WorldWideScience

Sample records for subducted oceanic plate

  1. Reaction-induced rheological weakening enables oceanic plate subduction

    OpenAIRE

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite goug...

  2. Reaction-induced rheological weakening enables oceanic plate subduction.

    Science.gov (United States)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  3. Subduction of oceanic plate irregularities and seismicity distribution along the Mexican Subduction Zone

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Gerya, Taras; Wong, Raul-Valenzuela; Radulian, Mircea

    2017-04-01

    It is known that oceanic plates morphology is not a simple one, but rather complicated by a series of irregularities as seamounts, fracture zones and mid-ocean ridges. These features present on the oceanic floor form part of the fabric of oceanic crust, and once formed they move together with the oceanic plates until eventually enter a subduction zone. Offshore Mexico the oceanic Cocos plate seafloor is littered with relatively small but numerous seamounts and seamount chains, and also large fracture zones. In this study we investigate the relationship between these oceanic irregularities located in the vicinity of the trench in Mexico and the distribution of subduction seismicity, including the rupture history of large subduction zone earthquakes. Since the interseismic locking degree is influenced by the rheological properties of crustal and mantle rocks, any variations along strike will result in significant changes in seismic behavior due to a change in frictional stability. Our preliminary study shows a direct relationship between the presence of seamounts chains on the incoming oceanic plate and the subduction seismicity distribution. We also found a clear relationship between the subduction of the Tehuantepec fracture zone (TFZ) and the low seismic activity in the region where this fracture zone intersects the trench. This region is also long term conspicuously quiet and considered a seismic gap where no significant large earthquake has occurred in more than 100 years. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations specifically tailored for the subduction of the Cocos plate in the region of TFZ we show that the weakened serpentinized fracture zone is partially scraped out in the forearc region because of its low strength and positive buoyancy. The presence of serpentinite in the fore arc apparently lowers the degree of interseismic locking, producing a seismic gap in southern Mexico.

  4. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  5. Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust

    NARCIS (Netherlands)

    Edwards, Sarah J.; Schellart, Wouter P.; Duarte, Joao C.

    2015-01-01

    Continental subduction takes place in the final stage of subduction when all oceanic lithosphere is consumed and continental passive margin is pulled into the mantle. When the overriding plate is oceanic, dense forearc oceanic lithosphere might be obducted onto light continental crust forming an

  6. The effects of the overriding plate thermal state on the slab dip in an ocean-continent subduction system

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1016/j.crte.2011.01.005

    2011-01-01

    To evaluate the effects of variations in the thermal state of the overriding plate on the slab dip in an ocean-continent subduction system, a 2-D finite element thermo-mechanical model was implemented. The lithosphere base was located at the depth of the 1600 K isotherm. Numerical simulations were performed while taking into account four different initial thicknesses for the oceanic lithosphere (60, 80, 95 and 110 km) and five different thicknesses of the overriding plate, as compared in terms of the continental-oceanic plate thickness ratio (100, 120, 140, 160 and 200% of the oceanic lithosphere thickness). The results of numerical modeling indicate that a high variability of the subducting plate geometry occurs for an oceanic lithosphere thickness ranging from 60 to 80 km, while the variability decreases where the oceanic plates are thicker (95 and 110 km). Furthermore, the slab dip strongly depends on the thermal state of the overriding plate, and, in particular, the slab dip decreases with the increase in...

  7. Effect of a weak layer at the base of an oceanic plate on subduction dynamics

    Science.gov (United States)

    Carluccio, Roberta; Kaus, Boris

    2017-04-01

    The plate tectonics model relies on the concept of a relatively rigid lithospheric lid moving over a weaker asthenosphere. In this frame, the lithosphere asthenosphere boundary (LAB) is a first-order discontinuity that accommodates differential motions between tectonic plates and the underlying mantle. Recent seismic studies have revealed the existence of a low velocity and high electrical conductivity layer at the base of subducting tectonic plates. This thin layer has been interpreted as being weak and slightly buoyant and was suggested to affect the dynamics of subducting plates. However, geodynamically, the role of a weak layer at the base of the lithosphere remains poorly studied, especially at subduction zones. Therefore, we here use numerical models to investigate the first-order effects of a weak buoyant layer at the LAB on subduction dynamics. We employ both 2-D and 3-D models in which the slab and mantle are either linear viscous or have a more realistic temperature-dependent visco-elastic-plastic rheology. Results show that a weak layer affects the dynamics of the plates, foremost by increasing the subduction speed. The impact of this effect depends on the thickness of the layer and the viscosity contrast between the mantle and the weak layer. For moderate viscosity contrasts (1000), it can also change the morphology of the subduction itself, perhaps because this changes the overall effective viscosity contrast between the slab the and the mantle. For thinner layers, the overall effect is reduced. Yet, if seismological observations are correct that suggests that this layer is 10 km thick and partially molten, such that the viscosity is 1000 times lower than that of the mantle, our models suggest that this effect should be measurable. Some of our models also show a pile-up of weak material in the bending zone of the subducting plate, consistent with recent seismological observations.

  8. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NARCIS (Netherlands)

    Gaina, C.; Torsvik, T.H.; van Hinsbergen, D.J.J.; Medvedev, S.; Werner, S.C.; Labails, C.

    2013-01-01

    We present a model for the Jurassic to Present evolution of plate boundaries and oceanic crust of the African plate based on updated interpretation of magnetic, gravity and other geological and geophysical data sets. Location of continent ocean boundaries and age and geometry of old oceanic crust

  9. Plate Tectonic Consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere

    CERN Document Server

    Heine, Christian; McKay, Hamish; Müller, R Dietmar

    2012-01-01

    The Banda Arc, situated west of Irian Jaya and in the easternmost extension of the Sunda subduction zone system, reveals a characteristic bowl-shaped geometry in seismic tomographic images. This indicates that the oceanic lithosphere still remains attached to the surrounding continental margins of northern Australia and the Bird's Head microcontinent. Major controversies exist between authors proposing an allochthonous or autochthonous origin of the Bird's Head block. Either scenario has important implications for plate kinematic models aiming to reconstruct the tectonic evolution of the region and the late Jurassic seaoor spreading geometry of this now subducted Argo-Tanimbar-Seram (ATS) ocean basin. Wider implications affect the tectonic conguration of the Tethyan-Pacic realm, the distribution of plate boundaries as well as the shape and size of continental blocks which have been rifted off the northeastern Gondwana margin during the Late Jurassic and are now accreted to the SE Asia margin. We apply structu...

  10. Structural context and variation of ocean plate stratigraphy, Franciscan Complex, California: insight into mélange origins and subduction-accretion processes

    Science.gov (United States)

    Wakabayashi, John

    2017-12-01

    The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of

  11. Alteration and dehydration of subducting oceanic crust within subduction zones: implications for décollement step-down and plate-boundary seismogenesis

    Science.gov (United States)

    Kameda, Jun; Inoue, Sayako; Tanikawa, Wataru; Yamaguchi, Asuka; Hamada, Yohei; Hashimoto, Yoshitaka; Kimura, Gaku

    2017-04-01

    The alteration and dehydration of predominantly basaltic subducting oceanic crustal material are thought to be important controls on the mechanical and hydrological properties of the seismogenic plate interface below accretionary prisms. This study focuses on pillow basalts exposed in an ancient accretionary complex within the Shimanto Belt of southwest Japan and provides new quantitative data that provide insight into clay mineral reactions and the associated dehydration of underthrust basalts. Whole-rock and clay-fraction X-ray diffraction analyses indicate that the progressive conversion of saponite to chlorite proceeds under an almost constant bulk-rock mineral assemblage. These clay mineral reactions may persist to deep crustal levels ( 320 °C), possibly contributing to the bulk dehydration of the basalt and supplying fluid to plate-boundary fault systems. This dehydration can also cause fluid pressurization at certain horizons within hydrous basalt sequences, eventually leading to fracturing and subsequent underplating of upper basement rock into the overriding accretionary prism. This dehydration-induced breakage of the basalt can explain variations in the thickness of accreted basalt fragments within accretionary prisms as well as the reported geochemical compositions of mineralized veins associated with exposed basalts in onland locations. This fracturing of intact basalt can also nucleate seismic rupturing that would subsequently propagate along seismogenic plate interfaces.[Figure not available: see fulltext.

  12. Subduction of the Tethys Oceans reconstructed from plate kinematics and mantle tomography

    NARCIS (Netherlands)

    Hafkenscheid, Edith

    2004-01-01

    This thesis is concerned with the large-scale history of subduction within the Tethyan region, the Alpine-Himalayan mountain chain that stretches from the Mediterranean to the Indonesian archipelago. We investigate whether we can contribute to a better understanding of the Tethyan evolution by

  13. Subducting Plate Breakup by Plume-Lithosphere Interaction

    Science.gov (United States)

    Koptev, A.; Gerya, T.; Jolivet, L.; Leroy, S. D.

    2016-12-01

    We use a 3D high-resolution thermo-mechanical modeling to investigate the impact of active mantle plume on a subducting lithospheric plate. Initial model setup consists of an overriding continental lithosphere and subducting lithospheric plate including oceanic and continental lithosphere. A mantle plume thermal anomaly has been initially seeded at the bottom of the model box underneath the continental segment of subducting plate. Mantle plume impingement on lithospheric bottom leads to thinning of continental lithosphere and decompressional melting of both lithospheric and sublithospheric mantle along stretched trench-parallel zone. Further continental breakup is followed by opening of an oceanic basin separating a newly formed microcontinent from the main subducting continent. Despite continuous push applied at the boundary of subducting plate, plume-induced oceanic basin opens during several Myrs reaching several hundred kilometers wide. Cooling of the mantle plume and beginning of collision between the separated microcontinent and the overriding continental plate lead to gradual closure of newly formed oceanic basin that gets further involved into subduction and collision. The final stage sees continental subduction of main body of subducting plate and simultaneous tectonic exhumation of the upper crust of the subducted microcontinent. This scenario involving a plume-induced rifting of a microcontinent away from main body of subducted plate can be compared to the Mesozoic-Cenozoic development of the African plate characterized by the consecutive separation of the Apulian microcontinent and Arabian plate (in the Jurassic and the Neogene, respectively) during subduction of Neo-Tethys oceanic lithosphere beneath the Eurasian margin.

  14. Dynamics of intraoceanic subduction initiation : 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites

    NARCIS (Netherlands)

    Maffione, Marco; Thieulot, Cedric|info:eu-repo/dai/nl/270177493; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624; Morris, Antony; Plümper, Oliver|info:eu-repo/dai/nl/37155960X; Spakman, Wim|info:eu-repo/dai/nl/074103164

    Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In

  15. A thermo-mechanical model of horizontal subduction below an overriding plate

    NARCIS (Netherlands)

    Hunen, Jeroen van; Berg, A.P. van den; Vlaar, N.J.

    2000-01-01

    Subduction of young oceanic lithosphere cannot be explained by the gravitational driving mechanisms of slab pull and ridge push. This deficiency of driving forces can be overcome by obduction of an actively overriding plate, which forces the young plate either to subduct or to collide. This

  16. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    Science.gov (United States)

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  17. Linking the initial subduction of the South Tianshan Oceanic Plate and associated magmatism to Kazakhstan orocline: insights from petrogenesis of granites in the southern Yili Block

    Science.gov (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2017-04-01

    The Kazakhstan orocline is a striking collage system of the Central Asian Orogenic Belt. It has been documented to be a composite continent via assembly of several orogenic components by the Devonian and finally to attain its U-shaped structure through oroclinal bending in the Late Paleozoic. In order to reveal the relationship between the Kazakhstan orocline and regional magmatism, granitic rocks including monzogranites and K-feldspar granites in the south limb of the orocline have been conducted geochronological and geochemical studies. Zircon LA-ICP-MS U-Pb dating of the monzogranites gave crystallization ages of 360±1.8 Ma and 360.5±1.7 Ma, and the K-feldspar granites have a coeval age (361.3±1.8 Ma). Both of the granites are high-K granites, and show enrichment in light rare earth elements (LREE) and obvious negative Eu anomalies. They display negative anomalies in Ba, Nb, Sr, Eu, and Ti. The K-feldspar granites have higher SiO2, K2O contents and lower MgO, Fe2O3T, Zr contents than those of the monzogranites. Geochemical data support that the K-feldspar granites are highly fractionated I-type granites, and the monzogranites are unfractionated I-type granites. Distinguishable Nd and Hf isotope suggest that the K-feldspar granites and the monzogranites may share a common magma chamber. The negative Eu anomalies and depletions of Ba and Sr possibly imply plagioclase as residue in the magma source. The Sr-Nd isotopic data and the ɛHf(t) values (-3.6 - 2.9) indicate that the parental magma was probably derived from crustal rock with minor mantle-derived melt. The new geochemical data and regional geology evidences indicate that the granites may be generated in a continental back-arc environment, which was inferred to be a response to the initial subduction of the South Tianshan Oceanic Plate. Given that the Kazakhstan orocline was developed during this period, it is plausible to link the initial subduction of the South Tianshan Oceanic Plate and associated

  18. Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves

    Science.gov (United States)

    Garth, Tom; Rietbrock, Andreas

    2017-09-01

    Guided wave dispersion is observed from earthquakes at 180-280 km depth recorded at stations in the fore-arc of Northern Chile, where the 44 Ma Nazca plate subducts beneath South America. Characteristic P-wave dispersion is observed at several stations in the Chilean fore-arc with high frequency energy (>5 Hz) arriving up to 3 s after low frequency (first motion dispersion observed at multiple stations, or the extended P-wave coda observed in arrivals from intermediate depth events within the Nazca plate. These signals can however be accurately accounted for if dipping low velocity fault zones are included within the subducting lithospheric mantle. A grid search over possible LVL and faults zone parameters (width, velocity contrast and separation distance) was carried out to constrain the best fitting model parameters. Our results imply that fault zone structures of 0.5-1.0 km thickness, and 5-10 km spacing, consistent with observations at the outer rise are present within the subducted slab at intermediate depths. We propose that these low velocity fault zone structures represent the hydrated structure within the lithospheric mantle. They may be formed initially by normal faults at the outer rise, which act as a pathway for fluids to penetrate the deeper slab due to the bending and unbending stresses within the subducting plate. Our observations suggest that the lithospheric mantle is 5-15% serpentinised, and therefore may transport approximately 13-42 Tg/Myr of water per meter of arc. The guided wave observations also suggest that a thin LVL (∼1 km thick) interpreted as un-eclogitised subducted oceanic crust persists to depths of at least 220 km. Comparison of the inferred seismic velocities with those predicted for various MORB assemblages suggest that this thin LVL may be accounted for by low velocity lawsonite-bearing assemblages, suggesting that some mineral-bound water within the oceanic crust may be transported well beyond the volcanic arc. While older

  19. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

    NARCIS (Netherlands)

    Meer, D.G. van der; Torsvik, T.H.; Spakman, W.; Hinsbergen, D.J.J. van; Amaru, M.L.

    2012-01-01

    The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean’s history since the Cretaceous period, and

  20. Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age

    Directory of Open Access Journals (Sweden)

    D. Arcay

    2012-12-01

    Full Text Available The properties of the subduction interplate domain are likely to affect not only the seismogenic potential of the subduction area but also the overall subduction process, as it influences its viability. Numerical simulations are performed to model the long-term equilibrium state of the subduction interplate when the diving lithosphere interacts with both the overriding plate and the surrounding convective mantle. The thermomechanical model combines a non-Newtonian viscous rheology and a pseudo-brittle rheology. Rock strength here depends on depth, temperature and stress, for both oceanic crust and mantle rocks. I study the evolution through time of, on one hand, the brittle-ductile transition (BDT depth, zBDT, and, on the other hand, of the kinematic decoupling depth, zdec, simulated along the subduction interplate. The results show that both a high friction and a low ductile strength at the asthenospheric wedge tip shallow zBDT. The influence of the weak material activation energy is of second order but not negligible. zBDT becomes dependent on the ductile strength increase with depth (activation volume if the BDT occurs at the interplate decoupling depth. Regarding the interplate decoupling depth, it is shallowed (1 significantly if mantle viscosity at asthenospheric wedge tip is low, (2 if the difference in mantle and interplate activation energy is weak, and (3 if the activation volume is increased. Very low friction coefficients and/or low asthenospheric viscosities promote zBDT = zdec. I then present how the subducting lithosphere age affects the brittle-ductile transition depth and the kinematic decoupling depth in this model. Simulations show that a rheological model in which the respective activation energies of mantle and interplate material are too close hinders the mechanical decoupling at the down-dip extent of the interplate

  1. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge

    NARCIS (Netherlands)

    Schellart, Wouter P.

    2005-01-01

    Geological observations indicate that along two active continental margins (East Asia and Mediterranean) major phases of overriding plate extension, resulting from subduction hinge-retreat, occurred synchronously with a reduction in subducting plate velocity. In this paper, results of fluid

  2. Geodynamical Analysis of Plate Reconstructions based on Subduction History Models

    Science.gov (United States)

    Quevedo, L. E.; Butterworth, N. P.; Matthews, K. J.; Morra, G.; Müller, R. D.

    2011-12-01

    We present a novel method to produce global subduction history models from plate reconstructions and use their predicted geodynamic behaviour as a quality metric for the physical consistency of absolute motions. We show that modelled slabs constructed by advecting material into the mantle according to absolute and relative plate motions given by a particular reconstruction are better correlated with the present day slab dips observed in mantle tomography than instantaneous kinematic quantities like present convergence rate. A complete simulation incorporating lithospheric thickness derived from oceanic age and a rheological model of the lithosphere was run using the Boundary Element Method-based software BEMEarth to infer the global pattern of mantle flow. The predicted plate motion orientations in the form of Euler pole location for the present day and mid-Cretaceous (125 Ma) were compared with the kinematic model for a set of rheologies and mantle structures, and found to be a robust and efficient indicator of the physical consistency of kinematic reconstructions based on their effect on the balance of plate driving forces. As an application example, during the Early Cretaceous, the predicted motion of the Farallon plate was found to be more consistent with the regional geology of the Western North American Cordillera system than the instantaneous motion suggested by a reconstruction at 125 Ma based on sparse hotspot track data on the Pacific Plate. This suggests that a methodology based on forward geodynamic modellling could be used to predict absolute plate motions in reconstructions for times that are ill-constrained by observations constraining absolute plate motions.

  3. Slab detachment of subducted Indo-Australian plate beneath Sunda ...

    Indian Academy of Sciences (India)

    2007). We investigate the northward subduction of the. Indo-Australian plate along the eastern Sunda arc right from northwestern Sumatra, along Java to. Keywords. Slab detachment; subduction zone; Sunda arc; Indo-Australian slab; trench migration. J. Earth Syst. Sci. 120, No. 2, April 2011, pp. 193–204 c Indian Academy ...

  4. The subduction dichotomy of strong plates and weak slabs

    Science.gov (United States)

    Petersen, Robert I.; Stegman, Dave R.; Tackley, Paul J.

    2017-03-01

    A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography.

  5. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous.

    Science.gov (United States)

    Liu, Lijun; Spasojevic, Sonja; Gurnis, Michael

    2008-11-07

    Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.

  6. Geometry and seismic properties of the subducting Cocos plate in central Mexico

    Science.gov (United States)

    Kim, Y.; Clayton, R. W.; Jackson, J. M.

    2010-06-01

    The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans-Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low-velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson's and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure. The evidence of high water content within the oceanic crust explains the flat subduction geometry without strong coupling of two plates. This may also explain the nonvolcanic tremor activity and slow slip events occurring in the subducting plate and the overlying crust.

  7. A subduction zone reference frame based on slab geometry and subduction partitioning of plate motion and trench migration

    NARCIS (Netherlands)

    Schellart, W. P.

    2011-01-01

    The geometry of subducted slabs that interact with the transition zone depends critically on the partitioning of the subduction velocity (v S⊥) at the surface into its subducting plate motion component (vSP⊥) and trench migration component (vT⊥). Geodynamic models of progressive subduction

  8. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    OpenAIRE

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    2017-01-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distribut...

  9. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations

    Science.gov (United States)

    King, Scott D.; Hager, Bradford H.

    1990-01-01

    The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.

  10. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2013-01-01

    Subduction zones are complex 3-D features in which one tectonic plate sinks underneath another into the deep mantle. During subduction the overriding plate (OP) remains in physical contact with the subducting plate and stresses generated at the subduction zone interface and by mantle flowforce the

  11. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  12. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    Science.gov (United States)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  13. Seismic Structure of the Subducted Cocos Plate

    Science.gov (United States)

    Clayton, R. W.; Davis, P. M.; Perez-Campos, X.

    2007-05-01

    The Meso-American Subduction Experiment (MASE) was designed to determine the critical parameters to necessary to simulate the subduction process in Central Mexico . A preliminary analysis of the data shows a 200km section of the slab that is subhorizontal and to within the resolution of the receiver functions it underplates the continental crust with no intervening asthenosphere. This is an interesting situation because the short-term (GPS) and long-term (geologic) strain measurements show almost no compressive strain in this region. This would imply that the crust is decoupled from the subducting slab. Near the coast, the receiver functions show that the slab cuts through the crust at an approximately a 15-degree angle, and under the Trans-Mexican Volcanic Belt the slab becomes detached from the crust, but its geometry at depth is not yet determined from the receiver functions, but a well-developed mantle wedge is apparent from the attenuation of regional earthquakes.

  14. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    Science.gov (United States)

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  15. Diapir versus along-channel ascent of crustal material during plate convergence: Constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, Ming-Qi; Li, Zhong-Hai; Yang, Shao-Hua

    2017-09-01

    Subduction channel processes are crucial for understanding the material and energy exchange between the Earth's crust and mantle. Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. In addition, the crustal rocks generally undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channels; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. The thick overriding continental plate and the low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, the thin overriding lithosphere and the steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge

  16. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NARCIS (Netherlands)

    Maffione, Marco; van Hinsbergen, Douwe J.J.; de Gelder, Giovanni I.N.O.; van der Goes, Freek C.; Morris, Antony

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia.

  17. Finding the last 200Ma of subducted lithosphere in tomography and incorporating it into plate reconstructions

    Science.gov (United States)

    Suppe, J.; Wu, J.; Chen, Y. W.

    2016-12-01

    Precise plate-tectonic reconstruction of the Earth has been constrained largely by the seafloor magnetic-anomaly record of the present oceans formed during the dispersal of the last supercontinent since 200Ma. The corresponding world that was lost to subduction has been only sketchily known. We have developed methodologies to map in 3D these subducted slabs of lithosphere in seismic tomography and unfold them to the Earth surface, constraining their initial size, shapes and locations. Slab edges are commonly formed at times of plate reorganization (for example bottom edges typically record initiation of subduction) such that unfolded slabs fit together at times of reorganization, as we illustrate for the Nazca slab at 80Ma and the western Pacific slabs between Kamchatka and New Zealand at 50Ma. Mapping to date suggests that a relatively complete and decipherable record of lithosphere subducted over the last 200Ma may exist in the mantle today, providing a storehouse for new discoveries. We briefly illustrate our procedure for obtaining slab-constrained plate-tectonic models from tomography with our recent study of the Philippine Sea plate, whose motions and tectonic history have been the least known of the major plates because it has been isolated from the global plate and hotspot circuit by trenches. We mapped and unfolded 28 subducted slabs in the mantle under East Asia and Australia/Oceania to depths of 1200km, with a subducted area of 25% of present-day global oceanic lithosphere, and incorporated them as constraints into a new globally-consistent plate reconstruction of the Philippine Sea and surrounding East Asia, leading to a number of new insights, including: [1] discovery of a major (8000 km x 2500 km) set of vanished oceans that we call the East Asia Sea that existed between the Pacific and Indian Oceans, now represented by flat slabs in the lower mantle under present-day Philippine Sea, eastern Sundaland and northern Australia and [2] the Philippine Sea

  18. Numerical Modelling of Subduction Plate Interface, Technical Advances for Outstanding Questions

    Science.gov (United States)

    Le Pourhiet, L.; Ruh, J.; Pranger, C. C.; Zheng, L.; van Dinther, Y.; May, D.; Gerya, T.; Burov, E. B.

    2015-12-01

    The subduction zone interface is the place of the largest earthquakes on earth. Compared to the size of a subduction zone itself, it constitutes a very thin zone (few kilometers) with effective rheological behaviour that varies as a function of pressure, temperature, loading, nature of the material locally embedded within the interface as well as the amount of water, melts and CO2. Capturing the behaviour of this interface and its evolution in time is crucial, yet modelling it is not an easy task. In the last decade, thermo-mechanical models of subduction zone have flourished in the literature. They mostly focused on the long-term dynamics of the subduction; e.g. flat subduction, slab detachment or exhumation. The models were validated models against PTt path of exhumed material as well as topography. The models that could reproduce the data all included a mechanically weak subduction channel made of extremely weak and non cohesive material. While this subduction channel model is very convenient at large scale and might apply to some real subduction zones, it does not capture the many geological field evidences that point out the exhumation of very large slice of almost pristine oceanic crust along localised shear zone. Moreover, modelling of sismological and geodetic data using short term tectonic modelling approach also point out that large localised patches rupture within the subduction interface, which is in accordance with geological data but not with large-scale long-term tectonic models. I will present how high resolution models permit to produce slicing at the subduction interface and give clues on how the plate coupling and effective location of the plate interface vary over a few millions of year time scale. I will then discuss the implication of these new high-resolution long-term models of subduction zone on earthquake generation, report progress in the development of self-consistent thermomechanical codes which can handle large strain, high resolution

  19. Subducted oceanic relief locks the shallow megathrust in central Ecuador

    Science.gov (United States)

    Collot, Jean-Yves; Sanclemente, Eddy; Nocquet, Jean-Mathieu; Leprêtre, Angélique; Ribodetti, Alessandra; Jarrin, Paul; Chlieh, Mohamed; Graindorge, David; Charvis, Philippe

    2017-05-01

    Whether subducted oceanic reliefs such as seamounts promote seismic rupture or aseismic slip remains controversial. Here we use swath bathymetry, prestack depth-migrated multichannel seismic reflection lines, and wide-angle seismic data collected across the central Ecuador subduction segment to reveal a broad 55 km × 50 km, 1.5-2.0 km high, low height-to-width ratio, multipeaked, sediment-bare, shallow subducted oceanic relief. Owing to La Plata Island and the coastline being located, respectively, 35 km and 50-60 km from the trench, GPS measurements allow us to demonstrate that the subducted oceanic relief spatially correlates to a shallow, 80 km × 55 km locked interplate asperity within a dominantly creeping subduction segment. The oceanic relief geometrical anomaly together with its highly jagged topography, the absence of a subduction channel, and a stiff erosive oceanic margin are found to be long-term geological characteristics associated with the shallow locking of the megathrust. Although the size and level of locking observed at the subducted relief scale could produce an Mw >7+ event, no large earthquakes are known to have happened for several centuries. On the contrary, frequent slow slip events have been recorded since 2010 within the locked patch, and regular seismic swarms have occurred in this area during the last 40 years. These transient processes, together with the rough subducted oceanic topography, suggest that interplate friction might actually be heterogeneous within the locked patch. Additionally, we find that the subducted relief undergoes internal shearing and produces a permanent flexural bulge of the margin, which uplifted La Plata Island.

  20. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe; de Gelder, Giovanni; van der Goes, Freek; Morris, Antony

    2017-04-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Supra-subduction zone (SSZ) ophiolites (i.e., emerged fragments of ancient oceanic lithosphere accreted at supra-subduction spreading centers) were generated during this subduction event, and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Current models associate these ophiolite belts to simultaneous initiation of multiple, E-W trending subduction zones at 95 Ma. Here we report paleospreading direction data obtained from paleomagnetic analysis of sheeted dyke sections from seven Neo-Tethyan ophiolites of Turkey, Cyprus, and Syria, demonstrating that these ophiolites formed at NNE-SSW striking ridges parallel to the newly formed subduction zones. This subduction system was step-shaped and composed of NNE-SSW and ESE-WNW segments. The eastern subduction segment invaded the SW Mediterranean, leading to a radial obduction pattern similar to the Banda arc. Emplacement age constraints indicate that this subduction system formed close to the Triassic passive and paleo-transform margins of the Anatolide-Tauride continental block. Because the original Triassic-Jurassic Neo-Tethyan spreading ridge must have already subducted below the Pontides before the Late Cretaceous, we infer that the Late Cretaceous Neo-Tethyan subduction system started within ancient lithosphere, along NNE-SSW oriented fracture zones and faults parallel to the E-W trending passive margins. This challenges current concepts suggesting that subduction initiation occurs along active intra-oceanic plate boundaries.

  1. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology.

    Science.gov (United States)

    Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin

    2016-11-22

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  2. Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc.

    Science.gov (United States)

    Timm, Christian; Davy, Bryan; Haase, Karsten; Hoernle, Kaj A; Graham, Ian J; de Ronde, Cornel E J; Woodhead, Jon; Bassett, Dan; Hauff, Folkmar; Mortimer, Nick; Seebeck, Hannu C; Wysoczanski, Richard J; Caratori-Tontini, Fabio; Gamble, John A

    2014-09-17

    Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of ~32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau-Kermadec arc collision ~250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant 'Hikurangi' mélange beneath the Moho that interacts with ascending arc melts.

  3. Reevaluating plate driving forces from 3-D models of subduction

    Science.gov (United States)

    Stegman, D. R.; Freeman, J.; Schellart, W. P.; Moresi, L.; May, D.; Turnbull, R.

    2004-12-01

    Subducting lithospheric slabs mechanically attached to tectonic plates provide the main driving force for surface plate motion. Numerical models historically simulate slab dynamics as a 2-D process and further simplify the problem into either a density driven model (no heat transfer) or a corner-flow problem (thermal convection) [Christensen, 2001; Enns et al., (in revision); van Keken, 2003]. Recent 3-D global models of density driven flow incorporating a history of plate motion (Conrad and Lithgow-Bertelloni, 2002) have succussfully ruled out slab "suction" (basal shear traction induced by downward flow of the slabs) as a major driving force, but exact partitioning of the remaining forces acting on the slab remain unconstrained. A survey of trenches around the world reveals that over half of the slabs presently subducted in the upper mantle have a discontinuous edge (either a slab tip on a young slab, or the side edge of a slab with finite width) around which mantle can flow: prime examples being slabs in the Mediterranean and Carribean. However, even slabs with a wide lateral extent (and where a 2-D approximation may seem appropriate), show signs of having 3-D complexity. For example, on the surface Tonga appears relatively symmetric, but when the history of subduction is considered, the slab has a twisted, 3-D structure due to significant eastward retreat of just the northern part of an originally N-S oriented trench edge. Similarly the widest slabs, South American and Kamchatka, show seismic anisotropy attributed to trench parallel mantle flow (Russo and Silver, 1994; Peyton, et al., 2001, respectively), while the Aleutian trench has oblique subduction varying in magnitude from west to east, and medium width Central American slab likely has a slab window allowing 3-D flow (Johnston and Thorkelson, 1997). Recent laboratory experiments of subduction have demonstrated the full complexity of flow occuring in 3-D geometry (Kincaid and Griffiths, 2003; Schellart

  4. Reconstructions of subducted ocean floor along the Andes: a framework for assessing Magmatic and Ore Deposit History

    Science.gov (United States)

    Sdrolias, M.; Müller, R.

    2006-05-01

    The South American-Antarctic margin has been characterised by numerous episodes of volcanic arc activity and ore deposit formation throughout much of the Mesozoic and Cenozoic. Although its Cenozoic subduction history is relatively well known, placing the Mesozoic arc-related volcanics and the emplacement of ore bodies in their plate tectonic context remains poorly constrained. We use a merged moving hotspot (Late Cretaceous- present) and palaeomagnetic /fixed hotspot (Early Cretaceous) reference frame, coupled with reconstructed spreading histories of the Pacific, Phoenix and Farallon plates to understand the convergence history of the South American and Antarctic margins. We compute the age-area distribution of oceanic lithosphere through time, including subducting oceanic lithosphere and estimate convergence rates along the margin. Additionally, we map the location and migration of spreading ridges along the margin and relate this to processes on the overriding plate. The South American-Antarctic margin in the late Jurassic-early Cretaceous was dominated by rapid convergence, the subduction of relatively young oceanic lithosphere (Verdes" in southern South America. The speed of subduction increased again along the South American-Antarctic margin at ~105 Ma after another change in tectonic regime. Newly created crust from the Farallon-Phoenix ridge continued to be subducted along southern South America until the cessation of the Farallon-Phoenix ridge in the latest Cretaceous / beginning of the Cenozoic. The age of the subducting oceanic lithosphere along the South American-Antarctic margin has increased steadily through time.

  5. Dynamic effects of plate-buoyancy subduction at Manila Trench, South China Sea

    Science.gov (United States)

    Jiang, L.; Zhan, W.; Sun, J.; Li, J.

    2015-12-01

    Bathymetric map of SCS plate shows two subducting buoyancies, the fossil ridge and the oceanic plateau, which are supposed to impact slab segmentation into the north from Taiwan to 18°N, and the south from 17°N to Mindoro. Hypocenter distribution show that slab dip angle turns lower southwards from 45° to 30° in the north segment, and relatively equals ~45° in the south segment at the depth of 100km. Moreover, volcano distribution can be segmented into Miocene WVC, Quaternary EVC in the north and combined SVC in the south (Fig. A). We found that WVC and SVC mostly locate in a parallel belt ~50km apart to Manila trench, however EVC turn father southwards from 50km to 100km (Fig. B). Above characters congruously indicate that SCS plate kept equal dip angle in Miocene; then the north segment shallowed at 18°N and developed northwards in Quaternary, resulting in lower dip angle than the invariant south segment. To check the transformation of slab dip angle from 45° to 30° between 17~18°N, focal mechanism solution nearby 17°N are found 90° in rake and dip angle, strike parallel to the fossil ridge, indicating a slab tear located coincident with the ridge, where is a weak zone of higher heat flow and lower plate coupling ratio than the adjacent zones and slab can be easily tore as an interface for SCS plate segmentation. Subduction of the two buoyancies within SCS plate is supposed as influential dynamic factor: It caused the trench retreat rate reduced, forming a cusp and a flat convex of Manila trench shape; Moreover, the buoyancies resisted subduction, resulting in shear stress heterogeneity of SCS plate, in consequence the fossil ridge as a fragile belt potentially became stress concentration zone that easily tore; Then the buoyant oceanic plateau might lead to shallowing of the northern SCS plate. To examine the hypothesis, dynamic effects of the two subducting buoyancies are being respectively investigated based on numerical models. (Grt. 41376063, 2013

  6. Intra-oceanic subduction shaped the assembly of Cordilleran North America.

    Science.gov (United States)

    Sigloch, Karin; Mihalynuk, Mitchell G

    2013-04-04

    The western quarter of North America consists of accreted terranes--crustal blocks added over the past 200 million years--but the reason for this is unclear. The widely accepted explanation posits that the oceanic Farallon plate acted as a conveyor belt, sweeping terranes into the continental margin while subducting under it. Here we show that this hypothesis, which fails to explain many terrane complexities, is also inconsistent with new tomographic images of lower-mantle slabs, and with their locations relative to plate reconstructions. We offer a reinterpretation of North American palaeogeography and test it quantitatively: collision events are clearly recorded by slab geometry, and can be time calibrated and reconciled with plate reconstructions and surface geology. The seas west of Cretaceous North America must have resembled today's western Pacific, strung with island arcs. All proto-Pacific plates initially subducted into almost stationary, intra-oceanic trenches, and accumulated below as massive vertical slab walls. Above the slabs, long-lived volcanic archipelagos and subduction complexes grew. Crustal accretion occurred when North America overrode the archipelagos, causing major episodes of Cordilleran mountain building.

  7. Upper Plate Response to Varying Subduction Styles in the Forearc Cook Inlet Basin in South Central Alaska

    Science.gov (United States)

    Sanchez-Lohff, S. K.; Enkelmann, E.; Finzel, E.; Reid, M. M.

    2016-12-01

    The Cook Inlet forearc basin strata record the upper plate response to changes in subduction since 170 Ma. Subduction of normal oceanic crust during the Jurassic and Cretaceous was followed by spreading ridge subduction in the Paleocene, which initiated near trench magmatism and a shallow subduction angle. This was followed by a period of normal subduction until the Oligocene when subduction of an oceanic plateau commenced causing flat-slab subduction. We study the sedimentary record of the Cook Inlet Basin and analyze the sediment provenance, magmatic sources, paleotopography, and rock exhumation of southern Alaska, and their changes through time. We use a double dating technique on single detrital zircon grains from 25 samples combining fission track and U-Pb dating. We collected Jurassic to Pliocene sandstone, and modern fluvial deposits. Eight Mesozoic samples were taken from the eastern inverted section of the Cook Inlet Basin. Seven Cenozoic samples were taken from outcrops on the northern and southern margin of the basin, and four from northern offshore cores. Six modern river sands were sampled from four rivers to analyze what is currently draining into the basin from the north, east, and south. Zircon fission track data reveal that the Jurassic samples have been fully reset, while Cretaceous and Eocene samples have been partially reset. Subduction of the spreading ridge probably increased the geothermal gradient in the upper plate and caused thermal resetting of the underlying strata. Oligocene to Pliocene sediments contain the youngest age populations with lag times ranging 13-25 Myr. Samples from the northern margin (arc side) yield generally shorter lag times than samples from the south side (prism side). This pattern is consistent with modern sediments that show the youngest ages are sourced from the Alaska Range, revealed by a 14 Ma age peak in the Susitna River. In contrast, the youngest age populations found in the sediments of rivers draining the

  8. Crustal and upper mantle structure of the Anatolian plate: Imaging the effects of subduction termination and continental collision with seismic techniques

    Science.gov (United States)

    Delph, Jonathan R.

    The neotectonic evolution of the eastern Mediterranean is intimately tied to interactions between the underthrusting/subducting slab along the southern margin of Anatolia and the overriding plate. The lateral variations in the subduction zone can be viewed as a temporal analogue of the transition between continuous subduction and subduction termination by continent-continent collision. By investigating the lateral variations along this subduction zone in the overriding plate, we can gain insight into the processes that precede continent collision. This dissertation summarizes the results of three studies that focus on different parts of the subduction margin: 1) In the west, where the development of a slab tear represents the transition between continuous and enigmatic subduction, 2) In the east, where continent-continent collision between the Arabian and Eurasian Plate is leading to the development of the third largest orogenic plateau on earth after complete slab detachment, and 3) In central Anatolia, where the subducting slab is thought to be in the processes of breaking up, which is affecting the flow of mantle material leading to volcanism and uplift along the margin. In the first study, we interpret that variations in the composition of material in the downgoing plate (i.e. a change from the subduction of oceanic material to continental material) may have led to the development of a slab tear in the eastern Aegean. This underthrusting, buoyant continental fragment is controlling overriding plate deformation, separating the highly extensional strains of western Anatolia from the much lower extensional strains of central Anatolia. Based on intermediate depth seismicity, it appears that the oceanic portion of the slab is still attached to this underthrusting continental fragment. In the second study, we interpret that the introduction of continental lithosphere into the north-dipping subduction zone at the Arabian-Eurasian margin led to the rollback and

  9. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust

    NARCIS (Netherlands)

    Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S.

    2013-01-01

    Since plate tectonics began on Earth, grandiose "subduction factories" have continually shaped the continents, accreting continental blocks and new crust at the convergent plate boundaries. An enigmatic product of subduction factories is the high-pressure to ultrahigh-pressure (HP-UHP) metamorphic

  10. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, Roy D; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay j

    2015-01-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  11. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    Science.gov (United States)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  12. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    Science.gov (United States)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  13. Long distance transport of eclogite and blueschist during early Pacific Ocean subduction rollback

    Science.gov (United States)

    Tamblyn, Renee; Hand, Martin; Kelsey, David; Phillips, Glen; Anczkiewicz, Robert

    2017-04-01

    The Tasmanides in eastern Australia represent a period of continental crustal growth on the western margin of the Pacific Ocean associated with slab rollback from the Cambrian until the Triassic. During rollback numerical models predict that subduction products can become trapped in the forearc (Geyra et al., 2002), and can migrate with the trench as it retreats. In a long-lived subduction controlled regime such as the Tasmanides, this should result in an accumulation of subduction products with protracted geochronological and metamorphic histories. U-Pb, Lu-Hf, Sm-Nd and Ar-Ar geochronology and phase equilibria modelling of lawsonite-eclogite and garnet blueschist in the Southern New England Fold Belt in Australia demonstrate that high-P low-T rocks remained within a subduction setting for c. 40 Ma, from c. 500 to 460 Ma. High-P metamorphic rocks initially formed close to the Australian cratonic margin during the late Cambrian, and were subsequently transported over 1500 Ma oceanward, during which time subducted material continued to accumulate, resulting in the development of complex mélange which records eclogite and blueschist metamorphism and partial exhumation over 40 Ma. The duration of refrigerated metamorphism approximates the extensional evolution of the upper plate which culminated in the development of the Lachlan Fold Belt. The protracted record of eclogite and blueschist metamorphism indicates that rapid exhumation is not necessarily required for preservation of high-pressure metamorphic rocks from subduction systems. Reference: Gerya, T. V., Stockhert, B., & Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6), 6-1-6-19. doi:10.1029/2002tc001406

  14. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?

    Science.gov (United States)

    Lara, M.; Cardona, A.; Monsalve, G.; Yarce, J.; Montes, C.; Valencia, V.; Weber, M.; De La Parra, F.; Espitia, D.; López-Martínez, M.

    2013-08-01

    Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13-14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin. The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.

  15. Kinematics of subduction and plate convergence under Taiwan and its geomorphic, geodetic and seismic expressions

    Science.gov (United States)

    Suppe, J.; Carena, S.; Kanda, R. V.; Wu, Y.; Huang, H.; Wu, J. E.

    2013-12-01

    Deciphering the kinematics of ongoing subduction and rapid plate convergence under Taiwan is neither trivial nor straightforward. A 3D synthesis of diverse constraints is required, for example tomography, geodesy, tectonic geomorphology, stress inversion, and Philippine Sea plate motions. Eurasian-Philippine Sea plate convergence is ~90mm/y in a mildly oblique 300° azimuth relative to the ~NS nearly vertically subducting Eurasian mantle lithosphere which extends to ~500km depth. If all the current plate convergence were consumed in subduction of Eurasian mantle, the subduction flexural hinge would migrate westward at ~80mm/y, which is fast relative to the ~30mm/y long-term slip rate on the Taiwan main detachment that represents the Eurasian subduction interface under the Taiwan Central Mountains. If this fast simple subduction were occurring, subduction would too quickly outrun the mountain belt in conflict with data. Instead we estimate that subduction of Eurasian lithosphere is proceeding at ~50mm/y with the remaining ~40mm/y convergence at a lithospheric level consumed by secondary subduction above and to the east of the main plate interface. This secondary subduction is largely transient deformation that is most obvious under the Coastal Range, which represents the deforming western margin of the Philippine Sea plate during the last ~1-1.5 Ma. The thrust faults of the Coastal Range function as subduction faults with the long-term net motion of their footwalls moving largely down relative to their only slowly uplifting hanging walls, with a net secondary subduction of ~40-50km in the last ~1-1.5Ma as estimated from seismic tomography and other data. In addition we find evidence for ongoing subduction of the eastern Central Mountains of Taiwan. The crest of the mountains coincides with the western edge of the migrating plate flexure, a band of extensional geodetic strain coincides with the flexure, and an extensional stress state in the upper 5-10km coincides

  16. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  17. Topographic form of the Coast Ranges of the Cascadia Margin in relation ot coastal uplift rates and plate subduction

    Science.gov (United States)

    Kelsey, Harvey M.; Engebretson, David C.; Mitchell, Clifton E.; Ticknor, Robert L.

    1994-01-01

    The Coast Ranges of the Cascadia margin are overriding the subducted Juan de Fuca/Gorda plate. We investigate the extent to which the latitudinal change in attributes related to the subduction process. These attributes include the varibale age of the subducted slab that underlies the Coast Ranges and average vertical crustal velocities of the western margin of the Coast Rnages for two markedly different time periods, the last 45 years and the last 100 kyr. These vertical crustal velocities are computed from the resurveying of highway bech marks and from the present elevation of shore platforms that have been uplifted in the late Quaternary, respectively. Topogarphy of the Coast Ranges is in part a function of the age and bouyancy of the underlying subducted plate. This is evident in the fact that the two highest topographic elements of the Coast Rnages, the Klamath Mountains and the Olympic Mountains, are underlain by youngest subducted oceanic crust. The subducted Blanco Fracture Zone in southernmost Oregon is responsible for an age discontinuity of subducted crust under the Klamath Mountains. The norhtern terminus of hte topographically higher Klamaths is offset to the north relative to the position of the underlying Blanco Fracture Zone, teh offset being in the direction of migration of the farcture zone, as dictated by relative plate motions. Vertical crustal velocities at the coast, derived from becnh mark surveys, are as much as an order of magnitude greater than vertical crustal velocities derived from uplifted shore platforms. This uplift rate discrepancy indicates that strain is accumulating on the plate margin, to be released during the next interplate earthquake. In a latitudinal sense, average Coast Rnage topography is relatively high where bench mark-derived, short-term vertical crustal velocities are highest. Becuase the shore platform vertical crustal velocities reflect longer-term, premanent uplift, we infer that a small percentage of the

  18. Plume-induced subduction

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2016-12-01

    Dominant present-day subduction initiation mechanisms require acting plate forces and/or pre-existing zones of lithospheric weakness, which are themselves consequences of plate tectonics. In contrast, recently discovered plume-induced subduction initiation could have started the first subduction zone without pre-existing plate tectonics. Here, we investigate this new mechanism with high-resolution 3D numerical thermomechanical modeling experiments. We show that typical plume-induced subduction dynamics is subdivided into five different stages: (1) oceanic plateau formation by arrival of a mantle plume head; (2) formation of an incipient trench and a descending nearly-circular slab at the plateau margins; (3) tearing of the circular slab; (4) formation of several self-sustained retreating subduction zones and (5) cooling and spreading of the new lithosphere formed between the retreating subduction zones. At the final stage of plume-induced subduction initiation, a mosaic of independently moving, growing and cooling small oceanic plates heading toward individual retreating subduction zones forms. The plates are separated by spreading centers, triple junctions and transform faults and thus the newly formed multi-slab subduction system operates as an embryonic plate tectonic cell. We demonstrate that three key physical factors combine to trigger self-sustained plume-induced subduction: (1) old negatively buoyant oceanic lithosphere; (2) intense weakening of the lithosphere by plume-derived magmas; and (3) lubrication of the forming subduction interface by hydrated oceanic crust. We furthermore discuss that plume-induced subduction, which is rare at present day conditions, may have been common in the Precambrian time and likely started global plate tectonics on Earth.

  19. On the Enigmatic Birth of the Pacific Plate within the Panthalassa Ocean

    Science.gov (United States)

    Boschman, L.; Van Hinsbergen, D. J. J.

    2016-12-01

    The oceanic Pacific Plate started forming in Early Jurassic time within the vast Panthalassa Ocean that surrounded the supercontinent Pangea and contains the oldest lithosphere that can directly constrain the geodynamic history of the circum-Pangean Earth. Here, we show that the geometry of the oldest marine magnetic anomalies of the Pacific Plate attests of a unique plate kinematic event that sparked the plate's birth in virtually a point location, surrounded by the Izanagi, Farallon and Phoenix Plates. We reconstruct the unstable triple junction that caused the plate reorganization leading to the birth of the Pacific Plate and present a model of the plate tectonic configuration that preconditioned this event. We show that a stable, but migrating triple junction involving the gradual cessation of intra-oceanic Panthalassa subduction culminated in the formation of an unstable transform-transform-transform triple junction. The consequent plate boundary reorganization resulted in the formation of a stable triangular three-ridge system from which the nascent Pacific Plate expanded. We link the birth of the Pacific Plate to the regional termination of intra-Panthalassa subduction. Remnants thereof have been identified in the deep lower mantle of which the locations may provide paleolongitudinal control on the absolute location of the early Pacific Plate. Our results constitute an essential step in unraveling the plate tectonic evolution of `Thalassa Incognita' comprising the comprehensive Panthalassa Ocean surrounding Pangea.

  20. Oceanic-style Subduction Controls Late Cenozoic Deformation of the Northern Pamir and Alai

    Science.gov (United States)

    Sobel, E. R.; Chen, J.; Schoenbohm, L. M.; Thiede, R. C.; Stockli, D. F.; Sudo, M.; Strecker, M. R.

    2012-12-01

    The Pamir - Alai represents the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundary because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent continent-continent collision and erosion processes. In the Pamir, at least 300 km of convergence has apparently occurred between the North Pamir and the South Tien Shan. Published P-wave tomography and earthquake epicenters suggest subduction of a ~300 km-long slab. The MPT and Pamir Frontal Thrusts (PFT) correspond to the updip projection of this subduction zone. We have compiled ca. 260 published and 18 new apatite and zircon (U-Th)/He and fission track, and biotite and muscovite Argon cooling ages from basement samples as well as several detrital samples from key areas in the Pamir region. Our synopsis shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. This is incompatible with a model of a huge overthrust such as the Himalayan Main Central Thrust. Rather, the bulk of the convergence is apparently accommodated by underthrusting. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to slab rollback and intracontinental subduction. Our model relates late Oligocene - early Miocene

  1. Investigating the Subduction History of the Southwest Pacific using Coupled Plate Tectonic-Mantle Convection Models

    Science.gov (United States)

    Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.

    2014-12-01

    The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.

  2. Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey)

    NARCIS (Netherlands)

    Gürer, Derya; van Hinsbergen, Douwe J J; Matenco, Liviu; Corfu, Fernando; Cascella, Antonio

    2016-01-01

    Kinematic reconstruction of modern ocean basins shows that since Pangea breakup a vast area in the Neotethyan realm was lost to subduction. Here we develop a first-order methodology to reconstruct the kinematic history of the lost plates of the Neotethys, using records of subducted plates accreted

  3. Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Carrizo, Daniel

    2011-05-01

    We discuss the earthquake rupture behavior along the Chile-Peru subduction zone in terms of the buoyancy of the subducting high oceanic features (HOF's), and the effect of the interplay between HOF and subduction channel thickness on the degree of interplate coupling. We show a strong relation between subduction of HOF's and earthquake rupture segments along the Chile-Peru margin, elucidating how these subducting features play a key role in seismic segmentation. Within this context, the extra increase of normal stress at the subduction interface is strongly controlled by the buoyancy of HOF's which is likely caused by crustal thickening and mantle serpentinization beneath hotspot ridges and fracture zones, respectively. Buoyancy of HOF's provide an increase in normal stress estimated to be as high as 10-50 MPa. This significant increase of normal stress will enhance seismic coupling across the subduction interface and hence will affect the seismicity. In particular, several large earthquakes (Mw ≥ 7.5) have occurred in regions characterized by subduction of HOF's including fracture zones (e.g., Nazca, Challenger and Mocha), hotspot ridges (e.g., Nazca, Iquique, and Juan Fernández) and the active Nazca-Antarctic spreading center. For instance, the giant 1960 earthquake (Mw = 9.5) is coincident with the linear projections of the Mocha Fracture Zone and the buoyant Chile Rise, while the active seismic gap of north Chile spatially correlates with the subduction of the Iquique Ridge. Further comparison of rupture characteristics of large underthrusting earthquakes and the locations of subducting features provide evidence that HOF's control earthquake rupture acting as both asperities and barriers. This dual behavior can be partially controlled by the subduction channel thickness. A thick subduction channel smooths the degree of coupling caused by the subducted HOF which allows lateral earthquake rupture propagation. This may explain why the 1960 rupture propagates

  4. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    Science.gov (United States)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  5. Plate coupling across the northern Manila subduction zone deduced from mantle lithosphere buoyancy

    Science.gov (United States)

    Lo, Chung-Liang; Doo, Wen-Bin; Kuo-Chen, Hao; Hsu, Shu-Kun

    2017-12-01

    The Manila subduction zone is located at the plate boundary where the Philippine Sea plate (PSP) moves northwestward toward the Eurasian plate (EU) with a high convergence rate. However, historically, no large earthquakes greater than Mw7 have been observed across the northern Manila subduction zone. The poorly understood plate interaction between these two plates in this region creates significant issues for evaluating the seismic hazard. Therefore, the variation of mantle lithospheric buoyancy is calculated to evaluate the plate coupling status across the northern Manila subduction zone, based on recently published forward gravity modeling constrained by the results of the P-wave seismic crustal structure of the TAIGER (Taiwan Integrated Geodynamic Research) project. The results indicate weak plate coupling between the PSP and EU, which could be related to the release of the overriding PSP from the descending EU's dragging force, which was deduced from the higher elevation of the Luzon arc and the fore-arc basin northward toward the Taiwan orogen. Moreover, serpentinized peridotite is present above the plate boundary and is distributed more widely and thickly closer to offshore southern Taiwan orogen. We suggest that low plate coupling may facilitate the uplifting of serpentinized mantle material up to the plate boundary.

