Early Cretaceous probably as result of the change in subduction polarity of the Greater Antilles paleo-island arc without having been significantly modified by subduction processes.

  10. Deep subduction of hot young oceanic slab required by the Syros eclogites

    Science.gov (United States)

    Flemetakis, Stamatis; Moulas, Evangelos; Kostopoulos, Dimitrios; Chatzitheodoridis, Elias

    2014-05-01

    The Cycladic islands of Syros and Siphnos, Aegean Sea, Greece, represent subducted IAT and BABB remnants of the Neotethyan Pindos Ocean. Garnet porphyroblasts (Ø=1mm) in a glaucophane-zoisite eclogite from Kini locality on Syros are compositionally zoned and display a unique prograde heating path from a high-pressure greenschist-facies core with high XSps and low Mg# via a blueschist-facies mantle with moderate XSps and Mg# to an eclogite-facies rim with low XSps and high Mg#. The outermost 35 μm of the garnet rims show flat XSps with rapidly increasing outwards Mg#. Na-Act-Chl-Ph rimmed by Gln mark the greenschist-blueschist facies transition, whereas Pg rimmed by Omp and the incoming of Rt at the expense of Ttn signify the blueschist-eclogite facies transition. Raman barometry of quartz inclusions in the eclogitic garnet rims coupled with elastic modelling of the garnet host [1], and Zr-in-Rt and Grt-Cpx-Ph thermobarometry revealed near-UHP P-T conditions of the order of 2.6 GPa/660°C (maximum residual pressure was 0.8-0.9GPa). By contrast, the greenschist-blueschist transition lies at ~0.75 GPa/355°C. This pressure is in excellent agreement with the position of the albite = jadeite + quartz boundary calculated at 350°C using the observed omphacite composition corrected for jadeite activity (Koons & Thompson, 1985) [2]. As a result, Cpx inclusions in garnet core signify the early entrance of garnet in the subduction zone history of the slab. Furthermore, the early growth of garnet (in lower pressures) observed in eclogites from Syros lies in great agreement with published slab-geotherms that indicate hot subduction and show a precocious garnet growth (Baxter and Caddick, 2013) [3]. The complete absence of lawsonite and the great abundance of zoisite crystals, based on the stability fields of both minerals (Poli et al., 2009) [4], further constrain the P-T trajectory of the slab. Our new P-T estimates match published T distributions on the slab surface

  11. Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean

    Science.gov (United States)

    Gebbie, Geoffrey

    2004-01-01

    Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.

  12. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  13. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge

    NARCIS (Netherlands)

    Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R.

    2008-01-01

    The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris

  14. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (<75 Ma) is much less than the ridge-push force for both compressional and extensional tectonics. In this case, the ridge-push related stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  15. Réunion (Indian Ocean) Oceanic Island Volcanism: Seismic Structure and Heterogeneity of the Upper Lithosphere

    Science.gov (United States)

    Hirn, A.

    2002-12-01

    accretionary center. This has also been suggested for Mauritius island, the two fossil accretionary center having been active on different sides of a triple junction, and carried away from each other along the later fracture zone in-between. The available seismic data sample only from the top of the island to the top of the mantle. At this scale they evidence a departure of Réunion from an idealized oceanic hotspot volcanic islands model, as well as the relation of its location with a structural heterogeneity of the underlying lithosphere that appears inherited from its complex origin. These partly unexpected results suggest that the case deserves further sampling at the broader regional scale including Mauritius, and deeper into the mantle

  16. Evidence for metasomatic enrichment in the oceanic lithosphere and implication for the generation of intraplate basalts

    Science.gov (United States)

    Pilet, S.; Buchs, D.; Cosca, M. A.; Baumgartner, P.

    2011-12-01

    Petrological studies play a significant role in the debate regarding the origin of intraplate magmas by providing unequivocal constraints about the source(s) composition and melting processes related to basalt formation. Two major hypotheses are currently in debate: first, intraplate magmas are produced at depth (i.e. within the asthenosphere) by low-degrees melting of an enriched peridotitic source in the presence of CO2 [1]; second, alkaline magmas are produced by the melting of metasomatic hydrous veins present within the lithospheric mantle [2]. If the existence of metasomatic veins in the continental lithospheric mantle is well documented, their existence and the mechanism of their formation in an oceanic setting are still mostly unconstrained. Here we report new petrological data demonstrating that metasomatic veins can be produced within the oceanic lithosphere by percolation and differentiation of low-degree melts initially located in the low velocity zone [3]. The existence of metasomatic veins in the oceanic lithosphere is documented by cpx xenocrysts in accreted basaltic sills from northern Costa Rica. New field observations, 40Ar-39Ar radiometric dating, biostratigraphic ages and geochemical analyses indicate that the sills represent a possible, ancient analogue of petit-spot volcanoes produced off Japan by oceanic plate flexure [4]. The cpx xenocrysts are interpreted as a relic of metasomatic veins based on their composition, which is similar to that of cpx from metasomatic veins observed in mantle outcrops and xenoliths. The major and trace element contents of the studied cpx xenocrysts indicate that they crystallized at high pressure in a differentiated liquid. This liquid represents the last stage of a fractional crystallization process that produced early anhydrous cumulates followed by later hydrous cumulates, a mechanism similar to that proposed by Harte et al. [5] for the formation of metasomatic veins in the continental lithosphere. Monte Carlo

  17. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau

    Science.gov (United States)

    Meyer, B.; Tapponnier, P.; Bourjot, L.; Métivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, Guo; Zhitai, Chen

    1998-10-01

    Late-Cenozoic crustal shortening on NE sections between the Kunlun fault and the Hexi corridor are estimated to range between 100 and 200 km. In keeping with the inference of a deep crustal décollement and with the existence of Mid-Miocene to Pliocene plutonism and volcanism south of the Kunlun range, such values suggest that the lithospheric mantle of the Qaidam plunged obliquely into the asthenosphere south of that range to minimum depths of the order of 200-300 km. A minimum of ~150 km of shortening in the last ~10 Ma, consistent with the average age of the earliest volcanic-plutonic rocks just south of the Kunlun (~10.8 Ma) would imply average Late-Cenozoic rates of shortening and regional uplift in NE Tibet of at least ~15 mm yr-1 and ~0.2 mm yr-1, respectively. Such numbers are consistent with a cumulative sinistral offset and slip rate of at least ~200 km and ~2 cm yr-1, respectively, on the Altyn Tagh fault east of 88°E. The fault may have propagated more than 1000 km, to 102°E, in the last 10 Ma. Our study of ongoing tectonics in northeast Tibet is consistent with a scenario in which, while the Himalayas-Gangdese essentially `stagnated' above India's subducting mantle, much of Tibet grew by thickening of the Asian crust, as propagation of large, lithospheric, strike-slip shear zones caused the opposite edge of the plateau to migrate far into Asia. The Asian lithospheric mantle, decoupled from the crust, appears to have subducted southwards along the two Mesozoic sutures that cut Tibet north of the Gangdese, rather than to have thickened. The Bangong-Nujiang suture was probably reactivated earlier than the Jinsha-Kunlun suture, located farther north. Overall, the large-scale deformation bears a resemblance to plate tectonics at obliquely convergent margins, including slip-partioning along large strike-slip faults such as the Altyn Tagh and Kunlun faults. Simple mechanisms at the level of the lithospheric mantle are merely hidden by the broader distribution

  18. The Ionian Abyssal Plain - closure of a remnant Mesozoic oceanic domain: subbottom structures, deep deformation and the Calabrian subduction zone

    Science.gov (United States)

    Gallais, F.; Gutscher, M.; Graindorge, D.; Klaeschen, D.

    2010-12-01

    The Ionian Abyssal Plain (IAP), located in the Central Mediterranean area is a deep triangular shaped basin, surrounded by the Calabrian subduction zone to the NW, the Mediterranean Ridge to the NE and the Medina Ridges to the South. Available heat flow measurements show very low values under the Ionian Abyssal plain, suggesing a very old age of 180-200 Ma for the basin. The Bouguer gravity anomaly map shows only a strong positive anomaly in this region and the depth of the Moho is around 16 to 18 km corresponding to high refraction velocities of 8.1-8.2 km/s. The Ionian basin is interpreted as one of the oldest basins in the Mediterranean area, and is thought to represent a remnant part of the Mesozoic Tethyan ocean. Due to the complex relative motions of microplates and blocks, currently, the oceanic lithosphere of the Ionian basin is being simultaneously consumed by subduction to the NE beneath the Hellenic system and to the NW beneath Calabria. We present the most relevant lines of the Archimede multi-channel seismic cruise (1997, R/V Le Nadir) crossing the Ionian Abyssal Plain and the Calabrian subduction zone. Interpretation of this seismic dataset is based on correlation with published seismic data and with ESP results. Beneath the IAP, we identify a thick sedimentary cover (> 5km) from the Jurassic to the Plio-Quaternary in age, which overlies the oceanic basement. The Pre-Messinian sequences are affected by a set of NE/SW striking compressional faults with some syn-tectonic basins NW of these faults. These features are interpreted as a re-activated set of normal faults, possibly formed during rifting and/or subsequent accretion of oceanic crust. The orientation of the subbottom structures and the thickness of the Messinian deposits in the south-eastern part of the IAP may be linked with the presence of these faults and their activity through time. On the Calabrian side of the IAP, the Post-Messinian sequences are accreted to the Calabrian wedge. The weak

  19. A thermo-mechanical model of horizontal subduction below an overriding plate

    NARCIS (Netherlands)

    Hunen, Jeroen van; Berg, A.P. van den; Vlaar, N.J.

    2000-01-01

    Subduction of young oceanic lithosphere cannot be explained by the gravitational driving mechanisms of slab pull and ridge push. This deficiency of driving forces can be overcome by obduction of an actively overriding plate, which forces the young plate either to subduct or to collide. This

  20. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc.

    Science.gov (United States)

    Timm, Christian; Davy, Bryan; Haase, Karsten; Hoernle, Kaj A; Graham, Ian J; de Ronde, Cornel E J; Woodhead, Jon; Bassett, Dan; Hauff, Folkmar; Mortimer, Nick; Seebeck, Hannu C; Wysoczanski, Richard J; Caratori-Tontini, Fabio; Gamble, John A

    2014-09-17

    Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of ~32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau-Kermadec arc collision ~250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant 'Hikurangi' mélange beneath the Moho that interacts with ascending arc melts.

  1. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    Science.gov (United States)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  2. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  3. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction

    Science.gov (United States)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus

    2017-04-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation

  4. Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic

    Science.gov (United States)

    Taposeea, Chandra A.; Armitage, John J.; Collier, Jenny S.

    2017-10-01

    The southern South Atlantic has often been considered a classic example of continental break-up in the presence of a starting mantle plume. Evidence for a mantle plume includes the Paranà-Etendeka continental flood basalts, which are associated with the Rio Grande Rise and Walvis Ridge, and the wide-spread presence of seaward dipping reflectors and high-velocity lower-crustal bodies along the conjugate margins. Observations from seaward dipping reflector distributions suggested that lithospheric segmentation played a major role in the pattern of volcanism during break-up in this region, and consequent numerical modelling was used to test this. We tested this hypothesis ourselves by measuring the thickness of the earliest oceanic crust generated. This was done through the use of 37 measurements of initial oceanic crustal thickness from wide-angle and multichannel seismic profiles collected along the conjugate margins. These measurements show that at 450 km south of the Paranà-Etendeka flood basalts the oceanic crust is thicker than the global average at 11.7 km. Farther south the oceanic crust thins, reaching 6.1 km at a distance of 2300 km along-strike. Overall, the along-strike trend of oceanic crustal thickness is linear with a regression coefficient of 0.7 and little indication of segmentation. From numerical models representing extension of the lithosphere, we find that observed melt volumes are matched with the presence of a hot layer. If we assume this region of hot mantle has a thickness of 100 km, its excess temperature relative to the asthenosphere has to decrease from 200 to 50 °C, north to south. This decrease in temperature, also seen in published thermobarometry results, suggests that temperature was the primary control of volcanism during the opening of the southern South Atlantic.

  5. Long distance transport of eclogite and blueschist during early Pacific Ocean subduction rollback

    Science.gov (United States)

    Tamblyn, Renee; Hand, Martin; Kelsey, David; Phillips, Glen; Anczkiewicz, Robert

    2017-04-01

    The Tasmanides in eastern Australia represent a period of continental crustal growth on the western margin of the Pacific Ocean associated with slab rollback from the Cambrian until the Triassic. During rollback numerical models predict that subduction products can become trapped in the forearc (Geyra et al., 2002), and can migrate with the trench as it retreats. In a long-lived subduction controlled regime such as the Tasmanides, this should result in an accumulation of subduction products with protracted geochronological and metamorphic histories. U-Pb, Lu-Hf, Sm-Nd and Ar-Ar geochronology and phase equilibria modelling of lawsonite-eclogite and garnet blueschist in the Southern New England Fold Belt in Australia demonstrate that high-P low-T rocks remained within a subduction setting for c. 40 Ma, from c. 500 to 460 Ma. High-P metamorphic rocks initially formed close to the Australian cratonic margin during the late Cambrian, and were subsequently transported over 1500 Ma oceanward, during which time subducted material continued to accumulate, resulting in the development of complex mélange which records eclogite and blueschist metamorphism and partial exhumation over 40 Ma. The duration of refrigerated metamorphism approximates the extensional evolution of the upper plate which culminated in the development of the Lachlan Fold Belt. The protracted record of eclogite and blueschist metamorphism indicates that rapid exhumation is not necessarily required for preservation of high-pressure metamorphic rocks from subduction systems. Reference: Gerya, T. V., Stockhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 6-1-6-19. doi:10.1029/2002tc001406

  6. Rupture characteristics of the 2003 Mw 7.6 mid-Indian Ocean earthquake: Implications for seismic properties of young oceanic lithosphere

    Science.gov (United States)

    Antolik, Michael; Abercrombie, Rachel E.; Pan, Jianfeng; EkströM, GöRan

    2006-04-01

    Analysis of broadband seismograms from the 15 July 2003 large earthquake (M 7.6) in the central Indian Ocean reveals an unusual source process. The source duration of longer than a minute is more than twice as long as expected from earthquake scaling relations, yet ˜80% of the moment release occurred in two energetic asperities near the end of the rupture. These two asperities were located in lithosphere with an age of 7 Ma or greater. A previous study has suggested that strike-slip earthquakes in oceanic lithosphere having much longer than expected source durations also have a slow, dissipative rupture process characterized by low radiated seismic energy (and therefore low apparent stress). We find no evidence for a slow rupture process to the 2003 earthquake. Instead, the long duration appears to be due only to nucleation close to the actively spreading Carlsberg Ridge, in lithosphere younger than 7 Ma. Younger oceanic lithosphere may be able to generate small to moderate earthquakes but be unable to sustain slip in a large event due to steady release of strain in aseismic creep events. Large strike-slip earthquakes within oceanic lithosphere may occur only in the central portions of long transform faults or in intraplate regions, rupturing energetic asperities like those that failed in the mid-Indian Ocean earthquake and leading to the observation that oceanic strike-slip earthquakes have the largest apparent stresses among the global population of shallow earthquakes.

  7. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NARCIS (Netherlands)

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia.

  8. The electrical conductivity of the upper mantle and lithosphere from the magnetic signal due to ocean tidal flow

    DEFF Research Database (Denmark)

    Schnepf, Neesha Regmi; Kuvshinov, Alexey; Grayver, Alexander

    Oceans cover about seventy percent of the Earth and yet the overwhelming majority of seismological or electromagnetic (EM) observatories are found on continents. This provides a challenge for understanding composition, structure, and dynamics of Earth’s lithosphere and upper mantle in oceanic reg...... satellite and seafloor magnetic signals from the M2 ocean tide. With these data we also make an attempt to detect lateral variability of the Earth’s conductivity....

  9. Sequential, Multi-stage Processes for Intraplate and Intraslab Seismogenesis in Oceanic Lithosphere

    Science.gov (United States)

    Kirby, S. H.

    2011-12-01

    Marine geoscience surveys and thermal modeling have shown that oceanic lithosphere has an extremely complex tenure under the ocean basins and during slab descent involving magmatic, hydrothermal, and tectonic processes, processes that undoubtedly leave a cumulative imprint on plate/slab mineralogy, structure, and fluid makeup. These processes clearly have implications for the physical states of plate materials from ridges to trenches to deep slabs and give insights into the geological and geophysical observables, especially intraplate and intraslab earthquakes. Likely stages of this inheritance include: (1) Shallow melting and stretching deformation at Mid Ocean Ridges (MOR's) produce brittle faulting and earthquakes as well as hydrothermal alteration, segregation into oceanic crust and mantle, and internal plate deformation as indicated by seismic anisotropy. Hydrothermal alteration of faults cutting oceanic crust at MOR's have been posited as possible sources of dehydration fluids or dehydration embrittlement near the original seafloor during subsequent slab descent as an explanation of some intermediate-depth earthquakes. (2) Ocean Island (Plume) Volcanism produce an additional component of magmatic CO2 of deeper origin as well as plate deformation due to mass loading by the island edifices. [Kirby presentation in Session T13, this meeting]. (3) Intraplate deformation especially near triple junctions or other settings where discontinuous lateral boundary stresses propagate into plate interiors. (4) Near-trench deformation associated with plate bending that is expressed by shallow normal-faulting earthquakes, fault scarps on the ocean floor off trenches, and seismic reflections of normal faults, all of which locally indicate that such faulting penetrates well into the lithospheric mantle. It seems likely that even though the thermal conditions in most oceanic plates near trenches are relatively cold, mineral alteration along normal-fault pathways from ingress of

  10. Lithosphere destabilization by melt percolation during pre-oceanic rifting: Evidence from Alpine-Apennine ophiolitic peridotites

    Science.gov (United States)

    Piccardo, Giovanni; Ranalli, Giorgio

    2017-04-01

    Orogenic peridotites from Alpine-Apennine ophiolite Massifs (Lanzo, Voltri, External and Internal Ligurides, - NW Italy, and Mt. Maggiore - Corsica) derive from the mantle lithosphere of the Ligurian Tethys. Field/structural and petrologic/geochemical studies provide constraints on the evolution of the lithospheric mantle during pre-oceanic passive rifting of the late Jurassic Ligurian Tethys ocean. Continental rifting by far-field tectonic forces induced extension of the lithosphere by means of km-scale extensional shear zones that developed before infiltration of melts from the asthenosphere (Piccardo and Vissers, 2007). After significant thinning of the lithosphere, the passively upwelling asthenosphere underwent spinel-facies decompression melting along the axial zone of the extensional system. Silica-undersaturated melt fractions percolated through the lithospheric mantle via diffuse/focused porous flow and interacted with the host peridotite through pyroxenes-dissolving/olivine-precipitating melt/rock reactions. Pyroxene dissolution and olivine precipitation modified the composition of the primary silica-undersaturated melts into derivative silica-saturated melts, while the host lithospheric spinel lherzolites were transformed into pyroxene-depleted/olivine-enriched reactive spinel harzburgites and dunites. The derivative liquids interacted through olivine-dissolving/orthopyroxene+plagioclase-crystallizing reactions with the host peridotites that were impregnated and refertilized (Piccardo et al., 2015). The saturated melts stagnated and crystallized in the shallow mantle lithosphere (as testified by diffuse interstitial crystallization of euhedral orthopyroxene and anhedral plagioclase) and locally ponded, forming orthopyroxene-rich/olivine-free gabbro-norite pods (Piccardo and Guarnieri, 2011). Reactive and impregnated peridotites are characterized by high equilibration temperatures (up to 1250 °C) even at low pressure, plagioclase-peridotite facies

  11. The Oceanic Lithosphere as Reactive Filter: Implications for MORB and Abyssal Peridotite Compositions

    Science.gov (United States)

    Luffi, P. I.; Lee, C.; Antoshechkina, P. M.

    2010-12-01

    Melt-rock reaction in the lithosphere is, as suggested by textural observations and compositional data, a ubiquitous phenomenon capable of generating locally diverse peridotite series, such as those observed at oceanic spreading centers and transform faults, and may represent an important mechanism of creating compositional diversity in MORBs [1]. Whereas our understanding of the principles governing reactive melt transport is supported by basic theories and models, studies that attempt to quantify the physical conditions and mechanisms creating heterogeneities in the oceanic lithosphere are still limited in number [e.g. 2]. Using Adiabat_1ph 3.0 [3] in combination with the pMELTS algorithm [4], we have previously shown that reactive percolation of basaltic melts through depleted harzburgites can generate the dunite-(wehrlite)-harzburgite-lherzolite spectrum observed in the abyssal mantle and ophiolites, and that the amplitude of transformations is a function of thermal boundary layer thickness and amount of available melt [5]. To gain further insight into how melt-rock reactions shape the oceanic lithosphere, here we extend our study to show that the major and trace element variability in the oceanic mantle and rising melts are also significantly influenced by the mechanism of melt transport. If associated with cooling, distributed porous melt percolation (simulated by incremental addition of the same amount of melt) more efficiently converts harzburgites into fertile lherzolites and creates more pronounced compositional gradients in the abyssal mantle than imparted during channelized melt influx (simulated as batch addition of large amounts of melt) under otherwise identical circumstances. To remain within the tholeiitic trend observed in MORB, reacted melts must be released before clinopyroxene precipitation peaks. Further reaction with harzburgite causes liquids to evolve toward boninite-like compositions. As reaction progresses with decreasing temperature, the

  12. Transitional time of oceanic to continental subduction in the Dabie orogen: Clues from the Triassic age for oceanic eclogites

    Science.gov (United States)

    Cheng, H.; Dufrane, S.; Nakamura, E.; Vervoort, J. D.

    2009-12-01

    Low-temperature and high-pressure eclogites with an oceanic affinity in the western part of the Dabie orogen have been investigated with combined Lu-Hf and U-Pb geochronology. These eclogites formed over a range of temperatures (482-565°C and 1.9-2.2 GPa). Three eclogites, which were sampled from the Gaoqiao country, yield Lu-Hf ages of 240.7 ± 1.2 Ma, 243.3 ± 4.1 Ma and 238.3 ± 1.2 Ma, with a corresponding lower-intercept U-Pb zircon age of 232 ± 26 Ma. Despite the well-preserved prograde major- and trace-element zoning in garnets, mineralogical and petrologic studies suggest that Lu-Hf ages mostly reflect a later garnet growth episode. These ages mark the termination of high-pressure eclogite-facies metamorphism instead of representing the early phase of garnet growth. An upper-intercept zircon U-Pb age of 765 ± 24 Ma is defined for the Gaoqiao eclogite, which is consistent with the weighted mean age of 768 ± 21 Ma for the country gneiss. This suggests an analogue protolith origin; however, the gneiss has not been subjected to successive high-pressure metamorphism. The new Triassic ages are thus either an estimate of the involvement of oceanic fragments in the continental subduction or a milestone of the termination of oceanic subduction. The latter implies that different oceanic crustal slices/fragments reached peak metamorphism and started to exhume at diverse times, rather than being subducted and exhumed as a whole. Despite these results, many fundamental questions regarding the multi-slices subduction and exhumation hypothesis remain unanswered.

  13. Horizontal mantle flow controls subduction dynamics.

    Science.gov (United States)

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  14. Low heat flow from young oceanic lithosphere at the Middle America Trench off Mexico [rapid communication

    Science.gov (United States)

    Minshull, Timothy A.; Bartolomé, Rafael; Byrne, Siobhán; Dañobeitia, Juanjo

    2005-10-01

    Seismic reflection profiles across the Middle America Trench at 20°N show a high amplitude bottom simulating reflector interpreted as marking a phase transition between methane hydrate and free gas in the pore space of both accreted and trench sediments. We determine the depth of the hydrate-gas phase boundary in order to estimate the geothermal gradient and hence the heat flow beneath the trench and the frontal part of the accretionary wedge which overlies the downgoing plate. After correction for sedimentation, heat flow values in the trench and through the accretionary wedge are only about half of the values predicted by plate cooling models for the 10 Ma subducting lithosphere. There is no systematic correlation between heat flow in the accretionary wedge and distance from the trench. A comparison with heat flow predicted by a simple analytical model suggests that there is little shear heating from within or beneath the wedge, despite the high basal friction suggested by the large taper angle of the wedge. The geothermal gradient varies systematically along the margin and is negatively correlated with the frontal slope of the wedge. Some local peaks may be attributed to channelised fluid expulsion.

  15. Unraveling multiple phases of sulfur cycling during the alteration of ancient ultramafic oceanic lithosphere

    Science.gov (United States)

    Schwarzenbach, Esther M.; Gill, Benjamin C.; Johnston, David T.

    2018-02-01

    Ultramafic-hosted hydrothermal systems - characterized by ongoing serpentinization reactions - exert an important influence on the global sulfur cycle. Extensive water-rock interaction causes elemental exchange between seawater and the oceanic lithosphere, effectively removing sulfate from seawater through both abiogenic and biogenic processes. Here, we use bulk rock multiple sulfur isotope signatures (32S, 33S, 34S) and in situ sulfide analyses together with petrographic observations to track the sulfur cycling processes and the hydrothermal evolution of ancient peridotite-hosted hydrothermal systems. We investigate serpentinized peridotites from the Northern Apennine ophiolite in Italy and the Santa Elena ophiolite in Costa Rica and compare those with the Iberian Margin (Ocean Drilling Program (ODP) Leg 149 and 173) and the 15°20‧N Fracture Zone along the Mid-Atlantic Ridge (ODP Leg 209). In situ measurements of sulfides in the Northern Apennine serpentinites preserve a large range in δ34Ssulfide of -33.8 to +13.3‰ with significant heterogeneities within single sulfide grains and depending on mineralogy. Detailed mineralogical investigation and comparison with bulk rock Δ33Ssulfide and in situ δ34Ssulfide data implies a thermal evolution of the system from high temperatures (∼350 °C) that allowed thermochemical sulfate reduction and input of hydrothermal sulfide to lower temperatures (play a central role for the availability of sulfate to microbial communities within these systems. Overall, the combined application of in situ and bulk rock multiple sulfur isotope measurements with petrographic observations allows us to resolve the different episodes of sulfur cycling during alteration of the oceanic lithosphere and the temporal changes between abiogenic and biogenic processes that control the sulfur cycling in these systems.

  16. Where does subduction initiate and die? Insights from global convection models with continental drift

    Science.gov (United States)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  17. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    Science.gov (United States)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  18. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean

    Science.gov (United States)

    Xiong, Qing; Henry, Hadrien; Griffin, William L.; Zheng, Jian-Ping; Satsukawa, Takako; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2017-06-01

    The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77-0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49-0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at 130-120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.

  19. Some consequences of the subduction of young slabs

    NARCIS (Netherlands)

    England, P.; Wortel, R.

    The negative buoyancy force exerted by a subducting oceanic slab depends on its descent velocity, and strongly on its age. For lithosphere close to thermal equilibrium, this force dominates by a large margin the resisting forces arising from friction on the plate boundary and compositional buoyancy.

  20. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust

    Science.gov (United States)

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  1. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.

    Science.gov (United States)

    Kelemen, Peter B; Manning, Craig E

    2015-07-28

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  2. Intra-oceanic subduction shaped the assembly of Cordilleran North America.

    Science.gov (United States)

    Sigloch, Karin; Mihalynuk, Mitchell G

    2013-04-04

    The western quarter of North America consists of accreted terranes--crustal blocks added over the past 200 million years--but the reason for this is unclear. The widely accepted explanation posits that the oceanic Farallon plate acted as a conveyor belt, sweeping terranes into the continental margin while subducting under it. Here we show that this hypothesis, which fails to explain many terrane complexities, is also inconsistent with new tomographic images of lower-mantle slabs, and with their locations relative to plate reconstructions. We offer a reinterpretation of North American palaeogeography and test it quantitatively: collision events are clearly recorded by slab geometry, and can be time calibrated and reconciled with plate reconstructions and surface geology. The seas west of Cretaceous North America must have resembled today's western Pacific, strung with island arcs. All proto-Pacific plates initially subducted into almost stationary, intra-oceanic trenches, and accumulated below as massive vertical slab walls. Above the slabs, long-lived volcanic archipelagos and subduction complexes grew. Crustal accretion occurred when North America overrode the archipelagos, causing major episodes of Cordilleran mountain building.

  3. Oceanic-style Subduction Controls Late Cenozoic Deformation of the Northern Pamir and Alai

    Science.gov (United States)

    Sobel, E. R.; Chen, J.; Schoenbohm, L. M.; Thiede, R. C.; Stockli, D. F.; Sudo, M.; Strecker, M. R.

    2012-12-01

    The Pamir - Alai represents the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundary because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent continent-continent collision and erosion processes. In the Pamir, at least 300 km of convergence has apparently occurred between the North Pamir and the South Tien Shan. Published P-wave tomography and earthquake epicenters suggest subduction of a ~300 km-long slab. The MPT and Pamir Frontal Thrusts (PFT) correspond to the updip projection of this subduction zone. We have compiled ca. 260 published and 18 new apatite and zircon (U-Th)/He and fission track, and biotite and muscovite Argon cooling ages from basement samples as well as several detrital samples from key areas in the Pamir region. Our synopsis shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. This is incompatible with a model of a huge overthrust such as the Himalayan Main Central Thrust. Rather, the bulk of the convergence is apparently accommodated by underthrusting. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to slab rollback and intracontinental subduction. Our model relates late Oligocene - early Miocene

  4. Modification of an ancient subcontinental lithospheric mantle by continental subduction: Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China

    Science.gov (United States)

    Chen, Yi; Su, Bin; Chu, Zhuyin

    2017-05-01

    Orogenic mantle-derived peridotites commonly originate from the subcontinental lithospheric mantle (SCLM) and thus provide a key target to investigate the modification of the SCLM by a subducting slab. The Maowu ultramafic rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt have formerly been debated as representing cumulates or mantle-derived peridotites. Detailed petrological and geochemical data presented in this study provide new constraints on the origin and formation of the peridotites involving melt depletion in the ancient SCLM and deep crustal metasomatism. The Maowu garnet dunites have refractory bulk compositions characterized by high Mg# (91.9-92.0) and Ni (2537-2892 ppm) values and low Al2O3 (0.26-0.76 wt.%), CaO (0.05-0.32 wt.%), TiO2 (enrichment in incompatible elements. Mineral and whole-rock chemistry indicate that these veins represent metasomatic products between the wall dunites and silica-rich hydrous melts under UHP conditions. The veins show large variations in platinum-group element (PGE) signatures and Re-Os isotopes. The garnet-poor orthopyroxenite veins are characterized by low Al2O3 ( 6 wt.%) and S (99-306 ppm) contents and show melt-like PGE patterns and high 187Os/188Os ratios (up to 0.36910). These features, combined with the occurrence of interstitial sulfides in the garnet-rich orthopyroxenite veins, suggest that crust-derived sulfur-saturated silicate melts may have significantly modified the PGE signature and destroyed the Re-Os systematics of the SCLM. However, when the crust-derived silicate melts became sulfur-depleted, such melts would not significantly modify the PGE patterns, radiogenic Os-isotope compositions or the Re-depletion model ages of the SCLM. Consequently, deep crust-mantle interactions in continental subduction zones could induce high degrees of Os isotopic heterogeneity in the SCLM wedge.

  5. The relationship between orogenesis, terrane accretion and the subduction of oceanic ridges in the Ecuadorian andes

    Science.gov (United States)

    Spikings, R.; Winkler, W.; Seward, D.; Hughes, R.; Handler, R.; Crowhurst, P.

    2003-04-01

    Oceanic hotspot activity, generating large oceanic igneous plateau provinces, plate rearrangements and the generation of new spreading centers since at least 90 Ma have formed large structural, thickness and density heterogeneities in the approaching and subducting oceanic crust offshore NW South America (SOAM). Various oceanic allochthonous terranes comprise western Ecuador and the relatively thick and buoyant Carnegie Ridge is being subducted. We present 40Ar/39Ar, fission track (FT) and (U-Th/He) data from i) the Eastern Cordillera and the Amotape Complex, which define the palaeo-continental margin, ii) the Western Cordillera, which is built upon allochthonous, oceanic crust and iii) a tectonic mélange at the ocean-continent suture. 40Ar/39Ar ages and FT data from exotic, Triassic blocks within the ocean-continent suture record elevated cooling rates of plateau basalts and the continental margin. 40Ar/39Ar ages and FT data from the palaeo-continental margin show that the entire contemporaneous continental margin was being cooled by rapid tectonic exhumation (combined with geochemical analyses, suggest that these periods of orogenesis were driven by stress imposed by the collision of terranes that originated at the Caribbean Plateau. Distinct periods of rapid cooling and exhumation of fault blocks in the W. Cordillera and the northern E. Cordillera occurred at ˜15 and ˜9 Ma. Cooling at ˜15 Ma was driven by the collision of the Carnegie Ridge with the trench at ˜15 Ma. The elevated, compressive stress field gave rise to a complex transcurrent system, resulting in uplift, exhumation and cooling in the northern E. Cordillera and extension in the southern E. Cordillera. Finally, FT and (U-Th)/He data record rapid cooling in the northern E. Cordillera and parts of the W. Cordillera at ˜6-5 Ma, suggesting that the middle Miocene transcurrent system was reactivated by thrust tectonics during the late Miocene, giving rise to the Interandean Valley, which split the

  6. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    Science.gov (United States)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    The tectonic contact separating continental and oceanic units is preserved at outcrop in many locations within the Western Alps. The contact has experienced prolonged and progressive deformation during Oligocene collision and subsequent 'extrusive' contraction which is approximately westerly-directed (Dumont et al., 2012). Despite variable metamorphic grade, this tectonic contact displays a relative consistency of tectonostratigraphic and structural characteristics. Removal of the Oligocene and younger deformation is a critical requirement to allow assessment of the kinematic evolution during the Eocene continental subduction phase. The best preserved relationships are observed near the base of the Helminthoid Flysch nappes, in the footwall of the Penninic thrust, or in the external part of the Briançonnais zone. Here, the oceanic units are composed of detached Cretaceous sediments, but they are underlain locally by an olistostrome containing basaltic clasts. Further to the east, the internal boundary of the Briançonnais zone s.l. (including the 'Prepiedmont units'), is frequently marked by breccia or megabreccia, but is strongly affected by blueschist-facies metamorphism and by approximately easterly directed backfolding and backthrusting. At one locality, there is compelling evidence that the oceanic and continental units were already tectonically stacked and metamorphosed (together) 32Ma ago. Some megabreccias of mixed continental/oceanic provenance can be interpreted as a metamorphic equivalent of the external olistostrome, products of the initial pulses of tectonic stacking. The overlying units are composed dominantly of metasediments, containing distributed ophiolitic megaboudins (Tricart & Schwartz, 2006). Further east again, the tectonic contact separates the Dora-Maira continental basement from the Mt. Viso units which are predominantly composed of oceanic lithosphere. Both the Dora-Maira and Mt. Viso units are eclogitic, but the HP peak is apparently

  7. Seismic coupling and uncoupling at subduction zones

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  8. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction.

    Science.gov (United States)

    Stukel, Michael R; Aluwihare, Lihini I; Barbeau, Katherine A; Chekalyuk, Alexander M; Goericke, Ralf; Miller, Arthur J; Ohman, Mark D; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M; Landry, Michael R

    2017-02-07

    Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from (238)U:(234)Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m(-2)⋅d(-1)) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m(-2)⋅d(-1) was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

  9. Dynamics and Significance of Plume-Induced Subduction Initiation: Numerical Modeling

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2014-12-01

    How did the first subduction zone form? Most present-day subduction initiation mechanisms require acting plate forces and/or preexisting zones of lithospheric weakness, which are themselves the consequence of plate tectonics (Stern 2004). In contrast, spontaneous plume-induced subduction initiation - suggested on the basis of numerical thermo-mechanical experiments (Ueda et al., 2008) and supported by data re-interpretation of how subduction started in Late Cretaceous time around the Caribbean LIP (Whattam and Stern, 2014) - does not require pre-existing lithospheric fabric, such as are created by active plate tectonics and is viable for both stagnant lid and mobile/deformable lid conditions. Here, we present first results of high-resolution 3D numerical thermo-mechanical modeling of plume-induced subduction resulting from mechanical-magmatic interaction of an ascending thermal mantle plume with old, cold, dense oceanic lithosphere. We demonstrate that weakening of the strong lithosphere by plume-induced magmatism is the key factor enabling subduction initiation around the plume head. A large plume head is required to overcome ring confinement, and subduction initiation is further favored when plume activity and lithospheric weakening continues for several tens of Ma. We further discuss possible implications of this scenario for modern plate tectonics as well as for plate tectonics initiation in Precambrian time. ReferencesStern, R.J., 2004. Subduction initiation: spontaneous and induced. EPSL 226, 275-292.Ueda, K., Gerya, T., Sobolev, S.V., 2008. Subduction initiation by thermal-chemical plumes. PEPI 171, 296-312.Whattam, S.A., Stern, R. 2014. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, (accepted).

  10. Peridotites and mafic igneous rocks at the foot of the Galicia Margin: an oceanic or continental lithosphere? A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Korprobst, J.; Chazot, G.

    2016-10-01

    An ultramafic/mafic complex is exposed on the sea floor at the foot of the Galicia Margin (Spain and Portugal). It comprises various types of peridotites and pyroxenites, as well as amphibole-diorites, gabbros, dolerites and basalts. For chronological and structural reasons (gabbros were emplaced within peridotites before the continental break-up) this unit cannot be assigned to the Atlantic oceanic crust. The compilation of all available petrological and geochemical data suggests that peridotites are derived from the sub-continental lithospheric mantle, deeply transformed during Cretaceous rifting. Thus, websterite dykes extracted from the depleted MORB mantle reservoir (DMM), were emplaced early within the lithospheric harzburgites; subsequent boudinage and tectonic dispersion of these dykes in the peridotites, during deformation stages at the beginning of rifting, resulted in the formation of fertile but isotopically depleted lherzolites. Sterile but isotopically enriched websterites, would represent melting residues in the peridotites, after significant partial melting and melt extraction related to the thermal erosion of the lithosphere. The latter melts are probably the source of brown amphibole metasomatic crystallization in some peridotites, as well as of the emplacement of amphibole-diorite dykes. Melts directly extracted from the asthenosphere were emplaced as gabbro within the sub-continental mantle. Mixing these DMM melts together with the enriched melts extracted from the lithosphere, provided the intermediate isotopic melt-compositions - in between the DMM and Oceanic Islands Basalts reservoir - observed for the dolerites and basalts, none of which are characterized by a genuine N-MORB signature. An enriched lithospheric mantle, present prior to rifting of the Galicia margin, is in good agreement with data from the Messejana dyke (Portugal) and more generally, with those of all continental tholeiites of the Central Atlantic Magmatic Province (CAMP

  11. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older

  12. Long-period ocean-bottom motions in the source areas of large subduction earthquakes.

    Science.gov (United States)

    Nakamura, Takeshi; Takenaka, Hiroshi; Okamoto, Taro; Ohori, Michihiro; Tsuboi, Seiji

    2015-11-30

    Long-period ground motions in plain and basin areas on land can cause large-scale, severe damage to structures and buildings and have been widely investigated for disaster prevention and mitigation. However, such motions in ocean-bottom areas are poorly studied because of their relative insignificance in uninhabited areas and the lack of ocean-bottom strong-motion data. Here, we report on evidence for the development of long-period (10-20 s) motions using deep ocean-bottom data. The waveforms and spectrograms demonstrate prolonged and amplified motions that are inconsistent with attenuation patterns of ground motions on land. Simulated waveforms reproducing observed ocean-bottom data demonstrate substantial contributions of thick low-velocity sediment layers to development of these motions. This development, which could affect magnitude estimates and finite fault slip modelling because of its critical period ranges on their estimations, may be common in the source areas of subduction earthquakes where thick, low-velocity sediment layers are present.

  13. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  14. The lithosphere structure beneath the central Mediterranean from S receiver functions

    Science.gov (United States)

    Bianchi, Irene; Miller, Meghan; Piana Agostinetti, Nicola; O'Driscoll, Leland

    2017-04-01

    The last piece of Mesozoic oceanic lithosphere from the Neo-Tethys Ocean is being consumed beneath Eurasia in the Central Mediterranean area, squeezed by the continuing convergence of Africa with the Eurasian plate. Convergence between Africa and Eurasia has been ongoing since the Cenozoic, forming a series of arcuate shaped subduction zones, and producing the current complex plate boundary that strikes across the Mediterranean area. Moreover, geophysical imaging depicts a variable lithospheric structure related to remnants of both oceanic and continental lithosphere within this convergent margin, which contributes to its complexity. In fact, the subduction/collision of blocks with different rheologies and thicknesses (e.g. continental or oceanic) has resulted in complex setting that includes accretionary wedges, orogenesis, and formation of an intricate back-arc/fore-arc/trench system. In order to shed light on these tectonic structures, we provide observations and interpretations of the lithospheric structure of the central Mediterranean via S receiver functions analysis. Teleseismic observations recorded at permanent and temporary seismic stations have been employed to produce images of the lithospheric discontinuities with tens of kilometers lateral resolution. We illustrate the feasibility of the lithosphere-asthenosphere boundary detection on a regional scale, and detect the occurrence of deeper seismic discontinuities due both to positive and negative seismic velocity jumps.

  15. Kinematics of subduction and subduction-induced flow in the upper mantle

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    Results of fluid dynamical experiments are presented to model the kinematics of lithospheric subduction in the upper mantle. The experiments model a dense highviscosity plate (subducting lithosphere) overlying a less dense low-viscosity layer (upper mantle). The overriding lithosphere is not

  16. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust

    Science.gov (United States)

    Kim, Daeyeong; Katayama, Ikuo; Michibayashi, Katsuyoshi; Tsujimori, Tatsuki

    2013-09-01

    Investigations of microstructures are crucial if we are to understand the seismic anisotropy of subducting oceanic crust, and here we report on our systematic fabric analyses of glaucophane, lawsonite, and epidote in naturally deformed blueschists from the Diablo Range and Franciscan Complex in California, and the Hida Mountains in Japan. Glaucophanes in the analyzed samples consist of very fine grains that are well aligned along the foliation and have high aspect ratios and strong crystal preferred orientations (CPOs) characterized by a (1 0 0)[0 0 1] pattern. These characteristics, together with a bimodal distribution of grain sizes from some samples, possibly indicate the occurrence of dynamic recrystallization for glaucophane. Although lawsonite and epidote display high aspect ratios and a strong CPO of (0 0 1)[0 1 0], the occurrence of straight grain boundaries and euhedral crystals indicates that rigid body rotation was the dominant deformation mechanism. The P-wave (AVP) and S-wave (AVS) seismic anisotropies of glaucophane (AVP = 20.4%, AVS = 11.5%) and epidote (AVP = 9.0%, AVS = 8.0%) are typical of the crust; consequently, the fastest propagation of P-waves is parallel to the [0 0 1] maxima, and the polarization of S-waves parallel to the foliation can form a trench-parallel seismic anisotropy owing to the slowest VS polarization being normal to the subducting slab. The seismic anisotropy of lawsonite (AVP = 9.6%, AVS = 19.9%) is characterized by the fast propagation of P-waves subnormal to the lawsonite [0 0 1] maxima and polarization of S-waves perpendicular to the foliation and lineation, which can generate a trench-normal anisotropy. The AVS of lawsonite blueschist (5.6-9.2%) is weak compared with that of epidote blueschist (8.4-11.1%). Calculations of the thickness of the anisotropic layer indicate that glaucophane and lawsonite contribute to the trench-parallel and trench-normal seismic anisotropy beneath NE Japan, but not to that beneath the Ryukyu

  17. Ultra-Refractory Domains in the Oceanic Lithosphere: Evidence from Major Element and Modal Relationships in Mantle Xenoliths from Ocean Islands

    Science.gov (United States)

    Neumann, E.; Simon, N. S.; Bonadiman, C.; Coltorti, M.; Delpech, G.; Gregoire, M.

    2007-12-01

    We have compiled a database for major element and modal data of mantle harzburgite and lherzolite xenoliths from different ocean islands. The xenoliths fall in two main categories. Xenoliths showing no petrographic evidence of metasomatism (OI1) from the Canary Islands, Kerguelen, Cape Verde and Samoa are ultra-depleted spinel harzburgites. These xenoliths formed by high degrees of partial melting leading to total exhaustion of cpx. Small amounts of cpx observed in these rocks (mainly fertilization). Unradiogenic Os isotopes and high Re-Os model ages suggest that OI1 and OI1cpx rocks from some islands are much older than the abyssal lithosphere in which they are found. P-T estimates of 0.7-1.3 GPa and 850- 1200°C indicate that the OI1 xenoliths last equilibrated at depths corresponding to >80 Ma old oceanic lithospheric mantle. We interpret the ultra-depleted xenoliths as fragments of material trapped in the oceanic mantle lithosphere. Major element similarities to some series of oceanic sub-arc mantle, and significant differences from continental xenolith series, makes it most likely that the ultra-refractory OI1 peridotites represent recycled abyssal mantle. The large proportion of ultra-refractory peridotite xenoliths in ocean islands, and the presence of such rocks also along some mid-ocean ridges and in sub-arc mantle, suggest that ultra-refractory material may be important ingredients in the convecting mantle. Because of their ultra-depleted chemistry the OI1 type harzburgites will have relatively low densities and are therefore buoyant relative to less refractory mantle rock types. Their high solidus temperatures make the OI1 xenoliths immune to further partial melting (sterile).

  18. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2012-01-01

    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  19. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2015-09-01

    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  20. The Triassic age for oceanic eclogites in the Dabie orogen: Entrainment of oceanic fragments in the continental subduction

    Science.gov (United States)

    Cheng, Hao; DuFrane, S. Andrew; Vervoort, Jeffrey D.; Nakamura, Eizo; Li, Qiuli; Zhou, Zuyi

    2010-06-01

    Low-temperature and high-pressure eclogites with an oceanic affinity in the western part of the Dabie orogen have been investigated with combined Lu-Hf and U-Pb geochronology. These eclogites formed over a range of temperatures (482-565 °C and 1.9-2.2 GPa). Three eclogites, which were sampled from the Gaoqiao country, yielded Lu-Hf ages of 240.7 ± 1.2 Ma, 243.3 ± 4.1 Ma and 238.3 ± 1.2 Ma, with a corresponding lower-intercept U-Pb zircon age of 232 ± 26 Ma. Despite the well-preserved prograde major- and trace-element zoning in garnets, these Lu-Hf ages mostly reflect the high-pressure eclogite-facies metamorphism instead of representing the early phase of garnet growth due to the occurrence of omphacite inclusions from core to rim and the shell effect. An upper-intercept zircon U-Pb age of 765 ± 24 Ma is defined for the Gaoqiao eclogite, which is consistent with the weighted-mean age of 768 ± 21 Ma for the country gneiss. However, the gneiss has not been subjected to successive high-pressure metamorphism. The new Triassic ages are likely an estimate of the involvement of oceanic fragments in the continental subduction.

  1. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods...... is that gradients are extremely sensitive to localized density contrasts within regional geological settings, which makes it ideally suited for detecting subduction zones. Second order gravity gradients of disturbing potential were extracted from global geopotential model, the fifth release GOCE model ‘EGM_TIM_RL05......’. In order to remove the signal which mainly corresponds to the gravity signal of the lower mantle, long wavelength part of the gravity signal was removed up to degree and order 60. Because the areas with notable topography differences coincide with subduction zones, topography correction was also performed...

  2. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere.

    Science.gov (United States)

    Bonatti, Enrico; Ligi, Marco; Brunelli, Daniele; Cipriani, Anna; Fabretti, Paola; Ferrante, Valentina; Gasperini, Luca; Ottolini, Luisa

    2003-05-29

    A 20-Myr record of creation of oceanic lithosphere is exposed along a segment of the central Mid-Atlantic Ridge on an uplifted sliver of lithosphere. The degree of melting of the mantle that is upwelling below the ridge, estimated from the chemistry of the exposed mantle rocks, as well as crustal thickness inferred from gravity measurements, show oscillations of approximately 3-4 Myr superimposed on a longer-term steady increase with time. The time lag between oscillations of mantle melting and crustal thickness indicates that the mantle is upwelling at an average rate of approximately 25 mm x yr(-1), but this appears to vary through time. Slow-spreading lithosphere seems to form through dynamic pulses of mantle upwelling and melting, leading not only to along-axis segmentation but also to across-axis structural variability. Also, the central Mid-Atlantic Ridge appears to have become steadily hotter over the past 20 Myr, possibly owing to north-south mantle flow.

  3. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    Science.gov (United States)

    von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.

    2017-10-01

    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean

  4. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  5. Variability of lithospheric structure in the Baltic Shield

    Science.gov (United States)

    Pedersen, Helle; Debayle, Eric; Maupin, Valérie

    2013-04-01

    We present the shear velocity structure down to 250km depth beneath the dense LAPNET array in northern Finland, located at the northern end of the Baltic Shield. We analysed phase velocity dispersion of fundamental mode Rayleigh waves, using data from 46 seismic broadband stations and almost 200 magnitude >6 events. The inversion of the dispersion curve shows a well resolved low velocity zone starting at approximately 150km depth, while the shear velocities above are typical for cratonic lithosphere. The comparison to other parts of the Baltic Shield show strong variability of the lithospheric structure. Immediately south of LAPNET, in an area dominated by paleaproterozoic rocks at surface, the lithosphere is fast to a depth of 225-250km, while cratonic lithosphere seems to be absent beneath southern Norway, in spite of Proterozoic age tectonic ages. The low velocity zone beneath northern Finland indicates that the lithosphere in this area is either modified at depth, for example through metasomatism, or that it is thinner than the more internal part of the Baltic shield. We suggest that the modification of the cratonic lithosphere beneath northern Finland is not related to continental breakup at the opening of the Atlantic Ocean, as the continental shelf continues north, beneath the Barents Sea. We rather favour the hypothesis that subduction and/or collision could potentially modify (by fluid injection) or remove (by erosion/dripping) otherwise stable cratonic lithosphere.

  6. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite

    Science.gov (United States)

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.

    2015-01-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  7. Effect of the Earth's rotation on subduction processes

    Science.gov (United States)

    Levin, B. W.; Rodkin, M. V.; Sasorova, E. V.

    2017-09-01

    The role played by the Earth's rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally estimated by the value of the Rossby number: if this parameter is small, the Coriolis force considerably affects the character of movements. In the case of convection in the Earth's mantle and movements of lithospheric plates, the Rossby number is quite small; therefore, the effect of the Coriolis force is reflected in the character of movements of the lithospheric plates. Analysis of statistical data on subduction zones verifies this suggestion.

  8. Unstable fault slip induced by lawsonite dehydration in blueschist: Implication for the seismicity in the subducting oceanic crusts

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2015-12-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the subducting mantle In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Moho. These observations have stimulated interest in potential relationships between blueschist-facies metamorphism and seismicity, particularly through the dehydration reactions involving lawsonite. The rheology of these high-pressure and low-temperature metamorphic minerals is largely unknown. We conducted experiments on lawsonite accompanied by monitoring of acoustic emission (AE) in a Griggs-type deformation apparatus. Deformation was started at the confining pressure of 1.0 GPa, the temperature of 300 ˚C, and constant displacement rates of 0.16 to 0.016 μm/s, that correspond to equivalent strain rates (ɛ) of 9 × 10-5 to 9 × 10-6 1/s. In these experiments, temperature was increased at the temperature ramp rate of 0.5 to 0.05˚C/s above the thermal stability of lawsonite (600˚C) while the sample was deforming to test whether the dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (i.e., stick-slip) occurred during dehydration reactions in the lawsonite gouge layer, and AE signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shear), and the fault surface shows mirror-like slickensides. The unloading slope (i.e., rate of stress drop as a function of slip) during the unstable slip follows the stiffness of the apparatus at all experimental conditions regardless of the strain rate and temperature ramping rate. A thermal-mechanical scaling factor in the experiments covers the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers to induce seismicity in cold subduction zones.

  9. Metallogeny of subduction zones

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2017-03-01

    Full Text Available The paper deals with the multistage mechanism of the Earth's crust enrichment in ore elements in underthrust zones. The processes of metamorphism and the formation of hydrothermal solutions at pulling of the watered oceanic lithospheric plate into the subduction zone have been described. Some physical and chemical transformation regularities of structural-material complexes in these areas and mechanisms of the formation of ore deposits have been discussed. Spatio-temporal patterns of the localization of a number of endogenetic and exogenetic deposits have been described using metallogeny of the Ural and the Verkhoyansk-Kolyma Fold Belts as an example. It has been shown that in nature there are several effective mechanisms of the enrichment of the crust in ore minerals. One of them is the process of pulling into subduction zone of metalliferous sediments and ferromanganese crusts as well as seabed nodules, their metamorphic transformation, partial melting and transition of ore components into magmatic melts and mineralized fluids. In the future this leads to the release of ore material by magmas and hydrothermal solutions into the folded formations of island-arc and Andean types and the formation of igneous, metasomatic and hydrothermal deposits. Another, yet no less powerful natural mechanism of a conveyor enrichment of the crust in ore elements is the process of destruction and sedimentation of mineral deposits formed in the folded areas as well as the formation of placers and their transfer to the marginal parts of the continent. Later, during the collision of active and passive margins of two lithospheric plates, such as the collision of the Kolyma Massif with the eastern part of the Siberian craton in the middle of the Mesozoic there was a thrusting of a younger lithospheric plate over a more ancient one. As a result, the sedimentary sequences of the passive margin of the Siberian plate were submerged and partially melted by the basic magmas

  10. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes

    Science.gov (United States)

    Wakabayashi, John

    2017-12-01

    The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of

  11. Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling

    Science.gov (United States)

    Shi, Yanan; Wei, Dongping; Li, Zhong-Hai; Liu, Ming-Qi; Liu, Mengxue

    2017-12-01

    Global seismic tomography of the subduction zones shows that the subducting slabs could either stagnate around the 660-km discontinuity, or penetrate into the lower mantle. The stagnating slabs also have various morphologies. These are directly related to the interaction between the subducting slabs and the mantle transition zone (MTZ), the dynamics of which are still debated. Using a 2-D thermo-mechanical model, we systematically investigated the modes of subduction in the mantle transition zone and explored the key constraints of various subduction styles. Four basic subduction modes are obtained in the numerical experiments, including one with slab penetrating through the 660-km discontinuity and three other modes with slab stagnating in the MTZ (i.e. folding, lying and rolling-back). The numerical models indicate that the age of subducting oceanic plate, the thickness of overriding continental lithosphere and the convergence velocity play crucial roles in the dynamics of subducting slab and MTZ interaction. In general, the young subducting slab favors the penetration or folding mode, whereas the old subducting slab tends to result in lying or rolling-back mode, although other parameters can also affect. Our models also show a strong correlation between the subduction mode selection and dip angle of the slab tip when reaching the 660-km phase boundary.

  12. Seismicity and the subduction process

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1980-01-01

    There is considerable variation between subduction zones in the largest characteristic earthquake within each zone. Assuming that coupling between downgoing and upper plates is directly related to characteristic earthquake size, tests for correlations between variation in coupling and other physical features of subduction zones are conducted: the lateral extent and penetration depth of Benioff zones, age of subducting lithosphere, convergence rate, and back-arc spreading. Using linear multivariate regression, coupling is correlated with two variables: convergence rate and lithosphere age. Secondary correlations within the data set are penetration depth versus lithosphere age, and lateral extent versus convergence rate. Taken together, the observed correlations suggest a simple qualitative model where convergence rate and lithosphere age determine the horizontal and sinking rates, respectively, of slabs: these parameters influence the seismic coupling in the subduction zone. In the limit of a fast sinking rate and slow convergence rate, back-arc spreading occurs and thereby appears to be a passive process.

  13. Evidence for palaeo-Tethyan oceanic subduction within central Qiangtang, northern Tibet

    Science.gov (United States)

    Liu, Yan; Santosh, M.; Zhao, Zhong Bao; Niu, Wen Chao; Wang, Gen Hou

    2011-11-01

    The mechanism of formation of blueschist-eclogite belts and their space-time distribution are important in understanding the tectonics associated with convergent plate boundaries. Here we investigate the garnet-bearing blueschists from Rongma area of central Qiangtang in northern Tibet. The mineral assemblage in these rocks is characterized by porphyroblastic garnet set within a matrix of fine-grained amphibole, white mica, epidote, chlorite, albite and quartz with accessory rutile, titanite and apatite. The garnet porphyroblasts exhibit core and rim portions, and the cores carry abundant inclusions of Na amphibole, quartz and rutile, as well as rhomb-shaped inclusions of paragonite and epidote which are interpreted as pseudomorphs after lawsonite. The rims are characterized by coarse-grained inclusions of epidote as well as the absence of paragonite and epidote aggregates, clearly suggesting that the transition from garnet core to rim marks a metamorphic transformation from lawsonite- to epidote-stability field. The Mn content of the garnet porphyroblasts decreases from core to rim, whereas the Fe and Mg contents show an increasing trend. In the matrix, we identify two stages of Na amphibole rimmed by Na-Ca amphibole and albite. Retrograde chlorite is rimmed by fine-grained biotite. Based on microstructural observations and pseudosection modelling, we trace the P-T path for the Rongma garnet blueschist from 1.92 GPa and 490 °C (lawsonite eclogite field) to about 1.68 GPa and 535 °C (epidote eclogite field), marking an initial increase in temperature and decrease in pressure. This stage is followed by a decrease of pressure through the blueschist facies down to P-T conditions of about 0.6 GPa and 530 °C. In combination with previous work including the available isotopic age data, the P-T path obtained in the present study suggests the deep subduction of palaeo-Tethyan oceanic crust between southern and northern Qiangtang blocks, supporting the model that the

  14. Mantle Flow and Melting Beneath Young Oceanic Lithosphere: Seismic Studies of the Galapagos Archipelago and the Juan de Fuca Plate

    Science.gov (United States)

    Byrnes, Joseph Stephen

    In this dissertation, I use seismic imaging techniques to constrain the physical state of the upper mantle beneath regions of young oceanic lithosphere. Mantle convection is investigated beneath the Galapagos Archipelago and then beneath the Juan de Fuca (JdF) plate, with a focus on the JdF and Gorda Ridges before turning to the off-axis asthenosphere. In the Galapagos Archipelago, S-to-p receiver functions reveal a discontinuity in seismic velocity that is attributed to the dehydration of the upper mantle. The depth at which dehydration occurs is shown to be consistent with prior constraints on mantle temperature. A comparison between results from receiver functions, seismic tomography and petrology shows that mantle upwelling and melt generation occur shallower than the depth of the discontinuity, despite the expectation of high viscosities in the dehydrated layer. Beneath the JdF and Gorda Ridge, low Vs anomalies are too large to be explained by the cooling of the lithosphere and are attributed to partial melt. The asymmetry, large Vs gradients, and sinuosity of the anomalies beneath the JdF Ridge are consistent with models of buoyancy-driven upwelling. However, deformation zone processes appear to dominate mantle flow over seafloor spreading beneath the Explorer and Gorda diffuse plate boundaries. Finally, S-to-p receiver functions reveal a seismic discontinuity beneath the JdF plate that can only be attributed to seismic anisotropy. Synthesis of the receiver function results with prior SKS splitting results requires heterogeneous anisotropy between the crust and the discontinuity. Models of anisotropy feature increasing anisotropy before the decrease at the discontinuity, but well below the base of the lithosphere, and a clockwise rotation of the fast direction with increasing depth. In these results and even in the SKS splitting results, additional driving mechanisms for mantle flow such as density or pressure anomalies are required.

  15. Isabella Anomaly: Lithospheric drip, delamination or fragment of the Farallon plate?

    Science.gov (United States)

    Forsyth, D. W.; Rau, C. J.

    2009-12-01

    The Isabella Anomaly or Central Valley Anomaly in California is perhaps the best known example of a high seismic velocity anomaly that has been interpreted as a lithospheric instability. High P and S velocities extend to a depth of at least 150 km and perhaps to several hundred km in a nearly cylindrical region 100-150 km across. The amplitude of the anomaly in the upper 200 km is similar to that of the subducted Gorda plate. This anomaly has been variously interpreted as a convective drip or as a remnant of the lithosphere delaminated from beneath the eastern Sierra Nevada. We suggest instead that the Isabella anomaly may represent a fragment of the subducted Farallon plate that is still attached to the Pacific lithosphere. Directly seaward of the anomaly is the fossil Monterrey microplate, which is a remnant of the Farallon plate that was left when subduction ceased before the spreading center itself subducted. The microplate was then incorporated into the Pacific plate, but it is not clear how much of the subducting slab remained attached to the surface microplate. New Rayleigh wave tomographic images of Baja California show that there are still fragments of the Farallon plate remaining attached to the unsubducted Guadelupe and Magdelena microplate remnants, with anomalies extending down to at least 150 km. The geometry of these anomalies in relationship to the microplates is very similar to that of the Isabella anomaly. A major question with this interpretation is whether a bit of oceanic lithosphere extending down into the asthenosphere could be dragged along with the surface microplate/Pacific plate for 20 Ma since subduction ceased. Another anomaly similar to the Isabella anomaly begins in the shallow mantle beneath the northern end of San Francisco bay and dips to the west - another candidate for a lithospheric drip or convective instability?

  16. Constraints on the Thermal and Compositional Nature of the Oceanic Lithosphere-Asthenosphere Boundary from Seismic Anisotropy

    Science.gov (United States)

    Beghein, C.; Yuan, K.; Schmerr, N. C.; Xing, Z.

    2014-12-01

    In this study we modeled S-wave velocities, radial and azimuthal anisotropy beneath the Pacific ocean, and compared our model with detections of the Gutenberg (G) discontinuity at 40-100 km depth to evaluate its context and relation to the lithosphere-asthenosphere boundary (LAB). The G is often associated with the LAB, but its sharpness and the low correlation between its depth and oceanic plate age suggest a compositional origin, in contradiction with tomographic models of isotropic wave velocities. Here, we inverted fundamental and higher mode anisotropic Rayleigh wave phase velocity maps to which we applied non-linear crustal corrections. Our model defines three layers within the upper 250km of the mantle. The bottom layer is characterized by relatively low velocities, strong (3%) azimuthal anisotropy, fast seismic directions that follow the absolute plate motion (APM), and strong (5%) radial anisotropy with VSH>VSV. This suggests alignment of olivine fast axes with mantle flow direction in the asthenosphere. The middle layer has fast axes aligned with the paleospreading directions, and the boundary between the bottom and middle layers follows a half-space cooling model. This suggests a thermal origin of the LAB if we use the change in alignment of the fast axes with the APM as a proxy for the LAB. Remarkably, a change in azimuthal anisotropy is found between the two top layers at a roughly constant depth that coincides with the location of the G. The G is therefore located within the thermal lithosphere and is primarily associated with a vertical gradient in azimuthal anisotropy, which may result from compositional changes. Dehydration of the mantle underlying mid-ocean ridges offers a possible explanation for our results. It could generate a chemically depleted, viscous layer that becomes overprinted by lowered temperatures as the plate cools and migrates away from the ridge. The olivine fast axes would align with the spreading direction at the ridge in the

  17. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  18. Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1029/2009GC003015

    2011-01-01

    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facie...

  19. Multi-decadal changes in southern hemisphere subduction rates in a 1/12° ocean model hindcast

    Science.gov (United States)

    Nowatzki, Eva; Patara, Lavinia; Böning, Claus; Karstensen, Johannes

    2017-04-01

    Mode and Intermediate Waters formed in the mid-latitudes of the Southern Ocean represent a major agent for the ventilation of the southern hemisphere lower thermocline, playing a key role in the uptake and intermittent storage of anthropogenic CO2. Long-term hydrographic records as well as modelling studies have provided indications that characteristics of these water masses have been changing over the last decades. Changes in heat, freshwater and momentum fluxes may all contribute to the water mass variability. In this study, we investigate the temporal and spatial variability of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation and its linkages to changing atmospheric conditions with a global ocean - sea-ice model for the time period 1979-2007. The model employs a horizontal resolution of 1/12° for the Southern Ocean and is forced with the CORE-II interannually-varying atmospheric forcing data set. The hindcast simulation is complemented by a second experiment with a repeated 'normal-year' atmospheric forcing in order to separate atmospherically-related changes from stochastic variability and spurious model trends. We find that subduction rates in the density range of SAMW and AAIW are dominated by the lateral induction term and as such are tightly linked to the maximum mixed layer depth (MLD) at the end of winter. The model simulation shows multi-decadal trends in subduction rates, however the trends are not uniform across the density range of SAMW/ AAIW and differ between the Pacific and Indian Ocean sectors. Largest changes in AAIW formation are found in the southeast Pacific, whereas changes in SAMW formation are most pronounced in the Indian Ocean. In the Pacific, the decrease of subduction rates in the AAIW range is contrasted by a positive trend in the SAMW range. The changes in subduction rates are linked to salinity and thus density trends of the winter mixed layer that can be traced to multi-decadal trends in heat and

  20. A Cambrian intra-oceanic subduction system in the Bozshakol area, Kazakhstan

    Science.gov (United States)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Yuan, Feng; Jakupova, Sholpan

    2015-05-01

    adakites. Therefore, Bozshakol intrusive rocks were also derived from the mantle wedge and minor slab melts. We propose a model of intra-oceanic subduction for the Middle to Late Cambrian magmatic evolution of magmatic arcs in northwestern central Kazakhstan.

  1. 3D Numerical modelling of topography development associated with curved subduction zones

    Science.gov (United States)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab

  2. Late Cretaceous A- and I-type granite association in the Sakarya Zone, NE Turkey: implications for the origin and slab roll-back of Neotethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Aydin, Faruk; Uysal, İbrahim; Dokuz, Abdurrahman; Kandemir, Raif

    2017-04-01

    , induces alkali metasomatism of the mafic lower crust, while A-type granite generate and halogens (i.e., F and Cl) play an important role at the site of partial melting, allowing small-degree partial melts. Integrated all available data with the regional tectonic evolution in Sakarya Zone, we attribute generation of the aluminous A- and I-type granites to a back-arc extension in the subduction zone, which is induced by the roll-back of the Neo-Tethyan oceanic slab between 70 and 80 Ma. Consequently, we conclude that these A- and I-type granites were related to intensive extension tectonic, which peaked during the Latest Cretaceous in response to the roll-back of Neo-Tethyan oceanic slab, indicative of final stage of subduction event in the Sakarya Zone.

  3. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    Science.gov (United States)

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-05

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

  4. Thickness of the oceanic crust, the lithosphere, and the mantle transition zone in the vicinity of the Tristan da Cunha hot spot estimated from ocean-bottom and ocean-island seismometer receiver functions

    Science.gov (United States)

    Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion; Baba, Kiyoshi

    2017-10-01

    The most prominent hotspot in the South Atlantic is Tristan da Cunha, which is widely considered to be underlain by a mantle plume. But the existence, location and size of this mantle plume have not been established due to the lack of regional geophysical observations. A passive seismic experiment using ocean bottom seismometers aims to investigate the lithosphere and upper mantle structure beneath the hotspot. Using the Ps receiver function method we calculate a thickness of 5 to 8 km for the oceanic crust at 17 ocean-bottom stations deployed around the islands. Within the errors of the method the thickness of the oceanic crust is very close to the global mean. The Tristan hotspot seems to have contributed little additional magmatic material or heat to the melting zone at the mid-oceanic ridge, which could be detected as thickened oceanic crust. Magmatic activity on the archipelago and surrounding seamounts seems to have only affected the crustal thickness locally. Furthermore, we imaged the mantle transition zone discontinuities by analysing receiver functions at the permanent seismological station TRIS and surrounding OBS stations. Our observations provide evidence for a thickened (cold) mantle transition zone west and northwest of the islands, which excludes the presence of a deep-reaching mantle plume. We have some indications of a thinned, hot mantle transition zone south of Tristan da Cunha inferred from sparse and noisy observations, which might indicate the location of a Tristan mantle plume at mid-mantle depths. Sp receiver functions image the base of lithosphere at about 60 to 75 km beneath the islands, which argues for a compositionally controlled seismological lithosphere-asthenosphere boundary beneath the study area.

  5. Lithospheric thermal evolution and dynamic mechanism of destruction of the North China Craton

    Science.gov (United States)

    Li, Zian; Zhang, Lu; Lin, Ge; Zhao, Chongbin; Liang, Yingjie

    2017-09-01

    The dynamic mechanism for destruction of the North China Craton (NCC) has been extensively discussed. Numerical simulation is used in this paper to discuss the effect of mantle upward throughflow (MUT) on the lithospheric heat flux of the NCC. Our results yield a three-stage destruction of the NCC lithosphere as a consequence of MUT variation. (1) In Late Paleozoic, the elevation of MUT, which was probably caused by southward and northward subduction of the paleo-Asian and paleo-Tethyan oceans, respectively, became a prelude to the NCC destruction. The geological consequences include a limited decrease of the lithospheric thickness, an increase of heat flux, and a gradual enhancement of the crustal activity. But the tectonic attribute of the NCC maintained a stable craton. (2) During Late Jurassic-Early Cretaceous, the initial velocity of the MUT became much faster probably in response to subduction of the Pacific Ocean; the conductive heat flux at the base of the NCC lithosphere gradually increased from west to east; and the lithospheric thickness was significantly decreased. During this stage, the heat flux distribution was characterized by zonation and partition, with nearly horizontal layering in the lithosphere and vertical layering in the underlying asthenosphere. Continuous destruction of the NCC lithosphere was associated with the intense tectono-magmatic activity. (3) From Late Cretaceous to Paleogene, the velocity of MUT became slower due to the retreat of the subducting Pacific slab; the conductive heat flux at the base of lithosphere was increased from west to east; the distribution of heat flux was no longer layered. The crust of the western NCC is relatively hotter than the mantle, so-called as a `hot crust but cold mantle' structure. At the eastern NCC, the crust and the mantle characterized by a `cold crust but hot mantle.' The western NCC (e.g., the Ordos Basin) had a tectonically stable crust with low thermal gradients in the lithosphere; whereas

  6. Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis

    Science.gov (United States)

    Kameda, Jun; Inoue, Sayako; Tanikawa, Wataru; Yamaguchi, Asuka; Hamada, Yohei; Hashimoto, Yoshitaka; Kimura, Gaku

    2017-04-01

    The alteration and dehydration of predominantly basaltic subducting oceanic crustal material are thought to be important controls on the mechanical and hydrological properties of the seismogenic plate interface below accretionary prisms. This study focuses on pillow basalts exposed in an ancient accretionary complex within the Shimanto Belt of southwest Japan and provides new quantitative data that provide insight into clay mineral reactions and the associated dehydration of underthrust basalts. Whole-rock and clay-fraction X-ray diffraction analyses indicate that the progressive conversion of saponite to chlorite proceeds under an almost constant bulk-rock mineral assemblage. These clay mineral reactions may persist to deep crustal levels ( 320 °C), possibly contributing to the bulk dehydration of the basalt and supplying fluid to plate-boundary fault systems. This dehydration can also cause fluid pressurization at certain horizons within hydrous basalt sequences, eventually leading to fracturing and subsequent underplating of upper basement rock into the overriding accretionary prism. This dehydration-induced breakage of the basalt can explain variations in the thickness of accreted basalt fragments within accretionary prisms as well as the reported geochemical compositions of mineralized veins associated with exposed basalts in onland locations. This fracturing of intact basalt can also nucleate seismic rupturing that would subsequently propagate along seismogenic plate interfaces.[Figure not available: see fulltext.

  7. Seismic properties of subducting oceanic crust: Constraints from natural lawsonite-bearing blueschist and eclogite in Sivrihisar Massif, Turkey

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong

    2016-01-01

    Investigating the seismic properties of natural lawsonite (Lws)-bearing blueschist and eclogite is particularly important for constraining the seismic interpretation of subducting oceanic crust based on seismological observations. To achieve this end, we analyzed in detail the mineral fabrics and seismic properties of foliated Lws-blueschist and Lws-eclogites from Sivrihisar Massif in Turkey. In both blueschists and eclogites, the lawsonite fabric is characterized by three different patterns: [0 0 1] axes aligning sub-normal to foliation, and [0 1 0] axes aligning sub-parallel to lineation (normal type); [0 0 1] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation with a girdle sub-normal to lineation (abnormal type); and [0 0 1] axes aligning both sub-normal to foliation and sub-parallel to lineation, [0 1 0] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation (transitional pattern). In contrast, glaucophane and omphacite mostly present consistent axial fabrics with the [0 0 1] axes aligning to lineation. These mineral fabrics produce whole-rock seismic anisotropies with similar patterns. However, the variations in seismic anisotropies are mainly controlled by the rock type, to a lesser extent are determined by the lawsonite fabric type, and to only a small extent are affected by mineral fabric strength. Despite the constructive abnormal-type lawsonite fabric on whole-rock seismic anisotropies, because of their weaker mineral fabric strength (or deformation degree), the abnormal-type Lws-blueschist still exhibit comparatively lower seismic anisotropies than those normal-type Lws-blueschist from other localities. Based on the calculated seismic anisotropies and velocities, we estimated that when oceanic crust transforms from Lws-blueschist to Lws-eclogite with increasing subduction depth, (1) P-wave and max. S-wave polarization anisotropies reduce about 70% and 40%, respectively; and (2

  8. Petrogenesis of the Majiari ophiolite (western Tibet, China): Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys

    Science.gov (United States)

    Huang, Qiang-tai; Liu, Wei-liang; Xia, Bin; Cai, Zhou-rong; Chen, Wei-yan; Li, Jian-feng; Yin, Zheng-xin

    2017-09-01

    The Majiari ophiolite lies in the western Bangong-Nujiang Suture Zone, which separates the Qiangtang and Lhasa blocks in central Tibet. The ophiolite consists of peridotite, gabbro/diabase and basalt. Zircon U-Pb dating yielded an age of 170.5 ± 1.7 Ma for the gabbro, whereas 40Ar/39Ar dating of plagioclase from the same gabbro yielded ages of 108.4 ± 2.6 Ma (plateau age) and 112 ± 2 Ma (isochron age), indicating that the ophiolite was formed during the Middle Jurassic and was probably emplaced during the Early Cretaceous. Zircons from the gabbro have εHf(t) values ranging from +6.9 to +10.6 and f(Lu/Hf) values ranging from -0.92 to -0.98. Mafic lavas plot in the tholeiitic basalt field but are depleted in Nb, Ta and Ti and enriched in Rb, Ba and Th in the N-MORB-normalized trace element spider diagram. These lavas have whole-rock εNd(t) values of +5.9 to +6.6, suggesting that they were derived from a depleted mantle source, which was probably modified by subducted materials. The Majiari ophiolite probably formed in a typical back-arc basin above a supra-subduction zone (SSZ) mantle wedge. Intra-oceanic subduction occurred during the Middle Jurassic and collision of the Lhasa and South Qiangtang terranes likely occurred in the Early Cretaceous. Thus, closure of the Bangong-Nujiang Tethys Ocean likely occurred before the Early Cretaceous.

  9. The continental lithosphere

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2009-01-01

    of the Royal Society of London. Series A, 360, 2475–2491.; Shapiro N.M., Ritzwoller M.H. 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophysical Journal International 151, 1–18.] and lithospheric temperatures [Artemieva I.M., Mooney W.D., 2001. Thermal structure......The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle...... are consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions...

  10. Subduction of the Tethys Oceans reconstructed from plate kinematics and mantle tomography

    NARCIS (Netherlands)

    Hafkenscheid, Edith

    2004-01-01

    This thesis is concerned with the large-scale history of subduction within the Tethyan region, the Alpine-Himalayan mountain chain that stretches from the Mediterranean to the Indonesian archipelago. We investigate whether we can contribute to a better understanding of the Tethyan evolution by

  11. Kinematic constraints on distributed lithospheric deformation in the equatorial Indian Ocean from present-day motion between the Australian and Indian plates

    Science.gov (United States)

    Gordon, Richard G.; Demets, Charles; Argus, Donald F.

    1990-06-01

    thickening. Instead, lithosphere is transported northeastward toward the Sumatra trench through strike-slip faulting and possible clockwise rotation. The failure of the convergent segment of the diffuse plate boundary to form a subducting trench provides some new observations that must be satisfied by models for the initiation of subduction. A model of separate, rigid Indian and Australian plates divided by a diffuse plate boundary appears to be valid and useful because the predictions of the model agree with independent data and because the predicted velocity of relative motion is statistically significant and comparable with that across other plate boundaries.

  12. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bull, J.M.; DeMets, C.; Krishna, K.S.; Sanderson, D.J.; Merkouriev, S.

    The far-field signature of the India-Asia collision and history of uplift in Tibet are recorded by sediment input into the Indian Ocean and the strain accumulation history across the diffuse plate boundary between the Indian and Capricorn plates. We...

  13. Crustal and upper mantle structure of the Anatolian plate: Imaging the effects of subduction termination and continental collision with seismic techniques

    Science.gov (United States)

    Delph, Jonathan R.

    The neotectonic evolution of the eastern Mediterranean is intimately tied to interactions between the underthrusting/subducting slab along the southern margin of Anatolia and the overriding plate. The lateral variations in the subduction zone can be viewed as a temporal analogue of the transition between continuous subduction and subduction termination by continent-continent collision. By investigating the lateral variations along this subduction zone in the overriding plate, we can gain insight into the processes that precede continent collision. This dissertation summarizes the results of three studies that focus on different parts of the subduction margin: 1) In the west, where the development of a slab tear represents the transition between continuous and enigmatic subduction, 2) In the east, where continent-continent collision between the Arabian and Eurasian Plate is leading to the development of the third largest orogenic plateau on earth after complete slab detachment, and 3) In central Anatolia, where the subducting slab is thought to be in the processes of breaking up, which is affecting the flow of mantle material leading to volcanism and uplift along the margin. In the first study, we interpret that variations in the composition of material in the downgoing plate (i.e. a change from the subduction of oceanic material to continental material) may have led to the development of a slab tear in the eastern Aegean. This underthrusting, buoyant continental fragment is controlling overriding plate deformation, separating the highly extensional strains of western Anatolia from the much lower extensional strains of central Anatolia. Based on intermediate depth seismicity, it appears that the oceanic portion of the slab is still attached to this underthrusting continental fragment. In the second study, we interpret that the introduction of continental lithosphere into the north-dipping subduction zone at the Arabian-Eurasian margin led to the rollback and

  14. The kinematic evolution of the Macquarie Plate: A case study for the fragmentation of oceanic lithosphere

    Science.gov (United States)

    Choi, Hakkyum; Kim, Seung-Sep; Dyment, Jérôme; Granot, Roi; Park, Sung-Hyun; Hong, Jong Kuk

    2017-11-01

    The tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∼6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∼6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading.

  15. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NARCIS (Netherlands)

    Gaina, C.; Torsvik, T.H.; van Hinsbergen, D.J.J.; Medvedev, S.; Werner, S.C.; Labails, C.

    2013-01-01

    We present a model for the Jurassic to Present evolution of plate boundaries and oceanic crust of the African plate based on updated interpretation of magnetic, gravity and other geological and geophysical data sets. Location of continent ocean boundaries and age and geometry of old oceanic crust

  16. Viscosity structure of the oceanic lithosphere inferred from the differential late Quaternary sea-level variations for the southern Cook Islands

    Science.gov (United States)

    Nakada, Masao

    1996-09-01

    that of the asthenosphere, which is possible for mature oceanic lithosphere, the observed differential crustal movement is explained for an internal-load model with density anomalies of less than 20 kg m-3. The volume of the internal load is at most twice the volume of the external load. A high-viscosity layer with an effective viscosity of 1024 Pa s and with a thickness of greater than 60 km is required beneath the top elastic layer with a thickness of 10-15 km. The thickness of thermal lithosphere estimated by the plate age of this region is approximately 80-90 km, regardless of the age-thickness relationship adopted. It is therefore suggested that the major part of the thermal lithosphere is composed of a viscoelastic layer with an effective viscosity of 1024 Pa s and with a relaxation time of 1 Myr.

  17. Reconciling the Isabella Anomaly with Lithosphere Delamination and Basin & Range Extension

    Science.gov (United States)

    Straub, J.; Hu, J.; Zhou, Q.; Liu, L.

    2016-12-01

    The Isabella anomaly is a high-seismic velocity region located below the Sierra Nevada, and its presence has been explained through lithosphere delamination occurring within the past 10-15 Ma and an accreted oceanic micro-plate. Both the lack of consensus on the origin of this high velocity structure and its relation to putative lithospheric delamination and surface uplift requires more careful geodynamic studies. While earlier models of lithosphere delamination neglected the nearby subduction, we attempt to explain this anomaly in the context of delamination related to the subducted slab of the Farallon plate. We design a two-dimensional high-resolution model that extends from the west coast of the United States to the Colorado Plateau, including both the Sierra Nevada and Basin and Range regions. The Basin and Range experienced accelerated extension towards the northwest since 15 Ma, resulting in a topographical pattern with alternating subsidence and uplift; the mechanisms for both the deformation and topography of the region are presently debated. Preliminary results from our 2-D slab-lithosphere interaction model indicate that the foundering of an earlier accreted Farallon slab causes the surface to uplift and the overriding plate to extend. The model can potentially reproduce the main tectonic characteristics of the region, offering new insights on the evolution of the lithosphere-mantle system.

  18. The lithosphere-asthenosphere boundary beneath the South Island of New Zealand

    Science.gov (United States)

    Hua, Junlin; Fischer, Karen M.; Savage, Martha K.

    2018-02-01

    Lithosphere-asthenosphere boundary (LAB) properties beneath the South Island of New Zealand have been imaged by Sp receiver function common-conversion point stacking. In this transpressional boundary between the Australian and Pacific plates, dextral offset on the Alpine fault and convergence have occurred for the past 20 My, with the Alpine fault now bounded by Australian plate subduction to the south and Pacific plate subduction to the north. Using data from onland seismometers, especially the 29 broadband stations of the New Zealand permanent seismic network (GeoNet), we obtained 24,971 individual receiver functions by extended-time multi-taper deconvolution, and mapped them to three-dimensional space using a Fresnel zone approximation. Pervasive strong positive Sp phases are observed in the LAB depth range indicated by surface wave tomography. These phases are interpreted as conversions from a velocity decrease across the LAB. In the central South Island, the LAB is observed to be deeper and broader to the northwest of the Alpine fault. The deeper LAB to the northwest of the Alpine fault is consistent with models in which oceanic lithosphere attached to the Australian plate was partially subducted, or models in which the Pacific lithosphere has been underthrust northwest past the Alpine fault. Further north, a zone of thin lithosphere with a strong and vertically localized LAB velocity gradient occurs to the northwest of the fault, juxtaposed against a region of anomalously weak LAB conversions to the southeast of the fault. This structure could be explained by lithospheric blocks with contrasting LAB properties that meet beneath the Alpine fault, or by the effects of Pacific plate subduction. The observed variations in LAB properties indicate strong modification of the LAB by the interplay of convergence and strike-slip deformation along and across this transpressional plate boundary.

  19. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary

    Science.gov (United States)

    Schmerr, Nicholas

    2012-03-01

    The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.

  20. Magmatism in Lithosphere Delamination process inferred from numerical models

    Science.gov (United States)

    Göǧüş, Oǧuz H.; Ueda, Kosuke; Gerya, Taras

    2017-04-01

    The peel away of the oceanic/continental slab from the overlying orogenic crust has been suggested as a ubiquitous process in the Alpine-Mediterranean orogenic region (e.g. Carpathians, Apennines, Betics and Anatolia). The process is defined as lithospheric delamination where a slab removal/peel back may allow for the gradual uprising of sub-lithospheric mantle, resulting in high heat flow, transient surface uplift/subsidence and varying types of magma production. Geodynamical modeling studies have adressed the surface response to the delamination in the context of regional tectonic processes and explored wide range of controlling parameters in pre-syn and post collisional stages. However, the amount and styles of melt production in the mantle (e.g. decompression melting, wet melting in the wedge) and the resulting magmatism due to the lithosphere delamination remains uncertain. In this work, by using thermomechanical numerical experiments, designed in the configuration of subduction to collision, we investigated how melting in the mantle develops in the course of delamination. Furthermore, model results are used to decipher the distribution of volumetric melt production, melt extraction and the source of melt and the style of magmatism (e.g. igneous vs. volcanic). The model results suggest that a broad region of decompression melting occurs under the crust, mixing with the melting of the hydrated mantle derived by the delaminating/subducting slab. Depending on the age of the ocean slab, plate convergence velocity and the mantle temperature, the melt production and crust magmatism may concentrate under the mantle wedge or in the far side of the delamination front (where the subduction begins). The slab break-off usually occurs in the terminal stages of the delamination process and it may effectively control the location of the magmatism in the crust. The model results are reconciled with the temporal and spatial distribution of orogenic vs. anorogenic magmatism in

  1. Collapse of passive margins by lithospheric damage and plunging grain size

    Science.gov (United States)

    Mulyukova, Elvira; Bercovici, David

    2018-02-01

    The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least

  2. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  3. Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?