  6. The role of frictional strength on plate coupling at the subduction interface

    KAUST Repository

    Tan, Eh

    2012-10-01

    At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.

  7. Subduction-stage P-T path of eclogite from the Sambagawa belt: Prophetic record for oceanic-ridge subduction

    Science.gov (United States)

    Aoya, M.; Uehara, S.; Wallis, S. R.; Enami, M.

    2003-12-01

    , but in a curve with dP/dT increasing with metamorphic pressure. In previous thermal models curved P-T paths of the same kind were predicted for subduction of a very young slab (<5 Ma) suggesting that the curved P-T paths will be formed just before oceanic-ridge subduction. A new model incorporating progressive approach of an oceanic ridge to a subduction zone shows that the series of the Sambagawa subduction P-T paths well fit the results for a setting where a ridge is close to being subducted at a slow rate relative to the subduction rate. The subduction P-T paths from the Sambagawa belt can, therefore, be regarded as a prophetic record of the subsequent ridge subduction. This suggests that exhumation of high-P/T metamorphic rocks in oceanic subduction zones may be associated with the slow approach and subsequent subduction of oceanic ridges.

  8. SubductionGenerator: A program to build three-dimensional plate configurations

    Science.gov (United States)

    Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.

    2016-12-01

    Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.

  9. South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes.

    Science.gov (United States)

    Schepers, Gerben; van Hinsbergen, Douwe J J; Spakman, Wim; Kosters, Martha E; Boschman, Lydian M; McQuarrie, Nadine

    2017-05-16

    At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating 'horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs.

  10. The relationship between orogenesis, terrane accretion and the subduction of oceanic ridges in the Ecuadorian andes

    Science.gov (United States)

    Spikings, R.; Winkler, W.; Seward, D.; Hughes, R.; Handler, R.; Crowhurst, P.

    2003-04-01

    Oceanic hotspot activity, generating large oceanic igneous plateau provinces, plate rearrangements and the generation of new spreading centers since at least 90 Ma have formed large structural, thickness and density heterogeneities in the approaching and subducting oceanic crust offshore NW South America (SOAM). Various oceanic allochthonous terranes comprise western Ecuador and the relatively thick and buoyant Carnegie Ridge is being subducted. We present 40Ar/39Ar, fission track (FT) and (U-Th/He) data from i) the Eastern Cordillera and the Amotape Complex, which define the palaeo-continental margin, ii) the Western Cordillera, which is built upon allochthonous, oceanic crust and iii) a tectonic mélange at the ocean-continent suture. 40Ar/39Ar ages and FT data from exotic, Triassic blocks within the ocean-continent suture record elevated cooling rates of plateau basalts and the continental margin. 40Ar/39Ar ages and FT data from the palaeo-continental margin show that the entire contemporaneous continental margin was being cooled by rapid tectonic exhumation (combined with geochemical analyses, suggest that these periods of orogenesis were driven by stress imposed by the collision of terranes that originated at the Caribbean Plateau. Distinct periods of rapid cooling and exhumation of fault blocks in the W. Cordillera and the northern E. Cordillera occurred at ˜15 and ˜9 Ma. Cooling at ˜15 Ma was driven by the collision of the Carnegie Ridge with the trench at ˜15 Ma. The elevated, compressive stress field gave rise to a complex transcurrent system, resulting in uplift, exhumation and cooling in the northern E. Cordillera and extension in the southern E. Cordillera. Finally, FT and (U-Th)/He data record rapid cooling in the northern E. Cordillera and parts of the W. Cordillera at ˜6-5 Ma, suggesting that the middle Miocene transcurrent system was reactivated by thrust tectonics during the late Miocene, giving rise to the Interandean Valley, which split the

  11. Dehydration reactions in subducting oceanic crust: implications for arc volcanism

    Science.gov (United States)

    Forneris, J. F.; Holloway, J. R.

    2003-04-01

    In subduction zones, oceanic lithosphere progressively dehydrates as it sinks deep into the underlying mantle. Fluids released from the subducting slab are thought to trigger partial melting in the overlying mantle wedge, leading to the formation of volcanic arcs. Experiments were conducted in the ranges of 2.2--3.4 GPa (70 to 100 km) and 625--750^oC to determine the dehydration reactions that control fluid release from the basaltic layer of the subducting slab. The experimental duration was typically one month, although some experiments were replicated with a shorter run duration (one to two weeks) in order to identify potentially metastable phases. A mixture of a natural mid-ocean ridge basalt glass and mineral seeds was used as the starting material. Oxygen fugacity was buffered within ±1.3 log units of nickel-bunsenite (NiNiO). The results obtained indicate that the transformation of a hydrated eclogite into a nominally dry eclogite occurs through the decomposition of three hydrous phases: amphibole, lawsonite, and zoisite. Chloritoid, a mineral described as an H_2O carrier in previous experimental studies, is found to be metastable in the examined pressure-temperature (P-T) range and therefore should not be involved in the global fluid release from the basaltic crust. A detailed chemical analysis reveals that amphiboles are sodic-calcic (barroisite) at low pressures (2.2 to 2.4 GPa), but become sodic (glaucophane) with increasing pressure. This observation is the first experimental confirmation of the high-pressure stability of glaucophane in metabasalt compositions. At pressures above the stability field of amphibole, zoisite/clinozoisite becomes the stable hydrous phase at temperatures above 645^oC, whereas lawsonite is stable at lower temperatures. H_2O contents of eclogitic assemblages have been estimated based on modal abundance of minerals calculated from electron microprobe analyses. These results indicate that a slab following an intermediate

  12. Nitrogen recycling at the Costa Rican subduction zone: The role of incoming plate structure.

    Science.gov (United States)

    Lee, Hyunwoo; Fischer, Tobias P; de Moor, J Maarten; Sharp, Zachary D; Takahata, Naoto; Sano, Yuji

    2017-10-24

    Efficient recycling of subducted sedimentary nitrogen (N) back to the atmosphere through arc volcanism has been advocated for the Central America margin while at other locations mass balance considerations and N contents of high pressure metamorphic rocks imply massive addition of subducted N to the mantle and past the zones of arc magma generation. Here, we report new results of N isotope compositions with gas chemistry and noble gas compositions of forearc and arc front springs in Costa Rica to show that the structure of the incoming plate has a profound effect on the extent of N subduction into the mantle. N isotope compositions of emitted arc gases (9-11 N°) imply less subducted pelagic sediment contribution compared to farther north. The N isotope compositions (δ(15)N = -4.4 to 1.6‰) of forearc springs at 9-11 N° are consistent with previously reported values in volcanic centers (δ(15)N = -3.0 to 1.9‰). We advocate that subduction erosion enhanced by abundant seamount subduction at 9-11 N° introduces overlying forearc crustal materials into the Costa Rican subduction zone, releasing fluids with lighter N isotope signatures. This process supports the recycling of heavier N into the deep mantle in this section of the Central America margin.

  13. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc

    NARCIS (Netherlands)

    Arculus, Richard J.; Ishizuka, Osamu; Bogus, Kara A.; Gurnis, Michael; Hickey-Vargas, Rosemary; Aljahdali, Mohammed H.; Bandini-Maeder, Alexandre N.; Barth, Andrew P.; Brandl, Philipp A.; Drab, Laureen; Do Monte Guerra, Rodrigo; Hamada, Morihisa; Jiang, Fuqing; Kanayama, Kyoko; Kender, Sev; Kusano, Yuki; Li, He; Loudin, Lorne C.; Maffione, Marco; Marsaglia, Kathleen M.; McCarthy, Anders; Meffre, Sebastién; Morris, Antony; Neuhaus, Martin; Savov, Ivan P.; Sena, Clara; Tepley, Frank J.; Van Der Land, Cees; Yogodzinski, Gene M.; Zhang, Zhaohui

    2015-01-01

    The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence

  14. Subduction of the Caribbean Plate and Basement Uplifts in the Overriding South American Plate

    Science.gov (United States)

    Kellogg, J. N.; Bonini, W. E.

    1982-06-01

    The new tectonic interpretations presented in this paper are based on geologic field mapping and gravity data supplemented by well logs, seismic profiles, and radiometric and earthquake data. The present Caribbean-South American plate boundary is the South Caribbean marginal fault, where subduction is indicated by folding and thrusting in the deformed belt and a seismic zone that dips 30° to the southeast and terminates 200 km below the Maracaibo Basin. The Caribbean-South American convergence rate is estimated as 1.9 ± 0.3 cm/yr on the basis of the 390-km length of the seismic zone and a thermal equilibration time of 10 m.y. The Caribbean-South American convergence has produced a northwest-southeast maximum principal stress direction σ1 in the overriding South American plate. The mean σ1 direction for the Maracaibo-Santa Marta block is 310° ± 10° based on earthquake focal mechanism determinations, and structural and gravity data. On the overriding South American plate, basement blocks have been uplifted 7-12 km in the last 10 m.y. to form the Venezuelan Andes, Sierra de Perija, and the Colombian Santa Marta massif. Crystalline basement of the Venezuelan Andes has been thrust to the northwest over Tertiary sediments on a fault dipping about 25° and extending to the mantle. In the Sierra de Perija, Mesozoic sediments have been thrust 16-26 km to the northwest over Tertiary sandstones along the Cerrejon fault. A thrust fault dipping 15° ± 10° to the southeast is consistent with field mapping, and gravity and density data. The Santa Marta massif has been uplifted 12 km in the last 10 m.y. by northwest thrusting over sediments. The basement block overthrusts of the Perijas, Venezuelan Andes, and the Santa Marta massif are Pliocene-Pleistocene analogs for Laramide orogenic structures in the middle and southern Rocky Mountains of the United States. The nonmagmatic basement block uplifts along low-angle thrust faults reveal horizontal compression in the

  15. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.

    2008-07-01

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  16. Impact of Mantle Wind on Subducting Plate Geometry and Interplate Pressure: Insights From Physical Modelling.

    Science.gov (United States)

    Boutelier, D.; Cruden, A. R.

    2005-12-01

    New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch

  17. Dynamics of subduction and continental collision: Influence of the nature of the plate contact. Geologica Ultraiectina (284)

    NARCIS (Netherlands)

    De Franco, R.

    2008-01-01

    At convergent plate boundaries, the properties of the actual plate contact are important for the overall dynamics. Convergent plate boundaries both mechanically decouple and link tectonic plates and accommodate large amounts of strain. We investigate two fundamental physical states of the subduction

  18. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W. P.; Spakman, W.

    The Tonga-Kermadec-Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with the

  19. Mantle constraints on the plate tectonic evolution of the Tonga-Kermadec-Hikurangi subduction zone and the South Fiji Basin region

    NARCIS (Netherlands)

    Schellart, W.P.; Spakman, W.

    2012-01-01

    The Tonga–Kermadec–Hikurangi subduction zone is a major plate boundary in the Southwest Pacific region, where the Pacific plate subducts westward underneath the Australian plate. Considerable controversy exists regarding the Cenozoic evolution of this subduction zone, its connection with

  20. Experimental Determination of Chloritoid Stability in Subducting Oceanic Crust

    Science.gov (United States)

    Forneris, J.; Holloway, J. R.

    2001-12-01

    Dehydration of subducting oceanic lithosphere is the key process for understanding arc magma generation and transport of H2O into the mantle. To establish when and how H2O may be released from the slab into the overlying mantle it is necessary to determine the stability of hydrous phases in the subducting lithosphere. In the past 10 years, experimental investigations of phase relationships in basaltic compositions representing the crustal component of the slab have led to controversial results. Results obtained by Schmidt and Poli (1998) and Pawley and Holloway (1993) on basaltic compositions under H2O saturated conditions showed the potential importance of hydrous phases other than amphibole (such as chloritoid, epidote and lawsonite) in the dehydration process. However, these results are in disagreement with the experiments of Liu et al. (1996), which showed that no hydrous phases are stable beyond the amphibole breakdown reaction at or above 650° C. In our study, piston-cylinder experiments were conducted between 2.2 GPa and 2.8 GPa at 650° C. The starting material consisted of a natural basaltic glass with blueschist/eclogite seeds and H2O. Samples were pressure-sealed in a thick-walled silver capsule with a gold lining designed to prevent hydrogen diffusion in long-duration experiments. The oxygen fugacity was fixed at or near Ni+NiO. These experiments have been focused on determining the stability field of chloritoid by running long-duration experiments (up to 1 month). Our results are in agreement with results by Liu et al. (1996): Chloritoid appears in short-duration runs (144 hours or less at 2.6 GPa and 650° C) but is not present in longer-duration experiments (696 hours or more under the same conditions). The amphiboles obtained in our run products have a glaucophane composition and seem to be stable up to higher pressures (at least 2.6 GPa) than the more calcic amphiboles obtained by the three other groups. Epidote/zoisite is present up to at least

  1. Subduction controls the distribution and fragmentation of Earth’s tectonic plates.

    Science.gov (United States)

    Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J

    2016-07-07

    The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.

  2. Topography of the Overriding Plate During Progressive Subduction: A Dynamic Model to Explain Forearc Subsidence

    Science.gov (United States)

    Chen, Zhihao; Schellart, Wouter P.; Duarte, João. C.; Strak, Vincent

    2017-10-01

    Overriding plate topography provides constraints on subduction zone geodynamics. We investigate its evolution using fully dynamic laboratory models of subduction with techniques of stereoscopic photogrammetry and particle image velocimetry. Model results show that the topography is characterized by an area of forearc dynamic subsidence, with a magnitude scaling to 1.44-3.97 km in nature, and a local topographic high between the forearc subsided region and the trench. These topographic features rapidly develop during the slab free-sinking phase and gradually decrease during the steady state slab rollback phase. We propose that they result from the variation of the vertical component of the trench suction force along the subduction zone interface, which gradually increases with depth and results from the gradual slab steepening during the initial transient slab sinking phase. The downward mantle flow in the nose of the mantle wedge plays a minor role in driving forearc subsidence.

  3. The temporal evolution of a subducting plate in the lower mantle

    Science.gov (United States)

    Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.

    2009-04-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better

  4. Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean

    Science.gov (United States)

    Gebbie, Geoffrey

    2004-01-01

    Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.

  5. On the initiation of subduction

    Science.gov (United States)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  6. Dynamic Linkages Between the Transition Zone & Surface Plate Motion in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2014-12-01

    Subduction zones exhibit a wide range of behavior, from slab stagnation at 660 km to direct penetration into the lower mantle. Due to uncertainties in the tectonic history of individual subduction zones, such as trench velocities, potential mechanisms for controlling slab behavior in the transition zone are explored using numerical models. Numerical simulations have utilized a range of assumptions to improve computational efficiency, such as ignoring latent heat, ignoring compositional effects or fixing the trench location: the net effect of these assumptions resulting modeled dynamics remains unclear. Additionally the eight major, composition-dependent, phase transitions for pyrolite, harzburgite and eclogite may be an important influence on subducting slab dynamics due to the additional forces that are dependent on depth and compositional layering within the slab (e.g., Ricard et al., 2005). With the goal of developing more complete, self-consistent, and less idealized simulations, we test the importance of various factors on slab behavior: the presence of shear, adiabatic and latent heating, compositional layering, composition-dependent phase transitions and explicit plate speeds versus dynamically evolving plate and trench velocities. Preliminary results indicate that individual components have a relatively minor effect, but produce large changes when combined together. The extent of slab folding and stagnation is overestimated by only modeling the 410 and 660 km phase transitions. Dynamic models with all seven composition-dependent phase transitions are very sensitive to the plate strength and weak zone viscosity, causing large changes in plate speed and slab detachment. Changes to the overriding plate buoyance and strength investigate the origin and influence of trench movement on slab deformation. These feedbacks and parameter-sensitive behavior indicate that the wide range of observed slab behavior may result from subtle differences in plate and plate

  7. The link between great earthquakes and the subduction of oceanic fracture zones

    Directory of Open Access Journals (Sweden)

    R. D. Müller

    2012-12-01

    Full Text Available Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8 subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6 and half of the 50 largest (magnitude Mw ≥ 8.4 earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8. The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.

  8. Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes

    Science.gov (United States)

    Perry, Matthew; Spinelli, Glenn A.; Wada, Ikuko; He, Jiangheng

    2016-02-01

    In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180°C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.

  9. Evolving seismogenic plate boundary megathrust and mega-splay faults in subduction zone (Invited)

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.; Fukuchi, R.; Yamaguchi, A.; Kameda, J.; Kitamura, Y.; Hashimoto, Y.; Hamada, Y.; Saito, S.; Kawasaki, R.

    2013-12-01

    Understanding the fault mechanism and its relationship to the sesimo-tsunamigenesis is a key of the scientific targets of subduction zone and therefore NantroSEIZE project of IODP and future new drilling project of International Ocean Discovery Program keeps focusing on that. Mega-splay fault branched from plate boundary megathrust in subduction zone is located around the border between outer and inner wedges and is considered to cause great earthquake and tsunami such as 1960 Alaska earthquake, 1944 and 1946 Nankai-Tonankai earthquakes, and 2004 Sumatra earthquakes. Seismic reflection studies for the mega-splay fault in 2D and 3D in the Nankai forearc present the reflector with negative or positive polarities with various amplitudes and suggest complicated petrophysical properties and condition of the fault and its surroundings. The Nankai mega-splay fault at a depth of ~5km is going to be drilled and cored by NantroSEIZE experiments and is expected for great progress of understanding of the fault mechanics. Before drilling the really targeted seismogenic fault, we are conducting many exercises of geophysical and geological observations. The core-log-seismic integrated exercise for the exhumed mega-splay fault by drilling was operated for the Nobeoka thrust in the Shimanto Belt, Kyushu, Japan. The Nobeoka thrust was once buried in the depth >~10km and suffered maximum temperature >~300 dgree C. As the core recovery is ~99%, perfect correlation between the core and logging data is possible. Thickness of the fault zone is >200 m with a ~50 cm thick central fault core dividing the phyllitic hanging wall and the footwall of broken-melange like cataclasite. A-few-meter-thick discrete damage zones with fault cores are recognized by difference in physical properties and visual deformation textures at several horizons in the fault zone. Host rocks for those damaged zones are completely lithified cataclasites with abundant mineral veins, which record the older and deeper

  10. The Othris Ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge

    NARCIS (Netherlands)

    Barth, M.G.; Mason, P.R.D.; Davies, G.R.; Drury, M.R.

    2008-01-01

    The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris

  11. Evidences for recent plume-induced subduction, microplates and localized lateral plate motions on Venus

    Science.gov (United States)

    Davaille, Anne; Smrekar, Suzanne

    2017-04-01

    Using laboratory experiments and theoretical modeling, we recently showed that plumes could induce roll-back subduction around large coronae. When a hot plume rises under a brittle and visco-elasto-plastic skin/lithosphere, the latter undergoes a flexural deformation which puts it under tension. Radial cracks and rifting of the skin then develop, sometimes using pre-existing weaknesses. Plume material upwells through the cracks (because it is more buoyant) and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the combined force of its own weight and that of the plume gravity current. However, due to the brittle character of the upper part of the experimental lithosphere, it cannot deform viscously to accomodate the sinking motions. Instead, the plate continues to tear, as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Two types of microplates are also observed. First, the upwelling plume material creates a set of new plates interior to the trench segments. These plates move rapidly and expand through time, but do not subduct.. In a few cases, we also observe additional microplates exterior to the trenches. This happens when the subducting plate contains preexisting heterogeneities (e.g. fractures) and the subducted slab is massive enough for slab pull to become efficient and induce horizontal plate motions. Scalings derived from the experiments suggest that Venus lithosphere is soft enough to undergo such a regime. And indeed, at least two candidates can be identified on Venus, where plume-induced subduction could have operated. (1) Artemis Coronae is the largest (2300 km across) coronae on Venus and is bounded over 270° of

  12. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    Science.gov (United States)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the

  13. Breaking the oceanic lithosphere of a subducting slab: the 2013 Khash, Iran earthquake

    Science.gov (United States)

    Barnhart, William D.; Hayes, Gavin P.; Samsonov, S.; Fielding, E.; Seidman, L.

    2014-01-01

    [1] Large intermediate depth, intraslab normal faulting earthquakes are a common, dangerous, but poorly understood phenomenon in subduction zones owing to a paucity of near field geophysical observations. Seismological and high quality geodetic observations of the 2013 Mw7.7 Khash, Iran earthquake reveal that at least half of the oceanic lithosphere, including the mantle and entire crust, ruptured in a single earthquake, confirming with unprecedented resolution that large earthquakes can nucleate in and rupture through the oceanic mantle. A rupture width of at least 55 km is required to explain both InSAR observations and teleseismic waveforms, with the majority of slip occurring in the oceanic mantle. Combining our well-constrained earthquake slip distributions with the causative fault orientation and geometry of the local subduction zone, we hypothesize that the Khash earthquake likely occurred as the combined result of slab bending forces and dehydration of hydrous minerals along a preexisting fault formed prior to subduction.

  14. Searching for the Lost Jurassic and Cretaceous Ocean Basins of the Circum-Arctic Linking Plate Models and Seismic Tomography

    Science.gov (United States)

    Shephard, G. E.; Müller, R.

    2012-12-01

    The tectonic evolution of the circum-Arctic since the breakup of Pangea involves the opening and closing of ocean basins including the Oimyakon, Angayucham, South Anuyi, Amerasia and Eurasia basins. The time-dependent configurations and kinematic history of the basins, adjacent continental terranes, and subduction zones involved are not well understood, and many published tectonic models for particular regions are inconsistent with models for adjacent areas. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins since at least the Late Jurassic have implications for mantle structure, which can be used as an additional constraint for building plate and plate boundary models. Here we integrate an analysis of both surface and deep mantle observations back to 200 Ma. Based on a digitized set of tectonic features with time-dependent rotational histories we present a refined plate model with topologically closed plate polygons for the circum-Arctic with particular focus on the northern Pacific, Siberian and Alaskan margins (Fig 1). We correlate the location, geometry and timing of subduction zones with associated seismic velocities anomalies from global P and S wave tomography models across different depths. We design a plate model that best matches slabs imaged in seismic tomography in an iterative fashion. This match depends on a combination of relative and absolute plate motions. Therefore we test two end-member absolute plate motion models, evaluating a paleomagnetic model and a model based on hotspot tracks and large igneous provinces. This method provides a novel approach to deciphering the Arctic tectonic history in a global context. Fig 1:Plate reconstruction at 200Ma and 140Ma, visualized using GPlates software. Present-day topography raster (ETOPO2) segmented into major tectonic elements of the circum-Arctic. Plate boundaries delineated in black and selected subduction and arc features labeled in

  15. The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle

    NARCIS (Netherlands)

    Schellart, W. P.

    2007-01-01

    A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for

  16. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    Science.gov (United States)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  17. Structure of the subducted Cocos Plate from locations of intermediate-depth earthquakes

    Science.gov (United States)

    Lomnitz, C.; Rodríguez-Padilla, L. D.; Castaños, H.

    2013-05-01

    Locations of 3,000 earthquakes of 40 to 300 km depth are used to define the 3-D structure of the subducted Cocos Plate under central and southern Mexico. Discrepancies between deep-seated lineaments and surface tectonics are described. Features of particular interest include: (1) a belt of moderate activity at 40 to 80 km depth that parallels the southern boundary of the Mexican Volcanic Plateau; (2) an offset of 150 km across the Isthmus of Tehuantepec where all seismic activity is displaced toward the northeast; (3) three nests of frequent, deep-seated events (80 to 300 km depth) under southern Veracruz, Chiapas and the coast of Mexico-Guatemala. The active subduction process is sharply delimited along a NW-SE lineament from the Yucatan Peninsula, of insignificant earthquake activity. The focal distribution of intermediate-depth earthquakes in south-central Mexico provides evidence of stepwise deepening of the subduction angle along the Trench, starting at 15 degrees under Michoacan-Guerrero to 45 degrees under NW Guatemala. Historical evidence suggests that the hazard to Mexico City from large intermediate-depth earthquakes may have been underestimated.

  18. Dynamics of intraoceanic subduction initiation: 2D thermomechanical modeling

    Science.gov (United States)

    Zhou, X.; Gerya, T.; LI, Z.; Stern, R. J.

    2016-12-01

    Intraoceanic subduction initiation occurs in previous weak zones which could be transform faults or old fracture zones, and concurrents with the change of plate motions. It is an important process to understand the beginning of plate tectonics. However, the dynamic process during (after) subduction initiation remain obscure. The process of suducting slabs move from down to downdip is also not revealed clearly. In order to obtain better understanding of the transitional process of subducting slab motion, we use finite difference and marker-in-cell methods to establish a series of self-sustainable subduction initiation models and explore many visco-plastic parameters to qualify the dynamical process of subduction initiation. The following parameters are systematic tested: (1) the age of the subducting slab; (2) friction coefficient of the mantle material; (3) the mantle potential temperature; (4) the age of the overriding slab. We find out the critical age of the oceanic lithosphere which can produce subduction initiation. And the age of subducting slab plays important roles during subduction initiation. The young subducting slab induces fast trench retreat and then trench begin to advance. For the old subducting slab, it induces relative slower trench retreat and then stop moving. The age of overriding slabs impacts coupling with the subducting slab. The friction coefficient of lithosphere also impacts the backarc spreading and subduction velocity. Stronger subducted plate gives lower subduction velocity and faster trench retreat velocity. The mantle potential temperature changes the critical age of subducted slabs.

  19. A discussion of numerical subduction initiation

    Science.gov (United States)

    Buiter, Susanne; Ellis, Susan

    2016-04-01

    In nature, subduction can initiate in various ways: Shortening can localise at oceanic transform faults, extinct spreading centres, or inherited passive margin faults; or, alternatively, subduction can be triggered from existing subduction systems by along-strike trench propagation, polarity reversals, or trench jumps. Numerical studies that specifically address subduction initiation have highlighted the roles of sediment loading, rheological strength contrasts, strain softening, and continental topographic gradients, among others. Usually, however, numerical models that aim to investigate subduction dynamics prefer to bypass the subduction initiation phase and its complexities, and focus instead on the stages during which the slab is descending into the mantle. However, even in these models, subduction still needs to begin. It is disturbingly easy to define initial model geometries that do not result in subduction. The specific combination of initial model geometries and values for rheological parameters that successfully initiates subduction has even been referred to as 'the sweet spot' in model space. One cause of subduction initiation failure is when the subducting and overriding plates lock, resulting in either indentation or severe dragging downwards of the overriding plate. This may point to a difficulty in maintaining a weak subduction interface during model evolution. A second factor that may cause difficulties is that initial model geometry and stresses need to balance, as otherwise the first model stages may show spurious deformation associated with reaching equilibrium. A third requirement that may cause problems is that the surface needs to have sufficient displacement freedom to allow the overriding plate to overthrust the subducting plate. That also implies an exclusion of sharp corners in the subduction interface near the surface. It is the interplay of subduction interface geometry, interface strength and subducting plate rheology that determines

  20. A satellite magnetic perspective of subduction zones, large igneous provinces, rifts, and diffuse plate boundary zones

    Science.gov (United States)

    Purucker, M. E.; Whaler, K. A.

    2008-12-01

    Large and intermediate-scale tectonic features such as subduction zones, large igneous provinces, rifts, and diffuse plate boundary zones are often seen to have a magnetic signature visible from the perspective of near-Earth magnetic field satellites such as CHAMP and Orsted. Why do these tectonic features have a magnetic signature, while others do not? A new model of the lithospheric field (MF-6, Maus et al., 2008) extending to spherical harmonic degree 120 (333 km wavelength) has been used to evaluate the magnetic state of the lithosphere under the assumption that the magnetization is either induced (with a seismic starting model), or remanent (with a minimum norm approach). Some of the features identified from these images include the Tethyan and NE Siberian diffuse plate boundary zones, the Red Sea rift, and Cretaceous rift basins developed on the West African shield. Almost without exception, subduction zones exhibit a magnetic signature, as do many large igneous provinces. In this talk we discuss some of the new insights this magnetic perspective provides, and speculate on the controls which determine whether tectonic features will be expressed magnetically.

  1. Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics

    Science.gov (United States)

    JöDicke, H.; Jording, A.; Ferrari, L.; Arzate, J.; Mezger, K.; Rüpke, L.

    2006-08-01

    In order to study electrical conductivity phenomena that are associated with subduction related fluid release and melt production, magnetotelluric (MT) measurements were carried out in southern Mexico along two coast to coast profiles. The conductivity-depth distribution was obtained by simultaneous two-dimensional inversion of the transverse magnetic and transverse electric modes of the magnetotelluric transfer functions. The MT models demonstrate that the plate southern profile shows enhanced conductivity in the deep crust. The northern profile is dominated by an elongated conductive zone extending >250 km below the Trans-Mexican Volcanic Belt (TMVB). The isolated conductivity anomalies in the southern profile are interpreted as slab fluids stored in the overlying deep continental crust. These fluids were released by progressive metamorphic dehydration of the basaltic oceanic crust. The conductivity anomalies may be related to the main dehydration reactions at the zeolite → blueschist → eclogite facies transitions and the breakdown of chlorite. This relation allows the estimation of a geothermal gradient of ˜8.5°C/km for the top of the subducting plate. The same dehydration reactions may be recognized along the northern profile at the same position relative to the depth of the plate, but more inland due to a shallower dip, and merge near the volcanic front due to steep downbending of the plate. When the oceanic crust reaches a depth of 80-90 km, ascending fluids produce basaltic melts in the intervening hot subcontinental mantle wedge that give rise to the volcanic belt. Water-rich basalts may intrude into the lower continental crust leading to partial melting. The elongated highly conductive zone below the TMVB may therefore be caused by partial melts and fluids of various origins, ongoing migmatization, ascending basaltic and granitic melts, growing plutons as well as residual metamorphic fluids. Zones of extremely high conductance (>8000 S) in the

  2. Evidence for palaeo-Tethyan oceanic subduction within central Qiangtang, northern Tibet

    Science.gov (United States)

    Liu, Yan; Santosh, M.; Zhao, Zhong Bao; Niu, Wen Chao; Wang, Gen Hou

    2011-11-01

    The mechanism of formation of blueschist-eclogite belts and their space-time distribution are important in understanding the tectonics associated with convergent plate boundaries. Here we investigate the garnet-bearing blueschists from Rongma area of central Qiangtang in northern Tibet. The mineral assemblage in these rocks is characterized by porphyroblastic garnet set within a matrix of fine-grained amphibole, white mica, epidote, chlorite, albite and quartz with accessory rutile, titanite and apatite. The garnet porphyroblasts exhibit core and rim portions, and the cores carry abundant inclusions of Na amphibole, quartz and rutile, as well as rhomb-shaped inclusions of paragonite and epidote which are interpreted as pseudomorphs after lawsonite. The rims are characterized by coarse-grained inclusions of epidote as well as the absence of paragonite and epidote aggregates, clearly suggesting that the transition from garnet core to rim marks a metamorphic transformation from lawsonite- to epidote-stability field. The Mn content of the garnet porphyroblasts decreases from core to rim, whereas the Fe and Mg contents show an increasing trend. In the matrix, we identify two stages of Na amphibole rimmed by Na-Ca amphibole and albite. Retrograde chlorite is rimmed by fine-grained biotite. Based on microstructural observations and pseudosection modelling, we trace the P-T path for the Rongma garnet blueschist from 1.92 GPa and 490 °C (lawsonite eclogite field) to about 1.68 GPa and 535 °C (epidote eclogite field), marking an initial increase in temperature and decrease in pressure. This stage is followed by a decrease of pressure through the blueschist facies down to P-T conditions of about 0.6 GPa and 530 °C. In combination with previous work including the available isotopic age data, the P-T path obtained in the present study suggests the deep subduction of palaeo-Tethyan oceanic crust between southern and northern Qiangtang blocks, supporting the model that the

  3. Horizontal mantle flow controls subduction dynamics.

    Science.gov (United States)

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  4. Tomography of the subducting Cocos plate in central Mexico: Images of a truncated slab

    Science.gov (United States)

    Husker, A. L.; Davis, P. M.

    2007-12-01

    The location of the subducting slab beneath Mexico City and its relation to the Trans-Mexican Volcanic Belt (TMVB) has been unknown because of the absence of deep seismicity that could be used to define the Wadati-Benioff zone. We used data from a temporary seismic network to locate the slab using seismic tomography. A break is seen in the Cocos plate under the TMVB. The break is seen with both P-wave and S-wave tomography and in a constrained tomographic inversion that finds parameters for a simple slab temperature model. The data used are 172 teleseismic earthquakes recorded by the Middle American Subduction Experiment (MASE). MASE was made up of 100 broadband seismometers spaced every 5 km running from Acapulco north through Mexico City almost to the Gulf Coast. In order to determine arrival time differences, Dt, across the array, waveforms were cross correlated. When Dt is plotted with respect to the latitude of the seismometer at which it was recorded, a Dt minimum (early arrivals) is seen near the TMVB. This minimum is shifted northward for back azimuths from the south, and southward for back azimuths from the north. The shift in the Dt minimum is indicative of a fast structure at depth. If there were no break in the slab, the localized minimum would not be seen. Tomography reveals an approximately 50-80 km thick slab diving into the mantle at about 75° to approximately 550 km depth and 375 km inland from Acapulco. We speculate the absence of deep earthquakes is due to low stresses in a young plate that has been truncated at depth.

  5. Transitional time of oceanic to continental subduction in the Dabie orogen: Clues from the Triassic age for oceanic eclogites

    Science.gov (United States)

    Cheng, H.; Dufrane, S.; Nakamura, E.; Vervoort, J. D.

    2009-12-01

    Low-temperature and high-pressure eclogites with an oceanic affinity in the western part of the Dabie orogen have been investigated with combined Lu-Hf and U-Pb geochronology. These eclogites formed over a range of temperatures (482-565°C and 1.9-2.2 GPa). Three eclogites, which were sampled from the Gaoqiao country, yield Lu-Hf ages of 240.7 ± 1.2 Ma, 243.3 ± 4.1 Ma and 238.3 ± 1.2 Ma, with a corresponding lower-intercept U-Pb zircon age of 232 ± 26 Ma. Despite the well-preserved prograde major- and trace-element zoning in garnets, mineralogical and petrologic studies suggest that Lu-Hf ages mostly reflect a later garnet growth episode. These ages mark the termination of high-pressure eclogite-facies metamorphism instead of representing the early phase of garnet growth. An upper-intercept zircon U-Pb age of 765 ± 24 Ma is defined for the Gaoqiao eclogite, which is consistent with the weighted mean age of 768 ± 21 Ma for the country gneiss. This suggests an analogue protolith origin; however, the gneiss has not been subjected to successive high-pressure metamorphism. The new Triassic ages are thus either an estimate of the involvement of oceanic fragments in the continental subduction or a milestone of the termination of oceanic subduction. The latter implies that different oceanic crustal slices/fragments reached peak metamorphism and started to exhume at diverse times, rather than being subducted and exhumed as a whole. Despite these results, many fundamental questions regarding the multi-slices subduction and exhumation hypothesis remain unanswered.

  6. Long-term Ocean Bottom Monitoring for Shallow Slow Earthquakes in the Hyuga-nada, Nankai Subduction Zone

    Science.gov (United States)

    Yamashita, Y.; Shinohara, M.; Yamada, T.; Nakahigashi, K.; Shiobara, H.; Mochizuki, K.; Maeda, T.; Obara, K.

    2015-12-01

    The Hyuga-nada region, nearby the western end of the Nankai Trough in Japan, is one of the most active areas of shallow slow earthquakes in the world. Recently, ocean-bottom observation of offshore seismicity near the trench succeeded in detecting shallow tremor. The observed traces contained a complete episode lasting for one month exhibiting similar migration property of deep tremor [Yamashita et al., 2015]. This activity was associated with shallow very-low-frequency earthquake (VLFE) activity documented by land-based broadband seismic network. The coincidence between tremor and VLFE activities and similarity of their migration pattern show strong resemblance with the episodic tremor and slip episodes; this similarity suggests that the tremor activity in the shallow plate boundary may also be coupled with VLFE and short-term slow slip events in this area. It is important clarifying the seismicity including slow earthquakes to understand the slip behavior at a shallow plate boundary, and to improve assessments of the possibility of tsunamigenic megathrust earthquake that is anticipated to occur at the Nankai Trough. Motivated by these issues, we started long-term ocean-bottom monitoring in this area from May 2014 using 3 broadband and 7 short-period seismometers. In January 2015, we replaced the instruments and obtained the first data which includes minor shallow tremor and VLFE activity on June 1-3, 2014. Preliminary results of data processing show that the shallow tremor activity occurred at the northwestern part of the 2013 activity. The location corresponds the point where the tremors stopped migrating to further north direction and turned sharply eastward in the 2013 activity. On the other hand, clear tremor migration was not found in the 2014 activity. This local activity may imply that regional/small-scale heterogeneous structures such as a subducting sea mount affect the activity pattern. During the 2014 observation, many ordinary earthquakes also

  7. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust

    Science.gov (United States)

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  8. The Impact of Surface Bending, A Complete Mineralogical Model and Movement of the Overriding Plate on Subduction Zones

    Science.gov (United States)

    Arredondo, Katrina Marie

    Modern observations of subduction zones provide only snapshots of a complex geologic system that can last tens of millions of years. Surface velocity measurements and seismic tomography images provide information on the possible forces acting on the plate and influencing slab shape and behavior. Modern subduction zones exhibit a wide range of behavior, from the rapidly rolling back Tonga subduction zone (where the trench is moving toward the subducting plate) to stationary trenches to trench advance (where the trench is moving toward the overriding plate). Slabs may also stagnate at 660 km while others directly penetrate into the lower mantle. Numerical models can combine observations and laboratory data to test and study possible forces that may explain the wide variety of behavior observed in modern subduction zones. Past numerical model studies have not studied the impact on subduction zone behavior from: composition-dependent phase transitions, a complete mineralogical model and movement of the overriding plate. Here we show that: 1) weakening of the subducting plate can be observed from the forebulge to the trench using highly detailed bathymetry and gravity measurement tracks parallel to the trench, 2) using a complete mineralogy model is important for accurate numerical models because incomplete approximations may overestimate slab stagnation and slab rollback, 3) in free subduction models, the complete mineralogy model creates a strong feedback loop between broad slab folds and trench velocities, and 4) the movement of the overriding plate is very important for slab rollback. Results presented in Chapter 1 indicate that the rheology in the numerical models should produce weakening in the slab as it bends into the trench, which is observed in the models of Chapter 2 and 3. Past published models can be analyzed in relation to Chapter 2 and 3 to determine if their conclusions are skewed by an overestimation of slab stagnation or trench rollback. The presented

  9. Crustal structure and configuration of the subducting Philippine Sea plate beneath the Pacific coast industrial zone in Japan inferred from receiver function analysis

    Science.gov (United States)

    Igarashi, T.; Iidaka, T.; Sakai, S.; Hirata, N.

    2012-12-01

    , the Kanto plain and Boso peninsula are covered in thick sediment layers. The velocity perturbations in the crust are consistent with existing tomography models. There are low-velocity zones in the upper crust to the crust-mantle boundary corresponding to volcanoes. In contrast, non-volcanic mountain foothills are relatively high-velocity zones. We also elucidated the configuration of PHS plate to a depth of about 60 km. The PHS plate subducts to the northwest and the direction coincides with plate motion. The northeastern margin of PHS plate is estimated from the plate thickness, which gradually decreases to the northeast after contact with the underlying Pacific plate beneath the Tokyo metropolitan area. Asperities of some large earthquakes seem to be corresponded to the high-velocity area in the PHS slab. On the other hand, non-volcanic low-frequency earthquakes located in the plate interface are characterized by relatively low-velocity areas. They may indicate the serpentinized mantle wedge which reflects dehydration of the subducting oceanic crust.

  10. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    Science.gov (United States)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the

  11. Earthquake nucleation in weak subducted carbonates

    NARCIS (Netherlands)

    Kurzawski, Robert M.; Stipp, Michael; Niemeijer, André R.; Spiers, Chirstopher J.; Behrmann, Jan H.

    Ocean-floor carbonate- and clay-rich sediments form major inputs to subduction zones, especially at low-latitude convergent plate margins. Therefore, knowledge of their frictional behaviour is fundamental for understanding plate-boundary earthquakes. Here we report results of mechanical tests

  12. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity

    Science.gov (United States)

    Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane

    2014-01-01

    Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.

  13. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    Science.gov (United States)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  14. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    Science.gov (United States)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  15. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction.

    Science.gov (United States)

    Stukel, Michael R; Aluwihare, Lihini I; Barbeau, Katherine A; Chekalyuk, Alexander M; Goericke, Ralf; Miller, Arthur J; Ohman, Mark D; Ruacho, Angel; Song, Hajoon; Stephens, Brandon M; Landry, Michael R

    2017-02-07

    Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from (238)U:(234)Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m(-2)⋅d(-1)) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m(-2)⋅d(-1) was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

  16. Earthquake Directivity, Orientation, and Stress Drop Within the Subducting Plate at the Hikurangi Margin, New Zealand

    Science.gov (United States)

    Abercrombie, Rachel E.; Poli, Piero; Bannister, Stephen

    2017-12-01

    We develop an approach to calculate earthquake source directivity and rupture velocity for small earthquakes, using the whole source time function rather than just an estimate of the duration. We apply the method to an aftershock sequence within the subducting plate beneath North Island, New Zealand, and investigate its resolution. We use closely located, highly correlated empirical Green's function (EGF) events to obtain source time functions (STFs) for this well-recorded sequence. We stack the STFs from multiple EGFs at each station, to improve the stability of the STFs. Eleven earthquakes (M 3.3-4.5) have sufficient azimuthal coverage, and both P and S STFs, to investigate directivity. The time axis of each STF in turn is stretched to find the maximum correlation between all pairs of stations. We then invert for the orientation and rupture velocity of both unilateral and bilateral line sources that best match the observations. We determine whether they are distinguishable and investigate the effects of limited frequency bandwidth. Rupture orientations are resolvable for eight earthquakes, seven of which are predominantly unilateral, and all are consistent with rupture on planes similar to the main shock fault plane. Purely unilateral rupture is rarely distinguishable from asymmetric bilateral rupture, despite a good station distribution. Synthetic testing shows that rupture velocity is the least well-resolved parameter; estimates decrease with loss of high-frequency energy, and measurements are best considered minimum values. We see no correlation between rupture velocity and stress drop, and spatial stress drop variation cannot be explained as an artifact of varying rupture velocity.

  17. MASE: A seismological perspective of the sub-horizontal subduction of the Cocos Plate under North America

    Science.gov (United States)

    Pérez-Campos, X.; Clayton, R. W.; Davis, P.; Iglesias, A.; Husker, A.; Valdés-González, C. M.

    2006-12-01

    The main objective of the MesoAmerican Subduction Experiment (MASE) is the generation of a dynamic model of the subduction of Cocos plate underneath the North American plate. One component of this project is a seismic line consisting of 100 broadband seismometers, located every 5 km between Acapulco and Tampico, with its mid-point in Mexico City. The initial instrument was deployed at the end of 2004 and the full line will operate until January 2007. The purpose of this line is to derive a velocity and structure model along the transect, and to determine attenuation and viscosity in the mantle wedge. Various researchers from the three institutions involved (Caltech, UNAM, and UCLA) are using several techniques to achieve these goals, such as receiver functions, surface-wave dispersion, tomography and waveform modeling. Preliminary results from dispersion curves show clearly a Moho that correlates to one obtained with receiver functions, which show a flat subducting slab up to ~200 km from the trench. Also, tomography, together with the previous techniques and ray tracing, show a difference in behavior within the Trans Mexican Volvanic Belt. Furthermore, from microseism correlation, we can distinguish surface waves that give information about the crust structure.

  18. P-wave tomography of Northeast Asia: Constraints on the western Pacific plate subduction and mantle dynamics

    Science.gov (United States)

    Ma, Jincheng; Tian, You; Liu, Cai; Zhao, Dapeng; Feng, Xuan; Zhu, Hongxiang

    2018-01-01

    A high-resolution model of 3-D P-wave velocity structure beneath Northeast Asia and adjacent regions is determined by using 244,180 arrival times of 14,163 local and regional earthquakes and 319,857 relative travel-time residuals of 9988 teleseismic events recorded at ∼2100 seismic stations in the study region. Our tomographic results reveal the subducting Pacific slab clearly as a prominent high-velocity anomaly from the Japan Trench to the North-South Gravity lineament (NSGL) in East China. The NSGL is roughly coincident with the western edge of the stagnant Pacific slab in the mantle transition zone (MTZ). The subducting Pacific slab has partly sunk into the lower mantle beneath Northeast China, but under the Sino-Korean Craton the slab lies horizontally in the MTZ. The NSGL, as an important tectonic line in Mainland China, is marked by sharp differences in the surface topography, gravity anomaly, crustal and lithospheric thickness and mantle seismic velocity from the east to the west. These features of the NSGL and large-scale hot and wet upwelling in the big mantle wedge (BMW) in the east of the NSGL are all related to the subduction processes of the Western Pacific plate. The Changbai intraplate volcanic group is underlain by a striking low-velocity anomaly from the upper MTZ and the BMW up to the surface, and deep earthquakes (410-650 km depths) occur actively in the subducting Pacific slab to the east of the Changbai volcano. We propose that the Changbai volcanic group is caused by upwelling of hot and wet asthenospheric materials and active convection in the BMW. The formation of other volcanic groups in the east of the NSGL is also associated with the subduction-driven corner flow in the BMW.

  19. Intermittent plate tectonics?

    Science.gov (United States)

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  20. Long-period ocean-bottom motions in the source areas of large subduction earthquakes.

    Science.gov (United States)

    Nakamura, Takeshi; Takenaka, Hiroshi; Okamoto, Taro; Ohori, Michihiro; Tsuboi, Seiji

    2015-11-30

    Long-period ground motions in plain and basin areas on land can cause large-scale, severe damage to structures and buildings and have been widely investigated for disaster prevention and mitigation. However, such motions in ocean-bottom areas are poorly studied because of their relative insignificance in uninhabited areas and the lack of ocean-bottom strong-motion data. Here, we report on evidence for the development of long-period (10-20 s) motions using deep ocean-bottom data. The waveforms and spectrograms demonstrate prolonged and amplified motions that are inconsistent with attenuation patterns of ground motions on land. Simulated waveforms reproducing observed ocean-bottom data demonstrate substantial contributions of thick low-velocity sediment layers to development of these motions. This development, which could affect magnitude estimates and finite fault slip modelling because of its critical period ranges on their estimations, may be common in the source areas of subduction earthquakes where thick, low-velocity sediment layers are present.

  1. Izu-Bonin Arc: Intra-oceanic from the beginning? Unraveling the crustal structure of the Mesozoic proto-Philippine Sea Plate

    Science.gov (United States)

    Tani, K.; Ishizuka, O.; Ueda, H.; Shukuno, H.; Hirahara, Y.; Nichols, A. R.; Dunkley, D. J.; Horie, K.; Ishikawa, A.; Morishita, T.; Tatsumi, Y.

    2012-12-01

    The Izu-Bonin Arc is widely regarded as a typical intra-oceanic arc, where the oceanic Pacific Plate is subducting beneath the Philippine Sea Plate, an evolving complex of active and inactive arcs and back-arc basins. It is dominated by oceanic crust forming three large back-arc basins; Shikoku, Parece Vela, and West Philippine Basins, making the present Philippine Sea Plate look like an "oceanic" plate. However, all of these back-arc basins were formed after the inception of subduction at Izu-Bonin Arc, which began at ~52 Ma (Ishizuka et al. 2011, EPSL). Little is known about the proto-Philippine Sea Plate, which existed as a counterpart to the Pacific Plate during subduction initiation and before the formation of back-arc basins. To investigate the crustal structures of the proto-Philippine Sea Plate, we conducted manned-submersible SHINKAI6500 and Deep-Tow camera surveys during the April 2010 cruise of the R/V YOKOSUKA cruise (YK10-04) at the Amami Plateau, Daito Ridge, and Okidaito Ridge (ADO) region. The ADO region comprises the northwestern Philippine Sea Plate along with what are regarded as remnants of the proto-Philippine Sea Plate. Submersible observations and rock sampling revealed that ADO region exposes deep crustal sections of gabbroic, granitic, and metamorphic rocks, indicating that part of the proto-Philippine Sea Plate is composed of older, possibly continental, crust. Jurassic to Cretaceous magmatic zircon U-Pb ages have been obtained from the ADO plutonic rocks. These findings and tectonic reconstruction of the proto-Philippine Sea Plate (Deschamps and Lallemand 2002, JGR) suggests that subduction of the Izu-Bonin Arc initiated at the continental margin of the Southeast Asia, possibly correlating to the Mesozoic island-arc and ophiolite complexes exposed in the Philippine Islands and Borneo, and later acquired "intra-oceanic"-like setting through formation of the backarc basins. Furthermore, detrital zircon ages from volcaniclastic sandstones

  2. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Science.gov (United States)

    Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun

    2017-01-01

    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60–100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120–160 km depth suggests that the slab’s mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics. PMID:28691714

  3. Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles

    Science.gov (United States)

    Paulatto, Michele; Laigle, Mireille; Galve, Audrey; Charvis, Philippe; Sapin, Martine; Bayrakci, Gaye; Evain, Mikael; Kopp, Heidrun

    2017-07-01

    Subducting slabs carry water into the mantle and are a major gateway in the global geochemical water cycle. Fluid transport and release can be constrained with seismological data. Here we use joint active-source/local-earthquake seismic tomography to derive unprecedented constraints on multi-stage fluid release from subducting slow-spread oceanic lithosphere. We image the low P-wave velocity crustal layer on the slab top and show that it disappears beneath 60-100 km depth, marking the depth of dehydration metamorphism and eclogitization. Clustering of seismicity at 120-160 km depth suggests that the slab's mantle dehydrates beneath the volcanic arc, and may be the main source of fluids triggering arc magma generation. Lateral variations in seismic properties on the slab surface suggest that serpentinized peridotite exhumed in tectonized slow-spread crust near fracture zones may increase water transport to sub-arc depths. This results in heterogeneous water release and directly impacts earthquakes generation and mantle wedge dynamics.

  4. Subduction evolution in the Anatolian region : the rise, demise, and fate of the Anadolu Plate

    NARCIS (Netherlands)

    Gürer, M.D.

    2017-01-01

    A major ocean basin once intervened the African and Arabian continents in the south and the Eurasian continent in the north: the Neotethys Ocean. Unlike the present-day Atlantic Ocean, it was not a single, wide ocean with one mid-oceanic ridge, but consisted of several relatively narrow oceanic

  5. Is subduction really in the plate tectonics driving seat, or do two other global mechanisms do the driving? A review in the 'deep-keeled cratons' frame for global dynamics

    Science.gov (United States)

    Osmaston, M. F.