    Science.gov (United States)

    Baumann, Tobias; Kaus, Boris; Thielmann, Marcel

    2016-04-01

    the rheological parameters of these models with viscoplastic geodynamic inversions. We focus on a typical intra-oceanic subduction system as well as a typical scenario of subduction of an oceanic plate underneath a continental arc. Baumann, T. S. & Kaus, B. J. P., 2015. Geodynamic inversion to constrain thenon-linear rheology of the lithosphere, Geophys. J. Int., 202(2), 1289-1316. Burov, E. B. & Diament, M., 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean?, J. Geophys. Res., 100, 3905-3927. Burov, E. B. & Watts, A. B., 2006. The long-term strength of continental lithosphere : jelly sandwich or crème brûlée?, GSA today, 16(1), 4-10. Burov, E. B., 2007. Crust and Lithosphere Dynamics: Plate Rheology and Mechanics, in Treatise Geophys., vol. 6, chap. 3, pp. 99-151, ed. Watts, A. B., Elsevier. Goetze, C. & Evans, B., 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. Int., 59(3), 463-478. Jackson, J., 2002. Strength of the continental lithosphere: Time to abandon the jelly sandwich?, GSA today, 12(9), 4-9. Maggi, A., Jackson, J. A., McKenzie, D., & Priestley, K., 2000a. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere, Geology, 28, 495-498. Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere, Cambridge University Press.

  4. Long-term Ocean Bottom Monitoring for Shallow Slow Earthquakes in the Hyuga-nada, Nankai Subduction Zone

    Science.gov (United States)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Nakahigashi, K.; Shiobara, H.; Mochizuki, K.; Maeda, T.; Obara, K.

    2015-12-01

    The Hyuga-nada region, nearby the western end of the Nankai Trough in Japan, is one of the most active areas of shallow slow earthquakes in the world. Recently, ocean-bottom observation of offshore seismicity near the trench succeeded in detecting shallow tremor. The observed traces contained a complete episode lasting for one month exhibiting similar migration property of deep tremor [Yamashita et al., 2015]. This activity was associated with shallow very-low-frequency earthquake (VLFE) activity documented by land-based broadband seismic network. The coincidence between tremor and VLFE activities and similarity of their migration pattern show strong resemblance with the episodic tremor and slip episodes; this similarity suggests that the tremor activity in the shallow plate boundary may also be coupled with VLFE and short-term slow slip events in this area. It is important clarifying the seismicity including slow earthquakes to understand the slip behavior at a shallow plate boundary, and to improve assessments of the possibility of tsunamigenic megathrust earthquake that is anticipated to occur at the Nankai Trough. Motivated by these issues, we started long-term ocean-bottom monitoring in this area from May 2014 using 3 broadband and 7 short-period seismometers. In January 2015, we replaced the instruments and obtained the first data which includes minor shallow tremor and VLFE activity on June 1-3, 2014. Preliminary results of data processing show that the shallow tremor activity occurred at the northwestern part of the 2013 activity. The location corresponds the point where the tremors stopped migrating to further north direction and turned sharply eastward in the 2013 activity. On the other hand, clear tremor migration was not found in the 2014 activity. This local activity may imply that regional/small-scale heterogeneous structures such as a subducting sea mount affect the activity pattern. During the 2014 observation, many ordinary earthquakes also

  5. From rifting to subduction: the role of inheritance in the Wilson Cycle

    Science.gov (United States)

    Beaussier, Stéphane; Gerya, Taras; Burg, Jean-Pierre

    2017-04-01

    The Wilson Cycle entails that oceans close and reopen. This cycle is a fundamental principle in plate tectonics, inferring continuity from divergence to convergence and that continental rifting takes place along former suture zones. This view questions the role of inherited structures at each stage of the Wilson Cycle. Using the 3D thermo-mechanical code, I3ELVIS (Gerya and Yuen 2007) we present a high-resolution continuous model of the Wilson cycle from continental rifting, breakup and oceanic spreading to convergence and spontaneous subduction initiation. Therefore, all lateral and longitudinal structures of the lithospheres are generated self-consistently and are consequences of the initial continental structure, tectono-magmatic inheritance and material rheology. In the models, subduction systematically initiates off-ridge and is controlled by the convergence-induced swelling of the ridge. Geometry and dynamics of the developing off-ridge subduction is controlled by four main factors: (1) the obliquity of the ridge with respect to the convergence direction; (2) fluid-induced weakening of the oceanic crust; (3) irregularity of ridge and margins inherited from rifting and spreading; (4) strain localization at transform faults formed during ocean floor spreading. Further convergence can lead to obduction of the oceanic crust and segments of ridge after the oceanic lithosphere is entrained into subduction. We show that the main parameters controlling the occurrence and geometry of obducted ophiolite are the convergence rate and the inherited structure of the passive margins and ridge. Our numerical experiments results show the essential role played by inheritance during the Wilson Cycle and are consistent with nature observations such as the tectonic history of the Oman subduction-obduction system. REFERENCES Gerya, T. V., and D. A. Yuen. 2007: "Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems, Physics of the

  6. Implications for metal and volatile cycles from the pH of subduction zone fluids.

    Science.gov (United States)

    Galvez, Matthieu E; Connolly, James A D; Manning, Craig E

    2016-11-17

    The chemistry of aqueous fluids controls the transport and exchange-the cycles-of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth's interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth's atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years(7).

  7. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    Science.gov (United States)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  8. Geodynamics and The Evolution of Continental Lithosphere

    Science.gov (United States)

    Hamilton, W. B.

    R.L. ArmstrongSs (1991) posthumous paper demonstrated that, contrary to conven- tional (and still dominant) geochemical assumption, isotopic data require most con- tinental material to have been fractionated into crust early in Earth history and to have been variably recycled since through the mantle. Recent information confirms predictions implicit in his recycling model. Archean cratonic crust mostly lacks a thick, mafic basal layer and is in bulk more felsic than Proterozoic and younger crust, whereas Archean lithospheric mantle is much more refractory than younger litho- sphere, which becomes markedly more enriched in fusible components with decreas- ing age. The oldest rocks in all Archean cratons are felsic migmatites, plus abundant but subordinate ultramafic, mafic, and anorthositic rocks. Ion-microprobe ages of zir- cons in these gneisses typically scatter from a maximum (currently 4.4 Ga in Yilgarn, and 4.1-3.6 Ga in other cratons) to minima near ages of overlying supracrustal rocks or of remobilization into late domiform batholiths. The gneisses were near wet-solidus temperature for long periods, the felsic protolith may have been mostly fractionated into crust by 4.4 Ga, and these ancient gneisses may dominate middle and lower Archean crust. Setting of formation is unknown, although steep REE patterns sug- gest derivation, by hydrous magmatic fractionation or partial melting, complementary to garnet-rich rocks that comprise geophysical mantle. Waterlaid supracrustal rocksU-° first quartzite, then mostly mafic and ultramafic lavaUwere deposited on the basement ° rocks after 3.5 Ga, and were deformed by gravitational rise of domiform batholiths and sinking of dense synclines. Indicators of plate-tectonic rifting and convergence are widespread in terrains younger than 2 Ga but are wholly lacking in the Archean. Plate tectonics is driven by subduction, which is enabled by top-down cooling of light asthenosphere to form dense oceanic lithosphere. Hinges

  9. The Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Yanshin, A.L.

    stream_size 6 stream_content_type text/plain stream_name Mem_Geol_Soc_India_39_1.pdf.txt stream_source_info Mem_Geol_Soc_India_39_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  10. The subduction dichotomy of strong plates and weak slabs

    Science.gov (United States)

    Petersen, Robert I.; Stegman, Dave R.; Tackley, Paul J.

    2017-03-01

    A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography.

  11. Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

    Directory of Open Access Journals (Sweden)

    D. Arcay

    2012-12-01

    Full Text Available The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1 significantly if mantle viscosity at asthenospheric wedge tip is low, (2 if the difference in mantle and interplate activation energy is weak, and (3 if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate

  12. Temperature, salinity, pressure, and other data from current meter and CTD casts in the NE Atlantic Ocean as part of the Subduction Accelerated Research Initiative (ARI) project, from 1991-05-18 to 1993-06-14 (NODC Accession 9700245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall objective of the Subduction Accelerated Research Initiative (ARI) was to bring together several techniques to address the formation and evolution of...

  13. Connecting the Surface and the Deep: Evolving Role of Subduction Zone Fluids Through Time

    Science.gov (United States)

    Galvez, Matthieu Emmanuel

    2017-04-01

    The speciation of aqueous fluids controls the transport and exchange of metals and volatile elements on Earth. Subduction zones are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has been a major challenge in Earth science. I will first present thermodynamic predictions of fluid-rock equilibria that tie together models of mineralogy and fluid speciation along a range of model P-T paths. The pH of fluids in subducted crustal lithologies is uniform and confined to a mildly alkaline range, controlled by rock volatile and chlorine contents. In contrast, the pH of mantle wedge fluids exhibits marked sensitivity to minor variations in rock chemistry. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to carbon, alkali and halogens illustrates a top-down control of Earth's atmosphere - ocean chemistry on the speciation of subduction zone fluids via the hydrothermally altered oceanic lithosphere. These results provide a perspective on the physicochemical mechanisms that have coupled metal and volatile cycles in subduction zones for over 2.5 billion years.

  14. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release

    Science.gov (United States)

    Scambelluri, Marco; Pennacchioni, Giorgio; Gilio, Mattia; Bestmann, Michel; Plümper, Oliver; Nestola, Fabrizio

    2017-12-01

    The cause of intermediate-depth (50-300 km) seismicity in subduction zones is uncertain. It is typically attributed either to rock embrittlement associated with fluid pressurization, or to thermal runaway instabilities. Here we document glassy pseudotachylyte fault rocks—the products of frictional melting during coseismic faulting—in the Lanzo Massif ophiolite in the Italian Western Alps. These pseudotachylytes formed at subduction-zone depths of 60-70 km in poorly hydrated to dry oceanic gabbro and mantle peridotite. This rock suite is a fossil analogue to an oceanic lithospheric mantle that undergoes present-day subduction. The pseudotachylytes locally preserve high-pressure minerals that indicate an intermediate-depth seismic environment. These pseudotachylytes are important because they are hosted in a near-anhydrous lithosphere free of coeval ductile deformation, which excludes an origin by dehydration embrittlement or thermal runaway processes. Instead, our observations indicate that seismicity in cold subducting slabs can be explained by the release of differential stresses accumulated in strong dry metastable rocks.

  15. Formation and evolution of the Lithosphere Asthenosphere Boundary and oceanic crustal Layer 2A across the Atlantic Ocean from 0 to 75 Ma using ultra-deep seismic reflection imaging technique

    Science.gov (United States)

    Singh, Satish; Mehouachi, Fares; Audhkhasi, Pranav; Marjanovic, Milena

    2017-04-01

    The plate tectonics theory is based on the existence of a rigid lithosphere plate moving over the underlying ductile asthenosphere, forming the most prevalent active plate boundary on earth, lithosphere asthenosphere boundary (LAB), but the nature of this plate boundary remain very elusive. Surface wave tomography has been used to define the LAB, with resolution >30 km vertically and hundreds of kilometre laterally. Recently, receiver function methods have been used to image the LAB, but the vertical resolution is about 10 km with a very limited sub-surface sampling. In order to image the LAB on metric scale, we acquired seismic reflection data in the equatorial Atlantic Ocean starting the Mid-Atlantic Ridge at zero age to near the continental margin of Nigeria corresponding to a lithosphere of 75 Ma and across the great equatorial fracture zones (Romanche, St Paul, and Chain). We used a 12 km long multi-sensor streamer towed at 30 m water depth and a 10170 cubic inch air gun source consisting of six sub-arrays each with 8 airguns. These data have allowed us to image the base of the LAB down to 90 km depth. We have also imaged the layer 2A continuously from 0-75 My over the oceanic crust. In this talk, we will present the above results in detail to provide the insight about the formation and evolution of the LAB and layer 2A with age.

  16. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction.

    Science.gov (United States)

    Hilairet, Nadege; Reynard, Bruno; Wang, Yanbin; Daniel, Isabelle; Merkel, Sebastien; Nishiyama, Norimasa; Petitgirard, Sylvain

    2007-12-21

    The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.

  17. Some geophysical and geochemical consequences of slab serpentinization at subduction zones

    Science.gov (United States)

    Phipps Morgan, J.; Ruepke, L. H.; Ranero, C.; Hort, M.

    2002-12-01

    Here we explore the potential impact of slab serpentinization and deserpentinization processes on arc-melting and on water, carbon-dioxide, U, Pb, and noble gas recycling into the deep mantle. We examine the consequences of a scenario in which bend-faulting between the outer rise and trench axis creates the conduits for seawater to reach and react with cold lithospheric mantle to serpentinize it. Water penetration to serpentinize the slab-lithosphere will be inhibited by thick sediments (e.g. Cascades) or thick oceanic crust (subducting oceanic plateaus), while subducting long-offset fracture zones will be especially serpentine-rich because they serpentinized at both the spreading center and subduction zone. If this process occurs, then the incoming lithosphere will typically contain ~500m of altered sediments, ~6 km of partially hydrated oceanic crust, and ~20-55km of partially serpentinized slab mantle. Possible regional geophysical consequences of this scenario are: (1) Fracture Zones preferentially become tears in subducting slabs because they are relatively serpentine rich, thus they deserpentinize more. (2) If so, then their greater deserpentinization should produce greater sub-arc water release which leads to greater arc melting above subducted fracture zones. (3) Regions of little serpentinization will be correlated with flat subduction, lower volumes of slab-water release, and relatively low rates of arc-volcanism. Our thermomechanical modelling implies, depending upon a slab's age and subduction rate, between 30-90% of the slab's chemically bound water is likely to survive sub-arc dehydration to transport its water into the deeper mantle. Possible global geochemical consequences of this scenario are: (1) At current subduction rates, 0.5-1.5 oceans of water would be recycled past the arc-melting region into the deeper mantle during the past Ga. (2) Since 0.3%, 1%, and 3% of the exosphere's Ne, Ar, and Xe are dissolved in the oceans, this implies that at

  18. The lithosphere-asthenosphere Italy and surroundings

    CERN Document Server

    Panza, G F; Chimera, G; Pontevivo, A; Raykova, R

    2003-01-01

    The velocity-depth distribution of the lithosphere-asthenosphere in the Italian region and surroundings is imaged, with a lateral resolution of about 100 km, by surface wave velocity tomography and non-linear inversion. Maps of the Moho depth, of the thickness of the lithosphere and of the shear-wave velocities, down to depths of 200 km and more, are constructed. A mantle wedge, identified in the uppermost mantle along the Apennines and the Calabrian Arc, underlies the principal recent volcanoes, and partial melting can be relevant in this part of the uppermost mantle. In Calabria a lithospheric doubling is seen, in connection with the subduction of the Ionian lithosphere. The asthenosphere is shallow in the Southern Tyrrhenian Sea. High velocity bodies, cutting the asthenosphere, outline the Adria-lonian subduction in the Tyrrhenian Sea and the deep-reaching lithospheric root in the Western Alps. Less deep lithospheric roots are seen in the Central Apennines. The lithosphere-asthenosphere properties delineat...

  19. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China

    Science.gov (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2018-03-01

    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  20. The Terminal Stage of Subduction: the Hindu Kush Slab Break-off

    Science.gov (United States)

    Kufner, S. K.; Schurr, B.; Sippl, C.; Yuan, X.; Ratschbacher, L.; Akbar, A. S. M.; Ischuk, A.; Murodkulov, S.; Schneider, F.; Mechie, J.; Tilmann, F. J.

    2016-12-01

    The terminal stage of subduction arrives when the ocean basin is closed and the continental margin arrives at the trench. The opposite forces of the sinking slab and buoyant continent ultimately leads to break-off of the subducted slab. This process, although common in geological history, is rarely observed, because it is short-lived. Here we report new precise earthquake hypocenters, detailed tomographic images and earthquake source mechanisms from the Hindu Kush region in Central Asia, which hint at continental subduction and plate necking. Our images provide a rare glimpse at the ephemeral process of slab break-off: the Hindu Kush slablet in its uppermost section is thinned or already severed and that intermediate depth earthquakes cluster at the neck connecting it to the deeper slab. From a strain rate analysis, we deduce that the deep portion of the slab is in the process of detaching from the shallower fragment at much higher rates than the current convergence rate at the surface. The increased strain rate might arise as the buoyant continental crust, which is dragged into the subduction system in its terminal stage, resists subduction, whereas the earlier subducted mantle lithosphere pulls from underneath.

  1. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, Ming-Qi; Li, Zhong-Hai; Yang, Shao-Hua

    2017-09-01

    Subduction channel processes are crucial for understanding the material and energy exchange between the Earth's crust and mantle. Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. In addition, the crustal rocks generally undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channels; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. The thick overriding continental plate and the low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, the thin overriding lithosphere and the steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge

  2. Offshore Southern California lithospheric velocity structure from noise cross-correlation functions

    Science.gov (United States)

    Bowden, D. C.; Kohler, M. D.; Tsai, V. C.; Weeraratne, D. S.

    2016-05-01

    A new shear wave velocity model offshore Southern California is presented that images plate boundary deformation including both thickening and thinning of the crustal and mantle lithosphere at the westernmost edge of the North American continent. The Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment (ALBACORE) ocean bottom seismometer array, together with 65 stations of the onshore Southern California Seismic Network, is used to measure ambient noise correlation functions and Rayleigh wave dispersion curves which are inverted for 3-D shear wave velocities. The resulting velocity model defines the transition from continental lithosphere to oceanic, illuminating the complex history and deformation in the region. A transition to the present-day strike-slip regime between the Pacific and North American Plates resulted in broad deformation and capture of the now >200 km wide continental shelf. Our velocity model suggests the persistence of the uppermost mantle volcanic processes associated with East Pacific Rise spreading adjacent to the Patton Escarpment, which marks the former subduction of Farallon Plate underneath North America. The most prominent of these seismic structures is a low-velocity anomaly underlying the San Juan Seamount, suggesting ponding of magma at the base of the crust, resulting in thickening and ongoing adjustment of the lithosphere due to the localized loading. The velocity model also provides a robust framework for future earthquake location determinations and ground-shaking simulations for risk estimates.

  3. Laboratory models of the thermal evolution of the mantle during rollback subduction.

    Science.gov (United States)

    Kincaid, C; Griffiths, R W

    2003-09-04

    The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. Information on mantle flow, thermal conditions and chemical transport in subduction zones come from the geochemistry of arc volcanoes, seismic images and geodynamic models. The majority of this work considers subduction as a two-dimensional process, assuming limited variability in the direction parallel to the trench. In contrast, observationally based models increasingly appeal to three-dimensional flow associated with trench migration and the sinking of oceanic plates with a translational component of motion (rollback). Here we report results from laboratory experiments that reveal fundamental differences in three-dimensional mantle circulation and temperature structure in response to subduction with and without a rollback component. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate and plate edges heat up faster than plate centres. In contrast, during rollback subduction flow is driven around and beneath the sinking plate, velocities increase within the mantle wedge and are focused towards the centre of the plate, and the surface of the plate heats more along the centreline.

  4. Paleomagnetism of Cretaceous Oceanic Red Beds (CORBs) from Gyangze, northern Tethys Himalaya: Evidence for Intra-oceanic Subduction System and Southern Paleolatitute Limit for the Lhasa Block

    Science.gov (United States)

    Tan, Xiaodong

    2016-04-01

    indicate a paleolatitude of 10±2 degree north, ~2000 km distance from the southern Tethys Himalaya. Therefore, the formation is not deposited near the greater Indian continental margins. Based on recent plate tectonic reconstruction, the CORBs are very likely formed within a back-arc basin between the equatorial intra-oceanic subduction system and the Asian continental margin. Due to coeval development of abundant red beds in the Lhasa block, the characteristic pigments of hematite born in the CORBs are likely of terrestrial origin. In addition, the new data indicate that the Lhasa block is unlikely to be at low paleolatitude in the Late Cretaceous and Tertiary as some of the paleomagnetic results show.

  5. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    DEFF Research Database (Denmark)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans

    2015-01-01

    -to-density conversion curves based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004...

  6. Reconstruction of seawater chemistry from deeply subducted oceanic crust; hydrogen and oxygen isotope of lawsonite eclogites preserving pillow structure

    Science.gov (United States)

    Hamabata, D., VI; Masuyama, Y.; Tomiyasu, F.; Ueno, Y.; Yui, T. F.; Okamoto, K.

    2014-12-01

    In order to understand evolution of life, change of seawater chemistry from Hadean, Archean to present is significant. Pillow structure is well-preserved in the Archean greenstone belt (e.g. Komiya et al., 1999). Oxygen and hydrogen isotope of rims in the pillow is useful conventional tool to decipher chemistry of Paleao-seawater from Archean to Present. However, Archean greenstone belt suffered regional metamorphism from greenschist to Amphibolite facies conditions. Therefore, it is necessary to testify the validity of pillow chemistry from recent (Phanerozoic) metamorphosed greenstone. We have systematically collected pillowed greenstone from blueschist and eclogites. Two eclogite exhibiting pillow structures were chosen for oxygen and hydrogen isotope analysis. One is from Corsica (lawsonite eclogite collected with Dr. Alberto Vidale Barbarone) and another is from Cazadero, Franciscan belt (collected by Dr. Tatsuki Tsujimori). The both are ascribed as MORB from major and trace bulk chemistry and Ca is rich in the core and Na is poor in the rims. The former exhibits garnet, omphacite, lawsonite, and glacophane. Phengite is in core of the pillow and chlorite is in the rims. In the latter, besides garnet, omphacite, epdiote and glaucophane, chlorite is recognized with phengite in the core. Glaucophane is richer in the rims from the both samples, therefore istope analysis of glaucophane was done. Mineral separation was carefully done using micro-mill, heavy liquid and isodynamic separator. 20 mg specimens were used for oxygen isotope analysis and 2mg were for hydrogen analysis. δ18O of the all analysis (7.7 to 8.3) is within the range of unaltered igneous oceanic crust and high temperature hydrothermal alteration although rims (8.3 for Franciscan and 8.0 for Corsica) are higher than cores (7.7 for Franciscan and Corsica). δD data is also consistent with hydrothermal alteration. It is relative higher in core from the Corsica and Franciscan (-45 and -56) than of the

  7. Investigating and Imaging the Lithospheric Structure of the Westernmost Mediterranean Using S Receiver Functions

    Science.gov (United States)

    Miller, Meghan S.; Butcher, Amber

    2013-04-01

    The Alboran System was created during the Neogene at the western edge of the Alpine-Himalayan orogenic belt, as the result of convergence between the European and African plates. This system includes the Gibraltar Arc, Rif-Betic chain, Atlas Mountains, and Alboran Sea. The evolution from ocean subduction to continental collision, particularly in complex three-dimensional settings such as this, is poorly understood. Advances in this subject are likely to come from multidisciplinary projects, such as PICASSO (Program to Investigate Convective Alboran Sea System Overturn): a study of the Alboran Sea, Atlas Mountains, and Gibraltar arc. Several models have been suggested to explain the tectonics of this system including: continental lithospheric delamination and drips, slab breakoff, and subducting slab rollback. Advances in defining the lithosphere - asthenosphere boundary (LAB) are crucial to understanding the geochemical and geodynamic evolution of the region. Seismic data from ~85 broadband instruments deployed in Morocco and Spain as part of the PICASSO project are being utilized to constrain lithospheric structure beneath this part of the Western Mediterranean via identification of S-to-p conversions from S receiver functions. A previous study indicates that the lithospheric thinning beneath the Atlas High may be the result of mantle upwelling induced thermal erosion, while a more recent imaging study suggests that the LAB could be at depths >200 km, tens of kilometers thicker than previous models. Our preliminary results indicate LAB depths down to ~100 - 110 km near the Straight of Gibraltar and as shallow as ~65 - 80 km under the Atlas High. The primary purpose of this project is to advance our understanding of the structure and evolution of the lithosphere - asthenosphere boundary (LAB) of the Atlas Mountains and surrounding areas.

  8. Does subduction polarity changes below the Alps? Inferences from analogue modelling

    NARCIS (Netherlands)

    Luth, S.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S.

    2013-01-01

    The surface expression of a lateral polarity change of continental mantle lithosphere subduction has been studied by using lithosphere-scale physical models. Key parameters investigated were: the degree of lateral coupling between adjacent domains of opposing subduction polarity, the width of the

  9. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    Science.gov (United States)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the

  10. Lithospheric processes

    Energy Technology Data Exchange (ETDEWEB)

    Baldridge, W. [and others

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  11. Discovery of the early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean?

    Science.gov (United States)

    Lai, Wen; Hu, Xiumian; Zhu, Dicheng; An, Wei; Ma, Anlin

    2017-06-01

    Mélange records a series of geological processes associated with oceanic subduction and continental collision. This paper reports for the first time the presence of Early Jurassic mélange from NW Nagqu in the southern margin of the Bangong-Nujiang suture zone, termed as the Gajia mélange. It shows typically blocks-in-matrix structure with matrix of black shale and siliceous mudstone, and several centimeters to several meters sized blocks of sandstone, silicalite, limestone and basalt. The sandstone blocks consist of homologous sandstone and two types of exotic sandstone, with different modal compositions. The Group 1 of exotic sandstone blocks consists of mainly of feldspar and quartz, whereas the Group 2 is rich in volcanic detritus. The Group 3 of homologous sandstone blocks is rich in feldspar and volcanic detritus with rare occurrence of quartz. U-Pb age data and in situ Hf isotopic compositions of detrital zircons from sandstone blocks are similar to those from the Lhasa terrane, suggesting that the sandstone blocks in the Gajia mélange most probably came from the Lhasa terrane. The YC1σ(2+) age of homologous sandstone blocks is 177 ± 2.4 Ma, suggesting an Early Jurassic depositional age for the sandstones within the Gajia mélange. The Gajia mélange likely records the southward subduction of the Bangong-Nujiang Ocean during the Early Jurassic.

  12. Why lithospheric extension separated the Aegean from Turkey

    Science.gov (United States)

    Ring, U.; Gessner, K.; Thomson, S. N.; Markwitz, V.

    2015-12-01

    The Aegean Sea region in the eastern Mediterranean is one of the classic and best-studied extensional provinces. Inspired by recent 3D geodynamic models of laterally heterogeneous accretion during rollback we discuss the nature of the transition from the Aegean Sea basin (Hellenides) into the Anatolian plateau of west Turkey (Anatolides). The Hellenides and Anatolides experienced similar rates of convergence, but display remarkable differences in lithospheric structure. Whereas the Aegean is characterized by sustained high-pressure metamorphism followed by slab retreat since c. 60 Ma, a south verging greenschist-facies thrust-and-fold belt formed in the Anatolides since c. 45 Ma. Fission-track contour maps show that since c. 24 Ma extension in both regions evolved differently. Gravity data, earthquake locations and seismic velocity anomalies highlight a N-S oriented subvertical boundary in the upper mantle between a fast slab below the Aegean and a slow asthenospheric region below west Turkey, the West Anatolia Transfer Zone (WATZ). Our data support the hypothesis that the WATZ developed as a result of laterally inhomogeneous convergence along the boundary of the Adriatic and Anatolian lithospheres. 3D numerical simulations of laterally inhomogeneous convergence predict a similar evolution, where two distinct domains develop along strike: a region of distributed shortening where the systems gets congested by a microcontinent (Anatolides), and a region of extension associated with rollback of the active subduction zone (Hellenides). Strike-slip deformation concentrates perpendicular to the boundary of the two domains (WATZ). The numerical simulations also predict other salient features of regional geology and geodynamics, including the origin of a lithospheric window below west Turkey, local ocean floor topography, and the formation of the North Anatolian Fault zone. We argue that the seemingly complex tectonic evolution of the Aegean-Anatolian portion of the

  13. Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow

    Science.gov (United States)

    Evangelidis, C. P.

    2017-12-01

    The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve

  14. Earth's evolving subcontinental lithospheric mantle: inferences from LIP continental flood basalt geochemistry

    Science.gov (United States)

    Greenough, John D.; McDivitt, Jordan A.

    2017-06-01

    Archean and Proterozoic subcontinental lithospheric mantle (SLM) is compared using 83 similarly incompatible element ratios (SIER; minimally affected by % melting or differentiation, e.g., Rb/Ba, Nb/Pb, Ti/Y) for >3700 basalts from ten continental flood basalt (CFB) provinces representing nine large igneous provinces (LIPs). Nine transition metals (TM; Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn) in 102 primitive basalts (Mg# = 0.69-0.72) from nine provinces yield additional SLM information. An iterative evaluation of SIER values indicates that, regardless of age, CFB transecting Archean lithosphere are enriched in Rb, K, Pb, Th and heavy REE(?); whereas P, Ti, Nb, Ta and light REE(?) are higher in Proterozoic-and-younger SLM sources. This suggests efficient transfer of alkali metals and Pb to the continental lithosphere perhaps in association with melting of subducted ocean floor to form Archean tonalite-trondhjemite-granodiorite terranes. Titanium, Nb and Ta were not efficiently transferred, perhaps due to the stabilization of oxide phases (e.g., rutile or ilmenite) in down-going Archean slabs. CFB transecting Archean lithosphere have EM1-like SIER that are more extreme than seen in oceanic island basalts (OIB) suggesting an Archean SLM origin for OIB-enriched mantle 1 (EM1). In contrast, OIB high U/Pb (HIMU) sources have more extreme SIER than seen in CFB provinces. HIMU may represent subduction-processed ocean floor recycled directly to the convecting mantle, but to avoid convective homogenization and produce its unique Pb isotopic signature may require long-term isolation and incubation in SLM. Based on all TM, CFB transecting Proterozoic lithosphere are distinct from those cutting Archean lithosphere. There is a tendency for lower Sc, Cr, Ni and Cu, and higher Zn, in the sources for Archean-cutting CFB and EM1 OIB, than Proterozoic-cutting CFB and HIMU OIB. All CFB have SiO2 (pressure proxy)-Nb/Y (% melting proxy) relationships supporting low pressure, high % melting

  15. High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): Implications for the metamorphic evolution of a fossil subduction zone

    Science.gov (United States)

    Meyer, Melanie; Klemd, Reiner; Konopelko, Dmitry

    2013-09-01

    omphacite) due to an unfavorable alkali-poor bulk composition (Na2O < 1 wt.%). The four high-pressure mafic samples investigated in this study originated from oceanic crust (Zr/Hf ratio of 33 to 35) which contradicts all previous studies suggesting a continental protolith for all mafic HP/UHP rocks at Makbal. The present study indicates that the mafic high-pressure rocks represent incoherent segments of exhumed oceanic crust. Juxtaposition of different mafic oceanic (this study) and continental rocks is suggested to be due to buoyancy-driven exhumation of the metasedimentary host rock in the subduction channel where dismembered fragments of the subducted oceanic crust were captured in different depths.

  16. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    Science.gov (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  17. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    Science.gov (United States)

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  18. Satellite-derived geoid for the estimation of lithospheric cooling and ...

    Indian Academy of Sciences (India)

    Lithospheric cooling and basal heat flux anomalies over the northern Indian Ocean lithosphere 1679. • To study the progressive cooling of young-aged oceanic lithosphere from the divergent Mid-Oceanic type Carlsberg Ridge through the estimation of basalt heat flux anomalies and vertical temperature structure retrieved ...

  19. The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction

    Science.gov (United States)

    Omrani, Hadi; Moazzen, Mohssen; Oberhänsli, Roland; Altenberger, Uwe; Lange, Manuela

    2013-07-01

    The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13-15.5 kbar at temperatures of 420-500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5-7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).

  20. The initiation of subduction: criticality by addition of water?

    Science.gov (United States)

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  1. Accreted oceanic materials in Japan

    Science.gov (United States)

    Isozaki, Y.; Maruyama, S.; Furuoka, F.

    1990-09-01

    The Phanerozoic circum-Pacific orogenic belts contain numerous ocean-derived materials accreted through plate converging processes. Japanese Islands, in particular, display various kinds of oceanic materials of different origins including fragments of seamounts, oceanic reef limestone, MORB-like rocks and oceanic mantle, and pelagic sediments. The compilation of these rocks in many subduction complexes of Late Permian to the present, led to following conclusions. Accretion processes work effectively only for materials primarily composing the upper portion of subducting oceanic crust, i.e. Layer 1 and Layer 2. Many fragments of seamount with alkali basalt (600), hot-spot seamount (26), oceanic reef limestone (291), MORB-like basalt (200), and numerous cherts (more than 1000) are recognized as ancient oceanic materials accreted to the Japanese Islands. However, gabbros and mantle materials of Layer 3 and lower parts of the oceanic lithosphere, scarcely occur in subduction-accretion complexes except for a few examples of back-arc basin or fore-arc origin. Accretion occurs episodically. In Southwest Japan, oceanic materials were accreted intermittently in (a) end-Permian, (b) Middle-Late Jurassic, (c) Late Cretaceous times, (d) at ca. 50 Ma, and (e) in Miocene times, while in Northeast Japan and Hokkaido this occurred in (b) Middle-Late Jurassic, (c) Late Cretaceous, and (f) Early Cretaceous times. In contrast to the general belief on accretion of younger oceanic plates, the majority of Japanese subduction-accretion complexes were formed during the subduction of plates, up to 160 Ma old. The accretionary events in end-Permian and Middle-Late Jurassic times coincide with northward collision of ancient island arcs, oceanic rises or seamount chains (of hot-spot origin) with the Asian continent. Accretion relevant to subduction of older plates may be controlled by the collision-subduction process of these topographic reliefs on an oceanic plate. In addition, the

  2. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    Science.gov (United States)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  3. Thermal impact of magmatism in subduction zones

    Science.gov (United States)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  4. Geologic signature of early Tertiary ridge subduction in Alaska

    Science.gov (United States)

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Goldfarb, Richard J.; Miller, Marti L.; Dumoulin, Julie A.; Nelson, Steven W.; Karl, Susan M.

    2003-01-01

    ridge subduction, and changes in the strength of the prism as it was heated and then cooled. In this model, events in the Alaskan interior would have taken place above more distal, deeper parts of the slab window. Extensional (or transtensional) basin subsidence was driven by the two subducting plates that each exerted different tractions on the upper plate. The magmatic lull along the arc presumably marks a time when hydrated lithosphere was not being subducted beneath the arc axis. The absence of a subducting slab also may explain uplift of the Brooks Range and North Slope: Geodynamic models predict that longwavelength uplift of this magnitude will take place far inboard from Andean-type margins when a subducting slab is absent. Precise correlations between events in the accretionary prism and the Alaskan interior are hampered, however, by palinspastic problems. During and since the early Tertiary, margin-parallel strike-slip faulting has offset the near-trench plutonic belt - i.e., the very basis for locating the triple junction and slab window - from its backstop, by an amount that remains controversial.Near-trench magmatism began at 61 Ma at Sanak Island in the west but not until 51 Ma at Baranof Island, 2200 km to the east. A west-to-east age progression suggests migration of a trench-ridge-trench triple junction, which we term the Sanak-Baranof triple junction. Most workers have held that the subducted ridge separated the Kula and Farallon plates. As a possible alternative, we suggest that the ridge may have separated the Kula plate from another oceanic plate to the east, which we have termed the Resurrection plate.

  5. A discussion of numerical subduction initiation

    Science.gov (United States)

    Buiter, Susanne; Ellis, Susan

    2016-04-01

    In nature, subduction can initiate in various ways: Shortening can localise at oceanic transform faults, extinct spreading centres, or inherited passive margin faults; or, alternatively, subduction can be triggered from existing subduction systems by along-strike trench propagation, polarity reversals, or trench jumps. Numerical studies that specifically address subduction initiation have highlighted the roles of sediment loading, rheological strength contrasts, strain softening, and continental topographic gradients, among others. Usually, however, numerical models that aim to investigate subduction dynamics prefer to bypass the subduction initiation phase and its complexities, and focus instead on the stages during which the slab is descending into the mantle. However, even in these models, subduction still needs to begin. It is disturbingly easy to define initial model geometries that do not result in subduction. The specific combination of initial model geometries and values for rheological parameters that successfully initiates subduction has even been referred to as 'the sweet spot' in model space. One cause of subduction initiation failure is when the subducting and overriding plates lock, resulting in either indentation or severe dragging downwards of the overriding plate. This may point to a difficulty in maintaining a weak subduction interface during model evolution. A second factor that may cause difficulties is that initial model geometry and stresses need to balance, as otherwise the first model stages may show spurious deformation associated with reaching equilibrium. A third requirement that may cause problems is that the surface needs to have sufficient displacement freedom to allow the overriding plate to overthrust the subducting plate. That also implies an exclusion of sharp corners in the subduction interface near the surface. It is the interplay of subduction interface geometry, interface strength and subducting plate rheology that determines

  6. Seismic evidence of the lithosphere-asthenosphere boundary beneath Izu-Bonin area

    Science.gov (United States)

    Cui, H.; Gao, Y.; Zhou, Y.

    2016-12-01

    The lithosphere-asthenosphere boundary (LAB), separating the rigid lithosphere and the ductile asthenosphere layers, is the seismic discontinuity with the negative velocity contrast of the Earth's interior [Fischer et al., 2010]. The LAB has been also termed the Gutenberg (G) discontinuity that defines the top of the low velocity zone in the upper mantle [Gutenberg, 1959; Revenaugh and Jordan, 1991]. The seismic velocity, viscosity, resistivity and other physical parameters change rapidly with the depths across the boundary [Eaton et al., 2009]. Seismic detections on the LAB in subduction zone regions are of great help to understand the interactions between the lithosphere and asthenosphere layers and the geodynamic processes related with the slab subductions. In this study, the vertical broadband waveforms are collected from three deep earthquake events occurring from 2000 to 2014 with the focal depths of 400 600 km beneath the Izu-Bonin area. The waveform data is processed with the linear slant stack method [Zang and Zhou, 2002] to obtain the vespagrams in the relative travel-time to slowness domain and the stacked waveforms. The sP precursors reflected on the LAB (sLABP), which have the negative polarities with the amplitude ratios of 0.17 0.21 relative to the sP phases, are successfully extracted. Based on the one-dimensional modified velocity model (IASP91-IB), we obtain the distributions for six reflected points of the sLABP phases near the source region. Our results reveal that the LAB depths range between 58 and 65 km beneath the Izu-Bonin Arc, with the average depth of 62 km and the small topography of 7 km. Compared with the results of the tectonic stable areas in Philippine Sea [Kawakatsu et al., 2009; Kumar and Kawakatsu, 2011], the oceanic lithosphere beneath the Izu-Bonin Arc shows the obvious thinning phenomena. We infer that the lithospheric thinning is closely related with the partial melting, which is caused by the volatiles continuously released

  7. Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction

    OpenAIRE

    Hay, William W.; Sloan, J. L.; Wold, C. N.

    1988-01-01

    The total mass of sediments on the ocean floor is estimated to be 262 × 1021 g. The overall mass/age distribution is approximated by an exponential decay curve: (11.02 × 1021 g)e−0.0355t Ma. The mass/age distribution is a function of the area/age distribution of ocean crust, the supply of sediment to the deep sea, and submarine erosion and redeposition. About 140 × 1021 g of the sediment on the ocean floor is pelagic sediment, consisting of about 74% CaCO3, with the remainder opaline silica a...

  8. Microstructures and petro-fabrics of lawsonite blueschist in the North Qilian suture zone, NW China: Implications for seismic anisotropy of subducting oceanic crust

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2014-07-01

    We conducted a detailed study on the microstructures and petro-fabrics of massive and foliated lawsonite blueschist (LBS) in North Qilian suture zone, NW China. The lattice preferred orientation (LPO) of glaucophane and lawsonite in foliated lawsonite blueschist (LBS) is considered to be dominantly formed by the deformation mechanism of dislocation creep and rigid-body rotation, respectively. The LPO of glaucophane is mainly characterized by the [001] axis aligning parallel to lineation and the [100] axis and (110) pole plunging perpendicular to foliation. In contrast, the LPO of lawsonite features the maximum [010] axis concentrated close to lineation and the [001] axis strongly clustered normal to foliation. The preferred orientation of [010] axis of lawsonite parallel to lineation is supported by a two-dimensional numerical modeling using the finite-volume method (FVM). The mineral LPOs are much stronger in foliated LBS than in massive LBS. In addition, a kinematic vorticity analysis suggests that both pure shear dominant (Wm = 0.18-0.26) and simple shear dominant (Wm = 0.86-0.93) deformation regimes are present in foliated LBS. The [001] axis and (010) pole of glaucophane, and the [100] and [010] axes of lawsonite, tend to distribute in a foliation-parallel girdle in the pure shear dominant samples, but simple shear dominant samples display more lineation-parallel concentrations of a [001] axis of glaucophane and a [010] axis of lawsonite. Because the whole-rock seismic anisotropies in foliated LBS are significantly higher than those in massive LBS and a counteracting effect on seismic anisotropies occurs between glaucophane and lawsonite, the delay time of fast S-wave polarization anisotropy induced by an actual subducting oceanic crust with a high subducting angle (> 45-60°) is expected to range from 0.03 to 0.09 s (lower bound for massive LBS) and from 0.1 to 0.3 s (upper bound for foliated epidote blueschist).

  9. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    mantle material was supplied by the ascendance of a hot asthenosphere triggered by the roll-back of the Paleo-Tethyan oceanic lithosphere. The rising melts were accompanied by fractional crystallization and encountered no or minor crustal contamination en route to the surface. Taking into account these geochemical data and integrating them with regional geological evidence, we propose a slab roll-back model; this model suggests that the Gokcedere gabbroic pluton originated in a back-arc extensional environment associated with the southward subduction of the Paleo-Tethyan oceanic lithosphere during the early Jurassic period. Such an extensional event led to the opening of the northern branch of the Neotethys as a back-arc basin. Consequently, we conclude that the gabbroic pluton was related to intensive extensional tectonic events, which peaked during the early Jurassic in response to the roll-back of Paleo-Tethyan oceanic slab in the final stage of oceanic closure.

  10. Extensive decarbonation of continuously hydrated subducting slabs

    Science.gov (United States)

    Arzilli, Fabio; Burton, Mike; La Spina, Giuseppe; Macpherson, Colin G.

    2017-04-01

    CO2 release from subducting slabs is a key element of Earth's carbon cycle, consigning slab carbon either to mantle burial or recycling to the surface through arc volcanism, however, what controls subducted carbon's fate is poorly understood. Fluids mobilized by devolatilization of subducting slabs play a fundamental role in the melting of mantle wedges and in global geochemical cycles [1]. The effect of such fluids on decarbonation in subducting lithologies has been investigated recently [2-5], but several thermodynamic models [2-3], and experimental studies [6] suggest that carbon-bearing phases are stable at sub-arc depths (80-140 km; 2.6-4.5 GPa), implying that this carbon can be carried to mantle depths of >140 km. This is inconsistent with observations of voluminous CO2 release from arc volcanoes [7-10], located above slabs that are at 2.6-4.5 GPa pressure. The aim of this study is to re-evaluate the role of metamorphic decarbonation, showing if decarbonation reactions could be feasible at sub-arc depths combined with a continuous hydration scenario. We used the PerpleX software combined with a custom-designed algorithm to simulate a pervasive fluid infiltration characterized by "continuous hydration" combined with a distillation model, in which is possible to remove CO2 when decarbonation occurs, to obtain an open-system scenario. This is performed by repeatedly flushing the sediment with pure H2O at 0.5, 1.0 or 5 wt.% until no further decarbonation occurs. Here we show that continuous hydrated of sediment veneers on subducting slabs by H2O released from oceanic crust and serpentinised mantle lithosphere [11-13], produces extensive slab decarbonation over a narrow, sub-arc pressure range, even for low temperature subduction pathways. This explains the location of CO2-rich volcanism, quantitatively links the sedimentary composition of slab material to the degree of decarbonation and greatly increases estimates for the magnitude of carbon flux through the arc

  11. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  12. Crossing the Iberian Plate from the Bay of Biscay to the Alboran Sea: a lithospheric geotransect

    Science.gov (United States)

    Carballo, Alberto; Fernandez, Manel; Torne, Montserrat; Jiménez-Munt, Ivone; Vergés, Jaume; Pedreira, David; Díaz, Jordi; Villaseñor, Antonio

    2014-05-01

    A ~1000-km-long lithospheric transect running from the North-Iberian Margin to the Neogene Alboran Basin (W- Mediterranean) is investigated. The main goal is to image the lateral changes in the crustal and lithospheric structure occurring in: i) the North-Iberian margin, whose deformation in Alpine times gave rise to the uplift of the Cantabrian Mountains related to incipient subduction; ii) the Spanish Meseta, characterized by the presence of Cenozoic basins on top of a Variscan basement with weak Alpine deformation in the Spanish Central System and localized Neogene-Quaternary deep volcanism; and iii) the Betic-Alboran system related to the roll-back of the Ligurian-Tethyan domain. The modeling approach based on the LitMod package combines potential fields, elevation, thermal, seismic and petrological data under a self-consistent scheme. The crustal structure is mainly constrained by active and passive seismic experiments whereas the upper mantle is constrained by tomography models. The results highlight the lateral variations in the topography of the lithosphere-asthenosphere boundary (LAB), suggesting a strong lithospheric mantle strain below the Cantabrian and Betic mountain belts. The LAB depth ranges from 160 km beneath the Cantabrian Mountains to 110-90 km beneath Iberia Meseta deepenly again to values of 190 km beneath Betic Mountain. The Spanish Central System, with elevations higher than 1400 m, has no noticeable signature on the LAB depth. We have considered three lithospheric mantle compositions: a predominantly average Phanerozoic in the continental mainland, and two more fertile PUM (primitive upper mantle) compositions in the oceanic domains of Cantabrian and Mediterranean seas, and in the Calatrava volcanic field. These compositional differences allowed us to reproduce the main trends of the geophysical observables as well as the inferred P-, Pn- and S-wave seismic velocities from tomography models and seismic experiments available in the study

  13. Imaging the Lithospheric - Asthenosphere Boundary Structure of the Westernmost Mediterranean Using S Receiver Functions

    Science.gov (United States)

    Butcher, A.; Miller, M. S.; Diaz Cusi, J.

    2013-12-01

    The Iberian microcontinent, in the westernmost portion of the Mediterranean is comprised of the Betic Cordillera Zone, the South Portuguese Zone, the Ossa-Morena Zone, the Central Iberian Zone, the Galicia-Tras Os Montes Zone, the West Asturian-Leonese Zone, and the Cantabrian Zone. These zones were created as a result of three primary stages of Iberian evolution, with the last being the collision of Iberia with in the Late Cretaceous. In northeastern Africa, Neogene convergence between the European and African plates created the Alboran System: comprised of the Gibraltar Arc, Rif-Betics, Atlas Mountains, and Alboran Sea. The primary purpose of this study is to advance our understanding of the structure and evolution of the lithosphere, as well as the lithosphere - asthenosphere boundary (LAB) of the Iberian microcontinent and surrounding areas. Of particular interest is improving our understanding of the evolution from ocean subduction to continental collision that has been taking place in the late stage convergence of this part of the Mediterranean., The region is a particularly complex three-dimensional settings and, several models have been suggested to explain the tectonics of this system including: continental lithospheric delamination and drips, slab breakoff, and subducting slab rollback. Here we use broadband seismic data from 272 broadband instruments deployed in Morocco and Spain as part of the PICASSO and IBERArray (Díaz, J., et al., 2009) projects to constrain lithospheric structure via identification of S-to-p conversions from S receiver functions (SRF). We use SRFs to image the characteristics and structure in terms of seismic velocity discontinuities, including the crust-mantle boundary (Moho) and the lithosphere-asthenosphere boundary (LAB) beneath the region. Our SRFs agree with previous work that suggests that the lithospheric thickness is shallow (~65 km) beneath the Atlas and thickest (~120 km) beneath the Rif. Additionally, LAB structures

  14. Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust

    Science.gov (United States)

    Putlitz, Benita; Matthews, Alan; Valley, John W.

    Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid-rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰ omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane-garnet= 1.37+/-0.24‰ and Δomphacite-garnet=0.72+/-0.24‰. For the estimated metamorphic temperature of 500°C, these fractionations yield coefficients in the equation Δ=A*106/T2 (in Kelvin) of Aglaucophane-garnet= 0.87+/-0.15 and Aomphacite-garnet=0.72+/-0.24. A fractionation of Δglaucophane-actinolite=0.94+/-0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic

  15. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    Science.gov (United States)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  16. Ablative subduction - A two-sided alternative to the conventional subduction model

    Science.gov (United States)

    Tao, Winston C.; O'Connell, Richard J.

    1992-01-01

    The plausibility of a two-sided fluid-based model of lithospheric subduction that is based upon current views of lithospheric structure is examined. In this model the viscous lower lithosphere flows downward, and the brittle upper lithosphere deforms in passive response. This process is potentially double-sided, since it is found that even a buoyant plate can be dragged downward by a dense descending neighbor. Thus an apparent overriding plate may be worn away by a process of viscous ablation, with the rate of ablation a function of plate buoyancy. This process, called 'ablative subduction,' makes it possible to simply interpret observations concerning slab profiles, interplate seismicity, back arc tectonics, and complex processes such as double subduction and subduction polarity reversal. When experiments modeling the evolution of simple fluid 'slabs' are performed, slab profile is found to be strongly influenced by ablation in the overriding plate. When ablation is weak, as when a buoyant continent borders the trench, deformable slabs adopt shallow Andean-style profiles.

  17. Linking the initial subduction of the South Tianshan Oceanic Plate and associated magmatism to Kazakhstan orocline: insights from petrogenesis of granites in the southern Yili Block

    Science.gov (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2017-04-01

    The Kazakhstan orocline is a striking collage system of the Central Asian Orogenic Belt. It has been documented to be a composite continent via assembly of several orogenic components by the Devonian and finally to attain its U-shaped structure through oroclinal bending in the Late Paleozoic. In order to reveal the relationship between the Kazakhstan orocline and regional magmatism, granitic rocks including monzogranites and K-feldspar granites in the south limb of the orocline have been conducted geochronological and geochemical studies. Zircon LA-ICP-MS U-Pb dating of the monzogranites gave crystallization ages of 360±1.8 Ma and 360.5±1.7 Ma, and the K-feldspar granites have a coeval age (361.3±1.8 Ma). Both of the granites are high-K granites, and show enrichment in light rare earth elements (LREE) and obvious negative Eu anomalies. They display negative anomalies in Ba, Nb, Sr, Eu, and Ti. The K-feldspar granites have higher SiO2, K2O contents and lower MgO, Fe2O3T, Zr contents than those of the monzogranites. Geochemical data support that the K-feldspar granites are highly fractionated I-type granites, and the monzogranites are unfractionated I-type granites. Distinguishable Nd and Hf isotope suggest that the K-feldspar granites and the monzogranites may share a common magma chamber. The negative Eu anomalies and depletions of Ba and Sr possibly imply plagioclase as residue in the magma source. The Sr-Nd isotopic data and the ɛHf(t) values (-3.6 - 2.9) indicate that the parental magma was probably derived from crustal rock with minor mantle-derived melt. The new geochemical data and regional geology evidences indicate that the granites may be generated in a continental back-arc environment, which was inferred to be a response to the initial subduction of the South Tianshan Oceanic Plate. Given that the Kazakhstan orocline was developed during this period, it is plausible to link the initial subduction of the South Tianshan Oceanic Plate and associated

  18. Trans Pacific Ocean in surface layer and subduction and re-circulation in the ocean interior of radiocaesium released from TEPCO FNPP1 accident through the end of 2015

    Science.gov (United States)

    Aoyama, Michio; Tsumune, Daisuke; Tsubono, Takaki; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro

    2016-04-01

    2012, 134Cs activity reached a maximum of 6.12 ± 0.50 Bq m-3 at a 151-m depth (potential density, 25.3 kg m-3) at 29°N, 165°E. This subsurface maximum, which was also observed along 149°E, might reflect the southward transport of FNPP1-derived radiocaesium in association with the formation and subduction of subtropical mode water (STMW). In June 2012 at 34°N-39°N along 165°E, 134Cs activity showed a maximum at around potential density= 26.3 kg m-3, which corresponds to central mode water (CMW). 134Cs activity was higher in CMW than in any of the surrounding waters, including STMW. These observations also indicate that the most effective pathway by which FNPP1-derived radiocaesium is introduced into the ocean interior on a 1-year time scale is CMW formation and subduction. In June-July 2015 at 36°N-44°N along 165°E, there are only very week signal of subduction of Fukushima derived radiocaesium which mean subducted radiocaesium might move eastward from this region.

  19. Olivine-gabbros and olivine-rich troctolites genesis through melt-rock reactions in oceanic spreading lithosphere: an experimental study up to 0.7 GPa

    Science.gov (United States)

    Francomme, Justine E.; Fumagalli, Patrizia; Borghini, Giulio

    2016-04-01

    Extensive melt-rock reaction and melt impregnation significantly affect not only the physical and chemical properties at mantle-crust transition, but also control the evolution of migrating melts. We performed reactive dissolution and crystallization experiments at pressure ≤ 0.7 GPa in a piston-cylinder apparatus to provide experimental constraints on genesis of olivine-rich troctolites and olivine-gabbros at mantle-crust transition in oceanic spreading lithosphere by melt-rock reaction. Our experiments are carried out by using Salt-Pyrex-Graphite-Magnesium assemblies and graphite-lined platinum capsules. Experimental charges are prepared with three layers: (1) basalt powder, (2) fine powder (1-10μm) of San Carlos olivine (Fo90.1), and (3) carbon spheres used as a melt trap. Three synthetic MORB-type melts have been used, two tholeiitic basalts (Mg#: 0.62, SiO2: 47.70 wt%, Na2O: 2.28 wt% and Mg#: 0.58, SiO2: 49.25 wt%, Na2O: 2.49 wt%) and a primitive one (Mg#: 0.74, SiO2: 48.25 wt%, Na2O: 1.80 wt%), in order to investigate the effect of melt composition. A rock/melt ratio of 0.7 has been kept fixed. Experiments have been conducted at temperatures from 1200 to 1300°C, at both step cooling and isothermal conditions for different run durations (from 12 to 72 hrs). They resulted in layered samples in which all the initial San Carlos olivine powder, analog of a dunitic pluton infiltrated by basaltic melt, is replaced by different lithologies from olivine-rich troctolite to olivine gabbro. In isothermal experiments, reacted melts have been successfully trapped in the carbon spheres allowing their chemical analysis; as expected the reacted melt has a higher Mg# than the initial one (e.g. from Mg#=0.62 to 0.73). Across the different lithologies Mg# of olivine is decreasing from the olivine-rich troctolite to the gabbro. Replacive olivine-rich troctolite has a poikilitic texture with rounded euhedral olivine and interstitial poikilitic plagioclase and clinopyroxene

  20. Lithospheric Response of the Anatolian Plateau in the Realm of the Black Sea and the Eastern Mediterranean

    Science.gov (United States)

    Ergun, Mustafa

    2016-04-01

    The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at

  1. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  2. Modeling mantle circulation and density distributions in subduction zones: Implications for seismic studies

    Science.gov (United States)

    Kincaid, C. R.; Druken, K. A.; Griffiths, R. W.; Long, M. D.; Behn, M. D.; Hirth, G.

    2009-12-01

    Subduction of ocean lithosphere drives plate tectonics, large-scale mantle circulation and thermal-chemical recycling processes through arcs. Seismologists have made important advances in our ability to map circulation patterns in subduction zones though anisotropy data/methods and in providing detailed images of mantle density fields. Increasingly, seismic and geodynamic disciplines are combining to extend our understanding of time varying subduction processes and associated vertical mass and energy fluxes. We use laboratory experiments to characterize three-dimensional flow fields in convergent margins for a range in plate forcing conditions and background, buoyancy-driven flow scenarios. Results reveal basic patterns in circulation, buoyant flow morphologies and density distributions that have implications for reconciling seismic data with mantle convection models. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000km of the mantle. Subducting lithosphere is modeled with a Phenolic plate and back-arc extension is produced using Mylar sheets. We recreate basic subduction styles observed in previous dynamic subduction models using simplified, kinematic forcing. Slab plate segments, driven by hydraulic pistons, move with various combinations of downdip, rollback and steepening motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of olivine alignment through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3D velocity fields for use in directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening, back-arc extension) in convergent margins produce relatively simple anisotropy patterns (e.g., trench-normal alignments) and underscore the importance of initial strain marker orientations on alignment patterns in the wedge. Results also

  3. Numerical model of the transition from continental rifting to oceanization: the case study of the Ligure-Piemontese ocean.

    Science.gov (United States)

    Roda, M.; Marotta, A. M.; Conte, K.; Spalla, M. I.

    2015-12-01

    The transition from continental rifting to oceanization has been investigated by mean of a 2D thermo-mechanical numerical model in which the formation of oceanic crust by mantle serpentinization, due to the hydration of the uprising peridotite, as been implemented. Model predictions have been compared with natural data related to the Permian-Triassic thinning affecting the continental lithosphere of the Alpine domain, in order to identify which portions of the present Alpine-Apennine system, preserving the imprints of Permian-Triassic high temperature (HT) metamorphism, is compatible, in terms of lithostratigraphy and tectono-metamorphic evolution, with a lithospheric extension preceding the opening of the Ligure-Piemontese oceanic basin. At this purpose age, petrological and structural data from the Alpine and Apennine ophiolite complexes are compared with model predictions from the oceanization stage. Our comparative analysis supports the thesis that the lithospheric extension preceding the opening of the Alpine Tethys did not start on a stable continental lithosphere, but developed by recycling part of the old Variscan collisional suture. The HT Permian-Triassic metamorphic re-equilibration overprints an inherited tectonic and metamorphic setting consequent to the Variscan subduction and collision, making the Alps a key case history to explore mechanisms responsible for the re-activation of orogenic scars.

  4. Analysis of MSS (Marine Seismic System) and OBS (Ocean Bottom Seismograph) Data Collected during the NGENDEI Seismic Experiment

    Science.gov (United States)

    1986-08-01

    transit course through the Cook Island chain. Numerous seamounts and guyots were crossed during the transit. A R/V MELVILLE SITE SURVEY The R/V...station on the island of Rarotonga and were used as evidence for the existence of subducted lithosphere during the development of the plate-tectonic model...structure of a traverse through the Bay of Islands Ophiolite com- plex, Newfoundland, an exposure of oceanic crust and upper mantle, 3. geophys. Res

  5. Dynamic Topography during Flat Subduction: Subsidence or Uplift?

    Science.gov (United States)

    Davila, F. M.; Lithgow-Bertelloni, C. R.

    2011-12-01

    Since the first studies on dynamic topography and basin evolution, low-dipping subduction has been related to intracontinental, long-wavelength and high-amplitude subsidence, whereas retreating to normal subduction systems to uplift. This was proposed to explain the Cretaceous-early Cenozoic topographic evolution of the western US. However, modern flat-slab and slab-retreating segments of South America do not record such a subsidence and uplift patterns. For example, the flat slab of Peru at ˜10°SL, related to the subduction of the Nazca Ridge, underlies an elevated promontory known as the Fitzcarrald Arch. The Argentine flat-slab at ˜31°SL associated to the subduction of the Juan Fernandez Ridge underlies a high-elevated intermontane system known as the Pampean broken foreland. Both upwarping features are younger than 7 Ma and contemporaneous with the arrival of flat subduction to these segments. In order to shed light into this controversy, we calculate dynamic topography along the Andean flat-slab segments using the Hager and O'Connell (1981) instantaneous flow formulation, an accurate reconstruction of the slab geometry along the central Andes and a density contrast between the flat slabs and the country mantle close to zero (△δ≈0) in order to simulate a buoyant oceanic lithosphere. We demonstrate that dynamic subsidence develops only at the leading edge of flat subduction, where the slabs plunge >30°, whereas the flatter slabs reproduce minor or no dynamic topography signals. These results agree with geological and geophysical proxies. Along the Argentine Plains, the account for a accumulated relief of ˜200 m, which might be considered as an "observed dynamic subsidence" signal (given that no tectonic activity has been recorded in this region since the Cretaceous to explain this surface topography). This gives a ˜0.03 mm/yr dynamic subsidence rate that are curiously similar to the exhumations estimated by low-temperature thermochronology along the

  6. Subduction trench migration since the Cretaceous

    Science.gov (United States)

    Williams, S.; Flament, N. E.; Müller, D.; Butterworth, N. P.

    2015-12-01

    Much of our knowledge about subduction zone processes is derived from analyzing present-day Earth. Several studies of contemporary plate motions have investigated the balance between retreating and advancing trenches and shown that subduction zone kinematics are sensitive to the choice of Absolute Plate Motion (APM) model (or "reference frame"). For past times, the absolute motions of the lithospheric plates relative to the Earth's deep interior over tens of millions of years are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. APM models derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Here we quantitatively compare the subduction zone kinematics, net lithospheric rotation and fit to hotspot trails derived the last 130 Myr for a range of alternative reference frames and a single relative plate motion model. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the period between 130 and 70 Ma, when hotspot trails become scarce, hotspot reference frames yield a much more dispersed distribution of slab advance and retreat velocities, which is considered geodynamically less plausible. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation

  7. POLARIS: Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity - New Opportunities in Canada

    Science.gov (United States)

    Cassidy, J. F.; Adams, J.; Asudeh, I.; Atkinson, G.; Bostock, M. G.; Eaton, D. W.; Ferguson, I. J.; Snyder, D.; Unsworth, M.

    2003-04-01

    POLARIS is a multi-institutional 10M project recently funded by the Canadian Foundation for Innovation, Provincial Governments and Universities, and private industry across Canada. This project is providing new, state-of-the-art portable geophysical observatories for research into lithospheric structure, continental dynamics, and earthquake hazards in Canada. When completed, POLARIS infrastructure will comprise 90 three-component broadband seismographs and 30 magnetotelluric (MT) mobile field systems and complementary satellite telemetry data acquistion. Over the initial four year installation of this project, the seismograph network will be deployed as three subarrays of 30 instruments each. The MT instruments will be used in shorter-term deployments at each of the three seismic subarrays for lithospheric imaging, and continuous recording at selected elements for deep-mantle imaging. The initial scientific objectives include: 1) three-dimensional detailed mapping of the asthenosphere and upper mantle of the Slave Province in Canada's north to assist the emerging diamond industry; 2) mapping lithospheric structure and earthquake hazards in the heavily populated area of southern Ontario (identifying zones of crustal weakness, obtaining accurate earthquake parameters, and ground motion attenuation studies). 3) mapping the structure and earthquake hazards over the Cascadia subduction zone in southwest British Columbia (subducting oceanic plate, site-response in urban areas, identifying active crustal faults, and seismic attenuation studies). The latter array will provide new opportunities into research involving slab seismicity, including focal mechanisms, attenuation studies, and detailed structural studies. Further research initiatives that will be possible include: testing Rapid Warning Systems for ground shaking in the urban areas of Canada; developing new fine-scale imaging techniques using the scattered wavefield; and investigating geomagnetically induced

  8. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle

    Science.gov (United States)

    Wang, Jian; Li, Chun-Feng

    2015-01-01

    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  9. Li isotopic constraints from the Erro-Tobbio serpentinites on Alpine subduction processes

    Science.gov (United States)

    Chu, M.-F.; Scambelluri, M.; Griffin, W. L.; O'Reilly, S. Y.; Pearson, N. J.

    2012-04-01

    Subduction zones represent a unique feature of the dynamic Earth and provide important constraints on how plate tectonics works. Subduction of serpentinized oceanic lithosphere, characterized by releasing water into the mantle wedge via dehydration, i.e. breakdown of hydrous minerals, plays a critical role in not only the generation of continental crust but also the Earth's water cycle. To track the recycling of water or fluid released by subduction, the stable isotope system of Li, a lithophile and mobile element, shows its high potential because 7Li, relative to 6Li, preferentially moves into the fluid phase when fractionation occurs. Here we present new Li abundance and isotopic compositions of the Erro-Tobbio serpentinized peridotite complex, a remnant mantle slice of the Alpine subduction. Our data indicate that most of the serpentinized ultramafic rocks have uniform Li concentrations, around 1 ppm. These rocks, however, show variable Li isotopic compositions. Among them, the high-pressure antigorite-bearing metaperidotites, formed under a low-strain condition, have a limited range in Li isotopic values, with δ7Li = +1.5 to +4.0, similar to those of serpentinized peridotites. In contrast, apparently heavier Li isotopes, up to +10.0, are observed in the high-pressure serpentinite mylonites that also contain antigorite but formed in high-strain domains. We note that O-H isotope ratios of the high-pressure ultramafic rocks reported in previous study (Früh-Green et al., 2001, Contrib. Mineral Petrol. 141: 145-159) show insignificant variations between the low- and high-strain domains. This demonstrates the superiority of Li isotope than conventional stable isotope systems in offering critical information about fluid-releasing processes in subduction zones. Moreover, our new data unsupport the general assumption that fluid released from subducted slabs is in favor of extracting 7Li than 6Li, thus capable of forming the much lighter δ7Li values observed in

  10. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei

    2017-08-01

    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  11. Melting carbonated epidote eclogites: carbonatites from subducting slabs

    Science.gov (United States)

    Poli, Stefano

    2016-12-01

    Current knowledge on the solidus temperature for carbonated eclogites suggests that carbonatitic liquids should not form from a subducted oceanic lithosphere at sub-arc depth. However, the oceanic crust includes a range of gabbroic rocks, altered on rifts and transforms, with large amounts of anorthite-rich plagioclase forming epidote on metamorphism. Epidote disappearance with pressure depends on the normative anorthite content of the bulk composition; we therefore expect that altered gabbros might display a much wider pressure range where epidote persists, potentially affecting the solidus relationships. A set of experimental data up to 4.6 GPa, and 1000 °C, including new syntheses on mafic eclogites with 36.8 % normative anorthite, is discussed to unravel the effect of variable bulk and volatile compositions in model eclogites, enriched in the normative anorthite component ( An 37 and An 45). Experiments are performed in piston cylinder and multianvil machines. Garnet, clinopyroxene, and coesite form in all syntheses. Lawsonite was found to persist at 3.7 GPa, 750 °C, with both dolomite and magnesite; at 3.8 GPa, 775-800 °C, fluid-saturated conditions, epidote coexists with kyanite, dolomite, and magnesite. The anhydrous assemblage garnet, omphacite, aragonite, and kyanite is found at 4.2 GPa, 850 °C. At 900 °C, a silicate glass of granitoid composition, a carbonatitic precipitate, and Na-carbonate are observed. Precipitates are interpreted as evidence of hydrous carbonatitic liquids at run conditions; these liquids produced are richer in Ca compared to experimental carbonatites from anhydrous experiments, consistently with the dramatic role of H2O in depressing the solidus temperature for CaCO3. The fluid-absent melting of the assemblage epidote + dolomite, enlarged in its pressure stability for An-rich gabbros, is expected to promote the generation of carbonatitic liquids. The subsolidus breakdown of epidote in the presence of carbonates at depths

  12. Subduction, back-arc spreading and global mantle flow

    Science.gov (United States)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  13. Shear wave velocity structure in the lithosphere and asthenosphere across the Southern California continent and Pacific plate margin using inversion of Rayleigh wave data from the ALBACORE project.

    Science.gov (United States)

    Price, A. C.; Weeraratne, D. S.; Kohler, M. D.; Rathnayaka, S.; Escobar, L., Sr.

    2015-12-01

    The North American and Pacific plate boundary is a unique example of past subduction of an oceanic spreading center which has involved oceanic plate capture and inception of a continental transform boundary that juxtaposes continental and oceanic lithosphere on a single plate. The amphibious ALBACORE seismic project (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) deployed 34 ocean bottom seismometers (OBS) on 15-35 Ma seafloor and offers a unique opportunity to compare the LAB in continental and oceanic lithosphere in one seismic study. Rayleigh waves were recorded simultaneously by our offshore array and 82 CISN network land stations from 2010-2011. Here we predict phase velocities for a starting shear wave velocity model for each of 5 regions in our study area and compare to observed phase velocities from our array in a least-squares sense that produces the best fit 1-D shear wave velocity structure for each region. Preliminary results for the deep ocean (seafloor 25-32 Ma) indicates high velocities reaching 4.5 km/s at depths of 50 km associated with the lithosphere for seafloor 25-32 Ma. A negative velocity gradient is observed below this which reaches a minimum of 4.0 km/s at 160 km depth. The mid-ocean region (age 13-25 Ma) indicates a slightly lower magnitude and shallower LVZ. The Inner Borderland displays the highest lithospheric velocities offshore reaching 4.8 km/s at 40 km depth indicating underplating. The base of the LVZ in the Borderland increases sharply from 4.0 km/s to 4.5 km/s at 80-150 km depth indicating partial melt and compositional changes. The LVZ displays a very gradual positive velocity gradient in all other regions such as the deep seafloor and continent reaching 4.5 km/s at 300 km depth. The deep ocean, Borderlands, and continental region each have unique lithospheric velocities, LAB depths, and LVZ character that indicate stark differences in mantle structure that occur on a

  14. Building a Subduction Zone Observatory

    Science.gov (United States)

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; Gonzalez, Frank; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  15. Secular Changes in Lithospheric Diamonds from the Archean to the Proterozoic

    Science.gov (United States)

    Shirey, S. B.; Richardson, S. H.; Aulbach, S.; Pearson, G.

    2010-12-01

    Geochronologic study of lithospheric diamonds uses the Sm-Nd and Rb-Sr systems on silicate inclusions of peridotitic (harzbugitic and lherzolitic) and eclogitic parageneses and Re-Os on sulfide inclusions also of peridotitic (pentlendite-rich) and eclogitic (pyrrhotite-rich) parageneses. While sulfide and silicate inclusions rarely occur in the same diamond, they usually occur in the diamond population of each kimberlite. More than 20 kimberlites on 4 cratons have geochronology on both their sulfide and silicate inclusion-bearing diamonds. This global dataset shows interesting systematic differences with age from the Archean to Proterozoic and can be used to test for secular changes in deep mantle processes and geodynamics. With few exceptions, harzburgitic silicate and sulfide inclusions are Paleo- to Mesoarchean and rare in the Proterozoic, in accord with the xenolith record. This suggests that the depletion registered in the harzburgitic diamonds was associated with the igneous processes that created or at least followed closely on the creation of stable cratonic lithosphere. The evidence for relatively shallow final equilibration of many mantle peridotite suites [1,2] indicates that early tectonic forces had enough lateral component to be capable of thickening the lithosphere into the diamond stability field regardless of the initial depletion of the mantle in a plume or a subduction wedge. Eclogitic sulfide inclusions are common from the Archean throughout the Proterozoic. Given the diverse surficial geochemical signatures present in these inclusions, in their diamond hosts, and in the diamond-hosting lithologies, this suggests that subduction-accretion was a major tectonic process operating on Earth at least since the Mesoarchean. The Re/Os of some Archean eclogitic sulfides is lower than Re/Os of Proterozoic eclogitic sulfides which potentially links the creation of Archean sulfides to the creation of more primitive, higher MgO oceanic lithosphere typical of

  16. Shallow Low-frequency Tremor in the Hyuga-nada region, western Nankai Trough subduction zone, observed by ocean bottom seismographic experiment

    Science.gov (United States)

    Yamashita, Y.; Yakiwara, H.; Shimizu, H.; Uchida, K.; Kamizono, M.; Nakamoto, M.; Fukui, M.; Fujita, S.; Aizawa, K.; Miyamachi, H.; Hirano, S.; Umakoshi, K.; Yamada, T.; Kanehara, H.; Aoshima, T.

    2013-12-01

    The Hyuga-nada region, locating western Nankai trough, is one of the most seismically active areas in Japan. Here, the Philippine Sea Plate subducts northwestward beneath the Eurasian Plate at an approximate rate of 5-7 cm/yr [e.g., Seno et al., 1993; Miyazaki and Heki, 2001]. Interplate earthquakes with magnitudes in the range of 6.5 to 7.5 repeatedly occur at intervals of decades. In the shallower part of the plate boundary in this region, the shallow very-low frequency earthquakes (dominant frequency 10~20 s) occur [Obara and Ito, 2005; Asano et al., 2008]. The shallow part of the plate boundary zone is very important for the generation of large interplate earthquakes and following tsunami. In order to reveal the detail of microseismicity from the shallower part of the plate boundary to seismogenic zone in the Hyuga-nada region, we have conducted Ocean Bottom Seismographic experiment from May 19 until July 6, 2013. We used 12 Ocean Bottom Seismometers (OBSs) with a three-component short-period (10 OBSs: 4.5Hz, 2 OBSs: 1Hz) seismometer. All OBSs were recovered but one OBS was no data because of the technical problem of the recorder. During this experiment, many earthquakes recorded by OBSs. In addition, many low-frequency signals were also recorded. From the characteristic of the waveform and estimated source location, these are the shallow low-frequency tremor which is recorded for the first time by close-in observation the Hyuga-nada region. Here, we report the result of preliminary analysis of these shallow low-frequency tremors. The tremor activity mainly occurred from end of May to end of July 2013. Dominant frequency range of these tremors are 1-8 Hz and long duration range (10 seconds ~ a few minutes), which is same character of low-frequency tremor observed in Kii-Peninsula, Nankai trough using short-period OBSs [Obana and Kodaira, 2009]. We estimated tremor source location using envelop correlation method [Obara, 2002]. Although we estimated only a few

  17. Paleomagnetism of Cretaceous Oceanic Red Beds(CORBs) from Gyangze, Northern Tethys Himalaya: Evidence for introoceanic Subduction System

    Science.gov (United States)

    Tan, X.

    2015-12-01

    In the northern Tethys Himalaya, sporadically distributed oceanic red beds (the Chuangde Formation) have been described. The sequence was interpreted to be firstly deposited in the outer continental shelf and upper slope, and later slumped into deep basin. Based on this model, and paleomagnetic data of shallow water deposits from the southern Tethys Himalaya, the CORBs were derived from the northern tip of the passive margin of the greater India. If so, the CORBs would provide more accurate record of the northern extent of the greater India, which is an important parameter for estimating the initial time of India-Asia continental collision and the amount of crustal shortening. The well studied and most accessible section is located in the Chuangde village, about 40km east from the Gyangze city. The formation is about 25m thick, ranging from 84 to 75Ma in age according to fossil records of planktonic foraminiferal species. The lower and upper parts are 2 and 5 meter thick marlstones, respectively, and the middle section is dominated by shale with a few layers of centimeter scale marlstones. Fifty cores were collected from the marlstones of the section, and for the purpose of fold test, 30 more cores were collected from the upper part of the formation from a second section located in the Pulong village, ~10km to the north of the Chuangde village. All samples were subject to stepwise thermal demagnetization. About 60% of the samples yielded interpretable demagnetization results. The middle part of the formation show reversed high temperature component, and the lower and upper parts show normal polarity. The Chuangde section data failed reversal test, because the normal polarity direction is likely not fully resolved from overprint component. However, the well resolved reversal direction from the Chuangde village and the normal direction from Pulong pass both reversal and fold tests. The mean paleomagnetic data indicate a paleolatitude of 10+/-2 degree north, ~2000 km

  18. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc

    NARCIS (Netherlands)

    Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J.; Van Der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui

    2015-01-01

    The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence

  19. From continental to oceanic rifting in the Gulf of California

    Science.gov (United States)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  20. Lithospheric structure across the California Continental Borderland from receiver functions

    National Research Council Canada - National Science Library

    Reeves, Zachary; Lekić, Vedran; Schmerr, Nicholas; Kohler, Monica; Weeraratne, Dayanthie

    2015-01-01

    .... We map variations in present‐day lithospheric structure across the region using Ps and Sp receiver functions at permanent stations of the Southern California Seismic Network as well as ocean bottom seismometer (OBS...

  1. Passive seismoacoustic imaging from the seafloor to the lithosphere: Methods and applications to New Zealand and Ascension Island

    Science.gov (United States)

    Ball, Justin S.

    Passive-source seismic methods often rely on the isolation of transient signals such as distant earthquakes from a pervasive background of ambient noise. In marine seismology, discriminating signals from noise is particularly complicated due to the efficient wave propagation characteristics of the ocean and sediments, and oceanographic noise sources including long-period ocean surface gravity waves. Furthermore, high-amplitude structural reverberations near the receiver modulate and obscure teleseismic arrivals targeted by the analyst. In this thesis I further the development of methods to both accommodate the signal-generated noise and utilize the rich ambient noise wavefield in the ocean. I apply these methods to image subsurface structure at scales from the shallow sediments to the lithospheric mantle beneath the South Island of New Zealand and Ascension Island. I first utilize ambient noise in the form of infragravity waves and Rayleigh waves, which both sense shear structure at depth, in conjunction with reverberations in P-S wave receiver functions to model shallow sediment structure offshore New Zealand using a Markov Chain Monte Carlo algorithm. I then turn my focus to the theory and application of Rayleigh/Scholte wave noise interferometry. First I investigate the effects of bathymetric variations on microseism-band modal propagation between two hydrophones moored off Ascension Island. I model the range-dependent dispersion observed in the noise correlation functions from Ascension data as the result of double mode-converted Scholte-Moho headwave propagation, and thereby demonstrate the feasibility of probing oceanic crustal and upper mantle structure using moored hydrophone data. Lastly I apply a combination of ambient noise and teleseismic Rayleigh wave tomography to image the shear structure of the mantle lithosphere beneath the continental collision zone of the South Island of New Zealand. The resulting models include high-wavespeed anomalies

  2. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, Sierd

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the initiation

  3. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the

  4. Surface deformation resulting from subduction and slab detachment

    NARCIS (Netherlands)

    Buiter, S.J.H.

    2000-01-01

    Convergence of lithospheric plates is accommodated at active margins by one plate moving beneath the other into the Earth's mantle. Changes in this subduction process may cause variations in the topography of the Earth's surface near a convergent plate margin. The focus of this thesis lies on

  5. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    Science.gov (United States)

    Medvedev, Sergei

    2016-10-01

    Many mechanisms control the state of stress within Earth plates. First-order well-known mechanisms include stresses induced by lateral variations of lithospheric density structure, sublithospheric tractions, ridge push and subduction pull. In this study, we attempt to quantify the influence of these mechanisms to understand the origin of stresses in the lithosphere, choosing the African plate (TAP) as an example. A finite-element based suite, Proshell, was developed to combine several data sets, to estimate the gravitational potential energy (GPE) of the lithosphere and to calculate stresses acting on the real (non-planar) geometry of TAP. We introduce several quantitative parameters to measure the degree of fit between the model and observations. Our modelling strategy involves nine series of numerical experiments. We start with the simplest possible model and then, step by step, build it up to be a more physically realistic model, all the while discussing the influence of each additional component. The starting (oversimplified) model series (1) is based on the CRUST2 data set for the crust and a half-space-cooling approximation of the lithospheric mantle. We then describe models (series 2-5) that account for lithospheric mantle density heterogeneities to build a more reliable GPE model. The consecutive series involve basal traction from the convective mantle (series A, C) and the rheological heterogeneity of the TAP via variations in its effective elastic thickness (series B, C). The model quality reflects the increase in complexity between series with an improving match to observed stress regimes and directions. The most complex model (series D) also accounts for the bending stresses in the elastic lithosphere and achieves a remarkably good fit to observations. All of our experiments were based on the iteration of controlling parameters in order to achieve the best fit between modelled and observed stresses, always considering physically feasible values. This

  6. Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai

    Science.gov (United States)

    Yu, Yang; Sun, Min; Huang, Xiao-Long; Zhao, Guochun; Li, Pengfei; Long, Xiaoping; Cai, Keda; Xia, Xiaoping

    2017-07-01

    Intensive Devonian felsic magmatism is recorded within the southwestern Mongolian collage system of the Central Asian Orogenic Belt (CAOB). The voluminous magmas have isotopic compositions of juvenile materials from the mantle, thus manifesting significant mantle-crust interaction and continental growth at this time. Here, we present systematic Sr-Nd-Hf-Pb isotopic data for the Devonian mafic intrusions in the Chinese Altai, a key region within the southwestern Mongolian collage system to decipher the evolution of the mantle during this important tectonothermal event. The Keketuohai gabbro (409 ± 5 Ma) and type I mafic dykes (376 ± 5 Ma) within the Habahe complex have high (87Sr/86Sr)i, (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ratios, and decoupled Nd-Hf isotopic compositions; e.g., low εNd(t) values (- 2.5 to + 5.4) combined with high εHf(t) (+ 2.6 to + 15.1) values. These rocks have low Ba/La and high La/Yb and Th/Yb ratios, and are enriched in Pb, the light rare earth elements (LREE) and Th. They formed from magmas generated from the depleted lithospheric mantle metasomatised by hydrous melts from subducted sediments. In comparison, the gabbroic samples from the Habahe complex (369 ± 3 Ma) are enriched in the LREE, Th and Ba and have high La/Yb, Th/Yb and Ba/La ratios. They do not show significant Pb anomalies, and have depleted isotopic compositions that include low initial 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios and high εNd(t) (+ 7.4 to + 7.8) and εHf(t) (+ 13.4 to + 15.3) values. These rocks are thought to have formed from magmas derived from the lithospheric mantle metasomatised by hydrous melts from subducted oceanic crust. The type II mafic dykes within the Habahe complex are depleted in the LREE and Th, have high Ba/La ratios, and are enriched in Pb, Ba, Sr, and U. They have positive εNd(t) (+ 7.6 to + 8.1) and εHf(t) (+ 14.1 to + 15.4) values, high initial 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios

  7. Subduction dynamics: Constraints from gravity field observations

    Science.gov (United States)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  8. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    Science.gov (United States)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  9. Mantle Wedge formation during Subduction Initiation: evidence from the refertilized base of the Oman ophiolitic mantle

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Godard, M.; Lemarchand, D.; Ulrich, M.

    2015-12-01

    Although the Oman ophiolite is classically regarded as being the direct analog of oceanic lithosphere created at fast spreading ridges, the geodynamic context of its formation is still highly debated. The other alternative end-member model suggests that this ophiolite entirely formed in a supra-subduction zone setting. The latter one is supported by studies on volcanic sequences whereas studies dealing on the mantle section do not involve a significant influence of subduction processes on its structure and composition. We herein focus on basal peridotites from all along the ophiolite strike in order to decipher and characterize potential fluid/melt transfers relate to subduction processes. Samples were taken across the basal banded unit directly overlying the amphibolitic/granulitic metamorphic sole which represents an accreted part of the lower plate. We carried out a petrological, structural and geochemical study on these rocks and their constitutive minerals. Our results show that basal peridotites range from lherzolites to highly depleted harzburgites in composition. Clinopyroxenes (cpx) display melt impregnation textures and co-crystallized with HT/HP amphiboles (amph), spinels and sulfurs. Major and trace elements of the constitutive minerals indicate that these minerals represent trapped incremental partial melt after hydrous melting. Different cpx-bearing lithologies then result from varying degrees of partial melting and melt extraction. Combined with Boron isotopic data, we demonstrate that fluids responsible for hydrous melting of these ophiolitic basal peridotites are subduction-related, most likely derived from dehydration of the metamorphic sole during its formation in subduction initiation. From these observations and thermal constraints, we interpret the occurrence of these basal lherzolites as representing a freezing front developed by thermal re-equilibration (cooling) during subduction processes: subduction-related hydrous partial melts were

  10. Lower slab boundary in the Japan subduction zone

    Science.gov (United States)

    Tonegawa, Takashi; Hirahara, Kazuro; Shibutani, Takuo; Fujii, Naoyuki

    2006-07-01

    We have successfully detected the lower boundary of a subducting slab. The successive imaging of the lower slab boundary beneath northeastern (NE) Japan is attained by receiver function (RF) depth conversion analysis using a recent 3D tomographic velocity model. We use waveforms from 249 teleseismic events collected by Hi-net and J-array short-period stations in NE Japan. RFs are calculated through frequency domain division of radial components by vertical ones with a water level of 0.001 and a 1.0 Hz low-pass Gaussian filter. Assuming that all later phases in the radial RFs are due to Ps phases converted at discontinuities beneath stations, we calculate depth-converted RFs, mapped onto the cross-section with the CCP (common conversion point) stacking. In a cross section, the slab surface and the oceanic Moho can be imaged down to 120 km depth. For the greater depths, the RF amplitudes corresponding to them cannot be seen, because, in the oceanic crust, basalt would be completely metamorphosed to eclogite below this depth. The lower boundary of the Pacific slab can also be traced down to 200 km depth or more. It is parallel to the slab surface and the oceanic Moho, and the thickness between the slab surface and the lower boundary is ˜ 80 km. Finally, we estimate a top-to-bottom slab velocity model that explains the RFs observed at broadband stations with the synthetic RFs. This model exhibits a 13% velocity reduction downwards the lower slab boundary, which would relatively sharp for the base of the thermal boundary layer. Therefore, this sharp discontinuity is presumably considered to be the subducting G (Gutenberg) discontinuity that is formed by the change of the amount of H 2O (water), meaning that the G discontinuity is the chemical boundary at the bottom of the oceanic lithosphere. The G discontinuity depth is controlled by the potential temperature of the asthenospheric mantle beneath the mid-ocean ridge, and hence the observed thickness of 80 km, i.e. the

  11. Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting

    Science.gov (United States)

    Arcay, Diane

    2017-08-01

    The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate. A 2D thermo-mechanical model is used to simulate a subduction channel, made of oceanic crust, free to evolve. Convergence at constant rate is imposed under a 100 km thick upper plate. Pseudo-brittle and non-Newtonian behaviours are modelled. The influence of the subduction channel strength, parameterized by the difference in activation energy between crust and mantle (ΔEa) is investigated to examine in detail the variations in depth of the subduction plane down-dip extent, zcoup . First, simulations show that numerical resolution may be responsible for an artificial and significant shallowing of zcoup if the weak crustal layer is not correctly resolved. Second, if the age of the subducting plate is 100 Myr, subduction occurs for any ΔEa . The stiffer the crust is, that is, the lower ΔEa is, the shallower zcoup is (60 km depth if ΔEa = 20 kJ/mol) and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel (ΔEa > 135 J/mol) leads there to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. Partial kinematic coupling at the fore-arc base occurs if ΔEa = 145 kJ/mol. If the incoming plate is 20 Myr old, subduction can occur under the conditions that the crust is either stiff and denser than the mantle, or weak and buoyant. In the latter condition, cold crust plumes rise from the subduction channel and ascend through the upper lithosphere, triggering (1) partial kinematic coupling under the fore-arc, (2) fore-arc lithosphere cooling, and (3) partial or complete hindrance of wet mantle melting. zcoup then ranges from 50 to more than 250 km depth and is time-dependent if crust plumes form. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow. Two different intervals of ΔEa are underlined: 80-120 kJ/mol to reproduce the range of slab

  12. Comparing the effects of rheology on the dynamics and topography of 3D subduction-collision models

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2015-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. It is well known that they evolve differently from one another as the result of specific combinations of surface and mantle processes. The differences among the structures and evolutions of mountain belts arise for several reasons, such as different strengths of materials, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergence plates. All these possible controlling factors can change with space and time. Of all the mountain belts and orogenic plateaus, the most striking example is the India-Asia collision zone, which gave rise to the Himalayas and the Tibetan Plateau, the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of such a highly elevated region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed long-term 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the

  13. Testing the intraplate origin of mega-earthquakes at subduction margins

    Directory of Open Access Journals (Sweden)

    Prosanta K. Khan

    2012-07-01

    Full Text Available The disastrous Mw 9.3 (seismic moment 1.0×1030 dyn/cm earthquake that struck northwest Sumatra on 26 December 2004 and triggered ∼30 m high tsunami has rejuvenated the quest for identifying the forcing behind subduction related earthquakes around the world. Studies reveal that the strongest part (elastic core of the oceanic lithosphere lie between 20 and 60 km depth beneath the upper (∼7 km thick crustal layer, and compressive stress of GPa order is required to fail the rock-layers within the core zone. Here we present evidences in favor of an intraplate origin of mega-earthquakes right within the strong core part (at the interface of semi-brittle and brittle zone, and propose an alternate model exploring the flexing zone of the descending lithosphere as the nodal area for major stress accumulation. We believe that at high confining pressure and elevated temperature, unidirectional cyclic compressive stress loading in the flexing zone results in an increase of material yield strength through strain hardening, which transforms the rheology of the layer from semi-brittle to near-brittle state. The increased compressive stress field coupled with upward migration of the neutral surface (of zero stress fields under non-coaxial deformation triggers shear crack. The growth of the shear crack is initially confined in the near-brittle domain, and propagates later through the more brittle crustal part of the descending oceanic lithosphere in the form of cataclastic failure.