    2012-04-01

    Introduction. The title poses a question very like that of my talk in 2003 [1], concluding then that, as a driver, subduction comes 'a doubtful third'. My purpose here is to show that subsequent developments now cause even that limited status to be denied it with great assurance, except in a rare situation, of which there is no current example. The key point is that studies of subduction have been importantly mistaken as to the nature of the plate arriving for subduction. Deep-keeled cratons? The 'deep-keeled cratons' frame for global dynamics [2 - 5] is the result of seeking Earth-behaviour guidance on the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Remarkably it has turned out [2 - 5] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that the explanation for the otherwise-unexpected immobility of subcratonic material to such depths is a petrological one which is also applicable to the behaviour of LVZ mantle below MORs [6 - 8]. Straight away this result has major consequences for the character of the plate arriving for subduction. First, to construct them, we need a 'thick-plate' (>100km?) model of the MOR process which recognizes that this LVZ immobility renders invalid the existing concept of divergent mantle flow below MORs. I show that my now not-so-new model [1, 8 - 10], based on a deep, narrrow, wall-accreting sub-axis crack, possesses outstandingly relevant properties, even appropriately dependent on spreading rate. Second, the oceanic plate arriving for subduction is no longer just the cooled

  6. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust

    Science.gov (United States)

    Kim, Daeyeong; Katayama, Ikuo; Michibayashi, Katsuyoshi; Tsujimori, Tatsuki

    2013-09-01

    Investigations of microstructures are crucial if we are to understand the seismic anisotropy of subducting oceanic crust, and here we report on our systematic fabric analyses of glaucophane, lawsonite, and epidote in naturally deformed blueschists from the Diablo Range and Franciscan Complex in California, and the Hida Mountains in Japan. Glaucophanes in the analyzed samples consist of very fine grains that are well aligned along the foliation and have high aspect ratios and strong crystal preferred orientations (CPOs) characterized by a (1 0 0)[0 0 1] pattern. These characteristics, together with a bimodal distribution of grain sizes from some samples, possibly indicate the occurrence of dynamic recrystallization for glaucophane. Although lawsonite and epidote display high aspect ratios and a strong CPO of (0 0 1)[0 1 0], the occurrence of straight grain boundaries and euhedral crystals indicates that rigid body rotation was the dominant deformation mechanism. The P-wave (AVP) and S-wave (AVS) seismic anisotropies of glaucophane (AVP = 20.4%, AVS = 11.5%) and epidote (AVP = 9.0%, AVS = 8.0%) are typical of the crust; consequently, the fastest propagation of P-waves is parallel to the [0 0 1] maxima, and the polarization of S-waves parallel to the foliation can form a trench-parallel seismic anisotropy owing to the slowest VS polarization being normal to the subducting slab. The seismic anisotropy of lawsonite (AVP = 9.6%, AVS = 19.9%) is characterized by the fast propagation of P-waves subnormal to the lawsonite [0 0 1] maxima and polarization of S-waves perpendicular to the foliation and lineation, which can generate a trench-normal anisotropy. The AVS of lawsonite blueschist (5.6-9.2%) is weak compared with that of epidote blueschist (8.4-11.1%). Calculations of the thickness of the anisotropic layer indicate that glaucophane and lawsonite contribute to the trench-parallel and trench-normal seismic anisotropy beneath NE Japan, but not to that beneath the Ryukyu

  7. Differential subsidence of the forearc wedge of the Ryukyu (Nansei-Shoto) Arc caused by subduction of ridges on the Philippine Sea Plate

    Science.gov (United States)

    Okamura, Yukinobu; Nishizawa, Azusa; Oikawa, Mitsuhiro; Horiuchi, Daishi

    2017-10-01

    The Philippine Sea Plate (PSP) carrying several ridges has been sudbucting under the Ryukyu (Nansei-Shoto) Arc since middle Miocene. Because no extensive accretionary prism has been growing along the Ryukyu Trench, the arc provides an opportunity to examine effects of ridge subduction on structure of the forearc wedge and a clue to reconstruct ancient plate motion of the PSP that is inferred to have changed between NW and NNW. To examine this perspective, we clarified structure of the Ryukyu forearc wedge based on seismic profiles and bathymetric data and related them to ridge subduction. An erosional unconformity between pre-Neogen and Neogene rocks is widely recognized through the Ryukyu Arc, and we divided the forearc wedges into Zones I to IV from southwest to northeast by difference of depth of the erosional unconformity. We correlated these four zones to the locations of ridge subduction that have been shifting NE or SW along the Ryukyu Trench. Zone I is underlain by the largely subsided unconformity and we attributed the structure to tearing of the Eurasia plate due to subduction of the western margin of the PSP including the Luzon Arc. Zone II consists of a wide terrace on the shallow erosional unconformity, and no ridge that was subducting in this zone is known. Zone III is characterized by the seaward descending unconformity covered with a thick sequence of Neogene sediments and is related to subduction of the NW-SE trending Daito Ridge and the E-W trending Amami Plateau. Zone IV has the deeper unconformity and slope geometry and corresponds to subduction of the NNW-SSE trending Kyushu-Palau Ridge. The structure of the Ryukyu forearc is consistently related to subduction of ridges on the PSP, suggesting that the change of the plate motion of the PSP can be precisely reconstructed by further detailed survey.

  8. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    Science.gov (United States)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S

  9. Geometry and Evolution of the Cangdong Sag in the Bohai Bay Basin, China: Implications for Subduction of the Pacific Plate.

    Science.gov (United States)

    Luo, Liang; Qi, Jiafu; Li, Hongxiang; Dong, Yueqi; Zhang, Shuai; Zhang, Xichen; Yu, Xiaoxia; Luo, Lingyan

    2017-11-13

    The Cangdong Sag is a complex Cenozoic rift basin at the center of the Bohai Bay Basin. Cenozoic structures in the Cangdong Sag can be subdivided into the Cangdong Fault System in the west and the Xuxi Fault System in the east. The geometry of the boundary faults varies along the axes of half-grabens. According to the cross-sectional strata geometry, unconformity and planar structural pattern, the Cenozoic structural evolution of the Cangdong Sag can be divided into four distinct stages: (1) major Paleocene initial rift, (2) latest Paleocene-early Eocene intensive rift, (3) late Eocene-Oligocene strike-slip superimposed rift, and (4) Neogene to present-day post-rift depression. The extensional deformation was mainly derived from horizontal stress induced by the upwelling of asthenosphere. The strike-slip structure of the Cangdong Sag provides important information related to the subduction of the Western Pacific Plate. It was found that the strike-slip movement of the southern Xuxi Fault Zone was activated during the deposition of the third member of Shahejie Formation to the Dongying Formation; therefore, ~43 Ma probably marks the time when the Western Pacific Plate initially changed its subduction direction from northwest to nearly west.

  10. A diffuse plate boundary model for Indian Ocean tectonics

    Science.gov (United States)

    Wiens, D. A.; Demets, C.; Gordon, R. G.; Stein, S.; Argus, D.

    1985-01-01

    It is suggested that motion along the virtually aseismic Owen fracture zone is negligible, so that Arabia and India are contained within a single Indo-Arabian plate divided from the Australian plate by a diffuse boundary. The boundary is a zone of concentrated seismicity and deformation commonly characterized as 'intraplate'. The rotation vector of Australia relative to Indo-Arabia is consistent with the seismologically observed 2 cm/yr of left-lateral strike-slip along the Ninetyeast Ridge, north-south compression in the Central Indian Ocean, and the north-south extension near Chagos.

  11. The Triassic age for oceanic eclogites in the Dabie orogen: Entrainment of oceanic fragments in the continental subduction

    Science.gov (United States)

    Cheng, Hao; DuFrane, S. Andrew; Vervoort, Jeffrey D.; Nakamura, Eizo; Li, Qiuli; Zhou, Zuyi

    2010-06-01

    Low-temperature and high-pressure eclogites with an oceanic affinity in the western part of the Dabie orogen have been investigated with combined Lu-Hf and U-Pb geochronology. These eclogites formed over a range of temperatures (482-565 °C and 1.9-2.2 GPa). Three eclogites, which were sampled from the Gaoqiao country, yielded Lu-Hf ages of 240.7 ± 1.2 Ma, 243.3 ± 4.1 Ma and 238.3 ± 1.2 Ma, with a corresponding lower-intercept U-Pb zircon age of 232 ± 26 Ma. Despite the well-preserved prograde major- and trace-element zoning in garnets, these Lu-Hf ages mostly reflect the high-pressure eclogite-facies metamorphism instead of representing the early phase of garnet growth due to the occurrence of omphacite inclusions from core to rim and the shell effect. An upper-intercept zircon U-Pb age of 765 ± 24 Ma is defined for the Gaoqiao eclogite, which is consistent with the weighted-mean age of 768 ± 21 Ma for the country gneiss. However, the gneiss has not been subjected to successive high-pressure metamorphism. The new Triassic ages are likely an estimate of the involvement of oceanic fragments in the continental subduction.

  12. Deep subduction of hot young oceanic slab required by the Syros eclogites

    Science.gov (United States)

    Flemetakis, Stamatis; Moulas, Evangelos; Kostopoulos, Dimitrios; Chatzitheodoridis, Elias

    2014-05-01

    The Cycladic islands of Syros and Siphnos, Aegean Sea, Greece, represent subducted IAT and BABB remnants of the Neotethyan Pindos Ocean. Garnet porphyroblasts (Ø=1mm) in a glaucophane-zoisite eclogite from Kini locality on Syros are compositionally zoned and display a unique prograde heating path from a high-pressure greenschist-facies core with high XSps and low Mg# via a blueschist-facies mantle with moderate XSps and Mg# to an eclogite-facies rim with low XSps and high Mg#. The outermost 35 μm of the garnet rims show flat XSps with rapidly increasing outwards Mg#. Na-Act-Chl-Ph rimmed by Gln mark the greenschist-blueschist facies transition, whereas Pg rimmed by Omp and the incoming of Rt at the expense of Ttn signify the blueschist-eclogite facies transition. Raman barometry of quartz inclusions in the eclogitic garnet rims coupled with elastic modelling of the garnet host [1], and Zr-in-Rt and Grt-Cpx-Ph thermobarometry revealed near-UHP P-T conditions of the order of 2.6 GPa/660°C (maximum residual pressure was 0.8-0.9GPa). By contrast, the greenschist-blueschist transition lies at ~0.75 GPa/355°C. This pressure is in excellent agreement with the position of the albite = jadeite + quartz boundary calculated at 350°C using the observed omphacite composition corrected for jadeite activity (Koons & Thompson, 1985) [2]. As a result, Cpx inclusions in garnet core signify the early entrance of garnet in the subduction zone history of the slab. Furthermore, the early growth of garnet (in lower pressures) observed in eclogites from Syros lies in great agreement with published slab-geotherms that indicate hot subduction and show a precocious garnet growth (Baxter and Caddick, 2013) [3]. The complete absence of lawsonite and the great abundance of zoisite crystals, based on the stability fields of both minerals (Poli et al., 2009) [4], further constrain the P-T trajectory of the slab. Our new P-T estimates match published T distributions on the slab surface

  13. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    Science.gov (United States)

    von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.

    2017-10-01

    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean

  14. Seismic coupling and uncoupling at subduction zones

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1983-01-01

    Some of the correlations concerning the properties of subduction zones are reviewed. A quantitative global comparison of many subduction zones reveals that the largest earthquakes occur in zones with young lithosphere and fast convergence rates. Maximum earthquake size is directly related to the asperity distribution on the fault plane. This observation can be translated into a simple model of seismic coupling where the horizontal compressive stress between two plates is proportional to the ratio of the summed asperity area to the total area of the contact surface. Plate age and rate can control asperity distribution directly through the horizontal compressive stress associated with the vertical and horizontal velocities of subducting slabs. The basalt to eclogite phase change in the down-going oceanic crust may be largely responsible for the uncoupling of subduction zones below a depth of about 40 km.

  15. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  16. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    Science.gov (United States)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  17. Breaking the shell: Initiating plate tectonic-like subduction on Europa

    Science.gov (United States)

    Bland, Michael T.; McKinnon, William B.

    2017-10-01

    Europa’s prominent bands have been proposed to form by a seafloor-spreading-like mechanism involving complete separation of Europa’s lithosphere and the emplacement of fresh ice from below [Prockter et al. 2002]. This formation mechanism poses a challenge for Europa’s strain balance: extensional rifting at bands must be offset by lithospheric shortening elsewhere, yet few obvious contractional features have been observed. Kattenhorn and Prockter [2014] suggested that extension on Europa is accommodated by subduction of the lithosphere at linear, tabular zones termed subsumption bands. Subduction of Europa’s lithosphere implicitly requires that lithospheric-scale thrust faults can develop. This contrasts with previous numerical modeling, which found that lithospheric shortening is instead primarily accommodated by folding or passive thickening [Bland and McKinnon 2012, 2013]. Here we reevaluate the conditions required to form large-scale thrust faults using a numerical model of lithospheric shortening on Europa that includes realistic localization of brittle failure (non-associated plasticity). In the absence of strain weakening (wherein brittle failure decreases the subsequent yield strength) essentially all shortening results in folding or thickening, consistent with previous results. With moderate strain weakening, deformation becomes localized within fault-like zones for surface temperatures ≤100 K; however, the resulting surface deformation suggests a complex interplay between folding and faulting. Only if the ice shell weakens very easily does faulting dominate. Large-scale faults preferentially form at cold surface temperatures and high heat fluxes. Cold temperatures promote faulting (as opposed to folding), and high heat fluxes result in a thinner lithosphere, which is more easily subducted. The subsumption bands identified by Kattenhorn and Prockter [2014] are at a relatively high latitude (cold temperature), and are associated with putative

  18. Three Plate Reconstruction in the Eastern Indian Ocean: New Constraints on Wharton and Australian-Antarctic basins

    Science.gov (United States)

    Jacob, J.; Dyment, J.

    2012-12-01

    Understanding the continuous seismicity and repeated occurrence of major earthquakes in Sumatra and the neighboring area requires detailed constrains on the subducting plate. In this study we analyze the past plate kinematics evolution of the Wharton basin, eastern Indian Ocean through a three plate reconstruction involving Australia (AUS), Antarctica (ANT), and India (IND). We compile marine magnetic identifications in the Australian-Antarctic Basin [1,2], the Crozet and Central Indian basins (Yatheesh et al, in prep.) and the Wharton Basin [3]. The Wharton Basin is characterized by an extinct spreading center dated by anomaly 18 (38 Ma). The southern flank of the basin exhibits a continuous sequence of anomalies 20n (42 Ma) to 34n (84 Ma), whereas the northern flank lacks some of the older anomalies because a significant part has been subducted in the Sunda Trench. The three-plate reconstructions have provided set of rotation parameters describing the evolution of IND-AUS. Using these parameters, we have reconstructed the missing isochrons of the northern flank and the detailed geometry of the subducted part of the Wharton basin. Such an exercise provides useful constraints on the age and structure of the plate in subduction under Indonesia. As a byproduct, the three plate reconstruction provided set of rotation parameters for AUS-ANT as well, which constrains the conjugate fit between the basins. Previous studies [1,2,4,5] have achieved such a fit on the base of ill-defined fracture zones. We consider the well-defined fracture zones from the Crozet, Central Indian, and Wharton basins, but avoid using the poor fracture zone imprints from the Australian-Antarctic Basin. As a result from this approach, we conclude that the relative motion of AUS with respect to ANT initially followed a north-south direction, then changed to northwest-southeast at anomaly 32ny, and reverted to northeast southwest at anomaly 24no prior to the establishment of the Southeast Indian

  19. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  20. Introduction to the structures and processes of subduction zones

    Science.gov (United States)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction

  1. Unstable fault slip induced by lawsonite dehydration in blueschist: Implication for the seismicity in the subducting oceanic crusts

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2015-12-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the subducting mantle In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Moho. These observations have stimulated interest in potential relationships between blueschist-facies metamorphism and seismicity, particularly through the dehydration reactions involving lawsonite. The rheology of these high-pressure and low-temperature metamorphic minerals is largely unknown. We conducted experiments on lawsonite accompanied by monitoring of acoustic emission (AE) in a Griggs-type deformation apparatus. Deformation was started at the confining pressure of 1.0 GPa, the temperature of 300 ˚C, and constant displacement rates of 0.16 to 0.016 μm/s, that correspond to equivalent strain rates (ɛ) of 9 × 10-5 to 9 × 10-6 1/s. In these experiments, temperature was increased at the temperature ramp rate of 0.5 to 0.05˚C/s above the thermal stability of lawsonite (600˚C) while the sample was deforming to test whether the dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (i.e., stick-slip) occurred during dehydration reactions in the lawsonite gouge layer, and AE signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shear), and the fault surface shows mirror-like slickensides. The unloading slope (i.e., rate of stress drop as a function of slip) during the unstable slip follows the stiffness of the apparatus at all experimental conditions regardless of the strain rate and temperature ramping rate. A thermal-mechanical scaling factor in the experiments covers the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers to induce seismicity in cold subduction zones.

  2. Insights into a fossil plate interface of an erosional subduction zone: a tectono-metamorphic study of the Tianshan metamorphic belt.

    Science.gov (United States)

    Bayet, Lea; Moritz, Lowen; Li, Jilei; Zhou, Tan; Agard, Philippe; John, Timm; Gao, Jun

    2016-04-01

    Subduction zone seismicity and volcanism are triggered by processes occurring at the slab-wedge interface as a consequence of metamorphic reactions, mass-transfer and deformation. Although the shallow parts of subduction zones (60km). In order to better understand the plate interface dynamics at these greater depths, one has to rely on the rock record from fossil subduction zones. The Chinese Tianshan metamorphic belt (TMB) represents an ideal candidate for such studies, because structures are well exposed with exceptionally fresh high-pressure rocks. Since previous studies from this area focused on fluid-related processes and its metamorphic evolution was assessed on single outcrops, the geodynamic setting of this metamorphic belt is unfortunately heavily debated. Here, we present a new geodynamic concept for the TMB based on detailed structural and petrological investigations on a more regional scale. A ~11km x 13km area was extensively covered, together with E-W and N-S transects, in order to produce a detailed map of the TMB. Overall, the belt is composed of two greenschist-facies units that constitute the northern and southern border of a large high-pressure (HP) to ultra high-pressure (UHP) unit in the center. This HP-UHP unit is mainly composed of metasediments and volcanoclastic rocks, with blueschist, eclogite and carbonate lenses. Only the southern part of the HP-UHP unit is composed of the uppermost part of an oceanic crust (e.g., pillow basalts and deep-sea carbonates). From south to north, the relative abundance and size of blueschist massive boudins and layers (as well as eclogite boudins) decreases and the sequence is increasingly interlayered with metasedimentary and carbonate-rich horizons. This indicates that the subducted material was dominated by trench filling made of sediments and volcanoclastic rocks, with only subordinate pieces of oceanic crust/lithosphere. The whole sequence is cut by km-scale major shear planes orientated WNW-ESE showing

  3. Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: Implications for the generation of volcanism and subduction dynamics

    OpenAIRE

    Jödicke, A; Jording, H.; Ferrari, L.; Arzate, J.; Mezger, K.; Rüpke, Lars

    2006-01-01

    In order to study electrical conductivity phenomena that are associated with subduction related fluid release and melt production, magnetotelluric (MT) measurements were carried out in southern Mexico along two coast to coast profiles. The conductivity-depth distribution was obtained by simultaneous two-dimensional inversion of the transverse magnetic and transverse electric modes of the magnetotelluric transfer functions. The MT models demonstrate that the plate southern profile shows enhanc...

  4. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    Science.gov (United States)

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  5. Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1029/2009GC003015

    2011-01-01

    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facie...

  6. Paleomagnetism of Cretaceous Oceanic Red Beds (CORBs) from Gyangze, northern Tethys Himalaya: Evidence for Intra-oceanic Subduction System and Southern Paleolatitute Limit for the Lhasa Block

    Science.gov (United States)

    Tan, Xiaodong

    2016-04-01

    indicate a paleolatitude of 10±2 degree north, ~2000 km distance from the southern Tethys Himalaya. Therefore, the formation is not deposited near the greater Indian continental margins. Based on recent plate tectonic reconstruction, the CORBs are very likely formed within a back-arc basin between the equatorial intra-oceanic subduction system and the Asian continental margin. Due to coeval development of abundant red beds in the Lhasa block, the characteristic pigments of hematite born in the CORBs are likely of terrestrial origin. In addition, the new data indicate that the Lhasa block is unlikely to be at low paleolatitude in the Late Cretaceous and Tertiary as some of the paleomagnetic results show.

  7. Multi-decadal changes in southern hemisphere subduction rates in a 1/12° ocean model hindcast

    Science.gov (United States)

    Nowatzki, Eva; Patara, Lavinia; Böning, Claus; Karstensen, Johannes

    2017-04-01

    Mode and Intermediate Waters formed in the mid-latitudes of the Southern Ocean represent a major agent for the ventilation of the southern hemisphere lower thermocline, playing a key role in the uptake and intermittent storage of anthropogenic CO2. Long-term hydrographic records as well as modelling studies have provided indications that characteristics of these water masses have been changing over the last decades. Changes in heat, freshwater and momentum fluxes may all contribute to the water mass variability. In this study, we investigate the temporal and spatial variability of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation and its linkages to changing atmospheric conditions with a global ocean - sea-ice model for the time period 1979-2007. The model employs a horizontal resolution of 1/12° for the Southern Ocean and is forced with the CORE-II interannually-varying atmospheric forcing data set. The hindcast simulation is complemented by a second experiment with a repeated 'normal-year' atmospheric forcing in order to separate atmospherically-related changes from stochastic variability and spurious model trends. We find that subduction rates in the density range of SAMW and AAIW are dominated by the lateral induction term and as such are tightly linked to the maximum mixed layer depth (MLD) at the end of winter. The model simulation shows multi-decadal trends in subduction rates, however the trends are not uniform across the density range of SAMW/ AAIW and differ between the Pacific and Indian Ocean sectors. Largest changes in AAIW formation are found in the southeast Pacific, whereas changes in SAMW formation are most pronounced in the Indian Ocean. In the Pacific, the decrease of subduction rates in the AAIW range is contrasted by a positive trend in the SAMW range. The changes in subduction rates are linked to salinity and thus density trends of the winter mixed layer that can be traced to multi-decadal trends in heat and

  8. A Cambrian intra-oceanic subduction system in the Bozshakol area, Kazakhstan

    Science.gov (United States)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Yuan, Feng; Jakupova, Sholpan

    2015-05-01

    adakites. Therefore, Bozshakol intrusive rocks were also derived from the mantle wedge and minor slab melts. We propose a model of intra-oceanic subduction for the Middle to Late Cambrian magmatic evolution of magmatic arcs in northwestern central Kazakhstan.

  9. Where does subduction initiate and die? Insights from global convection models with continental drift

    Science.gov (United States)

    Ulvrova, Martina; Williams, Simon; Coltice, Nicolas; Tackley, Paul

    2017-04-01

    Plate tectonics is a prominent feature on Earth. Together with the underlying convecting mantle, plates form a self-organized system. In order to understand the dynamics of the coupled system, subduction of the lithospheric plates plays the key role since it links the exterior with the interior of the planet. In this work we study subduction initiation and death with respect to the position of the continental rafts. Using thermo-mechanical numerical calculations we investigate global convection models featuring self-consistent plate tectonics and continental drifting employing a pseudo-plastic rheology and testing the effect of a free surface. We consider uncompressible mantle convection in Boussinesq approximation that is basaly and internaly heated. Our calculations indicate that the presence of the continents alterns stress distribution within a certain distance from the margins. Intra-oceanic subudction initiation is favorable during super-continent cycles while the initiation at passive continental margin prevails when continents are dispersed. The location of subduction initiation is additionally controlled by the lithospheric strength. Very weak lithosphere results in domination of intra-oceanic subduction initiation. The subduction zones die more easily in the vicinity of the continent due to the strong rheological contrast between the oceanic and continental lithosphere. In order to compare our findings with subduction positions through time recorded on Earth, we analyse subduction birth in global plate reconstruction back to 410 My.

  10. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    Science.gov (United States)

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-05

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

  11. Seismic properties of subducting oceanic crust: Constraints from natural lawsonite-bearing blueschist and eclogite in Sivrihisar Massif, Turkey

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong

    2016-01-01

    Investigating the seismic properties of natural lawsonite (Lws)-bearing blueschist and eclogite is particularly important for constraining the seismic interpretation of subducting oceanic crust based on seismological observations. To achieve this end, we analyzed in detail the mineral fabrics and seismic properties of foliated Lws-blueschist and Lws-eclogites from Sivrihisar Massif in Turkey. In both blueschists and eclogites, the lawsonite fabric is characterized by three different patterns: [0 0 1] axes aligning sub-normal to foliation, and [0 1 0] axes aligning sub-parallel to lineation (normal type); [0 0 1] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation with a girdle sub-normal to lineation (abnormal type); and [0 0 1] axes aligning both sub-normal to foliation and sub-parallel to lineation, [0 1 0] axes aligning sub-parallel to lineation, and [1 0 0] axes aligning sub-normal to foliation (transitional pattern). In contrast, glaucophane and omphacite mostly present consistent axial fabrics with the [0 0 1] axes aligning to lineation. These mineral fabrics produce whole-rock seismic anisotropies with similar patterns. However, the variations in seismic anisotropies are mainly controlled by the rock type, to a lesser extent are determined by the lawsonite fabric type, and to only a small extent are affected by mineral fabric strength. Despite the constructive abnormal-type lawsonite fabric on whole-rock seismic anisotropies, because of their weaker mineral fabric strength (or deformation degree), the abnormal-type Lws-blueschist still exhibit comparatively lower seismic anisotropies than those normal-type Lws-blueschist from other localities. Based on the calculated seismic anisotropies and velocities, we estimated that when oceanic crust transforms from Lws-blueschist to Lws-eclogite with increasing subduction depth, (1) P-wave and max. S-wave polarization anisotropies reduce about 70% and 40%, respectively; and (2

  12. Petrogenesis of the Majiari ophiolite (western Tibet, China): Implications for intra-oceanic subduction in the Bangong-Nujiang Tethys

    Science.gov (United States)

    Huang, Qiang-tai; Liu, Wei-liang; Xia, Bin; Cai, Zhou-rong; Chen, Wei-yan; Li, Jian-feng; Yin, Zheng-xin

    2017-09-01

    The Majiari ophiolite lies in the western Bangong-Nujiang Suture Zone, which separates the Qiangtang and Lhasa blocks in central Tibet. The ophiolite consists of peridotite, gabbro/diabase and basalt. Zircon U-Pb dating yielded an age of 170.5 ± 1.7 Ma for the gabbro, whereas 40Ar/39Ar dating of plagioclase from the same gabbro yielded ages of 108.4 ± 2.6 Ma (plateau age) and 112 ± 2 Ma (isochron age), indicating that the ophiolite was formed during the Middle Jurassic and was probably emplaced during the Early Cretaceous. Zircons from the gabbro have εHf(t) values ranging from +6.9 to +10.6 and f(Lu/Hf) values ranging from -0.92 to -0.98. Mafic lavas plot in the tholeiitic basalt field but are depleted in Nb, Ta and Ti and enriched in Rb, Ba and Th in the N-MORB-normalized trace element spider diagram. These lavas have whole-rock εNd(t) values of +5.9 to +6.6, suggesting that they were derived from a depleted mantle source, which was probably modified by subducted materials. The Majiari ophiolite probably formed in a typical back-arc basin above a supra-subduction zone (SSZ) mantle wedge. Intra-oceanic subduction occurred during the Middle Jurassic and collision of the Lhasa and South Qiangtang terranes likely occurred in the Early Cretaceous. Thus, closure of the Bangong-Nujiang Tethys Ocean likely occurred before the Early Cretaceous.

  13. Subduction-driven recycling of continental margin lithosphere.

    Science.gov (United States)

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  14. Shallow Low-frequency Tremor in the Hyuga-nada region, western Nankai Trough subduction zone, observed by ocean bottom seismographic experiment

    Science.gov (United States)

    Yamashita, Y.; Yakiwara, H.; Shimizu, H.; Uchida, K.; Kamizono, M.; Nakamoto, M.; Fukui, M.; Fujita, S.; Aizawa, K.; Miyamachi, H.; Hirano, S.; Umakoshi, K.; Yamada, T.; Kanehara, H.; Aoshima, T.

    2013-12-01

    The Hyuga-nada region, locating western Nankai trough, is one of the most seismically active areas in Japan. Here, the Philippine Sea Plate subducts northwestward beneath the Eurasian Plate at an approximate rate of 5-7 cm/yr [e.g., Seno et al., 1993; Miyazaki and Heki, 2001]. Interplate earthquakes with magnitudes in the range of 6.5 to 7.5 repeatedly occur at intervals of decades. In the shallower part of the plate boundary in this region, the shallow very-low frequency earthquakes (dominant frequency 10~20 s) occur [Obara and Ito, 2005; Asano et al., 2008]. The shallow part of the plate boundary zone is very important for the generation of large interplate earthquakes and following tsunami. In order to reveal the detail of microseismicity from the shallower part of the plate boundary to seismogenic zone in the Hyuga-nada region, we have conducted Ocean Bottom Seismographic experiment from May 19 until July 6, 2013. We used 12 Ocean Bottom Seismometers (OBSs) with a three-component short-period (10 OBSs: 4.5Hz, 2 OBSs: 1Hz) seismometer. All OBSs were recovered but one OBS was no data because of the technical problem of the recorder. During this experiment, many earthquakes recorded by OBSs. In addition, many low-frequency signals were also recorded. From the characteristic of the waveform and estimated source location, these are the shallow low-frequency tremor which is recorded for the first time by close-in observation the Hyuga-nada region. Here, we report the result of preliminary analysis of these shallow low-frequency tremors. The tremor activity mainly occurred from end of May to end of July 2013. Dominant frequency range of these tremors are 1-8 Hz and long duration range (10 seconds ~ a few minutes), which is same character of low-frequency tremor observed in Kii-Peninsula, Nankai trough using short-period OBSs [Obana and Kodaira, 2009]. We estimated tremor source location using envelop correlation method [Obara, 2002]. Although we estimated only a few

  15. Structural styles and zircon ages of the South Tianshan accretionary complex, Atbashi Ridge, Kyrgyzstan: Insights for the anatomy of ocean plate stratigraphy and accretionary processes

    Science.gov (United States)

    Sang, Miao; Xiao, Wenjiao; Orozbaev, Rustam; Bakirov, Apas; Sakiev, Kadyrbek; Pak, Nikolay; Ivleva, Elena; Zhou, Kefa; Ao, Songjian; Qiao, Qingqing; Zhang, Zhixin

    2018-03-01

    The anatomy of an ancient accretionary complex has a significance for a better understanding of the tectonic processes of accretionary orogens and complex because of its complicated compositions and strong deformation. With a thorough structural and geochronological study of a fossil accretionary complex in the Atbashi Ridge, South Tianshan (Kyrgyzstan), we analyze the structure and architecture of ocean plate stratigraphy in the western Central Asian Orogenic Belt. The architecture of the Atbashi accretionary complex is subdivisible into four lithotectonic assemblages, some of which are mélanges with "block-in-matrix" structure: (1) North Ophiolitic Mélange; (2) High-pressure (HP)/Ultra-high-pressure (UHP) Metamorphic Assemblage; (3) Coherent & Mélange Assemblage; and (4) South Ophiolitic Mélange. Relationships between main units are tectonic contacts presented by faults. The major structures and lithostratigraphy of these units are thrust-fold nappes, thrusted duplexes, and imbricated ocean plate stratigraphy. All these rock units are complicatedly stacked in 3-D with the HP/UHP rocks being obliquely southwestward extruded. Detrital zircon ages of meta-sediments provide robust constraints on their provenance from the Ili-Central Tianshan Arc. The isotopic ages of the youngest components of the four units are Late Permian, Early-Middle Triassic, Early Carboniferous, and Early Triassic, respectively. We present a new tectonic model of the South Tianshan; a general northward subduction polarity led to final closure of the South Tianshan Ocean in the End-Permian to Late Triassic. These results help to resolve the long-standing controversy regarding the subduction polarity and the timing of the final closure of the South Tianshan Ocean. Finally, our work sheds lights on the use of ocean plate stratigraphy in the analysis of the tectonic evolution of accretionary orogens.

  16. Shear wave splitting as a tool to understand the interactions between oceanic plate tectonics and continental dynamics

    Science.gov (United States)

    Becker, Thorsten W.; Miller, Meghan S.; Faccenna, Claudio

    2013-04-01

    Subducting slabs are the major actors of oceanic-plate domain mantle convection, but their temporally variable pull and interaction with continental interiors strongly affect continental tectonics. We discuss how seismic anisotropy can be used jointly with global mantle flow models to constrain some of the governing, yet uncertain, parameters controlling such interactions. These include the relative strength of mantle rocks and the degree to which mantle heterogeneity, e.g. as imaged by tomography, actively drives mantle flow. To link geophysical and geological data, it is useful to consider global models with sufficient numerical resolution to allow for testing of regional geodynamic hypotheses, such as to the strength of plate boundaries and micro plate motions. Recent modeling and imaging results for the southeastern Caribbean, the Alboran/Atlas domain of northwest Africa, and the Middle East Afar/Arabia/Anatolia system show how anisotropy can help track the establishment of whole mantle convection cells, the extent of plume push and spreading, and continental keel-related channeling of asthenospheric currents.

  17. Some consequences of the subduction of young slabs

    NARCIS (Netherlands)

    England, P.; Wortel, R.

    The negative buoyancy force exerted by a subducting oceanic slab depends on its descent velocity, and strongly on its age. For lithosphere close to thermal equilibrium, this force dominates by a large margin the resisting forces arising from friction on the plate boundary and compositional buoyancy.

  18. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction

    Science.gov (United States)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus

    2017-04-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation

  19. Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates

    Science.gov (United States)

    Mahatsente, Rezene

    2017-12-01

    An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (<75 Ma) is much less than the ridge-push force for both compressional and extensional tectonics. In this case, the ridge-push related stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.

  20. Laboratory models of the thermal evolution of the mantle during rollback subduction.

    Science.gov (United States)

    Kincaid, C; Griffiths, R W

    2003-09-04

    The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. Information on mantle flow, thermal conditions and chemical transport in subduction zones come from the geochemistry of arc volcanoes, seismic images and geodynamic models. The majority of this work considers subduction as a two-dimensional process, assuming limited variability in the direction parallel to the trench. In contrast, observationally based models increasingly appeal to three-dimensional flow associated with trench migration and the sinking of oceanic plates with a translational component of motion (rollback). Here we report results from laboratory experiments that reveal fundamental differences in three-dimensional mantle circulation and temperature structure in response to subduction with and without a rollback component. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate and plate edges heat up faster than plate centres. In contrast, during rollback subduction flow is driven around and beneath the sinking plate, velocities increase within the mantle wedge and are focused towards the centre of the plate, and the surface of the plate heats more along the centreline.

  1. Tsunami Hazard Posed to New Zealand by the Kermadec and Southern New Hebrides Subduction Margins: An Assessment Based on Plate Boundary Kinematics, Interseismic Coupling, and Historical Seismicity

    Science.gov (United States)

    Power, William; Wallace, Laura; Wang, Xiaoming; Reyners, Martin

    2012-01-01

    We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150 years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth's subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake ( M w ≳8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude-frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.

  2. Seamount subduction at the North-Ecuadorian convergent margin : effects on structures, inter-seismic coupling and seismogenesis

    OpenAIRE

    Marcaillou, Boris; Collot, Jean-Yves; Ribodetti, Alessandra; d'Acremont, E.; Mahamat, A. A.; Alvarado, A.

    2016-01-01

    At the North-Ecuadorian convergent margin (1 degrees S-1.5 degrees N), the subduction of the rough Nazca oceanic plate leads to tectonic erosion of the upper plate and complex seismogenic behavior of the megathrust. We used three selected pre-stack depth migrated, multi-channel seismic reflection lines collected during the SISTEUR cruise to investigate the margin structure and decipher the impact of the subducted Atacames seamounts on tectonic erosion, interseismic coupling, and seismogenesis...

  3. The Ionian Abyssal Plain - closure of a remnant Mesozoic oceanic domain: subbottom structures, deep deformation and the Calabrian subduction zone

    Science.gov (United States)

    Gallais, F.; Gutscher, M.; Graindorge, D.; Klaeschen, D.

    2010-12-01

    The Ionian Abyssal Plain (IAP), located in the Central Mediterranean area is a deep triangular shaped basin, surrounded by the Calabrian subduction zone to the NW, the Mediterranean Ridge to the NE and the Medina Ridges to the South. Available heat flow measurements show very low values under the Ionian Abyssal plain, suggesing a very old age of 180-200 Ma for the basin. The Bouguer gravity anomaly map shows only a strong positive anomaly in this region and the depth of the Moho is around 16 to 18 km corresponding to high refraction velocities of 8.1-8.2 km/s. The Ionian basin is interpreted as one of the oldest basins in the Mediterranean area, and is thought to represent a remnant part of the Mesozoic Tethyan ocean. Due to the complex relative motions of microplates and blocks, currently, the oceanic lithosphere of the Ionian basin is being simultaneously consumed by subduction to the NE beneath the Hellenic system and to the NW beneath Calabria. We present the most relevant lines of the Archimede multi-channel seismic cruise (1997, R/V Le Nadir) crossing the Ionian Abyssal Plain and the Calabrian subduction zone. Interpretation of this seismic dataset is based on correlation with published seismic data and with ESP results. Beneath the IAP, we identify a thick sedimentary cover (> 5km) from the Jurassic to the Plio-Quaternary in age, which overlies the oceanic basement. The Pre-Messinian sequences are affected by a set of NE/SW striking compressional faults with some syn-tectonic basins NW of these faults. These features are interpreted as a re-activated set of normal faults, possibly formed during rifting and/or subsequent accretion of oceanic crust. The orientation of the subbottom structures and the thickness of the Messinian deposits in the south-eastern part of the IAP may be linked with the presence of these faults and their activity through time. On the Calabrian side of the IAP, the Post-Messinian sequences are accreted to the Calabrian wedge. The weak

  4. Multiscale Architecture of a Subduction Complex and Insight into Large-scale Material Movement in Subduction Systems

    Science.gov (United States)

    Wakabayashi, J.

    2014-12-01

    The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at

  5. Subduction initiation and Obduction: insights from analog models

    Science.gov (United States)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was

  6. Formation and metasomatism of continental lithospheric mantle in intra-plate and subduction-related tectonic settings

    Science.gov (United States)

    Ionov, Dmitri

    2010-05-01

    , major and trace element and isotope compositions of fertile lherzolites and thus cannot provide viable alternatives to the concept of melt extraction from pristine mantle as the major mechanism of CLM formation. Published data on xenoliths from andesitic volcanoes and on supra-subduction oceanic peridotites [4] show that the most common rocks in mantle wedge lithosphere are highly refractory harzburgites characterized by a combination of variable but generally high modal opx (18-30%) with very low modal cpx (1.5-3%). At a given olivine (or MgO) content, they have higher opx and silica, and lower cpx, Al and Ca contents than normal refractory peridotite xenoliths in continental basalts; the Mg-Si and Al-Si trends in those rocks resemble those in cratonic peridotites. These features may indicate either fluid fluxing during melting in the mantle wedge or selective post-melting metasomatic enrichments in silica to transform some olivine to opx. High oxygen fugacities and radiogenic Os-isotope compositions in those rocks may be related to enrichments by slab-derived fluids, but these features are not always coupled with trace element enrichments or patterns commonly attributed to "subduction zone metasomatism" deduced from studies of arc volcanic rocks and experiments. The valuable insights provided by experimental work and xenolith case studies are difficult to apply to many natural peridotite series because late-stage processes commonly overlap the evidence for initial melting. References: [1] Herzberg C., J. Petrol. 45: 2507 (2004). [2] Ionov D. & Sobolev A., GCA 72 (S1): A410 (2008). [3] Ionov D., Contrib. Miner. Petrol. (2007) [4] Ionov D., J. Petrol. doi: 10.1093/petrology/egp090 (2010)

  7. Friction and stress coupling on the subduction interfaces

    Science.gov (United States)

    Tan, E.; Lavier, L.; van Avendonk, H.

    2011-12-01

    At a subduction zone, the down-going oceanic plate slides underneath the overriding plate. The frictional resistance to the relative motion between the plates generates great earthquakes along the subduction interface, which can cause tremendous damage in the civil life and property. There is a strong incentive to understand the frictional strength of the subduction interface. One fundamental question of mechanics of subuction is the degree of coupling between the plates, which is linked to the size of earthquakes. It has been noted that the trench-parallel (along-strike) gravity variation correlates positively with the trench-parallel topography anomaly and negatively with the activity of great earthquake (Song and Simons, 2003). Regions with a negative trench-parallel gravity anomaly are more likely to have great earthquakes. The interpretation of such correlation is that strong coupling along subduction interface will drag down the for-arc region of the overriding plate, which generates the gravity and topography anomalies, and could store more strain energy to be released during a great earthquake. We developed a 2D numerical thermo-mechanical code for modeling subduction. The numerical method is based on an explicit finite element method similar to the Fast Lagrangian Analysis of Continua (FLAC) technique. The constitutive law is visco-elasti-plastic with strain weakening. The cohesion and friction angle are reduced with increasing plastic strain after yielding. To track different petrologic phases, Lagrangian particles are distributed in the domain. Basalt-eclogite, sediment-schist and peridotite-serpentinite phase changes are included in the model. Our numerical models show that the degree of coupling negatively correlates with the coefficient of friction. In the low friction case, the subduction interface has very shallow dipping angle, which helps to elastically couple the downing plate with the overriding plate. The topography and gravity anomalies of the

  8. The Role of Proto-Thrusts in Frontal Accretion and Accommodation of Plate Convergence, Hikurangi Subduction Margin, New Zealand

    Science.gov (United States)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.

    2016-12-01

    Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll

  9. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra.

    Science.gov (United States)

    Hüpers, Andre; Torres, Marta E; Owari, Satoko; McNeill, Lisa C; Dugan, Brandon; Henstock, Timothy J; Milliken, Kitty L; Petronotis, Katerina E; Backman, Jan; Bourlange, Sylvain; Chemale, Farid; Chen, Wenhuang; Colson, Tobias A; Frederik, Marina C G; Guèrin, Gilles; Hamahashi, Mari; House, Brian M; Jeppson, Tamara N; Kachovich, Sarah; Kenigsberg, Abby R; Kuranaga, Mebae; Kutterolf, Steffen; Mitchison, Freya L; Mukoyoshi, Hideki; Nair, Nisha; Pickering, Kevin T; Pouderoux, Hugo F A; Shan, Yehua; Song, Insun; Vannucchi, Paola; Vrolijk, Peter J; Yang, Tao; Zhao, Xixi

    2017-05-26

    Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records. Copyright © 2017, American Association for the Advancement of Science.

  10. Dynamics and Significance of Plume-Induced Subduction Initiation: Numerical Modeling

    Science.gov (United States)

    Gerya, T.; Stern, R. J.; Baes, M.; Sobolev, S. V.; Whattam, S. A.

    2014-12-01

    How did the first subduction zone form? Most present-day subduction initiation mechanisms require acting plate forces and/or preexisting zones of lithospheric weakness, which are themselves the consequence of plate tectonics (Stern 2004). In contrast, spontaneous plume-induced subduction initiation - suggested on the basis of numerical thermo-mechanical experiments (Ueda et al., 2008) and supported by data re-interpretation of how subduction started in Late Cretaceous time around the Caribbean LIP (Whattam and Stern, 2014) - does not require pre-existing lithospheric fabric, such as are created by active plate tectonics and is viable for both stagnant lid and mobile/deformable lid conditions. Here, we present first results of high-resolution 3D numerical thermo-mechanical modeling of plume-induced subduction resulting from mechanical-magmatic interaction of an ascending thermal mantle plume with old, cold, dense oceanic lithosphere. We demonstrate that weakening of the strong lithosphere by plume-induced magmatism is the key factor enabling subduction initiation around the plume head. A large plume head is required to overcome ring confinement, and subduction initiation is further favored when plume activity and lithospheric weakening continues for several tens of Ma. We further discuss possible implications of this scenario for modern plate tectonics as well as for plate tectonics initiation in Precambrian time. ReferencesStern, R.J., 2004. Subduction initiation: spontaneous and induced. EPSL 226, 275-292.Ueda, K., Gerya, T., Sobolev, S.V., 2008. Subduction initiation by thermal-chemical plumes. PEPI 171, 296-312.Whattam, S.A., Stern, R. 2014. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, (accepted).

  11. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up.

    Science.gov (United States)

    Kelemen, Peter B; Manning, Craig E

    2015-07-28

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5-10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory.

  12. Subduction Mode Selection During Slab and Mantle Transition Zone Interaction: Numerical Modeling

    Science.gov (United States)

    Shi, Yanan; Wei, Dongping; Li, Zhong-Hai; Liu, Ming-Qi; Liu, Mengxue

    2017-12-01

    Global seismic tomography of the subduction zones shows that the subducting slabs could either stagnate around the 660-km discontinuity, or penetrate into the lower mantle. The stagnating slabs also have various morphologies. These are directly related to the interaction between the subducting slabs and the mantle transition zone (MTZ), the dynamics of which are still debated. Using a 2-D thermo-mechanical model, we systematically investigated the modes of subduction in the mantle transition zone and explored the key constraints of various subduction styles. Four basic subduction modes are obtained in the numerical experiments, including one with slab penetrating through the 660-km discontinuity and three other modes with slab stagnating in the MTZ (i.e. folding, lying and rolling-back). The numerical models indicate that the age of subducting oceanic plate, the thickness of overriding continental lithosphere and the convergence velocity play crucial roles in the dynamics of subducting slab and MTZ interaction. In general, the young subducting slab favors the penetration or folding mode, whereas the old subducting slab tends to result in lying or rolling-back mode, although other parameters can also affect. Our models also show a strong correlation between the subduction mode selection and dip angle of the slab tip when reaching the 660-km phase boundary.

  13. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bull, J.M.; DeMets, C.; Krishna, K.S.; Sanderson, D.J.; Merkouriev, S.

    The far-field signature of the India-Asia collision and history of uplift in Tibet are recorded by sediment input into the Indian Ocean and the strain accumulation history across the diffuse plate boundary between the Indian and Capricorn plates. We...

  14. 3D Numerical modelling of topography development associated with curved subduction zones

    Science.gov (United States)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab

  15. Plate tectonics in the late Paleozoic

    OpenAIRE

    Domeier, Mathew; Torsvik, Trond H.

    2014-01-01

    As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lit...

  16. Numerical simulations of temperature, dehydration, and flow fields associated with subduction of the Cocos plate, and its relation to the occurrence of interplate seismic events in southern Mexico

    Science.gov (United States)

    Suenaga, N.; Ji, Y.; Yoshioka, S.; Manea, M.; Manea, V. C.

    2016-12-01

    In southern Mexico, tectonic tremors mainly occur in the "flat slab region, and the last three SSEs in southern Mexico occurred in the shallower region. Besides, there are two seismic gaps of megathrust earthquakes in Guerrero and Oaxaca. To investigate generation mechanisms of megathrust earthquakes, tectonic tremors, and slow slip events (SSEs) in southern Mexico, we performed three-dimensional numerical simulations of temperature and mantle flow associated with subduction of the Cocos plate, and estimated dehydrated water content from the subducting plate. Here we considered retreat of the Middle American trench initiating about 16 Ma as one of the generation mechanisms of the slab flattening. In our model, we introduced the trench retreat effect during only a certain period between 16 Ma and present in order to best fit the observed heat flow data (from Global Heat Flow Database) as well as Curie point depths defined by the 580 ° isotherm. Our preliminary results show that trench rollback has a strong influence on temperature distribution. Models with trench rollback induce a weaker mantle wedge convection cell compared with models with stationary trench. Other parameter that is currently investigated in this study is the rate of trench retreat.

  17. Dynamical effects of subducting ridges: Insights from 3-D laboratory models

    CERN Document Server

    Martinod, Joseph; Faccenna, Claudio; Labanieh, Shasa; Regard, Vincent; 10.1111/j.1365-246X.2005.02797.x

    2010-01-01

    We model the subduction of buoyant ridges and plateaus to study their effect on slab dynamics. Oceanic ridges parallel to the trench have a stronger effect on the process of subduction because they simultaneously affect a longer trench segment. Large buoyant slab segments sink more slowly into the asthenosphere, and their subduction result in a diminution of the velocity of subduction of the plate. We observe a steeping of the slab below those buoyant anomalies, resulting in smaller radius of curvature of the slab, that augments the energy dissipated in folding the plate and further diminishes the velocity of subduction. When the 3D geometry of a buoyant plateau is modelled, the dip of the slab above the plateau decreases, as a result of the larger velocity of subduction of the dense "normal" oceanic plate on both sides of the plateau. Such a perturbation of the dip of the slab maintains long time after the plateau has been entirely incorporated into the subduction zone. We compare experiments with the presen...

  18. Transient uplift after a 17th-century earthquake along the Kuril subduction zone.

    Science.gov (United States)

    Sawai, Yuki; Satake, Kenji; Kamataki, Takanobu; Nasu, Hiroo; Shishikura, Masanobu; Atwater, Brian F; Horton, Benjamin P; Kelsey, Harvey M; Nagumo, Tamotsu; Yamaguchi, Masaaki

    2004-12-10

    In eastern Hokkaido, 60 to 80 kilometers above a subducting oceanic plate, tidal mudflats changed into freshwater forests during the first decades after a 17th-century tsunami. The mudflats gradually rose by a meter, as judged from fossil diatom assemblages. Both the tsunami and the ensuing uplift exceeded any in the region's 200 years of written history, and both resulted from a shallow plate-boundary earthquake of unusually large size along the Kuril subduction zone. This earthquake probably induced more creep farther down the plate boundary than did any of the region's historical events.

  19. Convergent plate margin dynamics : New perspectives from structural geology, geophysics and geodynamic modelling

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2010-01-01

    Convergent plate margins occur when two adjoining tectonic plates come together to form either a subduction zone, where at least one of the converging plates is oceanic and plunges beneath the other into the mantle, or a collision zone, where two continents or a continent and a magmatic arc collide.

  20. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    Science.gov (United States)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  1. Temperature, salinity, pressure, and other data from current meter and CTD casts in the NE Atlantic Ocean as part of the Subduction Accelerated Research Initiative (ARI) project, from 1991-05-18 to 1993-06-14 (NODC Accession 9700245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall objective of the Subduction Accelerated Research Initiative (ARI) was to bring together several techniques to address the formation and evolution of...

  2. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled......, the origin of Chlorine is explained via slab-derived fluids, and the contrast between backarc and frontal arc magmas is discussed. These results add to the understanding of the origin of the complexities in the mantle wedge under arc-backarc in a subduction zone which has transition to flat slab conditions...

  3. Spreading continents kick-started plate tectonics.

    Science.gov (United States)

    Rey, Patrice F; Coltice, Nicolas; Flament, Nicolas

    2014-09-18

    Stresses acting on cold, thick and negatively buoyant oceanic lithosphere are thought to be crucial to the initiation of subduction and the operation of plate tectonics, which characterizes the present-day geodynamics of the Earth. Because the Earth's interior was hotter in the Archaean eon, the oceanic crust may have been thicker, thereby making the oceanic lithosphere more buoyant than at present, and whether subduction and plate tectonics occurred during this time is ambiguous, both in the geological record and in geodynamic models. Here we show that because the oceanic crust was thick and buoyant, early continents may have produced intra-lithospheric gravitational stresses large enough to drive their gravitational spreading, to initiate subduction at their margins and to trigger episodes of subduction. Our model predicts the co-occurrence of deep to progressively shallower mafic volcanics and arc magmatism within continents in a self-consistent geodynamic framework, explaining the enigmatic multimodal volcanism and tectonic record of Archaean cratons. Moreover, our model predicts a petrological stratification and tectonic structure of the sub-continental lithospheric mantle, two predictions that are consistent with xenolith and seismic studies, respectively, and consistent with the existence of a mid-lithospheric seismic discontinuity. The slow gravitational collapse of early continents could have kick-started transient episodes of plate tectonics until, as the Earth's interior cooled and oceanic lithosphere became heavier, plate tectonics became self-sustaining.