  14. Geodynamical Analysis of Plate Reconstructions based on Subduction History Models

    Science.gov (United States)

    Quevedo, L. E.; Butterworth, N. P.; Matthews, K. J.; Morra, G.; Müller, R. D.

    2011-12-01

    We present a novel method to produce global subduction history models from plate reconstructions and use their predicted geodynamic behaviour as a quality metric for the physical consistency of absolute motions. We show that modelled slabs constructed by advecting material into the mantle according to absolute and relative plate motions given by a particular reconstruction are better correlated with the present day slab dips observed in mantle tomography than instantaneous kinematic quantities like present convergence rate. A complete simulation incorporating lithospheric thickness derived from oceanic age and a rheological model of the lithosphere was run using the Boundary Element Method-based software BEMEarth to infer the global pattern of mantle flow. The predicted plate motion orientations in the form of Euler pole location for the present day and mid-Cretaceous (125 Ma) were compared with the kinematic model for a set of rheologies and mantle structures, and found to be a robust and efficient indicator of the physical consistency of kinematic reconstructions based on their effect on the balance of plate driving forces. As an application example, during the Early Cretaceous, the predicted motion of the Farallon plate was found to be more consistent with the regional geology of the Western North American Cordillera system than the instantaneous motion suggested by a reconstruction at 125 Ma based on sparse hotspot track data on the Pacific Plate. This suggests that a methodology based on forward geodynamic modellling could be used to predict absolute plate motions in reconstructions for times that are ill-constrained by observations constraining absolute plate motions.

  15. Subduction-related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk plutons: Insights from geochemistry, whole-rock Sr-Nd and in situ zircon Lu-Hf isotopes, and U-Pb geochronology

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2016-12-01

    involved the partial melting of a phlogopite- and spinel-bearing lherzolite under an extensional regime in a subduction-related setting. Such an extension event would have caused hot asthenospheric upwelling and was likely triggered by back-arc rifting during subduction of the Paleo-Tethyan oceanic slab. Thus, the magmas are likely subduction-related products, implying that southward subduction of Paleo-Tethys oceanic lithosphere in the region began during the late Carboniferous to early Permian.

  16. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    Science.gov (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke

    2016-01-01

    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  17. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

    Science.gov (United States)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa

    2018-01-01

    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  18. How inheritance, geochemical and geophysical properties of the lithospheric mantle influence rift development and subsequent collision

    Science.gov (United States)

    Picazo, Suzanne; Chenin, Pauline; Müntener, Othmar; Manatschal, Gianreto; Karner, Garry; Johnson, Christopher

    2017-04-01

    . Conversely to a classical subduction where the oceanic lithosphere being subducted produces a mobile component that contributes to the formation of long-lived volcanic arcs, a hyper-extended rifted system and small oceanic basins (Journal of Geophysical Research, 108(B1):2029. Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., & Johnson, C. (2016). Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle. Lithos, 266, 233-263.

  19. Crustal structure of the Carpathian orogen from receiver function analysis: how craton subduction and active delamination affect the crust

    Science.gov (United States)

    Petrescu, Laura; Tataru, Dragos; Grecu, Bogdan

    2017-04-01

    The Carpathian arc is an uncommon curved collisional system, involving the subduction of the Eastern European craton and the Proterozoic Moesian platform beneath younger European microplates. The Cenozoic collision led to the closure of the Tethys Oceanic basin, portions of which are actively breaking off or delaminating beneath the orogen, generating deep mantle earthquakes. Neogene volcanism, possibly related to subduction slab roll-back, also formed a band of presently extinct volcanoes in the back-arc region. The Carpathian embayment is thus an ideal laboratory to investigate crustal processes related to subduction of cratonic material, multiple plate junctions and active delamination. To better understand how the crustal structure changes from the Eastern European cratonic foreland, across the curved subduction zone, to the younger European microplates, we analyse teleseismic earthquakes recorded at broadband seismic stations located across eastern and southern Carpathians, in Romania and Moldova. We processed data from permanent seismic networks (The Romanian National Seismic Network) as well as data from temporary deployments such as CALIXTO (Carpathian Arc Lithosphere X-Tomography) and SCP (South Carpathian Project). Using extended multi-taper spectral division, we compute and analyse radial and transverse receiver functions. Energy on the transverse component may be an indicator of crustal anisotropy or the existence of intracrustal dipping interfaces. Using phase-weighted H-k stacking of receiver functions, we estimate the crustal thickness and the bulk crustal Poisson's ratio as well as the seismic sharpness of the Moho discontinuity. Furthermore, we invert receiver functions to obtain the S-wave velocity structure of the crust and upper mantle beneath individual stations, which provide concurrent information on the Moho nature. Our results provide a better understanding of crustal structure across complex collisional systems involving the subduction of

  20. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction

  1. Why Do We Need 3-d Numerical Models of Subduction?

    Science.gov (United States)

    Morra, G.; Faccenna, C.; Funiciello, F.; Giardini, D.; Regenauer-Lieb, K.

    We use a set of 2-D and 3-D numerical fluid dynamic experiments, modeled with different strain rate dependent rheologies (viscous, visco-plastic, power law) to ana- lyze the long-term dynamics of the subduction of an oceanic slab into an iso-viscous or stratified mantle. For the lithosphere a fluid dynamic approach has been bench- marked with our previous solid mechanical approach with the aim of overcoming the coherency problem of fluid dynamic calculations. The solid mechanical dichotomy Sstrong before failure and weak where it failsT has been cast into a specialized non- & cedil;linear fluid rheology. Analog 2-D and 3-D experiments are finally compared with the numerical experiments. 2-D numerical experiments are considered with and without free surface to investigate the limitations induced by a closed top boundary. The effect of asymmetric boundary conditions (with and without overriding plate) is analyzed with respect to the possibility of trench retreat. We clearly state the importance for the free surface analysis. 2-D experiments have inherent weaknesses: first they provide an unrealistic simulation of mantle flow (suppression of toroidal flow), second they give rise to the Sclosed boxT problem (interaction of the slab with a boundary, i.e. & cedil;660 km and the left and right box boundaries). 3-D numerical experiments permit to overcome these problems. A natural analysis of the behavior of the mantle flow during subduction and the three-dimensional behavior of the slab is thus possible. Physical observables like trench retreat and toroidal and poloidal flow are compared with the results of our companion analog 3-D experiments.

  2. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    Science.gov (United States)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  3. To what depth can continental crust be subducted: numerical predictions and critical observations

    Science.gov (United States)

    Gerya, T.; Faccenda, M.

    2006-12-01

    We performed systematic two-dimensional numerical modeling of continental collision associated with subduction of the lithospheric mantle. Results of our experiments suggest that two contrasting modes of lithospheric subduction below an orogen can exist: one-sided and double-sided. One-sided subduction brings continental crust subducting atop the slab to the contact with hot asthenosperic mantle wedge below the overriding plate. This can result in strong heating, partial melting and rheological weakening of the crust triggering its delamination from subducting mantle lithosphere in form of compositionally buoyant structures (cold plumes) propagating away from subducting plate, passing through the hot mantle wedge, underplating the overriding lithosphere and producing large amount of relatively felsic syn-orogenic magmas at sub-lithospheric depths. One-sided subduction of the buoyant continental crust can also result in a transient "hot channel effect" triggering formation and exhumation of coesite- and diamond- bearing rocks metamorphosed at 700 to 900oC. Anomalously high temperature is caused by intense viscous and radiogenic heating in the channel composed of deeply subducted radiogenic upper-crustal rocks. Low effective viscosity of the channel subsequent to increased temperature and partial melting permits profound mixing of mantle and crustal rocks. The hot channel exists during few million years only but rapidly produces and exhumes large amounts of ultrahigh-pressure, high-temperature rocks within the orogen. Double-sided subduction can follow the one-sided mode at later stages of orogeny when significant rheological coupling between two plates occurs during the collision. In this case the orogen is characterized by double- verging structure, the layer of subducting continental crust is embedded between two negatively buoyant lithospheric slabs and delamination of the crust does not occur. This mode of subduction can bring crustal rocks from the bottom of an

  4. Imaging the Ionian Sea subducting slab panels and faults to control present day motion in the Hellenic-Aegean region

    Science.gov (United States)

    Sachpazi, Maria

    2017-04-01

    The Hellenic-Mediterranean subduction system characterized by its fast overriding upper plate, fast trench retreat and its most rapidly extending Corinth Rift has been the target of several conceptual models on slab dynamics and lithosphere extension. Using teleseismic waves conversions on a dense 2-D seismic array -installed in the frame of Thales Was Right project- from Crete to the North Aegean coast through central Greece, a high-resolution imaging of the Hellenic slab and the overlying Aegean plate lithospheric mantle has been acquired. The subducting slab top appears segmented into panels 30- 50km wide by SW-NE along dip faults to at least 100km depth. Intermediate-depth Mw>6 earthquakes are located on those faults which implies that they are seismically active at 70 km depth. Smaller magnitude earthquakes of the upper Benioff zone commonly related to dehydration processes of the descending slab, are also resolved to be clustered along these faults. These faults are likely inherited structures of the oceanic lithosphere and sites of preferred hydration. Their revealed relation with this specific seismicity provides high-resolution insight validating dehydration embrittlement. RF imaging on 4 OBS sites has allowed to resolve the depth and geometry of the updip offshore part of the slab, the thrust interplate boundary. The observations support a trenchward continuation of the slab faults and correlation with the similarly segmented thrusting contact of the Mediterranean Ridge accretionary wedge over the upper plate. The slab faults may control the location and size of major historical megathrust earthquakes a hypothesis that has been strengthened by the study of the Mw 6.8 14.02.2008 earthquake, the first large instrumental interplate earthquake offshore SW Peloponnesus. New high-resolution imaging resolves the Aegean plate lithospheric mantle and shows the presence of a significant heterogeneity on top of the presently subducting slab, never imaged before. It

  5. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    Science.gov (United States)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides

  6. Three-dimensional thermal structure and seismogenesis in the Tohoku and Hokkaido subduction system

    Science.gov (United States)

    van Keken, P. E.; Kita, S.; Nakajima, J.; Bengtson, A. K.; Hacker, B. R.; Abers, G. A.

    2010-12-01

    The Northern Japan arc is characterized by fast subduction of old oceanic lithosphere. The high density instrumentation and high seismicity make this an ideal natural laboratory to study the interplay between subduction zone dynamics, dehydration, migration of fluids, and seismogenesis. In this study we use high resolution finite element models to predict the thermal structure of the subduction slab below Tohoku (Northern Honshu) and Hokkaido. These models allow us to predict the pressure, temperature and mineralogy of the subducted crust and mantle. We use these models to predict the (p,T) conditions of earthquakes that are relocated with a precision of around 1 km by double difference techniques. Below Northern Hokkaido and Tohoku we find that the earthquake activity is strong in crust and the uppermost mantle for temperatures seismic moment. The strongest 3D variations in this arc occur below southern Hokkaido. This 200 km wide region is characterized by a change in trench geometry, anomalously low heatflow and an anomalous velocity structure in the mantle wedge. Tomographic imaging suggest that continental crust is subducted to significant depth, thereby insulating the subducting slab from the hot mantle wedge at least at intermediate depths. The thermal insulation is also suggested by the deepening of the earthquakes in the slab (Kita et al., EPSL, 2010). This region may be characterized by active crustal erosion which would lead to a further blanketing of the crust by a sedimentary layer. Further modifications in thermal structure are possible due to the 3D wedge flow that is generated by the along-arc variations in trench geometry. We quantitatively verify the relative importance of these processes using 2D and 3D dynamical models. Without the seismically imaged crustal structure the earthquake temperatures are significantly elevated compared to the Tohoku and (northern) Hokkaido sections. If we take the modified crustal structure into account we find a (p

  7. Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental margin of India and the 85 degree E Ridge, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajesh, S.; Majumdar, T.J.; Krishna, K.S.

    overcompensation of the ridge due to overburden sediment load. In this work we attempted to know; whether, the present day oceanic lithosphere, juxtaposed to the Eastern Continental Margin of India (ECMI), holds the vestiges of lithospheric stretching due...

  8. Decrease in oceanic crustal thickness since the breakup of Pangaea

    Science.gov (United States)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  9. Diffusion creep of fine-grained garnetite: Implications for the flow strength of subducting slabs

    Science.gov (United States)

    Wang, Zichao; Ji, Shaocheng

    2000-08-01

    Creep experiments were performed on synthetic fine-grained garnetite to investigate the flow strength of the Earth's subducting slabs. Experiments were conducted at temperatures (T) of 1373-1543 K and total pressure (P) of 0.1 MPa in controlled atmospheres of fO2 =10-17-10-8 MPa. The mechanical data indicate a grain-size sensitive diffusion flow and the creep behavior can be described by an equation of the form: FD1 ɛ.=(5.32±3.10)×10-6Td2.5±0.3fO20σ1.1±0.2exp(-347±46kJ/molRT) where T in Kelvin, d in meter, σ and fO2 in MPa. Based on the diffusivities (D) calculated from creep and diffusion experiments, we proposed that grain boundary diffusion is the dominant mechanism for high temperature creep of the fine-grained garnetite. Normalized creep strength of the garnetite is found to be comparable to those of feldspar and olivine in diffusion creep regime, suggesting that garnetite may not form a strong layer in the subducted oceanic lithosphere if it deforms by grain boundary diffusion creep.

  10. A Review of Recent Developments in the Study of Regional Lithospheric Electrical Structure of the Asian Continent

    Science.gov (United States)

    Zhang, Letian

    2017-09-01

    The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail

  11. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of

  12. Evolution of the Archaean crust by delamination and shallow subduction.

    Science.gov (United States)

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.

  13. Breaking the shell: Initiating plate tectonic-like subduction on Europa

    Science.gov (United States)

    Bland, Michael T.; McKinnon, William B.

    2017-10-01

    Europa’s prominent bands have been proposed to form by a seafloor-spreading-like mechanism involving complete separation of Europa’s lithosphere and the emplacement of fresh ice from below [Prockter et al. 2002]. This formation mechanism poses a challenge for Europa’s strain balance: extensional rifting at bands must be offset by lithospheric shortening elsewhere, yet few obvious contractional features have been observed. Kattenhorn and Prockter [2014] suggested that extension on Europa is accommodated by subduction of the lithosphere at linear, tabular zones termed subsumption bands. Subduction of Europa’s lithosphere implicitly requires that lithospheric-scale thrust faults can develop. This contrasts with previous numerical modeling, which found that lithospheric shortening is instead primarily accommodated by folding or passive thickening [Bland and McKinnon 2012, 2013]. Here we reevaluate the conditions required to form large-scale thrust faults using a numerical model of lithospheric shortening on Europa that includes realistic localization of brittle failure (non-associated plasticity). In the absence of strain weakening (wherein brittle failure decreases the subsequent yield strength) essentially all shortening results in folding or thickening, consistent with previous results. With moderate strain weakening, deformation becomes localized within fault-like zones for surface temperatures ≤100 K; however, the resulting surface deformation suggests a complex interplay between folding and faulting. Only if the ice shell weakens very easily does faulting dominate. Large-scale faults preferentially form at cold surface temperatures and high heat fluxes. Cold temperatures promote faulting (as opposed to folding), and high heat fluxes result in a thinner lithosphere, which is more easily subducted. The subsumption bands identified by Kattenhorn and Prockter [2014] are at a relatively high latitude (cold temperature), and are associated with putative

  14. Spatial variations in cooling rate in the mantle section of the Samail ophiolite in Oman: Implications for formation of lithosphere at mid-ocean ridges

    Science.gov (United States)

    Dygert, Nick; Kelemen, Peter B.; Liang, Yan

    2017-05-01

    To understand how the mantle cools beneath mid-ocean ridge spreading centers, we applied a REE-in-two-pyroxene thermometer and major element thermometers to peridotites from the Wadi Tayin massif in the southern part of the Samail ophiolite in the Sultanate of Oman, which represent more than 10 km of structural depth beneath the paleo-Moho. Closure temperatures for REEs in pyroxenes deduced from the REE-in-two-pyroxene thermometer (TREE) decrease smoothly and systematically with depth in the section, from >1300 °C near the crust to <1100 °C near the metamorphic sole, consistent with previously observed, similar variations in mineral thermometers with lower cooling temperatures. Estimated cooling rates decrease from ∼0.3 °C/y just below the crust-mantle transition zone (MTZ) to ∼10-3 °C/y at a depth of six km below the MTZ. Cooling rates derived from Ca-in-olivine thermometry also decrease moving deeper into the section. These variations in cooling rate are most consistent with conductive cooling of the mantle beneath a cold overlying crust. In turn, this suggests that hydrothermal circulation extended to the MTZ near the axis of the fast-spreading ridge where the igneous crust of the Samail ophiolite formed. These observations are consistent with the Sheeted Sills model for accretion of lower oceanic crust, and with previous work demonstrating very rapid cooling rates in the crust of the Wadi Tayin massif. Our observations, combined with previous results, suggest that efficient hydrothermal circulation beneath fast spreading centers cools the uppermost mantle from magmatic temperatures to <1000 °C as quickly as tectonic exhumation at amagmatic spreading centers. In contrast, thermometers sensitive to cooling over lower temperature intervals indicate that the Wadi Tayin peridotites cooled more slowly than tectonically exhumed peridotites sampled near the seafloor along mid-ocean ridges. Hydrothermal cooling of the crust may have waned, so that the crust

  15. Lithospheric thinning in the Eastern Indian Craton: Evidence for lithospheric delamination below the Archean Singhbhum Craton?

    Science.gov (United States)

    Mandal, Prantik

    2017-02-01

    We herein present shear velocity structure extending down to 300 km depth below the Archean Singhbhum-Odisha Craton (SOC) and Proterozoic Chotanagpur granitic-gneissic terrain (CGGT), which has been obtained through the inversion modeling of P-receiver functions. We use three-component broadband recordings of 200 teleseismic earthquakes (30° ≤ ∆ ≤ 90°) from a 15 station seismic network that has been operational in the Eastern Indian shield since February 2013. We obtain the thinnest crust of 35 km overlying a thin lithosphere of 78 km, below the region near south Singhbhum shear zone, which could be attributed to the 1.6 Ga plume activity associated with Dalma volcanic. However, the thickest crust of 47 km overlying a thin lithosphere of 81 km is noticed below the region near the Singhbhum granite of 3.6 Ga. This thinning of lithosphere could be attributed to the delamination of lithospheric root due to the Himalayan orogeny with a shortening rate of 2 cm/year. This delamination model in SOC gets further support from the densification of the lower crust, which could result from repeated episodes of basaltic underplating associated with episodes related to Dalma ( 1.6 Ga) and Rajmahal ( 117 Ma) volcanisms. This led to relatively more mafic, heterogeneous and deformed crustal structure in SOC as well as EGMB (with an average crustal Vs of 4.0 km/s) in comparison to that in CGGT (with an average crustal Vs of 3.9 km/s), as seen through our modeling results. The thickest lithosphere of 100 km is observed in the southwestern SOC as well as northeastern CGGT. We also notice that a sharp and flat Moho in CGGT, which could be attributed to thermal reactivation and large volume melting of the mafic cratonic crust during the late Archean subduction process and associated volcanism episodes. This model gets further support from the estimated 169 km thick lower Vs zone in the upper mantle below CGGT. Our modeling results also support a northward subduction of Archean

  16. Earthquake nucleation in weak subducted carbonates

    NARCIS (Netherlands)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Chirstopher J.; Behrmann, Jan H.

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests

  17. Rapid fore-arc extension and detachment-mode spreading following subduction initiation

    Science.gov (United States)

    Morris, Antony; Anderson, Mark W.; Omer, Ahmed; Maffione, Marco; van Hinsbergen, Douwe J. J.

    2017-11-01

    Most ophiolites have geochemical signatures that indicate formation by suprasubduction seafloor spreading above newly initiated subduction zones, and hence they record fore-arc processes operating following subduction initiation. They are frequently underlain by a metamorphic sole formed at the top of the downgoing plate and accreted below the overlying suprasubduction zone lithosphere immediately following ophiolite formation. Paleomagnetic analyses of ophiolites can provide important insights into the enigmatic geodynamic processes operating in this setting via identification of tectonic rotations related to upper plate extension. Here we present net tectonic rotation results from the Late Cretaceous Mersin ophiolite of southern Turkey that document rapid and progressive rotation of ophiolitic rocks and their associated metamorphic sole. Specifically, we demonstrate that lower crustal cumulate rocks and early dykes intruded into the underlying mantle section have undergone extreme rotation around ridge-parallel, shallowly-plunging axes, consistent with oceanic detachment faulting during spreading. Importantly, later dykes cutting the metamorphic sole experienced rotation around the same axis but with a lower magnitude. We show that these rotations occurred via a common mechanism in a pre-obduction, fore-arc setting, and are best explained by combining (hyper)extension resulting from detachment-mode, amagmatic suprasubduction zone spreading in a fore-arc environment with a recently proposed mechanism for exhumation of metamorphic soles driven by upper plate extension. Available age constraints demonstrate that extreme rotation of these units was accommodated rapidly by these processes over a time period of <∼3 Myr, comparable with rates of rotation seen in oceanic core complexes in the modern oceans.

  18. Experimental and observational evidence for plume-induced subduction on Venus

    Science.gov (United States)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S.

    2017-04-01

    Why Venus lacks plate tectonics remains an unanswered question in terrestrial planet evolution. There is observational evidence for subduction--a requirement for plate tectonics--on Venus, but it is unclear why the features have characteristics of both mantle plumes and subduction zones. One explanation is that mantle plumes trigger subduction. Here we compare laboratory experiments of plume-induced subduction in a colloidal solution of nanoparticles to observations of proposed subduction sites on Venus. The experimental fluids are heated from below to produce upwelling plumes, which in turn produce tensile fractures in the lithosphere-like skin that forms on the upper surface. Plume material upwells through the fractures and spreads above the skin, analogous to volcanic flooding, and leads to bending and eventual subduction of the skin along arcuate segments. The segments are analogous to the semi-circular trenches seen at two proposed sites of plume-triggered subduction at Quetzalpetlatl and Artemis coronae. Other experimental deformation structures and subsurface density variations are also consistent with topography, radar and gravity data for Venus. Scaling analysis suggests that this regime with limited, plume-induced subduction is favoured by a hot lithosphere, such as that found on early Earth or present-day Venus.

  19. Electrical conductivity imaging in the western Pacific subduction zone

    Science.gov (United States)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005

  20. Metamorphic evolution of the Frido Unit from the southern Apennines (Italy): consequences for the subduction processes in the western Mediterranean area

    Science.gov (United States)

    Laurita, Salvatore; Prosser, Giacomo; Altenberger, Uwe; Bousquet, Romain; Oberhänsli, Roland; Cavalcante, Francesco

    2013-04-01

    in the stability field of aragonite, implying extremely cool exhumation conditions, followed the PT peak. Significant cooling during decompression implies that exhumation took place during active subduction of the cold oceanic lithosphere of the Tethyan domain. In addition, exhumation was slow enough to equilibrate the temperature of the exhuming body with the ambient conditions. Summarizing, the evolution of the Frido Unit fits the HP-LT evolution of metasediments of the Alpine-Apennine System during subduction and closure of the Piedmont-Ligurian Ocean.

  1. The Elephants' Graveyard: Constraints from Mantle Plumes on the Fate of Subducted Slabs and Implications for the Style of Mantle Convection

    Science.gov (United States)

    Lassiter, J. C.

    2007-12-01

    The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source

  2. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance

    Science.gov (United States)

    Xu, Yi-Gang

    2014-10-01

    Major, trace element and Sr-Nd-Pb isotopic data of basalts emplaced during 90-40 Ma in the North and Northeast China are compiled in this review, with aims of constraining their petrogenesis, and by inference the evolution of the North China Craton during the late Cretaceous and early Cenozoic. Three major components are identified in magma source, including depleted component I and II, and an enriched component. The depleted component I, which is characterized by relatively low 87Sr/86Sr (1.1) and HIMU-like trace element characteristics, is most likely derived from gabbroic cumulate of the oceanic crust. The depleted component II, which distinguishes itself by its high εNd (∼8) and moderate 87Sr/86Sr (∼0.7038), is probably derived from a sub-lithospheric ambient mantle. The enriched component has low εNd (2-3), high 87Sr/86Sr (>0.7065), low 206Pb/204Pb (17), excess Sr, Rb, Ba and a deficiency of Zr and Hf relative to the REE. This component is likely from the basaltic portion of the oceanic crust, which is variably altered by seawater and contains minor sediments. Comparison with experimental melts and trace element modeling suggest that these recycled oceanic components may be in form of garnet pyroxenite/eclogite. These components are young (stagnated within the mantle transition zone, we propose that it ultimately comes from the subducted Pacific slab. Eu/Eu∗ and 87Sr/86Sr of the 90-40 Ma magmas increases and decreases, respectively, with decreasing emplacement age, mirroring a change in magma source from upper to lower parts of subducted oceanic crust. Such secular trends are created by dynamic melting of a heterogeneous mantle containing recycled oceanic crust. Due to different melting temperature of the upper and lower ocean crust and progressive thinning of the lithosphere, the more fertile basaltic crustal component is preferentially sampled during the early stage of volcanism, whereas the more depleted gabbroic lower crust and lithospheric mantle

  3. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    Science.gov (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  4. A lithospheric velocity model for the flat slab region of Argentina from joint inversion of Rayleigh wave phase velocity dispersion and teleseismic receiver functions

    Science.gov (United States)

    Ammirati, Jean-Baptiste; Alvarado, Patricia; Beck, Susan

    2015-07-01

    In the central Andes, the Nazca plate displays large along strike variations in dip with a near horizontal subduction angle between 28 and 32°S referred to the Pampean flat slab segment. The upper plate above the Pampean flat slab has high rates of crustal seismicity and active basement cored uplifts. The SIEMBRA experiment, a 43-broad-band-seismic-station array was deployed to better characterize the Pampean flat slab region around 31°S. In this study, we explore the lithospheric structure above the flat slab as a whole and its relation to seismicity. We use the SIEMBRA data to perform a joint inversion of teleseismic receiver functions and Rayleigh wave phase velocity dispersion to constrain the shear wave velocity variations in the lithosphere. Our joint inversion results show: (1) the presence of several upper-plate mid-crustal discontinuities and their lateral extent that are probably related to the terrane accretion history; (2) zones of high shear wave velocity in the upper-plate lower crust associated with a weak Moho signal consistent with the hypothesis of partial eclogitization in the lower crust; (3) the presence of low shear-wave velocities at ˜100 km depth interpreted as the subducting oceanic crust. Finally, in order to investigate the relation of the lithospheric structure to seismicity, we determine an optimal velocity-depth model based on the joint inversion results and use it to perform regional moment tensor inversions (SMTI) of crustal and slab earthquakes. The SMTI for 18 earthquakes that occurred between 2007 and 2009 in the flat slab region below Argentina, indicates systematically shallower focal depths for slab earthquakes (compared with inversions using previous velocity models). This suggests that the slab seismicity is concentrated mostly between 90 and 110 km depths within the subducting Nazca plate's oceanic crust and likely related to dehydration. In addition, the slab earthquakes exhibit extensional focal mechanisms suggesting

  5. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch

    2004-05-15

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  6. Deep vs. shallow expressions of continental cratons: Can cratonic roots be destroyed by subduction?

    Science.gov (United States)

    Perry-Houts, J.; Calo, M.; Eddy, C. L.; Guerri, M.; Holt, A.; Hopper, E.; Tesoniero, A.; Romanowicz, B. A.; Becker, T. W.; Wagner, L. S.

    2013-12-01

    Cratons are parts of continents that have remained tectonically quiescent over billion-year timescales. Although cratonic lithosphere has the stabilizing properties of chemical buoyancy and high viscosity, it can still be destroyed. The best known example of a missing cratonic root is beneath the eastern North China Craton (NCC). Despite strong evidence for the past existence of a craton in northern China, high heat flow, Mesozoic basin formation, extensive seismicity, and the lack of a fast seismic root imply that the deep cratonic lithosphere is missing. The mechanism for the lithospheric root loss is a source of much debate. Many mechanisms have been proposed, among them: shearing of the lithospheric root by asthenospheric flow induced by the Indo-Eurasian collision; ponding of the Pacific slab in the transition zone acting as a source of fluids that enable hydrous weakening; and thermal erosion due to the corner-flow upwelling of hot, deep material. It is generally agreed that the influence of subduction is key, both from the temporal coincidence of subduction with increased tectonomagmatic activity on the craton and from the spatial correlation of lithospheric loss adjacent to the Pacific trench. We investigate how cratons extend to depth through comparison between seismic signatures of the cratonic lithosphere in the upper mantle and surficial evidence of cratonic boundaries. We examine global and regional tomography, as well as receiver-function constraints on lithospheric thickness in the NCC. We define craton boundaries at the surface through analyses on crust and lithospheric mantle ages and kimberlite locations. We aim to identify regions where the fast cratonic root has been lost or altered beneath Archean and Proterozoic crust and in particular place constraints on the extent of the remaining cratonic root beneath North China. Given the common emphasis on the role of subduction as a driving force for the root loss beneath the eastern NCC, we focus on

  7. Formation and stability of a double subduction system: a numerical study

    Science.gov (United States)

    Pusok, Adina E.; Stegman, Dave

    2017-04-01

    al., 2016] capable of simulating lithospheric deformation while simultaneously taking mantle flow and an internal free surface into account. We start from a single subduction setup, where subduction is already initiated (mature) and we stress the system by controlling the convergence rate of the system (i.e. imposing influx/outflux boundary conditions). Under certain conditions, a second subduction may develop and transform into a stable double subduction system. Preliminary results suggest that the fate of the incipient secondary subduction depends on internal factors (i.e. buoyancy and rheology), but also on the dynamics of the primary subduction zone and the boundary conditions (i.e. convergence rate).

  8. Motion between the Indian, Capricorn and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed lithospheric deformation in the equatorial Indian ocean

    Science.gov (United States)

    DeMets, Charles; Gordon, Richard G.; Royer, Jean-Yves

    2005-05-01

    Approximately 2200 magnetic anomaly crossings and 800 fracture zone crossings flanking the Carlsberg ridge and Central Indian ridge are used to estimate the rotations of the Indian and Capricorn plates relative to the Somalian Plate for 20 distinct points in time since 20 Ma. The data are further used to place limits on the locations of the northern edge of the rigid Capricorn Plate and of the southern edge of the rigid Indian Plate along the Central Indian ridge. Data south of and including fracture zone N (the fracture zone immediately south of the Vema fracture zone), which intersects the Central Indian ridge near 10°S, are well fit assuming rigid Capricorn and Somalian plates, while data north of fracture zone N are not, in agreement with prior results. Data north of fracture zone H, which intersects the Central Indian ridge near 3.2°S, are well fit assuming rigid Indian and Somalian plates, while data south of and including fracture zone H are not, resulting in a smaller rigid Indian Plate and a wider diffuse oceanic plate boundary than found before. The data are consistent with Capricorn-Somalia motion about a fixed pole since ~8 Ma, but require rotation about a pole 15° farther away from the Central Indian ridge from 20 to ~8 Ma. The post-8-Ma pole also indicates Capricorn-Somalia displacement directions that are 7° clockwise of those indicated by the pre-8-Ma stage pole. In contrast, India-Somalia anomaly and fracture crossings are well fit by a single fixed pole of rotation for the past 20 Ma. India-Somalia motion has changed little during the past 20 Myr. Nonetheless, astronomically calibrated ages for reversals younger than 12.9 Ma allow resolution of the following small but significant changes in spreading rate: India-Somalia spreading slowed from 31 to 28 mm yr-1 near 7.9 Ma and later sped up to 31 mm yr-1 near 3.6 Ma; Capricorn-Somalia spreading slowed from 40 to 36 mm yr-1 near 11.0 Ma, later sped up to 38 mm yr-1 near 5.1 Ma and further sped up

  9. Impact-driven subduction on the Hadean Earth

    Science.gov (United States)

    O'Neill, C.; Marchi, S.; Zhang, S.; Bottke, W.

    2017-10-01

    Impact cratering was a dominant geologic process in the early Solar System that probably played an active role in the crustal evolution of the young terrestrial planets. The Earth's interior during the Hadean, 4.56 to 4 billion years ago, may have been too hot to sustain plate tectonics. However, whether large impacts could have triggered tectonism on the early Earth remains unclear. Here we conduct global-scale tectonic simulations of the evolution of the Earth through the Hadean eon under variable impact fluxes. Our simulations show that the thermal anomalies produced by large impacts induce mantle upwellings that are capable of driving transient subduction events. Furthermore, we find that moderate-sized impacts can act as subduction triggers by causing localized lithospheric thinning and mantle upwelling, and modulate tectonic activity. In contrast to contemporary subduction, the simulated localized subduction events are relatively short-lived (less than 10 Myr) with relatively thin, weak plates. We suggest that resurgence in subduction activity induced by an increased impact flux between 4.1 and 4.0 billion years ago may explain the coincident increase in palaeointensity of the magnetic field. We further suggest that transient impact-driven subduction reconciles evidence from Hadean zircons for tectonic activity with other lines of evidence consistent with an Earth that was largely tectonically stagnant from the Hadean into the Archaean.

  10. Mantle convection, tectonics and the evolution of the Tethyan subduction zone

    Science.gov (United States)

    Jolivet, Laurent; Sternai, Pietro; Menant, Armel; Faccenna, Claudio; Becker, Thorsten; Burov, Evguenii

    2014-05-01

    side of Africa from the Jurassic until the collision in the Oligocene, and even afterward when Arabia formed by opening of the Red Sea and the Gulf of Aden. This also suggests a dominant role of an underlying flow at large scale, dragging and mechanically eroding plates and breaking them into fragments, then passively carried. Only during a short period of the Late Cretaceous did the situation change drastically with the obduction event giving the large ophiolitic nappes observed from Oman to Turkey. This obduction event has never been really explained. It has been shown to be coeval with faster plate velocities and more active formation of oceanic crust globally, which in turn suggests a link with deep mantle convection. We discuss this succession of events and propose to relate them with the basal drag induced by convective mantle flow below the African continental lithosphere. We discuss the effects of convection on crustal deformation at different scales from deep convection related to plumes and subduction zones to more local mantle flow due to slab retreat and tearing.

  11. Revisiting the Ridge-Push Force Using the Lithospheric Geoid

    Science.gov (United States)

    Richardson, R. M.; Coblentz, D. D.

    2014-12-01

    The geoid anomaly and driving force associated with the cooling oceanic lithosphere ("ridge push") are both proportional to dipole moment of the density-depth distribution, and allow a reevaluation of the ridge push force using the geoid. The challenge with this approach is to isolate the "lithospheric geoid" from the full geoid signal. Our approach is to use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. However, even this "lithospheric geoid" is noisy, and thus we average over 100 profiles evenly spaced along the global ridge system to obtain an average geoid step associated with the mid-ocean ridges. Because the positive ridge geoid signal is largest near the ridge (and to capture fast-spreading ridges), we evaluate symmetrical profiles extending ±45 m.y. about the ridge. We find an average ridge geoid anomaly of 4.5m, which is equivalent to a 10m anomaly for 100 m.y. old oceanic lithosphere. This geoid step corresponds to a ridge push force of ~2.4 x1012N/m for old oceanic lithosphere of 100 m.y., very similar to earlier estimates of ~2.5 x1012N/m based on simple half-space models. This simple half-space model also predicts constant geoid slopes of about 0.15 m/m.y. for cooling oceanic lithosphere. Our observed geoid slopes are consistent with this value for ages up to 40-50 m.y., but drop off to lower values at greater ages. We model this using a plate cooling model (with a thickness of the order of 125km) to fit the observation that the geoid anomaly and ridge driving force only increase slowly for ages greater than 40 m.y. (in contrast to the half-space model where the linear dependence on age holds for all ages). This reduction of the geoid slope results in a 20% decrease in the predicted ridge push force. This decrease is due to the combined effects of treating the oceanic lithosphere as a cooling plate (vs. a half-space), and the loss of geoidal

  12. Behaviour of fluid mobile elements during subduction and exhumation of abyssal peridotites: Example of serpentinites from Cuba and Dominican Republic

    Science.gov (United States)

    Deschamps, F.; Guillot, S.; Godard, M.; Chauvel, C.; Andreani, M.

    2009-04-01

    Seawater interaction with abyssal peridotites at the sea floor is an important process for chemical exchange between lithosperic mantle and ocean at slow-spreading ridge. Serpentinites from oceanic lithosphere are known to represent an important sink for fluid mobile element, notably boron. In parallel we know extreme enrichment in fluid mobile element (As, Sb, B, U, Li) in high-pressure serpentine minerals (antigorite) coming from part of mantle wedge hydrated by slab's fluids released (Himalaya, Deschamps et al., in prep.). In order to constrain geochemical behaviour of fluid mobile element hosted by serpentine during subduction processes, we examined abyssal serpentinites coming from the accretionary wedge of Greater Carribean (Cuba and Dominican Republic). They represent subducted Atlantic oceanic lithosphere, which have experienced low to high- metamorphism (greenschist to eclogite facies), before being exhumed. These rocks are an opportunity to understand the chemical mobility of fluid mobile element during prograde metamorphism occurring along subduction surface. Here we present bulk-rock and in-situ composition of serpentinites and their primary and alteration-related phase obtained on (LA-)HR-ICP-MS. Except for a few cumulates, serpentinites have depleted compositions in agreement with a refractory mantle, but also strong enrichment in U, Pb, Th, Sr, and other fluid mobile element (e.g., U up to 10xPM) indicating extensive fluid-rock intercation. In-situ composition allows the distinction of two groups of serpentine. Group 1 is characterized by relatively flat and depleted REE patterns (Yb ≈ 0.5xChondrite) reflecting formation after olivine, while group 2 formed after pyroxene is characterized by slightly higher HREE content (Yb ≈ 1xChondrite) but light LREE depleted patterns and displays higher content in Sc, V, Ti and Co. Both groups are strongly enriched in B (up to 120 ppm), and reach values already observed in serpentinites from mantle wedge

  13. Heterogeneity of Water Concentrations in the Mantle Lithosphere Beneath Hawaii

    Science.gov (United States)

    Bizimis, M.; Peslier, A. H.; Clague, D.

    2017-01-01

    The amount and distribution of water in the oceanic mantle lithosphere has implications on its strength and of the role of volatiles during plume/lithosphere interaction. The latter plays a role in the Earth's deep water cycle as water-rich plume lavas could re-enrich an oceanic lithosphere depleted in water at the ridge, and when this heterogeneous lithosphere gets recycled back into the deep mantle. The main host of water in mantle lithologies are nominally anhydrous minerals like olivine, pyroxene and garnet, where hydrogen (H) is incorporated in mineral defects by bonding to structural oxygen. Here, we report water concentrations by Fourier transform infrared spectrometry (FTIR) on olivine, clino- and orthopyroxenes (Cpx & Opx) from spinel peridotites from the Pali vent and garnet pyroxenite xenoliths from Aliamanu vent, both part of the rejuvenated volcanism at Oahu (Hawaii). Pyroxenes from the Aliamanu pyroxenites have high water concentrations, similar to the adjacent Salt Lake Crater (SLC) pyroxenites (Cpx 400-500 ppm H2O, Opx 200 ppm H2O). This confirms that pyroxenite cumulates form water-rich lithologies within the oceanic lithosphere. In contrast, the Pali peridotites have much lower water concentrations than the SLC ones (10% modal Cpx and low spinel Cr# (0.09-0.10). The contrast between the two peridotite suites is also evident in their trace elements and radiogenic isotopes. The Pali Cpx are depleted in light REE, consistent with minimal metasomatism. Those of SLC have enriched light REE patterns and Nd and Hf isotopes consistent with metasomatism by alkaline melts. These observations are consistent with heterogeneous water distribution in the oceanic lithosphere that may be related to metasomatism, as well as relatively dry peridotites cross-cut by narrow (?) water-rich melt reaction zones.

  14. The lithospheric stress field from joint modeling of lithosphere and mantle circulation using constraints from the latest global tomography models

    Science.gov (United States)

    Wang, X.; Holt, W. E.; Ghosh, A.

    2013-12-01

    An understanding of the lithospheric stress field is important because these stresses are one indication of processes within the Earth's interior. In order to calculate the lithosphere stress field it is necessary to take into account the effects of lithosphere structure and topography along with coupling with 3-D mantle flow. We separate these effects into two parts: (1) contributions from topography and lithosphere structure are calculated by computing the stresses associated with gravitational potential energy (GPE) differences, and (2) stresses associated with mantle tractions are computed using the latest tomography models. The contributions from GPE and tractions are then combined to obtain model estimates of the lithospheric stress field, strain rate field, and surface velocity field. We simultaneously use the World Stress Map, the Global Strain Rate Model, and the No-Net-Rotation (NNR) surface velocity vectors to constrain models. We systematically test the latest global tomography models (SEMum [Lekic and Romanowicz, 2011], S40RTS [Ritsema et al., 2011], and S362ANI_PREM [Kustowski et al., 2008]) and the composite tomography model (SMEAN [Becker and Boschi, 2002]), along with the influence of different mantle radial viscosity models. We find that a coupled model with a weak viscosity channel, sandwiched between a strong lithosphere and strong lower mantle is best able to match the observational constraints, although there is a slight difference in stress field among the different tomography models. There is considerable evidence that the contributions from shallow versus deeper sources vary dramatically over the surface of the globe. We quantify these relative contributions as a function of position on the globe and systematically compare the results of different tomography models. Subduction zones are dominated by the effects of GPE differences, whereas within many of the plate interiors the contributions from mantle flow dominate.

  15. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  16. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example

    Science.gov (United States)

    Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An

    2017-12-01

    The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved

  17. Subduction and volatile recycling in Earth's mantle

    Science.gov (United States)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  18. Late Triassic Batang Group arc volcanic rocks in the northeastern margin of Qiangtang terrane, northern Tibet: partial melting of juvenile crust and implications for Paleo-Tethys ocean subduction

    Science.gov (United States)

    Zhao, Shao-Qing; Tan, Jun; Wei, Jun-Hao; Tian, Ning; Zhang, Dao-Han; Liang, Sheng-Nan; Chen, Jia-Jie

    2015-03-01

    The Batang Group (BTG) volcanic rocks in the Zhiduo area, with NW-trending outcrops along the northeastern margin of the Qiangtang terrane (northern Tibet), are mainly composed of volcaniclastic rocks, dacite and rhyolite. Major and trace element, Sr and Nd isotope, zircon U-Pb and Hf isotope data are presented for the BTG dacites. Laser ablation inductively coupled plasma mass spectrometry zircon U-Pb dating constrains the timing of volcanic eruption as Late Triassic (221 ± 1 Ma). Major and trace element geochemistry shows that the BTG volcanic rocks are classified as calc-alkaline series. All samples are enriched in large-ion lithophile elements and light rare earth elements with negative-slightly positive Eu anomalies (Eu/Eu* = 0.47-1.15), and depleted in high field strength elements and heavy rare earth elements. In addition, these rocks possess less radiogenic Sr [(87Sr/86Sr) i = 0.7047-0.7078], much radiogenic Nd (ɛNd( t) = -4.2 to -1.3) and Hf (ɛHf( t) = 4.0-6.6) isotopes, suggesting that they probably originated from partial melting of a crustal source containing a mantle-derived juvenile component. The inferred magma was assimilated by crustal materials during ascending and experienced significant fractional crystallization. By combining previously published and the new data, we propose that the BTG volcanic rocks were genetically related to southwestward subduction of the Ganzi-Litang ocean (a branch of Paleo-Tethys) in the northeastern margin of the Qiangtang terrane. Given the coeval arc-affinity magmatic rocks in the region, we envisage that the Ganzi-Litang ocean may extend from the Zhongdian arc through the Yidun terrane to the Zhiduo area, probably even further northwest to the Tuotuohe area.

  19. The Southern Tyrrhenian subduction system: recent evolution and neotectonic implications

    Directory of Open Access Journals (Sweden)

    A. Argnani

    2000-06-01

    Full Text Available Geological and geophysical data have been integrated with the aim of presenting a new evolutionary model for the Southern Tyrrhenian and adjacent regions. The Southern Tyrrhenian backarc basin opened within a plate convergence regime because of sinking and rollback of the oceanic Ionian lithosphere. On the basis of seismological observations, I infer that the sinking slab was torn apart on either side in the last 2 Ma and this process controlled the neotectonics of the Southern Apennines - Tyrrhenian region. On the north-eastern side the slab broke off from NW to SE and this process triggered volcanism and NW-SE extension along the Eastern Tyrrhenian margin, and strike-slip tectonics along NW-SE trending faults in Northern Calabria. On the south-western side the slab broke off from W to E along the Aeolian Island alignment, although the tear has currently been reoriented along the NNW-SSE Malta escarpment. During its sinking the subducted slab also detached from the overriding plate, favouring the wedging of the asthenosphere between the two plates and the regional uplift of the Calabrian arc and surroundings. This regional uplift promoted gravitational instability within the orogenic wedge, particularly towards low topography areas; the large-scale sliding of the Calabrian arc towards the Ionian basin can be the cause of CW rotation and graben formation in Calabria. Also the E-dipping extensional faults of the Southern Apennines can be related to accommodation of vertical motions within the fold-and-thrust belt. The pattern of recent seismicity reflects this neotectonics where crustal-scale gravity deformation within the orogenic wedge is responsible for extensional earthquakes in Calabria and the Southern Apennines, whereas Africa plate convergence can account for compressional earthquakes in Sicily.

  20. Ocean, Spreading Centre

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.

    the lithospheric plates on either side in order to accommodate newly accreted crust. Many of the oceanic ridges in the world oceans have been abandoned in the geologic past and led to resume the activity elsewhere either in the intra-oceanic or intracontinental...

  1. Subduction processes related to the Sea of Okhotsk

    Science.gov (United States)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  2. Jurassic-Paleogene intra-oceanic magmatic evolution of the Ankara Mélange, North-Central Anatolia, Turkey

    Science.gov (United States)

    Sarifakioglu, E.; Dilek, Y.; Sevin, M.

    2013-11-01

    Oceanic rocks in the Ankara Mélange along the Izmir-Ankara-Erzincan suture zone (IAESZ) in North-Central Anatolia include locally coherent ophiolite complexes (~179 Ma and ~80 Ma), seamount or oceanic plateau volcanic units with pelagic and reefal limestones (96.6 ± 1.8 Ma), metamorphic rocks with ages of 187.4 ± 3.7 Ma, 158.4 ± 4.2 Ma, and 83.5 ± 1.2 Ma, and subalkaline to alkaline volcanic and plutonic rocks of an island arc origin (~67-63 Ma). All but the arc rocks occur in a shaly-graywacke and/or serpentinite matrix, and are deformed by south-vergent thrust faults and folds that developed in the Middle to Late Eocene due to continental collisions in the region. Ophiolitic volcanic rocks have mid-ocean ridge (MORB) and island arc tholeiite (IAT) affinities showing moderate to significant LILE enrichment and depletion in Nb, Hf, Ti, Y and Yb, which indicate the influence of subduction-derived fluids in their melt evolution. Seamount/oceanic plateau basalts show ocean island basalt (OIB) affinities. The arc-related volcanic rocks, lamprophyric dikes and syeno-dioritic plutons exhibit high-K shoshonitic to medium-to high-K calc-alkaline compositions with strong enrichment in LILE, REE and Pb, and initial ϵNd values between +1.3 and +1.7. Subalkaline arc volcanic units occur in the northern part of the mélange, whereas the younger alkaline volcanic rocks and intrusions (lamprophyre dikes and syeno-dioritic plutons) in the southern part. The Early to Late Jurassic and Late Cretaceous epidote-actinolite, epidote-chlorite and epidote-glaucophane schists represent the metamorphic units formed in a subduction channel in the Northern Neotethys. The Middle to Upper Triassic neritic limestones spatially associated with the seamount volcanic rocks indicate that the Northern Neotethys was an open ocean with its MORB-type oceanic lithosphere by the Early Triassic. The Latest Cretaceous-Early Paleocene island arc volcanic, dike and plutonic rocks with

  3. Seafloor tilt induced by ocean tidal loading inferred from broadband seismometer data from the Cascadia subduction zone and Juan de Fuca Ridge

    Science.gov (United States)

    Davis, Earl E.; Heesemann, Martin; Lambert, Anthony; He, Jianheng

    2017-04-01

    Mass-balancing voltages from four buried broadband seismometers connected to the NEPTUNE Canada seafloor cable are being recorded at 24-bit resolution. Sites are located on the Vancouver Island continental shelf, the nearby Cascadia accretionary prism, the eastern flank of the Juan de Fuca Ridge, and the western flank close to the Juan de Fuca Ridge axis. Tidal variations are present throughout the records. Variations in vertical acceleration at three of the sites match predicted gravitational attraction variations very well; those at the fourth site show a small residual that is probably caused by sensitivity to tilt resulting from sensor inclination. Horizontal accelerations, which at tidal periods are sensitive primarily to tilt, are anomalously large relative to standard-earth model results. After removal of predicted tidal body and ocean attraction and loading terms, the residuals are seen to follow ocean pressure variations. Responses range from 0.4 μrad dbar-1 (0.04 μrad kPa-1) at 10° true (down under positive load) at the continental shelf site, to 0.6 μrad dbar-1 at 243° at the Cascadia prism, 0.4 μrad dbar-1 at 90° at the eastern Juan de Fuca Ridge flank, and 0.2 μrad dbar-1 at 116° true on the western ridge flank. Except at the continental shelf site, tilts are roughly perpendicular to structural strike. The tilt observations can be explained by loading-induced deformation in the presence of local lithologic gradients or by the influence of faults or structurally controlled anisotropic elastic properties. The observations highlight the utility of using mass position data from force-feedback broad-band seismometers for geodynamic studies.

  4. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  5. Viscous Dissipation and Criticality of Subducting Slabs

    Science.gov (United States)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  6. Multiple subduction imprints in the mantle below Italy detected in a single lava flow

    Science.gov (United States)

    Nikogosian, Igor; Ersoy, Özlem; Whitehouse, Martin; Mason, Paul R. D.; de Hoog, Jan C. M.; Wortel, Rinus; van Bergen, Manfred J.

    2016-09-01

    Post-collisional magmatism reflects the regional subduction history prior to collision but the link between the two is complex and often poorly understood. The collision of continents along a convergent plate boundary commonly marks the onset of a variety of transitional geodynamic processes. Typical responses include delamination of subducting lithosphere, crustal thickening in the overriding plate, slab detachment and asthenospheric upwelling, or the complete termination of convergence. A prominent example is the Western-Central Mediterranean, where the ongoing slow convergence of Africa and Europe (Eurasia) has been accommodated by a variety of spreading and subduction systems that dispersed remnants of subducted lithosphere into the mantle, creating a compositionally wide spectrum of magmatism. Using lead isotope compositions of a set of melt inclusions in magmatic olivine crystals we detect exceptional heterogeneity in the mantle domain below Central Italy, which we attribute to the presence of continental material, introduced initially by Alpine and subsequently by Apennine subduction. We show that superimposed subduction imprints of a mantle source can be tapped during a melting episode millions of years later, and are recorded in a single lava flow.

  7. Long term (since the late palaeogene) tectono-sedimentary evolution of the Lesser Antilles fore-arc at Marie-Galante Basin: a clue for geodynamical behavior at the subduction interfac

    Science.gov (United States)

    Jean-Frederic, L.; DeMin, L.; Garrigou, J.; Münch, P.; Léticée, J. L.; Cornée, J. J.

    2015-12-01

    Oblique subduction of late cretaceous lithosphere of the Atlantic ocean beneath the thick (25km) crust of the Caribbean plate results in widespread deformation and vertical motions in the Lesser Antilles fore-arc. The present-day deformation includes a major transtensive left lateral fault system along the arc and several forearc transverse basins accommodating lengthening of the fore-arc northward. These deformations result from plate motion partitioning under increasing subduction obliquity from the Marie-Galante Basin (MGB) latitude (central Lesser Antilles) northward. Vertical motions in the fore-arc at a regional scale were interpreted as resulting from the effect of subducting ridges and reliefs. The present day uplift of the fore-arc islands acting since the late(?) Pleistocene is believed to attest for long wavelength bending of the plate under strongly coupled plate interface. Recent GPS data suggests a mostly uncoupled plate interface. To decipher between the models and to understand the long-term evolution of the Lesser Antilles forearc since the Late Palaeogene, we interpret high-resolution bathymetric and seismic data from the MGB, together with the onland geology of shallow water carbonate platforms. The tectonic pattern reveals both inherited and late Neogene structures (re)activated under multidirectional extensive tectonic. The sismo-stratigraphic interpretation of sedimentary deposit displays long-term drowning and flexing of the upper plate similar to that occurring under intensive tectonic erosion at the subduction interface. Several short term period of second order uplift can correlate with sweeping of subducting ridges or transient events at the plate interface. The evolution of the Lesser Antilles fore-arc since the Late Palaeogene is interpreted within the regional geodynamical evolution of the plate boundary following its last major reorganization: collision of the Bahamas Bank and inception of the Greater Antilles strike-slip fault zone.

  8. Shear-wave velocity structure of young Atlantic Lithosphere from dispersion analysis and waveform modelling of Rayleigh waves

    Science.gov (United States)

    Grevemeyer, Ingo; Lange, Dietrich; Schippkus, Sven

    2016-04-01

    The lithosphere is the outermost solid layer of the Earth and includes the brittle curst and brittle uppermost mantle. It is underlain by the asthenosphere, the weaker and hotter portion of the mantle. The boundary between the brittle lithosphere and the asthenosphere is call the lithosphere-asthenosphere boundary, or LAB. The oceanic lithosphere is created at spreading ridges and cools and thickens with age. Seismologists define the LAB by the presence of a low shear wave velocity zone beneath a high velocity lid. Surface waves from earthquakes occurring in young oceanic lithosphere should sample lithospheric structure when being recorded in the vicinity of a mid-ocean ridge. Here, we study group velocity and dispersion of Rayleigh waves caused by earthquakes occurring at transform faults in the Central Atlantic Ocean. Earthquakes were recorded either by a network of wide-band (up to 60 s) ocean-bottom seismometers (OBS) deployed at the Mid-Atlantic Ridge near 15°N or at the Global Seismic Network (GSN) Station ASCN on Ascension Island. Surface waves sampling young Atlantic lithosphere indicate systematic age-dependent changes of group velocities and dispersion of Rayleigh waves. With increasing plate age maximum group velocity increases (as a function of period), indicating cooling and thickening of the lithosphere. Shear wave velocity is derived inverting the observed dispersion of Rayleigh waves. Further, models derived from the OBS records were refined using waveform modelling of vertical component broadband data at periods of 15 to 40 seconds, constraining the velocity structure of the uppermost 100 km and hence in the depth interval of the mantle where lithospheric cooling is most evident. Waveform modelling supports that the thickness of lithosphere increases with age and that velocities in the lithosphere increase, too.

  9. On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean

    Science.gov (United States)

    Boschman, L.; Van Hinsbergen, D. J. J.

    2016-12-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.

  10. Geoid anomalies in the vicinity of subduction zones

    Science.gov (United States)

    Mcadoo, D. C.

    1981-01-01

    In the considered investigation, attention is given to the line source model, a surface source model, an application of the model, and a model of the thermal lithosphere associated with marginal basins. It is found that undulations in the altimetrically observed geoid of the southwest Pacific are strongly controlled by positive density anomalies in the subducting slabs of the region and the effects of elevation of the geotherm in behind arc lithosphere (corresponding to young marginal basins). Finer details of slab geometry do not obviously manifest themselves in the observed geoid. Such gravitational effects are quite attenuated at sea level and are apparently mixed with crustal effects, oceanographic noise, etc. It appears that slabs in global composite may contribute substantially to intermediate and long wavelength portions (down to spherical harmonic degree 3 or 4) of the earth's gravity field.

  11. Plume-subduction interaction forms large auriferous provinces.

    Science.gov (United States)

    Tassara, Santiago; González-Jiménez, José M; Reich, Martin; Schilling, Manuel E; Morata, Diego; Begg, Graham; Saunders, Edward; Griffin, William L; O'Reilly, Suzanne Y; Grégoire, Michel; Barra, Fernando; Corgne, Alexandre

    2017-10-10

    Gold enrichment at the crustal or mantle source has been proposed as a key ingredient in the production of giant gold deposits and districts. However, the lithospheric-scale processes controlling gold endowment in a given metallogenic province remain unclear. Here we provide the first direct evidence of native gold in the mantle beneath the Deseado Massif in Patagonia that links an enriched mantle source to the occurrence of a large auriferous province in the overlying crust. A precursor stage of mantle refertilisation by plume-derived melts generated a gold-rich mantle source during the Early Jurassic. The interplay of this enriched mantle domain and subduction-related fluids released during the Middle-Late Jurassic resulted in optimal conditions to produce the ore-forming magmas that generated the gold deposits. Our study highlights that refertilisation of the subcontinental lithospheric mantle is a key factor in forming large metallogenic provinces in the Earth's crust, thus providing an alternative view to current crust-related enrichment models.The lithospheric controls on giant gold deposits remain unclear. Here, the authors show evidence for native gold in the mantle from the Deseado Massif in Patagonia demonstrating that refertilisation of the lithospheric mantle is key in forming metallogenic provinces.

  12. Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere Sismicidad 'outer rise' relacionada con el mega terremoto de Maule, Chile en el 2010 e hidratación de la litósfera oceánica subductante

    Directory of Open Access Journals (Sweden)

    Eduardo Moscoso

    2012-09-01

    Full Text Available Most of the recent published geodetic models of the 2010 Maule, Chile mega-thrust earthquake (Mw=8.8 show a pronounced slip maximum of 15-20 m offshore Iloca (~35°S, indicating that co-seismic slip was largest north of the epicenter of the earthquake rupture area. A secondary slip maximum 8-10 m appears south of the epicenter west of the Arauco Peninsula. During the first weeks following the main shock and seaward of the main slip maximum, an outer rise seismic cluster of >450 events, mainly extensional, with magnitudes Mw=4-6 was formed. In contrast, the outer rise located seaward of the secondary slip maximum presents little seismicity. This observation suggests that outer rise seismicity following the Maule earthquake is strongly correlated with the heterogeneous coseismic slip distribution of the main megathrust event. In particular, the formation of the outer-rise seismic cluster in the north, which spatially correlates with the main maximum slip, is likely linked to strong extensional stresses transfered from the large slip of the subducting oceanic plate. In addition, high resolution bathymetric data reveals that bending-related faulting is more intense seaward of the main maximum slip, where well developed extensional faults strike parallel to the trench axis. Also published seismic constraints reveal reduced P-wave velocities in the uppermost mantle at the trench-outer rise region (7.5-7.8 km/s, which suggest serpentinization of the uppermost mantle. Seawater percolation up to mantle depths is likely driven by bending related-faulting at the outer rise. Water percolation into the upper mantle is expected to be more efficient during the co-seismic and early post-seismic periods of large megathrust earthquakes when intense extensional faulting of the oceanic lithosphere facilitates water infiltration seaward of the trench.La mayoría de los modelos geodésicos del terremoto de 2010 en la Región del Maule, Chile (Mw=8.8 muestran un

  13. Spatial distribution of random velocity inhomogeneities in the western part of Nankai subduction zone

    Science.gov (United States)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kodaira, S.; Kaneda, Y.

    2011-12-01

    In the Nankai trough, there are three seismogenic zones of megathrust earthquakes (Tokai, Tonankai and Nankai earthquakes). Lithospheric structures in and around these seismogenic zones are important for the studies on mutual interactions and synchronization of their fault ruptures. Recent studies on seismic wave scattering at high frequencies (>1Hz) make it possible to estimate 3D distributions of random inhomogeneities (or scattering coefficient) in the lithosphere, and clarified that random inhomogeneity is one of the important medium properties related to microseismicity and damaged structure near the fault zone [Asano & Hasegawa, 2004; Takahashi et al. 2009]. This study estimates the spatial distribution of the power spectral density function (PSDF) of random inhomogeneities the western part of Nankai subduction zone, and examines the relations with crustal velocity structure and seismic activity. Seismic waveform data used in this study are those recorded at seismic stations of Hi-net & F-net operated by NIED, and 160 ocean bottom seismographs (OBSs) deployed at Hyuga-nada region from Dec. 2008 to Jan. 2009. This OBS observation was conducted by JAMSTEC as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. Spatial distribution of random inhomogeneities is estimated by the inversion analysis of the peak delay time of small earthquakes [Takahashi et al. 2009], where the peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. We assumed the von Karman type functional form for the PSDF. Peak delay times are measured from root mean squared envelopes at 4-8Hz, 8-16Hz and 16-32Hz. Inversion result can be summarized as follows. Random inhomogeneities beneath the Quaternary volcanoes are characterized by strong inhomogeneities at small spatial scale (~ a few hundreds meter) and weak spectral gradient

  14. A fictitious domain method for fluid/solid coupling applied to the lithosphere/asthenosphere interaction.

    Science.gov (United States)

    Cerpa, Nestor; Hassani, Riad; Gerbault, Muriel

    2014-05-01

    A large variety of geodynamical problems can be viewed as a solid/fluid interaction problem coupling two bodies with different physics. In particular the lithosphere/asthenosphere mechanical interaction in subduction zones belongs to this kind of problem, where the solid lithosphere is embedded in the asthenospheric viscous fluid. In many fields (Industry, Civil Engineering,etc.), in which deformations of solid and fluid are "small", numerical modelers consider the exact discretization of both domains and fit as well as possible the shape of the interface between the two domains, solving the discretized physic problems by the Finite Element Method (FEM). Although, in a context of subduction, the lithosphere is submitted to large deformation, and can evolve into a complex geometry, thus leading to important deformation of the surrounding asthenosphere. To alleviate the precise meshing of complex geometries, numerical modelers have developed non-matching interface methods called Fictitious Domain Methods (FDM). The main idea of these methods is to extend the initial problem to a bigger (and simpler) domain. In our version of FDM, we determine the forces at the immersed solid boundary required to minimize (at the least square sense) the difference between fluid and solid velocities at this interface. This method is first-order accurate and the stability depends on the ratio between the fluid background mesh size and the interface discretization. We present the formulation and provide benchmarks and examples showing the potential of the method : 1) A comparison with an analytical solution of a viscous flow around a rigid body. 2) An experiment of a rigid sphere sinking in a viscous fluid (in two and three dimensional cases). 3) A comparison with an analog subduction experiment. Another presentation aims at describing the geodynamical application of this method to Andean subduction dynamics, studying cyclic slab folding on the 660 km discontinuity, and its relationship

  15. Geomorphologic Indices for Transition from Subduction to Arc-Continent Collision in Sumba Island, Indonesia

    Science.gov (United States)

    Authemayou, C.; Delcaillau, B.; Brocard, G. Y.; Molliex, S.; Nexer, M.; Pedoja, K.

    2014-12-01

    The Sumba Island lies in a key area to study the eastern Indonesia geodynamics. It is located in the Sunda-Banda fore-arc in the area of transition from subduction of the Indian oceanic lithosphere (W) beneath the Sunda-Banda arc to arc-continent collision between the Australian continental margin and the Sunda-Banda arc (E). East of the Sumba Island, the western boundary of the Savu basin originated during Middle Miocene by the southeastward slab retreat below the Sunda-Banda arc (Rigg and Hall, 2001). Previous studies has detected a global uplift of the island accommodating the Australian plate - South West Banda Arc convergence (Fleury et al., 2009). This uplift is associated with northeastward tilting and gravitational collapse to the South. Analyses of various geomorphic markers (perched low relief landscapes, rockyshore platform, coral reef terraces, drainages) and of morphometric indices allowed us to localise new structures (faults and folds), to determine the chronology of their activation and to better constraint the uplift history of Sumba Island. These results aim to understand the evolution of the deformation in Sumba Island in regard with its geodynamic context from Middle Miocene to present-day.

  16. Lithosphere-asthenosphere system in the Mediterranean region in the framework of polarized plate tectonics

    CERN Document Server

    Raykova, Reneta Blagoeva; Doglioni, Carlo

    2015-01-01

    Velocity structure of the lithosphere-asthenosphere system, to the depth of about 350 km, is obtained for almost 400 cells, sized 1 degree by 1 degree in the Mediterranean region. The models are obtained by the following sequence of methods and tools: surface-wave dispersion measurements and collection; 2D tomography of dispersion relations; non-linear inversion of cellular dispersion relations; smoothing optimization method to select a preferred model for each cell. The 3D velocity model, that satisfies Occam razor principle, is obtained as a juxtaposition of selected cellular models. The reconstructed picture of the lithosphere-asthenosphere system evidences the, globally well known, asymmetry between the W- and E-directed subduction zones, attributed to the westward drift of the lithosphere relative to the mantle. Different relationship between slabs and mantle dynamics cause strong compositional differences in the upper mantle, as shown by large variations of seismic waves velocity, consistent with Polari...

  17. Subduction of lower continental crust beneath the Pamir imaged by receiver functions from the seismological TIPAGE network

    Science.gov (United States)

    Schneider, F. M.; Yuan, X.; Schurr, B.; Mechie, J.; Sippl, C.; Kufner, S.; Haberland, C. A.; Minaev, V.; Oimahmadov, I.; Gadoev, M.; Abdybachaev, U.; Orunbaev, S.

    2013-12-01

    amount of mantle lithosphere to be involved in the subduction, which possibly transmits pull forces to the lower crust to overcome its buoyancy. Secondly, the observation that earthquakes occur within the subducted crust implies that similar to oceanic subduction, metamorphic processes within the lower continental crust can cause or enable earthquakes at depths, where the high pressure and temperature conditions would normally not allow brittle failure of rocks. For imaging of the dipping LVZ, cross sections of Q- and T-component RFs are generated using a migration technique that accounts for the inclination of the conversion layers. Furthermore we present a Moho map of the Pamir, showing crustal thickness in most places of the Pamir ranging between 65 km and 75 km, while the greatest Moho depths of around 80 km are observed at the upper end of the LVZ. The surrounding areas namely the Tajik Depression, and the Ferghana and Tarim Basins show Moho depths of around 40 to 45 km giving an estimate of the pre-collisional crustal thickness of the former Basin area that was overthrust by the Pamir.

  18. Using glacial morphology to constrain the impact of the Chile active spreading ridge subduction in Central Patagonia

    Science.gov (United States)

    Scalabrino, B.; Ritz, J. F.; Lagabrielle, Y.

    2009-04-01

    The Central Patagonian Cordillera is a unique laboratory to study interaction between oceanic and continental lithospheres during the subduction of an active spreading ridge beneath a continent. The subduction of the South Chile spreading Ridge, which separates the Nazca plate from the Antarctic plate, started ca. 15-14 Ma at the southern tip of Patagonia (55°S latitude). The northwards migration of the Chile Triple Junction induces the subduction of several segments especially around 46°S latitude. There, three segments subducted at ca. 6, 3 and 0.3 Ma, leading to the formation of a large asthenospheric slab-window beneath Central Patagonia. Contemporaneously, the Central Patagonia reliefs are undergoing major glacial events since at least 7 Ma. These events are evidenced to the east of the Central Patagonian morphotectonic front within perched relict surfaces. Inset in these perched glacial surfaces are found mid-Pleistocene glacial valleys, as the Lake General Carrera-Buenos Aires amphitheatre (LGCBA), which formed between 1.1 Ma and 16 ka. We used the relationships between the glacial valleys and the volcanism associated with the asthenospheric slab-window to better constraints the structural evolution of the Patagonian Cordillera related to the subduction of the Chili active spreading Ridge. The present work focused within two well-preserved perched flat surfaces named Meseta del Lago Buenos Aires and Meseta del Cerro Galera: (i) The meseta del Lago Buenos Aires defines a plateau made of interbedded units of tills and lavas dated between 12 Ma and 3 Ma. The top surface of the meseta, ˜2000 meters high is dated at 3 Ma, and is shaped by four NE-SW trending glacial lobes characterized with kettles, lineations and moraines. The glacial valleys are beheaded westwards and define perched valleys 200 to 400 meters higher than the western Cordillera. This suggests recent vertical movement along N160 extensive/transtensive corridor located between the morphotectonic

  19. Thermal implications of the cessation of subduction in the Sierra Nevada and Baja- California arcs

    Science.gov (United States)

    Erkan, K.; Blackwell, D. D.

    2006-12-01

    The thermal regime in the extinct Sierra Nevada arc has undergone substantial transformation as a result of the cessation of subduction in the last 30 My. The dynamic mechanism of cooling in the arc has been replaced by re-equilibration of the lithosphere toward continental averages. Preliminary 1D thermal models reveal that the effect of asthenospheric heating at the bottom do not lead to credible changes in the lithospheric temperatures for a 30 My years period in terms of surface manifestations. In the Great Valley, neither the topography nor the surface heat flow show considerable variations before and after the cessation of subduction. On the other hand, Sierra Nevada has experienced substantial uplift in the post subduction California. In the Sierra Nevada, the surface heat flow lags deep temperature response but the topography responds directly to temperatures at depth. As the end of subduction migrated north with the Mendocino triple junction, the dynamic equilibrium between the cold Sierra Nevada and Basin and Range has been upset and the high temperatures of Basin and Range started to invade the Sierra Nevada lithosphere. Our 2D thermal model reveals that conductive heating of the Sierran lithosphere by the hot Basin and Range lithosphere could be the dominant source for the tilted uplift in the Sierra Nevada. The heating from the bottom is likely not very effective in Sierra Nevada as no uplift is observed in the neighboring Great Valley region. The thermal uplift due to Basin and Range heating is substantial at the east edge of the Sierra Nevada and decreases rapidly toward the west. The uplift as far as 100 km toward west could be accommodated by flexural bending of the cold Sierra Nevada lithosphere as the eastern edge thermally expanded. A similar thermo-tectonic scenario could explain the westward tilted Baja-California peninsular ranges which were part of the same tectonic setting of the Sierra Nevada during subduction. We also investigated the

  20. Plume-induced roll back subduction around Venus large coronae

    Science.gov (United States)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S. M.

    2016-12-01

    On Venus, possible subduction trenches are mainly associated with large coronae, eventhough the latter are thought to be produced by hot mantle plumes. The mechanism of assocation between subduction and plume has long remained elusive. However, we recently observe the same association in laboratory experiments on thermal convection in colloidal aqueous dispersions of silica nanoparticles, which deform in the Newtonian regime at low solid particle fraction φp, and transition to strain-rate weakening, plasticity, elasticity, and brittle properties as φp increases. Hence, a dense skin akin to a planetary lithosphere grows on the surface when the system is dried from above. When a hot plume rises under the skin, the latter undergoes a flexural deformation which puts it under tension. Cracks then develop, sometimes using pre-existing weaknesses. Plume material (being more buoyant that the laboratory lithosphere) upwells through the cracks and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the conjugate action of its own weight and the plume gravity current. The brittle character of the top experimental lithosphere forbids it to deform viscously to accomodate the sinking motions. Instead, the plate continues to tear as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Scalings derived from the experiments suggest that a weaker lithosphere than that present on Earth today is required for such a convective regime. We identified two candidates on Venus. At Artemis and Quetzelpetlatl Coronae, the radar image observations and subsurface density variations inferred from modeling the gravity and topography agree with the predictions from

  1. The interplay between subduction and lateral extrusion : A case study for the European Eastern Alps based on analogue models

    NARCIS (Netherlands)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A.P.L.

    2017-01-01

    A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental

  2. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.

    2007-01-01

    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  3. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    Science.gov (United States)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  4. Seismic anisotropy and mantle flow below subducting slabs

    Science.gov (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  5. Geochronological Constraints on the Exhumation and Emplacement of Subcontinental Lithospheric Mantle Peridotites in the Westernmost Mediterranean

    Science.gov (United States)

    Garrido, Carlos J.; Hidas, Károly; Marchesi, Claudio; Varas-Reus, María Isabel; Booth-Rea, Guillermo

    2017-04-01

    Exhumation of subcontinental mantle peridotite in the Western Mediterranean has been attributed to different tectonic processes including pure extension, transpression, or alternating contractive and extensional processes related with continental subduction followed by extension, before final their contractive intracrustal emplacement. Any model trying to explain the exhumation and emplacement of subcontinental lithospheric mantle peridotites in the westernmost Mediterranean should take into account the available geochronological constraints, as well as the petrological and geochemical processes that lead to internal tectono-magmatic zoning so characteristic of the Betic and Rif orogenic peridotites. Different studies have suggested a Hercynian, Cenozoic-Mesozoic or an Alpine age for the late tectono-magmatic evolution and intra-crustal emplacement of Betic-Rif peridotites. The pervasive presence of Mesozoic U-Pb zircon ages in Ronda UHP and HP garnet pyroxenites does not support a Hercynian age for the intracrustal emplacement of the peridotite. A hyper-extended margin setting for is in good agreement with the Jurassic extensional event that pervasively affected ALKAPECA terrains (i.e. the Alboran, Kabylides, Peloritani, and Calabria domains) in the western Mediterranean due to the opening of the Piemonte-Ligurian Ocean. However, a Jurassic age and a passive margin tectonic setting do not account, among other observations, for the late Miocene thermochronological ages recorded in zircons rims (U-Pb) and garnets (Lu-Hf) in garnet pyroxenites from the Betic-Rif peridotites, the pervasive Miocene resetting of U-Pb zircon and monazite ages in the overlying Jubrique crustal section, the supra-subduction radiogenic signature of late pyroxenite intrusive dikes in the Ronda peridotite, and the arc tholeiitic affinity of late mantle-derived, gabbroic dykes intruding in the Ronda and Ojen plagioclase lherzolites. These data are more consistent with a supra-subduction

  6. Strong lateral variations of lithospheric mantle beneath cratons - Example from the Baltic Shield

    Science.gov (United States)

    Pedersen, H. A.; Debayle, E.; Maupin, V.

    2013-12-01

    Understanding mechanisms for creation and evolution of Precambrian continental lithosphere requires to go beyond the large-scale seismic imaging in which shields often appear as laterally homogeneous, with a thick and fast lithosphere. We here present new results from a seismic experiment (POLENET-LAPNET) in the northern part of the Baltic Shield where we identify very high seismic velocities (Vs˜4.7 km/s) in the upper part of the mantle lithosphere and a velocity decrease of ˜0.2 km/s at approximately 150 km depth. We interpret this velocity decrease as refertilisation of the lower part of the lithosphere. This result is in contrast to the lithospheric structure immediately south of the study area, where the seismic velocities within the lithosphere are fast down to 250 km depth, as well as to that of southern Norway, where there is no indication of very high velocities in the lithospheric mantle (Vs of ˜4.4 km/s). While the relatively low velocities beneath southern Norway can tentatively be attributed to the opening of the Atlantic Ocean, the velocity decrease beneath northern Finland is not easily explained with present knowledge of surface tectonics. Our results show that shield areas may be laterally heterogeneous even over relatively short distances. Such variability may in many cases be related to lithosphere erosion and/or refertilisation at the edge of cratons, which may therefore be particularly interesting targets for seismic imaging.

  7. Mineralogy of subducted clay and clay restite in the lower mantle

    Science.gov (United States)

    Armstrong, L.; Skora, S. E.; Walter, M. J.

    2012-12-01

    Seismic tomography indicates that subducting oceanic lithosphere often penetrates the transition zone and eventually the lower mantle [e.g. 1, 2]. While mineralogical changes in the mafic and ultramafic portions of slabs have been well documented experimentally, the phase relations of overlying sediments at pressures above 25 GPa remain poorly studied. This is in part because sediments are expected to partially melt at sub-arc depth (P~2.5-4.5 GPa), and contribute to the genesis of arc magmas. Sediment restites left behind after the extraction of low pressure melts undergo major chemical changes, according to the melting reaction: Coe+Phen+Cpx+H2O = Grt+Ky+Melt [3]. However, sediments may not always melt depending on the thermal regime and volatile availability and composition [3]. Hence, chemically unmodified sediments as well as restites may be entrained to greater depths and contribute to compositional heterogeneity in the deep mantle. Indeed, mineral inclusions with compositions indicative of subducted sedimentary protoliths (CAS-phase; K-hollandite; stishovite) have been reported in 'ultradeep' diamonds and suggest that deep subduction and survival of sediments occurs to at least transition zone depths [4]. With this in mind, we have performed laser heated diamond anvil cell experiments at pressures of 8-80 GPa on two anhydrous glass starting materials: a marine clay and the restite that is left after 50% melt extraction of this clay at 3 GPa and 800 °C [3]. We chose to work with an anhydrous version of the marine clay given that the investigated pressure range exceeds that of phengite stability [5], and phengite is the only hydrous phase in subducted sediments at UHP conditions. The clay was heated along a P-T path representative of a cold subduction geotherm, whereas the clay restite was heated along a hotter subduction geotherm consistent with low pressure melting. Phases were identified by synchrotron X-ray micro-diffraction at beamline I15 of the Diamond

  8. Three-dimensional finite-element modelling of Earth's viscoelastic deformation: effects of lateral variations in lithospheric thickness

    Science.gov (United States)

    Zhong, Shijie; Paulson, Archie; Wahr, John

    2003-11-01

    We have developed a 3-D spherical finite-element model to study the dynamic response to surface loads of a self-gravitating and incompressible Earth with 3-D viscoelastic structure. We have forced our model with the ICE-3G deglaciation history of Tushingham & Peltier to study the effects of laterally varying lithospheric thickness on observations of post-glacial rebound (PGR). The laterally varying lithospheric thicknesses are derived from estimates of the thermal structure of the oceanic lithosphere and from elastic thicknesses on continents as estimated from studies of long-term geological loads. Our calculations show that the effects of lithospheric structure on the relative sea level change (RSLC) depend on the locations of the observation sites and on the size of loads. The RSLC at the centre of the North American ice sheet is significantly less sensitive to lithospheric thickness, compared with the RSLC at the centre of the Fennoscandian ice sheet. At the peripheral bulges the RSLC tends to be more sensitive to lithospheric thickness. The RSLC is controlled by local lithospheric thickness. The RSLC at a given location, as predicted using models with laterally varying lithospheric thickness, can be reproduced using a 1-D model with a uniform lithospheric thickness equal to the local lithospheric thickness. Coupled with efficient parallel computing, we believe that the finite-element model that we present here can be used to address a variety of viscoelastic deformation problems in geodynamics.

  9. Geophysical detection of relict metasomatism from an Archean (approximately 3.5 Ga) subduction zone.

    Science.gov (United States)

    Chen, Chin-Wu; Rondenay, Stéphane; Evans, Rob L; Snyder, David B

    2009-11-20

    When plate tectonics started on Earth has been uncertain, and its role in the assembly of early continents is not well understood. By synthesizing coincident seismic and electrical profiles, we show that subduction processes formed the Archean Slave craton in Canada. The spatial overlap between a seismic discontinuity and a conductive anomaly at approximately 100 kilometers depth, in conjunction with the occurrence of mantle xenoliths rich in secondary minerals representative of a metasomatic front, supports cratonic assembly by subduction and accretion of lithospheric fragments. Although evidence of cratonic assembly is rarely preserved, these results suggest that plate tectonics was operating as early as Paleoarchean times, approximately 3.5 billion years ago (Ga).

  10. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    Science.gov (United States)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be

  11. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere

    Science.gov (United States)

    Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X.

    1992-01-01

    basalts. The EMII mantle domain may be present in the Chinese continental lithosphere just above the EMI domain of the basalt source at the lower part of the lithosphere. We argue that the ancient depleted continental lithosphere was metasomatized, imparting the EMI signature, in earlier times ( > 1000 m.y.), and U migrated upward, resulting in high Th U ratios in the lower portion of the lithosphere. Observed high Th U, Rb Sr, 87Sr 86Sr and ??208, low Sm Nd ratios, and a large negative ??Nd in phlogopite pyroxenite with a depleted mantle model age of 2.9 Ga, support our contention that metasomatized continental lower mantle lithosphere is the source for the EMI component. We also suggest that the EMII signature may have been introduced later (less than ??? 500 Ma) by another metasomatic event during the subduction of an oceanic plate, which was partially responsible for some of the observed inter-mineral isotopic disequilibria. ?? 1992.

  12. Deformation of the central Andes (15-27 deg S) derived from a flow model of subduction zones

    Science.gov (United States)

    Wdowinski, Shimon; O'Connell, Richard J.

    1991-01-01

    A simple viscous flow model of a subduction zone is used to calculate the deformation within continental lithosphere above a subducting slab. This formulation accounts for two forces that dominate the deformation in the overriding lithosphere: tectonic forces and buoyancy forces. Numerical solutions, obtained by using a finite element technique, are compared with observations from the central Andes (15-27 deg S). The model predicts the observed deformation pattern of extension in the forearc, compression in the Western Monocline (corresponding to magmatic activity), extension in the Altiplano, compression in the Eastern Monocline and Subandes, and no deformation in the Brazilian Shield. By comparing the calculated solutions with the large-scale tectonic observations, the forces that govern the deformation in the central Andes are evaluated. The approximately constant subduction velocity in the past 26 million years suggests that the rate of crustal shortening in the Andes has decreased with time due to the thickening of the crust.

  13. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  14. Subduction related fluids fractionate Nb/Ta

    Science.gov (United States)

    Salters, V. J.; Bizimis, M.; Sachi-Kocher, A.; Taylor, R.; Savov, I. P.; Stern, C. R.