  4. Early Jurassic calc-alkaline magmatism in northeast China: Magmatic response to subduction of the Paleo-Pacific Plate beneath the Eurasian continent

    Science.gov (United States)

    Wang, Feng; Xu, Yi-Gang; Xu, Wen-Liang; Yang, Lei; Wu, Wei; Sun, Chen-Yang

    2017-08-01

    The subduction of the Paleo-Pacific Plate played an important role in the regional evolution of the eastern margin of the Eurasian continent, but the timing and extent of this event remain ambiguous. To address these issues, we examine the geochronology and geochemistry of Early Jurassic intrusive rocks in eastern Jilin Province, NE China. The Early Jurassic gabbro-diorites, diorites, granodiorites, and monzogranites are found to have been emplaced at 183-185 Ma and are characterized by enrichment in large ion lithophile elements and depletion in high field strength elements, similar to calc-alkaline arc-type igneous rocks. The Early Jurassic gabbroic and dioritic rocks have εHf(t) values of +2.1 to +10.1 and Hf single-stage (TDM1) model ages of 430-774 Ma, whereas the monzogranites have εHf(t) values of +6.7 to +8.9 and Hf single-stage (TDM1) ages of 597-718 Ma. The gabbro-diorites, diorites, and granodiorites described in this study are genetically linked and they represent the products of the fractional crystallization of a common mafic magma that was in turn derived from the partial melting of a mantle source that was metasomatized by subduction-related fluids. In contrast, the Early Jurassic monzogranites were generated by partial melting of a depleted lower crustal block that was probably accreted during the Neoproterozoic. More importantly, the Early Jurassic calc-alkaline igneous rocks in the east part of NE China form a NE-trending belt that is oriented perpendicular to the direction of Paleo-Pacific Plate movement at that time. West of this belt, contemporaneous bimodal igneous rocks occur in the Lesser Xing'an-Zhangguangcai Ranges. This magmatic configuration is best explained by continental arc magmatism along the continental margin and extensional magmatism in a back-arc setting, in each case triggered by the initial subduction of the Paleo-Pacific Plate beneath Eurasia in the Early Jurassic.

  5. Metallogeny of subduction zones

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2017-03-01

    Full Text Available The paper deals with the multistage mechanism of the Earth's crust enrichment in ore elements in underthrust zones. The processes of metamorphism and the formation of hydrothermal solutions at pulling of the watered oceanic lithospheric plate into the subduction zone have been described. Some physical and chemical transformation regularities of structural-material complexes in these areas and mechanisms of the formation of ore deposits have been discussed. Spatio-temporal patterns of the localization of a number of endogenetic and exogenetic deposits have been described using metallogeny of the Ural and the Verkhoyansk-Kolyma Fold Belts as an example. It has been shown that in nature there are several effective mechanisms of the enrichment of the crust in ore minerals. One of them is the process of pulling into subduction zone of metalliferous sediments and ferromanganese crusts as well as seabed nodules, their metamorphic transformation, partial melting and transition of ore components into magmatic melts and mineralized fluids. In the future this leads to the release of ore material by magmas and hydrothermal solutions into the folded formations of island-arc and Andean types and the formation of igneous, metasomatic and hydrothermal deposits. Another, yet no less powerful natural mechanism of a conveyor enrichment of the crust in ore elements is the process of destruction and sedimentation of mineral deposits formed in the folded areas as well as the formation of placers and their transfer to the marginal parts of the continent. Later, during the collision of active and passive margins of two lithospheric plates, such as the collision of the Kolyma Massif with the eastern part of the Siberian craton in the middle of the Mesozoic there was a thrusting of a younger lithospheric plate over a more ancient one. As a result, the sedimentary sequences of the passive margin of the Siberian plate were submerged and partially melted by the basic magmas

  6. The kinematic evolution of the Macquarie Plate: A case study for the fragmentation of oceanic lithosphere

    Science.gov (United States)

    Choi, Hakkyum; Kim, Seung-Sep; Dyment, Jérôme; Granot, Roi; Park, Sung-Hyun; Hong, Jong Kuk

    2017-11-01

    The tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∼6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∼6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading.

  7. Dike-induced contraction along oceanic and continental divergent plate boundaries

    KAUST Repository

    Trippanera, D.

    2014-10-28

    The axis of divergent plate boundaries shows extension fractures and normal faults at the surface. Here we present evidence of contraction along the axis of the oceanic ridge of Iceland and the continental Main Ethiopian Rift. Contraction is found at the base of the tilted hanging wall of dilational normal faults, balancing part of their extension. Our experiments suggest that these structures result from dike emplacement. Multiple dike injection induces subsidence above and uplift to the sides of the dikes; the transition in between is accommodated by reverse faults and subsequent peripheral inward dipping normal faults. Our results suggest that contraction is a direct product of magma emplacement along divergent plate boundaries, at various scales, marking a precise evolutionary stage and initiating part of the extensional structures (extension fractures and normal faults). Key Points Contraction along divergent plate boundaries results from dike emplacementContraction generates extensional structures along divergent plate boundariesSurface deformation along divergent plate boundaries may be magma induced

  8. Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite

    Science.gov (United States)

    Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.

    2015-01-01

    Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.

  9. Are subduction zones invading the atlantic? Evidence from the southwest iberia margin

    NARCIS (Netherlands)

    Duarte, João C.; Rosas, Filipe M.; Terrinha, Pedro; Schellart, Wouter P.; Boutelier, David; Gutscher, Marc André; Ribeiro, António

    Subduction initiation at passive margins plays a central role in the plate tectonics theory. However, the process by which a passive margin becomes active is not well understood. In this paper we use the southwest Iberia margin (SIM) in the Atlantic Ocean to study the process of passive margin

  10. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China

    Science.gov (United States)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2018-03-01

    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  11. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    Science.gov (United States)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  12. 3D geometry of a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai subduction zone, Japan

    Science.gov (United States)

    Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku

    2017-11-01

    We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.

  13. Geologic signature of early Tertiary ridge subduction in Alaska

    Science.gov (United States)

    Bradley, Dwight C.; Kusky, Timothy M.; Haeussler, Peter J.; Goldfarb, Richard J.; Miller, Marti L.; Dumoulin, Julie A.; Nelson, Steven W.; Karl, Susan M.

    2003-01-01

    A mid-Paleocene to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska. The most striking effects are seen in the accretionary prism (Chugach–Prince William terrane), where 61 to 50 Ma near-trench granitic to gabbroic plutons were intruded into accreted trench sediments that had been deposited only a few million years earlier. This short time interval also saw the genesis of ophiolites, some of which contain syngenetic massive sulfide deposits; the rapid burial of these ophiolites beneath trench turbidites, followed immediately by obduction; anomalous high-T, low-P, near-trench metamorphism; intense ductile deformation; motion on transverse strike-slip and normal faults; gold mineralization; and uplift of the accretionary prism above sea level. The magmatic arc experienced a brief flare-up followed by quiescence. In the Alaskan interior, 100 to 600 km landward of the paleotrench, several Paleocene to Eocene sedimentary basins underwent episodes of extensional subsidence, accompanied by bimodal volcanism. Even as far as 1000 km inboard of the paleotrench, the ancestral Brooks Range and its foreland basin experienced a pulse of uplift that followed about 40 million years of quiescence.All of these events - but most especially those in the accretionary prism - can be attributed with varying degrees of confidence to the subduction of an oceanic spreading center. In this model, the ophiolites and allied ore deposits were produced at the soon-to-be subducted ridge. Near-trench magmatism, metamorphism, deformation, and gold mineralization took place in the accretionary prism above a slab window, where hot asthenosphere welled up into the gap between the two subducted, but still diverging, plates. Deformation took place as the critically tapered accretionary prism adjusted its shape to changes in the bathymetry of the incoming plate, changes in the convergence direction before and after

  14. Reconstruction of seawater chemistry from deeply subducted oceanic crust; hydrogen and oxygen isotope of lawsonite eclogites preserving pillow structure

    Science.gov (United States)

    Hamabata, D., VI; Masuyama, Y.; Tomiyasu, F.; Ueno, Y.; Yui, T. F.; Okamoto, K.

    2014-12-01

    In order to understand evolution of life, change of seawater chemistry from Hadean, Archean to present is significant. Pillow structure is well-preserved in the Archean greenstone belt (e.g. Komiya et al., 1999). Oxygen and hydrogen isotope of rims in the pillow is useful conventional tool to decipher chemistry of Paleao-seawater from Archean to Present. However, Archean greenstone belt suffered regional metamorphism from greenschist to Amphibolite facies conditions. Therefore, it is necessary to testify the validity of pillow chemistry from recent (Phanerozoic) metamorphosed greenstone. We have systematically collected pillowed greenstone from blueschist and eclogites. Two eclogite exhibiting pillow structures were chosen for oxygen and hydrogen isotope analysis. One is from Corsica (lawsonite eclogite collected with Dr. Alberto Vidale Barbarone) and another is from Cazadero, Franciscan belt (collected by Dr. Tatsuki Tsujimori). The both are ascribed as MORB from major and trace bulk chemistry and Ca is rich in the core and Na is poor in the rims. The former exhibits garnet, omphacite, lawsonite, and glacophane. Phengite is in core of the pillow and chlorite is in the rims. In the latter, besides garnet, omphacite, epdiote and glaucophane, chlorite is recognized with phengite in the core. Glaucophane is richer in the rims from the both samples, therefore istope analysis of glaucophane was done. Mineral separation was carefully done using micro-mill, heavy liquid and isodynamic separator. 20 mg specimens were used for oxygen isotope analysis and 2mg were for hydrogen analysis. δ18O of the all analysis (7.7 to 8.3) is within the range of unaltered igneous oceanic crust and high temperature hydrothermal alteration although rims (8.3 for Franciscan and 8.0 for Corsica) are higher than cores (7.7 for Franciscan and Corsica). δD data is also consistent with hydrothermal alteration. It is relative higher in core from the Corsica and Franciscan (-45 and -56) than of the

  15. High- and low-Cr chromitite and dunite in a Tibetan ophiolite: evolution from mature subduction system to incipient forearc in the Neo-Tethyan Ocean

    Science.gov (United States)

    Xiong, Qing; Henry, Hadrien; Griffin, William L.; Zheng, Jian-Ping; Satsukawa, Takako; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2017-06-01

    The microstructures, major- and trace-element compositions of minerals and electron backscattered diffraction (EBSD) maps of high- and low-Cr# [spinel Cr# = Cr3+/(Cr3+ + Al3+)] chromitites and dunites from the Zedang ophiolite in the Yarlung Zangbo Suture (South Tibet) have been used to reveal their genesis and the related geodynamic processes in the Neo-Tethyan Ocean. The high-Cr# (0.77-0.80) chromitites (with or without diopside exsolution) have chromite compositions consistent with initial crystallization by interaction between boninitic magmas, harzburgite and reaction-produced magmas in a shallow, mature mantle wedge. Some high-Cr# chromitites show crystal-plastic deformation and grain growth on previous chromite relics that have exsolved needles of diopside. These features are similar to those of the Luobusa high-Cr# chromitites, possibly recycled from the deep upper mantle in a mature subduction system. In contrast, mineralogical, chemical and EBSD features of the Zedang low-Cr# (0.49-0.67) chromitites and dunites and the silicate inclusions in chromite indicate that they formed by rapid interaction between forearc basaltic magmas (MORB-like but with rare subduction input) and the Zedang harzburgites in a dynamically extended, incipient forearc lithosphere. The evidence implies that the high-Cr# chromitites were produced or emplaced in an earlier mature arc (possibly Jurassic), while the low-Cr# associations formed in an incipient forearc during the initiation of a new episode of Neo-Tethyan subduction at 130-120 Ma. This two-episode subduction model can provide a new explanation for the coexistence of high- and low-Cr# chromitites in the same volume of ophiolitic mantle.

  16. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    Science.gov (United States)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta

  17. Horizontal subduction zones, convergence velocity and the building of the Andes

    CERN Document Server

    Martinod, Joseph; Roperch, Pierrick; Guillaume, Benjamin; Espurt, Nicolas; 10.1016/j.epsl.2010.09.010

    2010-01-01

    We discuss the relationships between Andean shortening, plate velocities at the trench, and slab geometry beneath South America. Although some correlation exists between the convergence velocity and the westward motion of South America on the one hand, and the shortening of the continental plate on the other hand, plate kinematics neither gives a satisfactory explanation to the Andean segmentation in general, nor explains the development of the Bolivian orocline in Paleogene times. We discuss the Cenozoic history of horizontal slab segments below South America, arguing that they result from the subduction of oceanic plateaus whose effect is to switch the buoyancy of the young subducting plate to positive. We argue that the existence of horizontal slab segments, below the Central Andes during Eocene-Oligocene times, and below Peru and North-Central Chile since Pliocene, resulted (1) in the shortening of the continental plate interiors at a large distance from the trench, (2) in stronger interplate coupling and...

  18. Processes and consequences of deep subduction

    NARCIS (Netherlands)

    Rubie, David C.; Hilst, R.D. van der

    2001-01-01

    Subduction of slabs of oceanic lithosphere into the deep mantle involves a wide range of geophysical and geochemical processes and is of major importance for the physical and chemical evolution of the Earth. For example, subduction and subduction-related volcanism are major processes through

  19. Analysis of the Seismicity Associated to the Subduction of the Rivera Plate using OBS and Onland Stations.

    Science.gov (United States)

    Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Danobeitia, J.; Bandy, W. L.; Zamora-Camacho, A.; Marquez-Ramirez, V. H.; Ambros, M.; Gomez, A.; Sandoval, J. M.; Mortera-Gutierrez, C. A.

    2016-12-01

    The second stage of TsuJal Project includes the study of passive seismic activity in the region of the plate Rivera and Jalisco block by anchoring OBS and densifying the network of seismic stations on land for at least four months. This stage began in April 2016 with the deployment of 25 Obsidian stations with sensor Le-3D MkIII from the northern part of Nayarit state to the south of Colima state, including the Marias Islands. This temporal seismic network complements the Jalisco Seismic Network (RESAJ) for a total of 50 stations. Offshore, ten OBS type LCHEAPO 2000 with 4 channel (3 seismic short period and 1 pressure) were deployed, in the period from 19 to 30 April 2016 using the BO El Puma from UNAM. The OBS were deployed in an array from the Marias Islands to offcoast of the border of Colima and Michoacan states. On May 4, an earthquake with Ml = 4.2 took place in the contact area of the Rivera Plate, Cocos Plate and the Middle America Trench, subsequently occurred a seismic swarm with over 200 earthquakes until May 16, including an earthquake with Ml = 5.0 on May 7. A second swarm took place between May 28 and Jun 4 including an earthquake with Ml = 4.8 on Jun 1. An analysis of the quality of different location methods is presented: automatic preliminary RESAJ location using Antelope; location with revised RESAJ phases in Antelope; relocation of RESAJ data with hypo and a regional velocity model; relocation of RESAJ data with hypo adding data from the temporal seismic network stations; and finally the relocation adding the data from the OBS network. Moreover, the tectonic implications of these earthquakes are discussed.

  20. Discovery of the early Jurassic Gajia mélange in the Bangong-Nujiang suture zone: Southward subduction of the Bangong-Nujiang Ocean?

    Science.gov (United States)

    Lai, Wen; Hu, Xiumian; Zhu, Dicheng; An, Wei; Ma, Anlin

    2017-06-01

    Mélange records a series of geological processes associated with oceanic subduction and continental collision. This paper reports for the first time the presence of Early Jurassic mélange from NW Nagqu in the southern margin of the Bangong-Nujiang suture zone, termed as the Gajia mélange. It shows typically blocks-in-matrix structure with matrix of black shale and siliceous mudstone, and several centimeters to several meters sized blocks of sandstone, silicalite, limestone and basalt. The sandstone blocks consist of homologous sandstone and two types of exotic sandstone, with different modal compositions. The Group 1 of exotic sandstone blocks consists of mainly of feldspar and quartz, whereas the Group 2 is rich in volcanic detritus. The Group 3 of homologous sandstone blocks is rich in feldspar and volcanic detritus with rare occurrence of quartz. U-Pb age data and in situ Hf isotopic compositions of detrital zircons from sandstone blocks are similar to those from the Lhasa terrane, suggesting that the sandstone blocks in the Gajia mélange most probably came from the Lhasa terrane. The YC1σ(2+) age of homologous sandstone blocks is 177 ± 2.4 Ma, suggesting an Early Jurassic depositional age for the sandstones within the Gajia mélange. The Gajia mélange likely records the southward subduction of the Bangong-Nujiang Ocean during the Early Jurassic.

  1. The Geodynamics of Continental Lithosphere Entering a Subduction Zone

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.; Wu, F. T.

    2006-12-01

    As deformation patterns resulting from subduction of a passive continental margin are insufficiently understood, here we perform 2-D numerical simulations to explore the effects of continental lithosphere entering a subduction zone. The model setup consists of a subduction zone in which the oceanic part of a passive continental margin initially subducts beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel new feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study this feature is employed to study how crustal scale deformation around the subduction zone is influenced by surface processes and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography over time, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the strength of the lower crust; the amounts of erosion; imposed pushing versus density-driven (slab-pull and ridge- push) convergence; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. The results can be compared to evidence from areas such as Taiwan where continental subduction or convergence is thought to be happening. Preliminary results indicate that a low viscosity lower crust may contribute to crustal uplift.

  2. Kinematic constraints on distributed lithospheric deformation in the equatorial Indian Ocean from present-day motion between the Australian and Indian plates

    Science.gov (United States)

    Gordon, Richard G.; Demets, Charles; Argus, Donald F.

    1990-06-01

    From an expanded, accurate, and up-to-date data set comprising 110 spreading rates, 46 transform azimuths, and 151 earthquake slip vectors from the Indian Ocean and Gulf of Aden, we determine a new rigid plate model describing the motion since 3 Ma between India and Australia. The Euler vector (ω = 0.313°/m.y. about 5°S, 78°E) lies near the middle of the equatorial, diffuse plate boundary dividing the Indian from the Australian plate and predicts a rate of north-south shortening along 85°E of 4±3 mm/yr, only 30% as fast as predicted by our prior model. The new model also predicts north-south extension of 6±2 mm/yr (at 68°E) along the western segment of the diffuse plate boundary, where our prior model predicted north-south contraction. Using data only along the Carlsberg and Central Indian ridges and no other plate boundaries, we show that plate motion data cannot be fit by a single Euler vector. However, the data are well fit by two Euler vectors when an east-west striking India-Australia plate boundary is assumed to intersect the Central Indian Ridge near the equator. The best location along the Central Indian Ridge for this triple junction is 6°S-3°S, with 95% confidence limits of 9°S-4°N, just west of a region of intense seismicity. The sense of deformation, as recorded in earthquake focal mechanisms, reverse faults mapped with reflection seismic data, and undulations in basement topography, surface gravity, and the geoid, agrees well with the north-south extension predicted in the western part and the north-south shortening predicted in the eastern part of the India-Australia boundary. The predicted rate of north-south shortening between 79°E and 86°E is consistent with the rate of shortening inferred from observed faulting and folding; shortening taken up by faulting is ˜6 to 100 times greater than that taken up by the spectacular basement folds. Little of the rapid north-south shortening predicted east of ˜86°E is taken up by crustal

  3. Effect of the Earth's rotation on subduction processes

    Science.gov (United States)

    Levin, B. W.; Rodkin, M. V.; Sasorova, E. V.

    2017-09-01

    The role played by the Earth's rotation is very important in problems of physics of the atmosphere and ocean. The importance of inertia forces is traditionally estimated by the value of the Rossby number: if this parameter is small, the Coriolis force considerably affects the character of movements. In the case of convection in the Earth's mantle and movements of lithospheric plates, the Rossby number is quite small; therefore, the effect of the Coriolis force is reflected in the character of movements of the lithospheric plates. Analysis of statistical data on subduction zones verifies this suggestion.

  4. Current Plate Motion Across the Southwest Indian Ridge: Implications for the Diffuse Oceanic Plate Boundary Between Nubia and Somalia

    Science.gov (United States)

    Horner-Johnson, B. C.; Cowles, S. M.; Gordon, R. G.; Argus, D. F.

    2001-12-01

    Prior studies of plate motion data along the Southwest Indian Ridge (SWIR) have produced results that conflict in detail. Chu & Gordon [1999], from an analysis of 59 spreading rates averaged over 3 Myr and of the azimuths of active transform faults, found that the data are most consistent with a diffuse Nubia-Somalia plate boundary where it intersects the SWIR. When they solve for the best-fitting hypothetical narrow boundary, they find that it lies near 37° E, east of the Prince Edward fracture zone. They find a Nubia-Somalia pole of rotation near the east coast of South Africa. In contrast, Lemaux, Gordon, and Royer [2001], from an analysis of 237 crossings of marine magnetic anomaly 5 (11 Ma), find that most of the motion is accommodated in a narrow zone, most likely along the ``inactive'' trace of the Andrew Bain fracture zone complex (ABFZC), which intersects the SWIR near 32° E. They find a pole well to the west of, and probably to the southwest of, the pole of rotation found by Chu & Gordon. Their pole indicates mainly strike-slip motion along the ``inactive'' ABFZC. To resolve these conflicting results, we determined a new greatly expanded and spatially much denser set of 243 spreading rates and analyzed available bathymetric data of active transform faults along the SWIR. The data show that the African oceanic lithosphere spreading away from the SWIR cannot simply be two plates divided by a single narrow boundary. Our interpretation of the data is as follows. Near the SWIR, there is a diffuse boundary with a western limit near the ABFZC and an eastern limit near 63.5° E. Slip is partitioned in this wide boundary. Somewhere near the ABFZC (most likely the ABFZC itself) is a concentrated locus of right-lateral shearing parallel to the ABFZC whereas contraction perpendicular to the ABFZC is accommodated east of the ABFZC, perhaps over a very broad zone.

  5. Buoyant subduction on Venus: Implications for subduction around coronae

    Science.gov (United States)

    Burt, J. D.; Head, J. W.

    1993-01-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  6. Implications for metal and volatile cycles from the pH of subduction zone fluids.

    Science.gov (United States)

    Galvez, Matthieu E; Connolly, James A D; Manning, Craig E

    2016-11-17

    The chemistry of aqueous fluids controls the transport and exchange-the cycles-of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth's interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth's atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years(7).

  7. High-pressure mafic oceanic rocks from the Makbal Complex, Tianshan Mountains (Kazakhstan & Kyrgyzstan): Implications for the metamorphic evolution of a fossil subduction zone

    Science.gov (United States)

    Meyer, Melanie; Klemd, Reiner; Konopelko, Dmitry

    2013-09-01

    omphacite) due to an unfavorable alkali-poor bulk composition (Na2O < 1 wt.%). The four high-pressure mafic samples investigated in this study originated from oceanic crust (Zr/Hf ratio of 33 to 35) which contradicts all previous studies suggesting a continental protolith for all mafic HP/UHP rocks at Makbal. The present study indicates that the mafic high-pressure rocks represent incoherent segments of exhumed oceanic crust. Juxtaposition of different mafic oceanic (this study) and continental rocks is suggested to be due to buoyancy-driven exhumation of the metasedimentary host rock in the subduction channel where dismembered fragments of the subducted oceanic crust were captured in different depths.

  8. Necessity of the Ridge for the Flat Slab Subduction: Insights from the Peruvian Flat Slab

    Science.gov (United States)

    Knezevic Antonijevic, S.; Wagner, L. S.; Beck, S. L.; Long, M. D.; Zandt, G.; Tavera, H.

    2014-12-01

    Flattening of the subducting plate has been linked to the formation of various geological features, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005]. However, the mechanism responsible for the slab flattening is still poorly understood. Here we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~80 km depth and travels horizontally for several hundred kilometers, at which point steep subduction resumes. Based on a 1500 km long volcanic gap and intermediate depth seismicity patterns, the Peruvian flat slab appears to have the greatest along-strike extent and, therefore, has been suggested as a modern analogue to the putative flat slab during the Laramide orogeny in the western United States (~80-55 Ma). Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the subducting Nazca plate is not uniformly flat along the entire region, but fails to the north of the subducting Nazca Ridge. Our results show that, in combination with trench retreat, rapid overriding plate motion, and/or presence of a thick cratonic root, the subduction of buoyant overthickened oceanic crust, such as the Nazca Ridge, is necessary for the formation and sustainability of flat slabs. This finding has important implications for the formation of flat slabs both past and present.

  9. Teaching Marine Geoscience at Sea: Integrated Ocean Drilling Program's School of Rock Explores Cascadia Subduction Zone - Cores, Logs, and ACORKs

    Science.gov (United States)

    Reagan, M.; Collins, J.; Ludwig, K. A.; Slough, S.; Delaney, M. L.; Hovan, S. A.; Expedition 328 Scientists

    2010-12-01

    For twelve days this past September, seventeen formal and informal educators from the US, UK, and France joined six instructors and a small science party on the scientific drillship JOIDES Resolution for the Integrated Ocean Drilling Program (IODP)’s Cascadia ACORK Expedition. The educators were part of the annual “School of Rock (SOR)” education program. SOR is coordinated by the U.S. Implementing Organization (USIO) of IODP and is designed to engage participants in seagoing Earth systems research and education workshops onboard the JOIDES Resolution and on shore at the Gulf Coast Core Repository in Texas. The scientific objective of the Cascadia ACORK expedition was to install a new permanent hydrologic observatory at ODP Site 889 to provide long-term monitoring of the pressure at the frontal part of the Cascadia accretionary prism. This year’s SOR workshop focused on how cores, logs, and ACORKs shed light on the hydrology and geology of the Cascadia subduction zone in the Northeast Pacific. In addition to observing the deployment of the ACORK, the SOR participants conducted daily hands-on analyses of archived sediment and hard-rock cores with scientists and technicians who specialize in IODP research using the lab facilities on the ship. Throughout the expedition, participants engaged in different activities and lessons designed to explore the deep biosphere, methane hydrates, paleoceanography, sedimentology, biostratigraphy, seafloor spreading, and drilling technology. The workshop also provided participants with “C3” time; time to communicate their experience using the successful joidesresolution.org website and other tools, make connections to their prior knowledge and expertise, and to be creative in developing and planning new education and outreach activities based on their new knowledge and research. As part of participating in the expedition, participants committed to further developing and testing their education and outreach products after

  10. Average slip rate at the transition zone on the plate interface in the Nankai subduction zone, Japan, estimated from short-term SSE catalog

    Science.gov (United States)

    Itaba, S.; Kimura, T.

    2013-12-01

    Short-term slow slip events (S-SSEs) in the Nankai subduction zone, Japan, have been monitored by borehole strainmeters and borehole accelerometers (tiltmeters) mainly. The scale of the S-SSE in this region is small (Mw5-6), and therefore there were two problems in S-SSE identification and estimation of the fault model. (1) There were few observatories that can detect crustal deformation associated with S-SSEs. Therefore, reliability of the estimated fault model was low. (2) The signal associated with the S-SSE is relatively small. Therefore, it was difficult to detect the S-SSE only from strainmeter and tiltmeter. The former problem has become resolvable to some extent by integrating the data of borehole strainmeter, tiltmeter and groundwater (pore pressure) of the National Institute of Advanced Industrial Science and Technology, tiltmeter of the National Research Institute for Earthquake Science and Disaster Prevention and borehole strainmeter of the Japan Meteorological Agency. For the latter, by using horizontal redundant component of a multi-component strainmeter, which consists generally of four horizontal extensometers, it has become possible to extract tectonic deformation efficiently and detect a S-SSE using only strainmeter data. Using the integrated data and newly developed technique, we started to make a catalog of S-SSE in the Nankai subduction zone. For example, in central Mie Prefecture, we detect and estimate fault model of eight S-SSEs from January 2010 to September 2012. According to our estimates, the average slip rate of S-SSE is 2.7 cm/yr. Ishida et al. [2013] estimated the slip rate as 2.6-3.0 cm/yr from deep low-frequency tremors, and this value is consistent with our estimation. Furthermore, the slip deficit rate in this region evaluated by the analysis of GPS data from 2001 to 2004 is 1.0 - 2.6 cm/yr [Kobayashi et al., 2006], and the convergence rate of the Philippine Sea plate in this region is estimated as 5.0 - 7.0 cm/yr. The difference

  11. Accreted oceanic materials in Japan

    Science.gov (United States)

    Isozaki, Y.; Maruyama, S.; Furuoka, F.

    1990-09-01

    The Phanerozoic circum-Pacific orogenic belts contain numerous ocean-derived materials accreted through plate converging processes. Japanese Islands, in particular, display various kinds of oceanic materials of different origins including fragments of seamounts, oceanic reef limestone, MORB-like rocks and oceanic mantle, and pelagic sediments. The compilation of these rocks in many subduction complexes of Late Permian to the present, led to following conclusions. Accretion processes work effectively only for materials primarily composing the upper portion of subducting oceanic crust, i.e. Layer 1 and Layer 2. Many fragments of seamount with alkali basalt (600), hot-spot seamount (26), oceanic reef limestone (291), MORB-like basalt (200), and numerous cherts (more than 1000) are recognized as ancient oceanic materials accreted to the Japanese Islands. However, gabbros and mantle materials of Layer 3 and lower parts of the oceanic lithosphere, scarcely occur in subduction-accretion complexes except for a few examples of back-arc basin or fore-arc origin. Accretion occurs episodically. In Southwest Japan, oceanic materials were accreted intermittently in (a) end-Permian, (b) Middle-Late Jurassic, (c) Late Cretaceous times, (d) at ca. 50 Ma, and (e) in Miocene times, while in Northeast Japan and Hokkaido this occurred in (b) Middle-Late Jurassic, (c) Late Cretaceous, and (f) Early Cretaceous times. In contrast to the general belief on accretion of younger oceanic plates, the majority of Japanese subduction-accretion complexes were formed during the subduction of plates, up to 160 Ma old. The accretionary events in end-Permian and Middle-Late Jurassic times coincide with northward collision of ancient island arcs, oceanic rises or seamount chains (of hot-spot origin) with the Asian continent. Accretion relevant to subduction of older plates may be controlled by the collision-subduction process of these topographic reliefs on an oceanic plate. In addition, the

  12. Structural Evolution of the India-Arabia Plate Boundary from Miocene to Present-Day (NW Indian Ocean) and Comparison with the Dead Sea Fault (Eastern Mediterranean Sea).

    Science.gov (United States)

    Rodriguez, M.; Huchon, P.; Chamot Rooke, N.; Fournier, M.; Delescluse, M.; Ben Avraham, Z.; Ten Brink, U. S.

    2014-12-01

    Arabia is bounded by the Dead Sea Transform (DST) to the west and by the Owen Fracture Zone (OFZ) to the east. These present-day major strike-slip fault systems activated during the Plio-Pleistocene, which contrasts with the age of inception of strike-slip motion, assumed to begin around 13-18 Ma for the DST and around 20 Ma at the edge of the Owen-Murray Ridge (OMR) for the India-Arabia plate boundary. This discrepancy between the age of the active strike-slip systems and the age of inception of strike-slip motion raises the question of the kinematic driver for the transition between successive generations of strike-slip faults. Using a recent mutibeam and seismic dataset crossing the OFZ and the OMR, we provide a new geodynamic framework for the Miocene to present-day structural evolution of the India-Arabia plate boundary, and highlight some similarities with the structural evolution of the DST. We first document a Late Miocene episode of uplift of the OMR uplift along the Miocene India-Arabia plate boundary. The onset of this uplift is coeval with a plate reorganization event marked by the onset of intra-plate deformation in the Central Indian Ocean. The OFZ emplaced around 3 Ma, with major pull-apart basins opening (20°N Basin, Dalrymple Trough) dated at 2.4 Ma by far-field correlation with ODP Sites. The opening of pull-apart basins is coeval with the last structural reorganization of the Makran accretionnary wedge, marked by the regional M-unconformity, and with a major intensification of the Indian monsoon. A Late Miocene episode of folding is also recognized at the Lebanon ranges prior to the onset of the present-day DST, which occurred in the Late Pliocene-Early Pleistocene. The similarities between the geological history of the India-Arabia plate boundary and the DST in the Late Miocene and the Late Pliocene-Early Pleistocene suggest that both plate boundaries recorded the same kinematic changes. Late Miocene (i.e. Tortonian) deformation is widely

  13. A Comparative Analysis of Seismological and Gravimetric Crustal Thicknesses below the Andean Region with Flat Subduction of the Nazca Plate

    Directory of Open Access Journals (Sweden)

    Mario E. Gimenez

    2009-01-01

    Full Text Available A gravimetric study was carried out in a region of the Central Andean Range between 28∘ and 32∘ south latitudes and from 72∘ and 66∘ west longitudes. The seismological and gravimetrical Moho models were compared in a sector which coincides with the seismological stations of the CHARGE project. The comparison reveals discrepancies between the gravity Moho depths and those obtained from seismological investigations (CHARGE project, the latter giving deeper values than those resulting from the gravimetric inversion. These discrepancies are attenuated when the positive gravimetric effect of the Nazca plate is considered. Nonetheless, a small residuum of about 5 km remains beneath the Cuyania terrane region, to the east of the main Andean chain. This residuum could be gravimetrically justified if the existence of a high density or eclogitized portion of the lower crust is considered. This result differed from the interpretations from Project “CHARGE” which revealed that the entire inferior crust extending from the Precordillera to the occidental “Sierras Pampeanas” could be “eclogitized”. In this same sector, we calculated the effective elastic thickness (Te of the crust. These results indicated an anomalous value of Te = 30 km below the Cuyania terrane. This is further conclusive evidence of the fact that the Cuyania terrane is allochthonous, for which also geological evidences exist.

  14. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  15. Diffuse Oceanic Plate Boundaries, Plate Non-Rigidity, True Polar Wander, and Motion Between Hotspots: Results From Investigations of Marine Magnetic Anomalies

    Science.gov (United States)

    Gordon, R. G.

    2009-05-01

    Marine magnetic anomalies due to seafloor spreading record reversals of Earth's magnetic field and the orientation of the paleomagnetic field. They can be used to make precise estimates of relative plate motion and of the apparent polar wander of oceanic plates. In this talk I will present the results of several studies that include analyses of marine magnetic anomalies. A new set of geologically current relative plate angular velocities, termed MORVEL, has been determined in part from 1696 rates of seafloor spreading estimated from marine magnetic anomalies (DeMets, Gordon, & Argus 2009). The MORVEL set of angular velocities supersede those of NUVEL-1A (DeMets et al. 1994). A new feature of MORVEL is the assumed existence of many diffuse oceanic plate boundaries, such as that between the Indian and Capricorn plates. An important result from MORVEL is that several plate circuits fail closure, that is, the relative plate angular velocities summed around the circuit differ significantly from zero as would be expected if all the plates are rigid. Thus, it appears that at least some plates are not rigid. The most dramatic example of plate circuit non-closure is for the Pacific-Nazca-Cocos plate circuit, which encloses the Galapagos triple junction and fails to close by a stunning 14 ± 5 mm/yr (95% confidence limits). Part of the observed non-rigidity is likely due to predictable horizontal thermal contraction as oceanic lithosphere cools and subsides (Kumar & Gordon 2009). I will present simple illustrations of the velocity field within a plate expected from horizontal thermal contraction and speculate on how it may relate to observed plate circuit non-closures. The shapes of magnetic anomalies due to seafloor spreading contain valuable information about the location of the paleomagnetic pole, especially for the Pacific plate for which oriented rock samples are scarce. Particularly useful are Pacific-Farallon magnetic anomaly crossings near the paleo-equator. I use

  16. The development of small-scale convection below evolving oceanic plates

    Science.gov (United States)

    Coltice, N.; Garnero, E.

    2015-12-01

    Seafloor of older ages shows a constancy of heat flow, and bathymetry that is different from what is expected for a half-space cooling model. These observations led to consideration of the existence of small-scale convection below the lithosphere (Parsons and McKenzie, 1978). Previous studies have characterized the detailed physics of such processes (Davaille and Jaupart, 1994; Choblet and Sotin, 2000; Solomatov and Moresi, 2000; Korenaga and Jordan, 2003 among others). However, questions remain for applications to the Earth: what is the shape of developed small-scale convection, what length-scales are involved, how does associated small-scale convection depend on the plate layout and its time-dependence. Using 3D spherical models of mantle convection with plate-like behaviour (Tackley, 2008), we will present a study of developed small-scale convection in a context of self-organization of plates and mantle flow. Small-scale convection depends on the resistance of the lithosphere, and its development beneath large plates produce network shapes with specific length-scales and orientations (see figure). We will show the impact of the size of plates and the evolution of subduction on the small-scale convection, and characterize how the age-heat flow relationship can change with time. The potential for seismic detection of the spatiotemporal patterns of temperature heterogeneity will also be discussed. ReferencesChoblet, G., and C. Sotin, Phys. Earth Planet. Inter. 119, 321-336 (2000). Davaille, A., and C. Jaupart, J. Geophys. Res. 99, 19,853-19,866 (1994). Korenaga, J., and T. H. Jordan, J. Geophys. Res. 108, 2333, (2003). Parsons, B., and D. McKenzie, J. Geophys. Res. 83, 4485-4496 (1978). Solomatov, V. S., and L. N. Moresi, J. Geophys. Res. 105, 21,795-21,817 (2000). Tackley, P. J., Phys. Earth Planet. Inter. 171, 7-18 (2008). Figure: Age of the seafloor in Myrs and white countour of a cold temperature isotherm showing the network of small-scale convection.

  17. Three-dimensional Thermal Model of the Mexican Subduction Zone

    Science.gov (United States)

    Rosas, J. C.; Pimentel, F. D. C.; Currie, C. A.; He, J.; Harris, R. N.

    2015-12-01

    Along the Mexican section of the Middle America Trench (MAT), the Cocos plate subducts beneath the North American plate. The most important feature of this subduction zone is the flat-slab section below central Mexico, extending approximately 250 km landward from the trench at a depth of 50 km. Further west, the dip changes to 45-50º. This particular geometry has several unique consequences, such as a volcanic arc that is not aligned with the trench and very shallow slab seismicity. For the mantle wedge, the abrupt change in slab geometry could lead to a three-dimensional (3D) mantle wedge flow that departs from the classical 2D subduction-driven corner flow. Evidence of 3D flow in the region comes from seismic anisotropy studies, which show that olivine fast-direction axes have a component that is parallel to the MAT. In other subduction zones, such as Costa Rica-Nicaragua and Japan, 3D flow has been observed to increase temperatures by >50º C relative to corner flow models.For this study, we have created the first 3D finite-element model of the Mexican subduction zone in order to analyze its thermal structure. Our objective is to assess the effects of 3D mantle flow and hydrothermal circulation (HC) in the subducting slab. In this region, low surface heat flow values near the trench indicate that HC may remove heat from the oceanic plate. Our model incorporates the effect of HC through conductivity proxies in the subducting crust and a 2D oceanic geotherm that includes the age variations of the Cocos plate along the MAT. For an isoviscous mantle, our model shows that the slab dip variations induce a flow that departs from 2D corner flow near the transition between the flat-slab and normal-dipping sections. The mantle flows in eastward direction toward the flat slab, and its orientation is consistent with seismic anisotropy studies. The maximum along-margin flow rate is nearly 2 cm/yr, which is >30% of the convergence rate. Temperatures at the location of this

  18. Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust

    Science.gov (United States)

    Hutnak, M.; Fisher, A. T.; Harris, R.; Stein, C.; Wang, K.; Spinelli, G.; Schindler, M.; Villinger, H.; Silver, E.

    2008-09-01

    Hydrothermal circulation on the sea floor at mid-ocean ridge flanks extracts ~30% of heat from the oceanic lithosphere on a global basis and affects numerous tectonic, magmatic and biogeochemical processes. However, the magnitude, mechanisms and implications of regional-scale fluid and heat flow on mid-ocean ridge flanks are poorly understood. Here we analyse swath-map, seismic and sea-floor heat-flux data to quantify the heat and fluid discharge through a few widely spaced basement outcrops on the Cocos Plate. Heat removed by conduction from a 14,500 square kilometre region of the sea floor is 60-90% lower than that predicted by lithospheric cooling models. This implies that a substantial portion of the heat is extracted by advection, which requires fluid discharge of 4-80×103 litres per second. The heat output of individual discharging outcrops is inferred to be comparable to that from black-smoker vent fields seen on mid-ocean ridges. Our analysis shows that hydrothermal circulation on mid-ocean ridge flanks through widely spaced outcrops can extract a large fraction of lithospheric heat. This circulation requires a very high crustal permeability at a regional scale. Focused flows of warm, nutrient-rich hydrothermal fluid may enhance sub-seafloor microbial habitats and enable direct sampling of these systems.

  19. The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction

    Science.gov (United States)

    Omrani, Hadi; Moazzen, Mohssen; Oberhänsli, Roland; Altenberger, Uwe; Lange, Manuela

    2013-07-01

    The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite ± omphacite ± quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz ± omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13-15.5 kbar at temperatures of 420-500 °C. Peak metamorphic temperature/depth ratios were low (~12 °C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5-7 kbar and temperatures between 450 and 550 °C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of >300 °C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran).

  20. Paleomagnetism of Cretaceous Oceanic Red Beds(CORBs) from Gyangze, Northern Tethys Himalaya: Evidence for introoceanic Subduction System

    Science.gov (United States)

    Tan, X.

    2015-12-01

    In the northern Tethys Himalaya, sporadically distributed oceanic red beds (the Chuangde Formation) have been described. The sequence was interpreted to be firstly deposited in the outer continental shelf and upper slope, and later slumped into deep basin. Based on this model, and paleomagnetic data of shallow water deposits from the southern Tethys Himalaya, the CORBs were derived from the northern tip of the passive margin of the greater India. If so, the CORBs would provide more accurate record of the northern extent of the greater India, which is an important parameter for estimating the initial time of India-Asia continental collision and the amount of crustal shortening. The well studied and most accessible section is located in the Chuangde village, about 40km east from the Gyangze city. The formation is about 25m thick, ranging from 84 to 75Ma in age according to fossil records of planktonic foraminiferal species. The lower and upper parts are 2 and 5 meter thick marlstones, respectively, and the middle section is dominated by shale with a few layers of centimeter scale marlstones. Fifty cores were collected from the marlstones of the section, and for the purpose of fold test, 30 more cores were collected from the upper part of the formation from a second section located in the Pulong village, ~10km to the north of the Chuangde village. All samples were subject to stepwise thermal demagnetization. About 60% of the samples yielded interpretable demagnetization results. The middle part of the formation show reversed high temperature component, and the lower and upper parts show normal polarity. The Chuangde section data failed reversal test, because the normal polarity direction is likely not fully resolved from overprint component. However, the well resolved reversal direction from the Chuangde village and the normal direction from Pulong pass both reversal and fold tests. The mean paleomagnetic data indicate a paleolatitude of 10+/-2 degree north, ~2000 km

  1. Lasting mantle scars lead to perennial plate tectonics.

    Science.gov (United States)

    Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell

    2016-06-10

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.

  2. Lasting mantle scars lead to perennial plate tectonics

    Science.gov (United States)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-01-01

    Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541

  3. Age-independent seismic anisotropy under oceanic plates explained by strain history in the asthenosphere

    Science.gov (United States)

    Hedjazian, Navid; Garel, Fanny; Davies, D. Rhodri; Kaminski, Edouard

    2017-02-01

    The depth of the oceanic lithosphere-asthenosphere boundary (LAB), as inferred from shear wave velocities, increases with lithospheric age, in agreement with models of cooling oceanic lithosphere. On the other hand, the distribution of radial anisotropy under oceanic plates is almost age-independent. In particular, radial anisotropy shows a maximum positive gradient at a depth of ∼70 km, which, if used as a proxy, indicates an age-independent LAB depth. These contrasting observations have fueled a controversy on the seismological signature of the LAB. To better understand the discrepancy between these observations, we model the development of lattice preferred orientation (LPO) in upper mantle crystal aggregates and predict the seismic anisotropy produced by plate-driven mid-ocean ridge flows. The model accounts for the progressive cooling of the lithosphere with age and can incorporate both diffusion and dislocation creep deformation mechanisms. We find that an age-independent distribution of radial anisotropy is the natural consequence of these simple flows. The depth and strength of anisotropy is further controlled by the deformation regime - dislocation or diffusion creep - experienced by crystals during their ascent towards, and subsequent motion away from, the ridge axis. Comparison to surface wave tomography models yield constraints on rheological parameters such as the activation volume. Although not excluded, additional mechanisms proposed to explain some geophysical signatures of the LAB, such as the presence of partial melt or changes in water content, are not required to explain the radial anisotropy proxy. Our prediction, that the age-independent radial anisotropy proxy marks the transition to flow-induced asthenospheric anisotropy, provides a way to reconcile thermal, mechanical and seismological views of the LAB.

  4. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  5. Three-Dimensional Thermal Structure of the Middle-America Subduction Zone: Along-margin mantle flow and slab metamorphism

    Science.gov (United States)

    Rosas, J. C.; Currie, C. A.; He, J.

    2013-12-01

    Temperature is the primary control parameter of several processes occurring at subduction zones, such as slab metamorphism and dehydration, arc volcanism and the rupture width of megathrust earthquakes. The thermal state depends on the temperature of the oceanic slab and the flow pattern of the overlying mantle wedge. In most previous studies, mantle flow was modeled as two-dimensional (2D) corner flow, driven by the subducting plate. However, recent studies have shown the limitations of the 2D corner flow scheme, as a three-dimensional (3D) oceanic plate structure can generate along-strike pressure gradients, producing a trench-parallel flow component. One region where 3D effects may be important is the Middle America Subduction Zone (MASZ). Here, the dip of the oceanic plate varies from 0 to 70 degrees along the margin, with abrupt changes in slab dip in Central Mexico and Costa Rica-Nicaragua. Seismic anisotropy and arc magma geochemistry variations suggest a significant along-margin component of flow in these areas. Further, offshore surface heat flow measurements show that there may be along-margin variations in the temperature of the subducting oceanic plate, due to variations in plate age and hydrothermal circulation. In this study, we quantify the changes in the thermal structure of a subduction zone that result from along-margin variations in oceanic plate structure. We use 3D numerical models that consist of kinematically-defined subducting and overriding plates, and a flowing mantle wedge driven by drag exerted by the subducting plate. The finite-element code PGCtherm-3D is used to solve the steady-state governing equations for mantle wedge flow and the 3D thermal structure of the subduction zone. The models employ an oceanic plate that smoothly dips into the mantle and has along-margin variations in the deep dip of 40 and 70 degrees over a distance of 50km to 300km, as observed in some regions of the MASZ. Using an isoviscous mantle wedge, our

  6. Rock uplift and exhumation of continental margins by the collision, accretion, and subduction of buoyant and topographically prominent oceanic crust

    National Research Council Canada - National Science Library

    Spikings, Richard; Simpson, Guy

    2014-01-01

    .... Here we combine previous thermochronological data with field observations to determine the amount of exhumation, rock, and surface uplift that occurs in the upper plate of Central and South American...

  7. Evolution of the Late Cretaceous crust in the equatorial region of the Northern Indian Ocean and its implication in understanding the plate kinematics

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.

    anomalies suggests the presence of fossil spreading ridge segments and extra oceanic crust on the Indian plate that has been transferred from the Antarctica plate by discrete southward ridge jumps. These ridge jumps are caused by thermal instability...

  8. Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction

    OpenAIRE

    Hay, William W.; Sloan, J. L.; Wold, C. N.

    1988-01-01

    The total mass of sediments on the ocean floor is estimated to be 262 × 1021 g. The overall mass/age distribution is approximated by an exponential decay curve: (11.02 × 1021 g)e−0.0355t Ma. The mass/age distribution is a function of the area/age distribution of ocean crust, the supply of sediment to the deep sea, and submarine erosion and redeposition. About 140 × 1021 g of the sediment on the ocean floor is pelagic sediment, consisting of about 74% CaCO3, with the remainder opaline silica a...

  9. Complex Subduction Imaged by Diffractional Tomography of USArray Receiver Functions

    Science.gov (United States)

    Zhou, Y.

    2016-12-01

    Subduction of a large oceanic plate beneath a continental plate is a complex process. In the Western United States, fragmentation of the Farallon slab has been reported in recent tomographic models. In this study, we measure finite-frequency travel times of P410s and P660s receiver functions recorded at USArray Transportable Array (TA) stations for teleseismic events occurred between 2015 and 2011. We calculate the finite-frequency sensitivities of receiver functions to depth perturbations of the 410-km and 660-km discontinuities to obtain high resolution mantle transition zone models based on diffractional tomography. The high-resolution discontinuity models reveal several interesting anomalies associated with complex subduction of the Farallon plate. In particular, we observe a linear feature in both the 410-km and 660-km discontinuity models. This mantle transition zone anomaly is roughly located in the western Snake River Plain and aligns with a major slab gap imaged in an earlier finite-frequency S-wave velocity model. We show that non-stationary upwellings generated by eastward propagation of a slab tearing event, together with a westward motion of the North American plate at a rate of about 1 to 1.5 centimeters per year (comparable to the half spreading rate of the Mid-Atlantic Ridge) in the past 16 million years can explain the age-progressive Snake River Plain / Yellowstone volcanic track. The slab to the west of the anomaly shows a near vertical subduction, it is heavily fragmented and the 410-km and 660-km discontinuity topography indicates that the southern fragment north of the Mendocino triple junction has subducted down to the mantle transition zone.

  10. Crust and subduction zone structure of Southwestern Mexico

    Science.gov (United States)

    Suhardja, Sandy Kurniawan; Grand, Stephen P.; Wilson, David; Guzman-Speziale, Marco; Gomez-Gonzalez, Juan Martin; Dominguez-Reyes, Tonatiuh; Ni, James

    2015-02-01

    Southwestern Mexico is a region of complex active tectonics with subduction of the young Rivera and Cocos plates to the south and widespread magmatism and rifting in the continental interior. Here we use receiver function analysis on data recorded by a 50 station temporary deployment of seismometers known as the MARS (MApping the Rivera Subduction zone) array to investigate crustal structure as well as the nature of the subduction interface near the coast. The array was deployed in the Mexican states of Jalisco, Colima, and Michoacan. Crustal thickness varies from 20 km near the coast to 42 km in the continental interior. The Rivera plate has steeper dip than the Cocos plate and is also deeper along the coast than previous estimates have shown. Inland, there is not a correlation between the thickness of the crust and topography indicating that the high topography in northern Jalisco and Michoacan is likely supported by buoyant mantle. High crustal Vp/Vs ratios (greater than 1.82) are found beneath the trenchward edge of magmatism including below the Central Jalisco Volcanic Lineament and the Michoacan-Guanajuato Volcanic Field implying a new arc is forming closer to the trench than the Trans Mexican Volcanic Belt. Elsewhere in the region, crustal Vp/Vs ratios are normal. The subducting Rivera and Cocos plates are marked by a dipping shear wave low-velocity layer. We estimate the thickness of the low-velocity layer to be 3 to 4 km with an unusually high Vp/Vs ratio of 2.0 to 2.1 and a drop in S velocity of 25%. We postulate that the low-velocity zone is the upper oceanic crust with high pore pressures. The low-velocity zone ends from 45 to 50 km depth and likely marks the basalt to eclogite transition.

  11. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback

    NARCIS (Netherlands)

    Stegman, D. R.; Freeman, J.A.; Schellart, W. P.; Moresi, L.; May, D.

    Subduction of tectonic plates limited in lateral extent and with a free-trailing tail, i.e., "free subduction,'' is modeled in a three-dimensional (3-D) geometry. The models use a nonlinear viscoplastic rheology for the subducting plate and exhibit a wide range of behaviors depending on such plate

  12. Microstructures and petro-fabrics of lawsonite blueschist in the North Qilian suture zone, NW China: Implications for seismic anisotropy of subducting oceanic crust

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2014-07-01

    We conducted a detailed study on the microstructures and petro-fabrics of massive and foliated lawsonite blueschist (LBS) in North Qilian suture zone, NW China. The lattice preferred orientation (LPO) of glaucophane and lawsonite in foliated lawsonite blueschist (LBS) is considered to be dominantly formed by the deformation mechanism of dislocation creep and rigid-body rotation, respectively. The LPO of glaucophane is mainly characterized by the [001] axis aligning parallel to lineation and the [100] axis and (110) pole plunging perpendicular to foliation. In contrast, the LPO of lawsonite features the maximum [010] axis concentrated close to lineation and the [001] axis strongly clustered normal to foliation. The preferred orientation of [010] axis of lawsonite parallel to lineation is supported by a two-dimensional numerical modeling using the finite-volume method (FVM). The mineral LPOs are much stronger in foliated LBS than in massive LBS. In addition, a kinematic vorticity analysis suggests that both pure shear dominant (Wm = 0.18-0.26) and simple shear dominant (Wm = 0.86-0.93) deformation regimes are present in foliated LBS. The [001] axis and (010) pole of glaucophane, and the [100] and [010] axes of lawsonite, tend to distribute in a foliation-parallel girdle in the pure shear dominant samples, but simple shear dominant samples display more lineation-parallel concentrations of a [001] axis of glaucophane and a [010] axis of lawsonite. Because the whole-rock seismic anisotropies in foliated LBS are significantly higher than those in massive LBS and a counteracting effect on seismic anisotropies occurs between glaucophane and lawsonite, the delay time of fast S-wave polarization anisotropy induced by an actual subducting oceanic crust with a high subducting angle (> 45-60°) is expected to range from 0.03 to 0.09 s (lower bound for massive LBS) and from 0.1 to 0.3 s (upper bound for foliated epidote blueschist).

  13. Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust

    Science.gov (United States)

    Putlitz, Benita; Matthews, Alan; Valley, John W.

    Oxygen and hydrogen stable isotope ratios of eclogite-facies metagabbros and metabasalts from the Cycladic archipelago (Greece) document the scale and timing of fluid-rock interaction in subducted oceanic crust. Close similarities are found between the isotopic compositions of the high-pressure rocks and their ocean-floor equivalents. High-pressure minerals in metagabbros have low δ18O values: garnet 2.6 to 5.9‰, glaucophane 4.3 to 7.1‰ omphacite 3.5 to 6.2‰. Precursor actinolite that was formed during the hydrothermal alteration of the oceanic crust by seawater analyses at 3.7 to 6.3‰. These compositions are in the range of the δ18O values of unaltered igneous oceanic crust and high-temperature hydrothermally altered oceanic crust. In contrast, high-pressure metabasalts are characterised by 18O-enriched isotopic compositions (garnet 9.2 to 11.5‰, glaucophane 10.6 to 12.5‰, omphacite 10.2 to 12.8‰), which are consistent with the precursor basalts having undergone low-temperature alteration by seawater. D/H ratios of glaucophane and actinolite are also consistent with alteration by seawater. Remarkably constant oxygen isotope fractionations, compatible with isotopic equilibrium, are observed among high-pressure minerals, with Δglaucophane-garnet= 1.37+/-0.24‰ and Δomphacite-garnet=0.72+/-0.24‰. For the estimated metamorphic temperature of 500°C, these fractionations yield coefficients in the equation Δ=A*106/T2 (in Kelvin) of Aglaucophane-garnet= 0.87+/-0.15 and Aomphacite-garnet=0.72+/-0.24. A fractionation of Δglaucophane-actinolite=0.94+/-0.21‰ is measured in metagabbros, and indicates that isotopic equilibrium was established during the metamorphic reaction in which glaucophane formed at the expense of actinolite. The preservation of the isotopic compositions of gabbroic and basaltic oceanic crust and the equilibrium fractionations among minerals shows that high-pressure metamorphism occurred at low water/rock ratios. The isotopic

  14. Intermediate crust (IC); its construction at continent edges, distinctive epeirogenic behaviour and identification as sedimentary basins within continents: new light on pre-oceanic plate motions

    Science.gov (United States)

    Osmaston, Miles F.

    2014-05-01

    that, by blocking the hydrothermal cooling widely seen along MOR axes this must inhibit the freezing-in of diagnostic spreading-type magnetic anomalies and would prolong magmagenesis to give a thicker-than-oceanic mafic crust. I have called this Intermediate Crust (IC) [9, 10], to distinguish it from Mature Continental Crust (MCC). Plate separation will continue to generate IC along the margins for as long/far as the sedimentation input is sufficient to have this effect. Transition to the MOR process will then follow. But if, contrary to the general plate tectonics assumption, based on body forces, plate separation ceases after a limited separation (or perhaps several in differing directions), without proceeding to the oceanic condition, the resulting IC areas will be incorporated within the continent [11]. Where does this lead us? With examples drawn from 40 years' study, I will contend that this is indeed the way the Earth has worked and that it offers potential plate kinematic explanation of the origin of the block-and-sedimentary basin layouts abundantly present in the non-craton areas of continents. I will show that in some cases the intricacy of block outlines and the precision with which they can be fitted together in a kinematically consistent manner rules out that this was purely by chance. The evidently meaningful character of those outlines means that they have been drawn by a narrow-crack separative mechanism which reflects that of our new MOR model. To provide a basis for such Plate Kinematic Analysis (PKA) we now link and compare some features of IC-formation at continental edges and of the crust of sedimentary basins. Characteristics of IC and of sedimentary basin crust (SBC). 1. IC basement, with expected seismic Vp around 6km/s, must look deceptively like that assigned to supposedly stretched MCC. 2. For thermodynamic reasons, the hydrous metamorphic content of deep MCC and of deeply subducted UHP slices of it gives them a big thermal epeirogenic

  15. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    Science.gov (United States)

    ten Brink, Uri S.; Marshak, S.; Granja, Bruna J. L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is

  16. Influence of Initial Geometry and Boundary Conditions on Flat Subduction Models and Resulting Topography

    Science.gov (United States)

    Nelson, P.; Moucha, R.

    2014-12-01

    Numerical investigations of surface deformation in response to flat slab subduction began with seminal papers by Bird (1988) and Mitrovica et al. (1989). Recently, a number of numerical studies have begun to explore the complexity in the dynamics of flat-slab subduction initiation and continuation, but did not address the corresponding surface deformation (English et al., 2003; Pérez-Campos et al., 2008; Liu et al., 2010; Jones et al., 2011; Arrial and Billen, 2013; Vogt and Gerya, 2014). Herein, we explore the conditions that lead to flat-slab subduction and characterize the resulting surface deformation using a 2D finite-difference marker-in-cell method. We specifically explore how initial model geometry and boundary conditions affect the evolution of the angle at which a slab subducts in the presence/absence of a buoyant oceanic plateau and the resulting surface topography. In our simulations, the surface is tracked through time as an internal erosion/sedimentation surface. The top boundary of the crust is overlaid by a "sticky" (viscous 10^17 Pa.s) water/air layer with correspondingly stratified densities. We apply a coupled surface processes model that solves the sediment transport/diffusion erosion equation at each time step to account for the corresponding crustal mass flux and its effect on crustal deformation. Model results show the initial angle of subduction has a substantial impact on the subduction angle of the slab and hence the evolution of topography. The results also indicate plate velocity and the presence of an oceanic plateau in a forced subduction only have a moderate effect on the angle of subduction.

  17. Seismicity and the subduction process

    Science.gov (United States)

    Ruff, L.; Kanamori, H.

    1980-01-01

    There is considerable variation between subduction zones in the largest characteristic earthquake within each zone. Assuming that coupling between downgoing and upper plates is directly related to characteristic earthquake size, tests for correlations between variation in coupling and other physical features of subduction zones are conducted: the lateral extent and penetration depth of Benioff zones, age of subducting lithosphere, convergence rate, and back-arc spreading. Using linear multivariate regression, coupling is correlated with two variables: convergence rate and lithosphere age. Secondary correlations within the data set are penetration depth versus lithosphere age, and lateral extent versus convergence rate. Taken together, the observed correlations suggest a simple qualitative model where convergence rate and lithosphere age determine the horizontal and sinking rates, respectively, of slabs: these parameters influence the seismic coupling in the subduction zone. In the limit of a fast sinking rate and slow convergence rate, back-arc spreading occurs and thereby appears to be a passive process.

  18. Deformation Patterns and Subduction Behavior of Continental Lithosphere Entering a Trench

    Science.gov (United States)

    Steedman, C. E.; Kaus, B. J.; Becker, T. W.; Okaya, D.

    2007-05-01

    We perform 2-D numerical simulations of continental lithosphere entering a subduction zone, to better understand deformation patterns resulting from subduction of a continental margin. The model consists of a subduction zone in which an attached slab drives subduction of a passive continental margin beneath an oceanic plate. A particle-based 2-D visco-elasto-plastic thermo-mechanical finite element code is employed to study the dynamics of the system. A novel feature of the code is that the resolution of the model can be significantly increased in selected parts of the domain, which allows for self-consistent modelling of mantle-lithosphere interaction. In the present study we employ this feature to study how lithospheric-scale deformation around and within the subduction zone is influenced by surface processes such as erosion, and by flow in the upper mantle. Using systematic 2-D numerical simulations, we explore the parameters that are dominant in controlling near- surface structures, both with regards to changes in topography and trench location, and subsurface features such as Moho undulations. The main parameters that have been varied are: the lithospheric density structure; the lithospheric age and temperature structure; the strength of the lower crust; the presence of a weak zone at the plate interface; the amounts of erosion; the upper boundary condition (free surface versus free slip); rheology (non-Newtonian versus Newtonian, viscous, visco-elasto-plastic); and finally the effect of an imposed slab breakoff. In all cases we track surface uplift, subduction evolution and rock exhumation history. We find that the strength of the overriding plate influences surface uplift and the shape of subsurface deformation, and that the density and thermal structure of the subducting plate affects trench motion. Denser slab roll back, and younger, lighter slabs advance, while neither slab rheology nor the presence of erosion greatly affect trench location. For all cases

  19. The earthquake cycle in subduction zones

    Science.gov (United States)

    Melosh, H. J.; Fleitout, L.

    1982-01-01

    A simplified model of a subduction zone is presented, which incorporates the mechanical asymmetry induced by the subducted slab to anchor the subducting plate during post-seismic rebound and thus throw most of the coseismic stream release into the overthrust plate. The model predicts that the trench moves with respect to the deep mantle toward the subducting plate at a velocity equal to one-half of the convergence rate. A strong extensional pulse is propagated into the overthrust plate shortly after the earthquake, and although this extension changes into compression before the next earthquake in the cycle, the period of strong extension following the earthquake may be responsible for extensional tectonic features in the back-arc region.

  20. Long-term fore-arc basin evolution in response to changing subduction styles in southern Alaska

    Science.gov (United States)

    Finzel, Emily S.; Enkelmann, Eva; Falkowski, Sarah; Hedeen, Tyler

    2016-07-01

    Detrital zircon U-Pb and fission track double-dating and Hf isotopes from the Mesozoic and Cenozoic strata in the southern Alaska fore-arc basin system reveal the effects of two different modes of flat-slab subduction on the evolution of the overriding plate. The southern margin of Alaska has experienced subduction of a spreading-ridge ( 62-50 Ma) and an oceanic plateau ( 40-0 Ma). When a subducting spreading ridge drives slab flattening, our data suggest that after the ridge has moved along strike retro-arc sediment sources to the fore arc become more predominant over more proximal arc sources. Spreading-ridge subduction also results in thermal resetting of rocks in the upper plate that is revealed by thermochronologic data that record the presence of young age peaks found in subsequent, thin sedimentary strata in the fore-arc basin. When a subducting oceanic plateau drives slab flattening, our data suggest that basin catchments get smaller and local sediment sources become more predominant. Crustal thickening due to plateau subduction drives widespread surface uplift and significant vertical uplift in rheologically weak zones that, combined, create topography and increase rock exhumation rates. Consequently, the thermochronologic signature of plateau subduction has generally young age peaks that generate short lag times indicating rapid exhumation. The cessation of volcanism associated with plateau subduction limits the number of syndepositional volcanic grains that produce identical geochronologic and thermochronologic ages. This study demonstrates the merit of double-dating techniques integrated with stratigraphic studies to expose exhumational age signatures diagnostic of large-scale tectonic processes in magmatic regions.

  1. Slow earthquakes linked along dip in the Nankai subduction zone.

    Science.gov (United States)

    Hirose, Hitoshi; Asano, Youichi; Obara, Kazushige; Kimura, Takeshi; Matsuzawa, Takanori; Tanaka, Sachiko; Maeda, Takuto

    2010-12-10

    We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were triggered by the acceleration of a long-term slow slip event in between. This correlation suggests that the slow slip might extend along-dip between the source areas of deeper and shallower slow earthquakes and thus could modulate the stress buildup on the adjacent megathrust rupture zone.

  2. Trans Pacific Ocean in surface layer and subduction and re-circulation in the ocean interior of radiocaesium released from TEPCO FNPP1 accident through the end of 2015

    Science.gov (United States)

    Aoyama, Michio; Tsumune, Daisuke; Tsubono, Takaki; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro

    2016-04-01

    2012, 134Cs activity reached a maximum of 6.12 ± 0.50 Bq m-3 at a 151-m depth (potential density, 25.3 kg m-3) at 29°N, 165°E. This subsurface maximum, which was also observed along 149°E, might reflect the southward transport of FNPP1-derived radiocaesium in association with the formation and subduction of subtropical mode water (STMW). In June 2012 at 34°N-39°N along 165°E, 134Cs activity showed a maximum at around potential density= 26.3 kg m-3, which corresponds to central mode water (CMW). 134Cs activity was higher in CMW than in any of the surrounding waters, including STMW. These observations also indicate that the most effective pathway by which FNPP1-derived radiocaesium is introduced into the ocean interior on a 1-year time scale is CMW formation and subduction. In June-July 2015 at 36°N-44°N along 165°E, there are only very week signal of subduction of Fukushima derived radiocaesium which mean subducted radiocaesium might move eastward from this region.

  3. Mapping seismic azimuthal anisotropy of the Japan subduction zone

    Science.gov (United States)

    Zhao, D.; Liu, X.

    2016-12-01

    We present 3-D images of azimuthal anisotropy tomography of the crust and upper mantle of the Japan subduction zone, which are determined using a large number of high-quality P- and S-wave arrival-time data of local earthquakes and teleseismic events recorded by the dense seismic networks on the Japan Islands. A tomographic method for P-wave velocity azimuthal anisotropy is modified and extended to invert S-wave travel times for 3-D S-wave velocity azimuthal anisotropy. A joint inversion of the P and S wave data is conducted to constrain the 3-D azimuthal anisotropy of the Japan subduction zone. Main findings of this work are summarized as follows. (1) The high-velocity subducting Pacific and Philippine Sea (PHS) slabs exhibit trench-parallel fast-velocity directions (FVDs), which may reflect frozen-in lattice-preferred orientation of aligned anisotropic minerals formed at the mid-ocean ridge as well as shape-preferred orientation such as normal faults produced at the outer-rise area near the trench axis. (2) Significant trench-normal FVDs are revealed in the mantle wedge, which reflects corner flow in the mantle wedge due to the active subduction and dehydration of the oceanic plates. (3) Obvious toroidal FVDs and low-velocity anomalies exist in and around a window (hole) in the aseismic PHS slab beneath Southwest Japan, which may reflect a toroidal mantle flow pattern resulting from hot and wet mantle upwelling caused by the joint effects of deep dehydration of the Pacific slab and the convective circulation process in the mantle wedge above the Pacific slab. (4) Significant low-velocity anomalies with trench-normal FVDs exist in the mantle below the Pacific slab beneath Northeast Japan, which may reflect a subducting oceanic asthenosphere affected by hot mantle upwelling from the deeper mantle. ReferencesLiu, X., D. Zhao (2016) Seismic velocity azimuthal anisotropy of the Japan subduction zone: Constraints from P and S wave traveltimes. J. Geophys. Res. 121, doi

  4. Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones

    NARCIS (Netherlands)

    Schellart, W. P.; Rawlinson, N.

    2013-01-01

    The maximum earthquake magnitude recorded for subduction zone plate boundaries varies considerably on Earth, with some subduction zone segments producing giant subduction zone thrust earthquakes (e.g. Chile, Alaska, Sumatra-Andaman, Japan) and others producing relatively small earthquakes (e.g.

  5. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history

    Science.gov (United States)

    Li, Mingming; Black, Benjamin; Zhong, Shijie; Manga, Michael; Rudolph, Maxwell L.; Olson, Peter

    2016-07-01

    The Earth's surface volcanism exerts first-order controls on the composition of the atmosphere and the climate. On Earth, the majority of surface volcanism occurs at mid-ocean ridges. In this study, based on the dependence of melt fraction on temperature, pressure, and composition, we compute melt production and degassing rate at mid-ocean ridges from three-dimensional global mantle convection models with plate motion history as the surface velocity boundary condition. By incorporating melting in global mantle convection models, we connect deep mantle convection to surface volcanism, with deep and shallow mantle processes internally consistent. We compare two methods to compute melt production: a tracer method and an Eulerian method. Our results show that melt production at mid-ocean ridges is mainly controlled by surface plate motion history, and that changes in plate tectonic motion, including plate reorganizations, may lead to significant deviation of melt production from the expected scaling with seafloor production rate. We also find a good correlation between melt production and degassing rate beneath mid-ocean ridges. The calculated global melt production and CO2 degassing rate at mid-ocean ridges varies by as much as a factor of 3 over the past 200 Myr. We show that mid-ocean ridge melt production and degassing rate would be much larger in the Cretaceous, and reached maximum values at ˜150-120 Ma. Our results raise the possibility that warmer climate in the Cretaceous could be due in part to high magmatic productivity and correspondingly high outgassing rates at mid-ocean ridges during that time.

  6. The Terminal Stage of Subduction: the Hindu Kush Slab Break-off

    Science.gov (United States)

    Kufner, S. K.; Schurr, B.; Sippl, C.; Yuan, X.; Ratschbacher, L.; Akbar, A. S. M.; Ischuk, A.; Murodkulov, S.; Schneider, F.; Mechie, J.; Tilmann, F. J.

    2016-12-01

    The terminal stage of subduction arrives when the ocean basin is closed and the continental margin arrives at the trench. The opposite forces of the sinking slab and buoyant continent ultimately leads to break-off of the subducted slab. This process, although common in geological history, is rarely observed, because it is short-lived. Here we report new precise earthquake hypocenters, detailed tomographic images and earthquake source mechanisms from the Hindu Kush region in Central Asia, which hint at continental subduction and plate necking. Our images provide a rare glimpse at the ephemeral process of slab break-off: the Hindu Kush slablet in its uppermost section is thinned or already severed and that intermediate depth earthquakes cluster at the neck connecting it to the deeper slab. From a strain rate analysis, we deduce that the deep portion of the slab is in the process of detaching from the shallower fragment at much higher rates than the current convergence rate at the surface. The increased strain rate might arise as the buoyant continental crust, which is dragged into the subduction system in its terminal stage, resists subduction, whereas the earlier subducted mantle lithosphere pulls from underneath.

  7. From rifting to subduction: the role of inheritance in the Wilson Cycle

    Science.gov (United States)

    Beaussier, Stéphane; Gerya, Taras; Burg, Jean-Pierre

    2017-04-01

    The Wilson Cycle entails that oceans close and reopen. This cycle is a fundamental principle in plate tectonics, inferring continuity from divergence to convergence and that continental rifting takes place along former suture zones. This view questions the role of inherited structures at each stage of the Wilson Cycle. Using the 3D thermo-mechanical code, I3ELVIS (Gerya and Yuen 2007) we present a high-resolution continuous model of the Wilson cycle from continental rifting, breakup and oceanic spreading to convergence and spontaneous subduction initiation. Therefore, all lateral and longitudinal structures of the lithospheres are generated self-consistently and are consequences of the initial continental structure, tectono-magmatic inheritance and material rheology. In the models, subduction systematically initiates off-ridge and is controlled by the convergence-induced swelling of the ridge. Geometry and dynamics of the developing off-ridge subduction is controlled by four main factors: (1) the obliquity of the ridge with respect to the convergence direction; (2) fluid-induced weakening of the oceanic crust; (3) irregularity of ridge and margins inherited from rifting and spreading; (4) strain localization at transform faults formed during ocean floor spreading. Further convergence can lead to obduction of the oceanic crust and segments of ridge after the oceanic lithosphere is entrained into subduction. We show that the main parameters controlling the occurrence and geometry of obducted ophiolite are the convergence rate and the inherited structure of the passive margins and ridge. Our numerical experiments results show the essential role played by inheritance during the Wilson Cycle and are consistent with nature observations such as the tectonic history of the Oman subduction-obduction system. REFERENCES Gerya, T. V., and D. A. Yuen. 2007: "Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems, Physics of the

  8. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline.

    Science.gov (United States)

    Capitanio, F A; Faccenna, C; Zlotnik, S; Stegman, D R

    2011-11-23

    The building of the Andes results from the subduction of the oceanic Nazca plate underneath the South American continent. However, how and why the Andes and their curvature, the Bolivian orocline, formed in the Cenozoic era (65.5 million years (Myr) ago to present), despite subduction continuing since the Mesozoic era (251.0-65.5 Myr ago), is still unknown. Three-dimensional numerical subduction models demonstrate that variations in slab thickness, arising from the Nazca plate's age at the trench, produce a cordilleran morphology consistent with that observed. The age-dependent sinking of the slab in the mantle drives traction towards the trench at the base of the upper plate, causing it to thicken. Thus, subducting older Nazca plate below the Central Andes can explain the locally thickened crust and higher elevations. Here we demonstrate that resultant thickening of the South American plate modifies both shear force gradients and migration rates along the trench to produce a concave margin that matches the Bolivian orocline. Additionally, the varying forcing along the margin allows stress belts to form in the upper-plate interior, explaining the widening of the Central Andes and the different tectonic styles found on their margins, the Eastern and Western Cordilleras. The rise of the Central Andes and orocline formation are directly related to the local increase of Nazca plate age and an age distribution along the margin similar to that found today; the onset of these conditions only occurred in the Eocene epoch. This may explain the enigmatic delay of the Andean orogeny, that is, the formation of the modern Andes.

  9. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...

  10. On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics

    Science.gov (United States)

    Araceli Sanchez-Maes, Sophia

    2018-01-01

    Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.

  11. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei

    2017-08-01

    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  12. Seamount subduction underneath an accretionary wedge: modelling mass wasting and wedge collapse

    Science.gov (United States)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean; Gerya, Taras; Strasser, Michael

    2017-04-01

    Seamounts (h >1 km) and knolls (h = 500 m-1000 m) cover about one-fifth of the total ocean floor area. These topographical highs of the ocean floor eventually get subducted. Subduction of these topographical features leads to severe deformation of the overriding plate and can cause extensive tectonic erosion and mass wasting of the frontal prism, which can ultimately cause a forearc wedge collapse. Large submarine landslides and the corresponding wedge collapse have previously been reported, for instance, in the northern part of the Hikurangi margin where the landslide is known as the giant Ruatoria debris avalanche, and have also been frequently reported in several seismic sections along the Costa Rica margin. Size and frequency relation of landslides suggest that the average size of submarine landslides in margins with rough subducting plates tends to be larger. However, this observation has not yet been tested or explained by physical models. In numerical subduction models, landslides take place, if at all, on a much larger timescale (in the order of 104-105 years, depending on the time steps of the model) than in natural cases. On the other hand, numerical models simulating mass wasting events such as avalanches and submarine landslides, typically model single events at a much smaller spatio-temporal domain, and do not consider long-term occurrence patterns of freely forming landslides. In this contribution, we present a multi-scale nested numerical approach to emulate short-term landslides within long-term progressive subduction. The numerical approach dynamically produces instantaneous submarine landslides and the resulting debris flow in the spatially and temporally refined inner model. Then we apply these convoluted changes in topography (e.g. due to the submarine landslide etc.) back to an outer larger-scale model instance that addresses wedge evolution. We use this approach to study the evolution of the accretionary wedge during seamount subduction.

  13. Dynamics of double-polarity subduction: application to the Western Mediterranean

    Science.gov (United States)

    Peral, Mireia; Zlotnik, Sergio; Fernandez, Manel; Vergés, Jaume; Jiménez-Munt, Ivone; Torne, Montserrat

    2016-04-01

    The evolution of the Western Mediterranean is a highly debated question by geologists and geophysicists. Even though most scientists agree in considering slab roll-back to be the driving mechanism of the tectonic evolution of this area, there is still no consensus about the initial setup and its time evolution. A recent model suggests a lateral change in subduction polarity of the Ligurian-Thetys oceanic domain to explain the formation and evolution of the Betic-Rif orogenic system and the associated Alboran back-arc basin. Such geodynamic scenario is also proposed for different converging regions. The aim of this study is to analyze the dynamic evolution of a double-polarity subduction process and its consequences in order to test the physical feasibility of this interaction and provide geometries and evolutions comparable to those proposed for the Western Mediterranean. The 3D numerical model is carried out via the Underworld framework. Tectonic plate behavior is described by equations of fluid dynamics in the presence of several different phases. Underworld solves a non-linear Stokes flow problem using Finite Elements combined with particle-in-cell approach, thus the discretization combines a standard Eulerian Finite Element mesh with Lagrangian particles to track the location of the phases. The final model consists of two oceanic plates with viscoplastic rheology subducting into the upper mantle in opposite direction and the problem is driven by Rayleigh-Taylor instability. We study the influence of the boundary conditions in the model evolution, and the slab deformation produced by the proximity between both plates. Moreover the case of asymmetric friction on the lateral sides of slabs is also considered. Simulations of single subduction models are used as a reference, to compare results and understand the influence of the second plate. We observe slight differences in the trench retreat velocity and the slab morphology near the contact area when plates are

  14. Kinematics of subduction and subduction-induced flow in the upper mantle

    NARCIS (Netherlands)

    Schellart, W. P.

    2004-01-01

    Results of fluid dynamical experiments are presented to model the kinematics of lithospheric subduction in the upper mantle. The experiments model a dense highviscosity plate (subducting lithosphere) overlying a less dense low-viscosity layer (upper mantle). The overriding lithosphere is not

  15. Investigation on subduction erosion of the Central Costa Rica margin with seismic wide- angle data

    Science.gov (United States)

    Zhu, J.; Flueh, E. R.; Kopp, H.; Klaeschen, D.

    2007-12-01

    Seismic wide-angle investigations along the Pacific margin off Central Costa Rica were carried out using closely spaced ocean bottom hydrophones and seismometers along two parallel strike and two parallel dip lines, intersecting at the mid slope. The structure and the P-wave velocities of the subducted oceanic Cocos Plate and overriding Carribean Plate were determined by modeling the wide-angle seismic data combined with the analysis of coincident reflection seismic data and the use of synthetic seismograms. Detailed velocity-depth distributions of two dip-lines and two strike-lines on the continental slope will be presented. Below the slope sediment, a wedge-shaped body, the margin wedge is defined by high velocities (4.3-6.1 km/s). This wedge shows a high velocity gradient zone in the uppermost one to two km, underlain by a low velocity gradient to the plate boundary. Between the subducted plate and overriding plate the low velocity zone including a lense-type structure is seen. This Megalens (4.0-4.3 km/s) and the subducted sediment comprise a low velocity zone (LVZ) all along the plate boundary. This LVZ is constrained by joint analysis of reflection seismic data and wide-angle data. The thickness of the wedge varies along the strike, this is associated with the subduction of the extension of Quepos Plateau, which also resulted in uplift of the margin. The extensional forearc environment is manifested by the normal faults indicated on the the multi-channel seismic (MCS) data. The Megalens is most probably comprised of material transferred from upper margin wedge at the tip of the wedge. The velocity structure within the Megalense resembles the velocities at the tip of the wedge, and is clearly lower than the oceanic crust, but higher thn subducted sediment. If this interpretation is valid, this material has been transported 16 km landward, which implies it was detached from the upper plate 0.2 Ma ago.

  16. Building a Subduction Zone Observatory

    Science.gov (United States)

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; Gonzalez, Frank; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  17. Subduction Zone Concepts and the 2010 Chile Earthqake (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    von Huene, Roland

    2010-05-01

    Knowledge of convergent margin systems evolved from hypothesis testing with marine geophysical technology that improved over decades. Wegener's drift hypothesis, Holmes mantle convection, and marine magnetic anomaly patterns were integrated into an ocean spreading concept that won wide acceptance after ocean drilling confirmed the crustal younging trend toward the Mid-Atlantic ridge. In contrast, the necessary disposal of oceanic and trench sediment at convergent margins remained largely hypothetical. Fresh interpretations of some coastal mountains as exposing ancient convergent margin rock assemblages and the seismologist's "Wadati-Benioff" zone were combined into a widely-accepted hypothesis. A convergent margin upper plate was pictured as an imbricate fan of ocean sediment thrust slices detached from the lower plate. During the 1980s ocean drilling to test the hypothesis revealed what then were counter-intuitive processes of sediment subduction and subduction erosion. Rather than the proposed seaward growth by accretion, many margins had lost material from erosion. In current concepts, individual margins are shaped by the net consequences of subduction accretion, sediment subduction, and subduction erosion. Similarly, recently acquired age data from ancient subduction complexes reveal periods dominated by accretion separated by periods dominated by tectonic erosion. Globally, the recycling of continental crustal material at subduction zones appears largely balanced by magmatic addition at volcanic arcs. The longevity of the original imbricate fan model in text books confirms its pictorial simplicity, because geophysical images and drill core evidence show that it commonly applies to only a relatively small frontal prism. A better understanding of convergent margin dynamics is of urgent societal importance as coastal populations increase rapidly and as recent disastrous earthquakes and tsunamis verify. The shift in convergent margin concepts has developed through

  18. Horizontal Pendulum Performance Analysis with Multilevel Model Plate on Ocean Wave Electric Power Plant (PLTGL

    Directory of Open Access Journals (Sweden)

    Mukhtasor Mukhtasor

    2017-03-01

    Full Text Available Abstract - With the times and the industry, the energy sources such as fossil fuels dwindling. It encourages all parties to be more advanced and developed by creating solutions to renewable energy generation with the latest innovations, one of which is the sea wave power plant - pendulum system. Ponton who uses pendulum system is one tool used to convert from ocean wave energy into electrical energy. In this study using the test conditions without using ballast onshore and off-shore testing with the ballasts. Obtained from testing the many rounds that can be generated pendulum pie plate thickness and the angle of the pontoon. To test the largest on-shore power obtained on the test using arc angle 30 °, 3 mm thick, the angle of 60o power produced 0036 watts. For testing offshore in the ballasts 12 cm, 15 cm, 17.5 cm, the largest power generated at 15 cm ballasts with 0041 watts power on pie, thick, and a tilt angle equal to the on-shore testing. Number of rounds with time, the on-shore testing that produces the greatest value in the segment with an angle of 30 °, a thickness of 3 mm the angle of 60o value obtained 0.938 rad / s. In the off-shore pengjuain is greatest in the ballasts 15 with 0847 rad / s. 

  19. Modeling mantle circulation and density distributions in subduction zones: Implications for seismic studies

    Science.gov (United States)

    Kincaid, C. R.; Druken, K. A.; Griffiths, R. W.; Long, M. D.; Behn, M. D.; Hirth, G.

    2009-12-01

    Subduction of ocean lithosphere drives plate tectonics, large-scale mantle circulation and thermal-chemical recycling processes through arcs. Seismologists have made important advances in our ability to map circulation patterns in subduction zones though anisotropy data/methods and in providing detailed images of mantle density fields. Increasingly, seismic and geodynamic disciplines are combining to extend our understanding of time varying subduction processes and associated vertical mass and energy fluxes. We use laboratory experiments to characterize three-dimensional flow fields in convergent margins for a range in plate forcing conditions and background, buoyancy-driven flow scenarios. Results reveal basic patterns in circulation, buoyant flow morphologies and density distributions that have implications for reconciling seismic data with mantle convection models. Models utilize a glucose working fluid with a temperature dependent viscosity to represent the upper 2000km of the mantle. Subducting lithosphere is modeled with a Phenolic plate and back-arc extension is produced using Mylar sheets. We recreate basic subduction styles observed in previous dynamic subduction models using simplified, kinematic forcing. Slab plate segments, driven by hydraulic pistons, move with various combinations of downdip, rollback and steepening motion. Neutral density finite strain markers are distributed throughout the fluid and used as proxies for tracking the evolution of olivine alignment through space and time in the evolving flow fields. Particle image velocimetry methods are also used to track time varying 3D velocity fields for use in directly calculating anisotropy patterns. Results show that complex plate motions (rollback, steepening, back-arc extension) in convergent margins produce relatively simple anisotropy patterns (e.g., trench-normal alignments) and underscore the importance of initial strain marker orientations on alignment patterns in the wedge. Results also

  20. Mw 8.6 Sumatran earthquake of 11 April 2012: rare seaward expression of oblique subduction

    Science.gov (United States)

    Ishii, Miaki; Kiser, Eric; Geist, Eric L.

    2013-01-01

    The magnitude 8.6 and 8.2 earthquakes off northwestern Sumatra on 11 April 2012 generated small tsunami waves that were recorded by stations around the Indian Ocean. Combining differential travel-time modeling of tsunami waves with results from back projection of seismic data reveals a complex source with a significant trench-parallel component. The oblique plate convergence indicates that ~20-50 m of trench-parallel displacement could have accumulated since the last megathrust earthquake, only part of which has been taken up by the Great Sumatran fault. This suggests that the remaining trench-parallel motion was released during the magnitude 8.6 earthquake on 11 April 2012 within the subducting plate. The magnitude 8.6 earthquake is interpreted to be a result of oblique subduction as well as a reduction in normal stress due to the occurrence of the Sumatra-Andaman earthquake in 2004.

  1. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    Science.gov (United States)

    Foix, Oceane; Crawford, Wayne; Pelletier, Bernard; Regnier, Marc; Garaebiti, Esline; Koulakov, Ivan

    2017-04-01

    The 1400-km long Vanuatu subduction zone results from subduction of the oceanic Australian plate (OAP) beneath the North-Fijian microplate (NFM). Seismic and volcanic activity are both high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the large forearc islands of Santo and Malekula. This collision coincides with a strongly decreased local convergence velocity rate - 35 mm/yr compared to 120-160 mm/yr to the north and south - and significant uplift on the overriding plate, indicating a high degree of deformation. The close proximity of large uplifted forearc islands to the trench provides excellent coverage of the megathrust seismogenic zone for a seismological study. We used 10 months of seismological data collected using the 30-instrument land and sea ARC-VANUATU seismology network to construct a 3D velocity model — using the LOTOS joint location/model inversion software — and locate 11655 earthquakes using the NonLinLoc software suite. The 3-D model reveals low P and S velocities in the first tens of kilometers beneath both islands, probably due to water infiltration in the heavily faulted upper plate. The model also suggests the presence of a subducted seamount beneath south Santo. The earthquake locations reveal a complex interaction of faults and stress zones related to high and highly variable deformation. Both brittle deformation and the seismogenic zone depth limits vary along-slab and earthquake clusters are identified beneath central and south Santo, at about 10-30 km of depth, and southwest of Malekula island between 10-20 km depth.

  2. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    Science.gov (United States)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial

  3. Organic matter cracking: A source of fluid overpressure in subducting sediments

    Science.gov (United States)

    Raimbourg, Hugues; Thiéry, Régis; Vacelet, Maxime; Famin, Vincent; Ramboz, Claire; Boussafir, Mohammed; Disnar, Jean-Robert; Yamaguchi, Asuka

    2017-11-01

    The pressure of deep fluids in subduction zones is a major control on plate boundary strength and earthquake genesis. The record, by methane-rich fluid inclusions, of large ( 50-100 MPa) and instantaneous pressure variations in the Shimanto Belt (Japan) points to the presence of large fluid overpressure at depth (300-500 MPa, 250 °C). To further analyze the connection between methane and fluid overpressure, we determined with Rock-Eval the potential for a worldwide selection of deep seafloor sediments to produce methane as a result of organic matter (OM) cracking due to temperature increase during subduction. The principal factor controlling the methanogenesis potential of sediments is OM proportion, while OM nature is only a subordinate factor. In turn, OM proportion is mainly controlled by the organic terrigenous input. Considering a typical sediment from ocean-continent subduction zones, containing 0.5 wt% of type III OM, cracking of OM has two major consequences: (1) Methane is produced in sufficient concentration as to oversaturate the pore-filling water. The deep fluid in accretionary prisms is therefore a mechanical mixture of water-rich and methane-rich phases; (2) CH4 production can generate large fluid overpressure, of the order of several tens of MPa, The conditions for these large overpressure are a low permeability of the upper plate (z > 10 km) where OM thermal cracking occurs. At these depths, OM thermal cracking appears as a source of overpressure larger than the last increments of smectite-to-illite reaction. Such large overpressures play potentially a role in facilitating slip along the plate interface. Conversely, the scarcity of earthquakes in ocean-ocean subduction zones such as Marianna or Barbados may be related to the low influx of detrital OM and the limited methane/overpressure generation at depth.

  4. MACMA: a Virtual Lab for Plate Tectonics

    Science.gov (United States)

    Grigne, C.; Combes, M.; Tisseau, C.

    2013-12-01

    MACMA (Multi-Agent Convective MAntle) is a tool developed to simulate evolutive plate tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). The model relies mainly on a force balance to compute the velocity of each plate, and on empirical rules to determine how plate boundaries move and evolve. It includes first-order features of plate tectonics: (a) all plates on Earth do not have the same size, (b) subduction zones are asymmetric, (c) plates driven by subducting slabs and upper plates do not exhibit the same velocities, and (d) plate boundaries are mobile, can collide, merge and disappear, and new plate boundaries can be created. The MACMA interface was designed to be user-friendly and a simple use of the simulator can be achieved without any prerequisite knowledge in fluid dynamics, mantle rheology, nor in numerical methods. As a preliminary study, the simulator was used by a few students from bachelor's degree to master's degree levels. An initial configuration for plate tectonics has to be created before starting a simulation: the number and types of plate boundaries (ridge, subduction, passive margins) has to be defined and seafloor ages must be given. A simple but interesting exercise consists in letting students build such an initial configuration: they must analyze a map of tectonic plates, choose a 2-D section and examine carefully a map of seafloor ages. Students mentioned that the exercise made them realize that the 3-D spherical structure of plate tectonics does not translate directly in a simple 2-D section, as opposed to what is usually shown in books. Physical parameters: e.g. mantle viscosity, number of layers to consider in the mantle (upper and lower mantle, possible asthenosphere), initial time and mantle temperature, have to be chosen, and students can use this virtual lab to see how different scenarios emerge when parameters are varied. Very importantly, the direct visualization of the mobility of plate

  5. Using paleomagnetism to expand the observation time window of plate locking along subduction zones: evidence from the Chilean fore-arc sliver (38°S - 42°S)

    Science.gov (United States)

    Hernandez-Moreno, Catalina; Speranza, Fabio; Di Chiara, Anita

    2017-04-01

    Fore-arc crustal motion has been usually addressed by the analysis of earthquake slip vectors and, since the last twenty years, by velocity fields derived from Global Positioning System (GPS) data. Yet this observation time window (few decades) can be significantly shorter than a complete seismic cycle or constrained to interseismic periods where the postseismic deformation release, the vicinity of other important faults, and the slip partitioning in oblique subduction may hinder the finite deformation pattern. Paleomagnetic data may yield finite rotations occurring since rock formation, thus provide a much longer observation time span in the order of millions or tens of millions of years. The cumulative permanent or nonreversing deformation in function of the considered geological formation age can represent the average over many seismic cycles, thus significantly complement "instantaneous" information derived from seismic and GPS data. With the aim of evaluate the strike-variation and evolution of the plate coupling along the Chilean subduction zone, here we report on the paleomagnetism of 43 Oligocene-Pleistocene volcanic sites from the fore-arc sliver between 38°S and 42°S. Sites were gathered west of the 1000 km long Liquiñe-Ofqui dextral fault zone (LOFZ) that represents the eastern fore-arc sliver boundary. Nineteen reliable sites reveal that the fore arc is characterized by counterclockwise (CCW) rotations of variable magnitude, except at 40°S - 41°S, where ultrafast (>50°/Myr) clockwise (CW) rotations occur within a 30 km wide zone adjacent to the LOFZ. CCW rotation variability (even at close sites) and rapidity (>10°/Myr) suggest that the observed block rotation pattern is related to NW-SE seismically active sinistral faults crosscutting the whole fore arc. According to previously published data, CW rotations up to 170° also occur east of the LOFZ and have been related to ongoing LOFZ shear. We suggest that the occurrence and width of the eastern

  6. Impact of the overriding plate rheology on convergence zone dynamics.

    Science.gov (United States)

    Hertgen, Solenn; Yamato, Philippe; Guillaume, Benjamin; van Hunen, Jeroen

    2017-04-01

    Most of deformation at the Earth's surface is localized at plate boundaries. This deformation can be accommodated in very different ways depending on the tectonic setting. In the case of convergence zones, the deformation is typically simplified and classified as follows: - intra-oceanic convergence, when convergence involves two oceanic lithospheres, which generally leads to the subduction/obduction initiation and to the formation of an island arc; - convergence between an oceanic and a continental lithosphere, which is mainly accommodated by subduction and can lead to the formation of a mountain range at the plate boundary; - convergence involving two continental lithospheres, which is accommodated by collision and leads to the formation of a mountain range produced by the stacking of crustal slices. Different materials are thus involved (i.e., oceanic crust, continental crust, sediments). Depending on the context (oceanic or continental subduction), they can form contrasted structures in terms of units size, morphology and metamorphism (e.g., Alps vs. Andes/Altiplano-Puna). Moreover, some convergent zones with apparently similar tectonic settings (e.g., continent/continent convergence) show very different patterns of deformation with either very localized deformation (e.g., the Alps) or, at the opposite, deformation distributed over thousands of kilometers (e.g, Himalayas/Tibet). Finally, other convergent zones from different tectonic settings seem to show similar structures (e.g., Tibet plateau and Altiplano-Puna plateaus). Although the mechanism of plate convergence appears to be the same in each case, the structures obtained at the surface seem to be unique. Rheology of both the subducting plate and of the plate interface is known to influence the convergence zones dynamics. However, very few studies have addressed the role of the overriding plate rheology in details, while it may also exert a large control on the deformation style at plate boundaries. In

  7. Subduction trench migration since the Cretaceous

    Science.gov (United States)

    Williams, S.; Flament, N. E.; Müller, D.; Butterworth, N. P.

    2015-12-01

    Much of our knowledge about subduction zone processes is derived from analyzing present-day Earth. Several studies of contemporary plate motions have investigated the balance between retreating and advancing trenches and shown that subduction zone kinematics are sensitive to the choice of Absolute Plate Motion (APM) model (or "reference frame"). For past times, the absolute motions of the lithospheric plates relative to the Earth's deep interior over tens of millions of years are commonly constrained using observations from paleomagnetism and age-progressive seamount trails. In contrast, a reference frame linking surface plate motions to subducted slab remnants mapped from seismic tomography has recently been proposed. APM models derived using different methodologies, different subsets of hotspots, or differing assumptions of hotspot motion, have contrasting implications for parameters that describe the long term state of the plate-mantle system, such as the balance between advance and retreat of subduction zones, plate velocities, and net lithospheric rotation. Here we quantitatively compare the subduction zone kinematics, net lithospheric rotation and fit to hotspot trails derived the last 130 Myr for a range of alternative reference frames and a single relative plate motion model. We find that hotspot and tomographic slab-remnant reference frames yield similar results for the last 70 Myr. For the period between 130 and 70 Ma, when hotspot trails become scarce, hotspot reference frames yield a much more dispersed distribution of slab advance and retreat velocities, which is considered geodynamically less plausible. By contrast, plate motions calculated using the slab-remnant reference frame, or using a reference frame designed to minimise net rotation, yield more consistent subduction zone kinematics for times older than 70 Ma. Introducing the global minimisation of trench migration rates as a key criterion in the construction of APM models forms the foundation

  8. A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone

    Science.gov (United States)

    Chen, Ling; Wen, Lianxing; Zheng, Tianyu

    2005-11-01

    The newly developed wave equation poststack depth migration method for receiver function imaging is applied to study the subsurface structures of the Japan subduction zone using the Fundamental Research on Earthquakes and Earth's Interior Anomalies (FREESIA) broadband data. Three profiles are chosen in the subsurface imaging, two in northeast (NE) Japan to study the subducting Pacific plate and one in southwest (SW) Japan to study the Philippine Sea plate. The descending Pacific plate in NE Japan is well imaged within a depth range of 50-150 km. The slab image exhibits a little more steeply dipping angle (˜32°) in the south than in the north (˜27°), although the general characteristics between the two profiles in NE Japan are similar. The imaged Philippine Sea plate in eastern SW Japan, in contrast, exhibits a much shallower subduction angle (˜19°) and is only identifiable at the uppermost depths of no more than 60 km. Synthetic tests indicate that the top 150 km of the migrated images of the Pacific plate is well resolved by our seismic data, but the resolution of deep part of the slab images becomes poor due to the limited data coverage. Synthetic tests also suggest that the breakdown of the Philippine Sea plate at shallow depths reflects the real structural features of the subduction zone, rather than caused by insufficient coverage of data. Comparative studies on both synthetics and real data images show the possibility of retrieval of fine-scale structures from high-frequency contributions if high-frequency noise can be effectively suppressed and a small bin size can be used in future studies. The derived slab geometry and image feature also appear to have relatively weak dependence on overlying velocity structure. The observed seismicity in the region confirms the geometries inferred from the migrated images for both subducting plates. Moreover, the deep extent of the Pacific plate image and the shallow breakdown of the Philippine Sea plate image are

  9. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    Science.gov (United States)

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  10. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    Science.gov (United States)

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  11. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading......The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...

  12. Investigating the Role of Dehydration Reactions in Subduction Zone Pore Pressures Using Newly-Developed Permeability-Porosity Relationships

    Science.gov (United States)

    Screaton, E.; Daigle, H.; James, S.; Meridth, L.; Jaeger, J. M.; Villaseñor, T. G.

    2014-12-01

    Dehydration reactions are linked to shallow subduction zone deformation through excess pore pressures and their effect on mechanical properties. Two reactions, the transformation of smectite to illite and of opal-A to opal-CT and then to quartz, can occur relatively early in the subduction process and may affect the propagation of the plate boundary fault, the updip limit of velocity-weakening frictional paper, and tsunamigenesis. Due to large variations between subduction zones in heat flow, sedimentation rates, and geometries, dehydration location may peak prior to subduction to as much as 100 km landward of the deformation front. The location of the dehydration reaction peak relative to when compaction occurs, causes significant differences in pore pressure generation. As a result, a key element to modeling excess pore pressures due to dehydration reactions is the assumed relationship between permeability and porosity. Data from Integrated Ocean Drilling Program (IODP) drilling of subduction zone reference sites were combined with previously collected results to develop relationships for porosity-permeability behavior for various sediment types. Comparison with measurements of deeper analog data show that porosity-permeability trends are maintained through burial and diagenesis to porosities <10%, suggesting that behavior observed in shallow samples is informative for predicting behavior at depth following subduction. We integrate these permeability-porosity relationships, compaction behavior, predictions of temperature distribution, kinetic expressions for smectite and opal-A dehydration, into fluid flow models to examine the role of dehydration reactions in pore pressure generation.

  13. Deciphering detailed plate kinematics of the Indian Ocean and developing a unified model for East Gondwanaland reconstruction: An Indian-Australian-French initiative

    Digital Repository Service at National Institute of Oceanography (India)

    Yatheesh, V.; Dyment, J.; Bhattacharya, G.C.; Muller, R.D.

    and their independent magnetic anomaly investigations provided better plate tectonic evolution models for different sectors of the Indian Ocean. Indian and French scientists, under two Indo-French collaborative projects, carried out detailed magnetic investigations...

  14. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  15. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli; Kluesner, Jared W.

    2016-01-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a “depositionary forearc,” a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  16. Origin and dynamics of depositionary subduction margins

    Science.gov (United States)

    Vannucchi, Paola; Morgan, Jason P.; Silver, Eli A.; Kluesner, Jared W.

    2016-06-01

    Here we propose a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a "depositionary forearc," a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes, and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  17. Seismotectonics of the southern boundary of Anatolia, Eastern Mediterranean region: subduction, collision, and arc jumping

    Energy Technology Data Exchange (ETDEWEB)

    Rotstein, Y.; Kafka, A.L.

    1982-09-10

    The pattern of seismicity and fault plane solutions of earthquakes are used to outline the tectonic features of the southern boundary of Anatolia in the eastern Mediterranean and southeastern Turkey. The results of this study show that this boundary is composed of two distinct parts. One, in southeastern Turkey and Syria, is a wide and complex zone of continental collision. The other, in the Levantine basin of the eastern Mediterranean, is a zone of oceanic subduction. In the region of continental collision three zones of seismicity are observed. Most of the seismic activity in this region follows the Bitlis zone and is associated with a zone of thrusting and mountain building. This appears to be the zone of most active deformation and plate consumption in the plate boundary region between Arabia and Turkey. A less active zone of seismicity to the north of the Bitlis zone is interpreted to have been more active in the past whereas another active zone of seismicity to the south is interpreted to be a zone which may be more active in the future as the main zone of plate consumption jumps to the south. In the subduction zone of the eastern Mediterranean the depth of the subducted slab and the rate of seismicity generally increease from east to west. The zone of present-day convergence between Africa and Turkey in the Levantine basin can be best outlined by the northern edge of the Mediterranean ridge. Deep seismic activity near the Gulf of Antalya is associated with a detached subducted slab north of the Anaximander Mountains that is distinctly different from the seismic trend which is associated with present-day active subduction. Most of the focal mechanisms of the earthquakes along the entire southern boundary of Anatolia indicate that N to NNW thrusting is the dominant mode of seismic deformation.

  18. Subduction dynamics: Constraints from gravity field observations

    Science.gov (United States)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  19. The Role of Subducting Ridges in the Formation of Flat Slabs: Insights from the Peruvian Flat Slab

    Science.gov (United States)

    Knezevic Antonijevic, Sanja; Wagner, Lara; Kumar, Abhash; Beck, Susan; Long, Maureen; Zandt, George; Eakin, Caroline M.

    2015-04-01

    Flattening of the subducting plate is often used to explain various geological features removed far from the subducting margins, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005, Kay and Mpodozis, 2001]. Today, flat slab subduction is observed in central Chile and Peru, representing the modern analogues to the immense paleo-flat slab that subducted beneath the North American continent during the Laramide orogeny (80-55 Ma) [English et al., 2003]. However, how flat slabs form and what controls their inboard and along-strike extent is still poorly understood. To better understand modern and paleo-flat slabs, we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~90 km depth and travels horizontally for several hundred kilometers beneath the South American plate. Earlier studies propose a correlation between the flat slab and the subducting Nazca Ridge that has been migrating to the south over the past 11 ~Ma [Hampel et al., 2004, Gutscher et al., 2003]. Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the flat slab has the greatest inboard extent along the track of the subducting Nazca Ridge. North of the ridge track, where the flat slab was initially formed, the flat slab starts to sag, tear and re-initiate steep slab subduction, allowing inflow of warm asthenosphere. Based on our new constraints on the geometry of the subducted plate, we find that the subduction of buoyant oceanic features with overthickened oceanic crust plays a vital role in the formation of flat slabs. We further develop a model of temporal evolution of the Peruvian flab slab that forms as a result of the combined effects of the subducting ridge, trench retreat, and suction forces. Once the buoyant ridge subducts to ~90 km depth, it will fail to

  20. OBS seismic data preliminary results: Manila subduction zone (21°N)

    Science.gov (United States)

    Zhao, M.; Liu, S.; Sun, L.; Sibuet, J. C.; Zhang, J.; Chen, C.; Qiu, X.

    2016-12-01

    A two-dimensional ocean bottom seismometer (OBS) survey was performed in 2015, along an E-W trending line (OBS2015-2) located in front of the Manila subduction zone. The preliminary results show that OBS data are of high quality for the whole experiment. Seismic phases (such as Pg and PmP) are very clear in the OBSs' record sections. They are further identified by forward modeling using the Rayinvr software. The reflective seismic phases from the Moho interface (PmP) are observed in all OBS sections. The identification of these PmP phases used simultaneously with Fast and Tomo2D tomography results shows that the nature of the crust is essentially continental, not oceanic, except perhaps close to the trench. The obvious PmP phases in the incoming plate along the Manila Trench subduction zone, will further provide good constraints concerning the nature and evolution of the incoming plate in the Manila subduction zone. This research was granted by the Natural Science Foundation of China (91428204, 41176053) and the scientific cruise (NORC2015-8) by the R/V Shiyan 2.

  1. Upper Mantle Seismic Anisotropy in the Southwest Indian Ocean from SKS-splitting measurements: Plate, Plume and Ridges signatures

    Science.gov (United States)

    Scholz, J. R.; Barruol, G.; Fontaine, F. R.; Montagner, J. P.; Stutzmann, E.; Sigloch, K.; Mazzullo, A.

    2016-12-01

    We present results of upper mantle seismic anisotropy in the Southwest Indian Ocean, a region influenced by the effects of absolute plate motion of the African Plate, of mid-ocean ridge spreading of the Central and Southwest Indian Ridges, and of potential plume-lithosphere and plume-ridge interactions. Data analyzed in this study were recorded by 20 terrestrial and 57 ocean-bottom three-component seismometers installed in the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel, www.rhum-rum.net). Broadband land stations were installed at the Îles Eparses (5), Madagascar (5) and La Réunion Island (10), and recorded for about two years. Broadband and wideband ocean-bottom instruments were deployed around the La Réunion Island and along the Central and Southwest Indian Ridges (deployment: R/V Marion Dufresne, 2012, MD192 - recovery: R/V Meteor, 2013, M101), and recorded for 8 to 13 months. Measurements of upper mantle anisotropy measurements are based on the effect of SKS-splitting and performed using the `SplitLab' toolbox. To our results we integrate findings of former seismic anisotropy studies (SKS-splitting measurements and fundamental mode Rayleigh wave tomography). We interpret the overall picture in terms of the existence - or lack - of a mantle plume signature around the La Réunion hotspot, of a physical plume-ridge interaction and of the general upper mantle flow geometry in the Southwest Indian Ocean.

  2. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios

    Science.gov (United States)

    Guo, Kun; Zeng, Zhi-Gang; Chen, Shuai; Zhang, Yu-Xiang; Qi, Hai-Yan; Ma, Yao

    2017-09-01

    The Okinawa Trough (OT) is a back-arc, initial continental marginal sea basin located behind the Ryukyu Arc-Trench System. Formation and evolution of the OT have been intimately related to subduction of the Philippine Sea Plate (PSP) since the late Miocene; thus, the magma source of the trough has been affected by subduction components, as in the case of other active back-arc basins, including the Lau Basin (LB) and Mariana Trough (MT). We review all the available geochemical data relating to basaltic lavas from the OT and the middle Ryukyu Arc (RA) in this paper in order to determine the influence of the subduction components on the formation of arc and back-arc magmas within this subduction system. The results of this study reveal that the abundances of Th in OT basalts (OTBs) are higher than that in LB (LBBs) and MT basalts (MTBs) due to the mixing of subducted sediments and EMI-like enriched materials. The geochemical characteristics of Th and other trace element ratios indicate that the OTB originated from a more enriched mantle source (compared to N-mid-ocean ridge basalt, N-MORB) and was augmented by subducted sediments. Data show that the magma sources of the south OT (SOT) and middle Ryukyu Arc (MRA) basalts were principally influenced by subducted aqueous fluids and bulk sediments, which were potentially added into magma sources by accretion and underplating. At the same time, the magma sources of the middle OT (MOT) and Kobi-syo and Sekibi-Syo (KBS+SBS) basalts were impacted by subducted aqueous fluids from both altered oceanic crust (AOC) and sediment. The variable geochemical characteristics of these basalts are due to different Wadati-Benioff depths and tectonic environments of formation, while the addition of subducted bulk sediment to SOT and MRA basalts may be due to accretion and underplating, and subsequent to form mélange formation, which would occur partial melting after aqueous fluids are added. The addition of AOC and sediment aqueous fluid

  3. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  4. Seismotectonics of the southern boundary of Anatolia, eastern Mediterranean region: Subduction, collision, and arc jumping

    Science.gov (United States)

    Rotstein, Yair; Kafka, Alan L.

    1982-09-01

    The pattern of seismicity and fault plane solutions of earthquakes are used to outline the tectonic features of the southern boundary of Anatolia in the eastern Mediterranean and southeastern Turkey. The results of this study show that this boundary is composed of two distinct parts. One, in southeastern Turkey and Syria, is a wide and complex zone of continental collision. The other, in the Levantine basin of the eastern Mediterranean, is a zone of oceanic subduction. In the region of continental collision three zones of seismicity are observed. Most of the seismic activity in this region follows the Bitlis zone and is associated with a zone of thrusting and mountain building. This appears to be the zone of most active deformation and plate consumption in the plate boundary region between Arabia and Turkey. A less active zone of seismicity to the north of the Bitlis zone is interpreted to have been more active in the past whereas another active zone of seismicity to the south is interpreted to be a zone which may be more active in the future as the main zone of plate consumption jumps to the south. In the subduction zone of the eastern Mediterranean the depth of the subducted slab and the rate of seismicity generally increase from east to west. The zone of present-day convergence between Africa and Turkey in the Levantine basin can be best outlined by the northern edge of the Mediterranean ridge. The subduction zone in this area sequentially jumps to the south as small continental fragments collide with existing zones of subduction. Deep seismic activity near the Gulf of Antalya is associated with a detached subducted slab north of the Anaximander Mountains that is distinctly different from the seismic trend which is associated with present-day active subduction. The plate boundary between Africa and Turkey at the center of the Levantine basin appears to have shifted to the south of the Anaximander Mountains and Florence rise. Most of the focal mechanisms of the

  5. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W.G. (Univ. of California, Los Angeles (USA))

    1988-12-01

    Many Phanerozoic convergent plate junctions are marked by discontinuous blueschist belts, reflecting relatively high-pressure (P) prograde trajectories. Common blueschist paragneisses, such as those of the western Alps, exhibit widespread overprinting by greenschist and/or epidote-amphibolite facies assemblages. For this type of high-P belt, retrograde metamorphism involved fairly rapid, nearly isothermal decompression; some terranes underwent continued heating during early stages of pressure release. Uplift probably occurred as a consequence of the entrance of an island arc, oceanic plateau, or segment of continental crust into the subduction zone (collision), resulting in marked deceleration or cessation of underflow and buoyant, approximately adiabatic rise of the stranded, recrystallized subduction complex. Other high-P belts, such as the Franciscan of western California, preserve metamorphic aragonite and lack a low-P overprint; retrogression approximately retraced the prograde P-T (temperature) path, or for early formed high-grade blocks, occurred at even higher P/T ratios. Parts of this type of metamorphic belt evidently migrated slowly back up the subduction zone in response to isostatic forces during continued plate descent and refrigeration. Upward motion took place as tectonically imbricated slices, as laminar return flow in melange zones, and perhaps partly a lateral spreading/extension of the underplated accretionary prism. Retrograde P-T trajectories of high-P belts therefore provide important constraints on the tectonic evolution of convergent plate junctions.

  6. Vp and Vs velocity models from the Eurasia-Africa plate boundary across the Gloria Fault, North Atlantic Ocean

    Science.gov (United States)

    Batista, Luis; Hübscher, Christian; Terrinha, Pedro; Matias, Luis; Afilhado, Alexandra; Lüdmann, Thomas

    2017-04-01

    The oceanic crustal and uppermost lithospheric mantle structure across the Gloria Fault transcurrent plate boundary between Africa and Eurasia in the Northeast Atlantic is investigated based on seismic reflection, seismic refraction and wide angle reflection data. This experiment used 18 ocean bottom stations along a N-S 150 km long traverse together with coincident acquisition of a multichannel seismic reflection profile. Structural and seismic stratigraphic interpretation of the reflection profile shows that Neogene to recent tectonic deformation on this segment of the plate boundary concentrated on the southern side of the Gloria Fault, i.e. the Africa plate. Modeling of P and S seismic waves and gravimetric anomalies allowed estimation of velocities, density, Poisson's ratio and proposal of a compositional model. A five layer model is proposed in which layers 1 to 3 correspond to normal sediments and typical oceanic crust layers 2 and 3, respectively. Layer 5 yielded mantle velocities above 7.9 km/s. Layer 4 with 4 km of thickness has Vp velocities between 7.1 and 7.4 km/s. Layer 4 velocities can be found at the base of the lower crust and at the uppermost hydrated lithospheric mantle as reported from various authors from other parts of the Earth. Enrichment in olivine at the base of the lower crust, as a result of underplating, could explain Layer 4 velocities; however, there are no morphologic evidences associated to plume activity. On the other hand, morphologic, geologic and seismicity generated along the Gloria Fault (M>7-8.4) indicates that the Gloria Fault has accumulated ductile and brittle deformation from the upper mantle through the surface. It is here argued that pathways for fluid migration through seismic pumping mechanisms have provided the conditions for partial serpentinization of the peridotite mantle rocks, which probably make up the bulk of Layer 4. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz

  7. Isabella Anomaly: Lithospheric drip, delamination or fragment of the Farallon plate?

    Science.gov (United States)

    Forsyth, D. W.; Rau, C. J.

    2009-12-01

    The Isabella Anomaly or Central Valley Anomaly in California is perhaps the best known example of a high seismic velocity anomaly that has been interpreted as a lithospheric instability. High P and S velocities extend to a depth of at least 150 km and perhaps to several hundred km in a nearly cylindrical region 100-150 km across. The amplitude of the anomaly in the upper 200 km is similar to that of the subducted Gorda plate. This anomaly has been variously interpreted as a convective drip or as a remnant of the lithosphere delaminated from beneath the eastern Sierra Nevada. We suggest instead that the Isabella anomaly may represent a fragment of the subducted Farallon plate that is still attached to the Pacific lithosphere. Directly seaward of the anomaly is the fossil Monterrey microplate, which is a remnant of the Farallon plate that was left when subduction ceased before the spreading center itself subducted. The microplate was then incorporated into the Pacific plate, but it is not clear how much of the subducting slab remained attached to the surface microplate. New Rayleigh wave tomographic images of Baja California show that there are still fragments of the Farallon plate remaining attached to the unsubducted Guadelupe and Magdelena microplate remnants, with anomalies extending down to at least 150 km. The geometry of these anomalies in relationship to the microplates is very similar to that of the Isabella anomaly. A major question with this interpretation is whether a bit of oceanic lithosphere extending down into the asthenosphere could be dragged along with the surface microplate/Pacific plate for 20 Ma since subduction ceased. Another anomaly similar to the Isabella anomaly begins in the shallow mantle beneath the northern end of San Francisco bay and dips to the west - another candidate for a lithospheric drip or convective instability?

  8. Plate Tectonics: A Paradigm under Threat.

    Science.gov (United States)

    Pratt, David

    2000-01-01

    Discusses the challenges confronting plate tectonics. Presents evidence that contradicts continental drift, seafloor spreading, and subduction. Reviews problems posed by vertical tectonic movements. (Contains 242 references.) (DDR)

  9. Reorganization of convergent plate boundaries. Geologica Ultraiectina (340)

    NARCIS (Netherlands)

    Baes, M.|info:eu-repo/dai/nl/304824739

    2011-01-01

    It is still unclear where a subduction is initiated and what are the responsible mechanisms involved in subduction initiation process. Understanding of subduction initiation will advance our knowledge of how and when plate tectonics started on Earth. Another issue concerning the subduction process

  10. GPS Monitoring of Subduction Zone Deformation in Costa Rica

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The subduction of the Cocos plate beneath Costa Rica is among the highest convergence rates in the world. The high subduction rate and nearness of the Nicoya Peninsula, Costa Rica to the Middle America Trench (MAT) provide a unique opportunity to map variations in interseismic strain of the crust above the seismogenic zone in response to variations in seismic coupling.

  11. Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones

    Science.gov (United States)

    Debret, Baptiste; Koga, Kenneth T.; Cattani, Fanny; Nicollet, Christian; Van den Bleeken, Greg; Schwartz, Stephane

    2016-02-01

    Amphiboles are ubiquitous minerals in the altered oceanic crust. During subduction, their breakdown is governed by continuous reactions up to eclogitic facies conditions. Amphiboles thus contribute to slab-derived fluid throughout prograde metamorphism and continuously record information about volatile exchanges occurring between the slab and the mantle wedge. However, the fate of volatile elements and especially halogens, such as F and Cl, in amphibole during subduction is poorly constrained. We studied metagabbros from three different localities in the Western Alps: the Chenaillet ophiolite, the Queyras Schistes Lustrés and the Monviso meta-ophiolitic complexes. These samples record different metamorphic conditions, from greenschist to eclogite facies, and have interacted with different lithologies (e.g. sedimentary rocks, serpentinites) from their formation at mid-oceanic ridge, up to their devolatilization during subduction. In the oceanic crust, the initial halogen budget is mostly stored in magmatic amphibole (F = 300-7000 ppm; Cl = 20-1200 ppm) or in amphibole corona (F = 100-7000 ppm; Cl = 80-2000 ppm) and titanite (F = 200-1500 ppm; Cl glaucophane at the expense of magmatic and amphibole coronas. This episode is accompanied with a decrease of halogen concentrations in amphiboles (glaucophane (up to 600 ppm) whereas halogen concentrations are unaffected. At eclogite facies conditions, metagabbros display low halogens concentrations (< 20 ppm of F and < 100 ppm of Cl) relative to altered oceanic crust (F = 40-650 ppm; Cl = 40-1400 ppm) suggesting that these elements are continuously released by fluids during the first 30-80 km of subduction whatever the tectonic environment (e.g. slab, plate interface) and the considered fluid/rock interactions.

  12. Surface deformation resulting from subduction and slab detachment

    NARCIS (Netherlands)

    Buiter, S.J.H.

    2000-01-01

    Convergence of lithospheric plates is accommodated at active margins by one plate moving beneath the other into the Earth's mantle. Changes in this subduction process may cause variations in the topography of the Earth's surface near a convergent plate margin. The focus of this thesis lies on

  13. Quantitative Study of Seismogenic Potential Along Manila Trench: Effects of Scaborough Seamount Chain Subduction

    Science.gov (United States)

    Yu, H.; Liu, Y.; Li, D.; Ning, J.; Matsuzawa, T.; Shibazaki, B.; Hsu, Y. J.

    2014-12-01

    Modern seismicity record along the Manila Trench shows only infrequent Mw7 earthquakes, the lack of great earthquakes may indicate the subduction fault is either aseismically slipping or is accumulating strain energy toward rapid release in a megathrust earthquake. We conduct numerical simulations of the plate coupling, earthquake nucleation and dynamic rupture propagation processes along the Manila subduction fault (15-19.5ºN), taking into consideration the effects of plate geometry (including subducted seamounts), fault strength, rate-state frictional properties and pore pressure variations. Specifically, we use the bathymetry to depict the outline of Manila trench along its strike, 2681 background seismicity (1970/02/13 to 2013/09/06) from Chinese Earthquake Network Center and 540 focal mechanism solutions (1976/01/01 to 2013/01/27) from Global CMT project to constrain the geometry of the subducting Sunda/Eurasian slab. The compilation of seismicity and focal mechanism indicates the plate dipping angle gradually changes from 28º (south of the Scaborough Seamount Chain) to 12º (north of it). This geometric anomaly may due to the subducted part of the seamount chain. Preliminary modeling results using gabbro gouge friction data show that the Scaborough Seamount Chain could be a barrier to earthquake rupture propagation. Only earthquakes larger than Mw7 can overcome the barrier to rupture the entire Manila trench. Smaller earthquakes would cease rupturing when it encounters the seamount chain. Moreover, we propose that Manila trench subduction zone has the potential of rupturing in a Mw8 megathrust earthquake, if the simulation period is long enough for an Mw8 earthquake cycle and dynamic rupture overcomes the subducted Scaborough Seamount Chain. Our model parameters will be further constrained by laboratory rock mechanics experiments conducted on IODP Expedition 349, South China Sea (SCS), drilling samples (work in progress at China Earthquake Administration

  14. HYBRID ACCRETIONARY/COLLISIONAL MECHANISM OF PALEOZOIC ASIAN CONTINENTAL GROWTH: NEW PLATE TECTONIC PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Karel Schulmann

    2017-01-01

    Full Text Available Continental crust is formed above subduction zones by well-known process of “juvenile crust growth”. This new crust is in modern Earth assembled into continents by two ways: (i short-lived collisions of continental blocks with the Laurussian or later Eurasian continent along the “Alpine Himalayan collisional/interior orogens” in the heart of the Pangean continental plates realm; and (ii long lived lateral accretion of ocean-floor fragments along “circum-Pacific accretionary/peripheral orogens” at the border of the PaleoPacific and modern Pacific oceanic plate.

  15. Geophysics. Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface.

    Science.gov (United States)

    Yamashita, Y; Yakiwara, H; Asano, Y; Shimizu, H; Uchida, K; Hirano, S; Umakoshi, K; Miyamachi, H; Nakamoto, M; Fukui, M; Kamizono, M; Kanehara, H; Yamada, T; Shinohara, M; Obara, K

    2015-05-08

    Detection of shallow slow earthquakes offers insight into the near-trench part of the subduction interface, an important region in the development of great earthquake ruptures and tsunami generation. Ocean-bottom monitoring of offshore seismicity off southern Kyushu, Japan, recorded a complete episode of low-frequency tremor, lasting for 1 month, that was associated with very-low-frequency earthquake (VLFE) activity in the shallow plate interface. The shallow tremor episode exhibited two migration modes reminiscent of deep tremor down-dip of the seismogenic zone in some other subduction zones: a large-scale slower propagation mode and a rapid reversal mode. These similarities in migration properties and the association with VLFEs strongly suggest that both the shallow and deep tremor and VLFE may be triggered by the migration of episodic slow slip events. Copyright © 2015, American Association for the Advancement of Science.

  16. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    Science.gov (United States)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  17. Li isotopic constraints from the Erro-Tobbio serpentinites on Alpine subduction processes

    Science.gov (United States)

    Chu, M.-F.; Scambelluri, M.; Griffin, W. L.; O'Reilly, S. Y.; Pearson, N. J.

    2012-04-01

    Subduction zones represent a unique feature of the dynamic Earth and provide important constraints on how plate tectonics works. Subduction of serpentinized oceanic lithosphere, characterized by releasing water into the mantle wedge via dehydration, i.e. breakdown of hydrous minerals, plays a critical role in not only the generation of continental crust but also the Earth's water cycle. To track the recycling of water or fluid released by subduction, the stable isotope system of Li, a lithophile and mobile element, shows its high potential because 7Li, relative to 6Li, preferentially moves into the fluid phase when fractionation occurs. Here we present new Li abundance and isotopic compositions of the Erro-Tobbio serpentinized peridotite complex, a remnant mantle slice of the Alpine subduction. Our data indicate that most of the serpentinized ultramafic rocks have uniform Li concentrations, around 1 ppm. These rocks, however, show variable Li isotopic compositions. Among them, the high-pressure antigorite-bearing metaperidotites, formed under a low-strain condition, have a limited range in Li isotopic values, with δ7Li = +1.5 to +4.0, similar to those of serpentinized peridotites. In contrast, apparently heavier Li isotopes, up to +10.0, are observed in the high-pressure serpentinite mylonites that also contain antigorite but formed in high-strain domains. We note that O-H isotope ratios of the high-pressure ultramafic rocks reported in previous study (Früh-Green et al., 2001, Contrib. Mineral Petrol. 141: 145-159) show insignificant variations between the low- and high-strain domains. This demonstrates the superiority of Li isotope than conventional stable isotope systems in offering critical information about fluid-releasing processes in subduction zones. Moreover, our new data unsupport the general assumption that fluid released from subducted slabs is in favor of extracting 7Li than 6Li, thus capable of forming the much lighter δ7Li values observed in

  18. Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island

    Science.gov (United States)

    Taneja, Rajat; Rushmer, Tracy; Blichert-Toft, Janne; Turner, Simon; O'Neill, Craig

    2016-10-01

    The intra-plate region of the Northeast Indian Ocean, located between the Ninetyeast Ridge and the North West Shelf of Australia, contains numerous submerged seamounts and two sub-aerially exposed volcanic island groups. While the Cocos (Keeling) Archipelago is a coral atoll, Christmas Island is the only sub-aerially exposed volcanic island and contains Late Cretaceous, Eocene and Pliocene lavas. The lavas are predominantly basaltic in composition, except for one sampled flow that is trachytic. Although the evolution of the western margin of Australia, and the seismicity in the intra-plate region, has received considerable attention, the origin of the seamount province in the Northeast Indian Ocean is still a matter of debate. In order to constrain the origin of volcanism on Christmas Island and the associated Seamount Province we analysed 14 Christmas Island samples for major and trace element abundances and 12 of these for Nd, Hf and Pb isotope compositions. The trace element patterns of the lavas are similar to many ocean island basalts, while high 208Pb/204Pb and 207Pb/204Pb at a given 206Pb/204Pb suggest affiliation with the DUPAL anomaly. The reconstructed position of Christmas Island during the Eocene (44-37 Ma) places the island in close proximity to the (present-day) upper mantle low-seismic velocity anomalies. Moreover, an enriched mantle (EM-2) type component in addition to the DUPAL anomaly is observed in the Eocene volcanic phase. The younger Pliocene ( 4 Ma) sequences at Christmas Island are inferred to be the product of partial melting of existing material induced by lithospheric flexure.

  19. From continental to oceanic rifting in the Gulf of California

    Science.gov (United States)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo

    2017-11-01

    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  20. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo

    2013-06-11

    Slab-derived fluids play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using phase equilibria and modeling of fluid flow. Nevertheless, direct observations of the fluid chemistry and pressure-temperature conditions of fluids are few. This report describes CO2-bearing saline fluid inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The fluid inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests hydration of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline fluids. Dehydration and decarbonation take place, and seawater-like saline fluids migrate from the subducting slab to the mantle wedge. The presence of saline fluids is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.

  1. Subduction initiation close to the continental margin? Implications from U-Pb zircon geochronology of the Pιnarbaşι metamorphic sole, central Turkey

    Science.gov (United States)

    Peters, Kalijn; van Hinsbergen, Douwe J. J.; Corfu, Fernando; Gurer, Derya; Brouwer, Fraukje M.; van Roermund, Herman L. M.

    2017-04-01

    Metamorphic soles below ophiolites record high (up to 850°C) metamorphic temperatures at pressures up to 10-15 kbar uncommon in normal subduction zones. They are therefore interpreted to form during intra-oceanic subduction initiation at locations within ocean basins where high temperatures exist at relatively shallow depths, i.e. in the vicinity of mid-ocean ridges. The Pιnarbaşι metamorphic sole in Turkey is a particularly well-preserved example and consists of a sequence a few hundred meters thick of strongly foliated metabasites and pelagic sediments. The sole structurally overlies a serpentinite-hosted tectonic mélange, and underlies the mantle section of the supra-subduction zone Pιnarbaşι ophiolite. The sole rocks preserve an inverted metamorphic field gradient with garnet-clinopyroxene-amphibolites at the top and greenschists at the contact with the underlying tectonic mélange. The Pιnarbaşι sole thus fits well in the general tectonostratigraphy and metamorphic facies of soles worldwide, generally interpreted to represent the top of a nascent intra-oceanic subducting slab that accreted to the base of the hot overriding oceanic plate. This implies that the metamorphic sole could yield constraints on the initiation of subduction in an oceanic domain, something that is not yet well understood. One of the remaining questions is: did subduction start at, close to or further away from the mid oceanic ridge? The age of metamorphic soles has commonly been dated by 40Ar/39Ar chronology. Across Turkey, soles consistently provide Ar-Ar ages of 94-91 Ma, interpreted as cooling of the soles during exhumation and subduction zone maturation. In the top of the metamorphic sole of the Pιnarbaşι ophiolite we found zircon which indicate a preliminary U-Pb ID-TIMS age in the comparable range of 94 - 91 Ma, which we interpreted as the age of peak metamorphism in the garnet-clinopyroxene amphibolites. Surprisingly, the zircon grains also include inherited cores

  2. Long term (since the late palaeogene) tectono-sedimentary evolution of the Lesser Antilles fore-arc at Marie-Galante Basin: a clue for geodynamical behavior at the subduction interfac

    Science.gov (United States)

    Jean-Frederic, L.; DeMin, L.; Garrigou, J.; Münch, P.; Léticée, J. L.; Cornée, J. J.

    2015-12-01

    Oblique subduction of late cretaceous lithosphere of the Atlantic ocean beneath the thick (25km) crust of the Caribbean plate results in widespread deformation and vertical motions in the Lesser Antilles fore-arc. The present-day deformation includes a major transtensive left lateral fault system along the arc and several forearc transverse basins accommodating lengthening of the fore-arc northward. These deformations result from plate motion partitioning under increasing subduction obliquity from the Marie-Galante Basin (MGB) latitude (central Lesser Antilles) northward. Vertical motions in the fore-arc at a regional scale were interpreted as resulting from the effect of subducting ridges and reliefs. The present day uplift of the fore-arc islands acting since the late(?) Pleistocene is believed to attest for long wavelength bending of the plate under strongly coupled plate interface. Recent GPS data suggests a mostly uncoupled plate interface. To decipher between the models and to understand the long-term evolution of the Lesser Antilles forearc since the Late Palaeogene, we interpret high-resolution bathymetric and seismic data from the MGB, together with the onland geology of shallow water carbonate platforms. The tectonic pattern reveals both inherited and late Neogene structures (re)activated under multidirectional extensive tectonic. The sismo-stratigraphic interpretation of sedimentary deposit displays long-term drowning and flexing of the upper plate similar to that occurring under intensive tectonic erosion at the subduction interface. Several short term period of second order uplift can correlate with sweeping of subducting ridges or transient events at the plate interface. The evolution of the Lesser Antilles fore-arc since the Late Palaeogene is interpreted within the regional geodynamical evolution of the plate boundary following its last major reorganization: collision of the Bahamas Bank and inception of the Greater Antilles strike-slip fault zone.

  3. Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data

    Science.gov (United States)

    Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi

    2017-10-01

    The characteristics of the oceanic Moho are known to depend on various factors, such as seafloor spreading rate, crustal age, and accretionary processes at a ridge. However, the effect of local magmatic activities on the seismic signature of the Moho is poorly understood. Here an active-source reflection and refraction survey is used to investigate crustal structure and Moho characteristics along a >1000-km-long profile southeast of the Shatsky Rise in a Pacific Ocean basin formed from the Late Jurassic to Early Cretaceous and spanning the onset of Shatsky Rise volcanism. Although the seismic velocity structure estimated from the refraction data showed typical characteristics of the oceanic crust of the old Pacific plate, the appearance of the Moho reflections was spatially variable. We observed clear Moho reflections such as those to be expected where the spreading rate is fast to intermediate only at the southwestern end of the profile, whereas Moho reflections were diffuse, weak, or absent along other parts of the profile. The poor Moho reflections can be explained by the presence of a thick crust-mantle transition layer, which is temporally coincident with the formation of the Shatsky Rise. We inferred that the crust-mantle transition layer was formed by changes in on-axis accretion process or modification of the primary Moho by off-axis magmatism, induced by magmatic activity of the Shatsky Rise.

  4. 3-D imaging of two episodes of Hikurangi Plateau subduction in the southern South Island of New Zealand

    Science.gov (United States)

    Eberhart-Phillips, D. M.; Reyners, M.; Upton, P.; Gubbins, D.

    2016-12-01

    The Hikurangi Plateau (originally part of the Ontong Java large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 108-105 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We have investigated the southern limit of this subducted plateau by supplementing the sparse GeoNet permanent seismograph network in the southeastern South Island with a forty-station broadband portable seismograph network. We have then used local earthquake tomography to determine detailed 3-D Vp and Vp/Vs structure in the southern South Island. We track a region of Vp 8.5 km/s (which has previously been associated with an eclogite layer at the base of the Hikurangi Plateau from studies in the North Island) across most of the southwestern South Island. Its southeastern edge runs diagonally from near Christchurch to northern Fiordland. It dips both to the northwest and the southwest, and impacts the subducted Australian plate in northern Fiordland, where it currently bends the subducted Australian slab to vertical. The plateau and its leading oceanic crust are distinguished by low Vp/Vs, consistent with extensive dehydration of the thick (ca. 35 km), buoyant plateau during ca. 500 km of flat subduction at the Gondwana margin. The plateau is also revealed by dipping zones of relocated earthquakes. The backstop of Gondwana subduction appears to be the ophiolitic Maitai terrane, which extends through the crust and forms the trenchward boundary of the ca. 60-65 km-thick Median Batholith. We image the low Vp crustal root associated with orogeny at the Gondwana margin in the southeastern South Island, as well as the crustal root resulting from the current convergent episode in the western South Island. The shapes of both crustal roots are controlled by the Hikurangi Plateau.

  5. Creep of phyllosilicates at the onset of plate tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Amiguet, Elodie; Reynard, Bruno; Caracas, Razvan; Van de Moortele, Bertrand; Hilairet, Nadege; Wang, Yanbin (ENSL); (UC)

    2012-10-24

    Plate tectonics is the unifying paradigm of geodynamics yet the mechanisms and causes of its initiation remain controversial. Some models suggest that plate tectonics initiates when the strength of lithosphere is lower than 20-200 MPa, below the frictional strength of lithospheric rocks (>700 MPa). At present-day, major plate boundaries such as the subduction interface, transform faults, and extensional faults at mid-oceanic ridge core complexes indicate a transition from brittle behaviour to stable sliding at depths between 10 and 40 km, in association with water-rock interactions forming phyllosilicates. We explored the rheological behaviour of lizardite, an archetypal phyllosilicate of the serpentine group formed in oceanic and subduction contexts, and its potential influence on weakening of the lithospheric faults and shear zones. High-pressure deformation experiments were carried out on polycrystalline lizardite - the low temperature serpentine variety - using a D-DIA apparatus at a variety of pressure and temperature conditions from 1 to 8 GPa and 150 to 400 C and for strain rates between 10{sup -4} and 10{sup -6} s{sup -1}. Recovered samples show plastic deformation features and no evidence of brittle failure. Lizardite has a large rheological anisotropy, comparable to that observed in the micas. Mechanical results and first-principles calculations confirmed easy gliding on lizardite basal plane and show that the flow stress of phyllosilicate is in the range of the critical value of 20-200 MPa down to depths of about 200 km. Thus, foliated serpentine or chlorite-bearing rocks are sufficiently weak to account for plate tectonics initiation, aseismic sliding on the subduction interface below the seismogenic zone, and weakening of the oceanic lithosphere along hydrothermally altered fault zones. Serpentinisation easing the deformation of the early crust and shallow mantle reinforces the idea of a close link between the occurrence of plate tectonics and water at

  6. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities.

    Science.gov (United States)

    Müller, R Dietmar; Dutkiewicz, Adriana

    2018-02-01

    Atmospheric carbon dioxide (CO 2 ) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. The vast oceanic crustal carbon reservoir is an alternative potential driving force of climate fluctuations at these time scales, with hydrothermal crustal carbon uptake occurring mostly in young crust with a strong dependence on ocean bottom water temperature. We combine a global plate model and oceanic paleo-age grids with estimates of paleo-ocean bottom water temperatures to track the evolution of the oceanic crustal carbon reservoir over the past 230 My. We show that seafloor spreading rates as well as the storage, subduction, and emission of oceanic crustal and mantle CO 2 fluctuate with a period of 26 My. A connection with seafloor spreading rates and equivalent cycles in subduction zone rollback suggests that these periodicities are driven by the dynamics of subduction zone migration. The oceanic crust-mantle carbon cycle is thus a previously overlooked mechanism that connects plate tectonic pulsing with fluctuations in atmospheric carbon and surface environments.

  7. Intrinsic and Extrinsic Factors in Subduction Dynamics

    Science.gov (United States)

    Billen, Magali; Arredondo, Katrina

    2014-05-01

    Since the realization that tectonic plates sink into the mantle, in a process we now call subduction, our understanding of this process has improved dramatically through the combined application of observations, theory and modeling. During that time independent research groups focusing on different aspects of subduction have identified factors with a significant impact on subduction, such as three-dimensionality, slab rollback, rheology of the slab and mantle and magnitude of phase changes. However, as each group makes progress we often wonder how these different factors interact as we all strive to understand the real world subduction system. These factors can be divided in two groups: intrinsic factors, including the age of the slab, its thermal structure, composition, and rheology, and extrinsic factors including others forces on plates, overall mantle flow, structure of the overriding plate, rheology of the mantle and phase changes. In addition, while modeling has been a powerful tool for understanding subduction, all models make important (but often necessary) approximations, such as using two dimensions, imposed boundary conditions, and approximations of the conservation equations and material properties. Here we present results of a study in which the "training wheels" are systematically removed from 2D models of subduction to build a more realistic model of subduction and to better understand how combined effects of intrinsic and extrinsic factors contribute to the dynamics. We find that a change from the Boussinesq to the extended Boussinesq form of the conservation equations has a dramatic effect on slab evolution in particular when phase changes are included. Allowing for free (dynamically-driven) subduction and trench motion is numerically challenging, but also an important factor that allows for more direct comparison to observations of plate kinematics. Finally, compositional layering of the slab and compositionally-controlled phase changes also have

  8. The Coupling of Back-arc Extension, Extrusion and Subduction Dynamics in the Eastern Mediterranean

    Science.gov (United States)

    Capitanio, Fabio A.

    2017-04-01

    Extension in the Aegean Sea and lateral Anatolian extrusion are contrasting and seemingly unrelated examples of continental tectonics In the Eastern Mediterranean. It is acknowledged that these must reconcile with the dynamics of Tethys closure and following continental collision along the convergent margin, however the underlying mechanisms have been difficult to pinpoint, thus far. Three-dimensional numerical modelling of the dynamics of subduction and coupling with the mantle and upper plates allows probing the evolution of similar areas, supporting inferences on the ultimate causes for the continental tectonics. I will present models that reproduce the force balance of subducting slabs' buoyancy, mantle flow and upper plate interiors, and emphasise the role of perturbations in the force balance that may have followed slab breakoff, collision and trench land-locking reconstructed during the oceanic closure in the Eastern Mediterranean. These perturbations lead to a range of different margin motions and strain regimes in the upper plate, from rollback and back-arc spreading, to indentation and extrusion along the collisional margin. Different spatial and temporal fingerprints are illustrated for these processes, and while the trench rollback and back-arc spreading are rather stable features, extrusion is transient. When these regimes overlap, rapid and complex rearrangements of the tectonics in the upper plate are the result. The remarkable similarity between the models' and the Eastern Mediterranean tectonic regimes and geophysical observable allows proposing viable driving mechanisms and support inferences on the Miocene-to-Pliocene evolution of this puzzling area.

  9. 3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone

    Science.gov (United States)

    Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.

    2016-12-01

    We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.

  10. Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone

    Science.gov (United States)

    Yamamoto, Yojiro; Obana, Koichiro; Takahashi, Tsutomu; Nakanishi, Ayako; Kodaira, Shuichi; Kaneda, Yoshiyuki

    2013-03-01

    We performed 3D seismic tomography of the Hyuga-nada region, western Nankai subduction zone, to investigate the relationship of the subducted part of Kyushu-Palau Ridge (KPR) to coseismic rupture propagation, seismicity, and shallow very low frequency earthquakes. Combining active-source and passive-source data recorded both onshore and offshore, we imaged the deep slab from near the trough axis to the coastal area. Our results show the subducted KPR as a low-velocity belt oriented NW-SE extending down the plate boundary to around 30 km depth. At this depth, we suggest that the subducted KPR detaches from the slab and becomes underplated on the overriding continental plate. As the coseismic slip areas of past large earthquakes do not extend into the subducted KPR, we suggest that it may inhibit rupture propagation. The interior of the subducted KPR shows active intraslab seismicity with a wide depth distribution. Shallow very low frequency earthquakes are continuously active above the location of the subducted KPR, whereas they are intermittent to the northeast of the subducted KPR. Thus, the subducted KPR appears to be an important factor in coseismic rupture propagation and seismic phenomena in this region.

  11. How mantle slabs drive plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-04

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  12. Oceanic residual depth measurements, the plate cooling model, and global dynamic topography

    Science.gov (United States)

    Hoggard, Mark J.; Winterbourne, Jeff; Czarnota, Karol; White, Nicky

    2017-03-01

    Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1936 seismic surveys located on oceanic crust and generate 2297 spot measurements of residual topography, including 1161 with crustal corrections. The resultant anomalies have amplitudes of ±1 km and wavelengths of ˜1000 km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e., wavelengths down to 1300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.

  13. Evolution of the Archaean crust by delamination and shallow subduction.

    Science.gov (United States)

    Foley, Stephen F; Buhre, Stephan; Jacob, Dorrit E

    2003-01-16

    The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle. The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.

  14. Mantle Flow and Melting Beneath Young Oceanic Lithosphere: Seismic Studies of the Galapagos Archipelago and the Juan de Fuca Plate

    Science.gov (United States)

    Byrnes, Joseph Stephen

    In this dissertation, I use seismic imaging techniques to constrain the physical state of the upper mantle beneath regions of young oceanic lithosphere. Mantle convection is investigated beneath the Galapagos Archipelago and then beneath the Juan de Fuca (JdF) plate, with a focus on the JdF and Gorda Ridges before turning to the off-axis asthenosphere. In the Galapagos Archipelago, S-to-p receiver functions reveal a discontinuity in seismic velocity that is attributed to the dehydration of the upper mantle. The depth at which dehydration occurs is shown to be consistent with prior constraints on mantle temperature. A comparison between results from receiver functions, seismic tomography and petrology shows that mantle upwelling and melt generation occur shallower than the depth of the discontinuity, despite the expectation of high viscosities in the dehydrated layer. Beneath the JdF and Gorda Ridge, low Vs anomalies are too large to be explained by the cooling of the lithosphere and are attributed to partial melt. The asymmetry, large Vs gradients, and sinuosity of the anomalies beneath the JdF Ridge are consistent with models of buoyancy-driven upwelling. However, deformation zone processes appear to dominate mantle flow over seafloor spreading beneath the Explorer and Gorda diffuse plate boundaries. Finally, S-to-p receiver functions reveal a seismic discontinuity beneath the JdF plate that can only be attributed to seismic anisotropy. Synthesis of the receiver function results with prior SKS splitting results requires heterogeneous anisotropy between the crust and the discontinuity. Models of anisotropy feature increasing anisotropy before the decrease at the discontinuity, but well below the base of the lithosphere, and a clockwise rotation of the fast direction with increasing depth. In these results and even in the SKS splitting results, additional driving mechanisms for mantle flow such as density or pressure anomalies are required.

  15. A Plate Tectonic Model for the Neoproterozoic with Evolving Plate Boundaries

    Science.gov (United States)

    Merdith, Andrew; Collins, Alan; Williams, Simon; Pisarevsky, Sergei; Müller, Dietmar

    2017-04-01

    The Neoproterozoic was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana, during which, the planet experienced large climatic variations and the emergence of complex life. Here we present a topological plate model of the Neoproterozoic based on a synthesis of available geological and palaeomagnetic data. Subduction zones, which are well preserved in the geological record, are used as a proxy for convergent margins; evidence for mid-ocean ridges and transform motion is less clearly preserved, though passive margins are used as a proxy for spreading centres, and evidence for strike-slip motions are used to model transform boundaries. We find that the model presented here only predicts 70% of the total length of subduction active today, though it models similar lengths of both transform and divergent boundaries, suggesting that we have produced a conservative model and are probably underestimating the amount of subduction. Where evidence for convergent, divergent or transform motion is not preserved, we interpret the locations of plate boundaries based on the relative motions of cratonic crust as suggested through either palaeomagnetic data or the geological record. Using GPlates, we tie these boundaries together to generate a plate model that depicts the motion of tectonic plates through the Neoproterozoic. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, but tie them together due to similar Tonian aged accretionary patterns along their respective (present-day) north-western and northern margins, such that these two cratons act as a "lonely wanderer" for much of the Neoproterozoic, and form their own tectonic plate. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive

  16. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  17. The role of farfield tectonic stress in oceanic intraplate deformation, Gulf of Alaska

    Science.gov (United States)

    Reece, Robert S.; Gulick, Sean P. S.; Christesen, Gail L.; Horton, Brian K.; VanAvendonk, Harm J.; Barth, Ginger

    2013-01-01

    An integration of geophysical data from the Pacific Plate reveals plate bending anomalies, massive intraplate shearing and deformation, and a lack of oceanic crust magnetic lineaments in different regions across the Gulf of Alaska. We argue that farfield stress from the Yakutat Terrane collision with North America is the major driver for these unusual features. Similar plate motion vectors indicate that the Pacific plate and Yakutat Terrane are largely coupled along their boundary, the Transition Fault, with minimal translation. Our study shows that the Pacific Plate subduction angle shallows toward the Yakutat Terrane and supports the theory that the Pacific Plate and Yakutat Terranemaintain coupling along the subducted region of the Transition Fault. We argue that the outboard transfer of collisional stress to the Pacific Plate could have resulted in significant strain in the NE corner of the Pacific Plate, which created pathways for igneous sill formation just above the Pacific Plate crust in the Surveyor Fan. A shift in Pacific Plate motion during the late Miocene altered the Yakutat collision with North America, changing the stress transfer regime and potentially terminating associated strain in the NE corner of the Pacific Plate. The collision further intensified as the thickest portion of the Yakutat Terrane began to subduct during the Pleistocene, possibly providing the impetus for the creation of the Gulf of Alaska Shear Zone, a>200 km zone of intraplate strike-slip faults that extend from the Transition Fault out into the Pacific Plate. This study highlights the importance of farfield stress from complex tectonic regimes in consideration of large-scale oceanic intraplate deformation.

  18. Crustal Gravitational Potential Energy Change and Subduction Earthquakes

    Science.gov (United States)

    Zhu, P. P.

    2017-05-01

    Crustal gravitational potential energy (GPE) change induced by earthquakes is an important subject in geophysics and seismology. For the past forty years the research on this subject stayed in the stage of qualitative estimate. In recent few years the 3D dynamic faulting theory provided a quantitative solution of this subject. The theory deduced a quantitative calculating formula for the crustal GPE change using the mathematic method of tensor analysis under the principal stresses system. This formula contains only the vertical principal stress, rupture area, slip, dip, and rake; it does not include the horizontal principal stresses. It is just involved in simple mathematical operations and does not hold complicated surface or volume integrals. Moreover, the hanging wall vertical moving (up or down) height has a very simple expression containing only slip, dip, and rake. The above results are significant to investigate crustal GPE change. Commonly, the vertical principal stress is related to the gravitational field, substituting the relationship between the vertical principal stress and gravitational force into the above formula yields an alternative formula of crustal GPE change. The alternative formula indicates that even with lack of in situ borehole measured stress data, scientists can still quantitatively calculate crustal GPE change. The 3D dynamic faulting theory can be used for research on continental fault earthquakes; it also can be applied to investigate subduction earthquakes between oceanic and continental plates. Subduction earthquakes hold three types: (a) crust only on the vertical up side of the rupture area; (b) crust and seawater both on the vertical up side of the rupture area; (c) crust only on the vertical up side of the partial rupture area, and crust and seawater both on the vertical up side of the remaining rupture area. For each type we provide its quantitative formula of the crustal GPE change. We also establish a simplified model (called

  19. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden

    2013-07-01

    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  20. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  1. Plate tectonics in the late Paleozoic

    Directory of Open Access Journals (Sweden)

    Mathew Domeier

    2014-05-01

    Full Text Available As the chronicle of plate motions through time, paleogeography is fundamental to our understanding of plate tectonics and its role in shaping the geology of the present-day. To properly appreciate the history of tectonics—and its influence on the deep Earth and climate—it is imperative to seek an accurate and global model of paleogeography. However, owing to the incessant loss of oceanic lithosphere through subduction, the paleogeographic reconstruction of ‘full-plates’ (including oceanic lithosphere becomes increasingly challenging with age. Prior to 150 Ma ∼60% of the lithosphere is missing and reconstructions are developed without explicit regard for oceanic lithosphere or plate tectonic principles; in effect, reflecting the earlier mobilistic paradigm of continental drift. Although these ‘continental’ reconstructions have been immensely useful, the next-generation of mantle models requires global plate kinematic descriptions with full-plate reconstructions. Moreover, in disregarding (or only loosely applying plate tectonic rules, continental reconstructions fail to take advantage of a wealth of additional information in the form of practical constraints. Following a series of new developments, both in geodynamic theory and analytical tools, it is now feasible to construct full-plate models that lend themselves to testing by the wider Earth-science community. Such a model is presented here for the late Paleozoic (410–250 Ma together with a review of the underlying data. Although we expect this model to be particularly useful for numerical mantle modeling, we hope that it will also serve as a general framework for understanding late Paleozoic tectonics, one on which future improvements can be built and further tested.

  2. Is the Vincent fault in southern California the Laramide subduction zone megathrust?

    Science.gov (United States)

    Xia, H.; Platt, J. P.

    2016-12-01

    The Vincent fault (VF) in the San Gabriel Mountains, southern California separates a Meso-Proterozoic gneiss complex and Mesozoic granitoid rocks in the upper plate from the ocean-affiliated Late Cretaceous Pelona schist in the lower plate, and it has been widely interpreted as the original Laramide subduction megathrust. A 500 to 1000 m thick mylonite zone, consisting of a low-stress (LS) section at the bottom, a high-stress (HS) section at the top, and a weakly deformed section in between, is developed above the VF. Our kinematic, thermobarometric and geochronological analysis of the mylonite zone indicates that the VF is a normal fault. Shear sense indicators including asymmetric porphyroblasts, quartz new grain fabric, mineral fish, and quartz CPO from the HS and the LS sections exhibit a top-to-SE sense of shear on the SW-dipping mylonitic foliation, which is contrary to what one would expect for the Laramide subduction megathrust. A few samples from the LS section were overprinted by HS microstructure, implying that the LS mylonites predate the HS mylonites. TitaniQ thermometer and Si-in-muscovite barometer show that the P-T conditions are 389 ± 6 °C, 5 kbar for the LS mylonites and 329 ± 6 °C, 2.4 kbar for HS mylonites. Considering the temporal sequence of HS and LS mylonites, they are likely to be formed during exhumation. A comparison with the lower plate leads to the same conclusion. The top 80-100 m of the Pelona schist underneath the VF is folded and also mylonitized, forming the Narrows synform and S3 simultaneously. Our previous study found that S3 of the Pelona schist has a top-to-SE sense of shear and similar P-T conditions as the LS mylonite in the upper plate, so S3 of the Pelona schist is likely to be formed together with the LS mylonites in the upper plate. While mylonitization of Pelona schist (S3) overprinted both the subduction-related S1 fabric and the return-flow-related S2 fabric, it is reasonable to argue that the mylonite zone above

  3. Neoarchean Subduction Recorded in the Northern Margin of the Yangtze Craton, South China

    Science.gov (United States)

    Zhang, S. B.; Zheng, Y. F.

    2016-12-01

    The Neoarchean is an important era during which plate tectonics began to operate widely on the earth and the continental crust compositions changed dramatically. However, reliable record of plate subduction has never been reported yet in the Yangtze Craton. Here we report geochemical studies on gneissic tonalite, trondhjemite and amphibolite in the Yudongzi Complex in the northern margin of the Yangtze Craton, which suggests that there is a plate subduction recorded in this area at about 2.7 Ga.The rocks in the Yudongzi Complex are gneissic granite, gneissic tonalite, amphibolite gneiss and magnetite quartzite. Most rocks are enriched in sodic. The gneissic granites show positive Eu anomalies, high (La/Yb)cn and Sr/Y ratios, low Ybcn and Y, resembling typical TTG. The amphibolite and tonalite gneiss show less fractionated REE patterns. SHRIMP zircon U-Pb dating on one gneissic trondhjemite, one amphibolite and one tonalite gave crystallization ages of 2667±21 Ma, 2701±10 Ma and 2697±9 Ma, respectively. They all recorded a metamorphic event at about 2.48 Ga. The SHRIMP zircon oxygen isotope analysis for a trondhjemite and an amphibolite gave δ18O values of 6.2±0.3‰ and 6.3±0.4‰, respectively. The oxygen isotope ratios higher than normal mantle values suggest a source experienced low temperature alteration. The laser fluoration analysis of bulk minerals gave δ18O values of 6.4-8.8‰ for zircon and 12.5-15.2‰ for quartz. The zircon Lu-Hf isotope analysis on the trondhjemite and amphibolite gave similar ɛHf(t) values of 0.08±0.48 and 0.07±0.63, respectively. Whole-rock ɛNd(t) values range from -1.5 to +1.0. These trondhjemite and tonalite can be interpreted as derivation from partial melting of subducted oceanic slab with a garnet-amphibolite residue.Considering the 2.67 Ga A-type granitic rocks at Huji in the interior of the craton, plate subduction took place in the northern edge of the Yangtze Craton. The Yudongzi trondhjemite and tonalite were

  4. An updated digital model of plate boundaries

    Science.gov (United States)

    Bird, Peter

    2003-03-01

    A global set of present plate boundaries on the Earth is presented in digital form. Most come from sources in the literature. A few boundaries are newly interpreted from topography, volcanism, and/or seismicity, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and/or geodesy. In addition to the 14 large plates whose motion was described by the NUVEL-1A poles (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Pacific, Philippine Sea, South America), model PB2002 includes 38 small plates (Okhotsk, Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head, Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea, Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo'ou, Tonga, Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano, Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps-Persia-Tibet mountain belt, the Philippine Islands, the Peruvian Andes, the Sierras Pampeanas, or the California-Nevada zone of dextral transtension into plates; instead, they are designated as "orogens" in which this plate model is not expected to be accurate. The cumulative-number/area distribution for this model follows a power law for plates with areas between 0.002 and 1 steradian. Departure from this scaling at the small-plate end suggests that future work is very likely to define more very small plates within the orogens. The model is presented in four digital files: a set of plate boundary segments; a set of plate outlines; a set of outlines of the orogens; and a table of characteristics of each digitization step along plate boundaries, including estimated relative velocity vector and classification into one of 7 types (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge

  5. Decrease in oceanic crustal thickness since the breakup of Pangaea

    Science.gov (United States)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  6. Modelling the interplate domain in thermo-mechanical simulations of subduction: Critical effects of resolution and rheology, and consequences on wet mantle melting

    Science.gov (United States)

    Arcay, Diane

    2017-08-01

    The present study aims at better deciphering the different mechanisms involved in the functioning of the subduction interplate. A 2D thermo-mechanical model is used to simulate a subduction channel, made of oceanic crust, free to evolve. Convergence at constant rate is imposed under a 100 km thick upper plate. Pseudo-brittle and non-Newtonian behaviours are modelled. The influence of the subduction channel strength, parameterized by the difference in activation energy between crust and mantle (ΔEa) is investigated to examine in detail the variations in depth of the subduction plane down-dip extent, zcoup . First, simulations show that numerical resolution may be responsible for an artificial and significant shallowing of zcoup if the weak crustal layer is not correctly resolved. Second, if the age of the subducting plate is 100 Myr, subduction occurs for any ΔEa . The stiffer the crust is, that is, the lower ΔEa is, the shallower zcoup is (60 km depth if ΔEa = 20 kJ/mol) and the hotter the fore-arc base is. Conversely, imposing a very weak subduction channel (ΔEa > 135 J/mol) leads there to an extreme mantle wedge cooling and inhibits mantle melting in wet conditions. Partial kinematic coupling at the fore-arc base occurs if ΔEa = 145 kJ/mol. If the incoming plate is 20 Myr old, subduction can occur under the conditions that the crust is either stiff and denser than the mantle, or weak and buoyant. In the latter condition, cold crust plumes rise from the subduction channel and ascend through the upper lithosphere, triggering (1) partial kinematic coupling under the fore-arc, (2) fore-arc lithosphere cooling, and (3) partial or complete hindrance of wet mantle melting. zcoup then ranges from 50 to more than 250 km depth and is time-dependent if crust plumes form. Finally, subduction plane dynamics is intimately linked to the regime of subduction-induced corner flow. Two different intervals of ΔEa are underlined: 80-120 kJ/mol to reproduce the range of slab

  7. First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique

    Science.gov (United States)

    Tomita, Fumiaki; Kido, Motoyuki; Osada, Yukihito; Hino, Ryota; Ohta, Yusaku; Iinuma, Takeshi

    2015-10-01

    The subduction rate of an oceanic plate may accelerate after large earthquakes rupture the interplate coupling between the oceanic and overriding continental plates. To better understand postseismic deformation processes in an incoming oceanic plate, we directly measured the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using a GPS/acoustic technique over a period of 2 years (September 2012 to September 2014). The displacement rate was measured to be 18.0 ± 4.5 cm yr-1 (N302.0°E) relative to the North American Plate, which is almost twice as fast as the predicted interseismic plate motion. Because the sum of steady plate motion and viscoelastic response to the Tohoku-Oki earthquake roughly accounts for the observed displacement rate, we conclude that viscoelastic relaxation is the primary mechanism responsible for postseismic deformation of the Pacific Plate and that significant subduction acceleration did not occur at least not during the observation period.

  8. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch

    2004-05-15

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  9. Ablative subduction - A two-sided alternative to the conventional subduction model

    Science.gov (United States)

    Tao, Winston C.; O'Connell, Richard J.

    1992-01-01

    The plausibility of a two-sided fluid-based model of lithospheric subduction that is based upon current views of lithospheric structure is examined. In this model the viscous lower lithosphere flows downward, and the brittle upper lithosphere deforms in passive response. This process is potentially double-sided, since it is found that even a buoyant plate can be dragged downward by a dense descending neighbor. Thus an apparent overriding plate may be worn away by a process of viscous ablation, with the rate of ablation a function of plate buoyancy. This process, called 'ablative subduction,' makes it possible to simply interpret observations concerning slab profiles, interplate seismicity, back arc tectonics, and complex processes such as double subduction and subduction polarity reversal. When experiments modeling the evolution of simple fluid 'slabs' are performed, slab profile is found to be strongly influenced by ablation in the overriding plate. When ablation is weak, as when a buoyant continent borders the trench, deformable slabs adopt shallow Andean-style profiles.

  10. Splay fault branching along the Nankai subduction zone.

    Science.gov (United States)

    Park, Jin-Oh; Tsuru, Tetsuro; Kodaira, Shuichi; Cummins, Phil R; Kaneda, Yoshiyuki

    2002-08-16

    Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.

  11. Seamount subduction at the North-Ecuadorian convergent margin: Effects on structures, inter-seismic coupling and seismogenesis

    Science.gov (United States)

    Marcaillou, Boris; Collot, Jean-Yves; Ribodetti, Alessandra; d'Acremont, Elia; Mahamat, Ammy-Adoum; Alvarado, Alexandra

    2016-01-01

    At the North-Ecuadorian convergent margin (1°S-1.5°N), the subduction of the rough Nazca oceanic plate leads to tectonic erosion of the upper plate and complex seismogenic behavior of the megathrust. We used three selected pre-stack depth migrated, multi-channel seismic reflection lines collected during the SISTEUR cruise to investigate the margin structure and decipher the impact of the subducted Atacames seamounts on tectonic erosion, interseismic coupling, and seismogenesis in the region of the 1942 Mw7.8 earthquake. This dataset highlights a subducted ∼ 30 × 40 km, double-peak seamount that belongs to the Atacames seamount chain and that is associated with a deep morphologic re-entrant containing mass transport deposits. The seamount subduction uplifted the margin basement by ∼1.6 km and pervasively broke the margin by deep and intense reverse faulting ahead of the seamount, a process that is likely to weaken considerably the margin. In the seamount wake, the basement reverse fault system rotated counter-clockwise. This faulted basement is overlain with slope sediment sliding along listric normal faults that sole out onto the BSR. This superposition of deep tectonic contraction within the basement and shallow gravitational extension deformation within the sediment highlights the key role of gas hydrate on outer slope erosion. In addition to long-term regional basal erosion, the margin basement has thinned locally by an extra 0.8-1 km in response to the subduction of the Atacames seamount chain and hydrofracturing by overpressured fluids at the margin toe. This pervasively and deeply fractured margin segment is associated with a seismically quiet and GPS-modeled low interseismic coupling corridor that terminates downdip near the 1942 epicenter and locked zone. We suggest that the deeply buried double-peak Atacames seamount triggered the 1942 earthquake ahead of its leading flank. This result supports previous studies proposing that subducted seamounts

  12. Rheological property of mafic schist and geological interpretation to the subduction dynamics

    Science.gov (United States)

    Okazaki, K.; Hirth, G.

    2013-12-01

    To understand the spatial and temporal distribution of deformation (e.g., underplating and exhumation of metamorphic rocks) and earthquakes in subduction zones, it is important to constrain the rheological properties of metamorphic rocks (i.e., altered oceanic crust and sediments), and how they evolve during metamorphic reactions following hydration, carbonation and dehydration of the down-going slab. Metamorphism of oceanic crust has stimulated hypotheses on the relationship between intra-slab earthquakes and slab-wedge coupling along plate boundaries in subduction zone. While it is well known that metamorphisms have important effects on material circulation and arc volcanisms at subduction system, it remains unclear how the formation of metamorphic minerals followed by fluid release on the subduction dynamics influences rheology. Past experimental studies on mafic metamorphic rocks were mostly concentrated on phase equilibrium of mineral, thus there are very few reports on the mechanical data for these metamorphic rocks. We conducted triaxial deformation experiments on a mafic greenschist using Griggs-type solid pressure-medium apparatus installed in Brown University. Mafic schist (chlorite - amphibole - epidote - albite schist) containing calcite and quartz veins from Sambagawa metamorphic belt (Japan), which is metamorphosed at the condition of nearly the corner of mantle wedge in hot subduction (1 GPa of pressure and 520C of temperature), was used as experimental samples for typical metamorphic rocks composing oceanic crust in warm subduction zones. Constant strain rete experiments and strain rate step experiment were conducted at 1.0 GPa of confining pressure, 400 ~ 500C of temperature and 10-5 ~ 5×10-7 1/s of strain rate. At stable conditions of samples (1 GPa of confining pressure and 400 and 500C of temperature), differential stresses were higher than 1 GPa. Microstructure of recovered samples showed backing and several localized shear zones. Although

  13. Electrical conductivity imaging in the western Pacific subduction zone

    Science.gov (United States)

    Utada, Hisashi; Baba, Kiyoshi; Shimizu, Hisayoshi

    2010-05-01

    Oceanic plate subduction is an important process for the dynamics and evolution of the Earth's interior, as it is regarded as a typical downward flow of the mantle convection that transports materials from the near surface to the deep mantle. Recent seismological study showed evidence suggesting the transportation of a certain amount of water by subduction of old oceanic plate such as the Pacific plate down to 150-200 km depth into the back arc mantle. However it is not well clarified how deep into the mantle the water can be transported. The electromagnetic induction method to image electrical conductivity distribution is a possible tool to answer this question as it is known to be sensitive to the presence of water. Here we show recent result of observational study from the western Pacific subduction zone to examine the electrical conductivity distribution in the upper mantle and in the mantle transition zone (MTZ), which will provide implications how water distributes in the mantle. We take two kinds of approach for imaging the mantle conductivity, (a) semi-global and (b) regional induction approaches. Result may be summarized as follows: (a) Long (5-30 years) time series records from 8 submarine cables and 13 geomagnetic observatories in the north Pacific region were analyzed and long period magnetotelluric (MT) and geomagnetic deep sounding (GDS) responses were estimated in the period range from 1.7 to 35 days. These frequency dependent response functions were inverted to 3-dimensional conductivity distribution in the depth range between 350 and 850 km. Three major features are suggested in the MTZ depth such as, (1) a high conductivity anomaly beneath the Philippine Sea, (2) a high conductivity anomaly beneath the Hawaiian Islands, and (3) a low conductivity anomaly beneath and in the vicinity of northern Japan. (b) A three-year long deployment of ocean bottom electro-magnetometers (OBEM's) was conducted in the Philippine Sea and west Pacific Ocean from 2005

  14. Plate tectonics, damage and inheritance.

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  15. From subduction to arc-continent collision: Geodynamic modeling of strain partitioning and mountain building in the Indonesia Archipelago

    Science.gov (United States)

    Yang, Y.; Liu, M.; Harris, R.

    2006-12-01

    The arc-continental collision in the eastern Indonesia archipelago began 3-5 million years ago. This process has been continuously building one of the youngest orogenic belts on Earth. Both GPS measurement and geological observation indicated westward weakening of crustal shortening in this region, correlating with the transition from continent-arc collision in the Timor trough to oceanic slab-arc convergence in the Java trench. We have developed a finite element model to investigate how the continent-ocean floor transition on the subducting Australian plate and rheologic heterogeneity of the Sunda region have controlled strain partitioning and mountain building in the overriding plate. To simulate the progressive oblique collision between the Indo- Australian plate and Southeast Asian plate, we constructed the model in 3D with nonlinear viscous rheology that also includes fault zones and rheological heterogeneity in both horizontal and vertical direction. Topographic loading is considered, and tectonic loading is calculated from the velocity boundary condition based on either Nuvel-1A or GPS measurements. Our model showed direct link between plate coupling and crustal shortening in the upper plate. When the coupling is weak, deformation concentrates near the trench. As coupling increases, more plate convergence is accommodated by crustal shorting in the upper plate. The initiation of the continent-arc collision in the eastern Timor could explain the cease of oceanic floor spreading in the south Banda basin and the development of back arc thrust. Slipping of the back arc thrusts played a critical role in uplift and tilting of the upper plate in the double-vergent Timor islands. Within a reasonable range of rheological parameters, our model is able to predict surface velocity, uplift rate, and stress states consistent with the GPS data, geological observation and earthquake mechanism solutions. Results of this model provide some useful insights into the evolution of

  16. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  17. Rapid fore-arc extension and detachment-mode spreading following subduction initiation

    Science.gov (United States)

    Morris, Antony; Anderson, Mark W.; Omer, Ahmed; Maffione, Marco; van Hinsbergen, Douwe J. J.

    2017-11-01

    Most ophiolites have geochemical signatures that indicate formation by suprasubduction seafloor spreading above newly initiated subduction zones, and hence they record fore-arc processes operating following subduction initiation. They are frequently underlain by a metamorphic sole formed at the top of the downgoing plate and accreted below the overlying suprasubduction zone lithosphere immediately following ophiolite formation. Paleomagnetic analyses of ophiolites can provide important insights into the enigmatic geodynamic processes operating in this setting via identification of tectonic rotations related to upper plate extension. Here we present net tectonic rotation results from the Late Cretaceous Mersin ophiolite of southern Turkey that document rapid and progressive rotation of ophiolitic rocks and their associated metamorphic sole. Specifically, we demonstrate that lower crustal cumulate rocks and early dykes intruded into the underlying mantle section have undergone extreme rotation around ridge-parallel, shallowly-plunging axes, consistent with oceanic detachment faulting during spreading. Importantly, later dykes cutting the metamorphic sole experienced rotation around the same axis but with a lower magnitude. We show that these rotations occurred via a common mechanism in a pre-obduction, fore-arc setting, and are best explained by combining (hyper)extension resulting from detachment-mode, amagmatic suprasubduction zone spreading in a fore-arc environment with a recently proposed mechanism for exhumation of metamorphic soles driven by upper plate extension. Available age constraints demonstrate that extreme rotation of these units was accommodated rapidly by these processes over a time period of <∼3 Myr, comparable with rates of rotation seen in oceanic core complexes in the modern oceans.

  18. Shallow and buoyant lithospheric subduction : causes and implications from thermo-chemical numerical modeling

    NARCIS (Netherlands)

    Hunen, Jeroen van

    2001-01-01

    Where two lithospheric plates converge on the Earth, one of them disappears into the mantle. The dominant driving mechanism for plate motion is regarded to be `slab pull': the subducted plate, the slab, exerts a pulling force on the attached plate at the surface. However, what has been puzzling

  19. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods...... is that gradients are extremely sensitive to localized density contrasts within regional geological settings, which makes it ideally suited for detecting subduction zones. Second order gravity gradients of disturbing potential were extracted from global geopotential model, the fifth release GOCE model ‘EGM_TIM_RL05......’. In order to remove the signal which mainly corresponds to the gravity signal of the lower mantle, long wavelength part of the gravity signal was removed up to degree and order 60. Because the areas with notable topography differences coincide with subduction zones, topography correction was also performed...

  20. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  1. Comparing the effects of rheology on the dynamics and topography of 3D subduction-collision models

    Science.gov (United States)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2015-04-01

    Most of the major mountain belts and orogenic plateaus are found within the overlying plate of active or fossil subduction and/or collision zones. It is well known that they evolve differently from one another as the result of specific combinations of surface and mantle processes. The differences among the structures and evolutions of mountain belts arise for several reasons, such as different strengths of materials, different amounts of regional isostatic compensation, and different mechanisms by which forces are applied to the convergence plates. All these possible controlling factors can change with space and time. Of all the mountain belts and orogenic plateaus, the most striking example is the India-Asia collision zone, which gave rise to the Himalayas and the Tibetan Plateau, the largest region of elevated topography and anomalously thick crust on Earth. Understanding the formation and evolution of such a highly elevated region has been the focus of many tectonic and numerical models. While some of these models (i.e. thin sheet model) have successfully illustrated some of the basic physics of continental collision, none can simultaneously represent active processes such as subduction, underthrusting, channel flow or extrusion, for which fully 3D models are required. Here, we employed the 3D code LaMEM to investigate the role that subduction, continental collision and indentation play on lithosphere dynamics at convergent margins, and the implications they have for the Asian tectonics. Our model setup resembles a simplified tectonic map of the India-Asia collision zone and we performed long-term 3D simulations to analyse the dynamics and the conditions under which large topographic plateaus, such as the Tibetan Plateau can form in an integrated lithospheric and upper-mantle scale model. Results of models with linear viscous rheologies show different modes between the oceanic subduction side (continuous subduction, trench retreat and slab roll-back) and the

  2. Mechanical behaviour of the Oman metamorphic sole: rheology of amphibolites at lower crustal conditions during subduction initiation

    Science.gov (United States)

    Soret, Mathieu; Agard, Philippe; Ildefonse, Benoît; Dubacq, Benoît; Prigent, Cécile; Yamato, Philippe

    2017-04-01

    Amphibolites are commonly found in the middle to lower continental crust and along oceanic transform faults and detachments. Amphibolites are also the main component of metamorphic soles beneath highly strained peridotites at the base of large-scale ophiolites as exemplified in Oman. Metamorphic soles are crustal slivers stripped from the slab during early subduction and underplated below the upper plate (future ophiolite) mantle when the subduction interface is still young and warm (i.e. during the first million years -My- of intra-oceanic subduction). Understanding the rheological behaviour of amphibolitic rocks is therefore of major interest to model and quantify deformation and strain localisation in varied geodynamical environments. This contribution focuses on the deformation mechanisms of amphibole through a microstructural and petrological study of garnet-bearing and garnet-free clinopyroxene-bearing amphibolites, using EBSD analysis. The first aim is to test the influence of progres- sive changes in PT conditions during deformation and of the appearance/disappearance of anhydrous minerals (plagioclase, clinopyroxene and garnet) on the mechanical behaviour of mafic amphibolites. The second aim is to track deformation mechanisms during early subduction, through the study of these metamorphosed oceanic rocks, commonly 10-100 m thick, which range from high- to low-grade away from the contact with the peridotites (i.e. from 800 ± 100˚C - 0.9 ± 0.2 GPa to 500 ± 100˚C - 0.5 ± 0.1 GPa) and are essentially mafic at the top). Our study points out the existence of two major steps of deformation in the high-temperature amphibolite slices of the metamorphic soles during the early subdduction dynamics. These two steps witness important mechanical coupling and progressive strain localization at plate interface under cooling and hydrated conditions after subduction initiation. During the accretion of the first slice of metamorphic sole at 850 ± 50˚C (the garnet

  3. Late Jurassic–Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan

    OpenAIRE

    TAKASHIMA, REISHI; NISHI, HIROSHI; YOSHIDA, TAKEYOSHI

    2006-01-01

    The Sorachi Group, composed of Upper Jurassic ophiolite and Lower Cretaceous island-arc volcano-sedimentary cover, provides a record of Late Jurassic–Early Cretaceous sedimentation and volcanism in an island-arc setting off the eastern margin of the Asian continent. Stratigraphic changes in the nature and volume of the Sorachi Group volcanic and volcaniclastic rocks reveal four tectonic stages. These stages resulted from changes in the subduction direction of the Pacific oceanic plate. Stage ...

  4. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    Science.gov (United States)

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  5. Thermal State, Slab Metamorphism, and Interface Seismicity in the Cascadia Subduction Zone Based On 3-D Modeling

    Science.gov (United States)

    Ji, Yingfeng; Yoshioka, Shoichi; Banay, Yuval A.

    2017-09-01

    Giant earthquakes have repeatedly ruptured the Cascadia subduction zone, and similar earthquakes will likely also occur there in the near future. We employ a 3-D time-dependent thermomechanical model that incorporates an up-to-date description of the slab geometry to study the Cascadia subduction thrust. Results show a distinct band of 3-D slab dehydration that extends from Vancouver Island to the Seattle Basin and farther southward to the Klamath Mountains in northern California, where episodic tremors cluster. This distribution appears to include a region of increased dehydration in northern Cascadia. The phenomenon of heterogeneous megathrust seismicity associated with oblique subduction suggests that the presence of fluid-rich interfaces generated by slab dehydration favors megathrust seismogenesis in the northern part of this zone. The thin, relatively weakly metamorphosed Explorer, Juan de Fuca, and Gorda Plates are associated with an anomalous lack of thrust earthquakes, and metamorphism that occurs at temperatures of 500-700°C near the Moho discontinuity may represent a key factor in explaining the presence of the associated episodic tremor and slip (ETS), which requires a young oceanic plate to subduct at a small dip angle, as is the case in Cascadia and southwestern Japan. The 3-D intraslab dehydration distribution suggests that the metamorphosed plate environment is more complex than had previously been believed, despite the existence of channeling vein networks. Slab amphibolization and eclogitization near the continental Moho depth is thus inferred to account for the resultant overpressurization at the interface, facilitating the generation of ETS and the occurrence of small to medium thrust earthquakes beneath Cascadia.

  6. Faulting and hydration of the Juan de Fuca plate system

    Science.gov (United States)

    Nedimović, Mladen R.; Bohnenstiehl, DelWayne R.; Carbotte, Suzanne M.; Pablo Canales, J.; Dziak, Robert P.

    2009-06-01

    Multichannel seismic observations provide the first direct images of crustal scale normal faults within the Juan de Fuca plate system and indicate that brittle deformation extends up to ~ 200 km seaward of the Cascadia trench. Within the sedimentary layering steeply dipping faults are identified by stratigraphic offsets, with maximum throws of 110 ± 10 m found near the trench. Fault throws diminish both upsection and seaward from the trench. Long-term throw rates are estimated to be 13 ± 2 mm/kyr. Faulted offsets within the sedimentary layering are typically linked to larger offset scarps in the basement topography, suggesting reactivation of the normal fault systems formed at the spreading center. Imaged reflections within the gabbroic igneous crust indicate swallowing fault dips at depth. These reflections require local alteration to produce an impedance contrast, indicating that the imaged fault structures provide pathways for fluid transport and hydration. As the depth extent of imaged faulting within this young and sediment insulated oceanic plate is primarily limited to approximately Moho depths, fault-controlled hydration appears to be largely restricted to crustal levels. If dehydration embrittlement is an important mechanism for triggering intermediate-depth earthquakes within the subducting slab, then the limited occurrence rate and magnitude of intraslab seismicity at the Cascadia margin may in part be explained by the limited amount of water imbedded into the uppermost oceanic mantle prior to subduction. The distribution of submarine earthquakes within the Juan de Fuca plate system indicates that propagator wake areas are likely to be more faulted and therefore more hydrated than other parts of this plate system. However, being largely restricted to crustal levels, this localized increase in hydration generally does not appear to have a measurable effect on the intraslab seismicity along most of the subducted propagator wakes at the Cascadia margin.

  7. Current plate motions

    Science.gov (United States)

    Demets, C.; Gordon, R. G.; Argus, D. F.; Stein, S.

    1990-05-01

    A global plate motion model, named NUVEL-1, which describes current plate motions between 12 rigid plates is described, with special attention given to the method, data, and assumptions used. Tectonic implications of the patterns that emerged from the results are discussed. It is shown that wide plate boundary zones can form not only within the continental lithosphere but also within the oceanic lithosphere; e.g., between the Indian and Australian plates and between the North American and South American plates. Results of the model also suggest small but significant diffuse deformation of the oceanic lithosphere, which may be confined to small awkwardly shaped salients of major plates.

  8. Mantle Wedge formation during Subduction Initiation: evidence from the refertilized base of the Oman ophiolitic mantle

    Science.gov (United States)

    Prigent, C.; Guillot, S.; Agard, P.; Godard, M.; Lemarchand, D.; Ulrich, M.

    2015-12-01

    Although the Oman ophiolite is classically regarded as being the direct analog of oceanic lithosphere created at fast spreading ridges, the geodynamic context of its formation is still highly debated. The other alternative end-member model suggests that this ophiolite entirely formed in a supra-subduction zone setting. The latter one is supported by studies on volcanic sequences whereas studies dealing on the mantle section do not involve a significant influence of subduction processes on its structure and composition. We herein focus on basal peridotites from all along the ophiolite strike in order to decipher and characterize potential fluid/melt transfers relate to subduction processes. Samples were taken across the basal banded unit directly overlying the amphibolitic/granulitic metamorphic sole which represents an accreted part of the lower plate. We carried out a petrological, structural and geochemical study on these rocks and their constitutive minerals. Our results show that basal peridotites range from lherzolites to highly depleted harzburgites in composition. Clinopyroxenes (cpx) display melt impregnation textures and co-crystallized with HT/HP amphiboles (amph), spinels and sulfurs. Major and trace elements of the constitutive minerals indicate that these minerals represent trapped incremental partial melt after hydrous melting. Different cpx-bearing lithologies then result from varying degrees of partial melting and melt extraction. Combined with Boron isotopic data, we demonstrate that fluids responsible for hydrous melting of these ophiolitic basal peridotites are subduction-related, most likely derived from dehydration of the metamorphic sole during its formation in subduction initiation. From these observations and thermal constraints, we interpret the occurrence of these basal lherzolites as representing a freezing front developed by thermal re-equilibration (cooling) during subduction processes: subduction-related hydrous partial melts were

  9. Geotectonic Elements, Stuctural Constraints and Current Problems for a Kinematic Reconstruction of the Caribbean Plate Margins during the Cretaceous.

    Science.gov (United States)

    Giunta, G.

    2001-12-01

    In the Caribbean Plate deformed margins are found relics of the Mid to Late Cretaceous eo-Caribbean tectonic phases, indicating the occurrence of sub-continental subduction zones with melange formation, and HP/LT metamorphism of ophiolitic rocks, and two main stages of intraoceanic subductions involving the unthickened proto-Caribbean oceanic lithosphere and/or supra-subduction complexes. These two stages are marked by the occurrence of (a) HP/LT metamorphic ophiolites and volcano-plutonic sequences with island-arc tholeiitic (IAT) or calc-alkaline (CA) affinities; (b) unmetamorphosed tonalitic intrusions of CA affinity below the proto-Caribbean thickened oceanic plateau. Since the Late Cretaceous the kinematics of the Caribbean Plate is closely related to the eastward drifting of the proto-Caribbean oceanic plateau (Colombia and Venezuela Basins) that produced both a diachronous tonalitic magmatism from 85-82 Ma, associated with a westward dipping oblique subduction of the proto-Caribbean-Atlantic ocean floor below the plateau, and an opposite dismembering of subduction complexes, of different ages along an E-W trend (North and South Caribbean Margins). This seems to be the consequence of the eastward shifting of both the northern and southern triple junctions, while allowing further bending of the Aves- Lesser Antilles arc. Moreover, the Caribbean oceanic plateau was trapped by different rotation rates of the Chortis, Chorotega and Choco blocks, during the construction of the western plate margin (Central American Isthmus). The previous Mid-Late Cretaceous eo-Caribbean evolution, correspondent to the beginning of the compressional conditions in Central America area, is characterized by sub-continental and/or intraoceanic subduction systems with associated IAT and CA arc magmatism. This simplified kinematic approach falls short in explaining (1) the Early Cretaceous paleogeography and morphology of the margins of the North, South American continents and minor

  10. Depositionary Margins: The Destruction and Renovation of Subduction Forearcs

    Science.gov (United States)

    Vannucchi, P.; Morgan, J. P.; Silver, E. A.; Kluesner, J.

    2016-12-01

    A depositionary margin is a new framework for forearc evolution that focuses on the potential feedbacks between subduction tectonics, sedimentation, and geomorphology that take place during an extreme event of subduction erosion. These feedbacks can lead to the creation of a forearc structure that extends the traditional division of forearcs into accretionary or erosive subduction margins by demonstrating a mode of rapid basin accretion during an erosive event at a subduction margin. A depositionary mode of forearc evolution occurs when terrigenous sediments are deposited directly on the forearc while it is being removed from below by subduction erosion. In the most extreme case, an entire forearc can be removed by a single subduction erosion event followed by depositionary replacement without involving transfer of sediments from the incoming plate. We need to further recognize that subduction forearcs are often shaped by interactions between slow, long-term processes and sudden extreme events reflecting the sudden influences of large-scale morphological variations in the incoming plate. Both types of processes contribute to the large-scale architecture of the forearc, with extreme events associated with a replacive depositionary mode that rapidly creates sections of a typical forearc margin. The persistent upward diversion of the megathrust is likely to affect its geometry, frictional nature, and hydrogeology. Therefore, the stresses along the fault and individual earthquake rupture characteristics are also expected to be more variable in these erosive systems than in systems with long-lived megathrust surfaces.

  11. The initiation of subduction: criticality by addition of water?

    Science.gov (United States)

    Regenauer-Lieb, K; Yuen, D A; Branlund, J

    2001-10-19

    Subduction is a major process of plate tectonics; however, its initiation is not understood. We used high-resolution (less than 1 kilometer) finite-element models based on rheological data of the lithosphere to investigate the role played by water on initiating subduction. A solid-fluid thermomechanical instability is needed to drive a cold, stiff, and negatively buoyant lithosphere into the mantle. This instability can be triggered slowly by sedimentary loading over a time span of 100 million years. Our results indicate that subduction can proceed by a double feedback mechanism (thermoelastic and thermal-rheological) promoted by lubrication due to water.

  12. Subduction of a buoyant plateau at the Manila Trench: Tomographic evidence and geodynamic implications

    Science.gov (United States)

    Fan, Jianke; Zhao, Dapeng; Dong, Dongdong

    2016-02-01

    We determined P-wave tomographic images by inverting a large number of arrival-time data from 2749 local earthquakes and 1462 teleseismic events, which are used to depict the three-dimensional morphology of the subducted Eurasian Plate along the northern segment of the Manila Trench. Dramatic changes in the dip angle of the subducted Eurasian Plate are revealed from the north to the south, being consistent with the partial subduction of a buoyant plateau beneath the Luzon Arc. Slab tears may exist along the edges of the buoyant plateau within the subducted plate induced by the plateau subduction, and the subducted lithosphere may be absent at depths greater than 250 km at ˜19°N and ˜21°N. The subducted buoyant plateau is possibly oriented toward NW-SE, and the subducted plate at ˜21°N is slightly steeper than that at ˜19°N. These results may explain why the western and eastern volcanic chains in the Luzon Arc are separated by ˜50 km at ˜18°N, whereas they converge into a single volcanic chain northward, which may be related to the oblique subduction along the Manila Trench caused by the northwestern movement of the Philippine Sea Plate. A low-velocity zone is revealed at depths of 20-200 km beneath the Manila Accretionary Prism at ˜22°N, suggesting that the subduction along the Manila Trench may stop there and the collision develops northward. The Taiwan Orogeny may originate directly from the subduction of the buoyant plateau, because the initial time of the Taiwan Orogeny is coincident with that of the buoyant plateau subduction.

  13. IODP Expedition 334: An Investigation of the Sedimentary Record, Fluid Flow and State of Stress on Top of the Seismogenic Zone of an Erosive Subduction Margin

    Directory of Open Access Journals (Sweden)

    Paola Vannucchi

    2013-03-01

    Full Text Available The Costa Rica Seismogenesis Project (CRISP is an experiment to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Integrated Ocean Drililng Program (IODP Expedition 334 by R/V JOIDES Resolution is the first step toward deep drilling through the aseismic and seismicplate boundary at the Costa Rica subduction zone offshore the Osa Peninsula where the Cocos Ridge is subducting beneath the Caribbean plate. Drilling operations included logging while drilling (LWD at two slope sites (Sites U1378 and U1379 and coring at three slope sites (Sites U1378–1380and at one site on the Cocos plate (Site U1381. For the first time the lithology, stratigraphy, and age of the slope and incoming sediments as well as the petrology of the subducting Cocos Ridge have been characterized at this margin.The slope sites recorded a high sediment accumulation rate of 160–1035m m.y.-1 possibly caused by on-land uplift triggered by the subduction of the Cocos Ridge. The geochemical data as well as the in situ temperature data obtained at the slope sites suggest that fluids are transported from greater depths. The geochemical profiles at Site U1381 reflect diffusional communication of a fluid with seawater-likechemistry and the igneous basement of the Cocos plate (Solomon et al., 2011; Vannucchi et al., 2012a. The present-day in situ stress orientation determined by borehole breakouts at Site U1378 in the middle slope and Site U1379 in the upper slope shows a marked change in stress state within ~12 km along the CRISP transect; that maycorrespond to a change from compression (middle slope to extension (upper slope.

  14. Subduction and volatile recycling in Earth's mantle

    Science.gov (United States)

    King, S. D.; Ita, J. J.; Staudigel, H.

    1994-01-01

    The subduction of water and other volatiles into the mantle from oceanic sediments and altered oceanic crust is the major source of volatile recycling in the mantle. Until now, the geotherms that have been used to estimate the amount of volatiles that are recycled at subduction zones have been produced using the hypothesis that the slab is rigid and undergoes no internal deformation. On the other hand, most fluid dynamical mantle flow calculations assume that the slab has no greater strength than the surrounding mantle. Both of these views are inconsistent with laboratory work on the deformation of mantle minerals at high pressures. We consider the effects of the strength of the slab using two-dimensional calculations of a slab-like thermal downwelling with an endothermic phase change. Because the rheology and composition of subducting slabs are uncertain, we consider a range of Clapeyron slopes which bound current laboratory estimates of the spinel to perovskite plus magnesiowustite phase transition and simple temperature-dependent rheologies based on an Arrhenius law diffusion mechanism. In uniform viscosity convection models, subducted material piles up above the phase change until the pile becomes gravitationally unstable and sinks into the lower mantle (the avalanche). Strong slabs moderate the 'catastrophic' effects of the instabilities seen in many constant-viscosity convection calculations; however, even in the strongest slabs we consider, there is some retardation of the slab descent due to the presence of the phase change.

  15. Late Triassic Batang Group arc volcanic rocks in the northeastern margin of Qiangtang terrane, northern Tibet: partial melting of juvenile crust and implications for Paleo-Tethys ocean subduction

    Science.gov (United States)

    Zhao, Shao-Qing; Tan, Jun; Wei, Jun-Hao; Tian, Ning; Zhang, Dao-Han; Liang, Sheng-Nan; Chen, Jia-Jie

    2015-03-01

    The Batang Group (BTG) volcanic rocks in the Zhiduo area, with NW-trending outcrops along the northeastern margin of the Qiangtang terrane (northern Tibet), are mainly composed of volcaniclastic rocks, dacite and rhyolite. Major and trace element, Sr and Nd isotope, zircon U-Pb and Hf isotope data are presented for the BTG dacites. Laser ablation inductively coupled plasma mass spectrometry zircon U-Pb dating constrains the timing of volcanic eruption as Late Triassic (221 ± 1 Ma). Major and trace element geochemistry shows that the BTG volcanic rocks are classified as calc-alkaline series. All samples are enriched in large-ion lithophile elements and light rare earth elements with negative-slightly positive Eu anomalies (Eu/Eu* = 0.47-1.15), and depleted in high field strength elements and heavy rare earth elements. In addition, these rocks possess less radiogenic Sr [(87Sr/86Sr) i = 0.7047-0.7078], much radiogenic Nd (ɛNd( t) = -4.2 to -1.3) and Hf (ɛHf( t) = 4.0-6.6) isotopes, suggesting that they probably originated from partial melting of a crustal source containing a mantle-derived juvenile component. The inferred magma was assimilated by crustal materials during ascending and experienced significant fractional crystallization. By combining previously published and the new data, we propose that the BTG volcanic rocks were genetically related to southwestward subduction of the Ganzi-Litang ocean (a branch of Paleo-Tethys) in the northeastern margin of the Qiangtang terrane. Given the coeval arc-affinity magmatic rocks in the region, we envisage that the Ganzi-Litang ocean may extend from the Zhongdian arc through the Yidun terrane to the Zhiduo area, probably even further northwest to the Tuotuohe area.

  16. The Southern Tyrrhenian subduction system: recent evolution and neotectonic implications

    Directory of Open Access Journals (Sweden)

    A. Argnani

    2000-06-01

    Full Text Available Geological and geophysical data have been integrated with the aim of presenting a new evolutionary model for the Southern Tyrrhenian and adjacent regions. The Southern Tyrrhenian backarc basin opened within a plate convergence regime because of sinking and rollback of the oceanic Ionian lithosphere. On the basis of seismological observations, I infer that the sinking slab was torn apart on either side in the last 2 Ma and this process controlled the neotectonics of the Southern Apennines - Tyrrhenian region. On the north-eastern side the slab broke off from NW to SE and this process triggered volcanism and NW-SE extension along the Eastern Tyrrhenian margin, and strike-slip tectonics along NW-SE trending faults in Northern Calabria. On the south-western side the slab broke off from W to E along the Aeolian Island alignment, although the tear has currently been reoriented along the NNW-SSE Malta escarpment. During its sinking the subducted slab also detached from the overriding plate, favouring the wedging of the asthenosphere between the two plates and the regional uplift of the Calabrian arc and surroundings. This regional uplift promoted gravitational instability within the orogenic wedge, particularly towards low topography areas; the large-scale sliding of the Calabrian arc towards the Ionian basin can be the cause of CW rotation and graben formation in Calabria. Also the E-dipping extensional faults of the Southern Apennines can be related to accommodation of vertical motions within the fold-and-thrust belt. The pattern of recent seismicity reflects this neotectonics where crustal-scale gravity deformation within the orogenic wedge is responsible for extensional earthquakes in Calabria and the Southern Apennines, whereas Africa plate convergence can account for compressional earthquakes in Sicily.

  17. The emergence of volcanic oceanic islands on a slow-moving plate: The example of Madeira Island, NE Atlantic

    Science.gov (United States)

    Ramalho, Ricardo; da Silveira, António Brum; Fonseca, Paulo; Madeira, Jose; Cosca, Michael A.; Cachão, Mário; Fonseca, Maria M.; Prada, Susana

    2015-01-01

    The transition from seamount to oceanic island typically involves surtseyan volcanism. However, the geological record at many islands in the NE Atlantic—all located within the slow-moving Nubian plate—does not exhibit evidence for an emergent surtseyan phase but rather an erosive unconformity between the submarine basement and the overlying subaerial shield sequences. This suggests that the transition between seamount and island may frequently occur by a relative fall of sea level through uplift, eustatic changes, or a combination of both, and may not involve summit volcanism. In this study, we explore the consequences for island evolutionary models using Madeira Island (Portugal) as a case study. We have examined the geologic record at Madeira using a combination of detailed fieldwork, biostratigraphy, and 40Ar/39Ar geochronology in order to document the mode, timing, and duration of edifice emergence above sea level. Our study confirms that Madeira's subaerial shield volcano was built upon the eroded remains of an uplifted seamount, with shallow marine sediments found between the two eruptive sequences and presently located at 320–430 m above sea level. This study reveals that Madeira emerged around 7.0–5.6 Ma essentially through an uplift process and before volcanic activity resumed to form the subaerial shield volcano. Basal intrusions are a likely uplift mechanism, and their emplacement is possibly enhanced by the slow motion of the Nubian plate relative to the source of partial melting. Alternating uplift and subsidence episodes suggest that island edifice growth may be governed by competing dominantly volcanic and dominantly intrusive processes.

  18. Rapid change in drift of the Australian plate records collision with Ontong Java plateau.

    Science.gov (United States)

    Knesel, Kurt M; Cohen, Benjamin E; Vasconcelos, Paulo M; Thiede, David S

    2008-08-07

    The subduction of oceanic plateaux, which contain extraordinarily thick basaltic crust and are the marine counterparts of continental flood-basalt provinces, is an important factor in many current models of plate motion and provides a potential mechanism for triggering plate reorganization. To evaluate such models, it is essential to decipher the history of the collision between the largest and thickest of the world's oceanic plateaux, the Ontong Java plateau, and the Australian plate, but this has been hindered by poor constraints for the arrival of the plateau at the Melanesian trench. Here we present (40)Ar-(39)Ar geochronological data on hotspot volcanoes in eastern Australian that reveal a strong link between collision of the Greenland-sized Ontong Java plateau with the Melanesian arc and motion of the Australian plate. The new ages define a short-lived period of reduced northward plate motion between 26 and 23 Myr ago, coincident with an eastward offset in the contemporaneous tracks of seamount chains in the Tasman Sea east of Australia. These features record a brief westward deflection of the Australian plate as the plateau entered and choked the Melanesian trench 26 Myr ago. From 23 Myr ago, Australia returned to a rapid northerly trajectory at roughly the same time that southwest-directed subduction began along the Trobriand trough. The timing and brevity of this collisional event correlate well with offsets in hotspot seamount tracks on the Pacific plate, including the archetypal Hawaiian chain, and thus provide strong evidence that immense oceanic plateaux, like the Ontong Java, can contribute to initiating rapid change in plate boundaries and motions on a global scale.

  19. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  20. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.

    2017-04-01

    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  1. TSUNAMIGENIC SOURCES IN THE INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    B. K. Rastogi

    2008-01-01

    Full Text Available Based on an assessment of the repeat periods of great earthquakes from past seismicity, convergence rates and paleoseismological results, possible future source zones of tsunami generating earthquakes in the Indian Ocean (possible seismic gap areas are identified along subduction zones and zones of compression. Central Sumatra, Java, Makran coast, Indus Delta, Kutch-Saurashtra, Bangladesh and southern Myanmar are identified as possible source zones of earthquakes in near future which might cause tsunamis in the Indian Ocean, and in particular, that could affect India. The Sunda Arc (covering Sumatra and Java subduction zone, situated on the eastern side of the Indian Ocean, is one of the most active plate margins in the world that generates frequent great earthquakes, volcanic eruptions and tsunamis. The Andaman- Nicobar group of islands is also a seismically active zone that generates frequent earthquakes. However, northern Sumatra and Andaman-Nicobar regions are assessed to be probably free from great earthquakes (M!8.0 for a few decades due to occurrence of 2004 Mw 9.3 and 2005 Mw 8.7 earthquakes. The Krakatau volcanic eruptions have caused large tsunamis in the past. This volcano and a few others situated on the ocean bed can cause large tsunamis in the future. List of past tsunamis generated due to earthquakes/volcanic eruptions that affected the Indian region and vicinity in the Indian Ocean are also presented.

  2. Review of subduction and its association with geothermal system in Sumatera-Java

    Science.gov (United States)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.

    2017-12-01

    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  3. Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems

    Science.gov (United States)

    Yoshida, Masaki

    2017-07-01

    Understanding the mechanisms of trench migration (retreat or advance) is crucial to characterizing the driving forces of Earth's tectonics plates, the origins of subducting slab morphologies in the deep mantle, and identifying the characteristics of subduction zones systems, which are among the fundamental issues of solid Earth science. A series of numerical simulations of mantle convection, focusing on plate subduction in a three-dimensional (3-D) regional spherical shell coordinate system, was performed to examine subduction zone characteristics, including geodynamic relationships among trench migration, back-arc stress, and slab morphology. The results show that a subducting slab tends to deflect around the base of the mantle transition zone and form a sub-horizontal slab because its front edge (its 'toe') is subject to resistance from the highly viscous lower mantle. As the sub-horizontal slab starts to penetrate into the lower mantle from its 'heel,' the toe of the slab is drawn into the lower mantle. The results for models with dynamically migrating trenches suggest that trench retreat is the dynamically self-consistent phenomenon in trench migration. The reason for this is that the strong lateral mantle flow that is generated as a sequence of events leading from corner flow at the subduction initiation to return flow of the formation of a sub-horizontal slab in the shallower part of mantle wedge produces the retreat of the subducting slab. In fact, a 'mantle suction force,' which is generated in the mantle wedge to fill space left by the retreating subducting plate, is enhanced by the subsequent trench retreat. Even when upwelling flow with significant positive buoyancy originates just above a mantle phase boundary at a depth of 410 km (as inferred from independent seismic tomographic, geodynamic, geochemical, and mineral physics), reaches the base of the overriding plate, and the overriding plate is slightly thinned, lithospheric stress tends to be

  4. Great earthquakes hazard in slow subduction zones

    Science.gov (United States)

    Marcaillou, B.; Gutscher, M.; Westbrook, G. K.

    2008-12-01

    Research on the Sumatra-Andaman earthquake of 2004 has challenged two popular paradigms; that the strongest subduction earthquakes strike in regions of rapid plate convergence and that rupture occurs primarily along the contact between the basement of the overriding plate and the downgoing plate. Subduction zones presenting similar structural and geodynamic characteristics (slow convergence and thick wedges of accreted sediment) may be capable of generating great megathrust earthquakes (M>8.5) despite an absence of thrust type earthquakes over the past 40 years. Existing deep seismic sounding data and hypocenters are used to constrain the geometry of several key slow subduction zones (Antilles, Hellenic, Sumatra). This geometry forms the basis for numerical modelling of fore-arc thermal structure, which is applied to calculate the estimated width of the seismogenic portion of the subduction fault plane. The margins with the thickest accretionary wedges are commonly found to have the widest (predicted) seismogenic zone. Furthermore, for these margins there exists a substantial (20-60 km wide) region above the up-dip limit for which the contribution to tsunami generation is poorly understood. As the rigidity (mu) of these high-porosity sediments is low, co-seismic slip here can be expected to be slow. Accordingly, the contribution to seismic moment will be low, but the contribution to tsunami generation may be very high. Indeed, recent seismological data from Nankai indicate very low frequency shallow-thrust earthquakes beneath this portion of the accretionary wedge, long-considered to be "aseismic". We propose that thick accumulations of sediment on the downgoing plate and the presence of a thick accretionary wedge can increase the maximum size of the potential rupture fault plane in two ways; 1) by thermally insulating the downgoing plate and thereby increasing the total downdip length of the fault which can rupture seismically and 2) by "smoothing out" the

  5. Seafloor tilt induced by ocean tidal loading inferred from broadband seismometer data from the Cascadia subduction zone and Juan de Fuca Ridge

    Science.gov (United States)

    Davis, Earl E.; Heesemann, Martin; Lambert, Anthony; He, Jianheng

    2017-04-01

    Mass-balancing voltages from four buried broadband seismometers connected to the NEPTUNE Canada seafloor cable are being recorded at 24-bit resolution. Sites are located on the Vancouver Island continental shelf, the nearby Cascadia accretionary prism, the eastern flank of the Juan de Fuca Ridge, and the western flank close to the Juan de Fuca Ridge axis. Tidal variations are present throughout the records. Variations in vertical acceleration at three of the sites match predicted gravitational attraction variations very well; those at the fourth site show a small residual that is probably caused by sensitivity to tilt resulting from sensor inclination. Horizontal accelerations, which at tidal periods are sensitive primarily to tilt, are anomalously large relative to standard-earth model results. After removal of predicted tidal body and ocean attraction and loading terms, the residuals are seen to follow ocean pressure variations. Responses range from 0.4 μrad dbar-1 (0.04 μrad kPa-1) at 10° true (down under positive load) at the continental shelf site, to 0.6 μrad dbar-1 at 243° at the Cascadia prism, 0.4 μrad dbar-1 at 90° at the eastern Juan de Fuca Ridge flank, and 0.2 μrad dbar-1 at 116° true on the western ridge flank. Except at the continental shelf site, tilts are roughly perpendicular to structural strike. The tilt observations can be explained by loading-induced deformation in the presence of local lithologic gradients or by the influence of faults or structurally controlled anisotropic elastic properties. The observations highlight the utility of using mass position data from force-feedback broad-band seismometers for geodynamic studies.

  6. Examining the links between Slow Slip Events, crustal faults and subduction interface in Central Mexico

    Science.gov (United States)

    Bigot, A.; Manighetti, I.; Vergnolle, M.; Campillo, M.

    2012-12-01

    We have analyzed the tectonic structures, active and more ancient, that dissect the upper plate, the subducting plate and the trench in Central Mexico, and examined the links between these structures, the historical and instrumental seismicity, and the SSEs and tremors (as described in Radiguet et al., 2012). We show that the tectonic architecture of the upper plate controls the location of the SSEs and of a large part of the instrumental seismicity. The large historical subduction ruptures do not extend further below than ≈ 30 km depth. The broken areas are underlined by a zone of dense instrumental seismicity that extends confined between the broken patches and a vertical WSW-trending fault that cuts across the upper plate down to the interface, with its trace halfway between Acapulco and Chilpancingo (AC fault). This fault shows no morphological evidence of recent activity. Another similar, parallel WNW-trending fault exists north of Chilpancingo (NC fault). Though it shows no morphological evidence of recent activity, it is underlined by a dense instrumental seismicity confined in the range 40-70 km of depth, whose focal mechanisms are all extensional. No instrumental seismicity is recorded between the two faults. By contrast, the slip zones of the 2002, 2006 and 2010 major SSEs appear confined exactly in between the two vertical fault planes, while the major zone of reported tremors extend immediately north of the NC fault plane. The occurrence of each SSE induces a slight increase in the density of instrumental seismicity related to the NC fault, and a marked increase in the density of instrumental seismicity recorded south of the AC fault. In details, the seismicity increases at the northern tips of the NE-trending faults that dissect the trench and hence also likely the down-going oceanic plate below. Simple static Coulomb stress transfer models confirm that each SSE likely increased the static stresses by ≈ 0.1 bars on both the shallower portion of the

  7. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    Full Text Available The lower plate is the dominant agent in modern convergent margins characterized by active subduction, as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight. This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle. As geological and geochemical data seem inconsistent with the existence of modern-style ridges and arcs in the Archaean, a periodically-destabilized stagnant-lid crust system is proposed instead. Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle, perturbing Earth's heat generation/loss balance, eventually triggering mantle overturns. Archaean basalts were derived from fertile mantle in overturn upwelling zones (OUZOs, which were larger and longer-lived than post-Archaean plumes. Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods, allowing basal crustal cannibalism, garnetiferous crustal restite delamination, and coupled development of continental crust and sub-continental lithospheric mantle. Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB (mid-ocean ridge basalt mantle. Only after the start of true subduction did sequestration of subducted slabs at the core-mantle boundary lead to the development of the depleted MORB mantle source. During Archaean mantle overturns, pre-existing continents located above OUZOs would be strongly reworked; whereas OUZO-distal continents would drift in response to mantle currents. The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion, imbrication, subcretion and anatexis of unsubductable oceanic lithosphere. As Earth cooled and the background oceanic lithosphere became denser and stiffer, there would be an increasing

  8. Generation of continental crust in intra-oceanic arcs

    Science.gov (United States)

    Gazel, E.; Hayes, J. L.; Kelemen, P. B.; Everson, E. D.; Holbrook, W. S.; Vance, E.

    2014-12-01

    The origin of continental crust is still an unsolved mystery in the evolution of our planet. Although the best candidates to produce juvenile continental crust are intra-oceanic arcs these systems are dominated by basaltic lavas, and when silicic magmas are produced, the incompatible-element compositions are generally too depleted to be a good match for continental crust estimates. Others, such as the W. Aleutians, are dominated by andesitic melts with trace element compositions similar to average continental crust. In order to evaluate which intra-oceanic arcs produced modern continental crust, we developed a geochemical continental index (CI) through a statistical analysis that compared all available data from modern intra-oceanic arcs with global estimates of continental crust. Our results suggest that magmas from Costa Rica (tracks. Iwo-Jima and Vanuatu are in a similar tectonic scenario with subducting intraplate seamounts. Melts from the subducting oceanic crust are thought to significantly control the geochemical signature in the W. Aleutians and Panama. In the L. Antilles and E. Aleutians the continental signature may reflect recycling of a component derived from subducting continental sediments. Most of Izu-Bonin, Marianas, S. Scotia and Tonga arcs with a CI >100 have the least continent-like geochemical signatures. In these arcs the subducting plate is old (>100 Ma), not overprinted by enriched intraplate volcanism and the geochemistry may be dominated by slab-derived, aqueous fluids. We also found a strong correlation between the CI and average crustal P-wave velocity, validating the geochemical index with the available seismic data for intra-oceanic arcs. In conclusion, the production of young continental crust with compositions similar to Archean continental crust is an unusual process, limited to locations where there are especially voluminous partial melts of oceanic crust.

  9. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

    Science.gov (United States)

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.

    2009-01-01

    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  10. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    Science.gov (United States)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  11. Crustal structure of the Carpathian orogen from receiver function analysis: how craton subduction and active delamination affect the crust

    Science.gov (United States)

    Petrescu, Laura; Tataru, Dragos; Grecu, Bogdan

    2017-04-01

    The Carpathian arc is an uncommon curved collisional system, involving the subduction of the Eastern European craton and the Proterozoic Moesian platform beneath younger European microplates. The Cenozoic collision led to the closure of the Tethys Oceanic basin, portions of which are actively breaking off or delaminating beneath the orogen, generating deep mantle earthquakes. Neogene volcanism, possibly related to subduction slab roll-back, also formed a band of presently extinct volcanoes in the back-arc region. The Carpathian embayment is thus an ideal laboratory to investigate crustal processes related to subduction of cratonic material, multiple plate junctions and active delamination. To better understand how the crustal structure changes from the Eastern European cratonic foreland, across the curved subduction zone, to the younger European microplates, we analyse teleseismic earthquakes recorded at broadband seismic stations located across eastern and southern Carpathians, in Romania and Moldova. We processed data from permanent seismic networks (The Romanian National Seismic Network) as well as data from temporary deployments such as CALIXTO (Carpathian Arc Lithosphere X-Tomography) and SCP (South Carpathian Project). Using extended multi-taper spectral division, we compute and analyse radial and transverse receiver functions. Energy on the transverse component may be an indicator of crustal anisotropy or the existence of intracrustal dipping interfaces. Using phase-weighted H-k stacking of receiver functions, we estimate the crustal thickness and the bulk crustal Poisson's ratio as well as the seismic sharpness of the Moho discontinuity. Furthermore, we invert receiver functions to obtain the S-wave velocity structure of the crust and upper mantle beneath individual stations, which provide concurrent information on the Moho nature. Our results provide a better understanding of crustal structure across complex collisional systems involving the subduction of

  12. Impact-driven subduction on the Hadean Earth

    Science.gov (United States)

    O'Neill, C.; Marchi, S.; Zhang, S.; Bottke, W.

    2017-10-01

    Impact cratering was a dominant geologic process in the early Solar System that probably played an active role in the crustal evolution of the young terrestrial planets. The Earth's interior during the Hadean, 4.56 to 4 billion years ago, may have been too hot to sustain plate tectonics. However, whether large impacts could have triggered tectonism on the early Earth remains unclear. Here we conduct global-scale tectonic simulations of the evolution of the Earth through the Hadean eon under variable impact fluxes. Our simulations show that the thermal anomalies produced by large impacts induce mantle upwellings that are capable of driving transient subduction events. Furthermore, we find that moderate-sized impacts can act as subduction triggers by causing localized lithospheric thinning and mantle upwelling, and modulate tectonic activity. In contrast to contemporary subduction, the simulated localized subduction events are relatively short-lived (less than 10 Myr) with relatively thin, weak plates. We suggest that resurgence in subduction activity induced by an increased impact flux between 4.1 and 4.0 billion years ago may explain the coincident increase in palaeointensity of the magnetic field. We further suggest that transient impact-driven subduction reconciles evidence from Hadean zircons for tectonic activity with other lines of evidence consistent with an Earth that was largely tectonically stagnant from the Hadean into the Archaean.

  13. A two-way interaction between the Hainan plume and the Manila subduction zone

    NARCIS (Netherlands)

    Mériaux, Catherine A.; Duarte, João C.; Schellart, Wouter P.; Mériaux, Anne Sophie

    2015-01-01

    The interaction between mantle plumes and subducting slabs is well accepted, but the influence of slabs on plumes has more often been portrayed than the reverse. Here we present three-dimensional upper mantle laboratory models in which a compositional plume rises underneath a subducting plate.

  14. Epeirogeny and plate tectonics

    Science.gov (United States)

    Menard, H. W.

    1975-01-01

    Vertical motions of the earth crust and their causes are considered in relation to epeirogenic phenomena. Factors discussed include: external loading and unloading; bending at subduction zones; internal density changes; and dynamic effects of mantle motion. The relationship between epeirogeny and drift is briefly reviewed along with oceanic epeirogeny.

  15. Why Do We Need 3-d Numerical Models of Subduction?

    Science.gov (United States)

    Morra, G.; Faccenna, C.; Funiciello, F.; Giardini, D.; Regenauer-Lieb, K.

    We use a set of 2-D and 3-D numerical fluid dynamic experiments, modeled with different strain rate dependent rheologies (viscous, visco-plastic, power law) to ana- lyze the long-term dynamics of the subduction of an oceanic slab into an iso-viscous or stratified mantle. For the lithosphere a fluid dynamic approach has been bench- marked with our previous solid mechanical approach with the aim of overcoming the coherency problem of fluid dynamic calculations. The solid mechanical dichotomy Sstrong before failure and weak where it failsT has been cast into a specialized non- & cedil;linear fluid rheology. Analog 2-D and 3-D experiments are finally compared with the numerical experiments. 2-D numerical experiments are considered with and without free surface to investigate the limitations induced by a closed top boundary. The effect of asymmetric boundary conditions (with and without overriding plate) is analyzed with respect to the possibility of trench retreat. We clearly state the importance for the free surface analysis. 2-D experiments have inherent weaknesses: first they provide an unrealistic simulation of mantle flow (suppression of toroidal flow), second they give rise to the Sclosed boxT problem (interaction of the slab with a boundary, i.e. & cedil;660 km and the left and right box boundaries). 3-D numerical experiments permit to overcome these problems. A natural analysis of the behavior of the mantle flow during subduction and the three-dimensional behavior of the slab is thus possible. Physical observables like trench retreat and toroidal and poloidal flow are compared with the results of our companion analog 3-D experiments.

  16. Subduction, back-arc spreading and global mantle flow

    Science.gov (United States)

    Hager, B. H.; Oconnell, R. J.; Raefsky, A.

    1983-01-01

    It is pointed out that the subducted lithosphere associated with Benioff zones provides the only direct evidence about the flow in the earth's interior associated with plate motions. It is the primary objective of the present investigation to study the relation between the orientation of subducting lithosphere and the flow patterns (both local and global) near subduction zones. Most of the calculations conducted are based on simple flow models for radially symmetric, Newtonian viscous spheres. The investigation is concerned with the possibility that a simple model of global mantle flow could account for some features of subduction zones. It is found that such a model can account for the orientation of the seismic zones, and, in addition, also for features related to back-arc spreading and perhaps the maximum earthquake size.

  17. Imaging the Ionian Sea subducting slab panels and faults to control present day motion in the Hellenic-Aegean region

    Science.gov (United States)

    Sachpazi, Maria

    2017-04-01

    The Hellenic-Mediterranean subduction system characterized by its fast overriding upper plate, fast trench retreat and its most rapidly extending Corinth Rift has been the target of several conceptual models on slab dynamics and lithosphere extension. Using teleseismic waves conversions on a dense 2-D seismic array -installed in the frame of Thales Was Right project- from Crete to the North Aegean coast through central Greece, a high-resolution imaging of the Hellenic slab and the overlying Aegean plate lithospheric mantle has been acquired. The subducting slab top appears segmented into panels 30- 50km wide by SW-NE along dip faults to at least 100km depth. Intermediate-depth Mw>6 earthquakes are located on those faults which implies that they are seismically active at 70 km depth. Smaller magnitude earthquakes of the upper Benioff zone commonly related to dehydration processes of the descending slab, are also resolved to be clustered along these faults. These faults are likely inherited structures of the oceanic lithosphere and sites of preferred hydration. Their revealed relation with this specific seismicity provides high-resolution insight validating dehydration embrittlement. RF imaging on 4 OBS sites has allowed to resolve the depth and geometry of the updip offshore part of the slab, the thrust interplate boundary. The observations support a trenchward continuation of the slab faults and correlation with the similarly segmented thrusting contact of the Mediterranean Ridge accretionary wedge over the upper plate. The slab faults may control the location and size of major historical megathrust earthquakes a hypothesis that has been strengthened by the study of the Mw 6.8 14.02.2008 earthquake, the first large instrumental interplate earthquake offshore SW Peloponnesus. New high-resolution imaging resolves the Aegean plate lithospheric mantle and shows the presence of a significant heterogeneity on top of the presently subducting slab, never imaged before. It

  18. Three-dimensional magnetotelluric imaging of Cascadia subduction zone from an amphibious array

    Science.gov (United States)

    Yang, B.; Egbert, G. D.; Key, K.; Bedrosian, P.; Livelybrooks, D.; Schultz, A.

    2016-12-01

    We present results from three-dimensional inversion of an amphibious magnetotelluric (MT) array consisting of 71 offshore and 75 onshore sites in the central part of Cascadia, to image down-dip and along strike variations of electrical conductivity, and constrain the 3D distribution of fluids and melt in the subduction zone. A larger scale array consisting of EarthScope transportable-array data and several 2D legacy profiles (e.g. EMSLAB, CAFE-MT, SWORMT) which covers WA, OR, northern CA and northern NV has been inverted separately, to provide a broader view of the subduction zone. Inverting these datasets including seafloor data, and involving strong coast effects presents many challenges, especially for the nominal TE mode impedances which have very anomalous phases in both land and seafloor sites. We find that including realistic bathymetry and conductive seafloor sediments significantly stabilizes the inversion, and that a two stage inversion strategy, first emphasizing fit to the more challenging TE data, improved overall data fits. We have also constrained the geometry of the (assumed resistive) subducting plates by extracting morphological parameters (e.g. upper boundary and thickness) from seismological models (McCrory et al 2012, Schmandt and Humphreys 2010). These constraints improve recovery and resolution of subduction related conductivity features. With the strategies mentioned above, we improved overall data fits, resulting in a model which reveals (for the first time) a conductive oceanic asthenosphere, extending under the North America plate. The most striking model features are conductive zones along the plate interface, including a continuous stripe of high conductivity just inboard of the coast, extending from the northern limits of our model in Washington state, to north-central Oregon. High conductivities also occur in patches near the tip of the mantle wedge, at depths appropriate for eclogitization, and at greater depth beneath the arc, in

  19. Cascadia subduction tremor muted by crustal faults

    Science.gov (United States)

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  20. Analysis of MSS (Marine Seismic System) and OBS (Ocean Bottom Seismograph) Data Collected during the NGENDEI Seismic Experiment

    Science.gov (United States)

    1986-08-01

    transit course through the Cook Island chain. Numerous seamounts and guyots were crossed during the transit. A R/V MELVILLE SITE SURVEY The R/V...station on the island of Rarotonga and were used as evidence for the existence of subducted lithosphere during the development of the plate-tectonic model...structure of a traverse through the Bay of Islands Ophiolite com- plex, Newfoundland, an exposure of oceanic crust and upper mantle, 3. geophys. Res

  1. Insights from numerical modeling on the global-scale mantle water cycle: evolution of the surface water ocean as a constraint on the plate-mantle-core system

    Science.gov (United States)

    Nakagawa, T.; Spiegelman, M. W.

    2016-12-01

    In our previous model on global-scale water cycle in the mantle, we considered a boundary condition that provided an `infinite water reservoir' at the surface [Nakagawa and Spiegelman, revised]. However, the volume of the surface water reservoir is clearly finite with 1OM over the age of the Earth [Hamano et al., 2013]. Here we describe a new model where the amount of surface water reservoir is controlled by the degassing-regassing balance. In addition, for addressing the entire evolution of plate-mantle-core system in the numerical model, we also include the core cooling effects described as global heat balance with the inner core growth effects and core-mantle chemical reaction to transport oxygen and/or volatile from the deep mantle in the model. Since petrological studies suggest that mantle minerals are not necessarily saturated with water at the surface [Asimow and Langmuir, 2003], we introduce the efficiency of regassing for computing both regassing flux and the boundary conditions on mantle water content varying from 10-5(strongly under-saturated) to 1 (completely saturated) as suggested from a parameterized model of mantle water cycle evolution [Sandu et al., 2011]. Checking the model sensitivities to the initial amount of surface water ocean (2 to 5 ocean masses) and the efficiency of regassing, the best-fit scenario for explaining the current amount of surface water reservoir requires a small efficiency of regassing with any choice of initial amount of surface water ocean. If the efficiency of regassing is large, the active plate-like motion easily transports all of surface water ocean into the mantle in about time-scale of O(100) Myrs. This suggests that the water content of oceanic lithosphere might be less than the petrological constraints ( 200 ppm [Asimow and Langmiur, 2003]). Since the rheological dependence of water on hydrous minerals enhances the heat transfer of mantle convection, the thermo-chemical evolution of the plate-mantle-core system

  2. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, Sierd

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the initiation

  3. Evolution of passive continental margins and initiation of subduction zones

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.

    1982-01-01

    The initiation of subduction is a key element in plate tectonic schemes for the evolution of the Earth's lithosphere. Nevertheless, up to present, the underlying mechanism has not been very well understood (e.g. Dickinson and Seely, 1979; Hager, 1980; Kanamori, 1980). The insight into the

  4. 3-D thermo-mechanical laboratory modeling of plate-tectonics: modeling scheme, technique and first experiments

    Directory of Open Access Journals (Sweden)

    D. Boutelier

    2011-05-01

    Full Text Available We present an experimental apparatus for 3-D thermo-mechanical analogue modeling of plate tectonic processes such as oceanic and continental subductions, arc-continent or continental collisions. The model lithosphere, made of temperature-sensitive elasto-plastic analogue materials with strain softening, is submitted to a constant temperature gradient causing a strength reduction with depth in each layer. The surface temperature is imposed using infrared emitters, which allows maintaining an unobstructed view of the model surface and the use of a high resolution optical strain monitoring technique (Particle Imaging Velocimetry. Subduction experiments illustrate how the stress conditions on the interplate zone can be estimated using a force sensor attached to the back of the upper plate and adjusted via the density and strength of the subducting lithosphere or the lubrication of the plate boundary. The first experimental results reveal the potential of the experimental set-up to investigate the three-dimensional solid-mechanics interactions of lithospheric plates in multiple natural situations.

  5. Motion between the Indian, Capricorn and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed lithospheric deformation in the equatorial Indian ocean

    Science.gov (United States)

    DeMets, Charles; Gordon, Richard G.; Royer, Jean-Yves

    2005-05-01

    Approximately 2200 magnetic anomaly crossings and 800 fracture zone crossings flanking the Carlsberg ridge and Central Indian ridge are used to estimate the rotations of the Indian and Capricorn plates relative to the Somalian Plate for 20 distinct points in time since 20 Ma. The data are further used to place limits on the locations of the northern edge of the rigid Capricorn Plate and of the southern edge of the rigid Indian Plate along the Central Indian ridge. Data south of and including fracture zone N (the fracture zone immediately south of the Vema fracture zone), which intersects the Central Indian ridge near 10°S, are well fit assuming rigid Capricorn and Somalian plates, while data north of fracture zone N are not, in agreement with prior results. Data north of fracture zone H, which intersects the Central Indian ridge near 3.2°S, are well fit assuming rigid Indian and Somalian plates, while data south of and including fracture zone H are not, resulting in a smaller rigid Indian Plate and a wider diffuse oceanic plate boundary than found before. The data are consistent with Capricorn-Somalia motion about a fixed pole since ~8 Ma, but require rotation about a pole 15° farther away from the Central Indian ridge from 20 to ~8 Ma. The post-8-Ma pole also indicates Capricorn-Somalia displacement directions that are 7° clockwise of those indicated by the pre-8-Ma stage pole. In contrast, India-Somalia anomaly and fracture crossings are well fit by a single fixed pole of rotation for the past 20 Ma. India-Somalia motion has changed little during the past 20 Myr. Nonetheless, astronomically calibrated ages for reversals younger than 12.9 Ma allow resolution of the following small but significant changes in spreading rate: India-Somalia spreading slowed from 31 to 28 mm yr-1 near 7.9 Ma and later sped up to 31 mm yr-1 near 3.6 Ma; Capricorn-Somalia spreading slowed from 40 to 36 mm yr-1 near 11.0 Ma, later sped up to 38 mm yr-1 near 5.1 Ma and further sped up

  6. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc.

    Science.gov (United States)

    Timm, Christian; Bassett, Daniel; Graham, Ian J; Leybourne, Matthew I; de Ronde, Cornel E J; Woodhead, Jon; Layton-Matthews, Daniel; Watts, Anthony B

    2013-01-01

    Subduction of intraplate seamounts beneath a geochemically depleted mantle wedge provides a seldom opportunity to trace element recycling and mantle flow in subduction zones. Here we present trace element and Sr, Nd and Pb isotopic compositions of lavas from the central Tonga-Kermadec arc, west of the contemporary Louisville-Tonga trench intersection, to provide new insights into the effects of Louisville seamount subduction. Elevated (206)Pb/(204)Pb, (208)Pb/(204)Pb, (86)Sr/(87)Sr in lavas from the central Tonga-Kermadec arc front are consistent with localized input of subducted alkaline Louisville material (lavas and volcaniclastics) into sub-arc partial melts. Furthermore, absolute Pacific Plate motion models indicate an anticlockwise rotation in the subducted Louisville seamount chain that, combined with estimates of the timing of fluid release from the subducting slab, suggests primarily trench-normal mantle flow beneath the central Tonga-Kermadec arc system.

  7. The dynamical control of subduction parameters on surface topography

    Science.gov (United States)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  8. Subducting characteristic of the Pacific slab beneath northeast China

    Science.gov (United States)

    Jiang, G.; Zhang, G.; Xu, Y.

    2012-12-01

    The volcanoes locating in northeast China are very active. Some researchers consider that the origin of volcanoes is closely related to the subducting western Pacific plate and the upwelling asthenosphere. The thickness and the existing range of the subducted plate are not clear as far although the seismic tomography results obviously show that the Pacific plate exists below the volcano region. Therefore, in this study, we adopted the method combining the teleseismic tomography with travel time forward modeling to further study the velocity structure beneath northeast China, especially the precise model of subducted Pacific plate. Our results show that (1) the average thickness and velocity perturbation of slab is 85 km and 1%, respectively, and the slab has not been thickened compared with the previous result of the Japan Sea; (2) the Pacific plate subducted into the mantle transition zone with a shallow dip angle, and changed horizontally when it touched the bottom of mantle transition zone, and extended westward to Longitude 127°E and then stops over there; (3) the horizontal slab locates right below the volcano region. These above features help people understand the origin of intraplate volcanoes and the geodynamical process better. (a) Tomographic result along 43°N. Red and blue colors represent the high and low velocity anomalies, respectively, and the scale is shown at the right-bottom; The profile line is shown in (b); The black triangles represent the volcanoes locating near the profile; The black solid and dashed lines show the depths of upper and lower boundaries of Pacific plate, respectively. The red dots represent the deep earthquakes around the profile. (b) Location of profile AA' along 43°N. Black triangles denote volcanoes; White squares represent the stations; Blue contours denote the depth of upper boundary of Pacific plate; Black and red dots represent the deep epicenters.

  9. Molybdenum mobility and isotopic fractionation during subduction at the Mariana arc

    Science.gov (United States)

    Freymuth, Heye; Vils, Flurin; Willbold, Matthias; Taylor, Rex N.; Elliott, Tim

    2015-12-01

    The fate of crustal material recycled into the convecting mantle by plate tectonics is important for understanding the chemical and physical evolution of the planet. Marked isotopic variability of Mo at the Earth's surface offers the promise of providing distinctive signatures of such recycled material. However, characterisation of the behaviour of Mo during subduction is needed to assess the potential of Mo isotope ratios as tracers for global geochemical cycles. Here we present Mo isotope data for input and output components of the archetypical Mariana arc: Mariana arc lavas, sediments from ODP Sites 800, 801 and 802 near the Mariana trench and the altered mafic, oceanic crust (AOC), from ODP Site 801, together with samples of the deeper oceanic crust from ODP Site 1256. We also report new high precision Pb isotope data for the Mariana arc lavas and a dataset of Pb isotope ratios from sediments from ODP Sites 800, 801 and 802. The Mariana arc lavas are enriched in Mo compared to elements of similar incompatibility during upper mantle melting, and have distinct, isotopically heavy Mo (high 98Mo/95Mo) relative to the upper mantle, by up to 0.3 parts per thousand. In contrast, the various subducting sediment lithologies dominantly host isotopically light Mo. Coupled Pb and Mo enrichment in the Mariana arc lavas suggests a common source for these elements and we further use Pb isotopes to identify the origin of the isotopically heavy Mo. We infer that an aqueous fluid component with elevated [Mo], [Pb], high 98Mo/95Mo and unradiogenic Pb is derived from the subducting, mafic oceanic crust. Although the top few hundred metres of the subducting, mafic crust have a high 98Mo/95Mo, as a result of seawater alteration, tightly defined Pb isotope arrays of the Mariana arc lavas extrapolate to a fluid component akin to fresh Pacific mid-ocean ridge basalts. This argues against a flux dominantly derived from the highly altered, uppermost mafic crust or indeed from an Indian

  10. Mountain building, from subduction to collision and erosion: insights from 30 years of field and analog modeling studies (Stephan Mueller Medal Lecture)

    Science.gov (United States)

    Malavieille, J.

    2012-04-01

    Through a rapid overview of my research career, I will outline the role of the primary mechanisms and processes, which exert a strong control on mountain building. Field observations (both from structural geology on-land and marine geophysical surveys at sea), and analog modeling are the two main approaches that I used and developed during more than 30 years of research studying mountain belts at Montpellier University. The substantial contributions made through collaborations and exchanges with colleagues and students will be acknowledged. As mountain belts are long lived structures, their evolution involves numerous processes that interact since the early history, beginning during oceanic subduction and ending during the late orogenic evolution which leads to erosion and the ultimate destruction of topography. Most orogens form in subduction settings due to plate convergence involving large horizontal shortening and strong deformation of the crust developing into an overall wedge shape during their evolution. I will focus on orogens caused by subduction of a continental margin lower-plate under an oceanic or continental upper-plate following oceanic subduction, a process also commonly known as collision. After development of a sedimentary accretionary prism and closure of the oceanic domain, continuous subduction of the lithospheric mantle induces deformation of the continental crust and controls the structural asymmetry of the mountain belt. Since the pioneer works by Dahlen, Davis and Suppe in the Eighties, mountain belts have been often considered by geologists as crustal scale accretionary wedges whose deformation mechanisms can be satisfactorily described by a Coulomb behavior. The theory offers a simple mechanical framework allowing a division into different tectonic regimes depending on wedge stability : critical, undercritical, overcritical. Since then, it has been shown that orogens commonly adopt a distinct geometry with a low-tapered pro-wedge facing

  11. Deep electrical resistivity structure of Costa Rican Subduction Zone

    Science.gov (United States)

    Worzewski, T.; Jegen, M.; Brasse, H.; Taylor, W.

    2009-04-01

    The water content and its distribution play an important role in the subduction process. Water is released from the subducting slab in a series of metamorphic reactions and the hydration of the mantle wedge may trigger the onset of melting, weakening and changes in the dynamics and thermal structure of subduction zones. However, the amount of water carried into the subduction zone and its distribution are not well constrained by existing data and are subject of vigorous current research in SFB574 (Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters). We will show numerical modeling studies which are used to determine the resolution and sensitivity of the MT response to fluids in the crust and subducting slab under the special condition of a coastal setting. In 2007-2008 we conducted a long-period magnetotelluric investigations in northwestern Costa Rica on- and offshore, where the Cocos Plate subducts beneath the Carribean plate. Eleven marine magnetotelluric Stations newly developed and constructed by IFM-GEOMAR and University of Kiel were deployed on the 200 km long marine extension of the profile for several months. We will present the data and its processing, as well as our attempts to eliminate motion induced noise observed on some stations on the cliffy shelf due to tidal waves hitting the shelf and trench parallel- and perpendicular currents. The marine profile was extended landwards by the Free University of Berlin over length of 160 kilometers with further 18 stations. We present preliminary modeling results of land data, which revealed interesting features, inter alia a possible image of fluid release from the downgoing slab in the forearc, as well as ongoing modeling of the combined on- and offshore data sets.

  12. Subduction related fluids fractionate Nb/Ta

    Science.gov (United States)

    Salters, V. J.; Bizimis, M.; Sachi-Kocher, A.; Taylor, R.; Savov, I. P.; Stern, C. R.

    2009-12-01

    Key differences between the chemical composition of terrestrial materials and those of meteorites have led to the suggestion that a `hidden’ high Nb/Ta reservoir exists in the Earth’s mantle. In order to test this hypothesis we must identify the processes that can create such a reservoir. It has been suggested that during subduction Nb is more refractory then Ta resulting in low Nb/Ta in the subducted slab, which then serves as a reservoir for the high Nb/Ta. Here we report high precision HFSE data on products of the subduction processes thought to fractionate Nb from Ta: boninites (hydrous melting), adakites (slab melting), oceanic island arc basalts and supra subduction zone peridotites. We developed a new method for the high precision determination of Nb, Ta, Zr, Hf concentrations based on a modified version of standard addition. All analyses were performed on a single collector ICPMS (ELEMENT 1), using Y and Yb as internal standards to correct for instrumental drift during the unspiked -spiked sample sequence. Concentrations are calculated using a York- type regression that accounts for all measured and propagated errors. Long-term reproducibility (multiple dissolutions and multiple spike solutions) for the standards BHVO-1, BIR-1 AGV-1 and BCR-1 are better than 0.8% (1s) for Nb/Ta and Zr/Hf ratios. The advantages of this method compared to previous methods are fast throughput, no column chemistry and low blanks. While the Zr/Hf ratios in subduction-related volcanics and ocean island basalts vary by less than a factor of two, the Nb/Ta ratio varies by a factor of four. Most of the Nb/Ta variation is observed in subduction related rocks. Samples with the highest Nb/Ta ratio (up to 19.5) are adakites from the Austral Volcanic Zone (Andes) which are thought to represent eclogitic melts from subducted oceanic crust which was most likely dehydrated. The lowest Nb/Ta (5) was found in boninites from Chichi-Jima, Bonin Island. Samples from Chichi-Jima and from the

  13. A revised subduction inception model to explain the Late Cretaceous, doubly vergent orogen in the pre-collisional western Tethys: evidences from the Northern Apennine

    Science.gov (United States)

    Meneghini, Francesca; Marroni, Michele; Pandolfi, Luca

    2017-04-01

    Orogenic processes are widely demonstrated to be strongly controlled by inherited structures. The paleogeography of the converging margins, and the tectonic processes responsible for their configuration, will influence the location of subduction initiation, the distribution of deformation between upper and lower plate, the shape of the accretionary prism and of the subsequent orogeny, through controlling the development of single or doubly-vergent orogens, and, as a corollary, the modality of exhumation of metamorphosed units. The "alpine age" collisional belts of the Mediterranean area are characterized by tangled architectures derived from the overlapping of several deformation events related to a multiphase, long history that comprises not only the collision of continental margins, but that can be regarded as an heritage of both the rifting-related configuration of the continental margins, and the subduction-related structures. The Northern Apennines is a segment of these collisional belts that originated by the Late Cretaceous-Middle Eocene closure of the northern branch of the western Tethys, and the subsequent Late Eocene-Early Oligocene continental collision between the Europe and Adria plates. Due to a different configuration of the paired Adria and Europe continental margins, inherited from a rifting phase dominated by asymmetric, simple-shear kinematics, the Northern Apennines expose a complex groups of units, referred to as Ligurian Units, that record the incorporation into the subduction factory of either fragments of the Ligure-Piemontese oceanic domain (i.e. Internal Ligurian Units), and various portions of the thinned Adria margin (i.e. External Ligurian Units), describable as an Ocean-Continent Transition Zone (OCTZ). The structural relationships between these groups of Units are crucial for the definition of the pre-collisional evolution of the belt and have been the subject of big debates in the literature, together with the location and

  14. Sr, Nd, water and carbon dioxide input of altered Pacific MORB into the Tonga subduction zone

    Science.gov (United States)

    Rosner, M.; Bach, W.; Erzinger, J.

    2003-04-01

    The hydrothermally altered and weathered uppermost section of subducting oceanic plates influences the budget of many fluid-mobile elements in supra-subduction zones. The characterisation of subducted upper basement is therefore an important parameter for the understanding of arc-magmatism. We present preliminary Sr and Nd isotope as well as H_2O^+ and CO_2 concentration data for altered basalts from ˜80 Ma Pacific crust drilled during DSDP Leg 91 (Site 595; 23^o49.3'S and 165^o31.6'W) 1000 km East of the Tonga trench. The sample set consists of 10 partially altered, aphyric microcrystalline basalts and subordinate breccia from the uppermost 55 m of basement. Smectite, celadonite, calcite, and Fe-oxides are the most abundant secondary phases, replacing igneous groundmass and filling fissures and void space. 87Sr/86Sr and 143Nd/144Nd isotope ratios vary between 0.70330 and 0.70445 and between 0.513059 and 0.513095, respectively. The H_2O^+ and CO_2 concentrations range from 2.2 to 4.3 wt.% and 0.21 to 3.13 wt.%, respectively. 87Sr/86Sr is positively correlated with H_2O^+ concentrations and alteration intensity (chiefly smectite abundance). Significant macroscopic authigenic carbonate is developed in only two samples, all others show slightly elevated concentrations between 0.21 and 0.82 wt.% related to trace calcite in veinlets. Interestingly, 143Nd/144Nd is negatively correlated with CO_2 abundance suggesting that the 143Nd/144Nd may by ascribed to seawater alteration rather than mantle source heterogeneity. Our preliminary data indicate that the intensity of alteration and the magnitude of chemical change may be greater at Site 595 than in the 6 Ma old eastern Pacific crust at Sites 504 and 896 (Alt et al., 1996) but somewhat smaller than at Sites 417/418 in 118 Ma Atlantic crust (Staudigel et al., 1995). In addition to Sites 801 and 1149 in old Pacific crust, Site 595 may provide insights into western Pacific subduction zone inputs with particular relevance for

  15. Alps, Carpathians and Dinarides-Hellenides: about plates, micro-plates and delaminated crustal blocks

    Science.gov (United States)

    Schmid, Stefan

    2014-05-01

    Before the onset of Europe-Africa continental collision in the Dinarides-Hellenides (around 60Ma) and in the Alps and Western Carpathians (around 35 Ma), and at a large scale, the dynamics of orogenic processes in the Mediterranean Alpine chains were governed by Europe-Africa plate convergence leading to the disappearance of large parts of intervening oceanic lithosphere, i.e. the northern branch of Neotethys along the Sava-Izmir-Ankara suture and Alpine Tethys along the Valais-Magura suture (Schmid et al. 2008). In spite of this, two major problems concerning the pre-collisional stage are still poorly understood: (1) by now we only start to understand geometry, kinematics and dynamics of the along-strike changes in the polarity of subduction between Alps-Carpathians and Dinarides-Hellenides, and (2) it is not clear yet during exactly which episodes and to what extent intervening rifted continental fragments such as, for example, Iberia-Briançonnais, Tisza, Dacia, Adria-Taurides moved independently as micro-plates, and during which episodes they remained firmly attached to Europa or Africa from which they broke away. As Europe-Africa plate convergence slowed down well below 1 cm/yr at around 30 Ma ago these pre-collisional processes driven by plate convergence on a global scale gave way to more local processes of combined roll-back and crustal delamination in the Pannonian basin of the Carpathian embayment and in the Aegean (as well as in the Western Mediterranean, not discussed in this contribution). In the case of the Carpathian embayment E-directed roll back totally unrelated to Europe-Africa N-S-directed convergence, started at around 20 Ma ago, due to the presence relict oceanic lithosphere in the future Pannonian basin that remained un-subducted during collision. Due to total delamination of the crust from the eastward rolling back European mantle lithosphere the anticlockwise rotating ALCAPA crustal block, consisting of Eastern Alps and Western Carpathian

  16. IODP Expedition 319, NanTroSEIZE Stage 2: First IODP Riser Drilling Operations and Observatory Installation Towards Understanding Subduction Zone Seismogenesis

    Directory of Open Access Journals (Sweden)

    Sean Toczko

    2010-09-01

    Full Text Available The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE is a major drilling project designed to investigate fault mechanics and the seismogenic behavior of subduction zone plate boundaries. Expedition 319 is the first riser drilling operation within scientific ocean drilling. Operations included riser drilling at Site C0009 in the forearc basin above the plate boundary fault, non-riser drilling at Site C0010 across the shallow part of the megasplay faultsystem—which may slip during plate boundary earthquakes—and initial drilling at Site C0011 (incoming oceanic plate for Expedition 322. At Site C0009, new methods were tested, including analysis of drill mud cuttings and gas, and in situ measurements of stress, pore pressure, and permeability. These results, in conjunction with earlier drilling, will provide a the history of forearc basin development (including links to growth of the megasplay fault system and modern prism, b the first in situ hydrological measurements of the plate boundary hanging wall, and c integration of in situ stress measurements (orientation and magnitude across the forearc and with depth. A vertical seismic profile (VSP experiment provides improved constraints on the deeper structure of the subduction zone. At Site C0010, logging-while-drilling measurements indicate significantchanges in fault zone and hanging wall properties over short (<5 km along-strike distances, suggesting different burial and/or uplift history. The first borehole observatory instruments were installed at Site C0010 to monitor pressure and temperature within the megasplay fault zone, and methods of deployment of more complex observatoryinstruments were tested for future operations.

  17. The fate of water within Earth and super-Earths and implications for plate tectonics

    Science.gov (United States)

    Tikoo, Sonia M.; Elkins-Tanton, Linda T.

    2017-04-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  18. The fate of water within Earth and super-Earths and implications for plate tectonics

    Science.gov (United States)

    2017-01-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729

  19. The fate of water within Earth and super-Earths and implications for plate tectonics.

    Science.gov (United States)

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  20. Constraints on Subduction Zone Processes from Low Frequency Earthquakes

    Science.gov (United States)

    Bostock, M. G.

    2015-12-01

    The discovery of tectonic tremor and constituent low-frequency earthquakes (LFEs) offers seismologists new opportunities to study both deformational processes and structure within the subduction zone forearc. This assertion is especially true for northern Cascadia where i) regular seismicity is sparse, and ii) a relatively transparent overriding plate inflicts minimal distortion upon direct P and S wave arrivals from LFEs. Despite low signal-to-noise ratios, LFEs are highly repetitive and signal can be enhanced through construction of stacked templates. Studies in both Cascadia and Nankai reveal an association between LFE hypocenters and a high Vp/Vs, low-velocity zone (LVZ) that is inferred to represent overpressured upper oceanic crust. Scattered signals within Vancouver Island templates, interpreted to originate at boundaries of the LVZ, place LFEs within the LVZ and suggest that this structure may define a distributed (several km) zone of deformation. A recent analysis of LFE magnitudes indicates that LFEs exhibit scaling relations distinct from both regular earthquakes and longer period (10's of seconds to days) phenomena associated with slow slip. Regular earthquakes generally obey a scaling of moment proportional to duration cubed consistent with self similarity, whereas long period slow slip phenomena exhibit a linear scaling between moment and duration that can be accommodated through constant slip or constant stress drop models. In contrast, LFE durations are nearly constant suggesting that moment is governed by slip alone and that asperity size remains approximately constant. The implied dimensions (~1 km2), the persistance of LFEs in time and their stationarity in space point to structural heterogeneity, perhaps related to pockets of upper oceanic crust impervious to hydrothermal circulation, as a fundamental control.

  1. The Start of Plate Tectonics in the Eoarchean: A Tribute to Gilbert N Hanson, Pioneer in Archean Geochemistry

    Science.gov (United States)

    Shirey, S. B.; Kamber, B. S.; Whitehouse, M. J.; Mueller, P. A.; Basu, A. R.

    2007-05-01

    The use of isotopic and trace element geochemistry and igneous petrology to understand the petrogenesis of Archean rocks was pioneered by Gilbert Hanson and Joseph Arth at SUNY Stony Brook in the 1970's. Extension of these approaches allows the onset of plate tectonics on Earth shortly after the end of the Hadean to be specified. Nb/Th and Th/U ratios of mafic-ultramafic rocks from the depleted upper mantle begin to change from 7 to 18.2 and 4.7 to 2.9 (respectively) at 3.6 Ga. This signals the appearance of subduction-altered slabs in general mantle circulation from subduction initiated at 3.8 Ga. Juvenile crustal rocks begin to show derivation from progressively depleted mantle with typical igneous ɛNd:ɛHf = 1:2 after 3.6 Ga. Cratons with stable mantle keels that have subduction imprints begin to appear at 3.5 Ga. These changes all suggest that extraction of continental crust by plate tectonic processes was progressively depleting the mantle from 3.6 Ga onwards. Neoarchean subduction appears largely analogous to present subduction except in being able to produce large cratons with thick mantle keels. The earliest Eoarchean juvenile rocks and Hadean zircons have compositions that reflect the integrated effects of separation of an early enriched reservoir and fractionation of perovskite from the Mars-size impact-derived magma ocean, rather than separation of voluminous continental crust or oceanic plate tectonics. Hadean zircons most likely were derived from a continent-absent, mafic to ultramafic protocrust that was multiply remelted between 4.4 and 4.0 Ga under wet conditions to produce evolved felsic rocks. If the protocrust was produced by global mantle overturn at ca 4.4 Ga, then the transition to plate tectonics resulted from radioactive decay-driven mantle heating. Otherwise, such protocrust would have been the typical product of mantle convection and the transition to plate tectonics resulted from cooling to the extent that large lithospheric plates

  2. Phase change in subducted lithosphere, impulse, and quantizing Earth surface deformations

    Science.gov (United States)

    Bowin, C. O.; Yi, W.; Rosson, R. D.; Bolmer, S. T.

    2015-09-01

    The new paradigm of plate tectonics began in 1960 with Harry H. Hess's 1960 realization that new ocean floor was being created today and is not everywhere of Precambrian age as previously thought. In the following decades an unprecedented coming together of bathymetric, topographic, magnetic, gravity, seismicity, seismic profiling data occurred, all supporting and building upon the concept of plate tectonics. Most investigators accepted the premise that there was no net torque amongst the plates. Bowin (2010) demonstrated that plates accelerated and decelerated at rates 10-8 times smaller than plate velocities, and that globally angular momentum is conserved by plate tectonic motions, but few appeared to note its existence. Here we first summarize how we separate where different mass sources may lie within the Earth and how we can estimate their mass. The Earth's greatest mass anomalies arise from topography of the boundary between the metallic nickel-iron core and the silicate mantle that dominate the Earth's spherical harmonic degree 2 and 3 potential field coefficients, and overwhelm all other internal mass anomalies. The mass anomalies due to phase changes in olivine and pyroxene in subducted lithosphere are hidden within the spherical harmonic degree 4-10 packet, and are an order of magnitude smaller than those from the core-mantle boundary. Then we explore the geometry of the Emperor and Hawaiian seamount chains and the 60° bend between them that aids in documenting the slow acceleration during both the Pacific Plate's northward motion that formed the Emperor seamount chain and its westward motion that formed the Hawaiian seamount chain, but it decelerated at the time of the bend (46 Myr). Although the 60° change in direction of the Pacific Plate at of the bend, there appears to have been nary a pause in a passive spreading history for the North Atlantic Plate, for example. This, too, supports phase change being the single driver for plate tectonics and

  3. Experimental and observational evidence for plume-induced subduction on Venus

    Science.gov (United States)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S.

    2017-04-01

    Why Venus lacks plate tectonics remains an unanswered question in terrestrial planet evolution. There is observational evidence for subduction--a requirement for plate tectonics--on Venus, but it is unclear why the features have characteristics of both mantle plumes and subduction zones. One explanation is that mantle plumes trigger subduction. Here we compare laboratory experiments of plume-induced subduction in a colloidal solution of nanoparticles to observations of proposed subduction sites on Venus. The experimental fluids are heated from below to produce upwelling plumes, which in turn produce tensile fractures in the lithosphere-like skin that forms on the upper surface. Plume material upwells through the fractures and spreads above the skin, analogous to volcanic flooding, and leads to bending and eventual subduction of the skin along arcuate segments. The segments are analogous to the semi-circular trenches seen at two proposed sites of plume-triggered subduction at Quetzalpetlatl and Artemis coronae. Other experimental deformation structures and subsurface density variations are also consistent with topography, radar and gravity data for Venus. Scaling analysis suggests that this regime with limited, plume-induced subduction is favoured by a hot lithosphere, such as that found on early Earth or present-day Venus.

  4. Influence of plate geometry, slabs, and viscosity structure on local and global surface motions

    Science.gov (United States)

    Gérault, M.; Becker, T. W.; Kaus, B. J.; Faccenna, C.

    2009-12-01

    Unraveling the dynamics of the Pacific domain is essential in order to understand the net rotation of the lithosphere and relative trench motions. The major processes responsible for plate motions in the Pacific region are still debated although they have been attributed recently to keels, mountains, and/or plate dimensions. In this study, we perform numerical experiments to test several combinations of ocean basin geometries and viscosity structures. Changes in global plate motions and trench behavior occur as a response to differential spreading rates, basin width, slab morphology, and plate asymmetry. The influence of strength of the plate boundaries on mantle flow is evaluated as well. The pressure, velocity, and stress fields in the lithosphere and the upper mantle are computed using the two-dimensional (2-D) finite element code MILAMIN. A comparison between Cartesian and cylindrical models provides a quantitative analysis of the interactions of flow related to each of these different configurations. Our results suggest that the dynamics of an oceanic domain surrounded by subducting slabs are significantly affected by the width and geometry of the basin. The asymmetry of plates in terms of length, thickness, and slab geometry leads to a net motion that is up to 15% of the maximum surface motion. We find that for each particular combination of asymmetry and viscosity structure, there exists a critical basin size that maximizes the net rotation of the lithosphere.

  5. Brittle stars (Echinodermata: Ophiuroidea) from seamounts in the Andaman Sea (Indian Ocean): first account, with descriptions of new species

    Digital Repository Service at National Institute of Oceanography (India)

    Stohr, S.; Sautya, S.; Ingole, B.S.

    researchers to explore the Andaman Back-arc Basin (ABB), including seamounts. The ABB is an active marginal basin and a 3 part of the major island arc-trench system in the northeastern Indian Ocean. It marks the eastern boundary of the Indian plate where... it sub-ducts beneath the Southeast Asian plate. The German research vessel "Sonne" was used to sample and collect geophysical, geological, chemical and biological data from the Andaman seamounts in 2007 (Sautya et al., 2011). Two seamounts were studied...

  6. Post-Eocene Subduction Dynamics and Mantle Flow beneath Western U.S.

    Science.gov (United States)

    Liu, L.; Zhou, Q.; Leonard, T.

    2015-12-01

    Both surface geology and mantle seismic images suggest a complex late Cenozoic history of mantle dynamics over western U.S. We try to understand this history by simulating the Farallon subduction since 40 Ma. Forward subduction models assimilating time dependent seafloor ages, plate kinematics and evolving plate boundaries suggest that the present-day 3D distribution of fast seismic anomalies below western U.S. mostly represent late Cenozoic slabs, which experienced multiple phases of segmentation during subduction because of their young age and small mechanical strength (Liu & Stegman, 2011). A major slab segmentation event occurred around mid-Miocene, with the resulting slab tear and induced asthenosphere upwelling correlating with the Steens-Columbia River flood basalts (SCRB) eruption both in space and in time (Liu & Stegman, 2012). This suggests that a mantle plume is not required for the formation of the SCRB. Segmentation of the Farallon slab generates rapid toroidal flows around the newly formed slab edges beneath the Cascadia arc. These mantle flows may affect both the pattern and composition of arc volcanism through transportation of oceanic asthenosphere material into the mantle wedge. Based on the forward model, we further test the influence of slow seismic anomalies on mantle dynamics. On the one hand, we explicitly input a deep hot anomaly to represent the putative Yellowstone plume. On the other hand, we develop a hybrid scheme that combines the adjoint inverse method with the high-resolution forward simulation approach, so that the present-day mantle seismic structure is entirely consistent with the convection model. Our preliminary results suggest that a hot plume could actively rise up only when it is several hundreds of kilometers away from the slabs, as is the case prior to 20 Ma. Subsequently, the plume is dominated by the surrounding slabs, resulting in an overall downwelling mantle flow. This suggests that a plume might have contributed to

  7. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

    Science.gov (United States)

    Canales, J. P.; Carbotte, S. M.; Nedimović, M. R.; Carton, H.

    2017-11-01

    Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

  8. Using the Mesozoic History of the Canadian Cordillera as a Case Study in Teaching Plate Tectonics.

    Science.gov (United States)

    Chamberlain, Valerie Elaine

    1989-01-01

    Reviews a model used in the teaching of plate tectonics which includes processes and concepts related to: terranes and the amalgamation of terranes, relative plate motion and oblique subduction, the effects of continent-continent collision, changes in plate motion, plate configuration, and the type of plate boundary. Diagrams are included.…

  9. Back-arc Extension: Critical Analisys of Subduction-related and Non Subduction-related Driving Mechanisms

    Science.gov (United States)

    Mantovani, E.; Viti, M.; Babbucci, D.; Tamburelli, C.; Albarello, D.

    It is argued that the opening of back arc basins can hardly be explained as an effect of subduction related forces, since this kind of interpretation has not yet provided plausible explanations for several major features of such processes in the world. In particular, it is not clear why back arc extension occurs in some subduction zones and not in others, why extension ceased in zones where subduction has remained active, why the arcs associated with back arc basins are often characterized by a strongly curved shape, why arc-trench-back arc systems do not develop along the entire length of consuming borders and why no significant correlation can be recognized between any parameter of subduction processes and the occurrence of back arc extension. In addition, modelling experiments indicate that the magnitude of the tensional stress induced in the overriding plate by subduction-related forces is significantly lower than the lithospheric strength. These problems are discussed, in particular, for three subduction-related interpretations, the "slab-pull", the "corner flow" and the "sea an- chor" models, which seem to be the most quoted in literature. It is then argued that possible solutions of the above problems may be provided by the extrusion model, which postulates that back arc basins are generated by the forced separation of the arc from the overriding plate, along a sector of the consuming border. This separa- tion is generally caused by the oblique indentation of strong and buoyant structures against the accretionary belt. In this view, subduction and back arc extension are not causally linked one to the other, but rather represent simultaneous effects of the lateral migration of the arc, driven by plate convergence. It is pointed out that the conditions required for the occurrence of this kind of mechanism may be recognized in the tec- tonic contexts where back arc basins developed in the wake of arc-trench migrating systems. On the other hand, in the zones

  10. Subduction processes related to the Sea of Okhotsk

    Science.gov (United States)

    Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya

    2017-04-01

    It is obviously important to study a role of subduction processes in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the Sea of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk Sea Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction process, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.

  11. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example

    Science.gov (United States)

    Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An

    2017-12-01

    The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved

  12. Fore-arc deformation at the transition between collision and subduction: insights from 3D thermo-mechanical laboratory experiments.

    OpenAIRE

    D. Boutelier; Onno Oncken; A. Cruden

    2012-01-01

    Three-dimensional thermomechanical laboratory experiments of arc-continent collision investigate the deformation of the fore arc at the transition between collision and subduction. The deformation of the plates in the collision area propagates into the subduction-collision transition zone via along-strike coupling of the neighboring segments of the plate boundary. In our experiments, the largest along-strike gradient of trench-perpendicular compression does not produce sufficiently localized ...

  13. Oblique subduction modelling indicates along-trench tectonic transport of sediments.

    Science.gov (United States)

    Malatesta, Cristina; Gerya, Taras; Crispini, Laura; Federico, Laura; Capponi, Giovanni

    2013-01-01

    Convergent plate margins are currently distinguished as 'accretional' or 'erosional', depending on the tendency to accumulate sediments, or not, at the trench. Accretion and erosion can coexist along the same margin and we have noticed that this mostly occurs where subduction is oblique. Here we show that at oblique subduction zones, sediments that enter the trench are first buried, and later migrate laterally parallel to the trench and at various depths. Lateral migration of sediments continues until they reach a physical barrier where they begin to accumulate. The accretionary wedge size decreases along the trench moving away from the barrier. We therefore suggest that the gradual variation of the accretionary wedge size and sediment amount at the trench along one single subduction zone, as observed in many active plate margins worldwide, can be explained by the lateral tectonic migration of sediments driven by obliquity of subduction as well.

  14. Subduction of shallowly formed arc cumulates: Evidence from clinopyroxene compositions of garnet peridotites in the Rio San Juan Complex, northern Dominican Republic

    Science.gov (United States)

    Hattori, K.; Tubrett, M.; Saumur, B.-M.; Guillot, S.

    2009-04-01

    Garnet peridotites are very rare in oceanic subduction complexes, with only two reported occurrences. One is in the Sambagawa metamorphic belt in Shikoku, Japan, and the other example is in the southern part of the Rio Juan Complex, northern Dominican Republic. In both locations, garnet peridotite occurs in close association with eclogites in high metamorphic grade of the terranes. The Rio Juan Complex represents rocks formed during the southwestern subduction of the Proto-Caribbean oceanic plate below the Carribean Plate during late Cretaceous to early Eocene. Garnet peridotites (clinopyroxene[Cpx]-bearing dunite, wehrlite, olivine clinopyroxenite) occur as large (The rocks are all low in Ir-group PGE (Ir, Ru, Os), indicating that they are cumulates of a melt, since these remain in the residue during partial melting. A cumulate origin of the ultramafic rocks is consistent with relatively low Mg contents of olivine (Fo 74-83) compared to olivine in mantle peridotites. Extended trace element plots of the bulk rocks show a so-called "arc geochemical signature" with high fluid-mobile element concentrations, such as Sr, U, and Pb, and low HFSE, such as Nb and Zr, indicating that formation of the parental magmas were related to subduction. Two representative garnet-bearing samples (wehrlite and clinopyroxenite) were selected for trace element analysis of Cpx grains using a LA HR ICP-MS. The data show a negatively sloped normalized pattern of REE; low contents of light REE (0.1-0.3 of the primitive mantle values) and similar concentrations of middle to heavy REE (1-2 of the primitive mantle values). Extended trace element patterns of Cpx are similar between two samples and also to that of the bulk rocks, with low Nb and Zr and high fluid-mobile elements. The Y and heavy REE patterns of Cpx do not show anomalies between the samples. As these elements would be preferentially incorporated into garnet, the lack of anomalies indicates early crystallization of Cpx and later

  15. Using global, quantitative models of the coupled plates/mantle system to understand Late Miocene dynamics of the Pacific plate

    Science.gov (United States)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2017-04-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of

  16. Using Global, Quantitative Models of the Coupled Plates/Mantle System to Understand Late Neogene Dynamics of the Pacific Plate

    Science.gov (United States)

    Stotz, I.; Davies, R.; Iaffaldano, G.

    2016-12-01

    Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of

  17. Nonuniform subduction of the Indian crust beneath the Himalayas.

    Science.gov (United States)

    Guo, Xiaoyu; Li, Wenhui; Gao, Rui; Xu, Xiao; Li, Hongqiang; Huang, Xingfu; Ye, Zhuo; Lu, Zhanwu; Klemperer, Simon L

    2017-10-02

    Himalayan tectonic activity is triggered by downward penetration of the Indian plate beneath the Asian plate. The subsurface geometry of this interaction has not been fully investigated. This study presents novel constraints on this geometry provided by two newly obtained, deep seismic reflection profiles. The profiles cover 100- and 60-km transects across the Yarlung-Zangbo suture of the Himalaya-Tibet orogen at c. 88°E. Both profiles show a crustal-scale outline of the subducting Indian crust. This outline clearly shows Indian understhrusting southern Tibet, but only to a limited degree. When combined with a third seismic reflection profile of the western Himalayas, the new profiles reveal progressive, eastward steepening and shortening in the horizontal advance of the subducting Indian crust.

  18. THE POTENTIAL OF TSUNAMI GENERATION ALONG THE MAKRAN SUBDUCTION ZONE IN THE NORTHERN ARABIAN SEA. CASE STUDY: THE EARTHQUAKE AND TSUNAMI OF NOVEMBER 28, 1945

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2006-01-01

    Full Text Available Although large earthquakes along the Makran Subduction Zone are infrequent, the potential for the generation of destructive tsunamis in the Northern Arabian Sea cannot be overlooked. It is quite possible that historical tsunamis in this region have not been properly reported or documented. Such past tsunamis must have affected Southern Pakistan, India, Iran, Oman, the Maldives and other countries bordering the Indian Ocean.The best known of the historical tsunamis in the region is the one generated by the great earthquake of November 28, 1945 off Pakistan's Makran Coast (Balochistan in the Northern Arabian Sea. The destructive tsunami killed more than 4,000 people in Southern Pakistan but also caused great loss of life and devastation along the coasts of Western India, Iran, Oman and possibly elsewhere.The seismotectonics of the Makran subduction zone, historical earthquakes in the region, the recent earthquake of October 8, 2005 in Northern Pakistan, and the great tsunamigenic earthquakes of December 26, 2004 and March 28, 2005, are indicative of the active tectonic collision process that is taking place along the entire southern and southeastern boundary of the Eurasian plate as it collides with the Indian plate and adjacent microplates. Tectonic stress transference to other, stress loaded tectonic regions could trigger tsunamigenic earthquakes in the Northern Arabian Sea in the future.The northward movement and subduction of the Oman oceanic lithosphere beneath the Iranian micro-plate at a very shallow angle and at the high rate is responsible for active orogenesis and uplift that has created a belt of highly folded and densely faulted coastal mountain ridges along the coastal region of Makran, in both the Balochistan and Sindh provinces. The same tectonic collision process has created offshore thrust faults. As in the past, large destructive tsunamigenic earthquakes can occur along major faults in the east Makran region, near Karachi, as

  19. Paleozoic structure of Middle Tien Shan (Kyrgyzstan Central Asian Orogenic Belt): Insights on the polarity and timing of tectonic motions, subductions, and lateral correlations

    Science.gov (United States)

    Jourdon, Anthony; Loury, Chloé; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    The structure and Palaeozoic tectonic evolution in Kyrgyz and Chinese Tien Shan Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are numerous and conflicting models about the polarity of tectonic motions in the Paleozoic, the number of continental blocks and oceanic basins involved and the timing of tectonic events. In this study we propose new maps and structural cross-sections of Middle and South Kyrgyz Tien Shan (TS). These cross-sections allow us to highlight an overall South-verging structure in the Middle TS, with a thick-skin style involving the crystalline basement. This deformation occurred during the Early Carboniferous, and is sealed by an Upper Carboniferous unconformity. We ascribe this structure to an Upper Plate deformation linked to north-dipping subduction below Middle TS. In contrast, the South TS exhibits a north-verging structure, linked to south-dipping subduction, which is evidenced by an accretionary prism, a volcanic arc, and high-pressure rocks (Loury et al., 2015), and is correlated to similar structures in the Chinese TS (e.g., Charve