    2009-12-01

    Key differences between the chemical composition of terrestrial materials and those of meteorites have led to the suggestion that a `hidden’ high Nb/Ta reservoir exists in the Earth’s mantle. In order to test this hypothesis we must identify the processes that can create such a reservoir. It has been suggested that during subduction Nb is more refractory then Ta resulting in low Nb/Ta in the subducted slab, which then serves as a reservoir for the high Nb/Ta. Here we report high precision HFSE data on products of the subduction processes thought to fractionate Nb from Ta: boninites (hydrous melting), adakites (slab melting), oceanic island arc basalts and supra subduction zone peridotites. We developed a new method for the high precision determination of Nb, Ta, Zr, Hf concentrations based on a modified version of standard addition. All analyses were performed on a single collector ICPMS (ELEMENT 1), using Y and Yb as internal standards to correct for instrumental drift during the unspiked -spiked sample sequence. Concentrations are calculated using a York- type regression that accounts for all measured and propagated errors. Long-term reproducibility (multiple dissolutions and multiple spike solutions) for the standards BHVO-1, BIR-1 AGV-1 and BCR-1 are better than 0.8% (1s) for Nb/Ta and Zr/Hf ratios. The advantages of this method compared to previous methods are fast throughput, no column chemistry and low blanks. While the Zr/Hf ratios in subduction-related volcanics and ocean island basalts vary by less than a factor of two, the Nb/Ta ratio varies by a factor of four. Most of the Nb/Ta variation is observed in subduction related rocks. Samples with the highest Nb/Ta ratio (up to 19.5) are adakites from the Austral Volcanic Zone (Andes) which are thought to represent eclogitic melts from subducted oceanic crust which was most likely dehydrated. The lowest Nb/Ta (5) was found in boninites from Chichi-Jima, Bonin Island. Samples from Chichi-Jima and from the

  15. Mountain building, from subduction to collision and erosion: insights from 30 years of field and analog modeling studies (Stephan Mueller Medal Lecture)

    Science.gov (United States)

    Malavieille, J.

    2012-04-01

    Through a rapid overview of my research career, I will outline the role of the primary mechanisms and processes, which exert a strong control on mountain building. Field observations (both from structural geology on-land and marine geophysical surveys at sea), and analog modeling are the two main approaches that I used and developed during more than 30 years of research studying mountain belts at Montpellier University. The substantial contributions made through collaborations and exchanges with colleagues and students will be acknowledged. As mountain belts are long lived structures, their evolution involves numerous processes that interact since the early history, beginning during oceanic subduction and ending during the late orogenic evolution which leads to erosion and the ultimate destruction of topography. Most orogens form in subduction settings due to plate convergence involving large horizontal shortening and strong deformation of the crust developing into an overall wedge shape during their evolution. I will focus on orogens caused by subduction of a continental margin lower-plate under an oceanic or continental upper-plate following oceanic subduction, a process also commonly known as collision. After development of a sedimentary accretionary prism and closure of the oceanic domain, continuous subduction of the lithospheric mantle induces deformation of the continental crust and controls the structural asymmetry of the mountain belt. Since the pioneer works by Dahlen, Davis and Suppe in the Eighties, mountain belts have been often considered by geologists as crustal scale accretionary wedges whose deformation mechanisms can be satisfactorily described by a Coulomb behavior. The theory offers a simple mechanical framework allowing a division into different tectonic regimes depending on wedge stability : critical, undercritical, overcritical. Since then, it has been shown that orogens commonly adopt a distinct geometry with a low-tapered pro-wedge facing

  16. Lithosphere Removal in the Central Andes: Reconciling Seismic Images and Elevation History

    Science.gov (United States)

    Henderson, O.; Currie, C. A.

    2015-12-01

    Shortening of the upper crust should be accompanied by thickening of the deeper lithosphere. However, for many orogens, including the central Andes, geophysical and geological observations indicate that mantle lithosphere is spatially heterogeneous, being anomalously thin or absent. Seismic studies of the central Andes suggest that mantle lithosphere is locally removed. Also, present day elevations of the central Andean Plateau have been explained by rapid removal of mantle lithosphere over the last 10 Ma. Yet, the geological record is innately incomplete, and seismic tomography and receiver functions can offer only a present day snapshot of the subsurface. None of these techniques provides concrete insight into the physical processes responsible for current Andean elevations (3-5 km). A 2D plane-strain thermo-mechanical code, SOPALE, is used to examine the deep lithospheric dynamics connected to mantle lithosphere removal within a subduction zone setting, such as the Andes. Three models have been tested: removal by viscous dripping, by delamination, and a model with no removal. The removal models contain a high density eclogite root, creating a contrast between mantle lithosphere and mantle material. For the viscous drip models, mantle lithosphere is removed within 2.5-5 Myrs, descending subvertically through the mantle, causing subsequent surface rebound. Prior to this rebound, surface topography subsides locally over the dense root. This subsidence is influenced by crustal rheology, where weaker crustal rheologies produce deep, narrower basins (25-75 km wide, ~1 km deep), and stronger crustal rheologies produce shallow, broader basins (300-400 km wide, ~0.5 km deep). Delamination, which involves the coherent removal of mantle lithosphere along the Moho, affects a larger region, and is reflected in broader basins that extend into the back-arc. In all models, the deep lithosphere dynamics have an appreciable effect on surface topography, therefore, removal events

  17. The principal characteristics of the lithosphere of China

    Directory of Open Access Journals (Sweden)

    Tingdong Li

    2010-10-01

    Full Text Available The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics. Firstly, China’s continental crust is thick in the west but thins to the east, and thick in the south but thins to the north. Secondly, the continental crust of the Qinghai–Tibet Plateau has an average thickness of 60–65 km with a maximum thickness of 80 km, whereas in eastern China the average thickness is 30–35 km, with a minimum thickness of only 5 km in the center of the South China Sea. The average thickness of continental crust in China is 47.6 km, which greatly exceeds the global average thickness of 39.2 km. Thirdly, as with the crust, the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south, and thinner in the east and north. The lithosphere of the Qinghai–Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180–200 km in the central and eastern parts of the Tarim Basin, Pamir, and Changdu areas. In contrast, the vast areas to the east of the Da Hinggan Ling–Taihang–Wuling Mountains, including the marginal seas, are characterized by lithospheric thicknesses of only 50–85 km. Fourthly, in western China the lithosphere and asthenosphere behave as a “layered structure”, reflecting their dynamic background of plate collision and convergence. The lithosphere and asthenosphere in eastern China display a “block mosaic structure”, where the lithosphere is thin and the asthenosphere is very thick, a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials. The latter is responsible for a huge low velocity anomaly at a depth of 85–250 km beneath East Asia and the western Pacific Ocean. Finally, in China there is an age structure of “older in the upper layers and younger in the lower layers” between both the upper and lower crusts and between the

  18. Petrological-thermomechanical modeling of Precambrian continental collision: geodynamical effects of subcontinental lithospheric mantle thickness

    Science.gov (United States)

    Zakharov, Vladimir; Perchuk, Alexei; Zavyalov, Sergei; Sineva, Tamara; Gerya, Taras

    2015-04-01

    The Precambrian collision and orogeny remains enigmatic and contentious. Different tectonic styles of orogeny in the Precambrian compared to modern Earth are suggested by interpretations of geological, petrological and geochemical observations from Proterozoic and Archean orogenic belts. Here, we present results of 2D petrological-thermomechanical numerical modeling of continental collision at crustal thickness of 35 km and convergence rate of 5 cm/year with variable thickness of subcontinental lithospheric mantle (SCLM). The numerical experiments cover the range of SCLM thickness from 65 km to 165 km, the upper mantle temperature exceeded the modern temperature by 150 oC, and the radiogenic heat production of continental crust is 1.5 times higher than that at present. The numerical modeling has shown that in the case of SCLM thickness of 65 to 125 km the subduction terminates with slab break-off followed by the formation of a large igneous province in between the two continents instead of an orogenic belt. The time and the place of the slab break-off depend on SCLM thickness. The thinner it is, the earlier and the closer to the surface the slab breaks-off. For instance, the slab is detached in 10.3 m.y. at the depth 150 km when the model with SCLM of 115 km, whereas in the case of SCLM of 65 km the slab detaches in 5.1 m.y. almost near the very surface. In the latter case, the magmatic province is very large due to development at the both sides of the oceanic slab (instead of one side provinces in the other experiments). Continental collision with a very thick SCLM (of 165 km and more) proceeds without slab break-off and rather limited volcanism. This work was supported by the Russian Foundation for Basic Research, grant 13-05-01033 and by the Supercomputing Centre of Lomonosov Moscow State University.

  19. Back-arc Extension: Critical Analisys of Subduction-related and Non Subduction-related Driving Mechanisms

    Science.gov (United States)

    Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Albarello, D.

    It is argued that the opening of back arc basins can hardly be explained as an effect of subduction related forces, since this kind of interpretation has not yet provided plausible explanations for several major features of such processes in the world. In particular, it is not clear why back arc extension occurs in some subduction zones and not in others, why extension ceased in zones where subduction has remained active, why the arcs associated with back arc basins are often characterized by a strongly curved shape, why arc-trench-back arc systems do not develop along the entire length of consuming borders and why no significant correlation can be recognized between any parameter of subduction processes and the occurrence of back arc extension. In addition, modelling experiments indicate that the magnitude of the tensional stress induced in the overriding plate by subduction-related forces is significantly lower than the lithospheric strength. These problems are discussed, in particular, for three subduction-related interpretations, the "slab-pull", the "corner flow" and the "sea an- chor" models, which seem to be the most quoted in literature. It is then argued that possible solutions of the above problems may be provided by the extrusion model, which postulates that back arc basins are generated by the forced separation of the arc from the overriding plate, along a sector of the consuming border. This separa- tion is generally caused by the oblique indentation of strong and buoyant structures against the accretionary belt. In this view, subduction and back arc extension are not causally linked one to the other, but rather represent simultaneous effects of the lateral migration of the arc, driven by plate convergence. It is pointed out that the conditions required for the occurrence of this kind of mechanism may be recognized in the tec- tonic contexts where back arc basins developed in the wake of arc-trench migrating systems. On the other hand, in the zones

  20. Are diamond-bearing Cretaceous kimberlites related to shallow-angle subduction beneath western North America?

    Science.gov (United States)

    Currie, C. A.; Beaumont, C.

    2009-05-01

    The origin of deep-seated magmatism (in particular, kimberlites and lamproites) within continental plate interiors remains enigmatic in the context of plate tectonic theory. One hypothesis proposes a relationship between kimberlite occurrence and lithospheric subduction, such that a subducting plate releases fluids below a continental craton, triggering melting of the deep lithosphere and magmatism (Sharp, 1974; McCandless, 1999). This study provides a quantitative evaluation of this hypothesis, focusing on the Late Cretaceous- Eocene (105-50 Ma) kimberlites and lamproites of western North America. These magmas were emplaced along a corridor of Archean and Proterozoic lithosphere, 1000-1500 km inboard of the plate margin separating the subducting Farallon Plate and continental North America Plate. Kimberlite-lamproite magmatism coincides with tectonic events, including the Laramide orogeny, shut-down of the Sierra Nevada arc, and eastward migration of volcanism, that are commonly attributed to a change in Farallon Plate geometry to a shallow-angle trajectory (1999; Sharp, W.E., Earth Planet. Sci. Lett., v.21, pp.351-354, 1974.

  1. Lithospheric Stress and Geodynamics: History, Accomplishments and Challenges

    Science.gov (United States)

    Richardson, R. M.

    2016-12-01

    The kinematics of plate tectonics was established in the 1960s, and shortly thereafter the Earth's stress field was recognized as an important constraint on the dynamics of plate tectonics. Forty years ago the 1976 Chapman Conference on the Stress in the Lithosphere, which I was fortunate to attend as a graduate student, and the ensuing 1977 PAGEOPH Stress in the Earth publication's 28 articles highlighted a range of datasets and approaches that established fertile ground for geodynamic research ever since. What are the most useful indicators of stress? Do they measure residual or tectonic stresses? Local or far field sources? What role does rheology play in concentrating deformation? Great progress was made with the first World Stress Map in 1991 by Zoback and Zoback, and the current version (2016 release with 42,348 indicators) remains a tremendous resource for geodynamic research. Modeling sophistication has seen significant progress over the past 40 years. Early applications of stress to dynamics involved simple lithospheric flexure, particularly at subduction zones, Hawaii, and continental foreland basin systems. We have progressed to full 3-D finite element models for calculating the flexure and stress associated with loads on a crust and mantle with realistic non-linear viscoelastic rheology, including frictional sliding, low-temperature plasticity, and high-temperature creep. Initial efforts to use lithospheric stresses to constrain plate driving forces focused on a "top-down" view of the lithosphere. Such efforts have evolved to better include asthenosphere-lithosphere interactions, have gone from simple to complicated rheologies, from 2-D to 3-D, and seek to obtain a fully thermo-mechanical model that avoids relying on artificial boundary conditions to model plate dynamics. Still, there are a number of important issues in geodynamics, from philosophy (when are more complicated models necessary? can one hope to identify "the" answer with modeling, or only

  2. Multiscale Architecture of a Subduction Complex and Insight into Large-scale Material Movement in Subduction Systems

    Science.gov (United States)

    Wakabayashi, J.

    2014-12-01

    The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at

  3. Subduction initiation and Obduction: insights from analog models

    Science.gov (United States)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was

  4. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt

    Science.gov (United States)

    Park, Keunsu; Choi, Sung Hi; Cho, Moonsup; Lee, Der-Chuen

    2017-08-01

    Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine (Fo89.3-91.0), enstatite (Wo1-2En88-90Fs8-11), diopside (Wo45-50En45-51Fs4-6), and spinel (Cr# = 8.8-54.7). The peridotite residues underwent up to 25% partial melting in fertile mid-ocean-ridge basalt (MORB) mantle. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1010 °C, reflecting their lithospheric mantle origin. The rare earth element (REE) patterns in clinopyroxenes of the peridotites varied from light REE (LREE) depleted to spoon shaped to LREE enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in large-ion lithophile elements, Th and U together with slight fractionation in heavy REEs (HREEs) and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying

  5. Constraining the near-surface response to lithospheric reorientation: Structural thermochronology along the TRANSALP geophysical transect

    Science.gov (United States)

    Glotzbach, Christoph; Büttner, Lukas; Ehlers, Todd

    2017-04-01

    Tomographic analyses of the lithosphere structure underneath the Alps suggest a complex geodynamic history (e.g. Lippitsch et al. 2003), indicating, among other things, switches in the direction of subduction. A subduction polarity switch is proposed to have occurred in Miocene times between the Central and Eastern Alps (e.g. Lippitsch et al. 2003; Handy et al. 2015). In the Western and Central Alps SE-directed subduction of European continental lithosphere occurs, whereas NW-directed subduction of Adriatic lithosphere occurs further east (e.g. Kissling et al. 2006). The subducted slab steepens at the transition to the Eastern Alps, roughly at the position of the TRANSALP geophysical profile (S. Germany to N. Italy). This lithospheric reorientation was pre-dated by slab breakoff and also involves the delamination of the lower lithosphere, both processes producing distinct long-wavelength deformation (e.g. Gerya et al. 2004). Thermochronological data can be used to study the surface response to such a long-wavelength deformation. We present new apatite and zircon (U-Th)/He ages of 23 samples collected along 210 km of the TRANSALP profile. The samples were collected along a balanced cross section the TRANSALP profile (e.g. Lüschen et al. 2004) across individual structures that can be tied to deeper, seismically imaged, structures. The thermochronometer ages provide a record of exhumation related to both crustal shortening and post deformation erosional exhumation. Interpretation of the data is in progress and being used to discriminate between competing kinematic/geometric models, and the timing of major fault activity. Variations in exhumation along the section will also unravel the timing and shape of possible long-wavelength rock uplift event(s). References Gerya, T.V., Yuen, D.A., Maresch, W.V. 2004. Thermomechanical modelling of slab detachment. Earth Planet. Sci. Lett. 226, 101-116. Handy, M.R., Ustaszewski, K., Kissling, E. 2015. Reconstructing the Alps

  6. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    Science.gov (United States)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  7. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng; Li, Sanzhong; Wei, Wei

    2017-04-01

    We study the age of the subducting Pacific slab beneath East Asia using a high-resolution model of P-wave tomography and paleo-age data of ancient seafloor. Our results show that the lithosphere age of the subducting slab becomes younger from the Japan Trench (∼130 Ma) to the slab's western edge (∼90 Ma) beneath East China, and the flat (stagnant) slab in the mantle transition zone (MTZ) is the subducted Pacific plate rather than the proposed Izanagi plate which should have already collapsed into the lower mantle. The flat Pacific slab has been in the MTZ for no more than ∼10-20 million years, considerably less than the age of the big mantle wedge beneath East Asia (>110 million years). Hence, the present flat Pacific slab in the MTZ has contributed to the Cenozoic destruction of the East Asian continental lithosphere with extensive intraplate volcanism and back-arc spreading, whereas the destruction of the North China Craton during the Early Cretaceous (∼140-110 Ma) was caused by the subduction of the Izanagi (or the Paleo-Pacific) plate.

  8. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    Science.gov (United States)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  9. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    Science.gov (United States)

    Pilet, S.; Müntener, O.; Jean, G.; Schoene, B.; Schaltegger, U.

    2016-12-01

    The temporal coincidence between LIPs and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic and Pliensbachian-Toarcian boundaries combined with geochronological data demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. As current hypothesis for LIPs seems unable to produce these successive climatic changes, we evaluate an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. Even in presence of abnormal potential mantle temperature, the presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. Various studies on Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. We argue that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission. We suggest that the nature of the underlying lithosphere during large LIP eruption exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  10. Paleo-asperities frozen along a major fault zone in Alpine Corsica ophiolites: Implications on present-day subduction zone intermediate-depth seismicity

    Science.gov (United States)

    Fabbri, Olivier; Magott, Rémi; Fournier, Marc

    2017-04-01

    In an ophiolitic thrust sheet of Alpine Corsica, a major fault zone called PHI2 separates oceanic gabbros from variably serpentinized peridotites. Along and near PHI2, abundant pseudotachylytes testify to ancient seismic ruptures. A mineralogical and structural analysis of the pseudotachylyte veins shows that seismic ruptures occurred at various stages before, during or after the subduction process. Due to the lack of index minerals, P-T conditions of formation of peridotite-hosted pseudotachylyte remain undetermined. Conversely, two populations of gabbro-hosted pseudotachylyte veins can be distinguished: veins formed under blueschist to eclogite facies conditions (containing glaucophane and omphacite) and veins formed under greenschist facies conditions (containing tremolite, clinochlore and clinozoisite). Various kinematic indicators show that the blueschist to eclogite facies pseudotachylyte veins formed within the subducting Piemonte-Liguria oceanic lithosphere at depths of about 60 km, while the greenschist facies veins formed during syn- to post-collisional crustal extension. Detailed mapping indicates that the internal structure of PHI2 fault zone is spatially heterogeneous. A-type damage zones, which are located between gabbro and fresh (not serpentinized) peridotite, are characterized by pseudotachylyte accumulations and are interpreted as ancient fully locked asperities. To the opposite, type C damage zones, observed between gabbro and fully serpentinized peridotites, are characterized by the lack of pseudotachylytes and the presence of cataclasite and mineralized veins, and are regarded as creeping, aseismic, domains. B type damage zones, found between gabbro and moderately serpentinized peridotites, are outlined by pseudotachylytes, but in significantly less amounts than along A-type zones. These zones, intermediate between the other two types, could correspond to partially locked (conditionally stable) portions of the fault zone. The distribution of

  11. Roberts Victor eclogites: ancient oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, I.D.

    1985-01-01

    New data on the oxygen isotopic chemistry of the oceanic crust and ophiolites illustrate the role of circulating seawater in changing the chemistry of aging oceanic crust. A similar range of oxygen isotope ratios in the eclogites suggests a comparable origin. The interpretation is consistent with the following observations: Whole rocks values of S /sup 18/O are negatively correlated with both the /sup 87///sup 86/Sr and K content. The internal whole rock correlations may be explained as a series of rocks that have undergone varying degrees of alteration on an ancient sea floor. Whole rock chemistry when recalculated to 1 atm. norms and compared with 1 atm. liquidus diagrams indicate two different groups of eclogites. One group has trends that are comparable to a series of liquids formed by the fractional crystallization of olivine followed by plagioclase and clinopyroxene while the other group correlate with cumulate assemblages of gabbroic composition. The REE chemistry of separated garnets and clinopyroxenes and whole rocks allow recalculation of the chemistry of the intergranular material which is significantly LREE enriched. K, Rb, Li and Ti are similarly enriched. The intergranular chemistry compares favorably with that of hypothesized mantle metasomatising fluids and is interpreted to evolve during the metamorphic transition to eclogite assemblages during subduction. The data allow for the interpretation that the Roberts Victor eclogite are relicts of at least 3.2 b.y. old oceanic crust and that the two different groups separately represent the volcanic and gabbroic rocks of the upper part of the ancient oceanic lithosphere.

  12. THE POTENTIAL OF TSUNAMI GENERATION ALONG THE MAKRAN SUBDUCTION ZONE IN THE NORTHERN ARABIAN SEA. CASE STUDY: THE EARTHQUAKE AND TSUNAMI OF NOVEMBER 28, 1945

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2006-01-01

    Full Text Available Although large earthquakes along the Makran Subduction Zone are infrequent, the potential for the generation of destructive tsunamis in the Northern Arabian Sea cannot be overlooked. It is quite possible that historical tsunamis in this region have not been properly reported or documented. Such past tsunamis must have affected Southern Pakistan, India, Iran, Oman, the Maldives and other countries bordering the Indian Ocean.The best known of the historical tsunamis in the region is the one generated by the great earthquake of November 28, 1945 off Pakistan's Makran Coast (Balochistan in the Northern Arabian Sea. The destructive tsunami killed more than 4,000 people in Southern Pakistan but also caused great loss of life and devastation along the coasts of Western India, Iran, Oman and possibly elsewhere.The seismotectonics of the Makran subduction zone, historical earthquakes in the region, the recent earthquake of October 8, 2005 in Northern Pakistan, and the great tsunamigenic earthquakes of December 26, 2004 and March 28, 2005, are indicative of the active tectonic collision process that is taking place along the entire southern and southeastern boundary of the Eurasian plate as it collides with the Indian plate and adjacent microplates. Tectonic stress transference to other, stress loaded tectonic regions could trigger tsunamigenic earthquakes in the Northern Arabian Sea in the future.The northward movement and subduction of the Oman oceanic lithosphere beneath the Iranian micro-plate at a very shallow angle and at the high rate is responsible for active orogenesis and uplift that has created a belt of highly folded and densely faulted coastal mountain ridges along the coastal region of Makran, in both the Balochistan and Sindh provinces. The same tectonic collision process has created offshore thrust faults. As in the past, large destructive tsunamigenic earthquakes can occur along major faults in the east Makran region, near Karachi, as

  13. Boron cycling in subduction zones

    OpenAIRE

    Palmer, Martin R.

    2017-01-01

    Subduction zones are geologically dramatic features, with much of the drama being driven by the movement of water. The “light and lively” nature of boron, coupled with its wide variations in isotopic composition shown by the different geo-players in this drama, make it an ideal tracer for the role and movement of water during subduction. The utility of boron ranges from monitoring how the fluids that are expelled from the accretionary prism influence seawater chemistry, to the subduction of c...

  14. Softening trigerred by eclogitization, the first step toward exhumation during continental subduction

    Science.gov (United States)

    Jolivet, Laurent; Raimbourg, Hugues; Labrousse, Loïc; Avigad, Dov; Leroy, Yves; Austrheim, Håkon; Andersen, Torgeir B.

    2005-09-01

    Direct observation of peak pressure deformation in exhumed subduction channels is difficult because little evidence of this deformation survives later syn-exhumation deformation. Most ultrahigh-pressure parageneses are found in continental derived metamorphic rocks making continental subduction the best context to observe peak pressure deformation. Whereas many studies have enlightened the main driving parameters of exhumation such as buoyancy forces, low viscosity in the subduction channel, overburden removal by erosion and normal faulting, a basic question is seldom considered: why is a tectonic unit disconnected from the descending lithosphere and why does it start its way towards the surface? This event, seminal to exhumation processes, must involve some deformation and decoupling of the exhumed slice from the descending slab at peak pressure conditions or close to it. Our field observations in the Bergen arc show that Caledonian eclogitization and later amphibolitization of a granulitic terrane was achieved with a consistent component of simple shear compatible with the sense of the Caledonian subduction. Thus, the sequence of deformation preserved in the Bergen Arc documents the decoupling of subducted crustal material from the descending slab at the onset of exhumation. This observation suggests that deformation in the subduction channel is largely controlled by kinematic boundary conditions, i.e. underthrusting of the subducting slab. In this context of simple shear, metamorphic reactions assisted by fracturating, fluid infiltration and ductile deformation lower the resistance of rocks and allow the localisation of shear zones and the decoupling of buoyant tectonic units from the subducting slab. These tectonic units can then be incorporated into the channel circulation and start their upward travel.

  15. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite

    Science.gov (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel

    2014-05-01

    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  16. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction

    Science.gov (United States)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu

    2018-01-01

    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  17. Blueschist facies pseudotachylytes from Corsica: First account of fossil earthquakes from a subduction complex

    Science.gov (United States)

    Andersen, T. B.; Austrheim, H.

    2003-04-01

    Pseudotachylytes (PST) are products of deformation at extreme slip-rates along faults or in impact structures. Fault-plane PSTs are considered to represent fossil earthquakes. Tectonics in subduction zones, generate >80% of the seismic energy. Earthquake rocks should therefore also be common in old subduction complexes. Blueschist terrains are formed in the upper 15 to 50 km by tectonic burial in accreationary complexes and subduction zones. In spite of the very common earthquakes recorded from present-day subduction complexes, we are unaware of previous accounts of fossil earthquakes from exhumed subduction complexes. With a working hypothesis predicting fossil earthquakes to be preserved in subduction complexes, we have re-examined parts of the Alpine blueschist-eclogite terrain in Corsica. Within blueschist facies ophiolite gabbro and peridotite of Cape Corse, we discovered a number of faults decorated with ultra-fine fault rocks including PSTs. Detailed probe and SEM-studies reveal that some of the PSTs have quench textures proving the former presence of a melt. Quenched minerals, including fassaitic pyroxene are found as spherulites and dendrites. Fassaite has previously been described from UHP complexes and from PSTs formed in HP experiments. Other devitrification minerals include glaucophane, barroisite and zoisite as well as pumpellyite and albite. Our hypothesis -- fossil earthquakes in the form of frictional heat generated PST and ultra-cataclasite may be preserved within subduction complexes -- has been confirmed. Whilst most models view the properties of subducted lithosphere as a function of temperature, it is increasingly recognized that the rheological properties of rocks depend on their metamorphic status and importantly on fluids. Fluids from dehydration reactions in subduction complexes may reduce the effective stress to allow rapid brittle failure, which in turn may produce frictional heating and additional dehydration. It is, however, also

  18. Thermobarometric and fluid expulsion history of subduction zones

    Science.gov (United States)

    Ernst, W. G.

    1990-06-01

    Phanerozoic, unmetamorphosed, weathered, and altered lithotectonic complexes subjected to subduction exhibit the prograde metamorphic facies sequence: zeolite → prehnite-pumpellyite → glaucophane schist → eclogite. Parageneses reflect relatively high-P trajectories, accompanied by semicontinuous devolatilization. The thermal evolution of convergent plate junctions results in early production of high-rank blueschists, high-P amphibolites, and eclogues at depth within narrow subduction zones while the hanging wall lithosphere is still hot. Protracted underflow drains heat from the nonsubducted plate and, even at profound depths, generates very low-T/high-P parageneses. Inclusion studies suggest that two-phase immiscible volatiles (liquid H2O, and gaseous high-hydrocarbons, CH4 and CO2) are evolved in turn during progressive metamorphism of the subducted sections. Expulsion of pore fluids and transitions from weathered and altered supracrustal rocks to zeolite facies assemblages release far more fluid than the better understood higher-grade transformations. Many blueschist parageneses, such as those of the internal Western Alps, have been partially overprinted by later greenschist and/or epidote-amphibolite facies assemblages. Alpine-type postblueschist metamorphic paths involved fairly rapid, nearly adiabatic decompression; some terranes even underwent modest continued heating and fluid evolution during early stages of ascent. Uplift probably occurred as a consequence of the underthrusting of low-density island arc or microcontinental crust along the convergent plate junction, resulting in marked deceleration or cessation of lithospheric underflow, decoupling, and nearly isothermal rise of the recrystallized subduction complex. Other, less common blueschist terranes, such as the eastern Franciscan belt of western California, preserve metamorphic aragonite and other high-P minerals, and lack a low-pressure overprint; physical conditions during retrogression

  19. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra.

    Science.gov (United States)

    Hüpers, Andre; Torres, Marta E; Owari, Satoko; McNeill, Lisa C; Dugan, Brandon; Henstock, Timothy J; Milliken, Kitty L; Petronotis, Katerina E; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A; Frederik, Marina C G; Guèrin, Gilles; Hamahashi, Mari; House, Brian M; Jeppson, Tamara N; Kachovich, Sarah; Kenigsberg, Abby R; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T; Pouderoux, Hugo F A; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J; Yang, Tao; Zhao, Xixi

    2017-05-26

    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records. Copyright © 2017, American Association for the Advancement of Science.

  20. The dominant surface-topography contributions of individual subduction parameters

    Science.gov (United States)

    Crameri, Fabio; Lithgow-Bertelloni, Carolina; Tackley, Paul

    2017-04-01

    It is no secret, not any longer, that dynamic processes below the plate exert a significant contribution to the elevation of the plate at the surface (e.g., Flament et al., 2013). We have therefore studied* the individual impact each and every major subduction parameter has on surface topography. This allows us to qualitatively compare the different sources amongst each other, and to quantify their actual potential to vertically deflect the surface. The gained knowledge from this compilation is crucial: We might finally be able to link the directly-observable surface topography to the dynamics (buoyancy, rheology, and geometry) of the subduction system. *This study is made possible by the efficient convection code StagYY (Tackley 2008), the largely-automated post-processing and visualisation toolbox StagLab (www.fabiocrameri.ch/software), and crucial model developments (Crameri and Tackley, 2015; Crameri et al., G-cubed, submitted, Crameri and Lithgow-Bertelloni, Tectonophysics, submitted). REFERENCES 
Flament, N., M. Gurnis, and R. D. Müller (2013), A review of observations and models of dynamic topography, Lithosphere, 5(2), 189-210. Crameri, F., and P. J. Tackley (2015), Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection, J. Geophys. Res. Solid Earth, 120(5), 3680-3706. Crameri, F., C. R. Lithgow-Bertelloni, and P. J. Tackley (submitted), The dynamical control of subduction parameters on surface topography, Geochem. Geophys. Geosyst. Crameri, F., and C. R. Lithgow-Bertelloni (submitted), Dynamic Mantle-Transition-Zone Controls on Upper-Plate Tilt, Tectonophysics. Tackley, P.J (2008) Modelling compressible mantle convection with large viscosity contrasts in a three- dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171(1-4), 7-18.

  1. Slab melting versus slab dehydration in subduction-zone magmatism.

    Science.gov (United States)

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N; Fei, Yingwei; Ono, Shigeaki

    2011-05-17

    The second critical endpoint in the basalt-H(2)O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones.

  2. Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny

    Science.gov (United States)

    Chen, Chuming; Lu, Huafu; Jia, Dong; Cai, Dongsheng; Wu, Shimin

    1999-02-01

    The Tianshan (Tien Shan) Range is an important Paleozoic collisional orogenic belt and the key to understand the central Asia tectonic evolution. This paper integrates our research results with the existing Chinese and international literature on sedimentology, geochemistry, isotopic geochronology, paleontonology and paleomagnetism of the Tianshan and Tarim regions to propose that the oblique collision may have played an important role in the late Paleozoic closing of the southern Tianshan oceanic basin. As a result of the Sinian (latest Proterozoic, younger than 800 Ma) continental extension and rifting process, the Tarim and Yili blocks separated from their parent continent in the Late Cambrian-Ordovician. The southern Tianshan oceanic crusts between the two blocks subducted northward beneath the southern margin of the Yili block in the Silurian. During the Devonian-Early Carboniferous, the Tarim block rapidly drifted to the north and rotated about 46° clockwise. This process induced the collision of the Yili micro-continent with the eastern segment (present geographical position) of the Tarim continent in the Late Devonian, and the southern Tianshan oceanic crust evolved to be a west-facing remnant oceanic basin. During the Late Carboniferous-Early Permian, the Tarim block, located within an almost constant latitude range, rotated about 26° clockwise with respect to the Yili micro-continent, which ultimately closed the remnant oceanic basin in a `scissors-like' manner from east to west and completed the Tarim-Yili collision. Subsequent A-type subduction of the Tarim continental crust and lithosphere-scale sinistral shearing generated a magmatic arc on the southern margin of the Tarim-Yili suture zone. The Late Permian-Early Triassic clastics deposited in a peripheral foreland basin developed above the arc.

  3. Thermal Structure of the Cascadia Subduction Zone on the Washington Margin (AT26-04, EM122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We propose to conduct a comprehensive study of the thermal environment of the Cascadia Subduction Zone (CSZ) within the NSF GeoPRISM Corridor off the Washington...

  4. The melting of subducted banded iron formations

    Science.gov (United States)

    Kang, Nathan; Schmidt, Max W.

    2017-10-01

    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  5. Can We Probe the Conductivity of the Lithosphere and Upper Mantle Using Satellite Tidal Magnetic Signals?

    Science.gov (United States)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-01-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  6. The Modern Gorda-Juan de Fuca Subduction System and the Inherited Stratification of the Transition Zone below Western US

    Science.gov (United States)

    Tauzin, B.; van der Hilst, R. D.; Wittlinger, G.; Ricard, Y. R.

    2012-12-01

    We provide insights on the deep geodynamic processes that have shaped western North America (NA) during the past 100 Myr. We use data of P-to-S converted waves recorded at seismic stations of the US Transportable Array to image main discontinuities in shear-wave velocity within the transition zone (TZ). We measure the topography and the reflectance (i.e. the amplitude of conversion) of the `410' and `660' interfaces. We image also minor seismic discontinuities around 350, 590 and 630 km depths. Idaho is the location of strong structural anomalies with a sharp topography of the `660', a thick TZ, a reduced reflectance of the `410' and a positive interface at 630 km depth. The thick TZ and the `630' discontinuity suggest low temperatures and a possible garnet to ilmenite transition. Water could also reduce locally the `410' Vs contrast. A remnant of the Farallon plate, anchored 55 Myr ago in the mantle below Idaho [Schmandt and Humphreys, 2011] and providing cool temperatures and water to the TZ, is a possible explanation. At the same location, a layer with 4% shear-wave speed reduction (the `350') and 70 km thickness is present atop the `410' discontinuity. In addition, an almost continuous interface, marking shear wave velocity reductions, spreads at 590 km depth roughly from southern Idaho to southeastern western US. Dehydration induced partial melting [Bercovici and Karato, 2003] can explain a melt layer atop the `410'. However, it does not explain a widespread negative `590' discontinuity within the TZ. It is possible that eclogitic material has progressively accumulated at the base of the TZ due to crustal delamination from the subducted Farallon oceanic lithosphere. With low Vs, the top of a garnetite layer could produce sharp negative velocity gradients around 590 km depth. The geometry of the Gorda-Juan de Fuca subduction system is also subject to debate. Tomography has shown the plate to subduct in the mantle along the whole western margin of NA except

  7. Dynamical effects of subducting ridges: Insights from 3-D laboratory models

    CERN Document Server

    Martinod, Joseph; Faccenna, Claudio; Labanieh, Shasa; Regard, Vincent; 10.1111/j.1365-246X.2005.02797.x

    2010-01-01

    We model the subduction of buoyant ridges and plateaus to study their effect on slab dynamics. Oceanic ridges parallel to the trench have a stronger effect on the process of subduction because they simultaneously affect a longer trench segment. Large buoyant slab segments sink more slowly into the asthenosphere, and their subduction result in a diminution of the velocity of subduction of the plate. We observe a steeping of the slab below those buoyant anomalies, resulting in smaller radius of curvature of the slab, that augments the energy dissipated in folding the plate and further diminishes the velocity of subduction. When the 3D geometry of a buoyant plateau is modelled, the dip of the slab above the plateau decreases, as a result of the larger velocity of subduction of the dense "normal" oceanic plate on both sides of the plateau. Such a perturbation of the dip of the slab maintains long time after the plateau has been entirely incorporated into the subduction zone. We compare experiments with the presen...

  8. Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere

    Science.gov (United States)

    Hansen, Lars N.; Qi, Chao; Warren, Jessica M.

    2016-09-01

    Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.

  9. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    Science.gov (United States)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  10. Crustal Thickness and Lithospheric Structure in Northwestern Namibia from the WALPASS experiment

    OpenAIRE

    Benjamin Heit; Xiaohui Yuan; W. Geissler; B. Lushetile; Michael Weber; Jokat, W.

    2013-01-01

    An amphibian passive-source seismic network (WALPASS) have been deployed for a period of two years in the area where theWalvis Ridge intersects with the continental margin of northwestern Namibia. The deployment was intended to study and map the lithospheric and upper mantle structure in the ocean-continent transition beneath the passive continental margin. The main idea is to find seismic anomalies related to the postulated hotspot track from the continent to the ocean along the Walvis Ridge...

  11. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.

    2017-04-01

    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  12. Zooming into the Hindu Kush slab break-off: A rare glimpse on the terminal stage of subduction

    Science.gov (United States)

    Kufner, Sofia-Katerina; Schurr, Bernd; Haberland, Christian; Zhang, Yong; Saul, Joachim; Ischuk, Anatoly; Oimahmadov, Ilhomjon

    2017-03-01

    The terminal stage of subduction sets in when the continental margin arrives at the trench and the opposite forces of the sinking slab and buoyant continent extend and ultimately sever the subducted lithosphere. This process, although common in geological history, is short-lived, and therefore rarely observed. The deep seismicity under the Hindu Kush (Central Asia), including the 2015 Mw 7.5 event, is a rare case that testifies to this process. Here, we use new seismological data to create a high resolution picture of slab break-off and infer its dynamics. High precision earthquake locations and tomographic images show subduction of continental crust down to ∼180 km. A large dataset of source mechanisms indicates sub-vertical extension in the entire slab but a strain rate analysis showed that the deeper seismogenic portion of the slab, below the subducted crust, extends at higher rates (∼40 km/Ma). Most Mw > 7 earthquakes between 1983-2015, relocated relative to our new well-constrained earthquake catalog, cluster in a small volume below 180 km, and indicate shearing on an overturned interface. A slip model for the latest 2015 Mw 7.5 event suggests that it ruptured into a seismic gap on this interface. From this configuration we conclude that a horizontal slab tear develops along-strike of the Hindu Kush seismic zone at the base of the subducted continental crust. Below the subducted crust, the deepest and also largest earthquakes (180-265 km) are likely associated with deformation in the mantle lithosphere. From the seismicity distribution and the rupture mechanisms we further deduce that the dominant deformation mechanism in this deeper portion of the slab changes along-strike from simple to pure shear. The fastest detachment rates and largest earthquakes occur during the simple shear dominated stage. Earthquakes in the upper part (60-180 km), above the rapidly extending slab, might be triggered by processes related to the subduction of crustal rocks.

  13. Models of Deformation of Uppermost Oceanic Lithosphere: Comparison of Crustal Flexure in the Blönduós Area, Northern Iceland, and Structure of East Pacific Rise Crust at Hess Deep

    Science.gov (United States)

    Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.

    2007-12-01

    Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas

  14. Friction and stress coupling on the subduction interfaces

    Science.gov (United States)

    Tan, E.; Lavier, L.; van Avendonk, H.

    2011-12-01

    At a subduction zone, the down-going oceanic plate slides underneath the overriding plate. The frictional resistance to the relative motion between the plates generates great earthquakes along the subduction interface, which can cause tremendous damage in the civil life and property. There is a strong incentive to understand the frictional strength of the subduction interface. One fundamental question of mechanics of subuction is the degree of coupling between the plates, which is linked to the size of earthquakes. It has been noted that the trench-parallel (along-strike) gravity variation correlates positively with the trench-parallel topography anomaly and negatively with the activity of great earthquake (Song and Simons, 2003). Regions with a negative trench-parallel gravity anomaly are more likely to have great earthquakes. The interpretation of such correlation is that strong coupling along subduction interface will drag down the for-arc region of the overriding plate, which generates the gravity and topography anomalies, and could store more strain energy to be released during a great earthquake. We developed a 2D numerical thermo-mechanical code for modeling subduction. The numerical method is based on an explicit finite element method similar to the Fast Lagrangian Analysis of Continua (FLAC) technique. The constitutive law is visco-elasti-plastic with strain weakening. The cohesion and friction angle are reduced with increasing plastic strain after yielding. To track different petrologic phases, Lagrangian particles are distributed in the domain. Basalt-eclogite, sediment-schist and peridotite-serpentinite phase changes are included in the model. Our numerical models show that the degree of coupling negatively correlates with the coefficient of friction. In the low friction case, the subduction interface has very shallow dipping angle, which helps to elastically couple the downing plate with the overriding plate. The topography and gravity anomalies of the

  15. What can we learn from lithosphere-scale models of passive margins?

    Science.gov (United States)

    Scheck-Wenderoth, Magdalena; Maystrenko, Yuriy; Hirsch, Katja K.

    2010-05-01

    To understand the present day structure and the mechanisms of subsidence at passive margins we assess first-order heterogeneities in the sediments, crust and upper mantle. Thus, we explore how far a good knowledge of the sedimentary and upper crustal configuration can provide constraints for the deeper parts of the system and how far the preserved record of deposits holds the key to unravel margin history. The present-day geometry and distribution of physical properties within the upper and middle crust is integrated into data-based, 3D structural models, which, in turn, provide the base for the analysis of the deep crust and the lithospheric mantle. Different configurations of the deep lithosphere can be tested against two independent observables: gravity and temperature, using isostatic, 3D gravity and 3D thermal modelling. Results from the 55 mio year old Norwegian passive volcanic margin indicate that there, the oceanic lithospheric mantle is less dense than the continental lithospheric mantle (Maystrenko and Scheck-Wenderoth, 2009), that this is mainly due to thermal effects (Scheck-Wenderoth and Maystrenko, 2008) and that the transition between continental and oceanic lithosphere thickness is sharp (Maystrenko and Scheck-Wenderoth, 2009). Furthermore, the thickness of the young oceanic lithosphere in the North Atlantic is smaller than predicted by plate cooling models but consistent with seismologically derived estimates. We also find that the oceanic lithosphere-asthenosphere boundary strongly influences the shallow thermal field of the margin and that surface heat flow increases from the continent to the ocean. In contrast, at the South Atlantic margin offshore South Africa, a thicker and older (~130 mio years) oceanic lithosphere is present. Based on previous studies of the crustal configuration (Hirsch et al., 2009), first lithosphere configurations have been tested. There the transition between continent and ocean appears equilibrated and surface heat

  16. Wind-induced subduction at the South Atlantic subtropical front

    Science.gov (United States)

    Calil, Paulo H. R.

    2017-10-01

    The South Atlantic Subtropical Front, associated with the eastward-flowing South Atlantic Current, separates the colder, nutrient-rich waters of the subpolar gyre from the warmer, nutrient-poor waters of the subtropical gyre. Perturbations to the quasi-geostrophic, eastward flow generate meanders and filaments which induce cross-frontal exchange of water properties. Down-front winds transport denser waters from the South over warm waters from the North, inducing convective instability and subduction. Such processes occur over spatial scales of the order of 1 km and thus require high horizontal spatial resolution. In this modeling study, a high-resolution (4 km) regional grid is embedded in a basin-wide configuration (12 km) of the South Atlantic Ocean in order to test the importance of submesoscale processes in water mass subduction along the subtropical front. Stronger and more numerous eddies obtained in the high-resolution run yield more intense zonal jets along the frontal zone. Such stronger jets are more susceptible to instabilities, frontogenesis, and the generation of submesoscale meanders and filaments with O(1) Rossby number. As a consequence, vertical velocities larger than 100 md 1 are obtained in the high-resolution run, one order of magnitude larger than in the low-resolution run. Wind-driven subduction occurs along the frontal region, associated with negative Ertel potential vorticity in the surface layer. Such processes are not observed in the low-resolution run. A passive tracer experiment shows that waters with density characteristics similar to subtropical mode waters are preferentially subducted along the frontal region. The wind-driven buoyancy flux is shown to be much larger than thermal or haline fluxes during the wintertime, which highlights the importance of the frictional component in extracting PV from the surface ocean and inducing subduction, a process that has been overlooked in subtropical mode water formation in the region.

  17. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation

    Science.gov (United States)

    van Hinsbergen, Douwe J. J.; Vissers, Reinoud L. M.; Spakman, Wim

    2014-04-01

    The western Mediterranean recorded subduction rollback, slab segmentation and separation. Here we address the questions of what caused Oligocene rollback initiation, and how its subsequent evolution split up an originally coherent fore arc into circum-southwest Mediterranean segments. We kinematically reconstruct western Mediterranean geology from subduction initiation to present, using Atlantic plate reconstructions as boundary condition. We test possible reconstructions against remnants of subducted lithosphere imaged by seismic tomography. Transform motion between Africa and Iberia (including the Baleares) between 120 and 85 Ma was followed by up to 150 km convergence until 30 Ma. Subduction likely initiated along the transform fault that accommodated pre-85 Ma translation. By the 30 Ma inception of rollback, up to 150 km of convergence had formed a small slab below the Baleares. Iberia was disconnected from Sardinia/Calabria through the North Balearic Transform Zone (NBTZ). Subduction below Sardinia/Calabria was slightly faster than below the Baleares, the difference being accommodated in the Pyrenees. A moving triple junction at the trench-NBTZ intersection formed a subduction transform edge propagator fault between the Baleares and Calabria slab segments. Calabria rolled back eastward, whereas the Baleares slab underwent radial (SW-S-SE) rollback. After Kabylides-Africa collision, the western slab segment retreated toward Gibraltar, here reconstructed as the maximum rollback end-member model, and a Kabylides slab detached from Africa. Opening of a slab window below the NBTZ allowed asthenospheric rise to the base of the fore arc creating high-temperature metamorphism. Western Mediterranean rollback commenced only after sufficient slab-pull was created from 100 to 150 km of slow, forced subduction before 30 Ma.

  18. The Lithospheric Structure of Madagascar

    Science.gov (United States)

    Wysession, M. E.; Pratt, M. J.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.; Nyblade, A.; Aleqabi, G. I.; Shore, P.; Tucker, R.; Wiens, D. A.; Rambolamanana, G.

    2016-12-01

    The lithosphere of Madagascar is revealed for the first time from a combination of studies using data from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the IRIS PASSCAL program (funded by NSF, with additional data from the RHUM-RUM and Madagascar Seismic Profile projects). Methods include seismicity locations, body-wave receiver functions, Pn tomography, body-wave tomography, and ambient-noise and two-plane-wave earthquake surface-wave analyses. Madagascar's crustal thickness varies greatly, from 20 to 45 km, in good agreement with its past tectonic history of rifting from the mainland and having India break away to the north. The crust is thickest along the central spine of the island, along a ridge of mountains, but unusually high elevations suggest some amount f thermal buoyancy in the mantle. Crust is also thick along the east coast, where archean terranes were severed from India. Crust is thinnest along the west coast, where thick sedimentary basins up to 8 km thick are found on top of unusually thinned basement crust (about 12 km thick), a remnant of rifting away from Africa 130-160 Ma ago. Madagascar has an unusually high level of intraplate seismicity, with 918 earthquakes located during the 2-year period. Seismicity shows interesting correlations with paleotectonic features, but much is located in the central regions of the island, associated with normal faulting along several graben structures. This region also corresponds to the central of three regions within Madagascar (north, central, and southwest) that display strong lithospheric seismic low-velocity anomalies that underlie regions of current or recent volcanic activity. Surface waves show that these low-velocity zones (LVZs) extending down into the asthenosphere, and body-wave tomography shows them extending even deeper. Pn tomography shows that the width of the central LVZ is only about 100-200 km in diameter at the top of the mantle, indicative of

  19. Reevaluating plate driving forces from 3-D models of subduction

    Science.gov (United States)

    Stegman, D. R.; Freeman, J.; Schellart, W. P.; Moresi, L.; May, D.; Turnbull, R.

    2004-12-01

    Subducting lithospheric slabs mechanically attached to tectonic plates provide the main driving force for surface plate motion. Numerical models historically simulate slab dynamics as a 2-D process and further simplify the problem into either a density driven model (no heat transfer) or a corner-flow problem (thermal convection) [Christensen, 2001; Enns et al., (in revision); van Keken, 2003]. Recent 3-D global models of density driven flow incorporating a history of plate motion (Conrad and Lithgow-Bertelloni, 2002) have succussfully ruled out slab "suction" (basal shear traction induced by downward flow of the slabs) as a major driving force, but exact partitioning of the remaining forces acting on the slab remain unconstrained. A survey of trenches around the world reveals that over half of the slabs presently subducted in the upper mantle have a discontinuous edge (either a slab tip on a young slab, or the side edge of a slab with finite width) around which mantle can flow: prime examples being slabs in the Mediterranean and Carribean. However, even slabs with a wide lateral extent (and where a 2-D approximation may seem appropriate), show signs of having 3-D complexity. For example, on the surface Tonga appears relatively symmetric, but when the history of subduction is considered, the slab has a twisted, 3-D structure due to significant eastward retreat of just the northern part of an originally N-S oriented trench edge. Similarly the widest slabs, South American and Kamchatka, show seismic anisotropy attributed to trench parallel mantle flow (Russo and Silver, 1994; Peyton, et al., 2001, respectively), while the Aleutian trench has oblique subduction varying in magnitude from west to east, and medium width Central American slab likely has a slab window allowing 3-D flow (Johnston and Thorkelson, 1997). Recent laboratory experiments of subduction have demonstrated the full complexity of flow occuring in 3-D geometry (Kincaid and Griffiths, 2003; Schellart

  20. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block.

    Science.gov (United States)

    Zuo, Xuran; Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab.

  1. Deformation in the continental lithosphere

    Science.gov (United States)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  2. Petrogenesis of Eocene granitoids and microgranular enclaves in the western Tengchong Block: Constraints on eastward subduction of the Neo-Tethys

    Science.gov (United States)

    Zhao, Shao-wei; Lai, Shao-cong; Qin, Jiang-feng; Zhu, Ren-Zhi

    2016-11-01

    Eocene granitic and related igneous rocks in the western Tengchong Block are considered to be the result of eastward subduction of Neo-Tethyan oceanic lithosphere beneath the Tengchong Block. In this paper we show that the granitic and mafic rocks in the western Tengchong Block exhibit a systematic compositional variation from west to east, with Na-rich granodiorites in the Nabang area (west) that differ from coeval high-K calc-alkaline granodiorites in the Bangwan area (east), and with tholeiitic mafic rocks in the Nabang area that differ from shoshonitic mafic microgranular enclaves (MMEs) in granodiorites of the Bangwan area. In addition, high-silica biotite granites were intruded into the granodiorites in the Bangwan area. The host granodiorites, MMEs, and biotite granites in the Bangwan area yield zircon U-Pb ages of ca. 50 Ma. The MMEs have relatively low SiO2 contents (53.1-64.95 wt%) and Mg# values (37-45), and high K2O (4.14-5.02 wt%) and ∑ REE contents (331-509 ppm); the MMEs contain acicular apatites that indicate quenching. The host granodiorites also have high K2O (4.48-5.95 wt%) and ∑ REE compositions (320-459 ppm), and together with the MMEs they are enriched in Th but depleted in Nb and Ti. The Sr-Nd-Pb isotopic compositions of the host granodiorites and the MMEs are similar, with εHf(t) values of - 1.0 to - 10.8 and 3.3 to - 11.1, respectively. The geochemical data and igneous textures suggest that the MMEs represent a mafic magma that was derived from the partial melting of mantle pyroxenite, with the melting induced by the influx of fluids/melts from the recycling of sediments in the subducted slab. The mafic melts then caused the partial melting of lower crustal tonalitic rocks to produce granodioritic magma that was subsequently mixed with mafic magma. The biotite granites have relatively high SiO2 contents and low Mg# values that indicate a purely crustal origin and derivation from the partial melting of upper crustal metagraywacke. The

  3. The Magnetic Field of the Earth's Lithosphere

    Science.gov (United States)

    Thébault, Erwan; Purucker, Michael; Whaler, Kathryn A.; Langlais, Benoit; Sabaka, Terence J.

    2010-08-01

    The lithospheric contribution to the Earth's magnetic field is concealed in magnetic field data that have now been measured over several decades from ground to satellite altitudes. The lithospheric field results from the superposition of induced and remanent magnetisations. It therefore brings an essential constraint on the magnetic properties of rocks of the Earth's sub-surface that would otherwise be difficult to characterize. Measuring, extracting, interpreting and even defining the magnetic field of the Earth's lithosphere is however challenging. In this paper, we review the difficulties encountered. We briefly summarize the various contributions to the Earth's magnetic field that hamper the correct identification of the lithospheric component. Such difficulties could be partially alleviated with the joint analysis of multi-level magnetic field observations, even though one cannot avoid making compromises in building models and maps of the magnetic field of the Earth's lithosphere at various altitudes. Keeping in mind these compromises is crucial when lithospheric field models are interpreted and correlated with other geophysical information. We illustrate this discussion with recent advances and results that were exploited to infer statistical properties of the Earth's lithosphere. The lessons learned in measuring and processing Earth's magnetic field data may prove fruitful in planetary exploration, where magnetism is one of the few remotely accessible internal properties.

  4. Three-dimensional Thermal Model of the Mexican Subduction Zone

    Science.gov (United States)

    Rosas, J. C.; Pimentel, F. D. C.; Currie, C. A.; He, J.; Harris, R. N.

    2015-12-01

    Along the Mexican section of the Middle America Trench (MAT), the Cocos plate subducts beneath the North American plate. The most important feature of this subduction zone is the flat-slab section below central Mexico, extending approximately 250 km landward from the trench at a depth of 50 km. Further west, the dip changes to 45-50º. This particular geometry has several unique consequences, such as a volcanic arc that is not aligned with the trench and very shallow slab seismicity. For the mantle wedge, the abrupt change in slab geometry could lead to a three-dimensional (3D) mantle wedge flow that departs from the classical 2D subduction-driven corner flow. Evidence of 3D flow in the region comes from seismic anisotropy studies, which show that olivine fast-direction axes have a component that is parallel to the MAT. In other subduction zones, such as Costa Rica-Nicaragua and Japan, 3D flow has been observed to increase temperatures by >50º C relative to corner flow models.For this study, we have created the first 3D finite-element model of the Mexican subduction zone in order to analyze its thermal structure. Our objective is to assess the effects of 3D mantle flow and hydrothermal circulation (HC) in the subducting slab. In this region, low surface heat flow values near the trench indicate that HC may remove heat from the oceanic plate. Our model incorporates the effect of HC through conductivity proxies in the subducting crust and a 2D oceanic geotherm that includes the age variations of the Cocos plate along the MAT. For an isoviscous mantle, our model shows that the slab dip variations induce a flow that departs from 2D corner flow near the transition between the flat-slab and normal-dipping sections. The mantle flows in eastward direction toward the flat slab, and its orientation is consistent with seismic anisotropy studies. The maximum along-margin flow rate is nearly 2 cm/yr, which is >30% of the convergence rate. Temperatures at the location of this

  5. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    Energy Technology Data Exchange (ETDEWEB)

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  6. Oriented grain growth and modification of 'frozen anisotropy' in the lithospheric mantle

    Science.gov (United States)

    Boneh, Yuval; Wallis, David; Hansen, Lars N.; Krawczynski, Mike J.; Skemer, Philip

    2017-09-01

    Seismic anisotropy throughout the oceanic lithosphere is often assumed to be generated by fossilized texture formed during deformation at asthenospheric temperatures close to the ridge. Here we investigate the effect of high-temperature and high-pressure static annealing on the texture of previously deformed olivine aggregates to simulate residence of deformed peridotite in the lithosphere. Our experiments indicate that the orientation and magnitude of crystallographic preferred orientation (CPO) will evolve due to the preferential growth of grains with low dislocation densities. These observations suggest that texture and stored elastic strain energy promote a style of grain growth that modifies the CPO of a deformed aggregate. We demonstrate that these microstructural changes alter the orientation distributions and magnitudes of seismic wave velocities and anisotropy. Therefore, static annealing may complicate the inference of past deformation kinematics from seismic anisotropy in the lithosphere.

  7. Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation

    Science.gov (United States)

    Mueller, S.; Choy, G.L.; Spence, W.

    1996-01-01

    Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.

  8. First results of high-resolution modeling of Cenozoic subduction orogeny in Andes

    Science.gov (United States)

    Liu, S.; Sobolev, S. V.; Babeyko, A. Y.; Krueger, F.; Quinteros, J.; Popov, A.

    2016-12-01

    The Andean Orogeny is the result of the upper-plate crustal shortening during the Cenozoic Nazca plate subduction beneath South America plate. With up to 300 km shortening, the Earth's second highest Altiplano-Puna Plateau was formed with a pronounced N-S oriented deformation diversity. Furthermore, the tectonic shortening in the Southern Andes was much less intensive and started much later. The mechanism of the shortening and the nature of N-S variation of its magnitude remain controversial. The previous studies of the Central Andes suggested that they might be related to the N-S variation in the strength of the lithosphere, friction coupling at slab interface, and are probably influenced by the interaction of the climate and tectonic systems. However, the exact nature of the strength variation was not explored due to the lack of high numerical resolution and 3D numerical models at that time. Here we will employ large-scale subduction models with a high resolution to reveal and quantify the factors controlling the strength of lithospheric structures and their effect on the magnitude of tectonic shortening in the South America plate between 18°-35°S. These high-resolution models are performed by using the highly scalable parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model). This code is based on finite difference staggered grid approach and employs massive linear and non-linear solvers within the PETSc library to complete high-performance MPI-based parallelization in geodynamic modeling. Currently, in addition to benchmark-models we are developing high-resolution (Paleozoic-Cenozoic sediments above the uppermost crust in the Subandean Ranges. Future work will be focused on the origin of different styles of deformation and topography evolution in Altiplano-Puna Plateau and Central-Southern Andes through 3D modeling of large-scale interaction of subducting and overriding plates.

  9. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion

    Science.gov (United States)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.; Paul, A.; Zhao, L.

    2018-02-01

    The Western Alps, although being intensively investigated, remains elusive when it comes to determining its lithospheric structure. New inferences on the latter are important for the understanding of processes and mechanisms of orogeny needed to unravel the dynamic evolution of the Alps. This situation led to the deployment of the CIFALPS temporary experiment, conducted to address the lack of seismological data amenable to high-resolution seismic imaging of the crust and the upper mantle. We perform a 3-D isotropic full-waveform inversion (FWI) of nine teleseismic events recorded by the CIFALPS experiment to infer 3-D models of both density and P- and S-wave velocities of the Alpine lithosphere. Here, by FWI is meant the inversion of the full seismograms including phase and amplitude effects within a time window following the first arrival up to a frequency of 0.2 Hz. We show that the application of the FWI at the lithospheric scale is able to generate images of the lithosphere with unprecedented resolution and can furnish a reliable density model of the upper lithosphere. In the shallowest part of the crust, we retrieve the shape of the fast/dense Ivrea body anomaly and detect the low velocities of the Po and SE France sedimentary basins. The geometry of the Ivrea body as revealed by our density model is consistent with the Bouguer anomaly. A sharp Moho transition is followed from the external part (30 km depth) to the internal part of the Alps (70-80 km depth), giving clear evidence of a continental subduction event during the formation of the Alpine Belt. A low-velocity zone in the lower lithosphere of the S-wave velocity model supports the hypothesis of a slab detachment in the western part of the Alps that is followed by asthenospheric upwelling. The application of FWI to teleseismic data helps to fill the gap of resolution between traditional imaging techniques, and enables integrated interpretations of both upper and lower lithospheric structures.

  10. The lithospheric mantle below southern West Greenland

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Waight, Tod Earle; Pearson, D. Graham

    2009-01-01

    Geothermobarometry of primarily garnet lherzolitic xenoliths from several localities in southern West Greenland is applied to address the diamond potential, pressure and temperature distribution and the stratigraphy of the subcontinental lithospheric mantle ~600 Ma ago. The samples are from...

  11. Subduction of fracture zones controls mantle melting and geochemical signature above slabs.

    Science.gov (United States)

    Manea, Vlad C; Leeman, William P; Gerya, Taras; Manea, Marina; Zhu, Guizhi

    2014-10-24

    For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes.

  12. Subduction Factory 3: An Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature

    Science.gov (United States)

    Hacker, Bradley R.; Abers, Geoffrey A.

    2004-01-01

    An Excel macro to calculate mineral and rock physical properties at elevated pressure and temperature is presented. The workbook includes an expandable database of physical parameters for 52 rock-forming minerals stable at high pressures and temperatures. For these minerals the elastic moduli, densities, seismic velocities, and H2O contents are calculated at any specified P and T conditions, using basic thermodynamic relationships and third-order finite strain theory. The mineral modes of suites of rocks are also specifiable, so that their predicted aggregate properties can be calculated using standard solid mixing theories. A suite of sample rock modes taken from the literature provides a useful starting point. The results of these calculations can be applied to a wide variety of geophysical questions including estimating the alteration of the oceanic crust and mantle; predicting the seismic velocities of lower-crustal xenoliths; estimating the effects of changes in mineralogy, pressure and temperature on buoyancy; and assessing the H2O content and mineralogy of subducted lithosphere from seismic observations.

  13. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    Science.gov (United States)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  14. Magma mixing in the Kalaqin core complex, northern North China Craton: Linking deep lithospheric destruction and shallow extension

    Science.gov (United States)

    Fu, Lebing; Wei, Junhao; Tan, Jun; Santosh, M.; Zhang, Daohan; Chen, Jiajie; Li, Yanjun; Zhao, Shaoqing; Peng, Lina

    2016-09-01

    .4, T2DM(Nd)Group 1 = 1705-1775 Ma, (87Sr/86Sr)iGroup 2 = 0.70586-0.70587, εNd(t)Group 2 = - 0.6 to - 0.7, T2DM(Nd)Group 2 = 971-978 Ma, and εHf(t)Group 2 = - 4.5 to - 10.0. The mineralogical and geochemical features suggest that the host Jiguanzi adamellite and Group 2 enclaves were generated through synchronous mixing and fractional crystallization accompanied by mechanical and chemical exchanges. The Group 1 enclaves showing cogenetic affinity with their felsic host represent the mechanical concentrations of mafic minerals and accessory phases from evolved hybrid host magma. Magma sources of the host Jiguanzi adamellite and its Group 1 enclaves are dominated by lower crust (LCC) components, whereas those for the Group 2 enclaves are dominated by metasomatized lithospheric mantle. The magma genesis involved complex multi-stage crust-mantle interaction processes including: (1) lithospheric mantle modification induced by Triassic subduction of the Paleo-Asian Ocean slab and/or Triassic-Cretaceous asthenospheric melt underplating; and (2) melting of the ancient LCC and lithospheric mantle, and hybridization of mantle- and crust-derived melts. In conjunction with regional geological and geochemical data, we argue that the Late Jurassic-Early Cretaceous shallow extension events represented by the Kalaqin MCC triggered deep-seated multi-stage magmatism and lithospheric destruction, and the continuous generation of magma further strengthened the extension and result in more extensive lithospheric thinning.

  15. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous.

    Science.gov (United States)

    Liu, Lijun; Spasojevic, Sonja; Gurnis, Michael

    2008-11-07

    Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.

  16. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica

    Science.gov (United States)

    Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.

    2016-01-01

    Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal

  17. Westernmost Mediterranean Mantle Tomography: Slab Rollback and Delaminated Atlas Lithosphere

    Science.gov (United States)

    Bezada, M. J.; Humphreys, E.

    2012-12-01

    We present a new velocity model for the upper mantle in the westernmost Mediterranean including the Iberian Peninsula and northern Morocco. Our imaging improves over previous efforts by taking advantage of the data generated by the PICASSO, IberArray, TopoMed and connected seismograph deployments and by using a new methodology that includes finite-frequency effects and iterative ray tracing, utilizes local earthquakes in addition to teleseismic events and includes constraints from surface wave analyses. We image a subducted slab as a high velocity anomaly located under the Alboran Sea and southern Spain that extends to the bottom of the transition zone. The anomaly has an arcuate shape at most depths and reaches the surface beneath Gibraltar but not under southern Spain. The N-S oriented Gibraltar and E-W oriented southern Spain segments of the slab appear to be separated by a vertical tear or "slab gap". Under the Atlas Mountains in northern Morocco we image low velocities to depths of over 200 km and a high-velocity body at depths of 300-450 km beneath the Middle Atlas, which we tentatively interpret as delaminated lithosphere.

  18. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    Science.gov (United States)

    Pilet, Sebastien; Guex, Jean; Muntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Schaltegger, Urs

    2016-04-01

    The temporal coincidence between large igneous provinces (LIPs) and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic (T-J) and Pliensbachian-Toarcian (Pl-To) boundaries combined with geochronological data in order to establish the sequence of events that initiate two of the major mass extinctions recorded in Earth's history. This synthesis demonstrates that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. The initial regressive events recorded at T-J and Pl-To boundaries seem difficult to reconcile either with large initial CO2 degassing associated with plume activity or by volatile-release (CO2, CH4, Cl2) from deep sedimentary reservoirs during contact metamorphism associated to dykes and sills intrusion because massive CO2 degassing is expected to produce super greenhouse conditions. We evaluate, here, an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Petrological constraints on primary magmas indicate that the mantle is hotter and melts more extensively to produce LIP lavas than for current oceanic islands basalts. However, available data suggest that the Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. The presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. This initial step of thermal erosion / thermal heating of the cratonic lithosphere is critical to understand the volatile budget associated with LIPs while

  19. Thermal buoyancy on Venus - Underthrusting vs subduction

    Science.gov (United States)

    Burt, Jeffrey D.; Head, James W.

    1992-01-01

    The thermal and buoyancy consequences of the subduction endmember are modeled in an attempt to evaluate the conditions distinguishing underthrusting and subduction. Thermal changes in slabs subducting into the Venusian mantle with a range of initial geotherms are used to predict density changes and, thus, slab buoyancy. Based on a model for subduction-induced mantle flow, it is then argued that the angle of the slab dip helps differentiate between underthrusting and subduction. Mantle flow applies torques to the slab which, in combination with torques due to slab buoyancy, act to change the angle of slab dip.

  20. Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa.

    Science.gov (United States)

    Moyen, Jean-François; Stevens, Gary; Kisters, Alexander

    2006-08-03

    Although plate tectonics is the central geological process of the modern Earth, its form and existence during the Archaean era (4.0-2.5 Gyr ago) are disputed. The existence of subduction during this time is particularly controversial because characteristic subduction-related mineral assemblages, typically documenting apparent geothermal gradients of 15 degrees C km(-1) or less, have not yet been recorded from in situ Archaean rocks (the lowest recorded apparent geothermal gradients are greater than 25 degrees C km(-1)). Despite this absence from the rock record, low Archaean geothermal gradients are suggested by eclogitic nodules in kimberlites and circumstantial evidence for subduction processes, including possible accretion-related structures, has been reported in Archaean terrains. The lack of spatially and temporally well-constrained high-pressure, low-temperature metamorphism continues, however, to cast doubt on the relevance of subduction-driven tectonics during the first 1.5 Gyr of the Earth's history. Here we report garnet-albite-bearing mineral assemblages that record pressures of 1.2-1.5 GPa at temperatures of 600-650 degrees C from supracrustal amphibolites from the mid-Archaean Barberton granitoid-greenstone terrain. These conditions point to apparent geothermal gradients of 12-15 degrees C-similar to those found in recent subduction zones-that coincided with the main phase of terrane accretion in the structurally overlying Barberton greenstone belt. These high-pressure, low-temperature conditions represent metamorphic evidence for cold and strong lithosphere, as well as subduction-driven tectonic processes, during the evolution of the early Earth.

  1. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand.

    Science.gov (United States)

    Wannamaker, Philip E; Caldwell, T Grant; Jiracek, George R; Maris, Virginie; Hill, Graham J; Ogawa, Yasuo; Bibby, Hugh M; Bennie, Stewart L; Heise, Wiebke

    2009-08-06

    Newly forming subduction zones on Earth can provide insights into the evolution of major fault zone geometries from shallow levels to deep in the lithosphere and into the role of fluids in element transport and in promoting rock failure by several modes. The transpressional subduction regime of New Zealand, which is advancing laterally to the southwest below the Marlborough strike-slip fault system of the northern South Island, is an ideal setting in which to investigate these processes. Here we acquired a dense, high-quality transect of magnetotelluric soundings across the system, yielding an electrical resistivity cross-section to depths beyond 100 km. Our data imply three distinct processes connecting fluid generation along the upper mantle plate interface to rock deformation in the crust as the subduction zone develops. Massive fluid release just inland of the trench induces fault-fracture meshes through the crust above that undoubtedly weaken it as regional shear initiates. Narrow strike-slip faults in the shallow brittle regime of interior Marlborough diffuse in width upon entering the deeper ductile domain aided by fluids and do not project as narrow deformation zones. Deep subduction-generated fluids rise from 100 km or more and invade upper crustal seismogenic zones that have exhibited historic great earthquakes on high-angle thrusts that are poorly oriented for failure under dry conditions. The fluid-deformation connections described in our work emphasize the need to include metamorphic and fluid transport processes in geodynamic models.

  2. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere

    NARCIS (Netherlands)

    Čížková, H.; van den Berg, A.P.; Spakman, W.; Matyska, C.

    2012-01-01

    The viscosity of the mantle is indispensable for predicting Earth's mechanical behavior at scales ranging from deep mantle material flow to local stress accumulation in earthquakes zones. But, mantle viscosity is not well determined. For the lower mantle, particularly, only few constraints result

  3. Influence of Initial Geometry and Boundary Conditions on Flat Subduction Models and Resulting Topography

    Science.gov (United States)

    Nelson, P.; Moucha, R.

    2014-12-01

    Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.

  4. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    Science.gov (United States)

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  5. H2O and CO2 devolatilization in subduction zones: implications for the global water and carbon cycles (Invited)

    Science.gov (United States)

    van Keken, P. E.; Hacker, B. R.; Syracuse, E. M.; Abers, G. A.

    2010-12-01

    Subduction of sediments and altered oceanic crust functions as a major carbon sink. Upon subduction the carbon may be released by progressive metamorphic reactions, which can be strongly enhanced by free fluids. Quantification of the CO2 release from subducting slabs is important to determine the provenance of CO2 that is released by the volcanic arc and to constrain the flux of carbon to the deeper mantle. In recent work we used a global set of high resolution thermal models of subduction zones to predict the flux of H2O from the subducting slab (van Keken, Hacker, Syracuse, Abers, Subduction factory 4: Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., under review) which provides a new estimate of the dehydration efficiency of the global subducting system. It was found that mineralogically bound water can pass efficiently through old and fast subduction zones (such as in the western Pacific) but that warm subduction zones (such as Cascadia) see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust dehydrates significantly. The degree and depth of dehydration is highly diverse and strongly depends on (p,T) and bulk rock composition. On average about one third of subducted H2O reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The present-day global flux of H2O to the deep mantle translates to an addition of about one ocean mass over the age of the Earth. We extend the slab devolatilization work to carbon by providing an update to Gorman et al. (Geochem. Geophys. Geosyst, 2006), who quantified the effects of free fluids on CO2 release. The thermal conditions were based on three end-member subduction zones with linear interpolation to provide a global CO2 flux. We use the new high resolution and global set of models to provide higher resolution predictions for the provenance and pathways of CO2 release to

  6. Seismic anisotropy of oceanic islands in East Sea of Korea from P-receiver functions: Implication for tectonic origin of the backarc basin

    Science.gov (United States)

    Kim, HyeJeong; Kim, YoungHee

    2017-04-01

    The volcanic islands (Dok, Ulleung, and Jeju islands) in East Sea of Korea sit on a backarc basin behind the Japan island arc. East Sea of Korea consists of three ocean basins (Ulleung, Japan, and Sato basins) formed since pre-Oligocene. Of the three basins, Ulleung Basin is least studied and only previously considered to include remnant continental block in the northern end of the basin, where Dok Island and Ulleung Island are located. We investigate seismic evidence of an ancient rifting in a lithospheric structure beneath the islands and eastern margin of Korean Peninsula using teleseismic P-to-S converted phases. Seismic anisotropy in particular can be a signature of the mantle flow during the subduction and extension process. By computing and modeling receiver functions, we retrieve detailed crustal and uppermost mantle structure and anisotropy, and use these geophysical results to understand the origin of the islands and the tectonic evolution of the back-arc basin. Our analysis shows three main results: (1) thicker than normal oceanic crust (˜20 km) beneath the islands; (2) a dipping Moho under Jeju and Ulleung islands; (3) a presence of lithospheric seismic anisotropy under Jeju Island. In particular, a strike of dipping Moho varies within Ulleung Island (extending 50 km laterally), which can be explained by isostacy. This evidence supports the existence of ancient continental block within northern part of Ulleung Basin. Strength of anisotropy under Jeju Island is approximately 10 % in both P- and S-wave velocities with fast symmetric axis in about N20˚ E within the crust. Three islands all show dissimilar seismological properties despite of their temporal proximity to the formation and opening of the backarc. This heterogeneous character of the region can be explained by the injection of mantle volatiles in response to the dynamics of the subduction system.

  7. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2017-07-01

    The timing and magnitude of a Pacific plate motion change within the past 10 Ma remains enigmatic, due to the noise associated with finite-rotation data. Nonetheless, it has been hypothesized that this change was driven by the arrival of the Ontong Java Plateau (OJP) at the Melanesian arc and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution, building on previous efforts to mitigate the impact of finite-rotation data noise. We find that the largest change in Pacific plate-motion direction occurred between 10 and 5 Ma, with the plate rotating clockwise. We subsequently develop and use coupled global numerical models of the mantle/lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key drivers of this kinematic change.

  8. Finite-frequency P-wave tomography of the Western Canada Sedimentary Basin: Implications for the lithospheric evolution in Western Laurentia

    Science.gov (United States)

    Chen, Yunfeng; Gu, Yu Jeffrey; Hung, Shu-Huei

    2017-02-01

    The lithosphere beneath the Western Canada Sedimentary Basin has potentially undergone Precambrian subduction and collisional orogenesis, resulting in a complex network of crustal domains. To improve the understanding of its evolutionary history, we combine data from the USArray and three regional networks to invert for P-wave velocities of the upper mantle using finite-frequency tomography. Our model reveals distinct, vertically continuous high (> 1%) velocity perturbations at depths above 200 km beneath the Precambrian Buffalo Head Terrane, Hearne craton and Medicine Hat Block, which sharply contrasts with those beneath the Canadian Rockies (lithosphere is substantially thinner beneath the adjacent Buffalo Head Terrane (160 km) and Medicine Hat Block (200 km). These findings are consistent with earlier theories of tectonic assembly in this region, which featured distinct Archean and Proterozoic plate convergences between the Hearne craton and its neighboring domains. The highly variable, bimodally distributed craton thicknesses may also reflect different lithospheric destruction processes beneath the western margin of Laurentia.

  9. Recycling Revisited: Where did all the Subducted Sediments go?

    Science.gov (United States)

    Hofmann, A. W.; Chauvel, C.; Lewin, E.; Kelemen, P. B.; Hacker, B. R.

    2016-12-01

    Several lines of reasoning have revived the idea [1] that subduction has recycled continent-derived sediments into the mantle on a massive scale. For example, well-known peaks in zircon ages have been reinterpreted as reflecting variable rates of crust destruction via erosion and sediment subduction [2]. In addition, assessment of the trace element budgets of subducted sediments and arc volcanics, as well as geological and geophysical studies of accretionary wedges have led to estimates that about one mass of present-day continental crust has been returned to the mantle [3]. If these ideas are correct, then recycled sedimentary components should be present in MORB and OIB sources. As previously established, Nb/U and 87Sr/86Sr are negatively correlated in all EM2-type OIBs, clearly indicating continental/sedimentary input. However, the MORB source reservoir, being depleted in incompatible elements, is particularly susceptible to "pollution" by subducted sediments. Chauvel et al. [4] modeled the Hf-Nd isotopic array of MORBs+OIBs and concluded that it requires the addition of up to 6 % subducted sediment. We revisit this issue and show that global MORBs show no decrease in Nb/U with increasing 87Sr/86Sr, ruling out extensive addition of recycled sediment into global MORB sources. Instead, the Hf-Nd array can be obtained by recycled alkali basalts derived from subducted seamounts and ocean islands, rather than sediments. Moreover, mantle plumes with clearly identifiable sediment input contribute less than 20% of the total plume flux. We conclude that most of the subducted sediment flux is not returned to the convecting mantle. Instead, its most plausible fate is to be underplated beneath existing continental crust via "relamination" [5]. These results imply that continental recycling is subordinate and the growth of the continental crust has been largely irreversible. [1] Armstrong, 1968, Rev. Geophys. 6, 175. [2] Hawkesworth et al., 2009, Science 323, 49. [3] Porter

  10. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  11. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    Science.gov (United States)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  12. Formation of cratonic lithosphere: An integrated thermal and petrological model

    Science.gov (United States)

    Herzberg, Claude; Rudnick, Roberta

    2012-09-01

    The formation of cratonic mantle peridotite of Archean age is examined within the time frame of Earth's thermal history, and how it was expressed by temporal variations in magma and residue petrology. Peridotite residues that occupy the lithospheric mantle are rare owing to the effects of melt-rock reaction, metasomatism, and refertilization. Where they are identified, they are very similar to the predicted harzburgite residues of primary magmas of the dominant basalts in greenstone belts, which formed in a non-arc setting (referred to here as "non-arc basalts"). The compositions of these basalts indicate high temperatures of formation that are well-described by the thermal history model of Korenaga. In this model, peridotite residues of extensive ambient mantle melting had the highest Mg-numbers, lowest FeO contents, and lowest densities at ~ 2.5-3.5 Ga. These results are in good agreement with Re-Os ages of kimberlite-hosted cratonic mantle xenoliths and enclosed sulfides, and provide support for the hypothesis of Jordan that low densities of cratonic mantle are a measure of their high preservation potential. Cratonization of the Earth reached its zenith at ~ 2.5-3.5 Ga when ambient mantle was hot and extensive melting produced oceanic crust 30-45 km thick. However, there is a mass imbalance exhibited by the craton-wide distribution of harzburgite residues and the paucity of their complementary magmas that had compositions like the non-arc basalts. We suggest that the problem of the missing basaltic oceanic crust can be resolved by its hydration, cooling and partial transformation to eclogite, which caused foundering of the entire lithosphere. Some of the oceanic crust partially melted during foundering to produce continental crust composed of tonalite-trondhjemite-granodiorite (TTG). The remaining lithosphere gravitationally separated into 1) residual eclogite that continued its descent, and 2) buoyant harzburgite diapirs that rose to underplate cratonic nuclei

  13. Xenoliths in Eocene lavas from Central Tibet record carbonated metasomatism of the lithosphere

    Science.gov (United States)

    Goussin, Fanny; Cordier, Carole; Boulvais, Philippe; Guillot, Stéphane; Roperch, Pierrick; Replumaz, Anne

    2017-04-01

    Nanjagbarwa in the Tethyan Himalayas (3.6-5.5 Ma) [Yang and Woolley, 2006]. Considering as such the Nangqian xenocrystic cumulates, Eocene carbonatites preferentially occurred on the three edges of the Songpan-Ganze block, and we propose that their mantellic sources were all affected by an input of subducted carbonates during the Triassic closure of the Songpan-Ganze ocean. Ages and local field relationships furthermore indicate that melting occurred during Eocene-Oligocene compressive events that propagated outward from the Songpan-Ganze block, suggesting renewed subduction of the block margins following the onset of the India-Asia collision. References: Spurlin, M. S., Yin, A., Horton, B. K., Zhou, J., & Wang, J. (2005). Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geological Society of America Bulletin, 117(9-10), 1293-1317. Xu, Y., Bi, X. W., Hu, R. Z., Chen, Y. W., Liu, H. Q., & Xu, L. L. (2016). Geochronology and geochemistry of Eocene potassic felsic intrusions in the Nangqian basin, eastern Tibet: Tectonic and metallogenic implications. Lithos, 246, 212-227. Yang, Z., & Woolley, A. (2006). Carbonatites in China: a review. Journal of Asian Earth Sciences, 27(5), 559-575.

  14. Water in the Cratonic Mantle Lithosphere

    Science.gov (United States)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents ( 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (water contents. The olivine inclusions, however, may have been protected from metasomatism by their host diamond and record the overall low olivine water content of

  15. Modeling Geodynamic Mobility of Anisotropic Lithosphere

    Science.gov (United States)

    Perry-Houts, J.; Karlstrom, L.

    2016-12-01

    The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.

  16. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    Science.gov (United States)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located

  17. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions

    Science.gov (United States)

    Yang, Haiyan; Peng, Hengchu; Hu, Jiafu

    2017-05-01

    Yunnan is located at the margin of southeast Tibet, where dramatic tectonic activities occur. In this study, we calculated the P and S receiver functions by the deconvolution of three-component seismic data from 48 permanent broad-band stations deployed in Yunnan region. In order to improve signal-noise ratios of the receiver functions, we move-out corrected receiver functions to a reference epicentral distance of 67°, and then stacked them to one trace for each station. Finally, the stacked traces were converted to the depth domain to obtain the crustal and lithospheric thicknesses beneath each station. In southwestern Yunnan (at the west side of the Jinshajiang-Red River Fault), the crustal thicknesses from the P-wave receiver functions (PRFs) and from the S-wave receiver functions (SRFs) are in the ranges of 30-36 km, and of 33-39 km, respectively. But in northwestern Yunnan, the crustal thicknesses from PRFs and SRFs are from 66 to 69 km and from 63 to 66 km, respectively. Our results show that the crustal thicknesses in Yunnan from PRFs and SRFs are consistent, with a maximum deviation of 3 km; and increase gradually from ∼30 km in the south to ∼68 km in the northwest. Besides, the lithospheric thickness from PRFs is also similar to that from SRFs, with the largest difference of 15-20 km in southeastern Yunnan. At the west side of the Jinshajiang-Red River Fault in western Yunnan, it is only about 80-100 km, and increases to 140-150 km regionally in northern and southeastern Yunnan. The thinned lithosphere extends eastward from western Yunnan to eastern Yunnan. We attribute the thinned lithosphere to the upwelling of hot upper mantle materials associated with the eastward subduction of the Indian plate.

  18. Highly CO2-supersaturated melts in the Pannonian lithospheric mantle - A transient carbon reservoir?

    Science.gov (United States)

    Créon, Laura; Rouchon, Virgile; Youssef, Souhail; Rosenberg, Elisabeth; Delpech, Guillaume; Szabó, Csaba; Remusat, Laurent; Mostefaoui, Smail; Asimow, Paul D.; Antoshechkina, Paula M.; Ghiorso, Mark S.; Boller, Elodie; Guyot, François

    2017-08-01

    Subduction of carbonated crust is widely believed to generate a flux of carbon into the base of the continental lithospheric mantle, which in turn is the likely source of widespread volcanic and non-volcanic CO2 degassing in active tectonic intracontinental settings such as rifts, continental margin arcs and back-arc domains. However, the magnitude of the carbon flux through the lithosphere and the budget of stored carbon held within the lithospheric reservoir are both poorly known. We provide new constraints on the CO2 budget of the lithospheric mantle below the Pannonian Basin (Central Europe) through the study of a suite of xenoliths from the Bakony-Balaton Highland Volcanic Field. Trails of secondary fluid inclusions, silicate melt inclusions, networks of melt veins, and melt pockets with large and abundant vesicles provide numerous lines of evidence that mantle metasomatism affected the lithosphere beneath this region. We obtain a quantitative estimate of the CO2 budget of the mantle below the Pannonian Basin using a combination of innovative analytical and modeling approaches: (1) synchrotron X-ray microtomography, (2) NanoSIMS, Raman spectroscopy and microthermometry, and (3) thermodynamic models (Rhyolite-MELTS). The three-dimensional volumes reconstructed from synchrotron X-ray microtomography allow us to quantify the proportions of all petrographic phases in the samples and to visualize their textural relationships. The concentration of CO2 in glass veins and pockets ranges from 0.27 to 0.96 wt.%, higher than in typical arc magmas (0-0.25 wt.% CO2), whereas the H2O concentration ranges from 0.54 to 4.25 wt.%, on the low end for estimated primitive arc magmas (1.9-6.3 wt.% H2O). Trapping pressures for vesicles were determined by comparing CO2 concentrations in glass to CO2 saturation as a function of pressure in silicate melts, suggesting pressures between 0.69 to 1.78 GPa. These values are generally higher than trapping pressures for fluid inclusions

  19. IODP expedition 334: An investigation of the sedimentary record, fluid flow and state of stress on top of the seismogenic zone of an erosive subduction margin

    Digital Repository Service at National Institute of Oceanography (India)

    Vannucchi, P.; Ujiie, K.; Stroncik, N.; IODP Exp. 334 Scientific Party; Yatheesh, V.

    The Costa Rica Seismogenesis Project (CRISP) is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP)